
Kinetis Design Studio V3.0.0- User's
Guide

Document Number: KDSUG
Rev. 1.0, 04/2015

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Introduction

1.1 System requirements...5

1.2 Installing Kinetis Design Studio... 6

1.2.1 On Windows.. 6

1.2.2 On Linux.. 6

1.2.3 On Macintosh...7

1.3 Release Notes..7

1.4 Terminology..8

1.5 About this manual...9

Chapter 2
Working with Projects

2.1 Launching Workbench..11

2.2 Creating a Kinetis project... 13

2.3 Importing an existing project..20

2.4 Building Projects...22

2.5 Debugging Projects...24

2.6 Flashing from file..31

2.7 Deleting Projects...31

Chapter 3
Build Properties for Projects

3.1 Changing Build Properties..34

3.2 Restoring Build Properties..36

3.3 Defining C/C++ Build Settings and Behavior.. 36

3.3.1 Define Build Settings... 36

3.3.2 Define Build Behavior... 39

3.4 Configuring Build Properties..42

3.4.1 Target Processor ..42

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 3

Section number Title Page

3.4.2 Optimization...44

3.4.3 Warnings.. 45

3.4.4 Debugging..46

3.4.5 Cross ARM GNU Assembler...46

3.4.5.1 Cross ARM GNU Assembler > Preprocessor..47

3.4.5.2 Cross ARM GNU Assembler > Includes...47

3.4.5.3 Cross ARM GNU Assembler > Warnings...48

3.4.5.4 Cross ARM GNU Assembler > Miscellaneous... 48

3.4.6 Cross ARM C Compiler...48

3.4.6.1 Cross ARM C Compiler > Preprocessor..49

3.4.6.2 Cross ARM C Compiler > Includes...49

3.4.6.3 Cross ARM C Compiler > Optimization... 50

3.4.6.4 Cross ARM C Compiler > Warnings...50

3.4.6.5 Cross ARM C Compiler > Miscellaneous... 50

3.4.7 Cross ARM C++ Compiler.. 51

3.4.7.1 Cross ARM C++ Compiler > Preprocessor... 51

3.4.7.2 Cross ARM C++ Compiler > Includes.. 52

3.4.7.3 Cross ARM C++ Compiler > Optimization...52

3.4.7.4 Cross ARM C++ Compiler > Warnings.. 53

3.4.7.5 Cross ARM C++ Compiler > Miscellaneous...53

3.4.8 Cross ARM C++ Linker ..54

3.4.8.1 Cross ARM C++ Linker > General..54

3.4.8.2 Cross ARM C++ Linker > Libraries..55

3.4.8.3 Cross ARM C++ Linker > Miscellaneous... 55

Chapter 4
Appendices

4.1 Installing Kinetis SDK..57

4.2 Installing Kinetis SDK into KDS..62

4.3 Installing Drivers.. 68

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

4 Freescale Semiconductor, Inc.

Chapter 1
Introduction

The Kinetis Design Studio software development tool is a GNU/Eclipse-based
development environment for Freescale Kinetis devices. It supports Cortex-M based
Kinetis devices and integrates with Processor Expert and Kinetis Software Development
Kit. KDS supports SEGGER J-Link/J-Trace, P&E USB Multilink Universal/USB
Multilink Universal FX and CMSIS-DAP debug adapters and uses the newlib-nano C
runtime library. This runtime library helps reduce the memory footprint of an embedded
application.

This manual explains how to use the Kinetis Design Studio product with usage of Kinetis
SDK and start effectively using Processor Expert for easier application creation and
configuration with graphical user interface. This chapter presents an overview of the
manual.

1.1 System requirements

Hardware 1.8 GHz processor • 2 GB of RAM •

Operating System • Microsoft® Windows® 7 and Windows® 8 (all editions). Windows hosted
variants of the Kinetis Design Studio software development tools are
distributed as 32-bit binaries, which will run on 32-bit and 64-bit
machines.

• Red Hat® Enterprise Linux (RHEL), CentOS 6.4 and Ubuntu 14.04 LTS.
Linux-hosted variants of the Kinetis Design Studio software development
tools are distributed as 64-bit binaries, which will not work on 32-bit
systems.

Disk Space Approximately 1.5 GB of free disk space (when installing the full product)

NOTE
The Kinetis Design Studio software development tools are
licensed under the terms outlined in license.htm, which is found
at the top of the install directory.

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 5

1.2 Installing Kinetis Design Studio

1.2.1 On Windows

The Kinetis Design Studio software development tools are installed on Windows using
the Windows Installer or from the command line.

To install Kinetis Design Studio using the Windows installer:
1. Double-click the installer.
2. The Windows Installer initiates.
3. Click Next.
4. Follow the on-screen instructions and proceed through the installation.

To install Kinetis Design Studio from the command line, type the following to launch the
Windows installer.KDS-v3.0.0.exe /qb. The Windows installer will launch and you can
control it using the standard Window installer command-line switches.

NOTE
The basic user interface will not ask any questions but will
display a progress bar.

1.2.2 On Linux

To install the Kinetis Design Studio software development tools on a Linux system, use
the following package files.

• .rpm — Use .rpm to install KDS software tools on systems using the RPM package
manager. For example, Red Hat and CentOS.

• .deb — Use .deb to install KDS software tools on systems that use the Debian
package manager. For example, Ubuntu.

installing with Red Hat package manager (RPM)
To install the Kinetis Design Studio software development tools on an Linux Standard
Base (LSB)-compliant system, use the .rpm package file.

$ sudo rpm -Uvh kinetis-design-studio-3.0.0-1.x86_64.rpm
Preparing ... ### [100%]
1: Kinetis Design Studio ### [100%]

This will install the Kinetis Design Studio software development tools to the default
location (/opt/Freescale/KDS_3.0.0).

Installing Kinetis Design Studio

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

6 Freescale Semiconductor, Inc.

http://support.microsoft.com/kb/227091

Installing with Debian package manager (DEB).
To install the Kinetis Design Studio software development tools on Debian-like systems,
including Ubuntu, use the .deb package file.

$ sudo dpkg -i kinetis-design-studio_3.0.0-1_amd64.deb
(Reading database files and directories currently installed .)
Preparing to replace kinetis-design-studio 3.0.0 (using kinetis-design-
studio_3.0.0-1_amd64 .deb) ...
Unpacking replacement kinetis-design-studio ...
Setting up kinetis-design-studio (3.0.0) ...

This installs the Kinetis Design Studio software development tools to the default location
(/opt/Freescale/KDS_3.0.0).

NOTE
KDS includes the GCC ARM Embedded toolchain, which is
built for 32 bit hosts. If you are using a 64 bit system, be sure
you have the appropriate 32 bit packages installed.

• For Ubuntu 1404 these packages are required to be
installed: libc6:i386, libncurses5:i386, & libstdc++6:i386.

• For RPM based packages these packages are required to
be installed: glibc.i686 and libncurses.so.5.

1.2.3 On Macintosh

The Kinetis Design Studio software development tools are installed on MAC OSX using
the MAC PKG installer.

To install Kinetis Design Studio using the MAC installer:

1. Double-click on the installer (PKG) file.
2. The installer initiates
3. Click Continue.
4. Follow the on screen instructions and proceed through the installation.

NOTE
Currently only the Segger debugger works on MAC OSX. If
you are using Freedom boards, ensure that you have the Segger
OpenOCD firmware installed on the board which can be found
on http://www.freescale.com/freedom and look for your
particular freedom board’s getting started page.

Chapter 1 Introduction

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 7

http://www.freescale.com/freedom

1.3 Release Notes
Before using the Kinetis Design Studio IDE, read the release notes. These notes contain
important information about last-minute changes, bug fixes, incompatible elements, or
other topics that may not be included in this manual. The product comes with the release
notes installed. Make sure you check the latest version of the release notes in the
download section on

NOTE
The release notes for specific components of the Kinetis Design
Studio IDE are located in the Release_Notes folder in the Kinetis
Design Studio installation directory.

1.4 Terminology

The following are some of the terms used in the document.

Table 1-1. Terminology

Term Description

Kinetis Software Development Kit (KSDK) Software development kit that provides comprehensive software support for
Freescale Kinetis devices. The KSDK includes a Hardware Abstraction Layer
(HAL) for each peripheral and peripheral drivers built on top of the HAL. KSDK
also contains the latest available RTOS kernels, a USB stack and other
middleware to support rapid development on supported Kinetis devices.

Processor Expert Rapid application design tool targeted for Freescale microcontrollers providing
the following key features:

• A Graphical User Interface which allows an application to be specified by
the functionality needed.

• An application created from Embedded Components encapsulating
initialization and functionality of basic elements of embedded systems.

• An automatic code generator which creates tested and optimized C code
which is tuned to your application needs and the selected Freescale
device.

• A built-in knowledge base, which immediately flags resource conflicts and
incorrect settings, so errors are caught early in design cycle allowing you
to get to market faster with a higher quality product.

GNU ARM Embedded (launchpad)
toolchain

Maintained by ARM, it is a GNU toolchain targeted at embedded ARM
processors of the Cortex-M processor families, available from https://
launchpad.net/gcc-arm-embedded.

Because the GNU ARM Embedded tools are 32bit only for Linux, on Ubuntu
14.04 64-bit (and others) you may see error messages suggesting that arm-
none-eabi-gcc could not be found. The tools do exist, however they system
doesn't know how to run them. This is because the GCC ARM Embedded Linux
tools are built for 32-bit, and compatibility packages need to be installed: See
http://gnuarmeclipse.livius.net/blog/toolchain-install for details and suggested
solution.

Table continues on the next page...

Terminology

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

8 Freescale Semiconductor, Inc.

https://launchpad.net/gcc-arm-embedded
https://launchpad.net/gcc-arm-embedded
http://gnuarmeclipse.livius.net/blog/toolchain-install%20

Table 1-1. Terminology (continued)

Term Description

GNU ARM Eclipse plugins Set of Eclipse plugins which integrates the GNU build tools and debugging
panels into Eclipse, available from http://gnuarmeclipse.livius.net/.

Semihosting Originally coined by ARM, semihosting is a mechanism that enables the code
running on a target to communicate and use the I/O facilities on a host
computer running a debugger. The examples include: keyboard input, screen
output, and disk I/O.

1.5 About this manual
Each chapter of this manual describes a different area of software development. The
following table lists the contents of this manual.

Table 1-2. Manual Contents

Chapter / Appendix Description

Introduction This chapter.

Working with Projects Explains how to use the Kinetis Design Studio tools to create
and work with projects.

Build Properties for Projects Explains build properties for a Kinetis project.

Installing Kinetis SDK into KDS Lists the steps to Install Kinetis SDK into Kinetis Design
Studio.

Installing Kinetis SDK Lists the steps to install Kinetis SDK separately.

Installing Drivers Lists the steps to install KDS debug interface device drivers
on Windows and LInux.

NOTE
The processes listed in the manual are primarily for Microsoft
Windows. For other supported Operating System's, the process
remains the same, but some of the terms may be different based
on the particular operating system. For example, the Start
button is available in Windows.

Chapter 1 Introduction

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 9

http://gnuarmeclipse.livius.net/

About this manual

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

10 Freescale Semiconductor, Inc.

Chapter 2
Working with Projects

This chapter explains how to use the Kinetis Design Studio to create and work with
projects.

A project organizes files and various compiler, linker, and debugger settings associated
with the applications or libraries you develop. You use the Kinetis New Project wizard to
create new projects that group these files and settings into build and launch
configurations.

2.1 Launching Workbench

To launch the Kinetis Design Studio IDE for creating, building and debugging projects:

1. Select Start > All Programs > Kinetis Design Studio IDE.

The WorkSpace Launcher dialog box appears and prompts you to select a
workspace to use.

Figure 2-1. WorkSpace Launcher Dialog Box

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 11

2. Click OK to accept the default workspace. To use a workspace different from the
default, click Browse and specify the desired workspace.
The IDE starts and displays the Welcome page.

Figure 2-2. Welcome page
3. Click the Workbench link.

The Workbench window appears.

Launching Workbench

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

12 Freescale Semiconductor, Inc.

Figure 2-3. Workbench window

2.2 Creating a Kinetis project
The Kinetis Project wizard help you to quickly create new projects. The wizard
generates a project with placeholder files and default settings (build and launch
configurations) specific targets. After the project has been created, you can easily change
any default setting to suit your needs.

To create a Kinetis project using the New Kinetis Project wizard:

1. Launch the Workbench.

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 13

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Kinetis Project , from the IDE menu bar.

The Create a Kinetis Project page of the New Kinetis Project wizard appears.

3. Specify a name for the new project. For example, enter the project name as Project1.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name. Ensure that the
directory is empty. Alternatively, click Browse and select
the desired location from the Browse For Folder dialog
box and click OK. Ensure that you append the path with
the name of the project to create a new location for your
project.

Figure 2-4. Create a Kinetis Project page

Creating a Kinetis project

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

14 Freescale Semiconductor, Inc.

Table 2-1. Create a Kinetis Project Page
Settings

Option Description

Project Name Enter the name for the new project in this text box.

Note: Do not use the reserved/special characters/
symbols such as < (less than), > (greater than), :
(colon), " (double quote), / (forward slash), \
(backslash), | (vertical bar or pipe), ? (question
mark), @ (at), * (asterisk) in the project name. Using
special characters/symbols in the project name may
result in an unexpected behavior.

Use default location Stores the files required to build the program in the
Workbench's current workspace directory. The
project files are stored in the default location. Clear
the Use default location checkbox and click Browse
to select a new location.

Location Specifies the directory that contains the project files.
Click Browse to navigate to the desired directory.
This option is available only when Use default
location checkbox is clear.

4. Click Next.

The Devices page appears.

5. Expand the desired tree control and select the derivative or board you would like to
use. For example, select Processors > Kinetis K > MK60 > MK64F (120 MHz) >
MK64FN1M0xxx12.

NOTE
You can write the part of the derivative name in the filter
column and the selection is filtered. For example, type
K64F and select project board support or derivative project
or clean project for the specific derivative.

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 15

Figure 2-5. Devices page

NOTE
You can click Finish at any step in the project wizard to
save the project with the default settings. However, it is
recommended that you click Next to ensure that the project
settings match your needs.

6. Click Next.

The Rapid Application Development page appears. This page helps you to
configure use Processor Expert for configuration and KSDK. Processor Expert is
included with Kinetis Design Studio software, but KSDK must be installed
separately.

See Installing Kinetis SDK into KDS and Installing Kinetis SDK for details.

Creating a Kinetis project

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

16 Freescale Semiconductor, Inc.

NOTE
When the Kinetis SDK is installed, the default selection
uses the Kinetis SDK. By default, Processor Expert is not
selected.

Figure 2-6. Rapid Application Development page
7. The default Kinetis SDK option is set to None. To use the Kinetis SDK, you must

apply the Eclipse Update for the Kinetis SDK into this tool. and then select the
Kinetis SDK library version you want to use. You can use Environmental variable
<KSDK_PATH> or select the absolute path to the KSDK installation folder.

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 17

Figure 2-7. Rapid Application Development page

NOTE
See the Getting Started with SDK guide for more
information on how to apply Kinetis SDK into Kinetis
Design Studio.

8. Check the Processor Expert checkbox.
9. Choose the perspective you want to start with.

• Hardware configuration (pin muxing and device initialization) - Select to
generate the pin muxing and device initialization code, including low-level
drivers.

• Use current perspective - Select to keep the default perspective settings.
10. Select the appropriate Project Mode.

Creating a Kinetis project

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

18 Freescale Semiconductor, Inc.

• Linked - The static files are linked from corresponding repositories into a
project. In this mode, the repositories may be shared in other projects.
Modification of these files affect other projects where the static files are linked.

• Standalone - The static files are placed in the project folder. This means a copy
of these files is created for a specific project during project creation. In this
mode, you can modify the static filed without affecting other projects.
Standalone mode makes it easier to share projects among teams.

11. Click Next. The Target compiler page appears.

Figure 2-8. Processor Expert Target Compiler
12. Select the required compiler. Select the GNU C Compiler option, if you want KDS to

build code.

NOTE
The KDS contain GNU C Compiler installed by default.
Other compiler must be installed in KDS by users.

13. Click Finish.

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 19

The new project is ready for use. You can now customize it by adding your own source
code files, changing debugger settings, or adding libraries. To create a new source file
under the project, right click on the project and select New > Source File. Alternatively
you can drag and drop existing source files, header files, directories into the project.

Importing an existing project

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

20 Freescale Semiconductor, Inc.

2.3 Importing an existing project

This section should explain how to import an existing Kinetis SDK project. Explain that
the Kinetis SDK needs to be installed first for this, then go through the steps to import
one of the Kinetis SDK projects.

To import an existing Processor Expert project:
1. Select File > Import, from the IDE menu.

Figure 2-9. Select import option

The import dialog appears.

2. Expand the General tree and select Existing Projects into Workspace.

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 21

Figure 2-10. Select an import source
3. Click Next. The Import projects screen appears.
4. Click Browse and select the root directory to search for an existing Eclipse project.
5. Select the projects you want to import in your Workspace.
6. Click Finish.

The imported project appears in the Project Explorer view.

2.4 Building Projects
The recently built Kinetis Design Studio project is pre-configured and you can easily
build the project for your Freescale Kinetis MCU based target board. However, if you
want to change the configuration of the project you can adjust the build properties. For
more information on build properties, see Build Properties for Projects.

Building Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

22 Freescale Semiconductor, Inc.

NOTE
In large workspaces, building the entire workspace can take a
long time if you make changes with a significant impact on
dependent projects. Often there are only a few projects that
really matter to you at a given time.

To build only the selected projects, and any prerequisite projects that need to be built in

order to correctly build the selected projects, click or right-click oand select Project
> Build Project from the Kinetis Design Studio IDE menu bar.

Figure 2-11. Project Menu - Build Project

Alternatively, select Project > Build All. .

Figure 2-12. Project Menu - Build All

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 23

Alternatively, you can right-click on a selected project and select Build Project.

2.5 Debugging Projects

When you use the Kinetis New Project wizard to create a new project, the wizard sets
the debugger settings of the project's launch configurations to default values. You can
change these default values based on your requirements.

To debug a project, perform these steps.

1. Launch the IDE.
2. Click The Launch Configuration Selection dialog appears.

Alternatively, you can select Run > Debug Configurations from the IDE menu bar.
If you choose to select Run > Debug Configurations, proceed to Step 4.

NOTE
The Kinetis Design Studio software development tools
supports the following debug adapters for debugging
applications on a Freescale Kinetis device.

• OpenOCD - On-board OpenSDA debug interface
running the ARM® mbed™ project CMSIS-DAP
firmware.

• P&E USB Multilink Universal and USB Multilink
Universal FX debug adapters.

• SEGGER J-Link and J-Trace debug adapters.

NOTE
When using either the OpenOCD, SEGGER J-Link or P&E
Multilink debug interface, the relevant device drivers need
to have been installed. For information on installing
drivers, see Installing Drivers.

NOTE
The launch/debug configurations are populated with the
default settings: best if you go into the launch
configuration/settings to verify the correct USB port is
selected/etc.

3. Select the launch configuration you want to debug.

Debugging Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

24 Freescale Semiconductor, Inc.

Figure 2-13. Select launch configuration
4. Click OK.

The IDE uses the settings in the launch configuration to generate debugging
information and initiate communications with the target board. The Debug
Configurations dialog appears. The left side of this dialog box has a list of debug
configurations that apply to the current application.

5. Expand the tree and select the debug configuration that you want to modify.

The figure below displays the Debug Configurations dialog box with the settings
for the debug configuration you selected.

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 25

Figure 2-14. Debug configuration
6. In the Main tab, ensure that the correct Project and C/C++ Application is selected.
7. Select the Debugger tab.

The Debugger page appears in the area beneath the tabs.

Debugging Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

26 Freescale Semiconductor, Inc.

Figure 2-15. Debug Configurations Dialog Box - Debugger Page - OpenOCD

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 27

Figure 2-16. Debug Configurations Dialog Box - Debugger Page - PnE

Debugging Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

28 Freescale Semiconductor, Inc.

Figure 2-17. Debug Configurations Dialog Box - Debugger Page - Segger
8. Based on the debug interface you selected, change the appropriate debugger settings.

The below mention changes will connect to the remote target as a localhost.

Table 2-2. Debug interface
settings

Debug interface Debugger Settings

OpenOCD Set the value of Other options under GDB Client Setup group to -f kinetis.cfg.

P&E Select the Device name for your Freescale Kinetis device from the dropdown list.

Table continues on the next page...

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 29

Table 2-2. Debug interface settings
(continued)

Debug interface Debugger Settings

NOTE: If you are using the P&E OpenSDA firmware, select the Interface as
OpenSDA Embedded Debug - USB Port.

SEGGER J_Link Enter the Device name for your Freescale Kinetis device. You can use the link Supported
device names to help you with your selection.

NOTE: SEGGER software enables protection from accidental permanently
locking of devices by providing two variants of each Freescale
Kinetis device. The default option does not allow mass erase, while
the alternate labeled as allow security enable mass erase. Thus,you
should not use allow security devices without a good reason.

9. Select the Startup tab.
10. Based on the debug interface you selected, change the appropriate startup settings.

Table 2-3. Startup
settings

Debug interface Startup Settings

OpenOCD No changes required.

P&E No changes required.

SEGGER J_Link Clear the Enable SWO checkbox.

NOTE: if the board/device has SWO wired to the debug port, then the SWO
can remain enabled.

11. Click Apply to save the new settings.
12. Click Debug to start the debugging session.

NOTE
If the Debug Perspective is not open, you will be prompted
to open the Debug Perspective.

13. Select Yes to switch perspective. The Debug Perspective will open and the
embedded application will break on the breakpoint set on main.

You just finished starting a debugging session and attaching the debugger to a
process.

NOTE
You can click the Revert button in the Debug
Configurations dialog to undo any of the unsaved changes.
The IDE restores the last set of saved settings to all pages
of the Debug Configurations dialog box. Also, the IDE
disables Revert until you make new pending changes.

Debugging Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

30 Freescale Semiconductor, Inc.

2.6 Flashing from file

Kinetis Design Studio includes a functionality to program or flash a device without
having a project. This is called 'Flash from file'. With this it will setup a special debug
configuration which is used to specify the binary. For example: ELF file to be
downloaded.

To flash a project in Kinetis Design Studio:
1. Launch the IDE.
2. Click the icon on the IDE menu bar. The Debug Configuration dialog box

appears.
3. In the Main tab, ensure that the correct Project and C/C++ Application is selected.
4. Select the Debugger tab.
5. Configure as discussed in step 7-10 of Debugging Projects.
6. Click Flash. The embedded application is flashed to your Freescale Kinetis device.

Once completed, power cycle the board. The embedded application should boot and
run.

2.7 Deleting Projects

To delete a project, follow these steps.

1. Select the project you want to delete in the Projects Explorer view.
2. Select Edit > Delete.

The Delete Resources dialog box appears.

NOTE
Alternatively, you can also select Delete from the context
menu when you right-click on the project.

3. Check the Delete project contents on disk (cannot be undone) checkbox if you
want to delete the contents of the selected project. Else, clear the Delete project
contents on disk (cannot be undone) checkbox.

NOTE
You will not be able to restore your project using Undo, if
you select the Delete project contents on disk (cannot be
undone) option.

Chapter 2 Working with Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 31

4. Click OK.

The project is removed from the Project Explorer view.

Deleting Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

32 Freescale Semiconductor, Inc.

Chapter 3
Build Properties for Projects

This chapter explains build properties for a Kinetis project. The Kinetis New Project
wizard uses the information it gathers from you to set up the project's build and launch
configurations.

A project's build configuration contains information on the tool settings used to make the
program. For example, it describes the compiler and linker settings, and the files
involved, such as source and libraries.

A project's launch configuration describes how the IDE starts the program, such as
whether it executes by itself on a target, or under debugger control. Launch
configurations also specify the core the program executes on (if the target processor has
multiple cores). They also specify the connection interface and communications protocol
that the debugger uses to control the environment that the program executes in.

NOTE
The settings of the Kinetis Design Studio IDE's build and
launch configuration correspond to an object called a target
made by the classic Kinetis Design Studio IDE.

When the new project wizard completes its process, it generates launch configurations
with names that follow the pattern projectname - configtype - targettype, where:

• projectname represents the name of the project
• configtype represents the project's name, which usually describes the build

configuration
• targettype represents the type of target software or hardware on which the launch

configuration acts

For each launch configuration, you can specify build properties, such as:

• additional libraries to use for building code
• behavior of the compilers, linkers, assemblers, and other build-related tools
• specific build properties, such as the byte ordering of the generated code

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 33

3.1 Changing Build Properties

The Kinetis New Project wizard creates a set of build properties for the project. You can
modify these build properties to better suit your needs.

Perform these steps to change build properties:

1. Start the IDE.
2. In the Kinetis Design Studio Projects view, select the project for which you want to

modify the build properties.
3. Select Project > Properties.

The Properties window appears. The left side of this window has a properties list.
This list shows the build properties that apply to the current project.

4. Expand the C/C++ Build property.
5. Select Settings.

Changing Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

34 Freescale Semiconductor, Inc.

The Properties window shows the corresponding build properties.

6. Use the Configuration drop-down list to specify the launch configuration for which
you want to modify the build properties.

7. Click the Tool Settings tab.

The corresponding page appears.

8. From the list of tools on the Tool Settings page, select the tool for which you want to
modify properties.

9. Change the settings that appear in the page.
10. Click Apply .

The IDE saves your new settings. You can select other tool pages and modify their
settings.

11. When you finish, click OK to save your changes and close the Properties window.
12. In the Project Explorer view, right click on the project and select Clean Project. Once

cleaned select Build Project. Monitor the generated command lines used to build the
embedded application in the build Console view. Any problems with the build will

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 35

be reported under the Problems view. Assuming the build is successful, the generated
binary will be listed under the project in the Project Explorer view.

3.2 Restoring Build Properties

If you modify a build configuration that the new project wizard generates, you can restore
that configuration to its default state. You might want to restore the build properties in
order to have a factory-default configuration, or to revert to a last-known working build
configuration. To undo your modifications to build properties, click the Restore Defaults
button at the bottom of the Properties window.

3.3 Defining C/C++ Build Settings and Behavior

The C/C++ Build page includes all builder-specific property pages.

• Define Build Settings
• Define Build Behavior

NOTE
Modifying settings such as the Generate makefiles
automatically option, might enable or disable some parameters
in some situations and change the availability of other property
pages.

3.3.1 Define Build Settings

To define build settings, perform these steps.

1. Start the IDE.
2. In the Kinetis Design Studio Projects view, select the project for which you want to

modify the build settings.
3. Select Project > Properties.

The Properties for <project> window appears. The left side of this window has a
properties list. This list shows the build properties that apply to the current project.

4. Select C/C++ Build.

Restoring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

36 Freescale Semiconductor, Inc.

The C/C++ Build page appears.

Figure 3-1. C/C++ Build Page - Builder Settings
5. Click the Builder Settings tab.

The builder settings for the selected build configuration appears. The table below
describes the builder settings options.

Table 3-1. Builder Settings
Options

Group Option Description

Configuration Specifies the type of
configurations for the selected
project.

Manage configurations Click to open the Manage
Configurations dialog box that
lets you set configurations based
on the specified toolchains of the
selected project.

Table continues on the next page...

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 37

Table 3-1. Builder Settings Options
(continued)

Group Option Description

You can also create new
configurations, rename an
existing configuration, or remove
the ones that are no longer
required.

Builder Builder type Specifies the type of builder to
use:

• Internal builder - Builds
C/C++ programs using a
compiler that implements
the C/C++ Language
Specifications.

• External builder - External
tools let you configure and
run programs and Ant
buildfiles using the
Workbench, which can be
saved and run at a later
time to perform a build.

Builder Use default build command Check to indicate that you want
to use the default make
command.

Clear when you want to use a
new make command. This
option is only available when the
Builder type option is set to
External.

Builder Build command Specifies the default command
used to start the build utility for
your specific toolchain. Use this
field if you want to use a build
utility other than the default
make command.

Builder Variables Click to open the Select build
variable dialog box and add the
desired environment variables
and custom variables to the
build command.

Makefile generation Generate Makefiles
automatically

Check to enable Eclipse change
between two different CDT
modes: it either uses the
customer's makefile for the build,
if one exists, or it generates
makefiles for the user.

Makefile generation Expand Env. Variable Refs in
Makefiles

Check to define whether
environment variables should be
expanded in makefile.

Build location Build directory Specifies the location where the
build operation takes place. This
location will contain the

Table continues on the next page...

Defining C/C++ Build Settings and Behavior

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

38 Freescale Semiconductor, Inc.

Table 3-1. Builder Settings Options
(continued)

Group Option Description

generated artifacts from the
build process. This option
appears disabled when the
Generate Makefiles
automatically option is enabled.

Build location Workspace Click to open the Folder
Selectiondialog box and select
a workspace location for the
project. This is the directory that
will contain the plug-ins and
features to build, including any
generated artifacts.

Build location File system Click to open the Browse For
Folder dialog box and select a
folder.

Build location Variables Click to open the Select build
variable dialog box and select a
variable to specify as an
argument for the build directory,
or create and configure simple
build variables which you can
reference in build configurations
that support variables.

6. Make the desired changes and click OK.

The Properties for <project> window will close.

3.3.2 Define Build Behavior

To define build behavior, perform these steps.

1. Start the IDE.
2. In the Kinetis Design Studio Projects view, select the project for which you want to

modify the build settings.
3. Select Project > Properties.

The Properties window appears. The left side of this window has a properties list.
This list shows the build properties that apply to the current project.

4. Select C/C++ Build.

The C/C++ Build page appears.

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 39

5. Click the Behaviour tab.

The behavior settings for the selected build configuration appears.

Figure 3-2. C/C++ Build Page - Behaviour

The table below describes the builder settings options.

Table 3-2. Behavior
Options

Group Option Description

Build settings Enable project specific settings Check if you want to enable
project specific settings.

Build settings Stop on first build error Check to stop building when
Eclipse encounters an error.

Clearing this option is helpful for
building large projects as it
enables make to continue
making other independent rules
even when one rule fails.

Build settings Enable parallel build Check to activate the generation
of parallel builds to reduce the

Table continues on the next page...

Defining C/C++ Build Settings and Behavior

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

40 Freescale Semiconductor, Inc.

Table 3-2. Behavior Options
(continued)

Group Option Description

amount of time to build projects.
The more cores your host
processor has, the faster it will
be. However, you need to
determine the number of parallel
jobs to perform:

• Use optimal jobs number -
Lets the system determine
the optimal number of
parallel jobs to perform.

• Use parallel jobs - Lets
you specify the maximum
number of parallel jobs to
perform.

• Use unlimited jobs - Lets
the system perform
unlimited jobs.

Workbench Build Behavior Workbench build type Specifies the builder settings
when instructed to build, rebuild,
and clean.

Workbench Build Behavior Build on resource save (Auto
build)

Check to build your project
whenever resources are saved.
By default, this option is selected
and builds occur automatically
each time resources are
modified.

Clear if you do want that the
build occurs only manually using
a menu item.

Workbench Build Behavior Build (Incremental Build) Defines what the standard
builder will call when an
incremental build is performed.

Workbench Build Behavior Variables Click to open the Select build
variable dialog box and add
variables to the make build
target command.

Workbench Build Behavior Clean Defines what the standard
builder calls when a clean is
performed. The make clean is
defined in the makefile.

Workbench Build Behavior Variables Click to open the Select build
variable dialog box and add
variables to the make build
target command.

6. Make the desired changes and click OK.

The Properties for <project> window will close.

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 41

3.4 Configuring Build Properties

The Properties for <project> window shows the corresponding build properties for the
project.

The properties that you specify in the Tool Settings panels apply to the selected build
tool on the Tool Settings page of the Properties for <project> window.

The following table lists and describes the settings.

Table 3-3. Build Properties

Build Tool Build Properties Panels

Target Processor Target Processor

Optimization Optimization

Warnings Warnings

Debugging Debugging

Cross ARM GNU Assembler Cross ARM GNU Assembler > Preprocessor

Cross ARM GNU Assembler > Includes

Cross ARM GNU Assembler > Warnings

Cross ARM GNU Assembler > Miscellaneous

Cross ARM C Compiler Cross ARM C Compiler > Preprocessor

Cross ARM C Compiler > Includes

Cross ARM C Compiler > Optimization

Cross ARM C Compiler > Warnings

Cross ARM C Compiler > Miscellaneous

Cross ARM C++ Compiler Cross ARM C++ Compiler > Preprocessor

Cross ARM C++ Compiler > Includes

Cross ARM C++ Compiler > Optimization

Cross ARM C++ Compiler > Warnings

Cross ARM C++ Compiler > Miscellaneous

Cross ARM C++ Linker Cross ARM C++ Linker > General

Cross ARM C++ Linker > Libraries

Cross ARM C++ Linker > Miscellaneous

3.4.1 Target Processor
The following table lists the options in the Target Processor panel.

Configuring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

42 Freescale Semiconductor, Inc.

Table 3-4. Target Processor options

Option Description

ARM family Use to specify the ARM family name. Use 'cortex-m0plus' for all Kinetis-L and 'cortex-
m4' for all other Kinetis devices.

Architecture Use to specify the target hardware architecture or processor name. The compiler can
take advantage of the extra instructions that the selected architecture provides and
optimize the code to run on a specific processor. The inline assembler might display
error messages or warnings if it assembles some processor-specific instructions for the
wrong target architecture.

Default: Toolchain default

Instruction set Use to generate suitable interworking veneers when it links the assembler output. You
must enable this option if you write ARM code that you want to interwork with Thumb
code or vice versa. The only functions that need to be compiled for interworking are the
functions that are called from the other state. You must ensure that your code uses the
correct interworking return instructions.

Default: Thumb (-mthumb)

Thumb interwork (-mthumb-
interwork)

Check to have the processor generate Thumb code instructions. Clear to prevent the
processor from generating Thumb code instructions. The IDE enables this setting only
for architectures and processors that support the Thumb instruction set.

Default: Clear

Endianness Use to specify the byte order of the target hardware architecture:
• Little-little endian; right-most bytes (those with a higher address) are most

significant
• Big-big endian; left-most bytes (those with a lower address) are most significant

Default: Toolchain default. Use 'FP instructions (hard)' for devices with hardware
floating point unit (Cortex-M4F devices)

Float ABI Use to specify the float Appiication Binary Interface (ABI).

Default: Toolchain default

FPU Type Use to specify the type of floating-point unit (FPU) for the target hardware architecture:
The assembler might display error messages or warnings if the selected FPU
architecture is not compatible with the target architecture.

Default: Toolchain default. Use 'fpv4-sp-d16' for Kinetis devices with hardware floating
point unit (Cortex-M4F devices).

Unaligned access Use to specify unaligned access.

Default: Toolchain default

AArch64 family Use to specify the architecture family:
• Generic (-mcpu=generic)
• Large (-mcpu=large)
• Toolchain default

Default: Toolchain default

Feature crc Use to specify Feature crc.

Feature crypts Use to specify Feature crypts.

Feature fp Use to specify Feature fp.

Feature simd Use to specify Feature simd.

Code model Specifies the addressing mode that the linker uses when resolving references. This
setting is equivalent to specifying the -mcmodel keyword command-line option.

• Tiny (-mcmdel=tiny)

Table continues on the next page...

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 43

Table 3-4. Target Processor options (continued)

Option Description

• Small (-mcmodel=small)
• Large (-mcmodel=large)
• Toolchain default

Strict align (-mstrict-align) Controls the use of non-standard ISO/IEC 9899-1990 ("C90") language features.

Other target flags Specify additional command line options; type in custom flags that are not otherwise
available in the UI.

3.4.2 Optimization

The following table lists the options in the Optimization panel.

Table 3-5. Optimization options

Option Description

Optimization level Specify the optimizations that you want the compiler to apply to the generated object
code:

• None (-O0) - Disable optimizations. This setting is equivalent to specifying the -
O0 command-line option. The compiler generates unoptimized, linear assembly-
language code.

• Optimize (-O1) - The compiler performs all target-independent (that is, non-
parallelized) optimizations, such as function inlining. This setting is equivalent to
specifying the -O1 command-line option. The compiler omits all target-specific
optimizations and generates linear assembly-language code.

• Optimize more (-O2) - The compiler performs all optimizations (both
targetindependent and target-specific). This setting is equivalent to specifying
the -O2 command-line option. The compiler outputs optimized, non-linear,
parallelized assembly-language code.

• Optimize most (-O3) - The compiler performs all the level 2 optimizations, then
the low-level optimizer performs global-algorithm register allocation. This setting
is equivalent to specifying the that is usually faster than the code generated from
level 2 optimizations.

• Optimize size (-Os) - The compiler optimizes object code at the specified
Optimization Level such that the resulting binary file has a smaller executable
code size, as opposed to a faster execution speed. This setting is equivalent to
specifying the -Os command-line option.

• Optimize for debugging (-Og) - The compiler optimizes object code at the
specified Optimization Level such that the resulting binary file has a faster
execution speed, as opposed to a smaller executable code size.

Message length (-fmessage-
length=0)

Check if you want to specifies the maximum length in bytes for the message.

'char' is signed (-fsigned-char) Check to treat char declarations as signed char declarations.

Function sections (-ffunction-
sections)

Check to enable function sections.

Data sections (-fdata-sections) Check to enable data sections.

Do not use _cxa_atexit() (-fnouse-
cxa-atexit)

Check if you do not want to use _cxa_atexit().

Table continues on the next page...

Configuring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

44 Freescale Semiconductor, Inc.

Table 3-5. Optimization options (continued)

Option Description

Single precision constants (-fsingle-
precision-constant)

Check to enable single precision constants.

Position independent code (-fPIC) Select to instruct the build tools to generate position independent-code.

Other optimization flags Specify additional command line options; type in custom optimization flags that are not
otherwise available in the UI.

3.4.3 Warnings

The following table lists the options in the Warnings panel.

Table 3-6. Warnings options

Option Description

Check syntax only (-fsyntax-only) Check this option if if you want to check the syntax of commands and throw a syntax
error.

Pedantic (-pedantic) Check if you want warnings like -pedantic, except that errors are produced rather than
warnings.

Pedantic warnings as errors (-
pedantic-errors)

Check this option if if you want to inhibit the display of warning messages.

Inhibit all warnings (-w) Check this option if if you want to enable all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or modify to prevent the
warning), even in conjunction with macros.

Enable all common warnings (-Wall) Check this option if you want to enable all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or modify to prevent the
warning), even in conjunction with macros.

Extra warnings (-Wextra) Check this option to enable any extra warnings.

Warn on implicit conversions (-
Wconversion)

Check to warn of implict conversions.

Warn on uninitialized variables (-
Wuninitialised)

Check to warn of uninitialized variables.

Warn if floats are compared as
equal (-Wfloat-equal)

Check to warn if floats are compared as equal.

Warn if shadowed variable (-
Wshadow)

Check to warn if shadowed variable are used.

Warn if pointer arithmetic (-
Wpointer-arith)

Check to warn if pointer arithmetic are used.

Warn if wrong cast (-Wbad-function-
cast)

Check to warn of wrong cast.

Warn if suspicious logical ops (-
Wlogical-op)

Check to warn in case of suspicious logical operation.

Warn in struct is returned (-
Wagreggrate-return)

Check to warn if struct is returned.

Table continues on the next page...

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 45

Table 3-6. Warnings options (continued)

Option Description

Warn on undeclared global function
(-Wmissing-declaration)

Check to warn if an undeclared global function is encounterd.

Generate errors instead of warnings
(-Werror)

Check to generate errors instead of warnings.

Other warning flags Specify additional command line options; type in custom warning flags that are not
otherwise available in the UI.

3.4.4 Debugging

The following table lists the options in the Debugging panel.

Table 3-7. Debugging options

Option Description

Debug level Specify the debug levels:
• None - No Debug level.
• Minimal (-g1) - The compiler provides minimal debugging support.
• Default (-g) - The compiler generates DWARF 1.x conforming debugging

information.
• Maximum (-g3) - The compiler provides maximum debugging support.

Debug format Specify the debug formats for the compiler. Use Toolchain default.

Generate prof information (-p) Generates extra code to write profile information suitable for the analysis program prof.
You must use this option when compiling the source files you want data about, and you
must also use it when linking.

Generate gprof information (-pg) Generates extra code to write profile information suitable for the analysis program
gprof. You must use this option when compiling the source files you want data about,
and you must also use it when linking. Profiling requires special GNU libraries enabled
for profiling. At the current time the GNU ARM Embedded (launchpad) libraries do not
include this.

Other debugging flags Specify additional command line options; type in custom debuggong flags that are not
otherwise available in the UI.

3.4.5 Cross ARM GNU Assembler
The following table lists the options in the Cross ARM GNU Assembler panel.

Table 3-8. Cross ARM GNU Assembler options

Option Description

Command Shows the location of the assembler executable file. Default: ${cross_prefix}${cross_c}$
{cross_suffix}

Table continues on the next page...

Configuring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

46 Freescale Semiconductor, Inc.

Table 3-8. Cross ARM GNU Assembler options (continued)

Option Description

All Options Shows the actual command line the assembler will be called with. Default: -x assembler-
with-cpp -Xassembler -g

Expert settings

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} $
{cross_toolchain_flags} ${FLAGS} -c ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.4.5.1 Cross ARM GNU Assembler > Preprocessor
The following table lists the options in the Cross ARM GNU Assembler Preprocessor
panel.

Table 3-9. Cross ARM GNU Assembler Preprocessor options

Option Description

Use preprocessor Check this option to use the preprocessor for the assembler.

Do not search system directories
(-nostdinc)

Check this option if you do not want the assembler to search the system directories. By
default, this checkbox is clear. The assembler performs a full search that includes the
system directories.

Preprocess only (-E) Check this option if you want the assembler to preprocess source files and not to run the
compiler. By default, this checkbox is clear and the source files are not preprocessed.

Defined symbols (-D) Use this option to specify the substitution strings that the assembler applies to all the
assembly-language modules in the build target. Enter just the string portion of a
substitution string. The IDE prepends the -D token to each string that you enter. For
example, entering opt1 x produces this result on the command line: -Dopt1 x. Note: This
option is similar to the DEFINE directive, but applies to all assembly-language modules in
a build target.

Undefined symbols (-U) Undefines the substitution strings you specify in this panel.

3.4.5.2 Cross ARM GNU Assembler > Includes

The following table lists the options in the Cross ARM GNU Assembler Includes panel.

Table 3-10. Cross ARM GNU Assembler Includes options

Option Description

Include paths (-l) This option changes the build target's search order of access paths to start with the system paths list.
The compiler can search #include files in several different ways. You can also set the search order as
follows: For include statements of the form #include"xyz", the compiler first searches user paths, then
the system paths For include statements of the form #include<xyz>, the compiler searches only system
paths.This option is global.

Table continues on the next page...

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 47

Table 3-10. Cross ARM GNU Assembler Includes options (continued)

Option Description

Include files (-
include)

Use this option to specify the include file search path.

3.4.5.3 Cross ARM GNU Assembler > Warnings
The following table lists the options in the Cross ARM GNU Assembler Warnings
panel.

Table 3-11. Cross ARM GNU Assembler Warnings options

Option Description

Other warning flags Specify additional command line options; type in custom warning flags that are not
otherwise available in the UI.

3.4.5.4 Cross ARM GNU Assembler > Miscellaneous
The following table lists the options in the Cross ARM GNU Assembler Miscellaneous
panel.

Table 3-12. Cross ARM GNU Assembler Miscellaneous options

Option Description

Assembler flags Specify the flags that need to be passed with the assembler.

Generates assembler
listing (-Wa, -
adhlns="$@.lst")

Enables the assembler to create a listing file as it compiles assembly language into object code.

Verbose (-v) Check this option if you want the IDE to show each command-line that it passes to the shell, along with
all progress, error, warning, and informational messages that the tools emit. This setting is equivalent
to specifying the -v command-line option. By default this checkbox is clear. The IDE displays just error
messages that the compiler emits. The IDE suppresses warning and informational messages.

Other flags Specify additional command line options; type in custom flags that are not otherwise available in the
UI.

3.4.6 Cross ARM C Compiler
The following table lists the options in the Cross ARM C Compiler panel.

Configuring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

48 Freescale Semiconductor, Inc.

Table 3-13. Cross ARM C Compiler options

Option Description

Command Shows the location of the compiler executable file. Default: ${cross_prefix}${cross_c}$
{cross_suffix}

All Options Shows the actual command line the compiler will be called with.

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} $
{cross_toolchain_flags} ${FLAGS} -c ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.4.6.1 Cross ARM C Compiler > Preprocessor
The following table lists the options in the Cross ARM C Compiler Preprocessor
panel.

Table 3-14. Cross ARM C Compiler Preprocessor options

Option Description

Do not search system directories
(-nostdinc)

Check this option if you do not want the compiler to search the system directories. By
default, this checkbox is clear. The compiler performs a full search that includes the
system directories.

Preprocess only (-E) Check this option if you want the compiler to preprocess source files and not to run the
compiler. By default, this checkbox is clear and the source files are not preprocessed.

Defined symbols (-D) Use this option to specify the substitution strings that the compiler applies modules in the
build target. Enter just the string portion of a substitution string. The IDE prepends the -D
token to each string that you enter. For example, entering opt1 x produces this result on
the command line: -Dopt1 x. Note: This option is similar to the DEFINE directive, but
applies to all assembly-language modules in a build target.

Undefined symbols (-U) Undefines the substitution strings you specify in this panel.

3.4.6.2 Cross ARM C Compiler > Includes
The following table lists the options in the Cross ARM C Compiler Includes panel.

Table 3-15. Cross ARM C Compiler Includes options

Option Description

Include paths (-l) This option changes the build target's search order of access paths to start with the system paths list.
The compiler can search #include files in several different ways. You can also set the search order as
follows: For include statements of the form #include"xyz", the compiler first searches user paths, then
the system paths For include statements of the form #include<xyz>, the compiler searches only system
paths This option is global.

Include files (-
include)

Use this option to specify the include file search path.

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 49

3.4.6.3 Cross ARM C Compiler > Optimization
The following table lists the options in the Optimization panel.

Table 3-16. Cross ARM C Compiler Optimization options

Option Description

Language standard Select the programming language or standard to which the compiler should conform.
• ISO C90 (-ansi) - Select this option to compile code written in ANSI standard C.

The compiler does not enforce strict standards. For example, your code can
contain some minor extensions, such as C++ style comments (//), and $
characters in identifiers.

• ISO C99 (-std=c99) - Select this option to instruct the compiler to enforce stricter
adherence to the ANSI/ISO standard.

• Compiler Default (ISO C90 with GNU extensions) - Select this option to enforce
adherence to ISO C90 with GNU extensions.

• ISO C99 with GNU Extensions (-std=gnu99)

Other optimization flags Specify additional command line options; type in custom optimization flags that are not
otherwise available in the UI.

3.4.6.4 Cross ARM C Compiler > Warnings
The following table lists the options in the Warnings panel.

Table 3-17. Cross ARM C Compiler Warnings options

Option Description

Other warning flags Specify additional command line options; type in custom warning flags that are not
otherwise available in the UI.

3.4.6.5 Cross ARM C Compiler > Miscellaneous
The following table lists the options in the Miscellaneous panel.

Table 3-18. Cross ARM C Compiler Miscellaneous options

Option Description

Generates assembler
listing (-Wa, -
adhlns="$@.lst")

Enables the assembler to create a listing file as it compiles assembly language into object code.

Save temporary files
(--save-temps Use
with vaution!)

Enables you to save temporary files.

Table continues on the next page...

Configuring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

50 Freescale Semiconductor, Inc.

Table 3-18. Cross ARM C Compiler Miscellaneous options (continued)

Option Description

Verbose (-v) Check this option if you want the IDE to show each command-line that it passes to the shell, along with
all progress, error, warning, and informational messages that the tools emit. This setting is equivalent
to specifying the -v command-line option. By default this checkbox is clear. The IDE displays just error
messages that the compiler emits. The IDE suppresses warning and informational messages.

Other compiler flags Specify additional command line options; type in custom flags that are not otherwise available in the
UI.

3.4.7 Cross ARM C++ Compiler

The following table lists the options in the Cross ARM C++ Compiler panel.

Table 3-19. Cross ARM C++ Compiler options

Option Description

Command Shows the location of the compiler executable file. Default: ${cross_prefix}${cross_cpp}$
{cross_suffix}

All Options Shows the actual command line the compiler will be called with. Default: -std=gnu++11 -
fabi-version=0

Expert settings

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} $
{cross_toolchain_flags} ${FLAGS} -c ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.4.7.1 Cross ARM C++ Compiler > Preprocessor

The following table lists the options in the Cross ARM C Compiler Preprocessor
panel.

Table 3-20. Cross ARM C++ Compiler Preprocessor options

Option Description

Do not search system directories
(-nostdinc)

Check this option if you do not want the compiler to search the system directories. By
default, this checkbox is clear. The compiler performs a full search that includes the
system directories.

Do not search system C++
directories (-nostdinc++)

Check this option if you do not want the compiler to search the C++ system directories. By
default, this checkbox is clear. The compiler performs a full search that includes the
system directories.

Preprocess only (-E) Check this option if you want the compiler to preprocess source files and not to run the
compiler. By default, this checkbox is clear and the source files are not preprocessed.

Table continues on the next page...

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 51

Table 3-20. Cross ARM C++ Compiler Preprocessor options (continued)

Option Description

Defined symbols (-D) Use this option to specify the substitution strings that the compiler applies modules in the
build target. Enter just the string portion of a substitution string. The IDE prepends the -D
token to each string that you enter. For example, entering opt1 x produces this result on
the command line: -Dopt1 x. Note: This option is similar to the DEFINE directive, but
applies to all assembly-language modules in a build target.

Undefined symbols (-U) Undefines the substitution strings you specify in this panel.

3.4.7.2 Cross ARM C++ Compiler > Includes

The following table lists the options in the Cross ARM C++ Compiler Includes panel.

Table 3-21. Cross ARM C++ Compiler Includes options

Option Description

Include paths (-l) This option changes the build target's search order of access paths to start with the system paths list.
The compiler can search #include files in several different ways. You can also set the search order as
follows: For include statements of the form #include"xyz", the compiler first searches user paths, then
the system paths For include statements of the form #include<xyz>, the compiler searches only system
paths This option is global.

Include files (-
include)

Use this option to specify the include file search path.

3.4.7.3 Cross ARM C++ Compiler > Optimization

The following table lists the options in the Optimization panel.

Table 3-22. Cross ARM C++ Compiler Optimization options

Option Description

Language standard Select the programming language or standard to which the compiler should conform.
• ISO C90 (-ansi) - Select this option to compile code written in ANSI standard C.

The compiler does not enforce strict standards. For example, your code can
contain some minor extensions, such as C++ style comments (//), and $
characters in identifiers.

• ISO C99 (-std=c99) - Select this option to instruct the compiler to enforce stricter
adherence to the ANSI/ISO standard.

• Compiler Default (ISO C90 with GNU extensions) - Select this option to enforce
adherence to ISO C90 with GNU extensions.

• ISO C99 with GNU Extensions (-std=gnu99)

ABI version Enables you to select the Application Binary Interface (ABI) the compiler and
assembler uses for function calls and structure layout.

Table continues on the next page...

Configuring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

52 Freescale Semiconductor, Inc.

Table 3-22. Cross ARM C++ Compiler Optimization options (continued)

Option Description

Do not use exceptions (-fno-
exceptions)

Check if you do not want to display exceptions.

Do not use RTTI (-fno-rtti) Check if you do not want to use of the C++ runtime type information (RTTI)
capabilities, including the dynamic_cast and typeid operators. Clear to let the compiler
generate smaller, faster object code but do not allow runtime type information
operations. The checkbox corresponds to the pragma RTTI and the command-line
option -RTTI.

Other optimization flags Specify additional command line options; type in custom optimization flags that are not
otherwise available in the UI.

3.4.7.4 Cross ARM C++ Compiler > Warnings

The following table lists the options in the Warnings panel.

Table 3-23. Cross ARM C++ Compiler Warnings options

Option Description

Warn on ABI violations (-Wabi) Check if you want to display warnings in case of ABI violation.

Warn on class privacy (-Wctor-dtor-
privacy)

Check if you want to display warnings about class privacy.

Warn on uncast NULL (-Wsing-null-
sentinel)

Check if you want to display warnings on uncast NULL.

Warn on sign promotion (-Wsign-
promo)

Check if you want to display warnings in case of sign promotion.

Warn about Effective C++ violations
(-Weffc++)

Check if you want to display warnings in case of effective C++ violations.

Other warning flags Specify additional command line options; type in custom warning flags that are not
otherwise available in the UI.

3.4.7.5 Cross ARM C++ Compiler > Miscellaneous

The following table lists the options in the Miscellaneous panel.

Table 3-24. Cross ARM C++ Compiler Miscellaneous options

Option Description

Generates assembler
listing (-Wa, -
adhlns="$@.lst")

Enables the assembler to create a listing file as it compiles assembly language into object code.

Table continues on the next page...

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 53

Table 3-24. Cross ARM C++ Compiler Miscellaneous options (continued)

Option Description

Save temporary files
(--save-temps Use
with vaution!)

Enables you to save temporary files.

Verbose (-v) Check this option if you want the IDE to show each command-line that it passes to the shell, along with
all progress, error, warning, and informational messages that the tools emit. This setting is equivalent
to specifying the -v command-line option. By default this checkbox is clear. The IDE displays just error
messages that the compiler emits. The IDE suppresses warning and informational messages.

Other compiler flags Specify additional command line options; type in custom flags that are not otherwise available in the
UI.

3.4.8 Cross ARM C++ Linker
The following table lists the options in the Cross ARM C Linker panel.

Table 3-25. Cross ARM C Linker options

Option Description

Command Shows the location of the linker executable file. Default: ${cross_prefix}${cross_c}$
{cross_suffix}

All Options Shows the actual command line the assembler will be called with. Default: -T "C:\Users
\b14174\workspace1-nn\Project_1/Project_Settings/Linker_Files/
ProcessorExpert.ld" -Xlinker --gc-sections -L"C:\Users
\b14174\workspace1-nn

Expert settings

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} $
{cross_toolchain_flags} ${FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.4.8.1 Cross ARM C++ Linker > General
The following table lists the options in the General panel.

Table 3-26. General options

Option Description

Script files (-T) This option passes the -T argument to the linker file.

Do not use standard start files
(-nostartfiles)

This option passes the -nostartfiles argument to the linker file. It does not allow the use of
the standard start files.

Do not use default libraries (-
nodefaultlibs)

This option passes the -nodefaultlibs argument to the linker file. It does not allow the use of
the default libraries.

No startup or default libs (-
nostdlib)

This option passes the -nostdlib argument to the linker file. It does not allow the use of
startup or default libs.

Table continues on the next page...

Configuring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

54 Freescale Semiconductor, Inc.

Table 3-26. General options (continued)

Option Description

Remove unused sections (-
Xlinker --gc-sections)

This option passes the -Xlinker --gc-sections argument to the linker file. It removes the
unused sections.

Print removed sections (-
Xlinker --print-gc-sections)

This option passes the -Xlinker --print-gc-sections argument to the linker file. It ptints the
removed sections.

Omit all symbol information (-s) This option passes the -s argument to the linker file. This option omits all symbol information.

3.4.8.2 Cross ARM C++ Linker > Libraries
he following table lists the options in the Libraries panel.

Table 3-27. Libraries options

Option Description

Libraries (-l) This option changes the build target's search order of access paths to start with the system paths list.
The compiler can search #include files in several different ways. You can also set the search order as
follows: For include statements of the form #include"xyz", the compiler first searches user paths, then
the system paths For include statements of the form #include<xyz>, the compiler searches only system
paths This option is global.

Library search path
(-L)

Use this option to specify the include library search path.

NOTE
• The converter does not distinguish between Executable

projects and Static Library projects. In the latter case the
options for converting Newlib-nano and adding
semihosting should be suppressed.

• For more details on Using newlib-nano: -specs=nano.specs U -
specs=nosys.specs using newlib: -specs=nosys.specs, see http://
mcuoneclipse.com/2014/07/11/switching-arm-gnu-tool-
chain-and-libraries-in-kinetis-design-studio/.

3.4.8.3 Cross ARM C++ Linker > Miscellaneous
The following table lists the options in the Miscellaneous panel.

Table 3-28. Miscellaneous options

Option Description

Other objects This option lists paths that the linker searches for objects. The linker searches the paths in the order
shown in this list.

Table continues on the next page...

Chapter 3 Build Properties for Projects

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 55

http://mcuoneclipse.com/2014/07/11/switching-arm-gnu-tool-chain-and-libraries-in-kinetis-design-studio/
http://mcuoneclipse.com/2014/07/11/switching-arm-gnu-tool-chain-and-libraries-in-kinetis-design-studio/
http://mcuoneclipse.com/2014/07/11/switching-arm-gnu-tool-chain-and-libraries-in-kinetis-design-studio/

Table 3-28. Miscellaneous options (continued)

Option Description

Generate Map This option specifies the map filename. Default: $ {BuildArtifactFileBaseName}.map

Cross Reference (-
Xlinker --cref)

Check this option to instruct the linker to list cross-reference information on symbols. This includes
where the symbols were defined and where they were used, both inside and outside macros.

Print link map (-
Xlinker --printf-map)

Check this option to instruct the linker to print the map file.

Verbose (-v) Check this option to show verbose information, including hex dump of program segments in
applications; default setting

Other linker flags Specify additional command line options for the linker; type in custom flags that are not otherwise
available in the UI.

Configuring Build Properties

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

56 Freescale Semiconductor, Inc.

Chapter 4
Appendices

4.1 Installing Kinetis SDK

To install Kinetis SDK:

1. Download the latest Kinetis SDK.
2. Double-click to launch the executable. The Introduction page of the Freescale

Kinetis SDK install wizard appears.

Figure 4-1. Launching the install wizard

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 57

3. Click Next. The License Agreement page of the wizard appears.

Figure 4-2. License installation
4. Accept the license and click Next. The Choose Install Folder page appears.
5. Select the location where you want to install KSDK.

Installing Kinetis SDK

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

58 Freescale Semiconductor, Inc.

Figure 4-3. Select install folder
6. Click Next. The Choose Install Set page appears.
7. Select the install set based on your requirement. This scenario uses Kinetis SDK

Basic.

Chapter 4 Appendices

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 59

Figure 4-4. Choose install set
8. Click Next. The installation starts. The wizard prompts you on successful

installation. The wizard also prompts if you want to check the Freescale Kinetis SDK
release Notes.

Installing Kinetis SDK

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

60 Freescale Semiconductor, Inc.

Figure 4-5. Installation successful
9. Click Next. The Install Complete page of the wizard appears.

10. Choose whether you immediately want to restart the system for completing the
installation.

Chapter 4 Appendices

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 61

Figure 4-6. Installation complete
11. Click Done to close the installer.

4.2 Installing Kinetis SDK into KDS

To install Kinetis SDK in KDS:
1. Download and install the appropriate Kinetis SDK for your microcontroller. See

http://www.freescale.com/ksdk for details.
2. The Kinetis SDK installation directory contains an Eclipse update. Use the Install

New Software wizard to install the Eclipse update into in the Kinetis Design Studio.

NOTE
Users with the Kinetis Design Studio IDE installed in a
read-only location, which is the default for Linux systems,
must launch the Kinetis Design Studio IDE with
administrative/root privileges to install the KSDK.

a. Launch the Kinetis Design Studio.
b. Select Help > Install New Software from the IDE menu bar.

Installing Kinetis SDK into KDS

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

62 Freescale Semiconductor, Inc.

http://www.freescale.com/ksdk

Figure 4-7. Install new software

The Available Software page of the Install wizard appears.

NOTE
You can also drag and drop the update file to the Work
with text box in the dialog.

Chapter 4 Appendices

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 63

Figure 4-8. Available Software
c. Click Add. The Add Repository dialog appears.

Figure 4-9. Add Repository dialog
d. Click Archive.
e. Select the .zip file provided by KSDK. For example, select <DownloadDir>

KSDK_1.2.0\tools\eclipse_update\KSDK_1.2.0_Eclipse_Update.zip.

f. Click Open.

Installing Kinetis SDK into KDS

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

64 Freescale Semiconductor, Inc.

g. The Location text box is populated with the path you just suggested. You can
add a name to identify the repository.

Figure 4-10. Location updated
h. Click OK.
i. The Work with text box is populated, and the list of available software is

available.
j. Check the checkbox to install Eclipse update for KSDK.

Chapter 4 Appendices

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 65

Figure 4-11. Select available software to install
k. Click Next. The Install Details page of the wizard appears.
l. Review the items in you want install.

Installing Kinetis SDK into KDS

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

66 Freescale Semiconductor, Inc.

Figure 4-12. Review install items
m. Click Next.
n. Review and accept the terms of the license agreement.

Chapter 4 Appendices

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 67

Figure 4-13. Review license
o. Click Finish. The Kinetis SDK is installed into KDS.

4.3 Installing Drivers

When using either the OpenOCD, SEGGER J-Link or P&E Multilink debug interface,
ensure that the relevant device drivers are installed.

For Windows installation

The Kinetis Design Studio Windows installer, by default, installs the SEGGER J-LINK
and P&E Multilink device drivers.

However, if you want to manually install the device drivers:

Installing Drivers

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

68 Freescale Semiconductor, Inc.

• SEGGER J-Link:
Run the following installers:

• install-dir\segger\USBDriver\InstDrivers.exe

• install-dir\segger\USBDriver\CDC\InstDriversCDC.exe

• P&E Multilink driver:

Run the P&E driver installer:

install-dir\pemicro\PEDrivers_install.exe

• ARM mbed project Windows serial port driver:

Follow the instructions at:

For Linux installation

When the Kinetis Design Studio software development tools are installed on a Linux
system, a udev rules file is included for each of the OpenOCD, SEGGER J-Link the P&E
Multilink debug interfaces.

Table 4-1. Installing drivers

Debug interface udev file location Steps

Open OCD install-dir/openocd/
openocd.udev

1. Copy the udev file into the
configuration directory (for
example under /etc/udev/ rules.d/)

2. Rename the file to 99-
openocd.rules (for example)

3. Optionally the permissions
allocated by the rules file can be
adjusted. By default this requires
users to be in the plugdev group.

4. Run the command udevadm
control --reload-rules to instruct
udev to reload its rules

Segger J-Link install-dir/segger/99-
jlink.rules

1. Copy the udev file into the
configuration directory (for
example under /etc/udev/ rules.d/)

2. Run the command udevadm
control

P&E Multilink install-dir/pemicro/drivers/
libusb_64_32/28-pemicro.rules

Run the setup.sh script found under the
same directory

Chapter 4 Appendices

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

Freescale Semiconductor, Inc. 69

Installing Drivers

Kinetis Design Studio V3.0.0- User's Guide, Rev. 1.0, 04/2015

70 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Kinetis, and Processor Expert are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
ARM is the registered trademark of ARM Limited (or its subsidiaries) in
the EU and/or elsewhere. All other product or service names are the
property of their respective owners. All rights reserved.

© 2015, Freescale Semiconductor, Inc.

Document Number KDSUG
Revision 1.0, 04/2015

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	System requirements
	Installing Kinetis Design Studio
	On Windows
	On Linux
	On Macintosh

	Release Notes
	Terminology
	About this manual

	Chapter 2: Working with Projects
	Launching Workbench
	Creating a Kinetis project
	Importing an existing project
	Building Projects
	Debugging Projects
	Flashing from file
	Deleting Projects

	Chapter 3: Build Properties for Projects
	Changing Build Properties
	Restoring Build Properties
	Defining C/C++ Build Settings and Behavior
	Define Build Settings
	Define Build Behavior

	Configuring Build Properties
	Target Processor
	Optimization
	Warnings
	Debugging
	Cross ARM GNU Assembler
	Cross ARM GNU Assembler > Preprocessor
	Cross ARM GNU Assembler > Includes
	Cross ARM GNU Assembler > Warnings
	Cross ARM GNU Assembler > Miscellaneous

	Cross ARM C Compiler
	Cross ARM C Compiler > Preprocessor
	Cross ARM C Compiler > Includes
	Cross ARM C Compiler > Optimization
	Cross ARM C Compiler > Warnings
	Cross ARM C Compiler > Miscellaneous

	Cross ARM C++ Compiler
	Cross ARM C++ Compiler > Preprocessor
	Cross ARM C++ Compiler > Includes
	Cross ARM C++ Compiler > Optimization
	Cross ARM C++ Compiler > Warnings
	Cross ARM C++ Compiler > Miscellaneous

	Cross ARM C++ Linker
	Cross ARM C++ Linker > General
	Cross ARM C++ Linker > Libraries
	Cross ARM C++ Linker > Miscellaneous

	Chapter 4: Appendices
	Installing Kinetis SDK
	Installing Kinetis SDK into KDS
	Installing Drivers

