
ASUG
i.MX Android Security User's Guide
Rev. automotive-12.1.0_1.1.0 —
15 December 2022

User guide

Document information
Information Content

Keywords Android, i.MX, automotive-12.1.0_1.1.0

Abstract This is a guide of how to do customization work on security features
supported by i.MX Android software.

NXP Semiconductors ASUG
i.MX Android Security User's Guide

1 Preface

1.1 About This Document
This is a guide of how to do customization work on security features supported by i.MX
Android software. It provides an overview of the i.MX Android security features and it
focuses on how to configure and use these security features.

The released code can be built into images both with and without Trusty OS integrated
while the Trusty OS related contents in this document can only be applied on the images
with Trusty OS integrated.

Different SoCs may have different security-related hardware modules. This document
has provided detailed information about it. Users of a specific SoC only need to focus on
the information about the specific one. If the SoC type is not explicitly specified, refer to
the common descriptions for all SoCs.

1.2 NXP security disclaimer
• NXP has documented how to correctly configure the security IPs in the documentation

for the i.MX family.
• It is not possible to provide a universal secure configuration for Trusty OS that meets all

users' requirements and the security of Trusty OS is enhanced release by release.
• Users should therefore customize the Trusty OS security configuration to lock and

secure their end products according to their specific security requirements.
• NXP delivers Trusty OS including its Android space secure modules as an open-source

software enablement and not as a secure production ready implementation.
• Using Google AOSP Trusty OS source codes instead of NXP Trusty OS source codes

might have an impact on the features supported and security level of i.MX platforms.

1.3 Conventions
The following conventions are used in this document:

• Software code is shown in Consolas font.
• ${MY_ANDROID} is a reference to the i.MX Android source code root directory.
• ${MY_TRUSTY} is a reference to i.MX Trusty OS source code root directory.

2 Overview of i.MX Android Security Features

2.1 Introduction of security-related hardware modules
Security features are based on security-related codes, which need to do some
cryptographic calculations to protect security data. Security requires that only security-
related code is allowed to run on certain hardware resources. Therefore, these hardware
resources are called security-related hardware modules. There are some security
hardware modules on the i.MX platform, which co-work with the Trusty OS to guarantee
security:

• CAAM: Cryptographic Acceleration and Assurance Module, is a hardware component
of a System on Chip (SoC) that provides security assurance and hardware acceleration

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
2 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

of cryptographic algorithms, packet encapsulation and decapsulation, and other
cryptographic operations.

• TrustZone: Arm TrustZone creates an isolated secure world, which can be used to
provide confidentiality and integrity to the system. It is used to protect high-value code
and data for diverse use cases like authentication. It is frequently used to provide a
security boundary for the Trusted Execution Environment, like Trusty OS.

• TZASC: TrustZone Address Space Controller, is an Advanced Microcontroller Bus
Architecture (AMBA) compliant SoC peripheral. It is a high-performance, area-
optimized address space controller to protect security-sensitive software and data in a
trusted execution environment against potentially compromised software running on the
platform.

• CSU: Central Security Unit sets access control policies between the bus masters and
bus slaves, enabling the peripherals to be separated into distinct security domains.

• RDC: Resource Domain Controller (RDC) provides support for the isolation of
destination memory mapped locations such as peripherals and memory to a single
core, a bus master, or set of cores and bus masters.

• xRDC: On i.MX 8QuadMax and i.MX 8QuadXPlus, the eXtended Resource Domain
Controller (xRDC) replaces the RDC and TrustZone components (CSU, TZASC, etc.),
which can be found in previous i.MX processors.
i.MX 8QuadMax and i.MX 8QuadXPlus SoC contain a mix of Cortex-A and Cortex-
M CPUs, which frequently operate in an asymmetric mode with different software
environments executing on them. To keep these software environments from
unintentionally interfering with each other, the SoC contains xRDC to enforce isolation.
The xRDC operates in a manner like Arm's TrustZone. Transactions from masters
are annotated with user-side band information to indicate their domain and the
access control logic allows/disallows accesses to peripherals/memory based on this
information.

• AHAB/HABv4: The Advanced High Assurance Boot (AHAB) and High Assurance Boot
(HABv4) support authentication on the images by using cryptography operations to
prevent unauthorized software from being executed during the device boot sequence.
Details about how to verify images with HAB can be found in Chapter 2.1.

• SCU: The System Controller Unit (SCU) is only for i.MX 8QuadMax and i.MX
8QuadXPlus platforms. It consists of a Cortex-M4 processor and a set of peripherals
and interfaces to connect to an external PMIC and to control internal subsystems. The
SCU Cortex-M4 is the first processor to boot the chip. The SCU is dedicated to:
– Boot management
– Power management

– External power management by communicating with external PMIC
– Internal power management of all the subsystems

– Clock and reset management
– I/O configuration and muxing
– Resource partitioning/access control

• SECO: The Security Controller Subsystem (SECO) is only for i.MX 8QuadMax and
i.MX 8QuadXPlus platforms. It manages several security hardware modules (CAAM,
SNVS, OTP, ADM, etc.) to perform cryptography acceleration and ensure the security
of the whole system.

• eMMC RPMB: RPMB is a separate physical partition in the eMMC device designed for
secure data storage. Every access to RPMB is authenticated and it allows the host to
store data to this area in an authenticated and replay protected manner.
In Trusty OS, the RPMB partition is managed as the secure storage to store all critical
data like lock/unlock status, rollback index, etc.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
3 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

The following table lists the modules on the i.MX 8QuadMax, i.MX 8QuadXPlus, i.MX 8M
Mini, i.MX 8M Quad platforms:

Modules i.MX 8QuadMax and 8Quad
XPlus

i.MX 8M Quad, 8M Mini, 8M
Nano, and 8M Plus

CAAM Y Y

TZASC N Y

CSU N Y

RDC N Y

xRDC Y N

AHAB Y N

HABv4 N Y

SCU Y N

SECO Y N

eMMC Y Y

Table 1. Modules on the i.MX 8QuadMax, i.MX 8QuadXPlus, i.MX 8M Mini, i.MX 8M Quad
platforms

2.2 Trusty OS security recommendations for i.MX 8 SoC configuration

2.2.1 Secure CSU configuration

The Central Security Unit (CSU) manages the system security policy for peripheral
access on the SoC. The CSU allows trusted code to set individual security access
privileges on each of the peripherals, using one of the eight security access privilege
levels. The CSU may assign bus master security privileges during bus transactions
according to the programmed policy. The CSU has two primary security-related features:

• Peripheral Access Policy: The appropriate bus master privilege and identity are
required to access each peripheral.

• Masters Privilege Policy: The CSU overrides the bus master privilege signals (secure/
non-secure).

On the i.MX 8M platforms, Trusty OS and other software components such as ATF, SPL,
and potentially U-Boot (if run in the secure world) have access to CSU registers and
potentially configure or overwrite peripheral access and master privilege policies. The
secure code (CSU driver) may have a non-secure CSU configuration by default. The
CSU configuration should be modified from the default non-secure configuration based
on the security requirements of the final application/end product:

• The CSU_CSLn registers that control the Peripheral access policy and the CSU_SA
registers that control the Masters privilege policy should be set appropriately.

• All CSU register configuration should be locked with the appropriate bit fields to prevent
any CSU modification at runtime.

• The CSU may need to be re-configured upon power state transitions depending on the
i.MX platform and low-power support.

Note:

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
4 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

• Since imx-android-11.0.0_2.2.0, the Trusty OS and ATF have made some default CSU
configuration for reference.

• For more information, refer to the CSU chapter and Security Integration chapters in the
respective SoC i.MX Security Reference Manual.

• An i.MX Security Checklist is available and should be perused to ensure the end
product is correctly secured.

2.2.2 Secure TZASC configuration

The TrustZone Address Space Controller (TZASC) protects security-sensitive SW and
data in a trusted execution environment against potentially compromised SW running on
the platform. The i.MX 8M platforms use the TZC-380 controller.

On the i.MX 8M platforms, Trusty OS and other software components such as ATF, SPL,
and potentially U-Boot (if run in the secure world) have access to the TZASC registers
and potentially configure or overwrite memory regions. The secure code may have a non-
secure TZASC configuration by default. The TZASC configuration should be modified
from the default non-secure configuration based on the security requirements of the final
application/end product:

• Set the memory regions to meet the security requirement.
• The region 0 should be set to secure to prevent any access to secure memory through

aliased memory range.
• Memory region configuration must be locked to prevent runtime modification.
• Depending on the platform, the TZASC may need to be re-configured upon power state

transitions.

Note:

• Since imx-android-11.0.0_1.0.0, the default ATF has the reference code to configure
Trusty OS memory region as TZASC protected.

• For more information, refer to the SoC i.MX Security Reference Manual and the
CoreLink TrustZone Address Space Controller TZC-380 Technical Reference Manual.

• An i.MX Security Checklist is available and should be reviewed to ensure the end
product is correctly secured.

2.2.3 Secure OCRAM configuration

The OCRAM (On Chip RAM) is a small memory embedded on the SoC. The OCRAM
size varies based on the i.MX SoC. Just like the DRAM, the OCRAM memory can be
protected by the TrustZone through configuration. The OCRAM supports TrustZone and
non-TrustZone accesses and there is an option to configure a TrustZone-only access
region. The CSU can be used to set access permissions to the OCRAM memory and in
addition has programmable lock bits to prevent runtime modifications.

On the i.MX 8M platforms, Trusty OS and other software components such as ATF, SPL,
and potentially U-Boot (if run in the secure world) can potentially configure or overwrite
peripheral access and master privilege policies. However, the secure world and the non-
secure world have both access to the GPR registers. The OCRAM configuration should
be modified from the default non-secure configuration to a secure configuration based on
the security requirements of the final application/end product:

• Check the Secure CSU configuration recommendations.
• The CSU must be set to protect the OCRAM.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
5 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

• The respective GPR registers must be set to enable the protection of the OCRAM by
the TrustZone.

• Lock GPR and CSU registers with the respective lock bits to prevent runtime
modifications.

Note:

• i.MX 8M Plus, 8M Quad, and 8M Nano have this configured in ATF.
• For more information, refer to the CSU chapter and Security Integration chapters in the

respective SoC i.MX Security Reference Manual.
• An i.MX Security Checklist is available and should be reviewed to ensure the end

product is correctly secured.

2.2.4 Secure RDC configuration

The Resource Domain Controller (RDC) provides support for the isolation of destination
memory mapped locations such as peripherals and memory to a single core, a bus
master, or set of cores and bus masters. The RDC provides a mechanism to allow boot
time configuration code to establish resource domains by assigning cores, bus masters,
peripherals and memory regions to domain identifiers. Once configured, bus transactions
are monitored to restrict accesses initiated by cores and bus masters to their respective
peripherals and memory.

On the i.MX 8M platforms, the secure world and the non-secure world have both access
permissions to the RDC registers. The RDC configuration should be modified from
the default non-secure configuration to a secure configuration based on the security
requirements of the final application/end product:

• Check the code for default and non-secure RDC configuration.
• Set the RDC configuration for your security requirements.
• Ensure that the settings do not conflict with the CSU and AIPSTZ configurations.
• Lock the RDC settings with the respective lock bits to prevent runtime modifications.

Note:

• For more information, refer to the RDC chapter and Security Integration chapters in the
respective SoC i.MX Security Reference Manual.

• An i.MX Security Checklist is available and should be reviewed to ensure the end
product is correctly secured.

2.2.5 Secure AIPSTZ configuration

The AIPSTZ is a peripheral designed as the bridge between AHB bus and peripherals
with the lower bandwidth IP Slave (IPS) buses. The AIPSTZ bridge provides
programmable access protections for both masters and peripherals. It allows the privilege
level of a master to be overridden, forcing it to user mode privilege, and allows masters to
be designated as trusted or untrusted.

On the i.MX 8M platforms, the secure world and the non-secure world have both access
the AIPSTZ registers. The AIPSTZ configuration should be modified from the default non-
secure configuration to a secure configuration based on the security requirements of the
final application/end product:

• Check the code for default and non-secure AIPSTZ configuration.
• Set the AIPSTZ configuration for your security requirements.
• Ensure that the settings do not conflict with the CSU and RDC configurations.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
6 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

• Lock the AIPSTZ settings with lock bits to prevent runtime modifications.

Note:

• For more information, refer to the AIPSTZ Chapter in the respective SoC i.MX
Reference Manual and the SoC i.MX Security Reference Manual.

• An i.MX Security Checklist is available and should be reviewed to ensure the end
product is correctly secured.

2.2.6 SCU/SCFW

On the i.MX 8QuadMax and 8QuadXPlus platforms, System Controller Firmware
(SCFW) which running on the System Controller Unit (SCU) maintains the power, clock
and security components like xRDC and TZASC. Other software components can
communicate with SCU by the SCFW APIs.

By default, the Trusty OS is running on the secure partition and this is configured in the
ATF. Refer to the SCFW API manual for more information.

2.3 i.MX Android security framework
i.MX Android/Android Automotive security framework includes secure enhanced U-Boot,
Android/Android Auto, i.MX Trusty OS, and the related hardware.

Secure enhanced U-Boot provides the Android Verified Boot module, keys provisioning
interface, and secure storage proxy.

Android Verified Boot assures the end user of the integrity of the software loaded and
started by secure-enhanced U-Boot. This is defined by Google, and more details can be
found in https://source.android.com/security/verifiedboot/avb.

Key provisioning interface provides the RPMB keys, key attestation, and AVB keys
provisioning interface. These interfaces can be used to inject the keys into the device to
make it secure.

Secure Storage Proxy is the client of Secure Storage service from Trusty OS. It helps to
access the RPMB secure storage device by SoC IPs.

Android/Android Auto platform, based on Google’s design, integrates the Keymaster
HAL, Gatekeeper HAL, and Secure Storage proxy.

Keymaster HAL uses trusty-backed one and supports Keymaster V2 and Keymaster
V3 APIs. For more details about keymaster, see https://source.android.com/security/
keystore.

Gatekeeper also uses the Trusty-backed gatekeeper HAL. For more details about
gatekeeper, see https://source.android.com/security/authentication/gatekeeper.

i.MX Trusty OS is based on Trusty OS that is released from Google. Secure TAs and
services are integrated in it. Trusty OS is a very important module for the whole security
of i.MX Android/Android Auto platform.

Trusty OS provides a trusty-ipc, which is used to realize communication between secure
and non-secure world. Trusty OS has the hardware driver for CAAM used for keyblob
calculation and security algorithm acceleration.

The following figure shows the logic between these components.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
7 / 53

https://source.android.com/security/verifiedboot/avb
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://source.android.com/security/authentication/gatekeeper

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Figure 1. i.MX Android security framework

The following figure shows the i.MX Android/Android Auto security trust chain.

Figure 2. i.MX Android security trust chain

Secure root key is programed into the One Time Programmable (OTP) eFuse hardware
in i.MX chips and work as the root trust of the solution. It is used by CAAM to generate
other keys. In the trust chain, the HAB/AHAB, AVB, and DM-Verity are used by a different
level to verify the specific images or encrypt user data.

After power-on, the boot process begins, U-Boot and Trusty OS are loaded by ROM
code. They are the first to be verified by ROM code with HAB/AHAB. They can only be
executed after they pass the verification. U-Boot loads the Linux kernel and uses AVB
to verify it before jumping to the Linux kernel. The Linux kernel mounts the Android file
system. Data access from Android file system will be verified by DM-Verity to assure
integrity. The security chain is formed by these features.

3 Customization work on i.MX Android Security Features

3.1 Verifying images with HAB
The i.MX family of application processors provides the High Assurance Boot (HAB)
feature in the on-chip ROM. The ROM is responsible for loading the initial image and
verifying the image before the image is executed.

Due to the new architecture, multiple firmware and software images are required to
boot i.MX 8 family devices. NXP defines "container" to organize images. AHAB for i.MX
8Quad and i.MX 8ULP devices can recognize the format of "container" and verify the

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
8 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

images in a container. For i.MX 8M devices, these images are stored in the format of
Flattened Image Tree (FIT) with an appropriate Image Vector Table (IVT) set. HABv4
for i.MX 8M devices can recognize this format and verify the images. By default, HAB
verification is enabled and i.MX chip is in open stage, so failure of HAB verification does
not block the boot process. After closing the chip, only correctly signed images can be
executed.

This section covers AHAB used on i.MX 8Quad and i.MX 8ULP family devices and
HABv4 used on i.MX 8M family devices.

3.1.1 Verifying images with AHAB

AHAB is closely bound with "container". Detailed information about "container" can be
found in the Reference Manual of specific chips. According to the Reference manual, the
hash values of multiple firmware and software components are stored in the container
header. The container sign process described below embeds an SRK table in the
container and signs the container. The contents described in the sign process is used to
verify the container during the boot time.

For i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK, "container" is used to organize
the SECO firmware, SCU firmware, MCU software, Arm Trusted Firmware, Trusty
OS, and U-Boot. For i.MX 8ULP, "container" is used to organize the Sentinel firmware,
Upower firmware, MCU software, Arm Trusted Firmware, Trusty OS, and U-Boot.

The SECO firmware on i.MX 8Quad or the Sentinel firmware on i.MX 8ULP are always in
the first container. When U-Boot has SPL enabled, three containers are used to organize
the images. If SPL is not enabled, two containers are used. i.MX 8QuadMax is taken as
an example below to introduce the different layout of images.

The UUU U-Boot images of i.MX 8Quad platforms do not have SPL enabled, so two
containers are used. The first container contains the SECO firmware, which is provided
as a binary file and signed by NXP. The second container contains SCU firmware, Arm
Trusted Firmware, and U-Boot proper. It is constructed in build time and will be appended
to the end of the first container. Taking u-boot-imx8qm-mek-uuu.imx as an example,
its high-level layout structure is denoted in the following figure.

Figure 3. Layout structure when SPL is not enabled

Unlike i.MX 8Quad, the UUU U-Boot image of i.MX 8ULP enables SPL, so it has three
containers included.

The normal u-boot images to be flashed to the board on i.MX 8Q has SPL enabled, so
three containers are used. The first container contains SECO firmware. The second
container is constructed in build time and appened to the first container, this container
contains SPL. The third container is also constructed in build time, it contains u-boot
proper. The two containers constructed at build time are not signed by default. These
three containers are in two files if dual bootloader is enabled. For single bootloader

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
9 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

condition, take u-boot-imx8qm.imx of standard Android images as an example, layout
structure is shown in below figure:

Figure 4. Layout structure when SPL is enabled with single bootloader

For dual bootloader condition, take spl-imx8qm-trusty-dual.bin and
bootloader-imx8qm-trusty-dual.img of Android images as an example, the first
container and the second container are combined as one image, the third container is
combined as another image. The layout structure is well denoted with below figure.

Figure 5. Layout structure when SPL is enabled with dual bootloaders

Like i.MX 8Quad, the normal U-Boot image on i.MX 8ULP also has three containers. The
single-bootloader and dual-bootloader conditions have the similar layout.

To sign the containers constructed in the process of building Android images, perform the
following steps:

1. Download Code Signing Tool (CST) from the NXP official website. Decompress the
package using the following command:

$ tar zxvf cst-3.1.0.tgz

2. Generate AHAB PKI tree. After the tool package is decompressed, enter the directory
of release/keys/, and execute the following command:

$./ahab_pki_tree.sh

Then enter some parameters based on the output of this script. An example is as
follows:

Do you want to use an existing CA key (y/n)?: n

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
10 / 53

https://www.nxp.com/webapp/sps/download/license.jsp?colCode=IMX_CST_TOOL&appType=file2&location=null&DOWNLOAD_ID=null&ang_cd=en

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, p521: p384
Enter the digest algorithm to use: sha384
Enter PKI tree duration (years): 5
Do you want the SRK certificates to have the CA flag set? (y/
n)?: n

After the preceding command is successfully executed, the private keys are under
the keys/ directory, and the public key certificates are under the crts/ directory.

3. Generate AHAB SRK tables.
Enter the directory of release/crts/, and execute the following command:

$../linux64/bin/srktool -a -s sha384 -t
 SRK_1_2_3_4_table.bin \
-e SRK_1_2_3_4_fuse.bin -f 1 -c \
SRK1_sha384_secp384r1_v3_usr_crt.pem,\
SRK2_sha384_secp384r1_v3_usr_crt.pem,\
SRK3_sha384_secp384r1_v3_usr_crt.pem,\
SRK4_sha384_secp384r1_v3_usr_crt.pem

Additionally, for platforms like i.MX 8ULP, which only has 8 words of SRK fuses,
regenerate SRK_1_2_3_4_fuse.bin by SHA256 from SRK_1_2_3_4_table.bin:

$ openssl dgst -binary -sha256 SRK_1_2_3_4_table.bin >
 SRK_1_2_3_4_fuse.bin

After the command is executed successfully, the SRK table and its SHA512 or
SHA256 value are generated and saved respectively in two files under release/
crts/.
The SRK table is embedded in the container in the process of signing that container.
Therefore, during the boot time, it can be used to verify the signature. If the signature
is authenticated, the hash value of firmware and software images can be trusted to
verify the corresponding firmware and software. The SRK table hash value will be
fused to the OTP eFuse hardware and work as the "secure root key". It is used to
verify the SRK table embedded in the container.
Files generated in release/keys/ and /release/crts/ are very important. If
the SRK HASH value is fused to the chip and then the chip is changed from open to
close state, the board can only boot with images signed with these files.
It is suggested to use a dedicated copy of the CST package for different device
families, since this process will generate files with the same names in the same
directory.

4. Build Android images to construct the containers to be signed.
To use AHAB to verify images in SPL, enable CONFIG_AHAB_BOOT configurations
in corresponding defconfig files in u-boot code. they are not enabled by default. Take
imx8qm_mek_android_trusty_dual_defconfig as an example:

 diff --git a/configs/
imx8qm_mek_android_trusty_dual_defconfig b/configs/
imx8qm_mek_android_trusty_dual_defconfig
 index 7a8a7a3c1c5..d441bded80d 100644
 --- a/configs/imx8qm_mek_android_trusty_dual_defconfig
 +++ b/configs/imx8qm_mek_android_trusty_dual_defconfig
 @@ -214,3 +214,4 @@ CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
 CONFIG_ATTESTATION_ID_MODEL="MEK-MX8Q"
 CONFIG_SHA256=y
 CONFIG_DUAL_BOOTLOADER=y
 +CONFIG_AHAB_BOOT=y

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
11 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

mkimage_imx8 is a tool used to construct containers. It outputs the layout
information of a container on standard output when constructing it. When building the
Android images, save the log information of the build system. For example, execute
the following command:

$./imx-make.sh –j12 2>&1 | tee make_android.txt

During the build process, the build system output information is saved in
make_android.txt. The three-example layout mentioned above can be
categorized into two when signing the images: the image file directly generated by
mkimage_imx8 and the image file not directly generated by mkimage_imx8. As
mkimage_imx8 outputs the container layout information in a file generated by itself,
if the image file is directly generated by mkimage_imx8, the layout information
parameter can be directly used. If the final image is assembled with intermediate files
generated by mkimage_imx8, the layout information parameters need to be properly
processed before being used.
If SPL is enabled, single bootloader image like u-boot-imx8qm.imx is assembled
with two files generated by mkimage_imx8. In fact, dual bootloader condition keeps
these two files separated, while single bootloader condition appends one file after
another at 1KB aligned boundary.

5. Get the layout information of containers in a file.
Layout information is needed when signing the container. To be more specific, it is
the offset information of the container and the container signature block in a file.
Code signing tool uses these offsets to locate the container in a file. The layout
information can be found in make_android.txt just generated. With the following
principles, the offset of the container to be signed in a file can be easily found.
The generated files with containers to be signed mentioned before are built based
on different U-Boot defconfig files. Different U-Boot compilation targets with different
U-Boot defconfig files can be found in ${MY_ANDROID}/device/nxp/${PLA
TFORM}/${BOARD}/BoardConfig.mk. Taking i.MX 8QuadMax MEK and i.MX
8QuadXPlus MEK as example, the U-Boot configurations are listed below with some
annotations.

bootloader-imx8qm.img and spl-imx8qm.bin
TARGET_BOOTLOADER_CONFIG :=
 imx8qm:imx8qm_mek_androidauto_trusty_defconfig
bootloader-imx8qm-secure-unlock.img and spl-imx8qm-secure-
unlock.bin
TARGET_BOOTLOADER_CONFIG += imx8qm-secure-
unlock:imx8qm_mek_androidauto_trusty_secure_unlock_defconfig
bootloader-imx8qxp.img and spl-imx8qxp.bin
TARGET_BOOTLOADER_CONFIG +=
 imx8qxp:imx8qxp_mek_androidauto_trusty_defconfig
u-boot-imx8qxp-c0.imx
TARGET_BOOTLOADER_CONFIG += imx8qxp-
c0:imx8qxp_mek_androidauto_trusty_defconfig
bootloader-imx8qxp-secure-unlock.img and spl-imx8qxp-
secure-unlock.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-secure-
unlock:imx8qxp_mek_androidauto_trusty_secure_unlock_defconfig
u-boot-imx8qm.imx
TARGET_BOOTLOADER_CONFIG :=
 imx8qm:imx8qm_mek_android_defconfig
u-boot-imx8qxp.imx
TARGET_BOOTLOADER_CONFIG +=
 imx8qxp:imx8qxp_mek_android_defconfig
bootloader-imx8qm-dual.img and spl-imx8qm-dual.bin

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
12 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

TARGET_BOOTLOADER_CONFIG += imx8qm-
dual:imx8qm_mek_android_dual_defconfig
bootloader-imx8qxp-dual.img and spl-imx8qxp-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-
dual:imx8qxp_mek_android_dual_defconfig
u-boot-imx8qm-hdmi.imx
TARGET_BOOTLOADER_CONFIG += imx8qm-
hdmi:imx8qm_mek_android_hdmi_defconfig
u-boot-imx8qxp-c0.imx
TARGET_BOOTLOADER_CONFIG += imx8qxp-
c0:imx8qxp_mek_android_defconfig
u-boot-imx8qm-md.imx
TARGET_BOOTLOADER_CONFIG += imx8qm-
md:imx8qm_mek_android_hdmi_defconfig
bootloader-imx8qxp-c0-dual.img and spl-imx8qxp-c0-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-c0-
dual:imx8qxp_mek_android_dual_defconfig
u-boot-imx8dx.imx
TARGET_BOOTLOADER_CONFIG +=
 imx8dx:imx8dx_mek_android_defconfig
u-boot-imx8dx-mek-uuu.imx
TARGET_BOOTLOADER_CONFIG += imx8dx-mek-
uuu:imx8dx_mek_android_uuu_defconfig
bootloader-imx8qm-trusty-dual.img and spl-imx8qm-trusty-
dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qm-trusty-
dual:imx8qm_mek_android_trusty_dual_defconfig
bootloader-imx8qxp-trusty-dual.img and spl-imx8qm-trusty-
dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-trusty-
dual:imx8qxp_mek_android_trusty_dual_defconfig
bootloader-imx8qm-trusty-secure-unlock-dual.img and spl-
imx8qm-trusty-secure-unlock-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qm-trusty-secure-unlock-
dual:imx8qm_mek_android_trusty_secure_unlock_dual_defconfig
bootloader-imx8qxp-trusty-c0-dual.img and spl-imx8qxp-
trusty-c0-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-trusty-c0-
dual:imx8qxp_mek_android_trusty_dual_defconfig
bootloader-imx8qxp-trusty-secure-unlock-dual.img and spl-
imx8qxp-trusty-secure-unlock-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-trusty-secure-unlock-
dual:imx8qxp_mek_android_trusty_secure_unlock_dual_defconfig
u-boot-imx8qm-mek-uuu.imx
TARGET_BOOTLOADER_CONFIG += imx8qm-mek-
uuu:imx8qm_mek_android_uuu_defconfig
u-boot-imx8qxp-mek-uuu.imx
TARGET_BOOTLOADER_CONFIG += imx8qxp-mek-
uuu:imx8qxp_mek_android_uuu_defconfig

The defconfig file name can be used to locate the layout information of containers.
Search the defconfig file name in make_android.txt just generated. A line
prompts that the build process for that defconfig file has been finished. Container and
container signature block offset can be found in several lines before this line.
Search the log file for container layout information. For the condition that images
to be signed are directly generated by mkimage_imx8, the container layout
information of u-boot-imx8qm-mek-uuu.imx with the defconfig file of

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
13 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

imx8qm_mek_android_uuu_defconfig like below can be found in the log file.
Unrelated lines are omitted and represented with ellipsis.

CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x590
...
=================== Finish building imx8qm-mek-
uuu:imx8qm_mek_android_uuu_defconfig ===================

container layout info of bootloader-imx8qm-trusty-dual.img and spl-
imx8qm-trusty-dual.bin with the defconfig file of imx8qm_mek_android_
trusty_dual_defconfig like below can be found in the log file. The layout info of
the first two lines is for bootloader-imx8qm-trusty-dual.img, the info in the
following two lines are for spl-imx8qm-trusty-dual.bin.

CST: CONTAINER 0 offset: 0x0
CST: CONTAINER 0: Signature Block: offset is at 0x190
...
CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x610
...
=================== Finish building
 imx8qm:imx8qm_mek_android_trusty_dual_defconfig
 ===================

For the condition that images to be signed are not directly generated by
mkimage_imx8, take u-boot-imx8qm.imx with the defconfig file of
imx8qm_mek_android_defconfig as an example, below info should be
retrieved in the log file. the first two lines are for the intermediate file u-boot-atf-
container.img, This file is the third container which has Arm Trusted Firmware
and u-boot proper in it. The layout info in the following two lines are for another
intermediate file which has the second container in it, this intermediate file will be
padded to 1KB aligned boundary, then u-boot-atf-container.img is appended
to this file. So the second two lines can be directly used, while the first two lines
should be added with an offset, it's 388KB, 0x61000 in hexadecimal, then the offset
of the third container in the final u-boot-imx8qm.imx is 0x61000, its signature
offset in the file is 0x61000+0x190=0x61190 .

CST: CONTAINER 0 offset: 0x0
CST: CONTAINER 0: Signature Block: offset is at 0x190
...
CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x610
...
append u-boot-atf-container.img at 388 KB
...
=================== Finish building
 imx8qm:imx8qm_mek_android_defconfig ===================

A summary of the offsets of container and container signature are listed in the
following table.

Files having container to be
signed

Container offset in the file Container signature block
offset

u-boot-imx8qm-mek-
uuu.imx

0x400 0x590

Table 2. Container offset information

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
14 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Files having container to be
signed

Container offset in the file Container signature block
offset

bootloader-imx8qm-
trusty-dual.img

0x0 0x190

spl-imx8qm-trusty-
dual.bin

0x400 0x610

u-boot-imx8qm.imx 0x400
0x61000

0x610
0x61190

Table 2. Container offset information...continued

The same rule can be used on other targets with one exception that
the uuu u-boot target for i.MX 8ULP has SPL enabled, so target config
imx8ulp_evk_android_uuu_defconfig should follow the same rule as u-
boot-imx8qm.imx.

6. Sign the image files.
Copy the files to be signed to the directory of release/linux64/bin/ in Code
Signing Tool (CST) directory. The binary file named cst is used to sign these files.
This CST needs the CSF description file to be provided as an input file when it is
executed. CSF examples are in the directory of ${MY_ANDROID}/vendor/nxp-
opensource/uboot-imx/doc/imx/ahab/csf_examples/. We copy one
cst_uboot_atf.txt to CST release/linux64/bin/.
Make some changes to the cst_uboot_atf.txt just copied based on the
image to sign. For the condition that images to be signed are directly generated
by mkimage_imx8, taking u-boot-imx8qm-mek-uuu.imx as an example, the
modification is as follows:

@@ -4,9 +4,9 @@ Version = 1.0
[Install SRK]
SRK table generated by srktool
-File = "../crts/SRK_1_2_3_4_table.bin"
+File = "../../crts/SRK_1_2_3_4_table.bin"
Public key certificate in PEM format on this example only
 using SRK key
-Source = "../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
+Source = "../../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
Index of the public key certificate within the SRK table
 (0 .. 3)
Source index = 0
Type of SRK set (NXP or OEM)
@@ -16,6 +16,6 @@ Revocations = 0x0
[Authenticate Data]
Binary to be signed generated by mkimage
-File = "u-boot-atf-container.img"
+File = "u-boot-imx8qm-mek-uuu.imx"
Offsets = Container header Signature block (printed out by
 mkimage)
-Offsets = 0x0 0x110
+Offsets = 0x400 0x590

Then execute the command below:

$./cst -i cst_uboot_atf.txt -o signed-u-boot-imx8qm-mek-
uuu.imx

With preceding command successfully executed, signed-u-boot-imx8qm-mek-
uuu.imx is generated. Copy it back to the output directory, and change its name as

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
15 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

before, because uuu_imx_android_flash script flashes images based on their
names.
Based on the description of signing u-boot-imx8qm-mek-uuu.imx to sign all
other images directly generated by mkimage_imx8 like bootloader-imx8qm-
trusty-dual.img, spl-imx8qm-trusty-dual.bin, etc. Signing process
of images not directly generated by mkimage_imx8 is a bit different, it should be
signed twice, take u-boot-imx8qm.imx as an example, firstly make below change
to the original cst_uboot_atf.txt as below:

@@ -4,9 +4,9 @@ Version = 1.0
[Install SRK]
SRK table generated by srktool
-File = "../crts/SRK_1_2_3_4_table.bin"
+File = "../../crts/SRK_1_2_3_4_table.bin"
Public key certificate in PEM format on this example only
 using SRK key
-Source = "../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
+Source = "../../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
Index of the public key certificate within the SRK table
 (0 .. 3)
Source index = 0
Type of SRK set (NXP or OEM)
@@ -16,6 +16,6 @@ Revocations = 0x0
[Authenticate Data]
Binary to be signed generated by mkimage
-File = "u-boot-atf-container.img"
+File = "u-boot-imx8qm.imx"
Offsets = Container header Signature block (printed out by
 mkimage)
-Offsets = 0x0 0x110
+Offsets = 0x400 0x610

Then execute the command below:

$./cst -i cst_uboot_atf.txt -o first_signed_u-boot-
imx8qm.imx
Apply the following change on the "cst_uboot_atf.txt" as
 below to do the second sign
@@ -16,6 +16,6 @@ Revocations = 0x0
[Authenticate Data]
Binary to be signed generated by mkimage
-File = "u-boot-imx8qm.imx"
+File = "first_signed_u-boot-imx8qm.imx"
Offsets = Container header Signature block (printed out by
 mkimage)
-Offsets = 0x400 0x610
+Offsets = 0x61000 0x61190

And execute the command below:

$./cst -i cst_uboot_atf.txt -o second_signed_u-boot-
imx8qm.imx

With preceding command successfully executed, second_signed_u-boot-
imx8qm.imx is generated, copy it back to the output directory, and change its name
as before. All the images not directly generated by mkimage_imx8 can be signed
with preceding method, here in other words, SPL enabled single bootloader images
can be signed with this method.
Images are signed now. When booting with signed images, SRK table embedded in
image file is used to verify the signature. Embedded SRK table is verified based on

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
16 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

its hash value. The hash value is programed in OTP efuse in i.MX chips, so it is not
tempered by others. Perform the following steps to fuse the SRK hash value.

7. Dump the SRK hash value.
Change the directory to release/crts/ in Code Signing Tool (CST). For i.MX
8Quad platforms, execute the following command to dump the SRK hash value:

$ od -t x4 SRK_1_2_3_4_fuse.bin
0000000 d436cc46 8ecccda9 b89e1601 5fada3db
0000020 d454114a b6cd51f4 77384870 c50ee4b2
0000040 a27e5132 eba887cf 592c1e2b bb501799
0000060 ee702e07 cf8ce73e fb55e2d5 eba6bbd2

On i.MX 8ULP, the SRK Hash uses SHA256 and dump 8 words fuses:

$ od -t x4 SRK_1_2_3_4_fuse.bin
0000000 db2959f2 90dfc39c 53394566 e0b75829
0000020 85e6f3b1 af00983d e5e804fe 7a451024

8. Use the U-Boot fuse command to fuse the hash value to a chip.
Because the fuse command is removed from U-Boot for Android Auto images to
shorten the boot time, use UUU to load the U-Boot used by UUU to RAM, and then
use the fuse command.
Change the board to serial download mode, and execute the following command to
download U-Boot to RAM. It then enters fastboot mode.
For i.MX 8QuadMax, it is as follows:

$ sudo ./uuu_imx_android_flash.sh -f imx8qm -i

For i.MX 8QuadXPlus, it is as follows:

$ sudo ./uuu_imx_android_flash.sh -f imx8qxp -i

For i.MX 8ULP, it is as follows:

$ sudo ./uuu_imx_android_flash.sh -f imx8ulp -i

With the commands above executed, U-Boot used by UUU under the current working
directory is loaded to RAM on board and it enters fastboot mode.
On the U-Boot console, it shows that U-Boot is in fastboot mode. Press "CTRL+C" to
exit fastboot mode and enter U-Boot command mode.
For i.MX 8QuadMax, execute the following commands on the U-Boot console:

=> fuse prog 0 722 0xd436cc46
=> fuse prog 0 723 0x8ecccda9
=> fuse prog 0 724 0xb89e1601
=> fuse prog 0 725 0x5fada3db
=> fuse prog 0 726 0xd454114a
=> fuse prog 0 727 0xb6cd51f4
=> fuse prog 0 728 0x77384870
=> fuse prog 0 729 0xc50ee4b2
=> fuse prog 0 730 0xa27e5132
=> fuse prog 0 731 0xeba887cf
=> fuse prog 0 732 0x592c1e2b
=> fuse prog 0 733 0xbb501799
=> fuse prog 0 734 0xee702e07
=> fuse prog 0 735 0xcf8ce73e
=> fuse prog 0 736 0xfb55e2d5
=> fuse prog 0 737 0xeba6bbd2

For i.MX 8QuadXPlus, execute the following commands on the U-Boot console:

=> fuse prog 0 730 0xd436cc46

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
17 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

=> fuse prog 0 731 0x8ecccda9
=> fuse prog 0 732 0xb89e1601
=> fuse prog 0 733 0x5fada3db
=> fuse prog 0 734 0xd454114a
=> fuse prog 0 735 0xb6cd51f4
=> fuse prog 0 736 0x77384870
=> fuse prog 0 737 0xc50ee4b2
=> fuse prog 0 738 0xa27e5132
=> fuse prog 0 739 0xeba887cf
=> fuse prog 0 740 0x592c1e2b
=> fuse prog 0 741 0xbb501799
=> fuse prog 0 742 0xee702e07
=> fuse prog 0 743 0xcf8ce73e
=> fuse prog 0 744 0xfb55e2d5
=> fuse prog 0 745 0xeba6bbd2

For i.MX 8ULP, execute below commands on U-Boot console:

=> fuse prog 15 0 0xdb2959f2
=> fuse prog 15 1 0x90dfc39c
=> fuse prog 15 2 0x53394566
=> fuse prog 15 3 0xe0b75829
=> fuse prog 15 4 0x85e6f3b1
=> fuse prog 15 5 0xaf00983d
=> fuse prog 15 6 0xe5e804fe
=> fuse prog 15 7 0x7a451024

Now, images are signed and SRK hash value is fused. The images can be flashed
to boards. For how to flash i.MX Android images, see the Android™ Release Notes
(ARN).
The chip is now in open stage, and verification failure does not block the boot
process. To make sure that SRK hash value is correctly fused and images are
correctly signed, check the SECO event during boot. After CONFIG_AHAB_BOOT is
enabled in the defconfig file of U-Boot, use a U-Boot command to check the SECO
events. After images are signed and SRK hash value is programed, boot the board to
U-Boot command mode. On the U-Boot console, execute the following command:

=> ahab_status

If preceding command outputs the SECO event, use the following code to check
whether it is related to AHAB verification.

0x0087EE00 = The container image is not signed.
0x0087FA00 = The container image was signed with wrong key
 that is not matching the OTP SRK hashes.

For example, if the SRK hash value is programed, but images are not signed, after
ahab_status is executed, the following prompt is displayed on the console:

=> ahab_status
Lifecycle: 0x0020, NXP closed
SECO Event[0] = 0x0087EE00
CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
IND = AHAB_NO_AUTHENTICATION_IND (0xEE)
SECO Event[1] = 0x0087EE00
CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
IND = AHAB_NO_AUTHENTICATION_IND (0xEE)

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
18 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

After it is confirmed that the SRK hash value is correctly fused, and signed images
do not cause AHAB-related SECO events, execute the following command on the U-
Boot console to close the chip:

=> ahab_close

Note that this close operation is irreversible to the chips and the closed chips does
not boot up if AHAB verification fails.

3.1.2 Verifying images with HABv4

HABv4 verifies images based on Image Vector Table (IVT) and Flattened Image Tree
(FIT). Detailed information of the boot image format can be found in the Reference
Manual of specific chips. According to the Reference manual, the sign process described
below embeds the Command Sequence File (CSF) generated by code signing tool in the
final image. The CSF is used to verify the images during the boot time.

To sign the images for i.MX 8M devices, perform the following steps.

3.1.2.1 Get CST tool and keys configuration

1. Download Code Signing Tool (CST) from NXP official website.
Decompress the package with the following command:

$ tar zxvf cst-3.1.0.tgz

2. Generate the HABv4 PKI tree.
After the tool package is decompressed, enter the directory of release/keys/, and
execute the following command:

./hab4_pki_tree.sh

Then enter some parameters based on the output of this script. An example is as
follows:

Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: n
Enter key length in bits for PKI tree: 2048
Enter PKI tree duration (years): 5
How many Super Root Keys should be generated? 4
Do you want the SRK certificates to have the CA flag set? (y/
n)?: y

3. Generate AHAB SRK tables and eFuse hash.
Enter the directory of release/crts/, and execute the following command:

$../linux64/bin/srktool -h 4 -t SRK_1_2_3_4_table.bin -e \
SRK_1_2_3_4_fuse.bin -d sha256 -c \
SRK1_sha256_2048_65537_v3_ca_crt.pem,\
SRK2_sha256_2048_65537_v3_ca_crt.pem,\
SRK3_sha256_2048_65537_v3_ca_crt.pem,\
SRK4_sha256_2048_65537_v3_ca_crt.pem

After the preceding commands are executed successfully. The SRK table and its
SHA256 value are generated and saved respectively in two files under release/
crts/.
The SRK table is embedded in the CSF. Therefore, during the boot time, it can be
used to verify the signature. The SRK table SHA256 value is fused to the OTP eFuse
hardware and works as the "secure root key". It is used to verify the SRK table in
CSF.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
19 / 53

https://www.nxp.com/webapp/sps/download/license.jsp?colCode=IMX_CST_TOOL&appType=file2&location=null&DOWNLOAD_ID=null&ang_cd=en

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Files generated in release/keys/ and /release/crts/ are very important. If the
SRK HASH value is fused to the chip and then changes the chip from open to close
state, the board can only boot with images signed with these files.
If you are a user of both i.MX 8Quad and i.MX 8M devices, use two copies of this
CST respectively for two device families, since this process generates files with the
same names in the same directory, while these files should be prevented from being
overwritten.

4. Dump the SRK hash value.
Change directory to release/crts/ in Code Signing Tool (CST). Execute the
following command to dump the SRK hash value:

hexdump -e '/4 "0x"' -e '/4 "%X""\n"' SRK_1_2_3_4_fuse.bin
0x20593752
0x6ACE6962
0x26E0D06C
0xFC600661
0x1240E88F
0x1209F144
0x831C8117
0x1190FD4D

5. Use the U-Boot fuse command to fuse the hash value to a chip.
Flash the image just signed to the board, and then boot to U-Boot command mode,
and execute the following command to fuse the SRK hash value. This is the same for
i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Quad, and i.MX 8M Plus.

fuse prog -y 6 0 0x20593752 0x6ACE6962 0x26E0D06C 0xFC600661
fuse prog -y 7 0 0x1240E88F 0x1209F144 0x831C8117 0x1190FD4D

3.1.2.2 Sign bootloader images

1. Build Android images to generate the file to be signed.
To support HAB features, enable CONFIG_IMX_HAB configurations in the
corresponding defconfig files in U-Boot code. They are not enabled by default. Taking
i.MX 8M Mini EVK and i.MX 8M Nano EVK as an example, the files are:

imx8mm_evk_android_defconfig
imx8mm_evk_android_dual_defconfig
imx8mm_evk_android_trusty_secure_unlock_dual_defconfig
imx8mm_evk_android_trusty_dual_defconfig
imx8mm_evk_android_uuu_defconfig

Layout information of the final U-Boot image is needed during the signing process.
When building the Android images, save the log information of build system. For
example, execute the following command:

$./imx-make.sh –j12 2>&1 | tee make_android.txt

During the build process, the build system output information is also saved in
make_android.txt.

2. Get the layout information of the file to be signed.
Final U-Boot image files are generated with different U-Boot defconfig files. Taking
i.MX 8M Mini as an example, different U-Boot compilation targets with different U-
Boot defconfig files can be found in ${MY_ANDROID}/device/nxp/imx8m/evk_
8mm/BoardConfig.mk. They are listed below with some annotations.

TARGET_BOOTLOADER_CONFIG :=
 imx8mm:imx8mm_evk_android_defconfig

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
20 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

TARGET_BOOTLOADER_CONFIG += imx8mm-
dual:imx8mm_evk_android_dual_defconfig
TARGET_BOOTLOADER_CONFIG += imx8mm-trusty-secure-unlock-
dual:imx8mm_evk_android_trusty_secure_unlock_dual_defconfig
TARGET_BOOTLOADER_CONFIG += imx8mm-trusty-
dual:imx8mm_evk_android_trusty_dual_defconfig
TARGET_BOOTLOADER_CONFIG += imx8mm-evk-
uuu:imx8mm_evk_android_uuu_defconfig

Search the defconfig file name in the log of make_android.txt just generated
for a line prompt that the build process for that defconfig file is finished. The layout
information needed in the signing process is several lines before that. The layout
information needs to be categorized based on whether dual-bootloader is enabled.
The defconfig files with "dual" substring in their names have dual-bootloader enabled.
On the contrary, the ones without "dual" substring in their names do not enable dual-
bootloader.
For the single bootloader condition, taking
imx8mm_evk_android_uuu_defconfig as an example, its corresponding output
file is u-boot-imx8mm-evk-uuu.imx. The lines directly related to the layout info of
this output file are listed below, and unrelated lines are omitted and represented with
ellipsis.

Loader IMAGE:
...
csf_off 0x2d600
spl hab block: 0x7e0fc0 0x0 0x2d600
...
Second Loader IMAGE:
...
sld_csf_off 0x58c20
sld hab block: 0x401fcdc0 0x57c00 0x1020
...
0x40200000 0x5AC00 0xAE710
0x402AE710 0x109310 0x8630
0x920000 0x111940 0x91D0
...
=================== Finish building imx8mm-evk-
uuu:imx8mm_evk_android_uuu_defconfig ===================

For the dual-bootloader condition, taking imx8mm_evk_android_trusty_dual_
defconfig as an example, its corresponding output files are spl-imx8mm-
trusty-dual.bin and bootloader-imx8mm-trusty-dual.img. The lines
directly related to the layout info of this output file are listed below, and unrelated
lines are omitted and represented with ellipsis.

Loader IMAGE:
...
csf_off 0x2d600
spl hab block: 0x7e0fc0 0x0 0x2d600
...
Second Loader IMAGE:
...
sld_csf_off 0x58c20
sld hab block: 0x401fcdc0 0x57c00 0x1020
...
0x40200000 0x5AC00 0xAE710
0x402AE710 0x109310 0x8630
0x920000 0x111940 0x91D0
...

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
21 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

=================== Finish building imx8mm-evk-
uuu:imx8mm_evk_android_uuu_defconfig ===================

The same method of retrieving the layout information can be used on other targets.
3. Sign the image files.

Copy the files to be signed to the directory of release/linux64/bin/ in Code
Signing Tool (CST) directory. The binary file named CST is used to sign these files.
This CST needs CSF description file to be as an input file when it is executed.
CSF examples are in the directory of ${MY_ANDROID}/vendor/nxp-opens
ource/uboot-imx/doc/imx/habv4/csf_examples/mx8m_mx8mm/. Copy
csf_fit.txt and csf_spl.txt to Code Signing Tool (CST) release/linux64/
bin/. The file to be signed also needs to be copied to this directory. The signing
process is different between single-bootloader condition and dual-bootloader
condition. The examples of the two conditions are described together in this section,
but in practice, different U-Boot target files should be signed with the following steps
one by one.
For the single bootloader example with imx8mm_evk_android_uuu_defconfig
defconfig file, modify the copied csf_fit.txt and csf_spl.txt as follows.

diff --git a/csf_fit.txt b/csf_fit.txt
index d9218ab..dfd0ded 100644
--- a/csf_fit.txt
+++ b/csf_fit.txt
@@ -8,12 +8,12 @@
[Install SRK]
Index of the key location in the SRK table to be installed
- File = "../crts/SRK_1_2_3_4_table.bin"
+ File = "../../crts/SRK_1_2_3_4_table.bin"
Source index = 0
[Install CSFK]
Key used to authenticate the CSF data
- File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+ File = "../../crts/
CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate CSF]
@@ -23,14 +23,14 @@
Target key slot in HAB key store where key will be
 installed
Target index = 2
Key to install
- File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+ File = "../../crts/
IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate Data]
Key slot index used to authenticate the image data
Verification index = 2
Authenticate Start Address, Offset, Length and file
- Blocks = 0x401fcdc0 0x057c00 0x01020 "flash.bin", \
- 0x40200000 0x05AC00 0x9AAC8 "flash.bin", \
- 0x00910000 0x0F56C8 0x09139 "flash.bin", \
- 0xFE000000 0x0FE804 0x4D268 "flash.bin", \
- 0x4029AAC8 0x14BA6C 0x06DCF "flash.bin"
+ Blocks = 0x401fcdc0 0x57c00 0x1020 "u-boot-imx8mm-evk-
uuu.imx", \
+ 0x40200000 0x5AC00 0xAE710 "u-boot-imx8mm-evk-
uuu.imx", \
+ 0x402AE710 0x109310 0x8630 "u-boot-imx8mm-evk-
uuu.imx", \

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
22 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

+ 0x920000 0x111940 0x91D0 "u-boot-imx8mm-evk-
uuu.imx"
diff --git a/csf_spl.txt b/csf_spl.txt
index 39adf7a..80165a8 100644
--- a/csf_spl.txt
+++ b/csf_spl.txt
@@ -8,12 +8,12 @@
[Install SRK]
Index of the key location in the SRK table to be installed
- File = "../crts/SRK_1_2_3_4_table.bin"
+ File = "../../crts/SRK_1_2_3_4_table.bin"
Source index = 0
[Install CSFK]
Key used to authenticate the CSF data
- File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+ File = "../../crts/
CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate CSF]
[Unlock]
Leave Job Ring and DECO master ID registers Unlocked
Engine = CAAM
- Features = MID
+ Features = MID, MFG
[Install Key]
Key slot index used to authenticate the key to be installed
@@ -28,10 +28,10 @@
Target key slot in HAB key store where key will be
 installed
Target index = 2
Key to install
- File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+ File = "../../crts/
IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate Data]
Key slot index used to authenticate the image data
Verification index = 2
Authenticate Start Address, Offset, Length and file
- Blocks = 0x7e0fc0 0x1a000 0x2a600 "flash.bin"
+ Blocks = 0x7e0fc0 0x0 0x2d600 "u-boot-imx8mm-evk-
uuu.imx"

For the dual-bootloader example with imx8mm_evk_android_trusty_dual_
defconfig defconfig file, modify the copied csf_fit.txt and csf_spl.txt as
follows.

diff --git a/csf_fit.txt b/csf_fit.txt
index d9218ab..dfd0ded 100644
--- a/csf_fit.txt
+++ b/csf_fit.txt
@@ -8,12 +8,12 @@
[Install SRK]
Index of the key location in the SRK table to be installed
- File = "../crts/SRK_1_2_3_4_table.bin"
+ File = "../../crts/SRK_1_2_3_4_table.bin"
Source index = 0
[Install CSFK]
Key used to authenticate the CSF data
- File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+ File = "../../crts/
CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate CSF]

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
23 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

@@ -23,14 +23,14 @@
Target key slot in HAB key store where key will be
 installed
Target index = 2
Key to install
- File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+ File = "../../crts/
IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate Data]
Key slot index used to authenticate the image data
Verification index = 2
Authenticate Start Address, Offset, Length and file
- Blocks = 0x401fcdc0 0x057c00 0x01020 "flash.bin", \
- 0x40200000 0x05AC00 0x9AAC8 "flash.bin", \
- 0x00910000 0x0F56C8 0x09139 "flash.bin", \
- 0xFE000000 0x0FE804 0x4D268 "flash.bin", \
- 0x4029AAC8 0x14BA6C 0x06DCF "flash.bin"
+ Blocks = 0x401fcdc0 0x0 0x1020 "bootloader-imx8mm-
trusty-dual.img", \
+ 0x40200000 0x3000 0xAF2D0 "bootloader-imx8mm-
trusty-dual.img", \
+ 0x402AF2D0 0xB22D0 0x8630 "bootloader-imx8mm-
trusty-dual.img", \
+ 0x920000 0xBA900 0xA1D0 "bootloader-imx8mm-
trusty-dual.img", \
+ 0xBE000000 0xC4AD0 0x164C50 "bootloader-imx8mm-
trusty-dual.img"
diff --git a/csf_spl.txt b/csf_spl.txt
index 39adf7a..80165a8 100644
--- a/csf_spl.txt
+++ b/csf_spl.txt
@@ -8,12 +8,12 @@
[Install SRK]
Index of the key location in the SRK table to be installed
- File = "../crts/SRK_1_2_3_4_table.bin"
+ File = "../../crts/SRK_1_2_3_4_table.bin"
Source index = 0
[Install CSFK]
Key used to authenticate the CSF data
- File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+ File = "../../crts/
CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate CSF]
[Unlock]
Leave Job Ring and DECO master ID registers Unlocked
Engine = CAAM
- Features = MID
+ Features = MID, MFG
[Install Key]
Key slot index used to authenticate the key to be installed
@@ -28,10 +28,10 @@
Target key slot in HAB key store where key will be
 installed
Target index = 2
Key to install
- File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+ File = "../../crts/
IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate Data]
Key slot index used to authenticate the image data

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
24 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Verification index = 2
Authenticate Start Address, Offset, Length and file
- Blocks = 0x7e0fc0 0x1a000 0x2a600 "flash.bin"
+ Blocks = 0x7e0fc0 0x0 0x34200 "spl-imx8mm-trusty-
dual.bin"

Execute the following commands to generate CSF with the CSF description file. They
are the same for single bootloader condition and dual-bootloader condition.

$./cst --i=csf_spl.txt --o=csf_spl.bin
$./cst --i=csf_fit.txt --o=csf_fit.bin

Execute the following commands to embed the CSF into the U-Boot image.

For the single bootloader example with
 "imx8mm_evk_android_uuu_defconfig" defconfig file
$ dd if=csf_spl.bin of=u-boot-imx8mm-evk-uuu.imx seek=
$((0x2d600)) bs=1 conv=notrunc
$ dd if=csf_fit.bin of=u-boot-imx8mm-evk-uuu.imx seek=
$((0x58c20)) bs=1 conv=notrunc
For the dual bootloader example with
 "imx8mm_evk_android_trusty_dual_defconfig" defconfig file
$ dd if=csf_spl.bin of=spl-imx8mm-trusty-dual.bin seek=
$((0x34200)) bs=1 conv=notrunc
$ dd if=csf_fit.bin of=bootloader-imx8mm-trusty-dual.img
 seek=$((0x1020)) bs=1 conv=notrunc

With preceding commands successfully executed, u-boot-imx8mm-evk-uuu.imx
or spl-imx8mm-trusty-dual.bin and bootloader-imx8mm-trusty-
dual.img are well signed. Then sign other images according to the description of
the signing process.
Images are signed now. When booting with signed images, the SRK table embedded
in the image file is used to verify the signature. Embedded SRK table is verified
based on its hash value. The hash value is programed in OTP eFuse in i.MX chips,
so it is not affected by others.

3.1.2.3 Sign the MCU firmware

The MCU firmware on i.MX 8M is kicked off by the Cortex-A core. Its signature would
be verified by HABv4. Some scripts are provided below to auto-sign the MCU firmware.
Save these scripts to linux64/bin/.

1. Create a CSF template.
Save the following CSF template and rename it as mcucsf_template. This is the
CSF file of the MCU firmware.

[Header]
 Version = 4.3
 Hash Algorithm = sha256
 Engine Configuration = 0
 Certificate Format = X509
 Signature Format = CMS
[Install SRK]
 File = "../../crts/SRK_1_2_3_4_table.bin"
 Source index = 0
[Install CSFK]
 File = "../../crts/
CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate CSF]
[Install Key]
 Verification index = 0

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
25 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

 Target index = 2
 File = "../../crts/
IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate Data]
 Verification index = 2
 Blocks = %ddr_addr% 0x0 %auth_len% "mcu-pad-ivt.bin"

2. Create an IVT generation template.
Save the following IVT template and rename it as genivt_template. This script
helps generate the IVT.

#! /usr/bin/perl -w
use strict;
open(my $out, '>:raw', 'ivt.bin') or die "Unable to open:
 $!";
print $out pack("V", 0x402000D1); # Signature
print $out pack("V", %jump_addr%); # Jump Location
print $out pack("V", 0x0); # Reserved
print $out pack("V", 0x0); # DCD pointer
print $out pack("V", 0x0); # Boot Data
print $out pack("V", %self_ptr%); # Self Pointer
print $out pack("V", %csf_ptr%); # CSF Pointer
print $out pack("V", 0x0); # Reserved
close($out);

3. Create a script habmcugen_template.
Save the following template and rename it as habmcugen_template. This script
helps combine the generated images.

#! /bin/bash
echo "extend mcu image to %pad_len%..."
objcopy -I binary -O binary --pad-to %pad_len% --gap-
fill=0x5A mcu.bin mcu-pad.bin
echo "generate IVT"
./genIVT
echo "attach IVT..."
cat mcu-pad.bin ivt.bin > mcu-pad-ivt.bin
echo "generate csf data..."
./cst --o mcu_csf.bin --i mcu.csf
echo "merge image and csf data..."
cat mcu-pad-ivt.bin mcu_csf.bin > mcu-signed.bin
echo "extend final image to %sig_len%..."
objcopy -I binary -O binary --pad-to %sig_len% --gap-
fill=0x5A mcu-signed.bin mcu-signed-pad.bin

4. Create script mk_secure_mcu_imx8m.
Save the following script and rename it as mk_secure_mcu_imx8m. This script
invokes all the scripts above and generates the final signed MCU image.

#! /bin/bash
let ddr_addr=$1
if [! -f mcu.bin]
then
 printf "File \"mcu.bin\" does not exist.\n"
 exit 1
fi
Calculate the size
let pad_len=$((0x20000)) # padding mcu image to 128KB
let auth_len=$((pad_len + 0x20)) # +0x20 "IVT"
let sig_len=$((auth_len + 0x2000))
let self_ptr=$((ddr_addr + pad_len))

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
26 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

let csf_ptr=$((ddr_addr + auth_len))
let jump_addr=$((ddr_addr))
change value to hex string
pad_len=`printf "0x%X" ${pad_len}`
auth_len=`printf "0x%X" ${auth_len}`
sig_len=`printf "0x%X" ${sig_len}`
ddr_addr=`printf "0x%X" ${ddr_addr}`
self_ptr=`printf "0x%X" ${self_ptr}`
csf_ptr=`printf "0x%X" ${csf_ptr}`
jump_addr=`printf "0x%X" ${jump_addr}`
Create habUimagegen
sed -e s/%pad_len%/${pad_len}/g -e s/%sig_len%/${sig_len}/g
 habmcugen_template > habmcuGen
chmod +x habmcuGen
Create mcu.csf
sed -e s/%ddr_addr%/${ddr_addr}/g -e s/%auth_len%/
${auth_len}/g mcucsf_template > mcu.csf
Create genIVT
sed -e s/%jump_addr%/${jump_addr}/g -e s/%self_ptr%/
${self_ptr}/g -e s/%csf_ptr%/${csf_ptr}/g genivt_template >
 genIVT
chmod +x genIVT
Generate secure boot
./habmcuGen
OK
printf "mcu image with Signature \"mcu-signed-pad.bin\" is
 ready to use.\n"

5. Generate the signed MCU firmware.
Copy the unsigned MCU firmware to linux64/bin and rename it as mcu.bin.
Execute the following command to generate the final signed MCU firmware mcu-
signed-pad.bin:

./mk_secure_mcu_imx8m <mcu-firmware-load-address>

As only TCM is supported to run the MCU firmware on the Android platform, so
the mcu-firmware-load-address should be the load address in TCM like
0x7e0000.

3.1.2.4 Close the chip

With above steps, the images are signed and SRK hash value is fused. But as the chip
is in open stage, verification failure does not block the boot process. One way to make
sure that SRK hash value is correctly fused and images are correctly signed is to check
HAB events in the U-Boot log. Flash the images which are signed and reboot to U-Boot
console and execute the following command:

=> hab_status

Make sure there is no HAB EVENT reported. Before SPL invokes HAB to verify the FIT
part, it first validates the CSF. Make sure there is no CSF-related error as follows in the
boot log.

Error: CSF header command not found

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
27 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

After it is confirmed that the SRK hash value is correctly fused, and signed images do not
cause HAB event, execute the following command on the U-Boot console to close the
chip.

=> fuse prog -y 1 3 0x2000000

This close operation is irreversible to the chips and closed chips do not boot up if
HABv4 verification fails.

3.2 Configurations on TEE

3.2.1 Memory region configuration in ATF

The TEE binary is loaded to DRAM at the address of $BL32_BASE by SPL. By default,
the load address $BL32_BASE is defined as 0xFE000000. It is specified during the
process of generating the bootloader image with imx-mkimage. For example, you can
specify the load address as 0xFF000000 for i.MX 8QuadMax and i.MX 8QuadXPlus in
${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage as follows:

diff --git a/iMX8QM/soc.mak b/iMX8QM/soc.mak
index 355851e..fe70191 100644
--- a/iMX8QM/soc.mak
+++ b/iMX8QM/soc.mak
@@ -82,7 +82,7 @@ u-boot-atf-container.img: bl31.bin u-boot-
hash.bin
fi
if [-f "tee.bin"]; then \
 if [$(shell echo $(ROLLBACK_INDEX_IN_CONTAINER))]; then \
 - ./$(MKIMG) -soc QM -sw_version
 $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -c -ap bl31.bin a53
 0x80000000 -ap u-boot-hash.bin a53 0x80020000 -ap tee.bin a53
 0xFE000000 -out u-boot-atf-container.img; \
 + ./$(MKIMG) -soc QM -sw_version
 $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -c -ap bl31.bin a53
 0x80000000 -ap u-boot-hash.bin a53 0x80020000 -ap tee.bin a53
 0xFF000000 -out u-boot-atf-container.img; \
 else \
 ./$(MKIMG) -soc QM -rev B0 -c -ap bl31.bin a53
 0x80000000 -ap u-boot-hash.bin a53 0x80020000 -ap tee.bin a53
 0xFE000000 -out u-boot-atf-container.img; \
fi; \
diff --git a/iMX8QX/soc.mak b/iMX8QX/soc.mak
index 56422e0..d917dc3 100644
--- a/iMX8QX/soc.mak
+++ b/iMX8QX/soc.mak
@@ -73,7 +73,7 @@ u-boot-atf.itb: u-boot-hash.bin bl31.bin
u-boot-atf-container.img: bl31.bin u-boot-hash.bin
if [-f tee.bin]; then \
 if [$(shell echo $(ROLLBACK_INDEX_IN_CONTAINER))]; then \
 - ./$(MKIMG) -soc QX -sw_version
 $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -c -ap bl31.bin a35
 0x80000000 -ap u-boot-hash.bin a35 0x80020000 -ap tee.bin a35
 0xFE000000 -out u-boot-atf-container.img; \
 + ./$(MKIMG) -soc QX -sw_version
 $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -c -ap bl31.bin a35
 0x80000000 -ap u-boot-hash.bin a35 0x80020000 -ap tee.bin a35
 0xFF000000 -out u-boot-atf-container.img; \

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
28 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

 else \
 ./$(MKIMG) -soc QX -rev B0 -c -ap bl31.bin a35
 0x80000000 -ap u-boot-hash.bin a35 0x80020000 -ap tee.bin a35
 0xFE000000 -out u-boot-atf-container.img; \
 fi; \

After loading the TEE binary to DRAM, the ATF tries to kick it at the address of
$BL32_BASE with the size of $BL32_SIZE, which are defined in ${MY_ANDROID}/
vendor/nxp-opensource/arm-trusted-firmware/plat/imx/$(PLAT)/
include/platform_def.h. By default, $BL32_BASE is defined as 0xFE000000 and
$BL32_SIZE is 0x02000000, but you can configure them as needed. For example,
$BL32_BASE can be configured as 0xFF000000 and $BASE_SIZE can be configured as
0x03000000 for i.MX 8QuadMax and i.MX 8QuadXPlus as follows:

diff --git a/plat/imx/imx8qm/include/platform_def.h b/plat/imx/
imx8qm/include/platform_def.h
index b305bfc..6f9f7d4 100644
--- a/plat/imx/imx8qm/include/platform_def.h
+++ b/plat/imx/imx8qm/include/platform_def.h
@@ -37,8 +37,8 @@
#define BL31_LIMIT 0x80020000
#ifdef TEE_IMX8
-#define BL32_BASE 0xfe000000
-#define BL32_SIZE 0x02000000
+#define BL32_BASE 0xff000000
+#define BL32_SIZE 0x03000000
#define BL32_SHM_SIZE 0x00400000
#define BL32_LIMIT 0x100000000
#endif
diff --git a/plat/imx/imx8qxp/include/platform_def.h b/plat/
imx/imx8qxp/include/platform_def.h
index 24eacc2..cfc0717 100644
--- a/plat/imx/imx8qxp/include/platform_def.h
+++ b/plat/imx/imx8qxp/include/platform_def.h
@@ -33,8 +33,8 @@
#define BL31_LIMIT 0x80020000
#ifdef TEE_IMX8
-#define BL32_BASE 0xfe000000
-#define BL32_SIZE 0x02000000
+#define BL32_BASE 0xff000000
+#define BL32_SIZE 0x03000000
#define BL32_SHM_SIZE 0x00400000
#define BL32_LIMIT 0x100000000
#define PLAT_TEE_IMAGE_OFFSET 0x84000000

The following table lists the recommended $BL32_BASE and $BL32_SIZE for DRAM
with different sizes on the i.MX 8Quad platform:

DRAM Size (GB) $BL32_BASE $BL32_SIZE

6 0xFE000000 0x02000000

4 0xFE000000 0x02000000

3 0xFE000000 0x02000000

2 0xFE000000 0x02000000

1 0xBE000000 0x02000000

Table 3. Recommended $BL32_BASE and $BL32_SIZE for DRAM

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
29 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

3.2.2 Basic file and folder construction for Trusty OS

i.MX Trusty OS provides a security solution for Android platform and Android Automotive
platform. It also provides a set of development APIs for customer to develop their own
TAs.

Trusty OS is based on LittleKernel. i.MX Trusty OS has the following basic file structure.

Folder name Folder description

trusty/device/nxp/imx8 This folder contains the script files. Most of the configurations
for the build target are defined in this folder, including project
configuration files.
The Makefile configurations, board configurations, and modules
need to be built.

trusty/hardware/nxp/app NXP-specific TA source code folder. Currently the hwcrypto TA
located in this folder that provides security functions depends on
the i.MX SoC hardware.

trusty/hardware/nxp/
target

NXP reference board target folder. Only rules.mk for the build
target in this folder, platform name, and UART information are
defined in this file.

trusty/hardware/nxp/
platform/imx

NXP SoC specific source codes for Trusty OS. All i.MX SoCs
share these codes. It includes platform initialization codes,
UART drivers, and registers map definitions.

trusty/kernel/lib Trusty OS core codes including secure monitor calls
management, TIPC/QL-TIPC stack.

external/lk LittleKernel codes, including all LittleKernel modules like arch
codes, interrupt management, task management, and SMP
support.

trusty/user/app Trusty OS TAs are placed here, including AVB, Gatekeeper, and
Keymaster user space source codes.

Table 4. Basic file structure of i.MX Trusty OS

For TAs implementation, see Google Trusty OS reference webpage: https://source.
android.com/security/trusty/trusty-ref.

3.2.3 Applying new build target in Trusty OS

By default, NXP already provides i.MX 8QuadMax/8QuadXPlus and i.MX 8M Mini/8M
Quad series template in the i.MX Trusty OS. To add a new platform based on i.MX
8QuadMax/8QuadXPlus or i.MX 8M Mini/8M Quad/8M Plus, add or modify the following
file or modules.

In ${MY_TRUSTY}/trusty/device/nxp/imx8/project, imx8-inc.mk contains all
common configurations, such as CPU cores, modules that need to be built. The imx8-
inc.mk can be overwritten by the build target mk files, such as imx8qm.mk.

For example, to add a new build target based on i.MX 8QuadMax SoC called imx8qm-
abc, which has six CPUs and 1024 RPMB blocks, write a new .mk file called imx8qm-
abc.mk in ${MY_TRUSTY}trusty/device/nxp/imx8/project. The content is as
follows:

TARGET := imx8q
imx8q/x use lpuart for UART IP
IMX_USE_LPUART := true

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
30 / 53

https://source.android.com/security/trusty/trusty-ref
https://source.android.com/security/trusty/trusty-ref

NXP Semiconductors ASUG
i.MX Android Security User's Guide

SMP_MAX_CPUS := 6
STORAGE_RPMB_BLOCK_COUNT := 1024
include project/imx8-inc.mk

In the root of Trusty OS codes, execute $make list. Then imx8qm-abc is displayed.

3.2.4 Adding unit tests in Trusty OS and adding CAAM self-tests in Trusty OS

Trusty OS supports two unit tests to test the functionality of Trusty IPC (TIPC) and
CAAM. It is only for debug purpose and should not be released with the open unit
tests. For i.MX 8QuadMax and i.MX 8QuadXPlus, to include these unit tests, make the
following changes in ${MY_TRUSTY}/trusty/device/nxp/imx8/project:

diff --git a/project/imx8-inc.mk b/project/imx8-inc.mk
index 681a223..e7dcfdb 100644
--- a/project/imx8-inc.mk
+++ b/project/imx8-inc.mk
@@ -70,6 +70,7 @@ GLOBAL_DEFINES += APP_STORAGE_RPMB_BLOCK_COUNT=
$(STORAGE_RPMB_BLOCK_COUNT)
GLOBAL_DEFINES += \
WITH_LIB_VERSION=1 \
+ WITH_CAAM_SELF_TEST=1 \
ARM suggest to use system registers to access GICv3/v4 registers
GLOBAL_DEFINES += ARM_GIC_USE_SYSTEM_REG=1
@@ -98,6 +99,8 @@ TRUSTY_ALL_USER_TASKS := \
trusty/user/app/keymaster \
trusty/user/app/gatekeeper \
trusty/user/app/storage \
+ trusty/user/app/sample/ipc-unittest/main \
+ trusty/user/app/sample/ipc-unittest/srv \
This project requires trusty IPC
WITH_TRUSTY_IPC := true

Rebuild the Trusty OS and copy the output binary to ${MY_ANDROID}/vendor/nxp/
fsl-proprietary/uboot-firmware/imx8q_car. Make the following changes to
build out the TIPC test binary:

diff --git a/imx8q/mek_8q/mek_8q_car.mk b/imx8q/mek_8q/mek_8q_car.mk
index 6acc89a..19e8e24 100644
--- a/imx8q/mek_8q/mek_8q_car.mk
+++ b/imx8q/mek_8q/mek_8q_car.mk
@@ -59,7 +59,8 @@ PRODUCT_PACKAGES += \
Add Trusty OS backed gatekeeper and secure storage proxy
PRODUCT_PACKAGES += \
gatekeeper.trusty \
- storageproxyd
+ storageproxyd \
+ tipc-test

Rebuild the Android project, the TIPC test binary is located at ${MY_ANDROID}/
out/target/product/mek_8q/data/nativetest64/vendor/tipc-test/
tipc-test. Flash the images to board, and remount and push the tipc-test binary to /
vendor/bin with ADB commands.

Trusty OS runs the CAAM unit test when initializing the CAAM. The following logs are
displayed in U-Boot if the CAAM is initialized correctly:

hwcrypto: 222: Initializing
caam_drv: 728: caam hwrng test PASS!!!
caam_drv: 761: caam blob test PASS!!!
caam_drv: 843: caam gen kdf root key test PASS!!!
caam_drv: 793: caam AES enc test PASS!!!
caam_drv: 802: caam AES enc test PASS!!!
caam_drv: 830: caam hash test PASS!!!

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
31 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

If the TIPC unit test is started correctly, the following logs are displayed in U-Boot:

ipc-unittest-main: 2607: Welcome to IPC unittest!!!
unittest: 144: added port com.android.ipc-unittest.ctrl handle, 1001, to
 handleset 1000
unittest: 148: waiting forever
ipc-unittest-srv: 318: Init unittest services!!!

Run the following commands to test the TIPC. The correct result is as follows:

mek_8q:/vendor/bin # tipc-test -t connect
connect_test: repeat = 1
connect_test: done
mek_8q:/vendor/bin # tipc-test -t connect_foo
connect_foo: repeat = 1
connect_foo: done
mek_8q:/vendor/bin # tipc-test -t echo -r 100
echo_test: repeat 100: msgsz 32: variable false
echo_test: done
mek_8q:/vendor/bin # tipc-test -t echo -r 1000
echo_test: repeat 1000: msgsz 32: variable false
echo_test: done

3.2.5 Modifying the console port for Trusty OS

Due to different hardware board designs, the debug UART may be different. i.MX Trusty
OS supports to configure a different UART port by modifying the configuration file.

To change the debug UART port, see the SoC reference manual to get the specific UART
port base address. The debug UART address is defined in trusty/hardware/nxp/
target/$SOC_NAME/rules.mk.

For example, if LPUART1 is used instead of LPUART0 for i.MX 8QuadMax board, make
the following modification on rules.mk:

diff --git a/target/imx8q/rules.mk b/target/imx8q/rules.mk
index e6239e2..8ea3f37 100644
--- a/target/imx8q/rules.mk
+++ b/target/imx8q/rules.mk
@@ -25,4 +25,4 @@
PLATFORM_SOC := imx8qm
PLATFORM := imx
-CONFIG_CONSOLE_TTY_BASE := 0x5A060000
+CONFIG_CONSOLE_TTY_BASE := 0x5A070000

3.2.6 Configuring the related TA services

The Trusted Application (TA) is the software running in a secure context. There are
several TAs running in the Trusty OS. The following figure shows their relationships.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
32 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Figure 6. Relationship between TAs

• AVB TA: It provides tamper proof operations for data used during Android Verified Boot
(AVB), such as rollback index, lock/unlock state, and vbmeta public key.

• Storage TA: It provides encrypted and tamper proof storage to secure applications,
such as AVB TA. All operations that modify the secure storage are transactional.

• Hardware Crypto TA: It provides hardware crypto and accelerates operations based on
CAAM, such as RNG generation and SHA1/SHA256 hash calculation.

• Keymaster TA: It provides all secure Keystore operations, with access to the raw key
material, validating all of the access control conditions on keys.

• Gatekeeper TA: It authenticates user passwords and generates authentication tokens
used to prove to the Keymaster TA that an authentication is done for a particular user
at a particular point in time.

3.2.7 Specifying apploader encryption and sign keys

Trusted Applications (TAs) in Trusty OS can either be built into the Trusty binary or be
built as loadable modules. In the case of building the TAs as loadable modules, the build
system would encrypt and sign the modules to ensure its integrity and validity.

1. Specify apploader encryption keys.
The Trusty OS build system would encrypt the loadable modules (in AES-GCM
mode) if the encryption key file is specified. The encryption keys can be any valid
customized keys. An example of the encryption key is in: ${MY_TRUSTY}/trusty/
device/nxp/imx8/project/keys/aeskey.bin.
It is generated by:

openssl rand 16 -out aeskey.bin

Note: This example encryption key must be replaced by customized key before
shipping the products.
In additional, two kinds of encryption keys are supported for different purpose. After
generating the encryption key, specify the encryption key files in ${MY_TRUSTY}/
trusty/device/nxp/imx8/project/imx8-inc.mk as follows:

APPLOADER_ENCRYPT_KEY_0_FILE := <path-to-encryption-key-0>
APPLOADER_ENCRYPT_KEY_1_FILE := <path-to-encryption-key-1>

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
33 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

To encrypt an application, set the appropriate variable in the application's rules.mk
as follows:

choose encryption key 0
APPLOADER_ENCRYPT_KEY_ID_FOR_$(MODULE) := 0

or

choose encryption key 1
APPLOADER_ENCRYPT_KEY_ID_FOR_$(MODULE) := 1

2. Specify apploader sign keys.
The Trusty OS build system would sign and generate ECDSA signatures for the
loadable modules. An example of the ECDSA sign key pairs are in: ${MY_TRUSTY}/
trusty/device/nxp/imx8/project/keys. They are generated by the script
in {MY_TRUSTY}/trusty/user/base/app/apploader/generate_ecdsa_
keys.sh:

./generate_ecdsa_keys.sh <private key file> <public key file>

Note: These example sign keys MUST be replaced by customized keys before
shipping the products.
Similar to encryption keys, two pairs of sign key files can be provided for different
purpose. After generating the sign key pairs, specify the key files in ${MY_TRUSTY}/
trusty/device/nxp/imx8/project/imx8-inc.mk as follows:

134 PROJECT_KEYS_DIR := trusty/device/nxp/imx8/project/keys
135
136 APPLOADER_SIGN_PRIVATE_KEY_0_FILE := \
137 $(PROJECT_KEYS_DIR)/privateKey0.der
138
139 APPLOADER_SIGN_PUBLIC_KEY_0_FILE := \
140 $(PROJECT_KEYS_DIR)/publicKey0.der
141
142 APPLOADER_SIGN_PRIVATE_KEY_1_FILE := \
143 $(PROJECT_KEYS_DIR)/privateKey1.der
144
145 APPLOADER_SIGN_PUBLIC_KEY_1_FILE := \
146 $(PROJECT_KEYS_DIR)/publicKey1.der
147
150
151 APPLOADER_SIGN_KEY_ID ?= 0

If the apploader sign key is not explicitly specified, Trusty OS would sign
the loadable modules with APPLOADER_SIGN_PRIVATE_KEY_0_FILE (as
'APPLOADER_SIGN_KEY_ID' is 0). To sign an application with different key, set the
appropriate variable in the application's rules.mk as follows:

sign with key 0
APPLOADER_SIGN_KEY_ID_FOR_$(MODULE) := 0

or

sign with key 1
APPLOADER_SIGN_KEY_ID_FOR_$(MODULE) := 1

3.3 Configurations in U-Boot for security
U-Boot is loaded by SPL and verified with HAB. ATF starts U-Boot. The primary purpose
of U-Boot is to load and verify Android images.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
34 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

3.3.1 Overview of security features in U-Boot

Android Verified Boot (AVB) is enabled in i.MX Android images. There is an additional
vbmeta image used in AVB. This vbmeta image does not contain any code that the
device will execute. It is used by U-Boot to authenticate its own and other Android
images. The other images to be authenticated with the vbmeta image include images for
boot, dtbo, system, and vendor partitions. If there are other images containing executing
code, like product, they are also authenticated based on the data in the vbmeta image.
The hash value of these images is calculated and the metadata is stored in the vbmeta
image. The following figure shows the relationship of these images.

Figure 7. Relationship between vbmeta image and related images

To make sure that the vbmeta image is trusted, it is signed with the RSA key, and the
signature of the vbmeta image is verified at boot time before the data in it are used to
verify other images.

To prevent rollback attack, there is a rollback index value stored in the vbmeta image.
The value can increase with the release of images. This rollback index value in the
vbmeta image is also saved in the RPMB partition of eMMC after all the images are
verified as bootable. If the rollback index value in the vbmeta image is smaller than
the one stored in the RPMB partition of eMMC, U-Boot does not boot with the related
images. With dual-bootloader enabled, SPL and U-Boot proper are not in one file, so
there is another rollback index value for U-Boot proper.

To prevent the device from getting bricked during OTA, a/b slot feature is provided. Some
partitions used to store images have two copies in the boot device. They are called "slot
a" and "slot b". The image update process only flashes one slot. An update failure does
not affect the other slot.

3.3.2 Generating and fusing the eMMC RPMB key

The RPMB partition of eMMC can be fused with the 256-bit secure key. The secure key
can only be programmed one time. This secure key can only be accessed by secure
world (either TEE or SPL). It is used to sign and verify data transfer between eMMC
RPMB and TEE.

There are two ways to generate the RPMB key: CAAM hardware bound key and vendor-
specified key. Both ways are associated with CAAM, which uses the value in efuse
hardware. If the SRK hash value needs to be programmed into efuse hardware and close
the chips, do it first, and only after that can the RPMB key be programmed.

• CAAM hardware bound key
The RPMB key can be derived from CAAM. This is hardware bound and is unique per
device. TEE derives this hardware bound key in every boot from CAAM, and as it is

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
35 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

bound to the CAAM hardware, so it does not need to store one copy of this key. This
way is preferred as it is simpler and more secure.
Fastboot command is provided to set the RPMB key from CAAM hardware bound key:

$ fastboot oem set-rpmb-hardware-key

• Vendor specified key
Vendor can specify any customized RPMB key. One copy of the key is encapsulated
with CAAM and the generated key blob is saved into the last block of the eMMC
BOOT1 partition. The BOOT1 partition size of eMMC on i.MX 8QuadMax MEK and
i.MX 8QuadXPlus MEK is 8 MB. It is 4 MB on i.MX 8M Mini EVK, i.MX 8M Plus EVK,
and i.MX8M Nano EVK. To prevent key blob from being tampered when the system
is running, the BOOT1 partition is set with power-on write protection when the board
boots up.
The location to store the key blob may need to be changed based on the board design.
Two macros are used to control the location of the key blob. These two macros are the
same for i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK. Their definitions are as
follows:

#define KEYSLOT_HWPARTITION_ID 2
#define KEYSLOT_BLKS 0x3FFF

While for i.MX 8M Mini EVK and i.MX 8M Nano EVK, the definition is as follows:

#define KEYSLOT_HWPARTITION_ID 2
#define KEYSLOT_BLKS 0x1FFF

KEYSLOT_HWPARTITION_ID represents the eMMC partition. 0 means USERDATA
partition, 1 means BOOT0 partition, and 2 means BOOT1 partition. KEYSLOT_BLKS
represents the block in which the key blob is stored.
For i.MX 8QuadMax MEK, they are in the following files. For other platforms, it is in
other board-related header files in the same folder.

/* Android Automotive */
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/
imx8qm_mek_android_auto.h
/* Standard Android */
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/
imx8qm_mek_android.h

The customized RPMB key file should be started with magic "RPMB" and followed
by the raw key. The following steps show how to generate the default key file
rpmb_key_test.bin:

$ touch rpmb_key_test.bin
$ echo –n "RPMB" > rpmb_key_test.bin
$ echo –n -e
 '\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'>>
 rpmb_key_test.bin

The \xHH means eight-bit character whose value is the hexadecimal value 'HH'. You
can replace above "00" with the key you want to set.
After generating the customized RPMB key file, the following fastboot commands are
available to set the RPMB key:

$ fastboot stage rpmb_key_test.bin
$ fastboot oem set-rpmb-staged-key

After the RPMB key is programed with either of the two ways, reboot the board. The
RPMB service in Trusty OS is then initialized successfully.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
36 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

3.3.3 Generating keys to sign and verify images

Images are signed during the time of building Android platform to ensure their integrity.
A pair of asymmetric keys (AVB keys) is used to sign the vbmeta struct in the vbmeta
image. On the standard Android platform, there is another pair of asymmetric keys (AVB
boot keys) to sign the vbmeta struct in the boot image, which would be built as 'chained
partition'. For more information about chained partition, see https://android.googlesource.
com/platform/external/avb/+/master/README.md.

By default, the private AVB key used to sign the vbmeta struct in vbmeta image is
located at:

${MY_ANDROID}/device/nxp/common/security/testkey_rsa4096.pem

Its corresponding public key is:

${MY_ANDROID}/device/nxp/common/security/
testkey_public_rsa4096.bin.

The default private AVB boot key used to sign the boot image is located at:

${MY_ANDROID}/external/avb/test/data/testkey_rsa2048.pem

The private key can be generated with OpenSSL. For example, the following command
can generate RSA-4096 private key test_rsa4096_private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -
outform PEM -out custom_rsa4096_private.pem

The corresponding public key can be extracted from the private key with avbtool. The
avbtool can be found in ${MY_ANDROID}/external/avb. Execute the following
command to extract the public key from the private key:

avbtool extract_public_key --key custom_rsa4096_private.pem --
output custom_rsa4096_public.bin

SHA256_RSA4094 and SHA256_RSA2048 are recommended algorithm to sign the
images for i.MX 8Quad and i.MX 8M devices whose Cryptographic Acceleration and
Assurance Module (CAAM) can help accelerate the hash calculation. We can keep it as
default.

Custom keys should be used to sign the images for production, examples to set the
custom AVB key to sign the vbmeta image are as follows:

diff --git a/imx8q/mek_8q/BoardConfig.mk b/imx8q/mek_8q/
BoardConfig.mk
index 8e367bb..e1385f9 100644
--- a/imx8q/mek_8q/BoardConfig.mk
+++ b/imx8q/mek_8q/BoardConfig.mk
@@ -207,7 +207,7 @@ BOARD_AVB_ENABLE := true
ifeq ($(PRODUCT_IMX_CAR),true)
BOARD_AVB_ALGORITHM := SHA256_RSA4096
The testkey_rsa4096.pem is copied from external/avb/test/
data/testkey_rsa4096.pem
-BOARD_AVB_KEY_PATH := device/nxp/common/security/
testkey_rsa4096.pem

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
37 / 53

https://android.googlesource.com/platform/external/avb/+/master/README.md
https://android.googlesource.com/platform/external/avb/+/master/README.md

NXP Semiconductors ASUG
i.MX Android Security User's Guide

+BOARD_AVB_KEY_PATH := ${your-key-directory}/
custom_rsa4096_private.pem
endif
TARGET_USES_MKE2FS := true

Examples to set the custom AVB boot key to sign the boot image are as follows:

diff --git a/imx8q/mek_8q/BoardConfig.mk b/imx8q/mek_8q/
BoardConfig.mk
index dbfb2821..744c2086 100644
--- a/imx8q/mek_8q/BoardConfig.mk
+++ b/imx8q/mek_8q/BoardConfig.mk
@@ -253,7 +253,7 @@ BOARD_AVB_ALGORITHM := SHA256_RSA4096
BOARD_AVB_KEY_PATH := device/nxp/common/security/
testkey_rsa4096.pem
ifneq ($(PRODUCT_IMX_CAR),true)
-BOARD_AVB_BOOT_KEY_PATH := external/avb/test/data/
testkey_rsa2048.pem
+BOARD_AVB_BOOT_KEY_PATH := ${your-key-directory}/
custom_rsa2048_private.pem
BOARD_AVB_BOOT_ALGORITHM := SHA256_RSA2048
BOARD_AVB_BOOT_ROLLBACK_INDEX := 0
BOARD_AVB_BOOT_ROLLBACK_INDEX_LOCATION := 2

AVB checks the signature and the AVB public key when verifying the vbmeta image, so
the AVB public key must be stored to the TEE backed RPMB when Trusty is enabled.
Make the board enter fastboot mode, and execute the following commands:

$ fastboot stage custom_rsa4096_public.bin
$ fastboot oem set-public-key

custom_rsa4096_public.bin is the public AVB key just generated. If you use the
default AVB keys for debug purpose, flash the default public key with the following
commands:

$ fastboot stage testkey_public_rsa4096.bin
$ fastboot oem set-public-key

3.3.4 Bypass vbmeta/lock check for development purposes

Bypassing vbmeta/lock check is very convenient for development work. To unlock the
device after all images are flashed, boot the board to the Android UI, enable "Developer
options" in the "Settings" Application, open "OEM unlocking" under "Developer options",
and reboot the board to fastboot mode. Execute the following command:

$ sudo fastboot oem unlock

After the board is unlocked, images can be flashed with the fastboot command. To
bypass vbmeta check, use fastboot to flash the vbmeta image with the --disable-
verity option. Take i.MX 8QuadMax MEK as an example, execute the following
commands:

$ sudo fastboot flash vbmeta_a vbmeta-imx8qm.img --disable-
verity

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
38 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

$ sudo fastboot flash vbmeta_b vbmeta-imx8qm.img --disable-
verity

3.3.5 Changing the value of the rollback index in images

There are three rollback index values involved in this release: bootloader rollback index,
boot rollback index, and vbmeta rollback index. The bootloader rollback index is used to
prevent bootloader rollback attack. It is only available when the dual-bootloader feature
is enabled. The boot rollback index is available when the boot image is built as chained
partition. It is only supported on standard Android platform. The vbmeta rollback index
is supported on all platforms. By default, the initial value of all kinds of rollback index is
zero.

When a version of images is to be released to fix a bug in previous version, which makes
previous images under potential attacks, it is suggested to increase the rollback index
values by one compared to previous version. For more information about rollback index
usage, see https://android.googlesource.com/platform/external/avb/+/master/README.
md.

In this release of i.MX Android platform, some modifications are made to the Android
build system. A shell script named imx-make.sh is provided to build U-Boot and kernel
code independently from the building process of Android images. To make the build
process simple, as all images can be built with only one command, imx-make.sh starts
to build Android images after U-Boot and kernel are built. When executing the imx-
make.sh script, a shell variable named BOOTLOADER_RBINDEX can be specified to
change the bootloader rollback index, a shell variable named AVB_BOOT_RBINDEX
can be specified to change the boot rollback index, and a shell variable named
AVB_RBINDEX can be specified to change the vbmeta rollback index.

As an example, the following command can be executed to change the rollback
index values. Change ${bootloader_rbindex}, ${avb_rbindex}, and
${avb_boot_rbindex} to the value you want to set:

BOOTLOADER_RBINDEX=${bootloader_rbindex} AVB_RBINDEX=
${avb_rbindex} AVB_BOOT_RBINDEX=${avb_boot_rbindex} ./imx-
make.sh -j4

If the U-Boot and kernel are already built and they do not need to be updated, make
can be used to build vbmeta and other related images need to be updated. Change the
rollback index value as shown in the following example. Change ${avb_rbindex} and
${avb_boot_rbindex} to the value you want to set.

make -j4 AVB_RBINDEX=$(avb_rbindex) AVB_BOOT_RBINDEX=
${avb_boot_rbindex}

3.3.6 Programming the attestation key

Attestation key is programmed in U-Boot. The keystore key attestation aims to provide
a way to strongly determine if an asymmetric key pair is hardware-backed, what the
properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA)
and the corresponding certificate chains to partners from the Android Partner Front End
(APFE). After retrieving the "keybox" from Google, you need to parse the "keybox",

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
39 / 53

https://android.googlesource.com/platform/external/avb/+/master/README.md
https://android.googlesource.com/platform/external/avb/+/master/README.md

NXP Semiconductors ASUG
i.MX Android Security User's Guide

provision the keys and certificates to secure storage. Both keys and certificates should
be encoded with Distinguished Encoding Rules (DER).

Two ways are provided to provision the attestation keys and certificates, one is
provisioning the keys and certificates in plaintext format directly, another is provisioning
the keys and certificates in AES-ECB encrypted format which will then be decrypted into
plaintext before written into secure storage. Before provisioning start, please make sure
the secure storage is properly initialized for Trusty OS.

1. Provision keys and certificates in plaintext format.
Fastboot commands are provided to flash the attestation keys and certificates in
plaintext format to device. This way is more simple but has more risk of leaking the
keys. Boot the board into fastboot mode and use the following commands.
• Set the RSA private key:

$ fastboot stage ${path-to-rsa-private-key}
$ fastboot oem set-rsa-atte-key

• Set the ECDSA private key:

$ fastboot stage ${path-to-ecdsa-private-key}
$ fastboot oem set-ec-atte-key

• Append the RSA certificate chain:

$ fastboot stage ${path-to-rsa-atte-cert}
$ fastboot oem append-rsa-atte-cert

The second command may need to be executed multiple times to append the
whole certificate chain.

• Append the ECDSA certificate chain:

$ fastboot stage < path-to-ecdsa-cert >
$ fastboot oem append-ec-atte-cert

The second command may need to be executed multiple times to append the
whole certificate chain.

2. Provision keys and certificates in AES-ECB encrypted format.
Fastboot commands are provided to flash AES-ECB encoded keys and certificates
to device, it can prevent leakage of the plaintext materials. This way will encrypt
the keys and certificates with the MPPUBK (Manufacturing Protection Public Key,
generated from CAAM module), then the encrypted keys and certificates would be
decrypted into plaintext in Trusty OS before they are written into secure storage.
Please note this way can only be used on HAB CLOSED board. The workflow is like
below:

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
40 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Figure 8. Flashing AES-ECB encoded keys and certificates to device
Boot the board into fastboot mode and perform the following steps:
a. Get MPPUBK:

$ fastboot oem get-mppubk
$ fastboot get_staged mppubk.bin

b. Encrypt the plaintext attestation keys and certificates with the MPPUBK.
The attestation keys and certificates should be encrypted in AES-ECB with
the generated MPPUBK. The following is a simple encryption python scripts
gen_secure_atte.py:

from Crypto.Cipher import AES
import struct
import argparse
parser = argparse.ArgumentParser(description='Secure
 Provision encrypt tool.')
parser.add_argument('key', type=file)
parser.add_argument('plaintext', type=file)
parser.add_argument('blob', type=argparse.FileType('w'))
args = parser.parse_args()
data = args.plaintext.read()
data_len = len(data)
written_len = struct.pack('I', data_len)
#AES need 16 bytes align, so pad the data it
data += '\0' * (((len(data)+15)/16 * 16) - len(data))
key2 = args.key.read()
key = key2[0:16]
magic = "!AT"
pad0 = struct.pack('B', 0)
cipher = AES.new(key, AES.MODE_ECB)
blob = cipher.encrypt(data)
args.blob.write(magic)
args.blob.write(pad0)
args.blob.write(written_len)
args.blob.write(blob)
#blob structure describe as below:
#{
char magic[4] = "!AT";
uint32_t len = plaintext_length
uint8 *encrypted_data

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
41 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

#}

Encrypt the keys and the certificates on the host computer:

$ python gen_secure_atte.py mppubk.bin < path-to-
plaintext-keys-or-certificates > < encrypted-keys-or-
certificates >

c. Set encrypted RSA private key:

$ fastboot stage ${path-to-encrypted-rsa-private-key}
$ fastboot oem set-rsa-atte-key-enc

d. Set encrypted ECDSA private key:

$ fastboot stage ${path-to-encrypted-ecdsa-private-key}
$ fastboot oem set-ec-atte-key-enc

e. Append encrypted RSA certificate chain:

$ fastboot stage ${path-to-encrypted-rsa-atte-cert}
$ fastboot oem append-rsa-atte-cert-enc

The second command may need to be executed multiple times to append the
whole certificate chain.

f. Append encrypted ECDSA certificate chain:

$ fastboot stage < path-to-encrypted-ecdsa-cert >
$ fastboot oem append-ec-atte-cert-enc

The second command may need to be executed multiple times to append the
whole certificate chain.

3.3.7 Programming the hardware identifiers

ID attestation allows the device to provide proof of its hardware identifiers. For more
infomration about ID attestation, see https://source.android.com/security/keystore/
attestation. All hardware identifiers provisioned should match related system properties.
The following table shows a map of all supported identifiers and the system properties.

Identifiers Build property

ATTESTATION_ID_BRAND ro.product.brand

ATTESTATION_ID_DEVICE ro.product.device

ATTESTATION_ID_MANUFACTURER ro.product.manufacturer

ATTESTATION_ID_MODEL ro.product.model

ATTESTATION_ID_PRODUCT ro.product.product.name

ATTESTATION_ID_SERIAL ro.serialno

The hardware identifiers are provisioned in bootloader and they can be set by configs.
Take i.MX 8QM as example, its hardware identifiers are set in {UBOOT_PATH}/
configs/imx8qm_mek_android_trusty_defconfig:

CONFIG_ATTESTATION_ID_BRAND="Android"
CONFIG_ATTESTATION_ID_DEVICE="mek_8q"
CONFIG_ATTESTATION_ID_PRODUCT="mek_8q"
CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
42 / 53

https://source.android.com/security/keystore/attestation
https://source.android.com/security/keystore/attestation

NXP Semiconductors ASUG
i.MX Android Security User's Guide

CONFIG_ATTESTATION_ID_MODEL="MEK-MX8Q"

Note that the serial number is unique for each device, so its value is auto detected in
bootloader.

Change the identifiers as needed, then flash updated bootloader image and boot the
board into fastboot mode, run the following command to provision the identifiers:

$ fastboot oem set-device-id

3.3.8 Provisioning Widevine L1 keybox

The Widevine is a widely used Digital Rights Management (DRM) technology, which
helps to protect media streaming from being copied and redistributed. The L1 level
Widevine is now supported on the i.MX 8M Plus EVK board. Before making the L1 level
Widevine work, users need to provision the Widevine keybox first.

Just like attestation keys and certificates, two ways are provided to provision the
Widevine keybox, one is provisioning the keybox binary in plaintext format, the other
is provisioning the keybox binary in AES-ECB encrypted format which will then be
decrypted into plaintext before written into secure storage.

• Provisioning keybox binary in plaintext format
Fastboot commands are provided to flash the keybox in plaintext format to device. This
way is simpler but has more risks of leaking the keys.
Boot the board into fastboot mode and run the following commands:

$ fastboot stage ${path-to-keybox-binary}
$ fastboot oem provision-wv-keybox

• Provisioning keybox binary in AES-ECB encrypted format
Fastboot commands are provided to flash AES-ECB encoded keybox to device, it can
prevent leakage of the plaintext materials. This way will encrypt the keybox with the
MPPUBK (Manufacturing Protection Public Key, generated from CAAM module), then
the encrypted keybox would be decrypted into plaintext in Trusty OS before it's written
into secure storage. Please note this way can only be used on HAB CLOSED board.
Perform the following steps to encrypt the keybox and provision it into the device:
1. Get the MPPUBK.

$ fastboot oem get-mppubk
$ fastboot get_staged mppubk.bin

2. Encrypt the plaintext keybox with the MPPUBK.
The plaintext keybox binary should be encrypted in AES-ECB with the generated
MPPUBK. Do the encryption with the python scripts gen_secure_atte.py, which
is mentioned in Section Section 3.3.6.

$ python gen_secure_atte.py mppubk.bin ${path-to-plaintext-
keybox} ${encrypted-keybox}

3. Provision the widevine keybox.

$ fastboot stage ${path-to-encrypted-keybox}
$ fastboot oem provision-wv-keybox-enc

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
43 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

3.3.9 Changing the way to store lock status and/or rollback index

For images with TEE enabled, lock status and rollback index values are stored in RPMB.
The rollback index value for AVB is written/read by TEE into/from RPMB but the write/
read process is initiated by U-Boot. For i.MX Android with dual-bootloader feature, there
is a rollback index for bootloader, this rollback index value for bootloader is written/read
by SPL into/from RPMB.

Rollback index values and lock status can be used for many purposes as designed by
developers, not limited to the usage in i.MX Android code. At this point, it is necessary to
know how the lock status and rollback index values are stored on board.

For i.MX Android with dual-bootloader feature, the rollback index value for bootloader is
read from RPMB to compare with the one in the bootloader image. If the rollback index
value is bigger than the one stored in RPMB and the images are verified as bootable,
rollback index value in bootloader image is written into RPMB. This logic is completed in
the following function:

static int spl_verify_rbidx(struct mmc *mmc, AvbABSlotData
 *slot,
struct spl_image_info *spl_image)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/
fsl_avb_ab_flow.c

For new boards just flashed with images, at their first time of boot, a default rollback
index value is written in RPMB in the following function:

int rpmb_init(void)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/
fsl_avb_ab_flow.c

From the functions listed above, it is known that the rollback index value for bootloader is
located by a kblb_hdr_t type structure variable. This structure has a magic value. A
member with the type of kblb_tag_t is used to specify the rollback index value.

Now in i.MX Android Auto, the offset of the rollback index value for bootloader is
controlled by a macro named BOOTLOADER_RBIDX_START as defined in the following
two files respectively for i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK.

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/
imx8qm_mek_android_auto.h
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/
imx8qxp_mek_android_auto.h

The value for BOOTLOADER_RBIDX_START is 0x3FF000, 4KB offset from the end of the
RPMB partition.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
44 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

The read process of the rollback index value for AVB is initiated by U-Boot in the
following function:

FbLockState fastboot_get_lock_stat(void)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/drivers/usb/
gadget/fastboot_lock_unlock.c

For images with TEE enabled, this function invokes the following function. It uses TIPC to
communicate with TEE to get the value.

int trusty_read_lock_state(uint8_t *lock_state)

The write process of the rollback index value for AVB is initiated by U-Boot in the
following function:

int fastboot_set_lock_stat(FbLockState lock)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/drivers/usb/
gadget/fastboot_lock_unlock.c

For images with TEE enabled, this function invokes the following function. It uses TIPC to
communicate with TEE to save the value.

int trusty_write_lock_state(uint8_t lock_state)

Rollback index value for AVB is read to compare with the one in vbmeta image and the
one in vbmeta image is saved into RPMB if necessary. This logic is completed in the
following function:

AvbABFlowResult avb_flow_dual_uboot(AvbABOps* ab_ops,
const char* const* requested_partitions,
AvbSlotVerifyFlags flags,
AvbHashtreeErrorMode hashtree_error_mode,
AvbSlotVerifyData** out_data)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/
fsl_avb_ab_flow.c

The following two functions are invoked to read and store the rollback index for vbmeta:

AvbIOResult fsl_read_rollback_index_rpmb(AvbOps* ops, size_t
 rollback_index_slot,
uint64_t* out_rollback_index)
AvbIOResult fsl_write_rollback_index_rpmb(AvbOps* ops, size_t
 rollback_index_slot,
uint64_t rollback_index)

They finally communicate with TEE to finish the work.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
45 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

3.3.10 Choosing to boot a specific slot

With both slots flashed with images, a specific slot can be chosen to boot manually for
development purpose. Boot the board into fastboot mode, and execute the following
command to boot from "slot a" or "slot b":

$ sudo fastboot set_active a
$ sudo fastboot set_active b

3.3.11 Disabling development options in U-Boot

To facilitate development, some development options are set in U-Boot, which may bring
in potential security holes. Before shipping the final products, these options must be
closed.

• Boot delay
By default, the U-Boot reserves 2 seconds count-down to help developer stop
at U-Boot and run some U-Boot commands. This can be disabled by setting
CONFIG_BOOTDELAY to -2. For i.MX 8M Plus EVK, make the following changes.
Similar changes need to be made on other platforms that you are working on.

diff --git a/configs/imx8mp_evk_android_trusty_defconfig b/
configs/imx8mp_evk_android_trusty_defconfig
index 80a4d45a5e..0ea9e3b9fc 100644
--- a/configs/imx8mp_evk_android_trusty_defconfig
+++ b/configs/imx8mp_evk_android_trusty_defconfig
@@ -185,3 +185,4 @@ CONFIG_ATTESTATION_ID_DEVICE="evk_8mp"
 CONFIG_ATTESTATION_ID_PRODUCT="evk_8mp"
 CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
 CONFIG_ATTESTATION_ID_MODEL="EVK_8MP"
+CONFIG_BOOTDELAY=-2

• Bootargs appending
The bootargs may need to be changed frequently during development. NXP U-Boot
supports appending the U-Boot variable append_bootargs to the default bootargs,
which will be passed to kernel. However, this feature can be used by hackers to
compromise the device and should be disabled in any formal release. To disable the
bootargs appending feature, you need to disable CONFIG_APPEND_BOOTARGS. For
For i.MX 8M Plus EVK, make the following changes. Similar changes need to be made
on other platforms that you are working on.

diff --git a/configs/imx8mp_evk_android_trusty_defconfig b/
configs/imx8mp_evk_android_trusty_defconfig
index 80a4d45a5e..62ab4afaa0 100644
--- a/configs/imx8mp_evk_android_trusty_defconfig
+++ b/configs/imx8mp_evk_android_trusty_defconfig
@@ -171,7 +171,6 @@ CONFIG_CMD_BMP=y
 CONFIG_LZ4=y
 CONFIG_FLASH_MCUFIRMWARE_SUPPORT=y
-CONFIG_APPEND_BOOTARGS=y
 CONFIG_SPL_MMC_SUPPORT=y
 CONFIG_AVB_WARNING_LOGO=y
 CONFIG_AVB_WARNING_LOGO_COLS=0x320

• Disable manufacturing protection public key extraction
The manufacturing protection public key can be used as encryption/decryption keys
in some cases, leaking the key has potential risk of leaking other important materials.
The extraction of the manufacturing protection public key must be disabled for shipping

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
46 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

images. For i.MX 8M Plus EVK, you can make below changes. Similar changes need
to be made on other platforms that you are working on.

diff --git a/configs/imx8mp_evk_android_trusty_defconfig b/
configs/imx8mp_evk_android_trusty_defconfig
index 80a4d45a5e..61be3f5ebe 100644
--- a/configs/imx8mp_evk_android_trusty_defconfig
+++ b/configs/imx8mp_evk_android_trusty_defconfig
@@ -185,3 +185,4 @@ CONFIG_ATTESTATION_ID_DEVICE="evk_8mp"
 CONFIG_ATTESTATION_ID_PRODUCT="evk_8mp"
 CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
 CONFIG_ATTESTATION_ID_MODEL="EVK_8MP"
+CONFIG_GENERATE_MPPUBK=n

3.3.12 Secure unlock

Secure unlock is designed to prevent unauthorized unlock. It requires the unlock
credential. The unlock operation can only occur after a valid unlock credential is
provided.

An example is provided, which generates the unlock credential with serial number and
MPPUBK (Manufacturing Protection Public Key, generated from CAAM module). To
enable the secure unlock feature, enable CONFIG_SECURE_UNLOCK. For i.MX 8M Plus
EVK, make the following changes. Similar changes need to be made on other platforms
that you are working on:

diff --git a/configs/imx8mp_evk_android_trusty_defconfig b/
configs/imx8mp_evk_android_trusty_defconfig
index 80a4d45a5e..b3da5c6ea3 100644
--- a/configs/imx8mp_evk_android_trusty_defconfig
+++ b/configs/imx8mp_evk_android_trusty_defconfig
@@ -185,3 +185,4 @@ CONFIG_ATTESTATION_ID_DEVICE="evk_8mp"
 CONFIG_ATTESTATION_ID_PRODUCT="evk_8mp"
 CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
 CONFIG_ATTESTATION_ID_MODEL="EVK_8MP"
+CONFIG_SECURE_UNLOCK=y

Perform the following steps to verify the secure unlock feature. These operations can
only be executed on the HAB/AHAB closed boards:

1. Get MPPUBK.

$ fastboot oem get-mppubk
$ fastboot get_staged mppubk.bin

2. Get the serial number.

$ fastboot oem get-serial-number
$ fastboot get_staged serial.bin

3. Generate the unlock credential. Encrypt serial.bin with mppubk.bin on the host
PC. For the encryption script, see Section Section 3.3.6.

$ python gen_secure_atte.py mppubk.bin serial.bin serial-
enc.bin

4. Verify the secure unlock feature.

$ fastboot stage serial-enc.bin
$ fastboot oem unlock

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
47 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

You may need to lock the device first if the device is already in unlocked state.

3.4 Configurations in Linux/Android platform for security features

3.4.1 DM-Verity relationship with vbmeta

The Device Mapper verity (DM-verity) kernel feature supports transparent integrity
checking of block devices. This feature helps Android users be sure that when booting
a device, it is in the same state as when it is flashed. The vbmeta image contains a
kernel command-line descriptor for setting up DM-verity for system.img, together with
hashtree descriptors for system.img and vendor.img. The hash tree descriptor in
the vbmeta image contains the root hash, salt and the offset of the hashtree, which are
essential to do the DM-verity check for system and vendor partitions.

When the DM-verity is enabled for system and vendor partition, any operations that break
the consistency of the system.img, vendor.img, and vbmeta.img will cause DM-
verity check failure, and thus cause the system boot failure.

3.4.2 Trusty OS Linux driver configuration

The Trusty OS supports to output the logs to UART or TIPC log channel. The Trusty OS
Linux driver supports to carry the logs from the Trusty OS by TIPC channel. By default,
this feature is enabled in the reference image.

In the Trusty OS Linux driver trusty-log, when it is enabled, the Trusty OS shuts down
the UART output log port. The UART driver in the Trusty OS outputs characters
synchronously and it costs much IO time.

The trusty-log driver is configured in the device tree as follows:

trusty-log {
compatible = "android,trusty-log-v1";
};

3.4.3 Introductions of trusty based keymaster, gatekeeper, and secure storage
proxy

The trusty backed keymaster HAL is a dynamically loadable library used by the keystore
service to provide hardware-backed cryptographic services. It does not provide any
sensitive operations in user space, or even in kernel space. All sensitive operations are
delegated to the keymaster TA in the Trusty OS (secure world). The relationship is shown
in the following figure.

Figure 9. Relationship between keymaster HAL and keymaster TA

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
48 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

The trusty backed keymaster HAL 3.0 is designed for Android Pie 9 or later, which
cannot work for Android Oreo 8.1. Instead, the Android Oreo 8.1 is running trusty backed
keymaster HAL 2.0.

The Gatekeeper subsystem performs device pattern/password authentication. It enrolls
and verifies passwords through an HMAC with a secret key. Additionally, the Gatekeeper
throttles consecutive failed verification attempts and refuses to service requests based
on a given timeout and a given number of consecutive failed attempts. The trusty backed
gatekeeper sends all critical operations to the gatekeeper TA in trusty.

The secure storage proxy is running in the Linux end to communicate with the storage
TA in trusty to perform secure storage read/write operations, for example, reading/writing
data from/to RPMB partition of the eMMC device.

Trusty backed keymaster, gatekeeper, and secure storage proxy all depend on secure
storage, which can only be accessed by trusty, but users may not want to set the secure
storage properly (like the key of RPMB), because in some instances, security is not so
important and can even be neglected. In this case, both keymaster and gatekeeper fall
back to software backed version, and they are chosen by the androidboot.keystore
variable in the kernel command line.

When the trusty and associated trusted applications (such as keymaster TA and storage
TA) are initialized properly, U-Boot sets androidboot.keystore to trusty, otherwise
to software, and then passes it to the kernel through the kernel command line. The
androidboot.keystore is translated to ro.boot.keystore Android property,
and then the initialization program chooses the keymaster and gatekeeper version
(trusty backed or software backed) and starts the secure storage proxy according to this
property. The following figure shows the workflow.

Figure 10. TEE and TA initialization and workflow

3.4.4 Disabling GPU flat mapping

When GPU flat mapping is enabled, hackers may be able to snoop privileged memory.
The GPU flat mapping is enabled by default, but the user can disable it by adding
bootargs as follows:

galcore.baseAddress=<dram-base-address> galcore.physSize=0
 galcore.mmuException=0

The dram-base-address varies on different platforms. The value should be decided
based on each platform. Take i.MX 8M Plus as an example. The user can disable the

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
49 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

GPU flat mapping by adding the following bootargs in {MY_ANDROID}/imx8m/evk_
8mp/BoardConfig.mk:

diff --git a/imx8m/evk_8mp/BoardConfig.mk b/imx8m/evk_8mp/
BoardConfig.mk
index 4732374b..83089631 100644
--- a/imx8m/evk_8mp/BoardConfig.mk
+++ b/imx8m/evk_8mp/BoardConfig.mk
@@ -119,6 +119,9 @@ BOARD_KERNEL_CMDLINE := init=/init
 androidboot.console=ttymxc1 androidboot.hardw
BOARD_KERNEL_CMDLINE += transparent_hugepage=never
BOARD_KERNEL_CMDLINE += swiotlb=65536
+# disable GPU flat mapping
+BOARD_KERNEL_CMDLINE += galcore.baseAddress=0x40000000
 galcore.physSize=0 galcore.mmuException=0
+
display config
BOARD_KERNEL_CMDLINE += androidboot.lcd_density=240
 androidboot.primary_display=imx-drm

4 Revision History

Revision number Date Substantive changes

P9.0.0_1.0.0-beta 11/2018 Initial release

P9.0.0_1.0.0-ga 01/2019 i.MX 8M, i.MX 8QuadMax, i.MX 8QuadXPlus GA release.

P9.0.0_2.0.0-ga 04/2019 i.MX 8M, i.MX 8QuadMax, i.MX 8QuadXPlus GA release.

P9.0.0_2.0.0-ga 08/2019 Updated the location of the SCFW porting kit.

android-10.0.0_1.0.0 02/2020 i.MX 8M Mini, i.MX 8M Quad, i.MX 8QuadMax, and i.MX
8QuadXPlus GA release.

android-10.0.0_1.0.0 03/2020 Deleted the Android 10 image.

android-10.0.0_2.1.0 04/2020 i.MX 8M Plus Alpha and i.MX 8QuadXPlus Beta release.

android-10.0.0_2.0.0 05/2020 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Quad, i.MX 8Quad
Max, and i.MX 8QuadXPlus GA release.

android-10.0.0_2.3.0 07/2020 i.MX 8M Plus EVK Beta1 release, and all the other i.MX 8
GA release.

android-11.0.0_1.0.0 12/2020 i.MX 8M Plus EVK Beta release, and all the other i.MX 8 GA
release.

android-11.0.0_1.2.0 03/2021 i.MX 8M Plus EVK GA release.

android-11.0.0_2.0.0 04/2021 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, and i.MX 8M
Quad GA release.

android-11.0.0_2.2.0 07/2021 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, and i.MX 8M
Quad GA release.

android-11.0.0_2.4.0 10/2021 i.MX 8ULP EVK Alpha release, i.MX 8M Mini, i.MX 8M
Nano, i.MX 8M Plus, and i.MX 8M Quad GA release.

android-11.0.0_2.6.0 01/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, and i.MX 8M Quad GA release.

android-11.0.0_2.6.0 01/2022 Corrected a typo in Section 3.3.2.

Revision history

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
50 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Revision number Date Substantive changes

android-12.0.0_1.0.0 03/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, and i.MX 8M Quad GA release.

android-12.0.0_2.0.0 07/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, and i.MX 8M Quad GA release.

android-12.1.0_1.0.0 10/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, i.MX 8M Quad, i.MX 8QuadMax, and i.MX
8QuadXPlus GA release.

automotive-12.1.0_
1.1.0

12/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0,
C0) GA release

Revision history...continued

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
51 / 53

NXP Semiconductors ASUG
i.MX Android Security User's Guide

5 Legal information

5.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

5.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

5.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

ASUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. automotive-12.1.0_1.1.0 — 15 December 2022
52 / 53

mailto:PSIRT@nxp.com

NXP Semiconductors ASUG
i.MX Android Security User's Guide

Contents
1 Preface ... 2
1.1 About This Document ..2
1.2 NXP security disclaimer2
1.3 Conventions ... 2
2 Overview of i.MX Android Security

Features ... 2
2.1 Introduction of security-related hardware

modules ... 2
2.2 Trusty OS security recommendations for

i.MX 8 SoC configuration4
2.2.1 Secure CSU configuration 4
2.2.2 Secure TZASC configuration5
2.2.3 Secure OCRAM configuration 5
2.2.4 Secure RDC configuration6
2.2.5 Secure AIPSTZ configuration 6
2.2.6 SCU/SCFW ..7
2.3 i.MX Android security framework7
3 Customization work on i.MX Android

Security Features ..8
3.1 Verifying images with HAB 8
3.1.1 Verifying images with AHAB9
3.1.2 Verifying images with HABv419
3.1.2.1 Get CST tool and keys configuration 19
3.1.2.2 Sign bootloader images20
3.1.2.3 Sign the MCU firmware 25
3.1.2.4 Close the chip ... 27
3.2 Configurations on TEE 28
3.2.1 Memory region configuration in ATF28
3.2.2 Basic file and folder construction for Trusty

OS ..30
3.2.3 Applying new build target in Trusty OS30
3.2.4 Adding unit tests in Trusty OS and adding

CAAM self-tests in Trusty OS31
3.2.5 Modifying the console port for Trusty OS32
3.2.6 Configuring the related TA services32
3.2.7 Specifying apploader encryption and sign

keys ..33
3.3 Configurations in U-Boot for security 34
3.3.1 Overview of security features in U-Boot35
3.3.2 Generating and fusing the eMMC RPMB

key ... 35
3.3.3 Generating keys to sign and verify images 37
3.3.4 Bypass vbmeta/lock check for development

purposes .. 38
3.3.5 Changing the value of the rollback index in

images ... 39
3.3.6 Programming the attestation key 39
3.3.7 Programming the hardware identifiers 42
3.3.8 Provisioning Widevine L1 keybox 43
3.3.9 Changing the way to store lock status and/

or rollback index .. 44
3.3.10 Choosing to boot a specific slot46
3.3.11 Disabling development options in U-Boot 46

3.3.12 Secure unlock ..47
3.4 Configurations in Linux/Android platform for

security features .. 48
3.4.1 DM-Verity relationship with vbmeta 48
3.4.2 Trusty OS Linux driver configuration48
3.4.3 Introductions of trusty based keymaster,

gatekeeper, and secure storage proxy48
3.4.4 Disabling GPU flat mapping 49
4 Revision History ..50
5 Legal information ..52

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 15 December 2022
Document identifier: ASUG

Document number:

	1 Preface
	1.1 About This Document
	1.2 NXP security disclaimer
	1.3 Conventions

	2 Overview of i.MX Android Security Features
	2.1 Introduction of security-related hardware modules
	2.2 Trusty OS security recommendations for i.MX 8 SoC configuration
	2.2.1 Secure CSU configuration
	2.2.2 Secure TZASC configuration
	2.2.3 Secure OCRAM configuration
	2.2.4 Secure RDC configuration
	2.2.5 Secure AIPSTZ configuration
	2.2.6 SCU/SCFW

	2.3 i.MX Android security framework

	3 Customization work on i.MX Android Security Features
	3.1 Verifying images with HAB
	3.1.1 Verifying images with AHAB
	3.1.2 Verifying images with HABv4
	3.1.2.1 Get CST tool and keys configuration
	3.1.2.2 Sign bootloader images
	3.1.2.3 Sign the MCU firmware
	3.1.2.4 Close the chip

	3.2 Configurations on TEE
	3.2.1 Memory region configuration in ATF
	3.2.2 Basic file and folder construction for Trusty OS
	3.2.3 Applying new build target in Trusty OS
	3.2.4 Adding unit tests in Trusty OS and adding CAAM self-tests in Trusty OS
	3.2.5 Modifying the console port for Trusty OS
	3.2.6 Configuring the related TA services
	3.2.7 Specifying apploader encryption and sign keys

	3.3 Configurations in U-Boot for security
	3.3.1 Overview of security features in U-Boot
	3.3.2 Generating and fusing the eMMC RPMB key
	3.3.3 Generating keys to sign and verify images
	3.3.4 Bypass vbmeta/lock check for development purposes
	3.3.5 Changing the value of the rollback index in images
	3.3.6 Programming the attestation key
	3.3.7 Programming the hardware identifiers
	3.3.8 Provisioning Widevine L1 keybox
	3.3.9 Changing the way to store lock status and/or rollback index
	3.3.10 Choosing to boot a specific slot
	3.3.11 Disabling development options in U-Boot
	3.3.12 Secure unlock

	3.4 Configurations in Linux/Android platform for security features
	3.4.1 DM-Verity relationship with vbmeta
	3.4.2 Trusty OS Linux driver configuration
	3.4.3 Introductions of trusty based keymaster, gatekeeper, and secure storage proxy
	3.4.4 Disabling GPU flat mapping

	4 Revision History
	5 Legal information
	Contents

