NXP Semiconductors Document Number: IMXGRAPHICUG
Rev. 0, 03/2018

i.MX Graphics User’s Guide

Contents

Chapter 1 INTFOTUCTION ...eiiiiiiieeiee ettt et e b e st e e bt e e s bt e e be e e s abeeebt e e sabeeenteesabeennteesaneenneees 6
Chapter 2 I.MX G2D APl sttt ettt et st e b e bt e san e s e e s bt e sb e e s bt e bt e bt e at e e neeebe e s b e e b e e reereeanenanes 6
2.1 OVEIVIBW ..ottt ettt ettt ettt ettt e bttt e e bt e bt e e bt e e bt e e b et e bt e e bt e e st e e be e e beeeabe e e sbe e be e e bbeeabeeessbeeneeesanenneees 6
2.2 ENUMErations aNd SEFUCTUIESccuviiiiiiiiie ettt sttt ettt e et e st esar e e st e e saneesabeesnneesas 6
2.3 [CP 20 {0Ta Vot ToT oW [Ty ol g1 4 o[- SRS 10
2.4 Support of new operating SYStEM iN G2Dcccciiiiieiiie e e e e e sre e e e rebe e e e s ta e e e eaaeeesereeeas 16
2.5 SAMPIE COAE fOr G2D AP USAEE ...eeuueieiiieiiieiiteeeite st e et st e sttt e sate e s e e sateesbeesabeesabeesabeesabeesaneesbeesaneesas 16
2.6 Feature list on MUItiPle Platforms.... ..o et e e e bae e e e ara e e seabeeeeenbaeeeenns 19
Chapter 3 i.MX EGL and OGL EXtENSION SUPPOIt...cciiiiiiiiiiiiiiee ettt e e sesirrre e e e e s e setre e e e e s e e ssabaareeeeeessnnenareeaeeesnn 20
3.1 18] oo [T o1 [o [PPSR 20
3.2 EGL ©XEENSION SUPPOIT ..eiiitieeieeitee ettt ettt sttt e sttt e st e st e e st e e s it e e sabeesaeeesabe e bt e e sabeesnteesaneesnseesaneenneees 20
3.3 OPENGL ES EXLENSION SUPPOIT.....uiiiiiiiiieieiiteeeeitee e etteeeesteeeeetreeesetbeeeessbaeeeestaeesassaseessssseeassaeseasaeeesnssenann 23
34 EXtENSION GL_VIV_dir@CT_tEXEUIE ..eouiieiiieeiieeiteeetee sttt ettt ettt e b e st esaneesat e e saneesaeeas 29
3.5 Extension GL_VIV_texture_border_Clampt st 32
Chapter 4 i.MX FrameEbBUFTEI APleoiieiee ettt et e e et e e e et e e e s tb e e e ssataeeeeabaaeesatbeeeesabaeeeasaseessseaann 35
4.1 OVEIVIBW ..ttt ettt ettt ettt s e s b e s bt et e bt e at e ehe e e bt e bt ea b e ea b e sabesheesbeesbe e bt eas e eueeebeeeb e et e embeeatesabesaeesaeenaeenseenes 35
4.2 API data types and environment Variablescueeeeiiiiiiciee e e 35
4.3 AP1 deSCription AN SYNTAXccciiieiiiieeeiieeeeeitee e ettt e e esre e e eeteeeestaeeeesabeeeeeabaeeesbseseaassseesaasasessnsseeeanssaeeeansens 37
(00T o =T g T @ o Y=Y o1 Of ES PP UPPPR 44
5.1 OVEIVIBW .ottt ettt et ettt st e bt e h e et s en e sat e she e s bt e a e e aa e e ae e sme e s R e e ar e e resanesanesanesaeesreeneenns 44
5.2 Vivante OpenCL implementationcccuii ittt e e e et e e e s tbe e e e et e e e eeabaaeeeabbeeeenstaeeensees 51
5.3 Optimization for OpenCL embedded Profile..........couieeiiiie et e 53
5.4 OPENCL DEDUE MESSAZESuvveeeeeeveeeeitieeeeiitteeeetteeesetteeeessteeeessteeesasseeeessteeesasteeesssseeeessseeeesssseesasssnessnsseeen 56
(@ F-T o1 0T ol SR O 1o Y=Y o 1V G [d o Yo 1¥ ot o SRR 57
6.1 OVEIVIBW ..ttt ettt ettt ettt s bt e s bt e bt et e e at e she e e bt e b e ekt eabesabesabesheesbe e bt e abeeubeeheeeb e e bt embeeabesabesabesaeesbeenbeenes 57
6.2 Designing frameWork Of OPENVXcuiiiiieiiec ettt e te e s re e s re e s re e s be e sreesareesateesaseesabeessseesaneensrens 57
6.3 OpenVX extension iMPIEMENTATIONcuiiiii e et tre e e e ste e e sae e e taeesree e baeenneeennes 59
6.4 OpenCL functions compatible with Vivante ViSiON..........cccoiieiiiiiiiiic e e 62
(00 F=Y o (=T G A VU1 1 - o [P PP UPPPR 65
7.1 OVEIVIBW ..ttt sttt et ettt h e bt e r e e et s e e s ee e sre e s et e et e me e eae e em e e R e e r e e resanesenesanenreenreenneenes 65
7.2 Vivante Extension SUPPOrt fOr VUIKANcoouiii ittt e et e e e etb e e e e atae e e anaas 65
Chapter 8 Multiple GPUs and VirtUalization............coeiiiiiiiiiiiie ettt e e e e e e e traae e e e e e e e etaaaeeeaeeean 67
8.1 OVEIVIBW ..ottt ettt ettt et ettt st eb e ae e s et b s bt s bt e ae e st et e e b ekt ab e eb e e st ea e ea b e ne e ke ebeeb e eaeene e b e st e benbeebeeaeensennennenes 67
8.2 MUIEI=GPU CONTIUIAtIONS ...ueieiiiiiiieciee ittt sttt e s te e st e s teeste e s b e e s tbe e sabeesaseesaseensseesaseesaseesaseessseesaseensrens 67
8.3 GPU affinity CONFIGUIATIONeeiiiiiee ettt e e e et e e e etee e e etbeeeeebaeeeenaeeeeesreeaan 67

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

2 NXP Semiconductors

8.4 OPENCL ON MUILI-GPU DEVICE ...ttt et sttt ae e st e ne e s b e e st e sbaeesneesanee 67

8.5 GPU virtualization CoONfiIGUIatioNcoiuiiiiiiiiieee et st 68
Chapter 9 G2D COMPOSITOr ON WESTONuviiiiciiieeiiiee e ettt e eetee e sttt eeeseteeeessaeeessseaeesstaeesasssseesasseesasssseesanssneesnsseeenn 69
9.1 OVEIVIBW .ottt ettt sttt s et e et e ae e s bt e e bt e b e R e e n e s ane s bt e sb e e s bt e et e me e eae e ebe e e b e e b e e s e sanesanesmnesreenneenneenns 69
9.2 ENGDE G2D COMPOSITON ..eeiitiiiiieiitie ettt ettt ettt et e st e et e e st e e s bt e e sabe e bt e e sab e e bt e e sabeesabeesabeenneeesaneenneeas 69
Chapter 10 b TRV =T G VATe 1Yo T BT 4 Y=Y SR 70
O R =5 e 4 Y=Y TSP T TP PR PSP PRPR 70
O 4 T o e [PR 71
Chapter 11 PV \VZ [Tol=Yo I €] o U M@oY oY iT={UT -1 { o] o AU 82
3 R € o U I Yor: | [TV Ce 17T o s T PSS 82
11,2 GPU DEVICE COOING . ..eitientieiieiieetieteete ettt sttt e st ettt st e st e s bt et e besatesatesaeesaeesaeenteenteensesseenseenbeensesnsesnnas 82
Chapter 12 Vivante SOftWAre TOOI Kit.......ceiiuiiiieiiei ettt st sttt s be e e saee e 82
12,1 Vivante TOOI Kit OVEIVIEWooueiiiieiiiiieeierierite sttt ettt sttt ettt s e st st sbe ettt et eseesbe e b e e beenbeeanesnnes 82
I Y 1 o U] - o Y SRS 84
I YA o = [T SRS 95
Y[0o 4o 11 =1 SRS URS 103
125 UTEXEUIE ettt ettt et st e s bt e s bt e s bt e bt e a bt e ae e e bt e b e e bt ea b e e abesabesbeesbeesbe et e et e eabeenbeebaenbeens 107
12,6 VPrOfiler @Nd VANGIYZEL ...c..veiieiiecee ettt sttt e et e st e s te e s te e et e e s taeeaeesabaeenseesasaeeseeentaeenseennses 111
12.7 Debug and performManCe COUNTEISc..uiiiciieeeciiee e ettt e eette e e et e e e ette e e eetaeeestbeeeesstaesesasseeeensreeeanstaesennsens 125
Chapter 13 (€] 24 O I e Yo PP UPPRR 127
IR T A= (o TV 13 Yo T o Yo SRR 127
IR T = (o T oY 10 o T o o1 O US 129
G TR B Vo114 = 1ot U LY =] o = U o [N USRS 130
Chapter 14 GPU MemOory INtrOQUCTIONcoiiiiiee ettt s e e st e e s nte e e e sneaeeessaeeeennteeeennnees 135
141 GPU MEMOTY OVEIVIEW ...veiiiieieeeiiiiieeeieieeeesstteeessteesasssesesassesessseesasssssesasssessssssessasssssessssssssssssessssssssessnnnes 135
14.2 GPU MEMOTY POOIS «.eeeeiiiie ettt cte e e ettt e e e e tte e e e ebaee e e abeeeeeasaeaesabbeeeeassaeseenssaaeensseeeesraeeennsees 135
14.3 GPU MEMOTY @lIOCATOIS ...eiieiiiiieeiiie ettt ettt ettt e e ettt e e et e e e eeabbe e e sabbeeeessteeeeeasseaeebbeeaentaeeennnens 135
144 GPU r@SEIVEA MEMOIY ...uiiiiieieieeeitteeeeieieeeeseteeessaeeeassteeesasseeessaeesasssseesassseesssseeeasssssesasssesssnssesssssesessnnnes 136
145 GPU MemMOry Dase @ddrEsscouiiiieiiiiieeiiee e cieee e ettt et e e ettt e e e ette e e eeataeaesbbeeeensbaeeeeasaeeeentbesaesteeeennnens 136
Chapter 15 Application Programming Recommendations..........ccieiiiiiiiiiiiiieeiccciiiee e e eesiver e e e e e e 138
15.1 Understand the system configuration and target applicationcccceevecieeivciie e 138
15.2 Optimize off chip data transfer such as accessing off-chip DDR memory/mobile DDR memory 138
15.3 Avoid W-Clipping issue in the Application Programi.........cccceooiiiieieiiiiiecciiee ettt ettt e 138
15.4 Avoid GPU hang and data corruption when use oCClUSION QUEIYcccccuveeeiiiieeeiiee e cree e 139
155 Avoid random Cache O MEMOIY GCCESSESuuiiiuuieeeierieeriireeesitreeeestreesssreeestreeeassseeessssseesnssessasssseessnsnes 139
15.6 Optimize your USE Of SYSTEM MEMIOIYociiuiii ittt ettt eetee e ettt e ee e e e e tb e e e e eataeeeenbeeeetreseeeareeeeennes 139

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

3 NXP Semiconductors

15.7 Target a fixed frame rate that is Visibly SMOOth.......c.ccooiiiiiiiiii e 139

15.8 Minimize GL StAte ChANGEScoiiiiiiiieteeteee ettt sttt ettt st st st e s bt e sbe e be et e sabesbeenbeens 140
15.9 Batch primitives to minimize the number of draw callsccoeeieiiiii i 140
15.10 Perform calculations per vertex instead of per fragment/pixXelccceevveeeiieiiieciee e 140
15.11 Enable early-Z, hierarchical-Z and back face cullingcoooueieiiiiiiinii e 140
15.12 Use branching Carefullyeeo ot et e e e e e tr e e s e e e e sraeeeesntaeeeenes 141
15.13 Do not use static or stack data as vertex data - use VBOS insteadccccevvververeeneenieninninieneeniens 141
15.14 Use dynamic VBO if data is changing frame by frameocceoviiiiiiiiienee e 141
15.15 Tessellate your data so that Hierarchical Z (HZ) can do its job.......coovevieiiiiiiieieciee e 142
15.16 Use dynamic textures as a texture cache (teXture atlas).......cccceeciveeeeiiee e 142
15.17 If you use many small triangle strips, stitch them togethercc.cccooviiriiiiiiniiie 142
15.18 Specify EGL configuration attributes precisely ... 142
15.19 Use aligned texture/render DUFEISc.uiiiii ittt ettt sre e s be e s ebeesareeens 142
15.20 Disable MSAA rendering unless high quality is Nneeded..........cccovievieiirienieie e 143
15.21 AVOId PArTIAl CIEATIS ittt sttt e s b e e bt e s ab e e sat e e sabeesat e e saneenaeeas 143
15.22 AVOId MASK OPEIATIONSuiiiiiiieicciic ettt e et e e et ee e e st e e e e tte e e s tbeeeesstbeeeesaeeesataeeseansseeeennaseesssenean 143
15.23 USE MIPIMIAP tEXEUIESeeutieuteeiteeite it ntt ettt ettt et s b et e e be et esateshbesbeesbee bt enbeeaeeeueesbeesbeenbeebeeabesnsesaees 143
15.24 Use compressed textures if constricted by RAM/ROM budget........cceevuvevreeiiieieeieeiecieceesreeere e 143
15.25 Draw objects from near to far if POSSIDIEueiieiiiii e s 143
15.26 AvOid iNdeXed triangle STIIPS. ..ueiiiiiii et ee et et eeett e e et e e s ettt e e e eettee e e tbeeaesatseeeenaeeesnsreeans 143
15.27 Vertex attribute stride should not be larger than 256 bytes.........cccceeeevcieeiciier e 144
15.28 Avoid binding buffers to mixed iNdeX/VErteX @rraycoeeveiveeieeireeireeireereeeeeteesteesreesseeaesaeesreesseenns 144
15.29 Avoid using CPU to update texture/buffer contexts during rendercccceeeveevieeeiecccieecvee e, 144
15.30 Avoid frequent CONTEXE SWItCHING......ccciii et s e e e e s re e sabe e saeesnteesareennreas 144
15.31 Optimize resources Within @ SNAAEIcccuiii i e e e s naee s 144
15.32 Avoid using glScissor Clear for SMall FEZIONSiiiiiiiiecee e e et 144
15.33 Use PRE to accelerate data transfer ...ttt 144
15.34 i.MX 8QuadMax dual-GPU PerfOrmMancCecocueeriierieiiiieiieesiie et siteeste st steesabeesbeesabeesbeesareenas 145
Chapter 16 DT g Lol o = <1V o T PSR UPP 146
L6.1 SUMIMIAIIES. ceutettetteittet ettt ettt ettt et e bt e a e s ate s bt e sbeesbe e bt eateeat e e bt e b e e b e eabeeabesabesheesheesbeebeenbeeabeenbenbaenbeans 146
16.2 INEFOQUCTION .ottt se b bt ettt s et e bt s bt s et e e e b se e ebe s bt ebe et et enneneeanenee 146
16.3 DESIZN OVEIVIEWeeviieeeiiiee et e e cttee e ettt e eetta e e e eteeeeeetteeeeeabaeeeebaeeaeastseeeassaeeesabseseeassaseeansssaeensseseestaeeennsees 147
16.4 HIGN IEVEI OVEIVIEW ..ottt ettt et e e e ettt e e e et e e e eeaaaeaesbbeeeeesbaeeeeasssaeetaeseeanseesennnees 147
16.5 Demo appliCation deLAIlScccieeiieeiiieciee sttt ettt e et ete e s be e e b e e st e e e reeeabaeebee e baeebeeetaeereeenres 148
16.6 HelPEr Class OVEIVIEW.cccueeiiieeiieeiieeeteesteesiteesteesiaeesbeessseesabeesseestaessseesntaesseesatasesesesaeensesentasesesenses 152
16.7 Android SDK+NDK on Windows OS build gUIAEccuiiiiiiiiiieiie ettt e 157

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

4 NXP Semiconductors

16.8 UDUNTU DU SUIE ...ttt ettt ettt b e bbb e be s ate st e saeesbeesbeenbeeateeaeens 158
16.9 WINdOWS OS DUIIA GUILE ...cneiiiiieieieeeeee ettt ettt st st st sbe e st et et satesbeesbeens 160
16.10 R o Tet ol VT o = (VT e LTSRS 162
16.11 FSICONTENTSYNC.PY NOTES. ... uiiieeiiiieeeiieeeeette e e st ee e e rte e e eeteeeestaeeeesataeesensaasesasseaeastseesasssaesssseaeeansseesanes 166
16.12 Roadmap — UpCOMING fEALUIEScoiuiiiiieiiiieiteet ettt sttt ettt s st b e e e 166
16.13 KNOWN TIMITTIONS 1.ttt sttt ettt e bbbt et et et besaeebe e st e st et eneenbenaeas 167
Chapter 17 Environment Variables SUMMAryoooo ittt e st e e et e e e nae e e e naaee s 168
17.1 Environment variable for drivers and HALcccooviririiininiciece ettt e 168
17.2 Environment variable fOr COMPILEToii it e e rr e e e et e e e atee e eeanas 169

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

5 NXP Semiconductors

Chapter 1 Introduction

The purpose of this document is to provide information on graphic APIs and driver support. Each chapter describes
a specific set of APIs or driver integration as well as specific hardware acceleration customization. The target

audiences for this document are developers writing graphics applications or video drivers.

Chapter 2 i.MX G2D API

2.1 Overview

The G2D Application Programming Interface (API) is designed to be easy to understand and to use the 2D Bit blit
(BLT) function. It allows the user to implement the customized applications with simple interfaces. It is hardware

and platform independent for i.MX 2D Graphics.

G2D API supports the following features but is not limited to these:
e Simple BLT operation from source to destination
e Alpha blending for source and destination with Porter-Duff rules
e High-performance memory copy from source to destination
e Up-scaling and down-scaling from source to destination
e 90/180/270 degree rotation from source to destination
e Horizontal and vertical flip from source to destination
e Enhanced visual quality with dither for pixel precision-loss
e High performance memory clear for destination
e Pixel-level cropping for source surface
e Global alpha blending for source only
e Asynchronous mode and sync
e Contiguous memory allocator
e Support VG engine

The G2D APl document includes a detailed interface description and sample code for reference.

The API is designed with C-Style coding and can be used in both C and C++ applications.
G2D API supports the following features but is not limited to these:
e Multi source blit

2.2 Enumerations and structures

This chapter describes all enumeration and structure definitions in G2D.

2.2.1 g2d_format enumeration

This enumeration describes the pixel format for source and destination.

Table 1. g2d_format enumeration

Name Numeric Description

G2D_RGB565 0 RGB565 pixel format

G2D_RGBA8888 32 bit-RGBA pixel format

G2D_RGBX8888 32 bit-RGBX without alpha blending

1

2
G2D_BGRA8888 3 32 bit-BGRA pixel format
G2D_BGRX8888 4 32 bit-BGRX without alpha blending

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

NXP Semiconductors

G2D_BGR565 5 16 bit-BGR565 pixel format
G2D_ARGBAS8888 6 32 bit-ARGB pixel format

G2D_ABGR8888 7 32 bit-ABGR pixel format

G2D_XRGB8888 8 32 bit-XRGB without alpha
G2D_XBGR8888 9 32 bit-XBGR without alpha

G2D_RGB888 10 24 bit-RGB

G2D_NV12 20 Y plane followed by interleaved U/V plane
G2D_l1420 21 Y, U, V are within separate planes
G2D_YV12 22 Y, V, U are within separate planes
G2D_NV21 23 Y plane followed by interleaved V/U plane
G2D_YUYV 24 Interleaved Y/U/Y/V plane

G2D_YVYU 25 Interleaved Y/V/Y/U plane

G2D_UYVY 26 Interleaved U/Y/V/Y plane

G2D_VYUY 27 Interleaved V/Y/U/Y plane

G2D_NVi16 28 Y plane followed by interleaved U/V plane
G2D_NV61 29 Y plane followed by interleaved V/U plane

2.2.2 g2d_blend_func enumeration

This enumeration describes the blend factor for source and destination.

Table 2. g2d_blend_func enumeration

Name Numeric | Description

G2D_ZERO Blend factor with 0

G2D_ONE Blend factor with 1

G2D_ONE_MINUS_SRC_ALPHA Blend factor with 1 - source alpha

0
1
G2D_SRC_ALPHA 2 Blend factor with source alpha
3
4

G2D_DST_ALPHA Blend factor with destination alpha

G2D_ONE_MINUS_DST_ALPHA 5 Blend factor with 1 - destination alpha
G2D_PRE_MULTIPLIED_ALPHA 0x10 Extensive blend as pre-multiplied alpha
G2D_DEMULTIPLY_OUT_ALPHA 0x20 Extensive blend as demultiply out alpha

2.2.3 g2d_cap_mode enumeration

This enumeration describes the alternative capability in 2D BLT.

Table 3. g2d_cap_mode enumeration

Name Numeric | Description

G2D_BLEND 0 Enable alpha blend in 2D BLT
G2D_DITHER 1 Enable dither in 2D BLT
G2D_GLOBAL_ALPHA 2 Enable global alpha in blend

Note: G2D_GLOBAL_ALPHA is only valid when G2D_BLEND is enabled.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

NXP Semiconductors

2.2.4 g2d_rotation enumeration

This enumeration describes the rotation mode in 2D BLT.

Table 4. g2d_rotation enumeration

Name Numeric | Description

G2D_ROTATION_O 0 No rotation
G2D_ROTATION_90 1 Rotation with 90 degree
G2D_ROTATION_180 2 Rotation with 180 degree
G2D_ROTATION_270 3 Rotation with 270 degree
G2D_FLIP_H 4 Horizontal flip
G2D_FLIP_V 5 Vertical flip

2.2.5 g2d_cache_mode enumeration

This enumeration describes the cache operation mode.

Table 5. g2d_cache_mode enumeration

Name Numeric | Description

G2D_CACHE_CLEAN 0 Clean the cacheable buffer
G2D_CACHE_FLUSH 1 Clean and invalidate cacheable buffer
G2D_GLOBAL_INVALIDATE 2 Invalidate the cacheable buffer

2.2.6 g2d_hardware_type enumeration

This enumeration describes the supported hardware type.

Table 6. g2d_hardware_type enumeration

Name Numeric | Description
G2D_HARDWARE_2D 0 2D hardware type by default
G2D_HARDWARE_VG 1 VG hardware type

2.2.7 g2d_surface structure

This structure describes the surface with operation attributes.

Table 7. g2d_surface structure

g2d_surface Members Type Description

format g2d_format Pixel format of surface buffer
planes[3] Int Physical addresses of surface buffer
left Int Left offset in blit rectangle

top Int Top offset in blit rectangle

right Int Right offset in blit rectangle

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

8 NXP Semiconductors

bottom Int Left offset in blit rectangle
stride Int RGB/Y stride of surface buffer
width Int Surface width in pixel unit
height Int Surface height in pixel unit
blendfunc g2d_blend_func Alpha blend mode
global_alpha Int Global alpha value 0~255
clrcolor Int Clear color is 32bit RGBA
rot g2d_rotation Rotation mode

Notes:

e RGB and YUV formats can be set in source surface, but only RGB format can be set in destination surface.

e RGB pixel buffer only uses planes [0], buffer address is with 16bytes alignment on i.MX
6Quad/Dual/Duallite/Solo/Sololite, 1 pixel alignment on i.MX 6QuadPlus.

e NV12: Yin planes [0], UV in planes [1], with 64bytes alignment,

e 1420: Yin planes[0], Uin planes [1], U in planes [2], with 64 bytes alignment

e The cropped region in source surface is specified with left, top, right and bottom parameters.

e RGB stride alignment is 16bytes on i.MX 6Quad/Dual/DualLite/Solo/SoloLite, 1 pixel on i.MX 6QuadPlus,
both for source and destination surface.

e NV12 stride alignment is 8bytes for source surface, UV stride =Y stride,

e 1420 stride alignment is 8bytes for source surface, U stride=V stride =} Y stride.

e G2D_ROTATION_0/G2D_FLIP_H/G2D_FLIP_V shall be set in source surface, and the clockwise rotation
degree shall be set in destination surface.

e Application should calculate the rotated position and set it for destination surface.

e The geometry definition of surface structure is described as follows.

stride
[—————————————»|
Planes

A

A

top

left

A
v,

bottom

height

A
Y

right

[width

Figure 1 g2d_surface structure

2.2.8 g2d_buf structure

This structure describes the buffer used as G2D interfaces.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

9 NXP Semiconductors

Table 8. g2d_buf structure

g2d_buf Members Type Description

buf_handle void * The handle associated with buffer
buf_vaddr void * Virtual address of the buffer
buf_paddr int Physical address of the buffer
buf_size int The actual size of the buffer

2.2.9 g2d_surface_pair structure

This structure binds one source g2d_surface and one destination g2d_surface as a pair. When doing multi-source
blit, they are one-to-one correspondent.

Table 9. g2d_surface_pair structure

g2d_surface_pair Members Type Description
s g2d_surface Source g2d_surface
d g2d_surface Destination g2d_surface

2.2.10 g2d_feature enumeration

This enumeration describes the features in G2D BLT.

Table 10. g2d_feature enumeration

Name Numeric Description
G2D_SCALING 0 Scaling

G2D_ROTATION 1 Rotation
G2D_SRC_YUV 2 Source YUV format
G2D_DST_YUV 3 Destination YUV format
G2D_MULTI_SOURCE_BLT 4 Multisource blit

2.3 G2D function descriptions

2.3.1 g2d_open

Description:
Open a G2D device and return a handle.

Syntax:
int g2d_open (void **handle);

Parameters:
handle Pointer to receive G2D device handle

Returns:
Success with 0, fail with -1

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

10 NXP Semiconductors

2.3.2 g2d_close

Description:
Close G2D device with the handle.

Syntax:
int g2d_close (void *handle);

Parameters:
handle G2D device handle

Returns:
Success with 0, fail with -1

2.3.3 g2d_make_current

Description:
Set the specific hardware type for current context, and the default is G2D_HARDWARE_2D.

Syntax:
int g2d_make_current (void *handle, enum g2d_hardware_type type);

Parameters:

handle G2D device handle
type G2D hardware type
Returns:

Success with 0, fail with -1

2.3.4 g2d_clear

Description:
Clear a specific area.

Syntax:
int g2d_clear (void *handle, struct g2d_surface *area);

Parameters:

handle G2D device handle
area The area to be cleared
Returns:

Success with 0, fail with -1

2.3.5 g2d_blit

Description:
G2D blit from source to destination with alternative operation (Blend, Dither, etc.).

Syntax:

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

11 NXP Semiconductors

int g2d_blit (void *handle, struct g2d_surface *src, struct g2d_surface *dst);

Parameters:

handle G2D device handle
src source surface

dst destination surface
Returns:

Success with 0, fail with -1

2.3.6 g2d_copy

Description:
G2D copy with specified size.

Syntax:
int g2d_copy (void *handle, struct g2d_buf *d, struct g2d_buf* s, int size);

Parameters:

handle G2D device handle
d destination buffer
3 source buffer

size copy bytes
Limitations:

If the destination buffer is cacheable, it must be invalidated before g2d_copy
due to the alignment limitation of G2D driver.

Returns:
Success with 0, fail with -1

2.3.7 g2d_query_cap

Description:
Query the alternative capability enablement.

Syntax:
int g2d_query_cap (void *handle, enum g2d_cap_mode cap, int *enable);

Parameters:

handle G2D device handle

cap G2D capability to query

enable Pointer to receive G2D capability enablement

Returns: Success with 0, fail with -1

2.3.8 g2d_enable

Description:

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

12 NXP Semiconductors

Enable G2D capability with the specific mode.

Syntax:

int g2d_enable (void *handle, enum g2d_cap_mode cap);

Parameters:
handle
cap

G2D device handle
G2D capability to enable

Returns:
Success with 0, fail with -1

2.3.9 g2d_disable
Description:

Enable G2D capability with the specific mode.

Syntax:

int g2d_disable (void *handle, enum g2d_cap_mode cap);

Parameters:

handle G2D device handle

cap G2D capability to disable
Returns:

Success with 0, fail with -1

2.3.10 g2d_cache_op

Description:

Perform cache operations for the cacheable buffer allocated through the G2D driver.

Syntax:

int g2d_cache_op (struct g2d_buf *buf, enum g2d_cache_mode op);

Parameters:

buf the buffer to be handled with cache operations
op cache operation type

Returns:

Success with 0, fail with -1

2.3.11 g2d_alloc

Description:
Allocate a buffer through G2D device

Syntax:
struct g2d_buf *g2d_alloc (int size, int cacheable);

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

13

NXP Semiconductors

Parameters:

size allocated bytes
cacheable 0, non-cacheable, 1, cacheable attribute defined by system
Returns:

Success with valid G2D buffer pointer, fail with 0

2.3.12 g2d_free

Description:

Free the buffer through G2D device.

Syntax:
int g2d_free (struct g2d_buf *buf);

Parameters:
buf G2D buffer to free
Returns:

Success with 0, fail with -1

2.3.13 g2d_flush

Description:

Flush G2D command and return without completing pipeline
Syntax:

int g2d_flush (void *handle);

Parameters:

handle G2D device handle

Returns:
Success with 0, fail with -1

2.3.14 g2d_finish
Description:
Flush G2D command and then return when pipeline is finished.
Syntax:

int g2d_finish (void *handle);

Parameters:

handle G2D device handle

Returns:
Success with 0, fail with -1

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

14

NXP Semiconductors

2.3.15 g2d_multi_blit

Description:

Blit multiple sources to one destination.
Syntax:

int g2d_multi_blit (void *handle, struct g2d_surface_pair *sp[], int layers);
Parameters:

handle G2D device handle

sp array in which elements point to g2d_surface_pair

layers number of the source layers that need to be blited
Returns:

Success with 0, fail with -1
Note:

There are some restrictions for this API that we should be aware of.

e This APl only works on the i.MX 6DualPlus/QuadPlus platform.

e The maximum number of the source layers that can be blited one time is 8.

e Although g2d_surface_pair binds one source g2d_surface and one destination g2d_surface as a pair, it
only supports one destination surface. The relationship between the source and destination is many to
one, but each source surface can be set separately and differently, and its dimension, stride, rotation, and
format can differ with that of the destination surface.

e The rotation of the destination surface is set to 0 degree by defaut, and cannot be changed.

e The key restriction is that the destination rectangle cannot be set, which means that the destination
rectangle must be the same as the source rectangle. Therefore, if the source rectangle is setto (I, t, r, b),
the destination rectangle should also be set to (I, t, r, b) by hardware. In the chapter on multi source blit
(2.4.4), as it makes no sense to set the destination rectangles, we just set all of them to (0, 0, width,
height) for future extension.

2.3.16 g2d_query_hardware

Description:
Query whether 2D and VG hardware are available in the current G2D.
Syntax:
int g2d_query_hardware (void *handle, enum g2d_hardware_type type, int *available);
Parameters:
handle G2D device handle
type G2D hardware type
available Pointer to receive G2D hardware type availability
Returns:

Success with 0, fail with -1

2.3.17 g2d_query_feature

Description:
Query if the features are available in G2D BLT.

Syntax:

int g2d_query_feature (void *handle, enum g2d_feature feature, int *available);
Parameters:

handle G2D device handle

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

15 NXP Semiconductors

feature G2D feature in g2d_blit
available Pointer to receive G2D feature availability

Returns:
Success with 0, fail with -1

2.4

Support of new operating system in G2D

G2D code is independent on operating system (OS) except of buffer allocation. Allocating the memory for buffer is
made by mechanism that is offered by each OS differently. The code for allocation is located in [G2D repository

copyl/source/os/[0S name]. Therefore, supporting new OS includes the following steps:
1.

2.5

Create a new folder in [G2D repository copyl/source/os/ with the name of the new OS and update

implementation in the included source code according to the new OS allocation mechanism.
When creating new makefiles for the OS, include the files from the new folder.

The test named overlay_test contains the OS dependent code. For supporting the new OS in this test,
create new folder in [G2D repository copy]/test/overlay_test/os and update the code according to the
new OS mechanism for display initialization. Also update makefiles to include code from the new folder.

Sample code for G2D API usage

This chapter provides the brief prototype code with G2D API.

2.5.1 Color space conversion from YUV to RGB

g2d_open(&handle);

src.planes[0] = buf_y;
src.planes[1] = buf_u;
src.planes[2] = buf_v;
src.left = crop.left;

src.top = crop.top;
src.right = crop.right;
src.bottom = crop.bottom;
src.stride = y_stride;
src.width = y_width;
src.height = y_height;
src.rot = G2D_ROTATION_O;
src.format = G2D_1420;

dst.planes[0] = buf_rgba;
dst.left = 0;

dst.top =0;

dst.right = disp_width;
dst.bottom = disp_height;
dst.stride = disp_width;
dst.width = disp_width;
dst.height = disp_height;
dst.rot =G2D_ROTATION_O;
dst.format = G2D_RGBA8888;

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

16

NXP Semiconductors

2.5.2

2.5.3

g2d_blit(handle, &src, &dst);
g2d_finish(handle);

g2d_close(handle);

Alpha blend in source over mode
g2d_open(&handle);

src.planes[0] = src_buf;
src.left = 0;

src.top =0;

src.right = test_width;
src.bottom = test_height;
src.stride = test_width;
src.width = test_width;
src.height = test_height;
src.rot =G2D_ROTATION_O;
src.format = G2D_RGBA8888;
src.blendfunc = G2D_ONE;

dst.planes[0] = dst_buf;
dst.left = 0;

dst.top = 0;

dst.right = test_width;
dst.bottom = test_height;
dst.stride = test_width;
dst.width = test_width;
dst.height = test_height;
dst.format = G2D_RGBAB8888;
dst.rot =G2D_ROTATION_O;
dst.blendfunc = G2D_ONE_MINUS_SRC_ALPHA;

g2d_enable(handle,G2D_BLEND);
g2d_blit(handle, &src, &dst);
g2d_finish(handle);
g2d_disable(handle,G2D_BLEND);

g2d_close(handle);

Source cropping and destination rotation
g2d_open(&handle);

src.planes[0] = src_buf;
src.left = crop.left;
src.top = crop.left;
src.right = crop.right;

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

17

NXP Semiconductors

src.bottom = crop.bottom;

src.stride = src_stride;

src.width = src_width;

src.height = src_height;

src.format = G2D_RGBAB888;

src.rot = G2D_ROTATION_0;//G2D_FLIP_H or G2D_FLIP_V

dst.planes[0] = dst_buf;

dst.left = 0;

dst.top =0;

dst.right = dst_width;
dst.bottom = dst_height;
dst.stride = dst_width;
dst.width = dst_width;
dst.height = dst_height;
dst.format = G2D_RGBA8888;
dst.rot =G2D_ROTATION_90;

g2d_blit(handle, &src, &dst);
g2d_finish(handle);

g2d_close(handle);

2.5.4 Multi source blit

const int layers = 8;

struct g2d_buf *d_buf;

struct g2d_buf *mul_s_buf[layers];
struct g2d_surface_pair *sp[layers];

g2d_open(&handle)

for(n = 0; n < layers; n++) {
sp[n] = (struct g2d_surface_pair *)malloc(sizeof(struct g2d_surface_pair));

}

d_buf =g2d_alloc(test_width * test_height * 4, 0);
for(n = 0; n < layers; n++) {

mul_s_buf[n] = g2d_alloc(test_width * test_height * 4, 0);
}

for(n =0; n < layers; n++) {
sp[n]->s.left = img_info_ptr[n]->img_left;
sp[n]->s.top = img_info_ptr[n]->img_top;
sp[n]->s.right = img_info_ptr[n]->img_right;
sp[n]->s.bottom = img_info_ptr[n]->img_bottom;

sp[n]->s.stride = img_info_ptr[n]->img_width;
sp[n]->s.width = img_info_ptr[n]->img_width;
sp[n]->s.height = img_info_ptr[n]->img_height;

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

18 NXP Semiconductors

sp[n]->s.rot = img_info_ptr[n]->img_rot;

sp[n]->s.format = img_info_ptr[n]->img_format;
sp[n]->s.planes[0] = mul_s_buf[n]->buf_paddr;

}

sp[0]->d.left = 0;

sp[0]->d.top =0;
sp[0]->d.right = test_width;
sp[0]->d.bottom = test_height;

sp[0]->d.stride = test_width;
sp[0]->d.width =test_width;
sp[0]->d.height = test_height;
sp[0]->d.format = G2D_RGBA8888;
sp[0]->d.rot = G2D_ROTATION_O;
sp[0]->d.planes[0] = d_buf->buf_paddr;
for(n = 1; n < layers; n++) {

sp[n]->d = sp[0]->d;
}

g2d_multi_blit(handle, sp, layers);

g2d_finish(handle);

for(n = 0; n < layers; n++)
g2d_free(mul_s_buf[n]);

g2d_free(d_buf);

g2d_close(handle);

2.6 Feature list on multiple platforms

This user guide is for multiple platforms, such as i.MX 6 and i.MX 8, and the hardwares for the G2D implementation
are different on those platforms, so some G2D features are also different.
For example, the G2D_YVYU and G2D_VYUY formats are not supported on the i.MX8, and the g2d_multi_blit

function only works on the i.MX 6DualPlus/QuadPlus. Therefore, we list those differences in the following feature

table.
Table 11. Feature list on multiple platforms
Feature i.MX 6 i.MX 7 i.MX 8
Solo/Dual/Quad | DualPlus/QuadPlus uULP1 QuadMax
G2D_YVYU Yes Yes Yes No
G2D_VYUY Yes Yes Yes No
G2D_HARDWARE_VG Yes Yes Yes No
G2D_MULTI_SOURCE_BLT No Yes Yes No
g2d_cache_op Yes Yes Yes No

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

19

NXP Semiconductors

Chapter 3 i.MX EGL and OGL Extension Support

3.1 Introduction

The following tables list the level of support for EGL and OES extensions available with i.MX hardware and

software. Support levels are current as of the date of the document and subject to change.

Two tables are provided. The first table lists the EGL interface extensions. The second table lists extensions for
OpenGLES 1.1, OpenGL ES 2.0, and OpenGL ES 3.0.

Key:

Extension Name and Number: Each listed extension is derived from the relevant khronos.org webpage list and
includes the extension number as well as a hyperlink to the khronos description of the extension.
Yes: Support is currently available.
No: Support is not available. (Reasons for lack of support may vary: the extension may be proprietary or obsolete,
or not applicable to the specified OES version.)
N/A: Support is not provided as the extension is not applicable in this and subsequent versions of the specification.

3.2 EGL extension support

The following table includes the list of all current EGL Extensions and indicates their support level.
(list from www.khronos.org/registry/egl/ as of 1/24/2013)

Table 12. EGL extension support

EGL Extension Number, Name and hyperlink

bl Eadl Pl Il o

6.
8.
9.

10.
16.
17.
18.
19.
20.
24,
25.
26.
27.
28.

EGL

KHR config attribs

EGL

KHR lock surface

EGL KHR image

EGL

KHR vg parent image

EGL

KHR gl texture 2D image

EGL

KHR gl texture cubemap image

EGL

KHR gl texture 3D image

EGL

KHR gl renderbuffer image

EGL

KHR reusable sync

EGL

KHR image base

EGL

KHR image pixmap

EGL

IMG_context priority

EGL

KHR lock surface2

EGL

NV_coverage sample

EGL

NV _depth nonlinear

EGL NV_sync

EGL

KHR fence sync

EGL

HI clientpixmap

EGL

Hl colorformats

EGL

MESA drm_image

EGL

NV_post sub buffer

EGL

ANGLE query surface pointer

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

Supported

YES
YES

YES
YES
no
YES
YES
YES
YES

YES

20

NXP Semiconductors

http://www.khronos.org/registry/egl/
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_config_attribs.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_lock_surface.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_image.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_vg_parent_image.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_gl_image.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_gl_image.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_gl_image.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_gl_image.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_reusable_sync.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_image_base.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_image_pixmap.txt
http://www.khronos.org/registry/egl/extensions/IMG/EGL_IMG_context_priority.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_lock_surface2.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_coverage_sample.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_depth_nonlinear.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_sync.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_fence_sync.txt
http://www.khronos.org/registry/egl/extensions/HI/EGL_HI_clientpixmap.txt
http://www.khronos.org/registry/egl/extensions/HI/EGL_HI_colorformats.txt
http://www.khronos.org/registry/egl/extensions/MESA/EGL_MESA_drm_image.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_post_sub_buffer.txt
http://www.khronos.org/registry/egl/extensions/ANGLE/EGL_ANGLE_query_surface_pointer.txt

29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

EGL

ANGLE surface d3d texture 2d share handle

EGL

NV coverage sample resolve

EGL

NV _system time

EGL

KHR stream

EGL

KHR stream_consumer_gltexture

EGL

KHR stream_producer eglsurface

EGL

KHR stream_producer aldatalocator

EGL

KHR stream_fifo

EGL

EXT create context robustness

EGL

ANGLE d3d share handle client buffer

EGL

KHR create context

EGL

KHR surfaceless context

EGL

KHR stream cross process fd

EGL

EXT multiview window

EGL

KHR wait_sync

EGL

NV_post_convert rounding

EGL

NV_native query

EGL

NV_3dvision surface

EGL

ANDROID framebuffer target

EGL

ANDROID blob cache

EGL

ANDROID image native buffer

EGL

ANDROID native fence sync

EGL

ANDROID recordable

EGL

EXT buffer age

EGL

EXT image dma_ buf import

EGL

ARM pixmap multisample discard

EGL

EXT swap buffers with damage

EGL

NV stream sync

EGL

EXT platform base

EGL

EXT client_extensions

EGL

EXT platform x11

EGL

KHR cl event

EGL

KHR get all proc addresses

EGL

KHR client get all proc addresses

EGL

MESA platform gbm

EGL

EXT platform wayland

EGL

KHR lock surface3

EGL

KHR cl event2

EGL

KHR gl colorspace

EGL

EXT protected surface

EGL

KHR platform android

EGL

KHR platform gbm

EGL

KHR platform wayland

EGL

KHR platform x11

EGL

EXT device base

EGL

EXT platform device

EGL

NV _device cuda

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

YES

YES

YES
YES

YES
YES

YES

YES

21

NXP Semiconductors

http://www.khronos.org/registry/egl/extensions/ANGLE/EGL_ANGLE_surface_d3d_texture_2d_share_handle.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_coverage_sample_resolve.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_system_time.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream_producer_eglsurface.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream_producer_aldatalocator.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream_fifo.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_create_context_robustness.txt
http://www.khronos.org/registry/egl/extensions/ANGLE/EGL_ANGLE_d3d_share_handle_client_buffer.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_create_context.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_surfaceless_context.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream_cross_process_fd.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_multiview_window.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_wait_sync.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_post_convert_rounding.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_native_query.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_3dvision_surface.txt
http://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_framebuffer_target.txt
http://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_blob_cache.txt
http://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_image_native_buffer.txt
http://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_native_fence_sync.txt
http://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_recordable.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_buffer_age.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_buffer_age.txt
https://www.khronos.org/registry/egl/extensions/ARM/EGL_ARM_pixmap_multisample_discard.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_swap_buffers_with_damage.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_sync.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_platform_base.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_client_extensions.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_platform_x11.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_cl_event.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
http://www.khronos.org/registry/egl/extensions/MESA/EGL_MESA_platform_gbm.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_platform_wayland.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_lock_surface3.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_cl_event2.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_gl_colorspace.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_protected_surface.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_platform_android.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_platform_gbm.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_platform_wayland.txt
http://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_platform_x11.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_base.txt
http://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_platform_device.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_device_cuda.txt

75. EGL NV_cuda event
76. EGL TIZEN image native buffer
77. EGL TIZEN image native surface
78. EGL EXT output base
79. EGL EXT device drm
EGL EXT output drm
80. EGL EXT device openwf
EGL EXT output openwf
81. EGL EXT stream consumer_egloutput
83. EGL KHR partial update
84. EGL KHR swap buffers with damage
85. EGL ANGLE window fixed size
86. EGL EXT yuv surface
87. EGL MESA image dma buf export
88. EGL EXT device enumeration
89. EGL EXT device query
90. EGL ANGLE device d3d
91. EGL KHR create context no_error
92. EGL _KHR debug
93. EGL NV stream metadata
94. EGL NV stream consumer gltexture yuv
95. EGL IMG image plane attribs
96. EGL KHR mutable render buffer
97. EGL EXT protected content
98. EGL ANDROID presentation time
99. EGL ANDROID create native client buffer
100.EGL ANDROID front buffer auto refresh
101.EGL KHR no config context
102.EGL KHR context flush control
103.EGL ARM implicit_external sync
104.EGL MESA platform surfaceless
105.EGL_EXT image dma_buf import modifiers
106.EGL_EXT pixel format float
107.EGL_EXT gl colorspace bt2020 linear
EGL _EXT gl colorspace bt2020 pq
108.EGL_EXT gl colorspace_scrgb _linear
109.EGL _EXT surface SMPTE2086 metadata
110.EGL _NV_stream fifo next
111.EGL NV _stream fifo synchronous
112.EGL_NV_stream_reset
113.EGL NV _stream frame_limits
114.EGL_NV_stream_remote
EGL NV _stream cross object
EGL NV_stream_cross_display
EGL NV _stream cross_process
EGL NV_stream cross_partition
EGL NV _stream cross system

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

22

NXP Semiconductors

https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_cuda_event.txt
https://www.khronos.org/registry/egl/extensions/TIZEN/EGL_TIZEN_image_native_buffer.txt
https://www.khronos.org/registry/egl/extensions/TIZEN/EGL_TIZEN_image_native_surface.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_output_base.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_stream_consumer_egloutput.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_partial_update.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_swap_buffers_with_damage.txt
https://www.khronos.org/registry/egl/extensions/ANGLE/EGL_ANGLE_window_fixed_size.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_yuv_surface.txt
https://www.khronos.org/registry/egl/extensions/MESA/EGL_MESA_image_dma_buf_export.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_base.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_base.txt
https://www.khronos.org/registry/egl/extensions/ANGLE/EGL_ANGLE_device_d3d.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_create_context_no_error.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_debug.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_metadata.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_consumer_gltexture_yuv.txt
https://www.khronos.org/registry/egl/extensions/IMG/EGL_IMG_image_plane_attribs.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_mutable_render_buffer.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_protected_content.txt
https://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_presentation_time.txt
https://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_create_native_client_buffer.txt
https://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_front_buffer_auto_refresh.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_no_config_context.txt
https://www.khronos.org/registry/egl/extensions/KHR/context_flush_control.txt
https://www.khronos.org/registry/egl/extensions/ARM/EGL_ARM_implicit_external_sync.txt
https://www.khronos.org/registry/egl/extensions/MESA/EGL_MESA_platform_surfaceless.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_pixel_format_float.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_gl_colorspace_scrgb_linear.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_surface_SMPTE2086_metadata.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_fifo_next.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_fifo_synchronous.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_reset.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_frame_limits.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_remote.txt

3.3

(list from www.khronos.org/registry/gles/ as of 9/27/2012)

115.EGL_NV_stream_socket

EGL NV_stream_socket unix
EGL NV _stream_socket inet
EGL_ANDROID_get_render_buffer
EGL_ANDROID_swap_rectangle
EGL_WL_bind_wayland_display

OpenGL ES extension support

The following table includes the list of all current OpenGL ES Extensions and indicates their support level.

Table 13. OpenGL ES extension support

Extension Number, Name and hyperlink

1.

WI|N N |0 JwIN

N NNNRRRRRRPRR R R
WIN PO Lo NOUAINEO

24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

GL

OES

blend equation separate

GL

OES

blend func separate

GL

OES

blend subtract

GL

OES

byte coordinates

GL

OES

compressed ETC1 RGB8 texture

GL

OES

compressed paletted texture

GL

OES

draw_texture

GL

OES

extended matrix_palette

GL

OES

fixed point

GL

OES

framebuffer object

GL

OES

matrix_get

GL

OES

matrix_palette

GL

OES

point_size array

GL

OES

point_sprite

GL

OES

query matrix

GL

OES

read format

GL

OES

single precision

GL

OES

stencil wrap

GL

OES

texture cube map

GL

OES

texture_env_crossbar

GL

OES

texture_mirrored repeat

GL

OES

EGL image

GL OES depth24
GL OES depth32

GL

OES

element _index uint

GL

OES

fbo render mipmap

GL

OES

fragment_precision high

GL

OES

mapbuffer

GL

OES

rgb8 rgba8

GL
GL
GL

OES
OES
OES

stencill
stencil4
stencil8

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

ES1.1
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

YES
YES
YES

YES
YES

YES
YES

YES

YES
YES
YES

ES2.0/3.0/3.1/3.2

na
na
na
na

YES

YES
na

na
na
na

na

na

na
YES
YES
YES
YES
YES
YES
YES
YES

na

23

NXP Semiconductors

http://www.khronos.org/registry/gles/
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_func_separate.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_subtract.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_byte_coordinates.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_paletted_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_draw_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_extended_matrix_palette.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_fixed_point.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_framebuffer_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_matrix_get.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_matrix_palette.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_point_size_array.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_point_sprite.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_read_format.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_single_precision.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_stencil_wrap.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_cube_map.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_env_crossbar.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_mirrored_repeat.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_EGL_image.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth24.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth32.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_element_index_uint.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_fbo_render_mipmap.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_fragment_precision_high.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_stencil1.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_stencil4.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_stencil8.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/egl/extensions/NV/EGL_NV_stream_socket.txt

35.

36.

37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

70.
71.
72.
73.
74.
75.
76.

GL

Extension Number, Name and hyperlink
34,

OES texture 3D

GL

OES texture float linear

GL OES texture half float linear

GL

OES texture float

GL OES texture half float

GL

OES texture npot

GL

OES vertex half float

GL

AMD compressed 3DC texture

GL

AMD compressed ATC texture

GL

EXT texture filter anisotropic

GL

EXT texture type 2 10 10 10 REV

GL

OES depth texture

GL

OES packed depth stencil

GL

OES standard derivatives

GL

OES vertex type 10 10 10 2

GL

OES get program binary

GL

AMD program_binary 7400

GL

EXT texture compression dxtl

GL

AMD_ performance monitor

GL

EXT texture format BGRA8888

GL
GL

NV _fence

IMG_read format

GL

IMG texture compression pvrtc

GL

QCOM driver control

GL

QCOM performance monitor global mode

GL

IMG user clip plane

GL

IMG_texture env_enhanced fixed function

GL

APPLE texture 2D limited npot

GL

EXT texture lod bias

GL

QCOM writeonly rendering

GL

QCOM _extended get

GL

QCOM extended get2

GL

EXT discard framebuffer

GL

EXT blend minmax

GL

EXT read format bgra

GL

IMG program_binary

GL

IMG_shader binary

GL

EXT multi draw_arrays

GL

SUN_multi draw_arrays

GL

QCOM tiled rendering

GL

OES vertex array object

GL

NV _coverage sample

GL

NV _depth nonlinear

GL

IMG _multisampled render to texture

GL

OES EGL sync

GL

APPLE rgb 422

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

ES1.1

YES
YES

CORE

YES

YES

YES

YES
YES

YES
no

YES

ES2.0/3.0/3.1/3.2

no
CORE
CORE
CORE

YES

YES

CORE
CORE
YES
YES
YES
CORE
YES

YES

YES

N/A

YES
YES
YES

YES

no

YES

YES

24

NXP Semiconductors

http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_3D.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float_linear.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float_linear.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_npot.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_half_float.txt
http://www.khronos.org/registry/gles/extensions/AMD/AMD_compressed_3DC_texture.txt
http://www.khronos.org/registry/gles/extensions/AMD/AMD_compressed_ATC_texture.txt
http://www.khronos.org/registry/gles/extensions/EXT/texture_filter_anisotropic.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_type_2_10_10_10_REV.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_packed_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_standard_derivatives.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_type_10_10_10_2.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_get_program_binary.txt
http://www.khronos.org/registry/gles/extensions/AMD/AMD_program_binary_Z400.txt
http://www.khronos.org/registry/gles/extensions/EXT/texture_compression_dxt1.txt
http://www.khronos.org/registry/gles/extensions/AMD/performance_monitor.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_format_BGRA8888.txt
http://www.khronos.org/registry/gles/extensions/NV/fence.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_read_format.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/QCOM/QCOM_driver_control.txt
http://www.khronos.org/registry/gles/extensions/QCOM/QCOM_performance_monitor_global_mode.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_user_clip_plane.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_env_enhanced_fixed_function.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_2D_limited_npot.txt
http://www.khronos.org/registry/gles/extensions/EXT/texture_lod_bias.txt
http://www.khronos.org/registry/gles/extensions/QCOM/QCOM_writeonly_rendering.txt
http://www.khronos.org/registry/gles/extensions/QCOM/QCOM_extended_get.txt
http://www.khronos.org/registry/gles/extensions/QCOM/QCOM_extended_get2.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_discard_framebuffer.txt
http://www.khronos.org/registry/gles/extensions/EXT/blend_minmax.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_read_format_bgra.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_program_binary.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_shader_binary.txt
http://www.khronos.org/registry/gles/extensions/EXT/multi_draw_arrays.txt
http://www.khronos.org/registry/gles/extensions/EXT/multi_draw_arrays.txt
http://www.khronos.org/registry/gles/extensions/QCOM/QCOM_tiled_rendering.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt
http://www.khronos.org/registry/gles/extensions/NV/EGL_NV_coverage_sample.txt
http://www.khronos.org/registry/gles/extensions/NV/EGL_NV_depth_nonlinear.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_multisampled_render_to_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/EGL_KHR_fence_sync.txt
http://www.khronos.org/registry/gles/extensions/APPLE/rgb_422.txt

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
77. GL _EXT shader texture lod
78. GL APPLE framebuffer multisample
79. GL APPLE texture format BGRA8888
80. GL APPLE texture max level
81. GL ARM mali _shader binary
82. GL_ARM rgbha8
83. GL ANGLE framebuffer blit
84. GL ANGLE framebuffer multisample
85. GL VIV shader binary
86. GL EXT frag depth YES
87. GL OES EGL image external YES YES
88. GL DMP_shader binary
89. GL _QCOM alpha_test
90. GL EXT unpack subimage N/A
91. GL NV draw_buffers
92. GL NV fbo color attachments
93. GL NV read buffer
94. GL NV read depth stencil
95. GL NV_texture compression s3tc update
96. GL NV _texture npot 2D _mipmap
97. GL _EXT color buffer half float CORE
98. GL EXT debug label
99. GL EXT debug marker
100. GL _EXT occlusion_guery boolean
101. GL _EXT separate shader objects
102. GL _EXT shadow samplers
103. GL_EXT texture rg YES
104. GL NV_EGL stream consumer_external
105. GL EXT sRGB
106. GL _EXT multisampled render to texture YES
107. GL _EXT robustness YES
108. GL _EXT texture storage
109. GL ANGLE instanced arrays
110. GL ANGLE pack reverse row order
111. GL ANGLE texture compression_dxt3
GL_ANGLE_ texture_compression_dxt5
112. GL ANGLE texture usage
113. GL ANGLE translated shader_source
114. GL_FJ shader_binary GCCSO

115. GL _OES required_internalformat YES
116. GL OES surfaceless context YES
117. GL KHR texture compression_astc_hdr

GL _KHR_texture compression_astc_Idr YES
118. GL KHR debug YES

119. GL QCOM binning control
120. GL ARM mali program binary

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

NXP Semiconductors

http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_texture_lod.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_framebuffer_multisample.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_format_BGRA8888.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_max_level.txt
http://www.khronos.org/registry/gles/extensions/ARM/ARM_mali_shader_binary.txt
http://www.khronos.org/registry/gles/extensions/ARM/ARM_rgba8.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_framebuffer_blit.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_framebuffer_multisample.txt
http://www.khronos.org/registry/gles/extensions/VIV/VIV_shader_binary.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_frag_depth.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_EGL_image_external.txt
http://www.khronos.org/registry/gles/extensions/DMP/DMP_shader_binary.txt
http://www.khronos.org/registry/gles/extensions/QCOM/QCOM_alpha_test.txt
http://www.khronos.org/registry/gles/extensions/EXT/GL_EXT_unpack_subimage.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_draw_buffers.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_fbo_color_attachments.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_read_buffer.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_read_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_texture_compression_s3tc_update.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_texture_npot_2D_mipmap.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_color_buffer_half_float.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_debug_label.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_debug_marker.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_occlusion_query_boolean.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_separate_shader_objects.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shadow_samplers.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_rg.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_EGL_stream_consumer_external.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_multisampled_render_to_texture.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_robustness.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_storage.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_instanced_arrays.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_pack_reverse_row_order.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_texture_usage.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_translated_shader_source.txt
http://www.khronos.org/registry/gles/extensions/FJ/shader_binary_GCCSO.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_required_internalformat.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_surfaceless_context.txt
http://www.khronos.org/registry/gles/extensions/KHR/texture_compression_astc_ldr.txt
http://www.khronos.org/registry/gles/extensions/KHR/texture_compression_astc_ldr.txt
http://www.khronos.org/registry/gles/extensions/KHR/debug.txt
http://www.khronos.org/registry/gles/extensions/QCOM/QCOM_binning_control.txt
http://www.khronos.org/registry/gles/extensions/ARM/ARM_mali_program_binary.txt

141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.

Extension Number, Name and hyperlink
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

GL_EXT _map buffer_range

GL EXT shader framebuffer fetch
GL APPLE copy texture levels
GL APPLE sync

GL _EXT multiview draw_buffers
GL NV _draw_texture

GL NV _packed float

GL NV_texture compression s3tc
GL NV 3dvision settings

GL NV texture compression latc
GL NV platform binary

GL NV pack subimage

GL NV texture array

GL NV pixel buffer object
GL_NV_bgr

GL_OES depth_texture cube _map
GL EXT color buffer float

GL ANGLE depth texture

GL ANGLE program binary

GL IMG texture compression pvrtc2

GL NV _draw_instanced

GL _NV_framebuffer blit

GL NV _framebuffer_multisample
GL NV_generate_mipmap sRGB
GL _NV_instanced arrays

GL _NV_shadow_samplers_array
GL NV_shadow_samplers cube
GL NV _sRGB formats

GL _NV_texture border clamp
GL_EXT disjoint_timer_query

GL _EXT draw_buffers

GL _EXT texture sRGB decode
GL _EXT sRGB write control

GL _EXT texture compression s3tc
GL EXT pvrtc sRGB

GL_EXT instanced arrays
GL_EXT draw_instanced
GL_NV_copy_buffer
GL_NV_explicit_attrib_location
GL _NV_non_square_matrices
GL_EXT shader_integer mix

GL OES texture compression astc

GL NV blend equation advanced

GL NV blend equation advanced coherent

164. GL INTEL performance query
165. GL ARM shader framebuffer fetch

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

ES2.0/3.0/3.1/3.2

CORE

YES
CORE

YES

YES

26

NXP Semiconductors

http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_map_buffer_range.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_copy_texture_levels.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_sync.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_multiview_draw_buffers.txt
http://www.khronos.org/registry/gles/extensions/NV/draw_texture.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_packed_float.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_texture_compression_s3tc.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_3dvision_settings.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_texture_compression_latc.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_platform_binary.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_pack_subimage.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_texture_array.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_pixel_buffer_object.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_bgr.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth_texture_cube_map.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_color_buffer_float.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_depth_texture.txt
http://www.khronos.org/registry/gles/extensions/ANGLE/ANGLE_program_binary.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc2.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_draw_instanced.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_framebuffer_blit.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_framebuffer_multisample.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_generate_mipmap_sRGB.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_instanced_arrays.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_shadow_samplers_array.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_shadow_samplers_cube.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_sRGB_formats.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_texture_border_clamp.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_disjoint_timer_query.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_draw_buffers.txt
http://www.khronos.org/registry/gles/extensions/EXT/texture_sRGB_decode.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB_write_control.txt
http://www.khronos.org/registry/gles/extensions/EXT/texture_compression_s3tc.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_pvrtc_sRGB.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_instanced_arrays.txt
http://www.khronos.org/registry/gles/extensions/EXT/draw_instanced.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_copy_buffer.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_explicit_attrib_location.txt
http://www.khronos.org/registry/gles/extensions/NV/NV_non_square_matrices.txt
http://www.khronos.org/registry/gles/extensions/EXT/shader_integer_mix.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_astc.txt
http://www.khronos.org/registry/gles/extensions/NV/blend_equation_advanced.txt
http://www.khronos.org/registry/gles/extensions/NV/blend_equation_advanced.txt
http://www.khronos.org/registry/gles/extensions/INTEL/performance_query.txt
http://www.khronos.org/registry/gles/extensions/ARM/ARM_shader_framebuffer_fetch.txt

167.
168.

169.
170.
171.
172.
173.
174.
175.
176.
177.

178.
179.
180.
181.

182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.

Extension Number, Name and hyperlink ES1.1
166.

GL ARM shader framebuffer fetch depth stencil

GL EXT shader pixel local storage

GL KHR blend equation advanced

GL KHR blend equation advanced coherent
GL OES sample shading

GL OES sample variables

GL OES shader _image atomic

GL OES shader multisample interpolation
GL OES texture stencil8

GL OES texture storage multisample 2d array
GL EXT copy image

GL EXT draw buffers indexed

GL EXT geometry shader

GL EXT geometry point size

GL EXT gpu shader5

GL EXT shader implicit conversions

GL EXT shader io blocks

GL EXT tessellation shader

GL EXT tessellation point size

GL _EXT texture border clamp

GL_EXT texture buffer

GL_EXT texture cube map array

GL _EXT texture view

GL _EXT primitive _bounding box

GL _ANDROID_extension_pack es31a

GL _EXT compressed ETC1 RGB8 sub texture
GL _KHR robust buffer access behavior
GL KHR_ robustness

GL KHR context flush control

GL DMP_program_binary

GL _APPLE clip_distance

GL _APPLE color buffer _packed float

GL _APPLE texture packed float

GL _NV_internalformat _sample query

GL NV _bindless texture
GL_NV_conditional_render
GL_NV_path_rendering

GL_NV_image formats
GL_NV_shader_noperspective_interpolation
GL NV _viewport_array

GL_EXT base_instance

GL_EXT draw_elements_base vertex
GL_EXT multi_draw_indirect

GL_EXT render_snorm

GL EXT texture normlé

GL OES copy image

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

ES2.0/3.0/3.1/3.2

CORE

CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE

CORE
CORE

YES
YES

CORE
CORE

CORE

27

NXP Semiconductors

http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
http://www.khronos.org/registry/gles/extensions/ARM/ARM_shader_framebuffer_fetch_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
http://www.khronos.org/registry/gles/extensions/KHR/blend_equation_advanced.txt
http://www.khronos.org/registry/gles/extensions/KHR/blend_equation_advanced.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_sample_shading.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_sample_variables.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_shader_image_atomic.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_shader_multisample_interpolation.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_stencil8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_storage_multisample_2d_array.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_copy_image.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_draw_buffers_indexed.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_geometry_shader.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_geometry_shader.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_gpu_shader5.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_implicit_conversions.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_io_blocks.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_tessellation_shader.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_tessellation_shader.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_border_clamp.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_buffer.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_cube_map_array.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_view.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_primitive_bounding_box.txt
https://www.khronos.org/registry/gles/extensions/ANDROID/ANDROID_extension_pack_es31a.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_compressed_ETC1_RGB8_sub_texture.txt
https://www.khronos.org/registry/gles/extensions/KHR/robust_buffer_access_behavior.txt
https://www.khronos.org/registry/gles/extensions/KHR/robustness.txt
https://www.khronos.org/registry/gles/extensions/KHR/context_flush_control.txt
https://www.khronos.org/registry/gles/extensions/DMP/DMP_program_binary.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_clip_distance.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_color_buffer_packed_float.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_packed_float.txt
https://www.khronos.org/registry/gles/extensions/NV/internalformat_sample_query.txt
https://www.khronos.org/registry/gles/extensions/NV/bindless_texture.txt
https://www.khronos.org/registry/gles/extensions/NV/conditional_render.txt
https://www.khronos.org/registry/gles/extensions/NV/path_rendering.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_image_formats.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_shader_noperspective_interpolation.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_viewport_array.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_base_instance.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_draw_elements_base_vertex.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_multi_draw_indirect.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_render_snorm.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_norm16.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_copy_image.txt

210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243,
246.
247.
248.
249.
250.
251.
251.
252.
253.
254.
255.

GL

OES

Extension Number, Name and hyperlink
209.

draw buffers indexed

GL

OES

geometry shader

GL

OES

gpu_shader5

GL

OES

primitive _bounding box

GL

OES

shader io blocks

GL

OES

tessellation _shader

GL

OES

texture border clamp

GL

OES

texture buffer

GL

OES

texture_cube _map_array

GL

OES

texture view

GL

OES

draw_elements base vertex

GL

OES

copy image

GL

EXT

texture sRGB RS8

GL

EXT

yuv_target

GL

EXT

texture sRGB RG8

GL

EXT

float blend

GL

EXT

post _depth coverage

GL

EXT

raster multisample

GL

EXT

texture filter minmax

GL

NV

conservative _raster

GL

NV

fragment _coverage to color

GL

NV

fragment _shader interlock

GL

NV

framebuffer mixed samples

GL

NV

fill rectangle

GL

NV

geometry shader passthrough

GL

NV

path rendering shared edge

GL

NV

sample locations

GL

NV

sample mask override coverage

GL

NV

viewport array2

GL

NV

polygon mode

GL

EXT

buffer storage

GL

EXT

sparse_texture

GL

OVR_multiview

GL

OVR_multiview2

GL

KHR

no_error

GL

INTEL framebuffer CMAA

GL

EXT

blend func extended

GL

EXT

multisample compatibility

GL

KHR texture compression astc sliced 3d

GL

OVR multiview multisampled render to texture

GL

IMG

texture filter cubic

GL

IMG

texture filter cubic

GL

EXT

polygon offset clamp

GL

EXT

shader pixel local storage2

GL

EXT

shader group vote

GL IMG framebuffer downsample

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

ES1.1

ES2.0/3.0/3.1/3.2

CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE

CORE
CORE

28

NXP Semiconductors

http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_draw_buffers_indexed.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_geometry_shader.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_gpu_shader5.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_primitive_bounding_box.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_shader_io_blocks.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_border_clamp.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_buffer.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_cube_map_array.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_view.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_draw_elements_base_vertex.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_copy_image.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_sRGB_R8.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_YUV_target.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_sRGB_RG8.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_float_blend.txt
https://www.khronos.org/registry/gles/extensions/EXT/post_depth_coverage.txt
https://www.khronos.org/registry/gles/extensions/EXT/raster_multisample.txt
https://www.khronos.org/registry/gles/extensions/EXT/texture_filter_minmax.txt
https://www.khronos.org/registry/gles/extensions/NV/conservative_raster.txt
https://www.khronos.org/registry/gles/extensions/NV/fragment_coverage_to_color.txt
https://www.khronos.org/registry/gles/extensions/NV/fragment_shader_interlock.txt
https://www.khronos.org/registry/gles/extensions/NV/framebuffer_mixed_samples.txt
https://www.khronos.org/registry/gles/extensions/NV/fill_rectangle.txt
https://www.khronos.org/registry/gles/extensions/NV/geometry_shader_passthrough.txt
https://www.khronos.org/registry/gles/extensions/NV/path_rendering_shared_edge.txt
https://www.khronos.org/registry/gles/extensions/NV/sample_locations.txt
https://www.khronos.org/registry/gles/extensions/NV/sample_mask_override_coverage.txt
https://www.khronos.org/registry/gles/extensions/NV/viewport_array2.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_polygon_mode.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_buffer_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sparse_texture.txt
https://www.khronos.org/registry/gles/extensions/OVR/multiview.txt
https://www.khronos.org/registry/gles/extensions/OVR/multiview2.txt
https://www.khronos.org/registry/gles/extensions/KHR/no_error.txt
https://www.khronos.org/registry/gles/extensions/INTEL/framebuffer_CMAA.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_blend_func_extended.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_multisample_compatibility.txt
https://www.khronos.org/registry/gles/extensions/KHR/texture_compression_astc_sliced_3d.txt
https://www.khronos.org/registry/gles/extensions/OVR/multiview_multisampled_render_to_texture.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_filter_cubic.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_filter_cubic.txt
https://www.khronos.org/registry/gles/extensions/EXT/polygon_offset_clamp.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage2.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_group_vote.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_framebuffer_downsample.txt

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
256. GL _EXT protected textures CORE
257. GL_EXT clip_cull distance

258. GL_NV_viewport swizzle

259. GL_EXT sparse_texture2

260. GL_NV_gpu_shader5

261. GL_NV_shader atomic fpl6 vector

262. GL_NV_conservative raster pre snap triangles

263. GL _EXT window rectangles

264. GL _EXT shader non constant global initializers

265. GL INTEL conservative rasterization

266. GL NVX blend equation advanced multi _draw buffers

267. GL _OES viewport array

268. GL _EXT conservative depth

269. GL _EXT clear texture

270. GL IMG_bindless texture

271. GL _NV_texture barrier

GL_VIV_direct_texture YES YES

3.4 Extension GL_VIV_direct_texture

Name
VIV_direct_texture

Name strings
GL_VIV_direct_texture

IPStatus

Contact NXP Semiconductor regarding any intellectual property questions associated with this extension.

Status
Implemented: July, 2011

Version

Last modified: 29 July, 2011
Revision: 2

Number

Unassigned

Dependencies
OpenGL ES 1.1 is required. OpenGL ES 2.0 support is available.

Overview

Create a texture with direct access support. This is useful when an application desires to use the same texture over and over
while frequently updating its content. It could also be used for mapping live video to a texture. A video decoder could write its
result directly to the texture and then the texture could be directly rendered onto a 3D shape. glTexDirectVIVMap is similar

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

29 NXP Semiconductors

http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_protected_textures.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_clip_cull_distance.txt
https://www.khronos.org/registry/gles/extensions/NV/viewport_swizzle.txt
https://www.khronos.org/registry/gles/extensions/EXT/sparse_texture2.txt
https://www.khronos.org/registry/gles/extensions/NV/gpu_shader5.txt
https://www.khronos.org/registry/gles/extensions/NV/shader_atomic_fp16_vector.txt
https://www.khronos.org/registry/gles/extensions/NV/conservative_raster_pre_snap_triangles.txt
https://www.khronos.org/registry/gles/extensions/EXT/window_rectangles.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_non_constant_global_initializers.txt
https://www.khronos.org/registry/gles/extensions/INTEL/conservative_rasterization.txt
https://www.khronos.org/registry/gles/extensions/NVX/nvx_blend_equation_advanced_multi_draw_buffers.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_viewport_array.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_conservative_depth.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_clear_texture.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_bindless_texture.txt
https://www.khronos.org/registry/gles/extensions/NV/texture_barrier.txt

to glTexDirectVIV. The only difference is that it has two inputs, “Logica
space memory or a physical address into the texture surface.

New Procedures and Functions

giTexDirectVIV

|u

and “Physical,” which support mapping a user

Syntax:

GL_API void GL_APIENTRY

glTexDirectVIV (
GLenum Target,
GLsizei Width,
GLsizei Height,
GLenum Format,
GLvoid ** Pixels

)5

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width Size of LOD 0. Width must be 16 pixel aligned. The width and

Height height of LOD 0 of the texture is specified by the Width and Height
parameters. The driver may auto-generate the rest of LODs if the
hardware supports high quality scaling (for non-power of 2
textures) and LOD generation. If the hardware does not support
high quality scaling and LOD generation, the texture remains a
single-LOD texture.

Format Choose the format of the pixel data from the following formats:
GL_VIV_YV12, GL_VIV_NV12, GL_VIV_NV21, GL_VIV_YUY2,
GL_VIV_UYVY, GL_RGBA, and GL_BGRA_EXT.

e Ifthe formatis GL_VIV_YV12, gITexDirectVIV creates a planar
YV12 4:2:0 texture and the format of the Pixels array is as
follows: Yplane, Vplane, Uplane.

e Ifthe formatis GL_VIV_NV12, gITexDirectVIV creates a planar
NV12 4:2:0 texture and the format of the Pixels array is as
follows: Yplane, UVplane.

e Ifthe formatis GL_VIV_NV21, gITexDirectVIV creates a planar
NV21 4:2:0 texture and the format of the Pixels array is as
follows: Yplane, VUplane.

e Ifthe formatis GL_VIV_YUY2 or GL_VIV_UYVY, glTexDirectVIV
creates a packed 4:2:2 texture and the Pixels array contains
only one pointer to the packed YUV texture.

e If Formatis GL_RGBA, glTexDirectVIV creates a pixel array
with four GL_UNSIGNED_BYTE components: the first byte for
red pixels, the second byte for green pixels, the third byte for
blue, and the fourth byte for alpha.

e If Formatis GL_BGRA_EXT, glTexDirectVIV creates a pixel
array with four GL_UNSIGNED_BYTE components: the first
byte for blue pixels, the second byte for green pixels, the third
byte for red, and the fourth byte for alpha.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

30

NXP Semiconductors

Pixels

Stores the memory pointer created by the driver.

Output
If the function succeeds, it returns a pointer, or, for some YUV formats, it returns a set of pointers that
directly point to the texture. The pointer(s) are returned in the user-allocated array pointed to by the Pixels
parameter.
GITexDirectVIVMap
Syntax:
GL_API void GL_APIENTRY
glTexDirectVIVMap (
Glenum Target,
Glsizei Width,
Glsizei Height,
Glenum Format,
Glvoid ** Logical,
const Gluint * Physical
)
Parameters
Target Target texture. Must be GL_TEXTURE_2D.
Width Size of LOD 0. Width must be 16 pixel aligned. See glTexDirectVIV.
Height
Format Same as glTexDirectVIV Format.
Logical Pointer to the logical address of the application-defined texture
buffer. Logical address must be 64 bit (8 byte) aligned.
Physical Pointer to the physical address of the application-defined buffer to
the texture, or ~0 if no physical address has been provided.
GITexDirectInvalidateVIV
Syntax:
GL_API void GL_APIENTRY
glTexDirectInvalidateVIV (
Glenum Target
)
Parameters
Target Target texture. Must be GL_TEXTURE_2D.
New Tokens
GL_VIV_YVi12 Ox8FCO
GL_VIV_NV12 O0x8FC1
GL_VIV_YUY2 Ox8FC2
i.MX Graphics User’'s Guide, Rev. 0, 03/2018
31 NXP Semiconductors

GL_VIV_UYVY O0x8FC3
GL_VIV_NV21 0x8FC4

Error codes

GL_INVALID_ENUM Target is not GL_TEXTURE_2D, or format is not a valid format.
GL_INVALID_VALUE Width or Height parameter is less than 1.
GL_OUT_OF_MEMORY A memory allocation error occurred.
GL_INVALID_OPERATION Specified format is not supported by the hardware, or

no texture is bound to the active texture unit, or
some other error occurs during the call.

Example 1.

First, call glTexDirectVIV to get a pointer.
Second, copy the texture data to this memory address.

Then, call glTexDirectInvalidateVIVto apply the texture before drawing something with that texture.

GlTexDirectInvalidateVIV(GL_TEXTURE_2D);

glDrawArrays(..);

Example 2.

First, call glTexDirectVIVMap to map Logical and Physical address to the texture.
Second, modify Logical and Physical data.

Then, call glTexDirectInvalidateVIVto apply the texture before drawing something with that texture.

char *Logical = (char*) malloc (sizeof(char)*size);

Gluint physical = ~0U;

glTexDirectVIVMap (GL_TEXUTURE_2D, 512, 512, GL_VIV_YV12,
(void**)&Logical, &32hysical);

GlTexDirectInvalidateVIV(GL_TEXTURE_2D);

glDrawArrays(..);

Issues

None

3.5 Extension GL_VIV_texture_border_clamp

Name

VIV_texture_border_clamp

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

32

NXP Semiconductors

Name Strings
GL_VIV_texture_border_clamp

Status
Implemented September 2012.

Version

Last modified: 27 September 2012
Vivante revision: 1

Number
Unassigned

Dependencies
This extension is implemented for use with OpenGL ES 1.1 and OpenGL ES 2.0.

This extension is based on OpenGL ARB Extension #13: GL_ARB_texture_border_clamp:
www.opengl.org/registry/specs/ARB/texture border clamp.txt. See also vendor extension GL_SGIS_texture_border_clamp:
www.opengl.org/registry/specs/SGIS/texture border clamp.txt.

Overview

This extension was adapted from the OpenGL extension for use with OpenGL ES implementations. The OpenGL ARB Extension
13 description applies here as well:
“The base OpenGL provides clamping such that the texture coordinates are limited to exactly the range
[0,1]. When a texture coordinate is clamped using this algorithm, the texture sampling filter straddles the
edge of the texture image, taking 1/2 its sample values from within the texture image, and the other 1/2
from the texture border. It is sometimes desirable for a texture to be clamped to the border color, rather
than to an average of the border and edge colors.

This extension defines an additional texture clamping algorithm. CLAMP_TO_BORDER_[VIV] clamps texture
coordinates at all mipmap levels such that NEAREST and LINEAR filters return only the color of the border

texels.”

The color returned is derived only from border texels and cannot be configured.

Issues

None

New Tokens

Accepted by the <param> parameter of TexParameteri and TexParameterf, and by the <params> parameter of
TexParameteriv and TexParameterfv, when their <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T, or
TEXTURE_WRAP_R:

CLAMP_TO_BORDER_VIV 0x812D

Errors

None.

New State

Only the type information changes for these parameters.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

33 NXP Semiconductors

http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
https://www.opengl.org/registry/specs/SGIS/texture_border_clamp.txt

See OES 2.0 Specification Section 3.7.4, page 75-76, Table 3.10, “Texture parameters and their values.”

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

34

NXP Semiconductors

Chapter 4 i.MX Framebuffer API

4.1 Overview

The graphics software includes i.MX Framebuffer (FB) APl which enables users to easily create and port their
graphics applications by using a framebuffer device without the need to expend additional effort handling
platform-related tasks. i.MX Framebuffer APl focuses on providing mechanisms for controlling display, window,
and pixmap render surfaces.

The EGL Native Platform Graphics Interface provides mechanisms for creating rendering surfaces onto which client
APIs can draw, creating graphics contexts for client APIs, and synchronizing drawing by client APIs as well as native
platform rendering APIs. This enables seamless rendering using Khronos APIs such as OpenGL ES and OpenVG for
high-performance, accelerated, mixed-mode 2D, and 3D rendering. For further information on EGL, see
www.khronos.org/registry/egl. The APl described in this document is compatible with EGL version 1.4 of the
specification.

The following platforms are supported:
e Linux® 0S/X11
e Android™ platform
e Windows® Embedded Compact OS
e QNX®

4.2 APl data types and environment variables

4.2.1 Data types

The GPU software provides platform independent member definitions for the following EGL types:
typedef struct _FBDisplay * EGLNativeDisplayType;
typedef struct _FBWindow * EGLNativeWindowType;
typedef struct _FBPixmap * EGLNativePixmapType;

D |
Types [2.1.1] The following types differ based on platform.
: - Windows platform:
unsigned int EGLBoolean HDC EGLNativeDisplayType
unsigned int EGLenum HBITMAP EGLNat!vePi)fmapType
” *EGLCon HWND EGLNativeWindowType
Vo! g Linux/X11 platform:
void *EGLContext Display *EGLNativeDisplayType
void *EGLDisplay Pixmap EGLNativePixmapType
void *EGLSurface Wlnd(?w EGLNativeWindowType
: - lientBuff Android platform:
void EGLClientBuffer [ANativeWindow* EGLNativeWindowType |
|

Figure 2 Types as listed on EGL 1.4 APl Quick Reference Card

(from www.khronos.org/files/egl-1-4-quick-reference-card.pdf)

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

35 NXP Semiconductors

http://www.khronos.org/registry/egl
http://www.khronos.org/files/egl-1-4-quick-reference-card.pdf

4.2.2 Environment variables

Table 14. i.MX FB API environment variables

Environment Variables Description

To use multiple-buffer rendering, set the environment variable
FB_MULTI_BUFFER to an unsigned integer value, which indicates the
number of buffers required. The maximum is 8.

Recommended values: 4.
The FB_MULTI_BUFFER variable can be set to any positive integer value.

FB_MULTI_BUFFER e Ifsetto 1, the multiple-buffer function is not enabled, and the VSYNC
is also disabled, so there may be tearing on screen, but it is good for
benchmark test.

e |fsetto2or3, VSYNCis enabled and there are double or trible frame
buffer. Because of the hardware limitation of current IPU, there may
be tearing on screen.

e Ifsetto 4 or more, VSYNC is enabled and no screen tearing appears.

e |[f set to a value more than 8, the driver uses 8 as the buffer count.

To open a specified framebuffer device, set the environment variable
FB_FRAMEBUFFER_O, FB_FRAMEBUFFER_n to a proper value (for example,

FB_FRAMEBUFFER_O = /dev/fb0).
FB_FRAMEBUFFER_1,
Allowed values for n: any positive integer.
FB_FRAMEBUFFER_2,
Note: If there are no environment variables set, the driver tries to use the
FB_FRAMEBUFFER _n default framebuffer devices (fb0 for index 0, fb1 for index 1, fb2 for index

2, fb3 for index 3, and so on).

When set to a positive integer and a window’s initial size request is
greater than the display size, the window size is not reduced to fit within
the display. Global.

Allowed values: any positive integer.

Note: The drivers read the value from this environment variable as a
Boolean to check if the user wants to ignore the display size when creating

a window.
e |f the variable is set to value, 0, or this environment variable is not
FB IGNORE DISPLAY SIZE set, when creating window, the driver uses display size to cut down

the size of the window to ensure that the entire window area is
inside the display screen.

e If the user sets this variable to 1, or any positive integer value, then
the window area can be partly or entirely outside of the display
screen area (see the image below in which the ignore display size is

equal to 1).
Display
window
GPU_VIV_DISABLE_CLEAR_FB It turns off zero fill memory, so the content of FBDEV buffer is not cleared.
FB LEGACY If the board support drm-fb, the gpu will render though drm by default. If

the user wants to render to framebuffer directly instead of through drm,

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

36 NXP Semiconductors

sets this variable to 1.

Below are some usage syntax examples for environment variables:

To create a window with its size different from the display size, use the environment variable
FB_IGNORE_DISPLAY_SIZE. Example usage syntax:

export FB IGNORE DISPLAY SIZE=1

To let the driver use multiple buffers to do swap work, use the environment variable FB_MULTI_BUFFER. Example
usage syntax:
export FB MULTI BUFFER=2

To specify the display device, use the environment variable FB_FRAMEBUFFER_n, where n = any positive integer.
Example usage syntax:

export FB FRAMEBUFFER 0=/dev/fb0
export FB FRAMEBUFFER 1=/dev/fbl
export FB FRAMEBUFFER 2=/dev/fb2
export FB_FRAMEBUFFER 3=/dev/fb3

4.3 APl description and syntax
fbGetDisplay

Description:
This function is used to get the default display of the framebuffer device.

To open the framebuffer device, set an environment variable FB_FRAMEBUFFER_n to the framebuffer location.

Syntax:
EGLNativeDisplayType
fbGetDisplay (
void * context
);
Parameters:
context Pointer to the native display instance.

Return Values:
The function returns a pointer to the EGL native display instance if successful; otherwise, it returns a NULL pointer.

fbGetDisplayByindex

Description:
This function is used to get a specified display within a multiple framebuffer environment by providing an index
number.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

37 NXP Semiconductors

To use multiple buffers when rendering, set the environment variable FB_MULTI_BUFFER to an unsigned integer
value, which indicates the number of buffers. Maximum is 3.

To open a specific Framebuffer device, set environment variables to their proper values (e.g., set
FB_FRAMEBUFFER_O = /dev/fb0). If there are no environment variables set, the driver tries to use the default fb
devices (fbO for index 0, fb1 for index 1, fb2 for index 2, fb3 for index 3, and so on).

Syntax:
EGLNativeDisplayType
fbGetDisplayByIndex (
int DisplayIndex
)
Parameters:
Displaylndex An integer value where the integer is associated with one of the following environment

variables for framebuffer devices:
FB_FRAMEBUFFER_O
FB_FRAMEBUFFER_1
FB_FRAMEBUFFER_2
FB_FRAMEBUFFER_n

Return Value:
The function returns a pointer to the EGL native display instance if successful; otherwise, it returns a NULL pointer.

fbGetDisplayGeometry

Description:
This function is used to get display width and height information.

Syntax:
void
fbGetDisplayGeometry (
EGLNativeDisplayType Display,
int * Width,
int * Height
)s
Parameters:
Display [in] Pointer to EGL native display instance created by fbGetDisplay.
Width [out] Pointer that receives the width of the display.
Height [out] Pointer that receives the height of the display.

fbGetDisplaylnfo

Description:
This function is used to get display information.

Syntax:
void
fbGetDisplayInfo (
EGLNativeDisplayType Display,

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

38 NXP Semiconductors

int * Width,

int * Height,

unsigned long * Physical,

int * Stride,

int * BitsPerPixel

)s

Parameters:
Display [in] A pointer to the EGL native display instance created by fbGetDisplay.
Width [out] A pointer to the location that contains the width of the display.
Height [out] A pointer to the location that contains the height of the display.
Physical [out] A pointer to the location that contains the physical start address of the display.
Stride [out] A pointer to the location that contains the stride of the display.
BitsPerPixel [out] A pointer to the location that contains the pixel depth of the display.
fbDestroyDisplay
Description:

This function is used to destroy a display.

Syntax:
void
fbDestroyDisplay (
EGLNativeDisplayType Display
)
Parameters:
Display [in] Pointer to EGL native display instance created by fbGetDisplay.

fbCreateWindow

Description:
This function is used to create a window for the framebuffer platform with the specified position and size. If
width/height is 0, it uses the display width/height as its value.

Note: When either window X + width or the Y + height is larger than the display’s width or height respectively, the
API reduces the window size to force the whole window inside the display screen limits. To avoid reducing the
window size in this scenario, users can set a value of “1” to the environment variable FB_IGNORE_DISPLAY_SIZE.

Syntax:
EGLNativeWindowType
fbCreateWindow (
EGLNativeDisplayType Display,

int X,
int Y,
int Width,
int Height

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

39 NXP Semiconductors

Parameters:

Display [in] Pointer to EGL native display instance created by fbGetDisplay.
X [in] Specifies the initial horizontal position of the window.

Y [in] Specifies the initial vertical position of the window.

Width [in] Specifies the width of the window.

Height [in] Specifies the height of the window in device units.

Return Value:

The function returns a pointer to the EGL native window instance if successful; otherwise, it returns a NULL

pointer.

fbGetWindowGeometry

Description:

This function is used to get window position and size information.

Syntax:
void
fbGetWindowGeometry (
EGLNativeWindowType Window,
int * X,
int * Y:
int * Width,
int * Height
)s
Parameters:
Window [in] Pointer to EGL native window instance created by fbCreateWindow.
X [out] Pointer that receives the horizontal position value of the window.
Y [out] Pointer that receives the vertical position value of the window.
Width [out] Pointer that receives the width value of the window.
Height [out] Pointer that receives the height value of the window.
fbGetWindowlnfo
Description:

This function is used to get window position and size and address information.

Syntax:
void

fbGetWindowInfo (
EGLNativeWindowType Window,

int
int
int
int
int

*

* ¥ ¥ ¥

X,

Y,

Width,

Height
BitsPerPixel,

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

40

NXP Semiconductors

unsigned int * Offset

);
Parameters:
Window [in] A pointer to the EGL native window instance created by fbCreateWindow.
X [out] A pointer to the location that contains the horizontal position value of the window.
Y [out] A pointer to the location that contains the vertical position value of the window.
Width [out] A pointer to the location that contains the width of the window.
Height [out] A pointer to the location that contains the height of the window.
BitsPerPixel [out] A pointer to the location that contains the pixel depth of the window.
Offset [out] A pointer to the location that contains the offset of the window.
fbDestroyWindow
Description:

This function is used to destroy a window.

Syntax:

void

fbDestroyWindow (

EGLNativeWindowType Window

)
Parameters:
Window [in] Pointer to EGL native window instance created by fbCreateWindow.
fbCreatePixmap
Description:

This function is used to create a pixmap of a specific size on the specified framebuffer device. If either the width or
height is 0, the function fails to create a pixmap and return NULL.

Syntax:
EGLNativePixmapType
fbCreatePixmap (
EGLNativeDisplayType Display,
int Width,
int Height
)s
Parameters:
Display [in] Pointer to the EGL native display instance created by fbGetDisplay.
Width [in] Specifies the width of the pixmap.
Height [in] Specifies the height of the pixmap.

Return Value:
The function returns a pointer to the EGL native pixmap instance if successful; otherwise, it returns a NULL pointer.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

41 NXP Semiconductors

fbCreatePixmapWithBpp

Description:

This function is used to create a pixmap of a specific size and bit depth on the specified framebuffer device. If
either the width or height is 0, the function fails to create a pixmap and return NULL.

Syntax:

Parameters:
Display
Width
Height
BitsPerPixel

Return Value:

EGLNativePixmapType
fbCreatePixmapWithBpp (
EGLNativeDisplayType Display,

int Width,
int Height
int BitsPerPixel

)5

[in]A pointer to the EGL native display instance created by fbGetDisplay.
[in] Specifies the width of the pixmap.

[in] Specifies the height of the pixmap.

[in] Specifies the bit depth of the pixmap.

The function returns a pointer to the EGL native pixmap instance if successful; otherwise, it returns a NULL pointer.

fbGetPixmapGeometry

Description:

This function is used to get pixmap size information.

Syntax:

Parameters:
Pixmap
Width
Height

void

fbGetPixmapGeometry (
EGLNativePixmapType Pixmap,
int * Width,
int * Height

);

[in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.

[out] Pointer that receives a width value for pixmap.
[out] Pointer that receives a height value for pixmap.

fbGetPixmaplinfo

Description:

This function is used to get pixmap size and depth information.

Syntax:

void

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

42

NXP Semiconductors

int * width,

int * Height

int * BitsPerPixel

int * Stride,

void ** Bits

);

Parameters:
Pixmap [in] A pointer to the EGL native pixmap instance created by fbCreatePixmap.
Width [out] A pointer to the location that contains a width value for pixmap.
Height [out] A pointer to the location that contains a height value for pixmap.
BitsPerPixel [out] A pointer to the location that contains the pixel depth of the pixmap.
Stride [out] A pointer to the location that contains the stride of the pixmap.
Bits [out] A pointer to the location that contains the bit address of the pixmap.
fbDestroyPixmap
Description:

fbGetPixmapInfo (
EGLNativePixmapType Pixmap,

This function is used to destroy a pixmap.

Syntax:

Parameters:
Pixmap

void
fbDestroyPixmap (
EGLNativePixmapType Pixmap

)5

[in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

43

NXP Semiconductors

Chapter 5 OpenCL
5.1 Overview

5.1.1 General description

OpenCL (Open Computing Language) is an open industry standard application programming interface (API) used to
program multiple devices including GPUs, CPUs, as well as other devices organized as part of a single
computational platform. The OpenCL standard targets a wide range of devices from mobile phones, tablets, PCs,
and consumer electronic (CE) devices, all the way to embedded applications such as automotive and image
processing functions. The API takes advantage of all resources in a platform to fully utilize all compute capability
and to efficiently process the growing complexity of incoming data streams from multiple 1/O (input/output)
sources. I/0 streams can be camera inputs, images, scientific or mathematical data, and any other form of complex
data that can make use of data or task parallelism.
OpenCL uses parallel execution SIMD (single instruction, multiple data) engines found in GPUs to enhance data
computational density by performing massively parallel data processing on multiple data items, across multiple
compute engines. Each compute unit has its own arithmetic logic units (ALUs), including pipelined floating point
(FP), integer (INT) units and a special function unit (SFU) that can perform computations as well as transcendental
operations. The parallel computations and associated series of operations are called a kernel, and the GPU cores
can execute a kernel on thousands of work-items in parallel at any given time.
At a high level, OpenCL provides both a programming language and a framework to enable parallel programming.
OpenCL includes APIs, libraries and a runtime system to assist and support software development. With OpenCL, it
is possible to write general purpose programs that can execute directly on GPUs, without needing to know
graphics architecture details or using 3D graphics APIs like OpenGL or DirectX. OpenCL also provides a low-level
Hardware Abstraction Layer (HAL) as well as a framework that exposes many details of the underlying hardware
layer and thus allows the programmer to take full advantage of the hardware.
For more details on all the capabilities of OpenCL, see the following specifications from the Khronos Group:
. OpenCL 1.2 Specification

www.khronos.org/registry/cl/specs/opencl-1.2.pdf

. OpenCL 1.2 C++ Bindings Specification
www.khronos.org/registry/cl/specs/opencl-cplusplus-1.2.pdf

5.1.2 OpenCL framework

The OpenCL framework has two principal parts, similar to OpenGL, the host C APl and the device C-based language
runtime. The host in OpenCL terminology corresponds to the client in OpenGL and the device corresponds to the
server. Device programs are called kernels. Execution of an OpenCL program is preceded by a series of API calls
that configure the system and GPGPU for execution.

OpenCL abstracts today's heterogeneous architectures using a hierarchical platform model. A host coordinates the
execution and data transfers on, to and from one or several compute devices. Compute devices are comprised of
compute units and each such unit contains an array of processing elements.

5.1.2.1 OpenCL execution model: kernels and work elements

The OpenCL execution model is defined by how the kernels are executed. When a kernel is submitted for
execution by the host, an index space is defined. An instance of the kernel executes for each point in this index
space. This kernel instance is called a work-item. Work-items are identified by their position in the index space

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

44 NXP Semiconductors

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-cplusplus-1.2.pdf

that provides the global ID for the work-item. Each work-item executes the same code but the specific pathway
through the code and the data operated upon varies by work-item.

Work-items are organized into work-groups. Work-groups provide a broader decomposition of the index space.
Work-groups are each assigned a unique work-group ID with the same dimensionality as the index space used for
the work-items. Work-items are assigned a unique local ID within a work-group so that a single work-item can be
uniquely identified by its global ID or by a combination of its local ID and work-group ID. The work-items in a given
work-group execute concurrently on the same compute device.

The index space supported in OpenCL is called an NDRange. An NDRange is an N-dimensional index space, where N
is one (1), two (2) or three (3). An NDRange is defined by an integer array of length N specifying the extent of the
index space in each dimension starting at an offset index F (zero by default). Each work-item’s global ID and local
ID are N-dimensional tuples. The global ID components are values in the range from F, to F plus the number of
elements in that dimension minus one.

Work-groups are assigned IDs using a similar approach to that used for work-item global IDs. An array of length N
defines the number of work-groups in each dimension. Work-items are assigned to a work-group and given a local
ID with components in the range from zero to the size of the work-group in that dimension minus one. Hence, the
combination of a work-group ID and the local-ID within a work-group uniquely defines a work-item. Each work-
item is identifiable in two ways; in terms of a global index, unique through the whole kernel index space, and in
terms of a local index, unique within a work group.

5.1.2.2 OpenCL command queues

OpenCL provides both task and data parallelism. Data movements are coordinated via command queues which
provide a general means of specifying inter-task relationships and task execution orders that obey the
dependencies in the computation. OpenCL may execute several tasks in parallel, if they are not order dependent.
Tasks are composed of data-parallel kernels which, similarly to shaders, apply a single function to a range of
elements in parallel. Only restricted synchronization and communication is allowed during kernel execution.
OpenCL kernels execute over a 1, 2 or 3 dimensional index space. All work-items execute the same program
(kernel) but their execution may diverge, with branching dependent on the data or their index. For details
regarding how many work groups are allowed within an index space see “Using c1LEnqueueNDRangeKernel®.
A kernel or a memory operation is first enqueued onto a command queue. Kernels are executed asynchronously
and the host application execution may proceed right after the enqueue operation. The application may opt to
wait for an operation to complete and an operation (kernel or memory) may be marked with a list of events that
must occur before it executes.

Events are kernel completion and memory operations. OpenCL traverses the dependence graph between the
kernels and memory transfers in a queue and ensures the correct execution order. Multiple command queues may
be constructed, further enhancing parallelism control across platforms and multiple compute devices.

® Command-queue barriers are used to control the commands within the command queue. The
command-queue barrier indicates which commands must be finished before proceeding. This allows
for out-of-order command processing. The command queue barrier ensures that all previously
enqueued commands finish execution before any following commands begin execution.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

45 NXP Semiconductors

COMMAND QUEUE

COMMAND

.e Enqueue command sequence may be
in-order or out of order

COMMAND

Command Queue Barrier
Command Queue . preventes following commands from
Barrier executing before previously enqueued
i commands finish execution

COMMAND
Following commands begin execution
only after previously enqueue commands
finish

COMMAND

Figure 3 Command queue barrier

The work-group barrier built-in function provides control of the work-item flow within work-groups. All work-items
must execute the barrier construct before any can continue execution beyond the barrier.

5.1.2.3 OpenCL memory model

The OpenCL memory model is divided into four different types of memory domains. These are:

¢ Global Memory. Each compute device has global memory space which can reside off-chip in system
memory (DRAM) or inside the chip at the L1 or temporary register level. Global memory is accessible to
all work-items executing in a context, as well as to the host (read, write, and map commands).

¢ Constant Memory is also global memory, but it is read-only. Constant memory can be placed in any
level of memory that the application programmer decides, making it an implementation dependent
decision. This is the region for host-allocated and host-initialized objects that are not changed during
kernel execution.

¢ Local Memory. Each compute unit has local memory which resides very near the processing elements.
Access to local memory is very fast and the size of local memory is much smaller than global memory,
making it a scarce resource that needs to be controlled for optimal communication of work-items inside
a work-group. Local memory is specific to a work-group, and is accessible only by work-items belonging
to that work group.

¢ Private Memory. Each processing element has another level of memory called private memory, which is

only accessible to a single work-item. Private memory is specific to a work-item and is not visible to
other work-items.

During run-time, each processing element is assigned a set of on-chip registers that are used for data storage of
intermediate data. Data that cannot be stored in registers spills over to global memory which can be very costly in

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

46 NXP Semiconductors

terms of performance and constant data movement to/from temporary registers. Software may emulate local and
private memory using global memory. System Memory is often loaded to L1 cache, Temporary or Local Storage
Registers and the GPGPU reads from those locations. At every level of the application program, the programmer
must be aware of the size and hierarchy of storage elements.

Table 15. Vivante memory structures mapped to Khronos OpenCL memory types

Khronos OpenCL Memory Vivante GPGPU OpenCL Memory Definition
Model Name Structures Utilized
Private Memory Registers, System Memory Accessible only to an individual work-item; not visible

to any other work-items

Local Memory Local Storage Registers, System Accessible to all work-items within a specific work-
Memory group; accessible only by work-items belonging to
that work-group

Global Memory System Memory Accessible to all-work-items executing in a context, as
well as to the host (read, write, and map commands).

Constant Memory Constant Registers, System Read only global memory region for host-allocated
Memory and initialized objects that are not changed during
kernel execution

Host (CPU) Memory Host Memory Region for a kernel application’s program data and
structures

The OpenCL concurrent-read /concurrent-write (CRCW) memory model has so-called relaxed consistency which
means that different work-items may see a different view of global memory as the computation proceeds. Within
individual work-items reads and writes to all memory spaces are ordered. Synchronization between work-items in
a work-group is necessary to ensure consistency. No mechanism for synchronization between work-groups is
provided. Such a model assures parallel scalability by requiring explicit synchronization and communication.

For the highest throughput and computational speed, kernels should use high-speed on-chip memories and
registers as much as possible. Instruction control flow and memory operations, including data gathering /
scattering and direct memory access (DMA) should be automatically reorganized / re-ordered depending on data
dependencies detected by the optimized compiler. The Vivante OpenCL compiler automatically maps
dependencies and re-orders instructions for the best performance.

5.1.2.4 Host to GPGPU compute device data transfers

The application running on the host uses the OpenCL API to create memory objects in global memory, and to
enqueue memory commands that operate on these memory objects. The host and OpenCL device memory models
are, for the most part, independent of each other. This is by necessity as the host is defined outside of OpenCL.
They do, however, at times need to interact. This interaction occurs in one of two ways: by explicitly copying data
from the host to the GPU compute device memory, or implicitly, by mapping and unmapping regions of a memory
object.

* Explicit using cLEnqueueReadBuffer and clEnqueueWriteBuffer (clEnqueueReadImage,
clEnqueuelWriteImage.)

To copy data explicitly, the host enqueues commands to transfer data between the memory object and

host memory. These memory transfer commands may be blocking or non-blocking. The OpenCL function
call for a blocking memory transfer returns once the associated memory resources on the host can be

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

47 NXP Semiconductors

safely reused. For a non-blocking memory transfer, the OpenCL function call returns as soon as the
command is enqueued regardless of whether host memory is safe to use.
¢ Implicit using c1EnqueueMapBuffer and clEnqueueUnMapMemObject.

The mapping/unmapping method of interaction between the host and OpenCL memory objects allows
the host to map a region from the memory object into its address space. The memory map command may
be blocking or non-blocking. Once a region from the memory object has been mapped, the host can read
or write to this region. The host unmaps the region when accesses (reads and/or writes) to this mapped
region by the host are complete.

The OpenCL specification does not explicitly state where each memory space will be mapped to on
individual implementations. This provides great freedom for vendors on the one hand and some
uncertainty for programmers on the other. Fortunately, kernels may be compiled just-in-time and
possible differences may be tackled during run-time.

When using these interfaces, it is important to consider the amount of copying involved to/from system
memory and the various levels within the compute device(s). There is a two-copy process: between host
and AXI (or SoC internal bus), and between AXI (or SoC internal bus) and the Vivante GPGPU compute
device. Double copying lowers overall system memory bandwidth and lowers performance. Because of
variations in system architecture (both internal and external/memory), there is sometimes a large
performance delta between the system or calculated GFLOPS and the kernel or GPGPU GFLOPS. GPGPU
GFLOPS are based on the theoretical computational capability of the ALUs within the GPGPU, assuming
the system architecture can deliver full data to the GPGPU. OpenCL APIs for buffers and images aid in
avoiding double copy by allowing the mapping of host memory to device memory. With proper memory
transfer management and the use of host/CPU memory remapped to the GPGPU memory space, copying
between host memory and GPGPU memory can be skipped so data transfer becomes a one-copy process.
The trade-off is that the programmer needs to be mindful of page boundaries and memory alignment
issues.

5.1.3 OpenCL profiles

In addition to Full Profile, the OpenCL specification also includes an Embedded Profile, which relaxes the OpenCL
compliance requirements for mobile and embedded devices. The main commons and differences between OpenCL
1.1/1.2 EP (Embedded Profile) and FP (Full Profile) come down to:

Commons:

e Both EP and FP significantly offload the CPU of parallel, multi-threaded tasks.
e For both EP and FP double precision and half-precision floating point are optional.

Difference:

o Full Profile is for highly complex, accurate, and real time computations, while Embedded Profile is a
small subset targeting smaller devices (handheld, mobile, embedded) that perform GPGPU/OpenCL
processing with relaxed data type and precision requirements (image processing, augmented reality,
gesture recognition, and more).

o 64-bit integers are required for FP and optional for EP.

. EP requires either RTZ or RTE. FP requires both.

. Computational precision (units in the last place; i.e., ULP) requirements in EP are relaxed.
° Atomic instruction support is not required in EP.

° 3D Image support is not required in EP.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

48 NXP Semiconductors

. Minimum requirements for constant buffer size, object allocation size, constant argument counts and

local memory sizes are scaled down in EP.
. And more (in general EP is a scaled down version of FP).

. Die size and power increase with FP because of the higher requirements, features and memory sizes.

5.1.4 Vivante OpenCL embedded compatible IP

As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Embedded Profile

version 1.1. Hardware capability deltas include:

Table 16. Vivante OpenCL embedded profile hardware

Hardware and revision
Feature
Compute Devices (GPGPU cores)
Compute Units per device (Shader cores)
Processing Elements per compute unit
Profile
Preferred work-group/thread group size
Max count global work-items each dim
Max count of work-items each dim per work-group
Local Storage Registers On-chip
Instruction Memory

Texture Samplers

Texture Samplers available to OCL
(HW, unlimited via SW)

L1 Cache Size

L1 Cache Banks

L1 Cache Sets/Bank
L1 Cache Ways/Set
L1 Cache Line Size
L1 Cache MC ports

5.1.5 Vivante OpenCL full profile hardware model

GC2000
5.1.0.rc8a
1
4
4
Embedded
16
64K
1K
64
512
8PS+4VS

4

4 KB

16
64B

As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Full Profile version 1.2.

Hardware capability deltas are subject to change and includes:

Table 17. Vivante OpenCL full profile hardware

Hardware and revision

i.MX SOC i.MX 6QuadPlus, i.MX 6DualPlus

Compute Devices (GPGPU
cores)

Compute Units per device
(Shader cores)

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

GC7000XSVX GC7000L
i.MX 8QuadMax i.MX 8 MQuad
1 1
8 1

49

NXP Semiconductors

Processing Elements per
compute unit

Profile

Preferred work-group/ thread
group size

Max count global work-items
each dim

(if 3D only 1 dim can be up to
4G, the others 64K)

Max count of work-items each
dim per work-group

Local Storage Registers On-chip

Instruction Memory

Texture Samplers

Texture Samplers available to
OCL

L1 Cache Size

L1 Cache Banks

L1 Cache Sets/Bank
L1 Cache Ways/Set

L1 Cache Line Size

L1 Cache MC ports per GPGPU
core

4
Full-Lite*

16

4G/64 K

1K

0
1$:512/1 M
32

32

4 KB

16
64 B

32
Full

32

4G/64 K

1K

2048 (32 K)
1$:512/1 M
32

32

64 KB

16
64 B

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

16

Full

4G/64 K

1K

16K
1$:512/1 M
32

32

16K

50

NXP Semiconductors

5.2 Vivante OpenCL implementation

5.2.1 OpenCL pipeline

h Texture Unit

4

& I
____| Memory Controller I

Figure 4 Vivante OpenCL data pipeline for an OpenCL compute device

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

51 NXP Semiconductors

’ Instruction
RAM (PS)

Floating Integer

Flow Poi
oint .
Control Execution Execution
Unit Unit

Unit

|

L
Cache

Constant
Memory RAM

Private Memory
(Temp Registers)

ﬁ

Global Memory

$

N—

Figure 5 Vivante OpenCL compute device showing memory scheme

5.2.2 Frontend

The front end passes the instructions and constant data as State Loads to the OpenCL Compute Unit (Shader)
block. State Loads program instructions and constant data and work groups initiate execution on the instructions

and the constants loaded.

5.2.3 The OpenCL compute unit

All OpenCL executions occur in this block and all work-groups in a compute unit should belong to the same kernel.
Threads from a work-group are grouped into internal “Thread-groups”. All the threads in a thread-group execute in
parallel. Barrier instruction is supported to enforce synchronization within a work-group.
The compute unit contains Local Memory and the L1 Cache and is where the Load/Store instruction to access
global memory originates. The compute unit can accommodate multiple work-groups (based on the temporary
register and local memory usage) simultaneously.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

52

NXP Semiconductors

5.2.4 Memory hierarchy

Private Private Private Private
Memory Memory Memory Memory

[ome]
Local Memory. LLocal Memory.

Workgroup Workgroup

Private Private Private Private
Memory Memory Memory Memory

Local Memory: Local Memory.

Workgroup Workgroup

| Global/Constant Memory |

Computer Device

Host Memory

Figure 6 OpenCL memory hierarchy

5.3 Optimization for OpenCL embedded profile

OpenCL EP (Embedded Profile) is basically a scaled down version of OpenCL FP(Full Profile) and thus may require
extra optimization. The guidelines below help with the optimization of Vivante OpenCL Embedded Profile GPGPU
cores.

When optimizing code on Vivante hardware, it is important to remember a few key points to get the best
performance from the hardware:

. Take advantage of algorithm and data parallelism

. Choose the correct execution configuration (more details below)

. Overlap memory transfer from different levels of the OpenCL memory hierarchy with simultaneous
thread execution

. Maximize memory bandwidth and minimize data transfers (large transfers are more beneficial than many
smaller transfers because of the impact of latency)

. Maximize instruction throughput and minimize instruction count

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

53 NXP Semiconductors

5.3.1 Using preferred multiple of work-group size

The work-group size should be a multiple of the thread group size, otherwise some threads remain idle and the
application does not fully utilize all the compute resources. For example, if the work-group size is 8 and the Vivante
core supports 16, only half the compute resources are used. For example, in some early Vivante GPGPU revisions,
the work-group size limit is 192 and the thread group size is 16. See the Overview section on OpenCL Compatible IP
for IP-specific capabilities.

5.3.2 Using multiple work-groups of reduced size

Multiple work groups need to be set to reduce synchronization penalties. To prevent stalls at barriers, it is
recommended to have at least four (4) work-groups to keep the cores busy or as long as the number of work-
groups is greater than or equal to two (2). One work-group is very inefficient; four or more is preferred and helps
avoid latency.

5.3.3 Packing work-item data

It is important to pack data to extract the optimal performance from the SIMD ALU hardware and align the data
into a format supported by the hardware. Efficient use of the Vivante GPGPU core requires that the kernel
contains enough parallelism to fill all four vector units. Work-items in the same thread group have the same
program counter and execute the same instruction for each cycle. Whenever possible, pack together work-items
that follow the same direction (e.g., on branches) since the granularity is very close and there may be less
divergence and higher performance. If each work-item handles less than or equal to 8 bytes, it is better to combine
two or more work-items into one to improve utilization of the SIMD ALU.

5.3.4 Improving locality

If the input data is an array-of-structs, and each work-item needs to access only a small part of the struct across
many array elements at different stages, it may be better to convert and use a struct-of-arrays or several different
arrays as input to improve data locality and avoid cache thrashing.

If each work-item needs to process a row of data without sharing any data with other work-items, it is better to
check if the algorithm can be converted to make each work-item process a column of data so that data accessed by
adjacent work-items can share the same cache lines.

5.3.5 Minimizing use of 1 KB local memory

The OpenCL Embedded Profile specification defines the minimum requirement for local memory to be 1KB to pass
conformance testing. Based on algorithm analysis and profiling different image and computer vision algorithms,
we found that a 1KB local memory size was too small to benefit those algorithms. In most instances, those
algorithms actually slowed down when using 1KB local memory. To increase performance, we recommend not
using local memory since it is more efficient to transfer larger chunks of data from system memory to keep the
OpenCL pipeline full.

Note: if local memory type is CL_GLOBAL, the local memory is emulated using global memory, and the
performance is the same as global memory. There is extra overhead on data copy from global to local, which slows
down the performance.

5.3.6 Using 16 byte memory Read/Write size

When accessing memory, it is important to minimize the read/write count and to ensure L1 cache utilization is high
to reduce outstanding read/write requests. Since the internal GPGPU read-write-request queue has a limit, if the
gueue and L1 cache are filled, then the GPGPU remains idle.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

54 NXP Semiconductors

5.3.7 Useing _RTZ rounding mode

Wherever possible, use _RTZ (round to zero) since it is natively supported in hardware with one instruction.
Support for _RTE (round to nearest even) is optional in OpenCL EP and is only supported in Vivante GPGPU EP
hardware from 2013. This function is handled in software for EP cores if necessary.

5.3.8 Using native functions

5.3.8.1 Using native_function() for increased performance

There are two types of runtime math libraries available to developers. Native_function() and regular function().

. Function(): slower, computationally expensive, higher instruction count, and greater accuracy

. Native_function(): faster, computationally inexpensive, lower instruction count (sometimes reduced to
one instruction), and lower accuracy.

. If accuracy is not important but speed/performance is, use native math functions that map directly to the

Vivante GPGPU hardware.

For image processing computations that do not require high accuracy, use native instructions to significantly lower
the instruction count and speed up performance. Based on actual analysis and performance profiling with the
Vivante GPGPU, we found that using native_function() instructions such as sin, cos, etc., reduces the instruction
count from many instructions to one or two instructions. Use of native functions also sped performance by 3x-10x.

5.3.8.2 Using native_divide and native_reciprocal for faster floating point calculations

There are two use cases for floating point division which a user can select:

. Normal use of the division operator (/) in OpenCL has high precision and covers all corner use cases. This
operator generates more instructions and runs slower.
. Native Divide: this use case uses the built-in function native_divide or native_reciprocal, which uses what

the hardware supports. The Vivante OpenCL compiler generates one or two instructions for each native_divide or
native_reciprocal instruction. If there are no corner use cases in applications, such as NaN, INF, or (22127) /
(27127), it is better to use native_divide since it is faster.

5.3.8.3 Using compile option for native functions

Both the function() and native_function() methods are supported in the Vivante GPGPUs, so it is up to the
developer to use whichever method makes sense for their application. If the OpenCL program uses the standard
division operator and a developer wants to use native_divide or native_reciprocal without modifying their
program, the Vivante OpenCL compiler has a simple option “-cl-fast-relaxed-math” that uses native built-in
functions during compilation.

5.3.9 Using buffers instead of images

For the following image functions, it is better to use buffers instead of images.

. read_image{f/i/ui/h}

. write_image{f/i/ui/h}

Write_image* functions are implemented by software; it is better to use buffers to reduce the additional overhead
involved in checking for size, format, etc. Since a few formats are not supported by Vivante GPGPU hardware,
some built-in read_image() functions are implemented in software. The software implementation uses more
instructions with many steps of “condition” checking. To improve performance, we recommend using buffers since
it reduces instruction count.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

55 NXP Semiconductors

5.4 OpenCL Debug messages

When writing OpenCL applications, it is important to check the code returned by the API. Since the return codes
specified in the OpenCL specification may not be descriptive enough to isolate where the problem is located, the
Vivante OpenCL driver provides an environment variable, VIV_DEBUG to help debug problems. When VIV_DEBUG
is set to -MSG_LEVEL:ERROR, the Vivante OpenCL driver prints onscreen error messages as well as return the error
code to the caller.

The following error code descriptions and suggested workarounds are provided.

5.4.1 OCL-007005: (clCreateKernel) cannot link kernel

One of the following “Not Enough” messages usually precedes this message. Issuer indicates the real reason for
the problem which may be:

Not Enough Register Memory (constant or temp)

Not Enough Instruction Memory

5.4.2 Not enough register memory

Local variables, including arrays, are implemented using temp registers. If an array is larger than then number of
available temp registers, a link-time failure occurs.

WORKAROUNDS:

1. If the array size is more than 64, use an array address to force the compiler to use private memory instead
of temp registers.

2. If there are many variables, use variable addresses to force the compiler to use private memory to reduce
register usage.

Note that there is performance degradation when using private memory instead of registers. It is better to change
the algorithm to use a smaller array or less variables.

5.4.3 Not enough instruction memory

WORKAROUNDS:

1. Replace sin/cos/tan/divide/powr/exp/exp2/exp10/log/log2/logl0/sqrt/rsqrt/recip with
native_sin/native_divide, etc.

2. Convert unrolled-loops back to loops.

3. Use buffer instead of image for write, and for reads which are not linear-filtered.

4, If the program is just too long, it should be split into two or more programs with intermediate data saved

from one program to next.

5.4.4 GlobalWorkSize over hardware limit

WORKAROUND:

1. Split one clEnqueueNDRangeKernel into several instances. Change the kernel source to compute real
global/local/group ID using offset as a parameter.

2. Convert one dimension to two dimensions, or two dimensions to three. For example, one dimension of
1M work-items can be converted to a GlobalWorkSize of 64K x16 work-items. The kernel function needs
modification to reflect the change of dimension.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

56 NXP Semiconductors

Chapter 6 OpenVX Introduction

6.1 Overview

OpenVX is a low-level programming framework domain to enable software developers to efficiently access
computer vision hardware acceleration with both functional and performance portability. OpenVX has been
designed to support modern hardware architectures, such as mobile and embedded SoCs as well as desktop
systems. Many of these systems are parallel and heterogeneous: containing multiple processor types including
multi-core CPUs, DSP subsystems, GPUs, dedicated vision computing fabrics as well as hardwired functionality.
Additionally, vision system memory hierarchies can often be complex, distributed, and not fully coherent. OpenVX
is designed to maximize functional and performance portability across these diverse hardware platforms, providing
a computer vision framework that efficiently addresses current and future hardware architectures with minimal
impact on applications.

OpenVX defines a C Application Programming Interface (API) for building, verifying, and coordinating graph
execution, as well as for accessing memory objects. The graph abstraction enables OpenVX implementers to
optimize the execution of the graph for the underlying acceleration architecture.

OpenVX also defines the vxu utility library, which exposes each OpenVX predefined function as a directly callable C
function, without the need for first creating a graph. Applications built using the vxu library do not benefit from the
optimizations enabled by graphs; however, the vxu library can be useful as the simplest way to use OpenVX and as
first step in porting existing vision applications.

For more details of programming with OpenVX, see the following specification from Khronos Group,

OpenVX 1.0.1 specification (https://www.khronos.org/registry/vx).

6.2 Designing framework of OpenVX

6.2.1 Software landscape

OpenVX (OVX) is intended to be used either directly by applications or as the acceleration layer for higher-level
vision frameworks, engines or platform APIs. Vivante software includes VX (Vision Imaging Accelleration) control
mechanisms for hardware accelerated vision imaging, therefy allowing the user to implement customized
applications and drivers using the Vivante—specific Vivante VX APl (Application Programming Interface). This API
provides programmable user kernel extensions for OpenCL 1.2 and provides additional Vision functionality to
supplement those currently available with OpenVX 1.0.1 open standard from the Khronos group.

ISV Vision
Engines

= =

Computer Vision ,; ISV Vision : :: Vendor
Application Engines OpenVX Hardware

N

Figure 7 OVX usage overview

6.2.2 Object-oriented behaviors
OpenVX objects are both strongly typed at compile-time for safety critical applications and are strongly typed at

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

57 NXP Semiconductors

https://www.khronos.org/registry/vx

run-time for dynamic applications.
The objects of OVX framework are:
¢ Context, The OpenVX context is the object domain for all OpenVX objects.
e Kernel, A Kernel in OpenVX is the abstract representation of a computer vision function, such as a “Sobel
Gradient” or “Lucas Kanade Feature Tracking”.

e Parameter, an abstract input, output, or bidirectional data object passed to a computer vision function.

* Node, A node is an instance of a kernel that will be paired with a specific set of references (the parameters).

* Graph, A set of nodes connected in a directed (only goes one-way) acyclic (does not loop back) fashion.
OpenVX Data Objects:

¢ Array, An opaque array object that could be an array of primitive data types or an array of structures.

¢ Convolution, An opaque object that contains MxN matrix of vx_int16 values. Also contains a scaling factor

for normalization.

¢ Delay, An opaque object that contains a manually controlled, temporally-delayed list of objects.

» Distribution, An opaque object that contains a frequency distribution (e.g., a histogram).

* Image, An opaque image object that may be some format in vx_df_image_e.

e LUT, An opaque lookup table object used with vxTableLookupNode and vxuTableLookup

¢ Matrix, An opaque object that contains MxN matrix of some scalar values.

¢ Pyramid, An opaque object that contains multiple levels of scaled vx_image objects.

e Remap, An opaque object that contains the map of source points to destination points used to transform

images.

¢ Scalar, An opaque object that contains a single primitive data type.

* Threshold, An opaque object that contains the thresholding configuration.

Error objects of OVX:

Error objects are specialized objects that may be returned from other object creator functions when serious
platform issue occur (i.e., out of memory or out of handles). These can be checked at the time of creation of these
objects, but checking also may be put-off until usage in other APIs or verification time, in which case, the
implementation must return appropriate errors to indicate that an invalid object type was used.

6.2.3 Graphs concepts

The graph is the central computation concept of OpenVX. The purpose of using graphs to express the Computer
Vision problem is to allow for the possibility of any implementation to maximize its optimization potential because
all the operations of the graph and its dependencies are known ahead of time, before the graph is processed.
Graphs are composed of one or more nodes that are added to the graph through node creation functions. Graphs
in OpenVX must be created ahead of processing time and verified by the implementation, after which they can be
processed as many times as needed.

There are several nodes in a graph, which are responsible for independent computation. One node can be linked to
another by data dependencies.

6.2.4 User kernels

OpenVX allows users to define new functions that can be excuted as Nodes from inside Graph or are Graph
internal. Users will benefit from this mode,

¢ Exploiting

¢ Allow componentized functions to be reused elsewhere in OpenVX

¢ Formalize strict verification requirements (i.e., Contract Programming).

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

58 NXP Semiconductors

vxMyFilter Node

Convert . Gaussian — Output
InPUt Image - NOde - Gray lmage o

Figure 8 Graph and user kernel usage

6.3 OpenVX extension implementation

VeriSilicon’s VX Extensions for Vision Imaging provide additional functionality for Vision Image processing beyond
the functions provided through the Khronos Group OpenVX API version 1.0.1. These enhancements take
advantage of the enhanced Vision capabilities available in VeriSilicon’s Vision-capable hardware. VeriSilicon
software provides a set of extensions which interface with OpenCL 1.2 and support higher level C language
programming of VeriSilicon’s custom EVIS (Enhanced Vision Instruction Set).

The VeriSilicon VX extension and enhancements includes three major components:

e An APl level interface to the EVIS (Enhanced Vision Instruction Set),

o Extended C language features for Vision Processing,

o Supported for a subset of Vision-compatible OpenCL built-in functions.

6.3.1 Hardware requirements

Initial VeriSilicon cores with Vision Imaging hardware capabilities include:
e GC7000XSVX (available in i.MX 8QuadMax)

6.3.2 EVIS instruction interface

Vivante’s Vision Imaging capable IP have an Enhanced Vision Instruction Set (EVIS), which enhances the ability of
the GPU or VIP (Vision Image Processor) to process complex vision operations. A single EVIS instruction can do a
task which may require tens or even hundreds of normal ISA instructions to finish.

Table 18 shows the instructions supported as Intrinsic calls.

6.3.3 Extended language features

Vivante’s OpenVX C programming Language corresponds closely to the OpenCL C programming language.

e Vivante’s C language extensions for OpenVX C share many language facilities with OpenCL C 1.2.
However, it can be considered a subset of OpenCL C 1.2, as it does not include OCL features which are
useless for OpenVX and other Vision Imaging applications.

. Vivante’s OpenVX C includes specific language facilities like Vision built-ins and data types specific for
OpenVX.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

59 NXP Semiconductors

EVIS OP_CODE Description
ABS_DIFF Absolute difference between two values
IADD Adds two or three integer values
IACC_SQ Squares a value and adds it to an accumulator
LERP Linear interpolation between two values
FILTER Performs a filter on a 3x3 block
MAG_PHASE Computes magnitude and phase of 2 packed data values
MUL_SHIFT Multiples two 8-or 16-bit integers and shifts
DP16X1 1 Dot Product from 2 16 component values
DP8X2 2 Dot Products from 2 8 component values
DP4X4 4 Dot Products from 2 4 component values
DP2X8 8 Dot Products from 2 2 component values
CLAMP Clamps up to 16 values to a max or min value
BI_LINEAR Computes a biOlinear interpolation of 4 pixel values
SELECT_ADD Adds a pixel value or increments a counter inside bins
ATOMIC_ADD Adds a valid atomically to an address
BIT_EXTRACT Extracts up to 8 bitfields from a packed stream
BIT_REPLACE Replaces up to 8 bitfields from a packed stream
DP32X1 1 Dot Product from 2 32 component values
DP16X2 2 Dot Products from 2 16 component values
DP8X4 4 Dot Products from 2 8 component values
DP4X8 8 Dot Products from 2 4 component values
DP2X16 16 Dot Products from 2 2 component values

Table 18. OPCODE EVIS instructions supported as intrinsic calls

6.3.4 Packed types

Vivante’s OpenCL compiler implements OpenCL C signed and unsigned char and short types in an unpacked
format, such that a normal char4 occupies 128 bits (4 32-bit registers). This is undesirable for Vision applications,
where packed data is the “natural” layout for almost all operations. To fully utilize the computing power of EVIS
instructions, Vivante VX includes additional packed types, which can be identified by their vxc_ prefix.

/* packed char2/4/8/16 */

typedef viv char2 packed vxc char2;
typedef viv chard4 packed vxc char4;
typedef viv char8 packed vxc char8§;
typedef viv charlé packed vxc charle;
/* packed uchar2/4/8/16 */

typedef viv uchar2 packed vxc_uchar2;
typedef viv uchar4 packed vxc uchar4;
typedef viv uchar8 packed vxc_uchar8;
typedef viv ucharl6 packed vxc ucharlé6;
/* packed short2/4/8 */

typedef viv short2 packed vxc short2;
typedef viv short4 packed vxc_short4;

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

Supported by
Vivante VX

< < < < < < </ < < < < < < < </ < < </|< =< < <

60

NXP Semiconductors

typedef viv short8 packed vxc short8;
/* packed ushort2/4/8 */

typedef viv ushort2 packed vxc ushort2;
typedef viv ushort4 packed vxc ushort4;
typedef viv ushort8 packed vxc ushort8;

6.3.5 Initializing constants on load

Constant data in OpenCL requires compile-time initialization. There is also a need to initialize the data when the
kernel is loaded/run, so that the application can control the behavior of a program by changing its constants at
load-time. The VeriSilicon VX extended keyword _viv_uniform can be used to define load-time initialization
constant data,

_viv_uniform vxc_512bits u512;

An application using VeriSilicon VX needs to set the proper values for _viv_uniform before the kernel program is
run.

6.3.6 Inline assembly

A packed type cannot be used as an unpacked type in expressions or built-in functions. The programmer needs to
convert packed type data to unpacked type data in order to perform these operations. The conversion negatively
impacts performance in terms of both instruction count and register usage, so it is desirable to perform operations
directly on packed data whenever possible. The Vivante Vision compiler accepts inline assembly for a wide range of
operations to speed up packed data calculations.
For example, to add two packed charl6 data, the programmer can use following inline assembly:

vxc _ucharlé a, b, c;

vxc_ short8 b;

_viv uniform vxc 512bits u512;

_viv_asm(ADD, ¢, a, b); /* ¢ =a + b; */
where the syntax of inline assembly is:
_viv_asm(

OP_CODE,

dest,

source0,

sourcel

);

Table 19 lists the standard shader instructions that operate on packed data and are supported through inline
assembly, keyword _viv_asm.

Table 19. OPCODES IR instructions supported by inline assembly

IR OP_CODE Instruction Description Supported by Vivante VX
ABS Absolute value Y

ADD Add Y

ADD_SAT Integer add with saturation Y
AND_BITWISE Bitwise AND Y
BIT_REVERSAL Integer bit-wise reversal ES31
BITEXTRACT Extract Bits from src to dest ES31

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

61 NXP Semiconductors

6.4

BITINSERT
BITSEL
BYTE_REVERSAL
CLAMPOMAX
CmMP

CONV

DIV

FINDLSB
FINDMSB
LEADZERO
LSHIFT

MADSAT
MOD

MOV
MUL

MULHI
MULSAT

NEG
NOT_BITWISE
OR_BITWISE
POPCOUNT
ROTATE
RSHIFT

suB

SUBSAT
XOR_BITWISE

Bit replacement

Bitwise Select

Integer byte-wise reversal
clampOmax dest, value, max
Compare each component
Convert

Divide

Find least significant bit

Find most significant bit

Detect Leading Zero

Left Shifter

Integer multiple and add with saturation
Modulus

Move

Multiply

Integer only

Integer multiply with saturation
neg(a) is similar to (0 - (a))
Bitwise NOT

Bitwise OR

Population Count

Rotate

Right Shifter

Substract

Integer subtraction with saturation

Bitwise XOR

OpenCL functions compatible with Vivante vision

ES31

ES31

ES31
ES31

< < < < =< < =< =< =<

Y
ES31/0CL1.2
Y

Y
Y
Y
Y

*ES31 = Supported by VivanteVX, but may not be needed for Vision processing

Vivante’s VX extensions for Vision Image processing support most of the OpenCL 1.2 built-in functions for normal
OCL data types. Packed types are not supported in these built-in functions.
For image read/write functions, only sample-less 1D/1D array/2D image read/write functions are supported.

6.4.1

Read_lImagef,i,ui

/* OCL image builtins can be used in VX kernel */
float4 read_imagef (image2d_t image, int2 coord);
int4 read_imagei (image2d_t image, int2 coord);
uint4 read_imageui (image2d_t image, int2 coord);
float4 read_imagef (imageld_t image, int coord);
int4 read_imagei (imageld_t image, int coord);

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

62

NXP Semiconductors

uint4 read_imageui (imageld_t image, int coord);

float4 read_imagef (imageld_array_t image, int2 coord);
int4 read_imagei (imageld_array_t image, int2 coord);
uint4 read_imageui (imageld_array_t image, int2 coord);

6.4.2 Write_Imagef,i,ui

void write_imagef (image2d_t image, int2 coord, float4 color);

void write_imagei (image2d_t image, int2 coord, int4 color);

void write_imageui (image2d_t image, int2 coord, uint4 color);

void write_imagef (imageld_t image, int coord, float4 color);

void write_imagei (imageld_t image, int coord, int4 color);

void write_imageui (imageld_t image, int coord, uint4 color);

void write_imagef (imageld_array_t image, int2 coord, float4 color);
void write_imagei (imageld_array_t image, int2 coord, int4 color);
void write_imageui (imageld_array_t image, int2 coord, uint4 color)

6.4.3 Query Image Dimensions

int2 get_image_dim (image2d_t image);

size_t get_image_array_size(imageld_array_t image);
/* Built-in Image Query Functions */

int get_image_width (imageld_t image);

int get_image_width (image2d_t image);

int get_image_width (imageld_array_t image);

int get_image_height (image2d_t image);

6.4.4 Channel Data Types Supported

/* Return the channel data type. Valid values are:

* CLK_SNORM_INT8

* CLK_SNORM_INT16

* CLK_UNORM_INT8

* CLK_UNORM_INT16

* CLK_UNORM_SHORT_565

* CLK_UNORM_SHORT_555

* CLK_UNORM_SHORT_101010

* CLK_SIGNED_INT8

* CLK_SIGNED_INT16

* CLK_SIGNED_INT32

* CLK_UNSIGNED_INTS8

* CLK_UNSIGNED_INT16

* CLK_UNSIGNED_INT32

* CLK_HALF_FLOAT

* CLK_FLOAT

*/

int get_image_channel_data_type (imageld_t image);
int get_image_channel_data_type (image2d_t image);
int get_image_channel_data_type (imageld_array_t image);

6.4.5 Image Channel Orders Supported

/* Return the image channel order. Valid values are:

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

63

NXP Semiconductors

* CLK_A

* CLK_R

* CLK_Rx

* CLK_RG

* CLK_RGx

* CLK_RA

* CLK_RGB

* CLK_RGBx

* CLK_RGBA

* CLK_ARGB

* CLK_BGRA

* CLK_INTENSITY
* CLK_LUMINANCE
*/

int get_image_channel_order (imageld_t image);
int get_image_channel_order (image2d_t image);
int get_image_channel_order (imageld_array_t image);

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

64

NXP Semiconductors

Chapter 7 Vulkan

7.1 OverView

Vulkan is a new generation graphics and compute API that provides high-efficiency, cross-platform access to
modern GPUs used in a wide variety of devices from PCs and consoles to mobile phones and embedded platforms.
Vulkan defines as an API (Application Programming Interface) for graphics and compute hardware. The API consists
of many commands that allow a programmer to specify shader programs, compute kernels, objects, and
operations involved in producing high-quality graphical images, specifically color images of three-dimensional
objects.

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or shaders,
kernels, data used by kernels or shaders, and state controlling aspects of Vulkan outside the scope of shaders.
Typically, the data represents geometry in two or three dimensions and texture images, while the shaders and
kernels control the processing of the data, rasterization of the geometry, and the lighting and shading of fragments
generated by rasterization, resulting in the rendering of geometry into the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise prepare a display
device onto which the program will draw. Then, calls are made to open queues to which command buffers are
submitted. The command buffers contain lists of commands which will be executed by the underlying hardware.
The application can also allocate device memory, associate resources with memory and refer to these resources
from within command buffers. Drawing commands cause application-defined shader programs to be invoked,
which can then consume the data in the resources and use them to produce graphical images. To display the
resulting images, further platform-specific commands are made to transfer the resulting image to a display device
or window.

For more details of programming with Vulkan, refer to the following specification from Khronos Group.
https://www.khronos.org/registry/vulkan/

7.2 Vivante Extension Support for Vulkan

The following table includes a list of all current Vulkan extensions and indicates their support level in Vivante
software.
(list from https.//www.khronos.org/registry/vulkan/ as of 5/24/2017)
Note: This list does not include unsupported vendor specific extensions.
Table 20. Vulkan extension

Vulkan Extension Name SW 6.2.x for Vulkan 1.0
VK_KHR_android_surface YES
VK_KHR_descriptor_update_template

VK_KHR_display YES
VK_KHR_display_swapchain YES

VK_KHR_get_physical_device_properties2
VK_KHR_get_surface_capabilities2
VK_KHR_incremental_present
VK_KHR_maintenancel
VK_KHR_mir_surface
VK_KHR_push_descriptor
VK_KHR_sampler_mirror_clamp_to_edge
VK_KHR_shader_draw_parameters
VK_KHR_shared_presentable_image
VK_KHR_surface YES

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

65 NXP Semiconductors

https://www.khronos.org/registry/vulkan/

VK_KHR_swapchain

YES

VK_KHR_wayland_surface

YES

Vulkan Extension Name

SW 6.2.x for Vulkan 1.0

VK_KHR_win32_surface

YES

VK_KHR_xcb_surface

VK_KHR_xlib_surface

EXT Extensions (Multivendor)

VK_EXT_acquire_xlib_display

VK_EXT_debug_marker

VK_EXT_debug_report

YES

VK_KHR_get_surface_capabilities2

VK_KHR_incremental_present

VK_KHR_maintenancel

VK_EXT_direct_mode_display

VK_EXT_discard_rectangles

VK_EXT_display_control

VK_EXT_display_surface_counter

VK_EXT_hdr_metadata

VK_EXT_shader_subgroup_ballot

VK_EXT_shader_subgroup_vote

VK_EXT_swapchain_colorspace

VK_EXT_validation_flags

GOOGLE Extensions (Google, Inc.)

VK_GOOGLE_display_timing

KHX Extensions (full vendor description unavailable)

VK_KHX_device_group

VK_KHX_device_group_creation

VK_KHX_external_memory

VK_KHX_external_memory_capabilities

VK_KHX_external_memory_fd

VK_KHX_external_memory_win32

VK_KHX_external_semaphore

VK_KHX_external_semaphore_capabilities

VK_KHX_external_semaphore_fd

VK_KHX_external_semaphore_win32

VK_KHX_multiview

VK_KHX_win32_keyed_mutex

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

66

NXP Semiconductors

Chapter 8 Multiple GPUs and Virtualization

8.1 Overview

Vivante multi-GPU implementations provide a variety of capabilities which can be managed through hardware
and software controls. This chapter intends to summarize the software controls used for Vivante multi-GPU IP
implementations.

Multi-GPU feature can be enabled with dual GC7000XSVX on i.MX 8QuadMax and the derived devices.

8.2 Multi-GPU configurations

Vivante Multi-GPU IP may be configured into one of the following behavior model through SW:

Combined Mode where two (or more) GPU cores in the multi-GPU design behave in concert. Driver presents
multi-GPU to SW application as a single logical GPU. The multiple GPUs work in the same virtual address space
and share the same MMU page table. The multiple GPUs fetch and excute a shared Command Buffer.
Independent Mode where each GPU in the multi-GPU design performs independently. The multiple GPUs work
in different virtual address spaces but share the same MMU page table. Each GPU core fetches and excutes its
own Command Buffer. This enables different SW applications to run simultaneously on different GPU cores.
Note, OpenCL API allows application to handle the multi-GPU Independent Mode directly, as each GPU core in a
multi-GPU design represents an independent OpenCL Compute Device. OpenCL driver does not support the
multi-GPU combined mode.

8.3 GPU affinity configuration

In the multi-GPU Independent Mode, application can specify to run on a specific GPU among the multiple GPUs
through an environment variable VIV_MGPU_AFFINITY. Once an application’s GPU affinity is specified, the
application will only run on the specified GPU and will not migrate to other GPUs even if those GPUs are idle.
VIV_MGPU_AFFINITY is the environment variable to control the application GPU affinity on multi-GPU platform.
The client drivers will assume they are using a standalone GPU through a gcoHARDWARE object no matter how
this variable is set. The possible values for the environment variable VIV_MGPU_AFFINITY include:

Not defined or

Defined as "0" gcoHARDWARE objects work in gcvMULTI_GPU_COMBINED mode (default)

"1:0" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPUOQ is used

"1:1" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPU1 is used
On a single GPU device, setting VIV_MGPU_AFFINITY to 0 or 1 does not make any difference as all application
processes/threads are bound to GPUO. But the application will fail the GPU context initialization if
VIV_MGPU_AFFINITY is set to "1:1" (driver reports error).

8.4 OpenCL on multi-GPU device

OpenCL driver works in multi-GPU Independent Mode only. In this configuration, multiple GPUs in the device
operate as individual OpenCL Compute Devices. The OpenCL application is responsible to assign and dispatch the
compute tasks to each GPU (Compute Device).
The following OpenCL APIs return the list of compute devices available on a platform, and the device
information.
cl_int clGetDevicelDs (cl_platform_id platform, cl_device_type device_type, cl_uint num_entries,
cl_device_id *devices, cl_uint *num_devices)
cl_int clGetDevicelnfo (cl_device_id device, cl_device_info param_name, size_t param_value_size,

void *param_value, size_t *param_value_size_ret)

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

67 NXP Semiconductors

8.5 GPU virtualization configuration

Multi-GPU also can be used on different OS systems as independent mode separately, this can be configured by
overriding the irq availability n DTS entry for different OS implementation, in arch/arm64/boot/dts/freescale/fsl-
imx8gmxxx.dts.

Guest OS1 (GPUO only)

&gpu_3d1 {
status = "disable";

}s

Guest 0S 2 (GPU1 only)

&gpu_3de {
status = "disable";

}s

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

68 NXP Semiconductors

Chapter 9 G2D compositor on Weston

9.1 Overview

Wayland is intended as a simpler replacement for X, easier to develop and maintain. GNOME and KDE are
expected to be ported to it.

Wayland is a protocol for a compositor to talk to its clients as well as a C library implementation of that protocol.
The compositor can be a standalone display server running on Linux kernel modesetting and evdev input devices,
an X application, or a wayland client itself. The clients can be traditional applications, X servers (rootless or
fullscreen) or other display servers.

Part of the Wayland project is also the Weston reference implementation of a Wayland compositor. Weston can
run as an X client or under Linux KMS and ships with a few demo clients. The Weston compositor is a minimal and
fast compositor and is suitable for many embedded and mobile use cases.

This chapter describes how to enable Weston accelerated by G2D APIS. G2D compositor can increase system
bandwidth utilization, so the performance was better than GL compositor in the complex environment, but it still
doesn’t support display rotation and EXT_RESOLVE feature.

9.2 Enabe G2D compositor

9.2.1 Open the file: /etc/default/Weston in the Release image.

cat /etc/default/weston
#!/bin/sh
OPTARGS="--xwayland"

9.2.2 Add the parameters in the OPTARGS, and disable EXT_RESOLVE feature in compositor.

OPTARGS="—xwayland —use-g2d=1"
GPU_VIV_EXT_RESOLVE=0

9.2.3 Restart Weston by this command:

systemctl restart weston

9.2.4 Disable EXT_RESOLVE feature before running the client application.

export GPU_VIV_EXT_RESOLVE=0
Weston-simple-egl

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

69 NXP Semiconductors

Chapter 10 XServer Video Driver

10.1 EXA driver

XServer video driver is designed to help XServer to render desktop onto a screen. It manages the display driver,
and provides rendering acceleration and other display features, such as rotation and multiple display methods. The
video driver implements XServer EXcellent Architecture (EXA).

10.1.1 EXA driver options

These options are used in the configuration file /etc/X11/xorg.conf:
Section "Device"

Identifier "i.MX Accelerated Framebuffer Device"
Driver "vivante"
Option "fbdev" "/dev/fbl"
Option "vivante fbdev" "/dev/fbl"
Option "SyncDraw" "false"
EndSection

Table 21. EXA driver options

Option Meaning Default Value Comment

ShadowFB Whether to enable the False Deprecated technology. It rotates the FB. If
shadow frame buffer (FB). it is enabled, acceleration is disabled.

Rotate Rotation of FB. <null> Deprecated technology. It can be CW/CCW/

UD. If it is set to one of these values,
Shadow FB is automatically enabled.
Rotation cannot change after XServer is

started.
NoAccel Disables EXA acceleration. | False If it is set to True, the EXA functions are not
accelerated by the GPU.
VivCacheMem Pixmap created by GPU is | True Normal Pixmaps are created cacheable.
generally cacheable. Special Pixmaps used for EGL are still non-
cacheable.
SyncDraw Wait for the GPU to False This affects the performance if it is set to
complete for every single True.
drawing.
10.1.2 24 bpp pixmap

The GPU can only accelerate a 16 bpp or 32 bpp pixmap. For a 24 bpp screen, a 32 bpp buffer is actually reserved.

10.1.3 Shared pixmap extension

The Shared Pixmap Extension (SHM) pixmap will be described in next release.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

70 NXP Semiconductors

10.1.4 How to disable XRandR

For an embedded device that does not support XRandR (for which the memory can be reduced), set
“gEnableXRandR” to False in vivante_fbdev_driver.c.

10.1.5 Cursor

Hardware IPU does not provide a hardware cursor.

10.1.6 DRI

DRI is designed to accelerate OpenGL rendering. It enables the GPU direct render to the on-screen buffer. Due to
the lack of hard cursor support, and because often the window location is not well aligned, the GPU cannot render
to screen directly. Therefore, DRI is not fully used.

DRI is supported in this video driver. DRI2 or DRI3 is not supported.

10.1.7 Tearing

XServer (and early Microsoft Windows OS) does not support double buffering for the screen. There is a copy from
off-screen buffer to target on-screen area (or direct rendering to on-screen). The operation cannot be completed
in the blank time of the display, and the IPU cannot provide an ideal VSYNC signal. Therefore, there is tearing.

To remove tearing, a GLES compositor is needed. This tearing free feature will be described in next release.

10.2 XRandR

This video driver supports XRandR.
The X Resize, Rotate and Reflect Extension (RandR) is an X Window System extension, which allows clients to
dynamically resize, rotate, and reflect the root window of a screen (en.wikipedia.org/wiki/Xrandr).

10.2.1 Useful commands

If the display supports multiple resolution types, use the following commands for a query:
root@imx6qsabresd:~# export DISPLAY=:0.0
root@imx6qgsabresd:~# xrandr
Screen 0: minimum 240 x 240, current 1920 x 1080, maximum 8192 x 8192
DISP3 BG connected 1920x1080+0+0 (normal left inverted right x axis y axis) Omm x Omm

S:1920x1080p-50 50.0%

:1920x1080p-60 60.0

:1280x720p-50 50.0

:1280x720p-60 60.0

:720x576p-50 50.0

:720x480p-60 59.9

:640x480p-60 60.0

S:640x480p-60 59.9

< n n n n wn

If using the console serial port for the command line interface, the DISPLAY environment variable is not configured
by default and the xrandr command fails. The solution is to set the DISPLAY environment variable. (Reference: see

manpage for X)
root@imx6gsabresd:~# xrandr

Can't open display
root@imx6gsabresd:~# echo $DISPLAY

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

71 NXP Semiconductors

http://en.wikipedia.org/wiki/Xrandr

root@imx6gsabresd:~# export DISPLAY=:0.0
root@imx6gsabresd:~# xrandr

Screen 0: minimum 240 x 240, current 1024 x 768,

DIS
Omm

maximum 8192 x 8192

P4 BG - DI1 connected 1024x768+0+0 (normal left inverted right x axis y axis) Omm x

U:1024x768p-60 60.0*+

Change the resolution:
root@imx6qgsabresd:~# xrandr -s 1920x1080

P —
‘ Applications 3
G Chromium E Fotowall Music Player a QT Browser m QTDemoL... & QT MediaP... aropens... \ smarthome n Video X1IVNC Se...
. Accesstheint.. =3 Photo collecto. . Play your tavou. Qt Browser Qt Demo Laun... Qt Media Player QT OpenGLES... \ Video Player Share this desk..

Figure 9 Changing the resolution

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

72

NXP Semiconductors

root@imx6qsabresd:~# xrandr -o left:

Rotate the screen:

58P SIU} aleYS

]

Figure 10 Rotating the screen

'S ANATTX
1afeld oapin wr ‘Jue|s Aeld
\/ @O
03pIA awoyuews we|s
AUl UMop as0|3 ‘awefawes fejd 3 19uado 1H @ 1afe|d eipaw 1D
umopInys awebawes “guado 1D delpalN 1O
rr——
“Tuneq owag id . u lasmolg 10 101p3 1Xal
T owad 1o w m lasmolg 10 .@ Uy padlageld S3J0N
“none Jnok Aeld “de Arid ‘Ul 98M SN2 preogfeyt renun [T 1]
@ C) s Jaseaes
Jafeld aiIsny ﬂ den = lud afeuepn N pleoghax FYTTIIT
“euau feld 0R28||02 oloud . \l alll ayy asmolg ‘uzayd Aeld
=TVED] - llemolod “Beuen ajd uaayid
U] 8L 55822 “URIGIED 8U3 Uy .s_ ‘safipug el e sy abueys \\
> Ic CHD 7
wnwoJdyo t] Aegien _|. sabpug daueleaddy LS
1 ¥ »

M--=- 2V

NXP Semiconductors

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

73

root@imx6qsabresd:~# xrandr -o right:

BT 4 O -
< All b

£ G Appearance
7
/

Bridges

©..¢)

\\ Change the ap Play Bridges.
g Fifteen File Manag...
Play Fifteen. Browse the file
ALY Keyboard . W Manage Pri...
PRINTING
BYSTEM
Virtual Keyboard CUPS Weh Int

QT MediaP... QT OpenG...

Qt Media Player Q QT OpenGL E

Slant \ / smarthome
~

Play Slant

X11VNC S...

W 5 98 0E E

Share this des

Notes Preferred A...
Text Editor

Run the calibra Access the Int

d Fotowall Inertia

‘L‘ Fhoto collectio... g Play Inertia.
Map Music Player

@, B

Play Map Play your favou

@ QT Browser c m QTDemolL...

Qt Browser Qt Demo Laun

I_ Calibrate T... Chromium
m @

0..Q Samegame Shutdown
= Play Samegame Close down the
Video
Wideo Player

Figure 11 Rotating the screen

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

NXP Semiconductors

74

root@imx6qsabresd:~# xrandr -o inverted:

op{sap sIu} BIEUS 18kE|d 0BPIA Y \’ wEls Aeld
“ 135 DNATIX 03pIA awoyyews \ / wels @C)
7 auy umop asojd ‘awefawes Ae|g zs3 1ouado 1D @ 1afe|d BIpaA 10 1ayauneT owsg 39)
umopnys awebawes = 1ouado 1d eld eIpa LD e owad 1d 1 [
o —
13smoig 310 J0YP3 X3 yinone) inok Aejg “dep Aejd4
J1asmoig 10 @ dy pauajaid s3joN Jake|d aiIsny ﬁ dew
“THE| g3, SdNI preogfay renyn [T T ey Aeid " uRaa||oa ojoud ‘ﬁ 'S 3|l Buy asmoig
i Sssens @O [‘
cauud abeuepy WM preoghay FrITIT elLau| lemojod -~ 1aBeue apd L —— |
uaay 4 fejd 18WI31U| BY) SS322Y ’ oneIgIED BUYL LNy [_ '_l safipug Aelg adde ayy sfueys 3
uaayiy - wniwoayd oL areurieD |\ sabpug asueleaddy é

4 I 3
M- = v

Figure 12 Rotating the screen

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

NXP Semiconductors

Reflect the screen:
root@imx6qsabresd:~# xrandr -x

Figure 13 Reflecting the screen

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

sm bLoud -ac

76

NXP Semiconductors

root@imx6qsabresd:~# xrandr -y

Figure 14 Reflecting the screen

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

77

NXP Semiconductors

Restore to normal state:

root@imx6qsabresd:~# xrandr -o normal:

BT A = - = -
. All >

ﬁi Appearance
/’ Change the appe...

File Manager...
Browse the file s...

::prap.
10t
Slant

Play Slant.

QT Demo La...

Qt Demo Launcher

Bridges

Play Bridges.

% Fotowall
E 4 Photo collection ...

Music Player
(o o]

; smarthome
A

W Flay your favourit...

QT MediaPla...
Qt Media Player

3

. o
B A

Calibrate To..

Run the calibratio

Inertia

Play Inertia

Notes

Text Editor

QT OpenGL ...

QT OpenGLESZ ...

Chromium

&

LLLLLL

Keyboard

Wp—

1
&
Samegame

0--8

Virtual Keyhoard

Video
Video Player

Figure 15 Restoring to normal state

10.2.2 Rendering the desktop on overlay

/dev/fbl is the overlay device on the same screen as /dev/fb0; and /dev/fb3 is the overlay of /dev/fb2. Use
xorg.conf to specify fb1 or fb3:

"/dev/fbl"

Section "Device"

Identifier

Driver "vivante"

Option "fbdev"

Option "vivante fbdev" "/dev/fbl"
EndSection

After rebooting the system, the desktop is rendered on the overlay:

"i.MX Accelerated Framebuffer Device"

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

Access the Internet

Preferred Ap...

Play Samegame.

Fifteen

(uwx :
PRINTING
SYSTEM

@ QT Browser

Qt Browser
Shutdown
Close down the ...
X11VNC Ser...
Share this deskto...
—

Play Fifteen.

Manage Print...

CUPS Web Interf

78

NXP Semiconductors

H % 157 18:07

4 Applications

Chromium

Access the Internet

Fotowall

Fhota collection cr. ..

Music Player

Play your favourite ...

Figure 16 Rendering the desktop on overlay

If the size is too small (240x240), XRandR can be used to define a new mode.

1. Get the output name:
root@imx6gsabresd:~# xrandr

Screen 0: minimum 240 x 240, current 240 x 320, maximum 8192 x 8192
DISP4 FG connected 240x320+0+0 (normal left inverted right x axis y axis) Omm x Omm
U:240x320p-60 60.0%*

2. Define a new mode:

root@imx6qsabresd:~# xrandr --newmode "640x480R" 23.50 640 688 720 800 480 483 487 494 +hsync -
vsync

3. Add the newly created mode:

root@imx6qsabresd:~# xrandr --addmode "DISP4 FG" 640x480R
4. Check the modes:

root@imx6qsabresd:~# xrandr

Screen 0: minimum 240 x 240, current 240 x 320, maximum 8192 x 8192

DISP4 FG connected 240x320+0+0 (normal left inverted right x axis y axis) Omm x Omm
U:240x320p-60 60.0*
640x480R 59.5

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

79 NXP Semiconductors

Note:

Switch to a new mode:

root@imx6qsabresd:~# xrandr -s 640x480

BTN A © - =
4

Applications 4
F Chromium ™yj Fotowall E Music Player
\, Access the Internet :__'_. 4 FPhotoe collection cr... Play your favourite ...

@ QT Browser Q [QT Demo Lau... QT Media Player

Qt Browser

Qt Demo Launcher Qt Media Player

QT OpenGLE... / \ smarthome Video
QT OpenGL ES2 ... ’\ Video Player
X11VNC Server
Share this desktop...
]

Figure 17 Switching to a new mode

The overlay size cannot exceed the display size. For example, if LVDS is 1024x768, the overlay size cannot
be larger than this.

Timings for overlay are meaningless, but wrong timings may damage the display, so be careful when
creating a new display mode for the display.

If fb3 is used, fb2 must be enabled. Otherwise, fb3 is invisible.

10.2.3 Process of selecting the HDMI default resolution

The process of selecting the HDMI default resolution is as follows:

1.
2.
3.

4.

Set the user preferred mode (must be within the initial size).

Set the display preferred mode (must be within the initial size).

Check the aspect (if not found, use 4:3. Find the biggest resolution within the initial size for the aspect
ratio).

Check the first mode.

Initial size: initial FB virtual size or configured maximum size.
To specify the user preferred mode, add the option “PreferredMode” or “modes”.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

80

NXP Semiconductors

10.2.4 Performance

The performance is decreased during screen rotation or mirroring.
10.2.5 Memory consumption

The video driver supports a maximum of 1920x1080@32bpp. To support rotation, a shadow buffer is reserved, so
the total memory consumption is 16 MB (1920x1080x4x2).

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

81 NXP Semiconductors

Chapter 11 Advanced GPU Configuration

11.1 GPU Scaling Governor

i.MX 8QuadMax GPU DVFS design supports different running modes: overdrive, nominal, and underdrive.
Nominal is the default, the overdrive is supposed to be performance/benchmark mode, and underdrive mode is
expected as energy saving mode.

Try to switch among the 3 modes, just using command line after boot without recompile the gpu driver.

S echo "overdrive" > /sys/bus/platform/drivers/galcore/gpu_mode

$ echo "nominal" > /sys/bus/platform/drivers/galcore/gpu_mode

S echo "underdrive" > /sys/bus/platform/drivers/galcore/gpu_mode

Try to check which mode is running on now, using command line as below:
S cat /sys/bus/platform/drivers/galcore/gpu_mode

11.2 GPU Device Cooling

i.MX device support the thermal driver, which could signal the overheat event to GPU driver, once GPU driver
receive the event, it can enable GPU DFS feature to reduce GPU frequency as N/64 of the original designated clock.
The default N factor is 1 in the original BSP release, the end-user can reconfigure it through below command:

echo N >/sys/bus/platform/drivers/galcore/gpu3DMinClock
The user also can check the existing config as below

cat /sys/bus/platform/drivers/galcore/gpu3DMinClock

Chapter 12 Vivante Software Tool Kit

This chapter contains copyright material disclosed with permission of Vivante Corporation.

12.1 Vivante Tool Kit overview

The Vivante Tool Kit (VTK) is a set of applications designed to be used by graphics application developers to rapidly
develop and port graphics applications either stand alone, or as part of an IDE targeting a system-on-chip (SoC)
platform containing an embedded GPU.

12.1.1 VTK component overview

The VTK includes a graphics and OpenCL emulator (vEmulator) to enable embedded graphics and compute
application development on a PC platform, a driver and hardware performance profiling utility (vProfiler), and a
visual analyzer (vAnalyzer) for graphing the performance metrics. Also provided are pre-processing utilities for
stand-alone development of optimized shader programs (vShader) and for compiling shader code (vCompiler) into
binary executables targeting Vivante accelerated hardware platforms. An image transfer utility (vTexture) provides
compression and decompression options.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

82 NXP Semiconductors

Graphics / Compute Application < {---+ Stand-alone utilities

vCompiler
Compile
and link shaders

VDK/EGL1.4

Collect real-time

. # Post-processing visual
performance metrics of .
analysis of performance

applications and the e

1
1
graphics pipeline |
1

|
1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1

1 1 1 : :

! vEmulator ' i : vShader vTexture i

: Develop OpenGLESand | ! OpenGL ES [Rapidly prototype and Image transfer :

1 | OpenCLapplications ' 1.1/2.0/3.0/3.1 || : optimize shader compression- i

I | using PCgraphics cards | 1 OpenCL1.1 1 programs decompression tool :

1 1 E [

] : OpenVG 1.1 L i

] I 0] vTracer vPlayer :

: : : 1 | Trace App GLES APl calls Play back GLES APl trace |

1 1 i 1 : for playing back and !

; - L analysis p

1 OR 1 :

: : e 1

1 1

1 1

i Profil |

1 LA : vAnalyzer

1

1

1

1

1

1

Figure 18 Vivante Tool Kit vTools components

12.1.2 VTK operating system requirements

Most VTK vTools applications are designed to run on Microsoft Windows operating systems. The following systems
are compatible with current releases of vTools:

* Microsoft Windows® XP Professional, with Service Pack 2 or later

* Microsoft Windows® Vista with Service Pack 2 or later

* Microsoft Windows® 7 Professional

Some components, such as the vProfiler, are run on other platforms. See the individual vTools component detail
description.

12.1.3 VTK installation

The vProfiler tool is not included in the VTK. This tool can be built by setting a build command option when making
the Vivante Graphics Drivers.
The VTK package contains a vtools folder. Inside this folder are six .zip packages which can be individually
extracted. As an example, for a WinRAR system, right-click and select Extract Here. A folder is created with the
same name as the .zip file.

* vAnalyze.zip

* vCompiler.zip

* vEmulator.zip

* vShader.zip

* vTexture.zip

* vTracer.zip

Each vTools extracted folder contains a SETUP.exe and a vToolName.ms1i file. The tool can be installed
independently by running the SETUP.exe located in the tool folder. Typical licensing and folder placement
options may appear as part of the installation prompts.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

83 NXP Semiconductors

vAnalyzer and vShader have a Windows GUI. vEmulator is a library. vCompiler and vTexture are utilities run from
the command line.

NOTES:

* The default installation location for the VTK is usually a folder named something like C:\Program
Files\Vivante\vToo/Name, where vToolName is the name of the tool being installed. Some systems may install to a
Program Files (x86) folder.

* Windows OS navigation instructions such as Control Panel navigation vary with the different Windows operating
systems.

* Administrator rights may be required to install the tool.

* When installing an updated version, use Windows OS Add/Remove programs to remove the installed version of
the tool, before installing the update version.

12.1.4 Software release compatibility

e SWrelease 5.0.11.p7 - VTK v1.6.2.p1

e SWrelease 5.1.1-VTKv1.6.3

e SWrelease 5.0.11_p6 - VTK v1.6.2

e SWrelease 5.0.11_p5-VTKv1.6.1

e SWrelease 5.0.11_p4 - VTK v1.6.0

e SWrelease5.0.11_p3-VTKv1.5.9 andv1.5.8
e SWrelease 5.0.11_p2-VTKv1.5.7

e SWrelease 4.6.9.p13,5.0.9and 5.0.9.1 - VTK v1.5.3
e SWrelease 4.6.9.p13 and 5.0.7 - VTK v1.5

e SWrelease 4.6.9.p9 - VTK v1.4.2

e SWrelease 4.6.9-VTKv1.4

12.2 vEmulator

Vivante’s vEmulator duplicates the graphics and compute functionality of the Khronos APIs—namely, OpenGL ES
3.0, 2.0, 1.1 and OpenCL 1.1—in a desktop PC environment. This enables developers to write and test applications
for Vivante embedded GPU cores prior to their availability, using the graphics cards on Windows® XP or Windows®
Vista or Windows® 7 PC platforms.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

84 NXP Semiconductors

Graphics / Compute Application <

vEmulator
Develop OpenGL ES and
OpenCL applications
using PC graphics cards

Stand-alone utilities

1
———
1
1
1 vCompiler
VDK/EGL1.4] Compile
: and link shaders
1
1
T
| vShader vTexture
OpenGL ES 1 Rapidly prototype and Image transfer
1.1/2.0/3.0/3.1 : : optimize shader compression-
OpencCL 1.1 1 programs decompression tool
L
OpenVG 1.1 : 1
i i vTracer vPlayer
: 1 | Trace App GLES APl calls Play back GLES API trace
1 : for playing back and
: 1 analysis
1
1
T e ittt
1
1
. 1
vProfiler i vAnalyzer
Collect real-time ! A
Post- I
performance metrics of # ARSI

applications and the
graphics pipeline

analysis of performance

profiling results

Figure 19 vEmulator embedded graphics emulator

vEmulator is not an application, but rather a set of libraries that convert Khronos mobile API function calls into
OpenGL desktop or OpenCL function calls. These libraries can be accessed directly by the graphics / compute

application.

12.2.1 Supported operating systems and graphics hardware

vEmulator libraries are available for Microsoft Windows XP, Windows Vista and Windows 7 operating systems:

Microsoft Windows XP Professional, with Service Pack 2 or later
Microsoft Windows Vista with Service Pack 2 or later
Microsoft Windows 7 Professional

vEmulator has been tested on popular graphics cards, including:

NVIDIA GeForce GTX 200 series with driver version 182.05 or later

NVIDIA GeForce 9000 and 8000 series with driver version 182.05 or later
NVIDIA GeForce 8400 GSwithForceWare driver version 176.44 or later

ATl Radeon HD 3000 and 4000 series with driver version Catalyst 9.1 or later

vEmulator for OpenGL ES 3 has been tested on the nVidia GeForce GT430 card with driver version 310.90.
Additional graphics cards to be added as testing is confirmed.

12.2.1.1 Specifying platform mode for Windows OS

vEmulator supports both 32-bit and 64-bit operation on the same host (from VTK 1.61). The installation uses the
following locations for vEmulator files on Windows platforms:

C:\Program Files\vivante\VEmulator\x86 (for 32-bit emulation)
C:\Program Files\vivante\VEmulator\x64 (for 64-bit emulation)
Start Menu location: All Programs\Vivante\vEmulator\x86 (for 32-bit)
Start Menu location: All Programs\Vivante\vEmulator\x64 (for 64-bit)

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

85

NXP Semiconductors

To run samples for 32-bit emulation in the x86 folder, select the platform option Win32 from the dropdown list

box in the toolbar area:

window Help
L | F Release

L2

Figure 20 Selecting Win32

To run samples for 64-bit emulation in the x64 folder, select the platform option x64 from the dropdown list box in

the toolbar area:

Window Help
- = F Release
& S =

Figure 21 Selecting x64

12.2.2 vEmulator components

vEmulator libraries are packaged with the Vivante VTK installer. Once installed, the libraries resides in a folder
vEmulator in the VTK installation path, which can be specified by the user at time of installation. The default
location of the Vivante VTK is:
C:\Program Files\Vivante
The vEmulator folder contains everything that is needed for emulation. The vEmulator directory structure and its
files are described in the following table.

Table 22. vEmulator Directory Contents

vEmulator Filename Description
subdirectory
libEGL.dII Dynamic library for invoking EGL at runtime
libGLESv1_CM.dIl Dynamic library for OpenGL ES 1.1 emulation
bin libGLESv2x.dll Dynamic library for OpenGL ES 2.0 emulation
libGLESv3.dlI Dynamic library for OpenGL ES 3.0 emulation
libOpenCL.dll Dynamic library for OpenCL 1.1 emulation
libVEmulatorVDK.dII Dynamic library for vEmulator VDK functions
inc gc_vdk.h Vivante VDK declarations
gc_vdk_types.h Vivante VDK type declarations
gc_sdk.h Vivante SDK declarations and definitions
egl.h EGL declarations
eglext.h EGL extension declarations
inc/EGL eglplatform.h Platform-specific EGL declarations
eglrename.h Rename for building static link driver
eglunname.h For mixed usage of ES11, ES20
eglvivante.h Vivante EGL declarations
egl.h EGL declarations
inc/GLES gl.h OpenGL 1.1 declarations
glext.h OpenGL1.1 extension declarations
i.MX Graphics User’'s Guide, Rev. 0, 03/2018
86

NXP Semiconductors

glplatform.h Platform-specific OpenGL 1.1 declarations
glrename.h Rename for building static link driver
glunname.h For mixed usage of ES11, ES20
gl2.h OpenGL 2.0 declarations
inc/GLES2 gl2ext.h OpenGL 2.0 e>ft'ension declarations .
gl2platform.h Platform-specific OpenGL 2.0 declarations
gl2rename.h Rename for building static link driver
gl2unname.h Unified name definitions
inc/GLES3 gl3.h OpenGL 3.0 declarétions :
gl3ext.h OpenGL 3.0 extension declarations
gl3platform.h Platform-specific OpenGL 3.0 declarations
inc/hal gc_hal_eglplatform_type.h | Vivante HAL Platform-specific struct declarations
inc/KHR khrplatform.h Platform-specific Khronos declarations
libEGL.lib Static library for linking EGL functions
libGLESv1_CM.lib Static library for linking OpenGL ES 1.1 functions
lib libGLESv2x.lib Static library for linking OpenGL ES 2.0 functions
libGLESv3x.lib Static library for linking OpenGL ES 3.0 functions

samples/esl11, /es20

libVEmulatorVDK.lib

Static library for linking vEmulator VDK functions

Microsoft Visual Studio® project solution file for

tutorials.sIn
samples
f,?lmples/esll/tutorla -- Varies with N -- Sample OpenGL ES 1.1 applications
fﬁlmples/eszo/tutorla -- Varies with N -- Sample OpenGL ES 2.0 applications
bin libEGL.dII Dynamic library for invoking EGL at runtime

12.2.3 vEmulator for OpenCL

If vEmulator includes support for OpenCL, additional files may be present. For OpenCL emulation using vEmulator

on the PC, see the OpenCL emulator readme file (OCL_Readme.txt) in the vEmulator folder for additional
installation instruction.

Note: An additional environment variable CL_ON_GC2100 needs to be set for simulation for GC2100. The value

can be any characters, as long as it is not null. This variable does not need to be set for other OCL cores.

vEmulator subdirectory

bin

inc/CL

lib

Table 23. vEmulator Files for OpenCL 1.1

Filename
OCL_Readme.txt
libOpenCL.dll
clh

cl.hpp
cl_d3d10.h
cl_ext.h
cl_gl.h
cl_gl_ext.h
cl_platform.h
opencl.h

libOpenCL.lib

Description

Readme file for OpenCL 1.1

Dynamic library for invoking OCL at runtime
OpenCL 1.1 core API header file

OpenCL 1.1 C++ binding header file

OpenCL 1.1KhronosOCL/Direct3D extensions header file

OpenCL 1.1 extensions header file

OpenCL 1.1Khronos OCL/OpenGL extensions header file
OpenCL 1.1Vivante OCL/OpenGL extensions header file

Platform-specific OCL declarations
Vivante HAL version

Dynamic library for linking OpenCL functions

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

87

NXP Semiconductors

samples/cl11 cl_sample.cpp Sample OpenCL 1.1 source code

samples/cl11 cl_sample.sin Sample OpenCL 1.1 Visual Studio solution file
samples/cl11 cl_sample.vcproj Sample OpenCL 1.1 Visual Studio solution project file
samples/cl11 square.cl Sample OpenCL 1.1 kernel file

12.2.4 Supported extensions

See Section “EGL and OES Extensions Support” for a list of supported and custom extensions available for EGL and
OpenGL ES.

Software extensions have not been added to vEmulator for OpenGL ES 2.0. vEmulator relies on the extensions
available with the installed version of native OpenGL.

12.2.5 vEmulator environment variable setup

There are two steps to running an OpenGL ES or OpenCL application with vEmulator:

Step 1. Link to the vEmulator *.1ib static libraries at build time when creating an application executable
image.
Step 2. Provide a path to the vEmulator *.d11 dynamic libraries during run-time.
These steps require a one-time setup in which the location of the vEmulator libraries is added to the Microsoft

Windows system environment variable named “Path.” In our example, the following string would be added to the
system “Path” variable: C:\Program Files\vivante\vEmulator\lib.

To add vEmulator DLL files to the Windows XP system path:

a. Click Start then click Control Panel then double-click System
e Vista: then click Advanced system settings from the Tasks list in the upper-leftcorner of the
window.
e Windows 7: in the System and Security window, click System, then on the left menu column
click Advanced system settings.

b. Select the Advanced tab, then click on the Environment Variables... button.
e An Environment Variables dialogue box is displayed, with two panes for variables.

c. Select Path, and then click on the Edit... button.
d. In the Variable value: field type the following environment variables in the order they should be
found. For instance:

C:\Program Files\vivante\vEmulator\lib;<current path>

Note: The system parses a path string in left-to-right order when looking for a file. Whatever it finds
first is what is used.

e. If the Vivante Core is GC2100, an additional variable CL_ON_GC2100 should be set to any non-null
value.

f. Click OK.
e Click OK to close the Environment Variables dialogue window.
e Click OK to close the System Properties dialogue window.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

88 NXP Semiconductors

e Close the Control Panel > System window.

12.2.6 Sample code overview

In the discussions that follow about the various sample programs included with the vEmulator distribution, we
assume that vEmulator has been installed in the default location within the vivante/VTK folder:

C:\Program Files\vivante\vEmulator

Relative to this path:

e run-time dlls are located at ..\bin

e include-files are found at ..\inc

e library files are located at ..\1ib\<API>

e examples are located at ..\samples\<API>\tutorial*

where APl is one of: esllor es20
The code examples are distributed with working *.exe executable images so that the VTK user can see how the
results should look.

They are presented in a tutorial fashion, progressing from simpler programs to more complex as the tutorial
number increases.

12.2.7 Building and running the code examples

The steps to build and run are identical for all code examples, regardless of the APl (es11 or es20). There are two
general guidelines to keep in mind.

1. A Visual Studio project has environment variables that allow the specification of additional paths to “include”
and “library” files when a source module from that project is being built. The Visual Studio projects that are
part of the vEmulator distribution package are configured out-of-the-box for building all of the sample code
executables, relative to the location where vEmulator is installed. Specifically the additional paths are set as
“S(SolutionDir)..\..\inc” and “S(SolutionDir)..\..\lib”.

If \samples is moved, or if the VTK user begins with the provided projects as templates for developing
applications in a directory that is not directly under the \vEmulator installation, then the project path
variables must be adjusted accordingly. For example:

To access these path variables for tutoriall, first launch the tutorials.sln

e Right-click on tutoriall, then select Properties (at the bottom of the pop-up menu)

e Under “Configuration Properties” > “C/C++” > “General”, edit the Additional Include Directories
entry

o For example, change ..\..\..\incto C:\Program Files\vivante\vEmulator\inc

e Under “Configuration Properties” >“Linker” > “General”, edit the Additional Library
Directories entry
o For example, change ..\..\..\lib to C:\Program Files\vivante\vEmulator\lib
2. Make sure that the system environment variable PATH contains a path to the vEmulator DLL files. (See above
section on vEmulatorEnvironment Variable Setup, above.) Remember that the path is order-dependent;

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

89 NXP Semiconductors

whatever the system finds first is used. If there is more than one DLL with the same name, ensure that the
path to the desired one is listed first in the PATH string.

12.2.8 OpenGL ES 1.1 examples

12.2.8.1 Tutoriall: rotating three-color triangle

Renders a cube centered at the origin with a different color on each face. Flat shading is used. The cube rotates
about the vertical axis. The default projection is ORTHO, which can be toggled between ORTHO and PERSPECTIVE
by left-clicking in the display window with the mouse or pressing Enter.

[+ TOperCLES L Taiona

Figure 22 Rotating three-color triangle

12.2.8.2 Tutorial2: rotating six-color cube
Renders a cube centered at the origin with a different color on each face. Flat shading is used. The cube rotates
about the vertical axis. The default projection is ORTHO, which can be toggled between ORTHO and PERSPECTIVE
by left-clicking in the display window with the mouse or pressing Enter.

BT MR I T e T =%

Figure 23 Rotating six-color cube

12.2.8.3 Tutorial3: rotating multi-textured cube

This example takes the cube of the previous example with PERSPECTIVE projection, loads two textures from file
and combines them using GL_ADD blending mode, and applies the resulting texture to the cube faces.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

90 NXP Semiconductors

2" DpenGl £S5 1.1 Tutona! 3

e

Figure 24 Rotating multi-textured cube

12.2.8.4 Tutorial4: lighting and fog

What appears to be a torus, a cone, and an oblate spheroid orbiting about the center of a plane is actually a single
mesh being lit by a single rotating, diffuse light source. Green fog is added to the scene by left-clicking on the
display window with the mouse or pressing Enter.

5 | Opendl, ES 1.1 Tutonal &

Figure 25 Lighting and fog

12.2.8.5 Tutorial5: blending and bit-mapped fonts

This example makes use of alpha blending to animate sprites across the display, and it also instructs how to create
a bit-mapped font from a texture. Jumbled letters iteratively print and move across the display as they unscramble
into a text message.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

91 NXP Semiconductors

Figure 26 Blending and bit-mapped fonts

12.2.8.6 Tutorial6: particles using point sprites

This example reuses the bit-mapped font technique from the previous tutorial, but it adds a particle generator to
simulate and animate particles being emitted from the textured plane. All computation is performed in fixed-point
arithmetic.

Figure 27 Particles using point sprites

12.2.8.7 Tutorial7: vertex buffer objects

Using Vertex Buffer Objects (VBO) can substantially increase performance by reducing the bandwidth required to
transmit geometry data. Information such vertex, normal vector, color, and so on is sent once to locate device
video memory and then bound and used as needed, rather than being read from system memory every time. This
example illustrates how to create and use vertex buffer objects.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

92 NXP Semiconductors

e CpenGL ES 11 Tutoaal 2

Figure 28 Vertex buffer objects
12.2.9 OpenGL ES 2.0 examples

12.2.9.1 Tutoriall: rotating three-color triangle

A single triangle is rendered with a different color at each vertex, Gouraud shading for blending, rotational
animation in the final display. This is the same example as es11/tutoriall, only implemented in OpenGL ES 2.0.

(s | OpenGL ES 20 Tutonal L

]

Figure 29 Rotating three-color triangle

12.2.9.2 Tutorial2: rotating six-color cube

Renders a cube centered at the origin with a different color on each face, and rotates it about the vertical axis.
Similar to the es11/tutorial2 example, the default projection is ORTHO. But there is no toggle for PERSPECTIVE.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

93 NXP Semiconductors

5T GpenGL E5 2.0 Tutonal & [

Figure 30 Rotating six-color cube

12.2.9.3 Tutorial3: rotating reflecting ball

A ball made of a mirroring material and centered at the origin spins about its Y-axis and reflects the scene
surrounding it.

Note: if the program cannot be executed and print “GL error” in the console, remove the line “return” before the
line of “DeleteCubeTexture(cubeTexData);”

Figure 31 Rotating reflecting ball

12.2.9.4 Tutorial4: rotating refracting ball

This example is the same as the previous one, except that the ball is made of clear glass which refracts the

surrounding environment.
Note: if the program cannot be executed and print “GL error” in the console, remove the line “return” before the
line of “DeleteCubeTexture(cubeTexData);”

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

94 NXP Semiconductors

Figure 32 Rotating refracting ball

12.3 vShader

vShader is a complete off-line environment for editing, previewing, analyzing, and optimizing shader programs.

Graphics / Compute Application <{-- & Stand-alone utilities

vCompiler
Compile
and link shaders

VDK/EGL1.4

vShader vTexture

1
1
1
1
1
1
1
1
1
1
vEmulator !
| Rapidly prototype and Image transfer
1
1
1
1
1
1
1
1
1
1
1
1

Develop OpenGL ES and OpenGL ES

OpenCL applications 1.1/2.0/3.0/3.1 optimize shader compression-
programs decompression tool
OpenVG 1.1

vTracer vPlayer
Trace App GLES AP calls Play back GLES API trace
for playing back and
analysis

1
1
1
1
1
1
1
using PC graphics cards | 1 OpenCL1.1
1
1
1
1
1
1
1

vProflle_r vAnalyzer
Collect real-time

i
1

1

1

1

1

1

! Post-processing visual
1 | performance metrics of # ; g

1

1

1

1

1

analysis of performance
applications and the i -

1
1 fili It

graphics pipeline | T
1

Figure 33 vShader shader editor

vShader allows users to:
e Map any texture onto shaders
e Import user-defined meshes
e Bind mesh attributes to shaders
e Set uniforms in shaders
e View shader compiler output for optimization hints
e Predict hardware performance

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

95 NXP Semiconductors

12.3.1 vShader components

By default, the vShader executable installs in the following location within the Vivante Toolkit directories:
C:\Program Files\Vivante\vShade.

The vShader package includes samples of shader programs, a number of standard meshes (sphere, cube, tea pot,
pyramid, etc.) and a text editor. These extra features help programmers get a quick start on creating their shader
programs.

By combining vertex shaders and fragment shaders into a single shader program, an application can produce a
shader effect. A project can make use of many shader effects, which can share vertex and fragment shaders,
mixing and matching to achieve the desired results.

The scope of this guide is to cover the vShader user interface. The tutorials provided with the vShader package are
there to help the reader learn about shaders, if needed.

12.3.2 Getting started with vShader

Once the vShader utility is launched by clicking on a shortcut or directly on the executable vShader.exe projects
can be created, developed and saved. Project files have an extension .vsp.

12.3.2.1 Creating a new project
To create a new project, locate the main menu bar: Select File then New Project...
Depending on the current project status, one of three things happen:

1. If this is the first time vShader is launched, there is no project already open and selecting “File > New
Project...” has no effect.

2. Ifthere have been no changes to the current project since the last save, then the current project closes and a
new and empty project is opened.

3. Ifthe current project has been modified, then a dialog box appears to ask to save the changes. Choosing Yes
commits the changes to the current project, which is then closed, and a new, empty project is opened.

12.3.2.2 Opening an existing project

To open an existing project, locate the main menu bar:
To open an existing project, locate the main menu bar:

1. Select File then Open Project...
2. Double-click on the desired project from the list that pops up, or single-click on the project name and click OK.

The project loads into vShader and appear in the state it is last saved.

12.3.2.3 Saving a project

To save a project, locate the main menu bar:
1. Select File then Save Project:**
2. Inthe resulting dialog box indicate where to save the project, then click OK.

12.3.3 vShaderNavigation

The vShader application runs on the Windows XP, Windows Vista and Windows 7 platforms and is driven from a
graphical user interface as shown in the figure below.
Main components of the GUI include:

e on upper portion of window: a Menu Bar, Menu Icons,

e on left: Preview pane, Project Explorer pane

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

96 NXP Semiconductors

on right: Shader Editor pane

e on lower portion of window: InfoLog pane.

n Vivante VShader

= | B -

File Edit View Mesh Build Help
S B % M0 O .
Preview X Shader Editor

[F vertex | [fragment

/i
1

coordinates

Project Explorer

=-E1 Toyball
B header
[fixed states

£ mesh: SPHERE_MESH
-6 shaders
=-E7 attributes
@ B uniforms
B textures

void main(void)
{

ECposition

InfolLog

Vertex shader compiled successfully.
Fragment shader compiled successfully.
Program linked successfully.

// Fragment shader for procedurally generated toy ball

varying vecd ECposition;
varying vec4 ECballCenter;
uniform vecd BallCenter;

attribute vec4 aPosition;

uniform mat4 uModelviewProjection;
uniform matd4d uMcdelview;

ECbhallCenter

// surface position in eye coordinates
// ball center in eye coordinates
// ball center in modelling

n

uMcdelview * aPosition;
uModelview * BallCenter;

Figure 34 vS

12.3.3.1 vShader menu bar

hader GUI main window

The main window opens when a user launches vShader. The main menu bar contains drop-down menus for File,

Edit, View, Mesh, Build, and Help.

Table 24. vShader menu commands

Menu Name Menu Command

Description

File

New Project--*

Create a new project file; if a project is currently open, then
the user is prompted to choose whether to save it first.

Open Project*

Browse for and load a .vsp VShader project.

Save Project-**

Save the current project; if this is the first time saving this
project, then the user is prompted to choose where to save
it.

Load Vertex--*

Browse for and load a vertex shader from an existing text
file.

Load Fragment:-*

Browse for and load a fragment shader from an existing
text file.

Save VertexShader As:--

Prompts for filename and location to save the active vertex
shader.

Save FragmentShader As--*

Prompts for filename and location to save the active
fragment shader.

Exit

Close all open files and exit VShader.

i.MX Graphics

User's Guide, Rev. 0, 03/2018

97

NXP Semiconductors

Edit

Undo [Ctrl-z]

Revert to a previous edit state (Note: Undo is only 1-level
deep)

Redo [Ctrl-y]

Re-apply the last “undone” edit command (Note: Redo is
only 1-level deep)

Cut [Ctrl-x]

Delete the selected item(s) and save a copy in the paste
buffer

Copy [Ctrl-c]

Save a copy of the selected item(s) item in the paste buffer

Paste [Ctrl-v]

Insert the contents of the paste buffer

Delete [Del or Bkspc]

Remove the selected item(s)

Select All [Ctrl-a]

Highlight all items in the current view

View
Reset Preview Reset Preview window.
Snapshot Save current preview image to bitmap bmp file. A dialog
box is displayed to let user choose where to save the bmp.
Perspective Use perspective projection in the Shader Preview pane
Ortho Use orthographic projection in the Shader Preview pane
Tool Bar Show or hide toolbar icons
Preview Window Show or hide Preview window
Project Explorer Show or hide Project Explorer window
Shader Editor Show or hide Shader Editor window
InfoLog Show or hide InfoLog window
Mesh
Conic Looks like a spiral horn. ’
Cube A 3D cube.
Klein The Klein bottle.
Plane A 2D square. ‘
Sphere A ball.
Teapot The Utah teapot.
Torus Looks like a donut. g
Trefoil A trefoil knot. @
Custorn Mesh-+- Browse? for and open a 3DS
mesh file.
Build
Compile Compile the active shader.
Link the vertex and fragment shaders into a shader
Link program, and apply it to the mesh showing in the Shader
Preview window pane.
Clear Infolog Remove all text currently showing in the InfoLog window
pane.
Help

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

98

NXP Semiconductors

| | About Information about the version of VShader being used.

12.3.3.2 vShader Window OS panes

There are four window panes in the vShader GUI: Preview, Project Explorer, Shader Editor, and InfoLog. Each pane
can be resized by left-mouse-dragging the pane edge. A pane can be hidden by clicking the X in the upper-right
corner of the pane, or by un-checking the box next to its name in the View pull-down of the main menu. Restoring
a hidden window pane is done by checking the appropriate box in the View pull-down menu.

Individual panes in the vShader application can be resized, relocated or converted to detached windows, as in the
example to the right.

Note: Changes made to pane arrangement are not restored on application or project relaunch.

Figure 35 vShader moveable panes

12.3.3.2.1 Preview

The shader Preview pane shows the current effect of the shaders on the chosen mesh geometry. A different mesh
may be chosen either via the Mesh pull-down menu in the menu bar near the top of the vShader main window or
by right-mouse clicking in the Preview pane.

When using the right-click method, the user also can choose between perspective and orthographic views of the
mesh, can reset the view orientation to the default, or can save the current view in the Preview window as a
bitmap file by selecting Snapshot.

The object in the Preview window can be rotated, translated, and scaled. Rotation is controlled by left-mouse-
drag; translation is done by holding the Ctrl key plus left-mouse-drag; scaling the image is seen by holding the Alt
key while applying left-mouse-drag.

When shader variables are changed, the shader preview updates automatically. When shader programs are
changed they must be recompiled and relinked by the user, through the Build menu. The Preview display is
automatically updated to reflect the new Build.

12.3.3.3 Project explorer

The Project Explorer displays all of the project resources in a familiar tree structure. The root of the tree is the
project name, and the branches and leaves classify the resources. Folders can be expanded by clicking on the plus
sign next to them, and they can be collapsed by choosing the minus sign. By right-mouse clicking on any resource
name, the user can view and usually edit that resource.

12.3.3.3.1 Shader editor

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

99 NXP Semiconductors

The Shader Editor is a work area for entering and modifying shader programs. There are two tabs: one for vertex
shader, and one for fragment shader. Changes made to a shader must be compiled and linked in order for their
effect to appear in the Shader Preview.

Compiling can be done by selecting Build then Compile from the main menu bar. Likewise, linking and applying the
shaders is performed by choosing Build then Link.

12.3.3.3.2 Info log

The Info Log window pane receives diagnostic messages from the compiler and linker, so that the user can see if
the current shaders have built without errors. This pane can be cleared of text by selecting the Build then Clear
InfoLog entry in the main menu.

12.3.4 vShader project resources

Project resources are accessible from the Project Explorer pane. Click on the item and an Editor pop-up dialog box
appears where the user can enter alternate values. Resources include: header, fixed states, mesh, shaders,
attributes, uniforms, and textures.

12.3.4.1 Header

Some project identifying information, namely version, author, and company. Expand the folder to see the settings,
or right-click (or double-click) the folder to edit them.

Header Editor I&J

Version:
Author:

Company:

0K \l Cancel |

Figure 36 Header editor

12.3.4.2 Fixed states

The Fixed State Editor is a list of OpenGL ES 2.0 fixed states settings, such as depth test enable/disable, etc. It
allows the user to set all fixed states manually. Right-click or double click to display an edit dialog.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

100 NXP Semiconductors

Viewport Scissor

i @ [enable
X
y o 0
width -1 ¥ a
L height -1 e -1
height -1
Calor Depth
[] write mask R enable
writq mask G wr'rtq mask
[] write mask B clear value 1.000000

write mask A

function GL_LESS hi
clear value R 0.000000 -

clear value G 0.000000
clear value B 0.000000

clear value A 1.000000

oK][Cancel

Figure 37 Fixed states

12.3.4.3 Mesh

This resource shows the name of the mesh which is currently being displayed in the Preview pane. It does not have
a pop-up window. Right-click on the mesh name to select a different mesh can be selected from the resulting pull-
down menu.

12.3.4.4 Shaders

Left-click on the plus sign next to the “shaders” folder to reveal the two sub nodes in this section, which are vertex
and fragment. Double-click (or right-click and then choose Active) on either shader to bring it forward in the
Shader Editor for editing.

12.3.4.5 Attributes

The Attribute Editor dialog displays all attributes bound to the current project. It allows the user to add new
attributes, and edit or remove existing attributes. Right-click Attributes to add a new one. Click on the plus sign to
expand the attributes list, and then double-click to edit a particular attribute. Also, by right-clicking on an attribute,
the user can edit or remove that attribute or add a new one. Up to 12 attributes are allowed.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

101 NXP Semiconductors

Attribute Editor [

Stream Type Marme
float3 aPosition
POSITION i

TEXCOORD

NORMAL | ok || Cancel

Figure 38 Attributes

12.3.4.6 Uniforms

This displays all uniforms bound to the current project. Right click on Uniforms to add a new one, or expand the list
and double-click on a given uniform to bring up the Uniform Editor dialog. When a uniform is right-clicked, the user
can add new uniforms, or edit or remove existing uniforms. Up to 160 uniforms are allowed.

Uniform Editor %

| ™
int

int2

int3

ink4 (@) User Defined () Predefined

M float |

0, 50000 float? + | Modelviaw
floatd -

— floatg
mat2

matd oK cance

Figure 39 Uniforms

12.3.4.7 Textures

The Texture Editor dialog allows the user to select a texture for each of up to 8 texture units. The effect of applying
each texture is shown immediately in the Shader Preview pane.

The texture selection option list is created from the texture files located in the “textures” subfolder of the project.
The list can be expanded by adding textures to the textures folder, formatted as bitmap files.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

102 NXP Semiconductors

Tasture Editar

Chooss Texture

[Enable texture sampler @

VIVANTE

Ophbans

Mag filler | gL ngaResT -

Min flter | g neanest

Wraps el pepeaT

-]

WrapT [GL_F'.E:'EAT

-]

O

I

Cancel

12.4 vCompiler

vCompiler is an off-line compiler and linker for translating vertex and fragment shaders written in OpenGL ES
Shading Language (ESSL) into binary executables targeting Vivante accelerated hardware platforms
driven by a simple command-line interface.

Figure 40 Textures

Graphics / Compute Application <

VDK/EGL1.4

Stand-alone utilities

vCompiler

Compile
and link shaders

vEmulator
Develop OpenGL ES and
OpenCL applications
using PC graphics cards

OpenGL ES
1.1/2.0/3.0/3.1
OpenCL1.1
OpenVG 1.1

vProfiler
Collect real-time
performance metrics of
applications and the
graphics pipeline

vShader
Rapidly prototype and
optimize shader
programs

vTexture

Image transfer

compression-
decompression tool

vTracer
Trace App GLES AP calls
for playing back and
analysis

vPlayer
Play back GLES APl trace

vAnalyzer
Post-processing visual
analysis of performance

profiling results

. vCompiler is

Figure 41 vCompiler compiler/linker

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

103

NXP Semiconductors

12.4.1 vCompiler command line syntax

12.4.1.1 Syntax:

Optional inputs are indicated by italic font.
vCompiler [-c] [-h] [-1] [-On] [-v] [-Xx <shaderType>] [-0 <outputFileName>]
<shaderInputFileName> <shaderInputFileName_2>

12.4.1.2 Input parameters (required):

shaderInputFileName shader input file name, which must contain one of the following
file extensions:
vert vertex shader source file
frag fragment shader source file
vgcSL previously compiled vertex shader input/output
file
pgcSL previously compiled pixel shader input/output file

12.4.1.3 Input parameters (optional):

shaderInputFileName_2 up to two shader files can be specified. The second shader file is
optional but must have one of the file extensions described above for
shader InputFileName. If the first shader is a vertex shader, this
second shader should be a fragment shader; conversely if the first
shader is a fragment shader, the second should be a pixel shader.

Note: pre-compiled and compiled shaders may be mixed, as long as
one is a vertex shader and the other a fragment shader.

-C Compile each vertex .vert file into a vgcSL file and/or fragment shader

.frag file into a pgcSL only, with no merged result file of type .gcPGM.

If the —c option is not specified:

a)When only one shader is specified, that shader is compiled into a
.[v/p]gcSL file.

b) When two shaders are specified, one is assumed to be a vertex
shader and the other a fragment shader. Each shader can be
either a previously compiled .vgcSL or .pgcSL. file or a .vert or .frag
still to be compiled. The two are merged into a .gcPGM file after
successful compilation.

-f <gpuConfigurationFile> Specifies a configuration file (from VTK 1.6.2). If —f is not specified, the
file viv_gpu.config in the vCompiler working directory is used as
the default configuration file. Example syntax:

vCompiler -f viv_gpu 880.config foo.vert bar.frag

Note: vCompiler does not work correctly if the GPU
configuration file cannot be found or contains incorrect
content. See Section on vCompiler Core-specific configuration
for .config file content organization.

-h Shows a help message on all the command options.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

104 NXP Semiconductors

-1 Create a log file. The log file name is created by taking the first input
file name, then replacing its file extension with “.log”. If the input file
name does not have a file extension, .log is appended, e.g.,

myvert.vert => myvert.log
inputfrag => inputfrag.log
-0 <outputFileName> Specify the output file name. If the path is other than the current

directory, it must also be specified. Any extension can be specified. If
the extension is not specified, the following are
outputFileName supported default types:

vgcSL compiled vertex shader output file, usually compiled
from a .vert input source file (default result for single
file compile)

pgcSL compiled pixel shader output file, usually compiled
from a .frag source input file.

gcPGM compiled file merging vertex shader and

fragment/pixel shader into a single output file

-On Optimization level. Default is -01:
-00 Disable optimizations
-01- -09 Indicates on which level optimization should be done.
The default is level 1. Note: Optimization is actually
implemented in the compiler, not vCompiler.

-s Deprecated from 5.0.11_p5; instead, use file viv_gpu.config in the
vCompiler work directory contains GPU core-specific configuration
detail.

Y Verbose; prints compiler version and diagnostic messages to STDOUT.

-x<shaderType> Explicitly specifies the type of shader instead of relying on the file
extension. This option applies to all following input files until the next
-X option.

ShaderType: supported values for Shader type include:
vert vertex shader source file
frag fragment shader source file
vgeSL compiled vertex shader input/output file
pgcSL compiled pixel shader input/output file

-X nhone revert back to recognizing shader type according to the file name
extension.

12.4.1.4 vCompiler output

Output files are placed in the current directory, unless another directory is specified with the —o option. The files
can be of the three types described above under outputFileName value of the —o option.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

105 NXP Semiconductors

12.4.1.5 vCompiler syntax examples

vCompiler foo.vert produces foo.vgcSL

vCompiler bar.frag produces bar.pgcSL

vCompiler foo.vert bar.frag produces foo.gcPGM
vCompiler -v -1 -O1 foo.vert bar.frag produces foo.gcPMG and foo.log

vCompiler -v -1 -01 -o foo_bar foo.vert bar.frag produces foo_bar.gcPGM and foo_bar.log

12.4.2 vCompiler core-specific configuration

To ensure the shader binaries generated by vCompiler work correctly and optimally on the specified GPU, specify
the GPU before starting to run vCompiler.

There are two or more configuration files (available in VTK 1.6.1) in the vCompiler installation directory. For
example:
viv_gpu.config configuration file for GC2000-5108a (default)
viv_gpu_880.config configuration file for GC880-5106

To change the GPU configuration, rename the GPU file to viv_gpu.config. For example, on a Linux OS platform,
use the following commands:

mv viv_gpu.config viv_gpu_2100.config

mv viv_gpu_880.config viv_gpu.config

Keep in mind that the content of these files should not be modified, and the viv_gpu.config file must be in the
vCompiler work directory. If customization is required, note that the format for the file contents is fixed and only

the value for each parameter may be changed.

Here is the default viv_gpu.config file:

chipModel = 0x2000;
chipRevision = 0x5108;
chipFeatures = OxE0296CAD;
chipMinorFeatures = OxC9799EFF;
chipMinorFeaturesl = Ox2EFBF2D9;
chipMinorFeatures2 = Ox00000000;
chipMinorFeatures3 = Ox00000000;
chipMinorFeatures4 = Ox00000000;
chipMinorFeatures5 = Ox00000000;
chipMinorFeatures6 = Ox00000000;
pixelPipes = 2;
streamCount = 8;
registerMax = 64;
threadCount = 1024;
shaderCoreCount = 4;
vertexCacheSize = 16;
vertexOutputBufferSize = 512;
instructionCount = 512;
numConstants = 168;
bufferSize = 0;
varyingsCount = 11;
superTileMode = 1;

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

106 NXP Semiconductors

125 vTexture

The Vivante vTexture tool is a command line tool which provides compression and decompression functions to
help developers transfer image formats.

Graphics / Compute Application <-1---1 Stand-alone utilities
vCompiler
VDK/EGL 1.4 Compile

and link shaders

vShader vTexture

1
1
1
1
1
1
1
1
1
1
vEmulator :
1 Rapidly prototype and Image transfer
1
1
1
1
1
1
1
1
1
1
1
1

Develop OpenGL ES and OpenGL ES

OpenCL applications 1.1/2.0/3.0/3.1 optimize shader compression-
programs decompression tool
OpenVG 1.1

vTracer vPlayer
Trace App GLES API calls Play back GLES API trace
for playing back and
analysis

1
1
1
1
1
1
1
using PC graphics cards : OpenCL 1.1
1
1
1
1
1
1

vProflle_r vAnalyzer
Collect real-time

i
1

1

1

1

1

1

! Post-processing visual
1 | performance metrics of h i g

| L analysis of performance
. applications and the

1

1

1

1
1 fili It

graphics pipeline | LA
1

Figure 42 vTexture Image Transfer Tool
12.5.1 Formats

12.5.1.1 Supported formats

The vTexture tool supports:
e compression of uncompressed TGA format files to any of the following formats:
o DXT1
o DXT3
o DXT5
o ETC1
o ETC2
e decompression to uncompressed TGA format of the following compressed format file types:
o DXT1
o DXT3
o DXT5
o ETC1
o ETC2
The compressed DXTn format image file is stored as a DDS file, and the ETCn format image is stored as a PKM or
KTX file.
The TGA format either the RGBA or RGB color model and ETCn format provides an image following the RGB color
model RGB888. Note that compressing a TGA image of RGBA format to an ETCn format results in a loss of alpha
values.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

107 NXP Semiconductors

12.5.1.2 Supported formats for tile and de-tile conversions

vTexture supports conversions between linear textures and the tile configurations supported in Vivante hardware:

e Linear no tiling
e Tile 4x4 tile
e Supertile 64x64 tile

The following two tile configurations are supported by some hardware, but not routinely utilized in Vivante
software:
e Multi-tile A split-tile (possible, but rarely used).

e Multi-supertile A split or multi-supertile surface can occur with GC2000 and above, where,
each pixel engine of the multi-pipe renders into a different render buffer and
each render buffer is supertiled.

Formats supported for tile format conversions include the following:
e source data

o BMP

o TGA
e output data

o BMP

o raw data of a specified type. Supported formats are: RGBA8888 BGRA8888 RGB888
BGR888 RGB565 BGR565 ARGB1555

12.5.1.3 vTexture output formats

Output from the compress option:

* DXTn format image file is stored as a DDS file,

* ETC1 and ETC2 format images is stored as a PKM or KTM file.
Output from the decompress option:

* all supported formats are decompressed to an uncompressed TGA file.
Output from tile / de-tile options:

* BMP if —-r not specified

* RAW if -r specified.

12.5.1.4 vTexture RAW output file format definition

The Vivante vTexture Tools RAW file is a Vivante-defined file. The file extension is .RAW.
The format consists of the following:

Table 25. Vivante RAW file header and pixel data definition

Vivante RAW File Header Size

and Pixel Data Definition 16 bytes Data type]
Width in pixels 4 bytes INT Number of pixels
Height in pixels 4 bytes INT Number of pixels

Integer value of numeric for a
supported format, as defined in
gceSURF_FORMAT enumeration:

Pixel format 4 bytes INT Supported Format | Numeric
ARGB_1555 208
RGB_565 209
BGR_888 210

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

108 NXP Semiconductors

BGRX_8888 211
BGRA_8888 212
BGR_565 302
RGB_888 303
RGBX_8888 305
RGBA_8888 306

These value can also be found in
samples(Named TiledTexture).

bit 0: tile

bit 1 supertile

bit 5: flag for multi-
other bits reserved

Tile format 1 byte BOOL

Integer value:

0 = supertile layout mode 0
1 = supertile layout mode 1
2 = supertile layout mode 2

Supertile format 1 byte INT

Reserved 2 bytes not used

12.5.2 Set vTexture environment variable

The following table summarizes the only environment variable that vTexture currently expects.

Table 26. vTexture Environment Variables

Environment Variable | Description

PATH set PATH=%PATH%;"C:\Program Files\Vivante\vTexture\"

12.5.3 Command line syntax

Open a Command prompt.
Navigate to the folder which contains the vTexture files (for example, C:\Program Files (x86)\Vivante\vTexture).
Launch the vTexture or vTextureTools application using the command line syntax described below.

12.5.4 Syntax

The usage of the command line tool is as follows for compression/decompression:

vTextureTools -c TYPE [-s SPEED] -src FILE [-dest FILE]

or

vTextureTools -d TYPE -src FILE [-dest FILE]

The usage of the command line tool is as follows for tiling/de-tiling:

vTextureTools -t|-st [-2 [-r|--raw=FORMAT] -m LAYOUT] -src FILE [-dest FILE]

or

vTextureTools -dt -t|-st [-2 [-r|--raw=FORMAT] -m LAYOUT] -src FILE [-dest FILE]

12.5.4.1 General Parameters

General parameters:

-h show help

-src [FILE] source file - input image path and filename.
Note:
for option —c compress, the application expects an input filename with a .TGA
extension;

for -d decompression the application expects .DDS, .KTX or .PKM ;

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

109 NXP Semiconductors

-dest [FILE]

for -t tile the application expects .BMP or .TGA;

for —-dt detile the application expects .BMP or .TGA

destination file - image path and filename.

Note: the application expects a filename with a .TGA, .DDS, .KTX or .PKM
extension for compress/uncompress or .BMP or .RAW for tile/detile.

If the -dest parameter is not set, vTexture automatically generates a name for
the newly generated file, using the source file name as the prefix appending
critical parameters and file type information.

12.5.4.2 Compression/Decompression parameters

These parameters are used for compression and decompression:

-C

compress a source image of format uncompressed TGA
[TYPE] specify the target output compression format:

-DXT1 compress image to DXT1 format (default format).
-DXT3 compress image to DXT3 format.
-DXT5 compress image to DXT5 format.
-ETC1 compress image to ETC1 format.
-ETC2 compress image to ETC2 format .

decompress a source image of format specified by the value [TYPE].

The resulting file type is uncompressed TGA.

This option decompresses DXT1, DXT3, DXT5, ECT1 or ETC2 format image to TGA
format.

Note: [TYPE] supported tga. namely, we can only use -d tga

compression [SPEED] mode for ETCn images:
slow

medium

fast (default)

12.5.4.3 Tile/De-Tile parameters

These parameters are used for tiling and de-tiling between linear and tiled formats:

-t

-st

-dt

Convert linear data to tiled texture output

Enable supertile format. This option is an alternate to -t. If -st and -t are
used together, -st is set.

De-tile: Convert tiled texture to linear texture output

Tile/de-tile in multi- format. Tile format is multi-tiled (when used with -t) or
multi-supertiled (with -st).

[LAYOUT]: layout mode for supertiled or multi-supertiled textures:
0: Legacy supertile mode (default).

1: Supertile mode when hardware has HZ.

2: Supertile mode when hardware has NEW_HZ or FAST_MSAA.

Specify output data as raw pixel output instead of BMP.
Use: --raw=rgb565 to specify raw pixel [FORMAT]. Supported raw formats
(7) are:

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

110

NXP Semiconductors

rgba8888, bgra8888, rgh888, bgr88s, rgb565, bgr565, argb1555.

12.5.4.4 vTexture syntax examples

COMPRESS:
vTextureTools -c dxtl -src d:\myfile.tga -dest c:\compress.dds
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.pkm
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.ktx
vTextureTools -c etcl -s slow -src d:\myfile.tga -dest c:\compress.pkm
vTextureTools -c etc2 -s slow -src d:\myfile.tga -dest c:\compress.ktx

DECOMPRESS:
vTextureTools -d etcl-srcC:/vtexin/myfile2.pkm -dest C:/vtextout/myfile2.tga
vTextureTools -d -srcC:/vtexin/myfile3.dds -dest C:/vtextout/myfile3.tga (assumesDXT1)
vTextureTools -d tga -src d:\myfile.dds -dest c:\decompress.tga
vTextureTools-dtga -src d:\myfile.ktx -dest c:\decompress.tga

TILE: LINEAR TO TILE CONVERSION:
Tile linear texture to standard tile texture
vTextureTools.exe -t -src 123.bmp
Tile linear texture to multi-tiled texture
vTextureTools.exe -t -2 -src 123.bmp
Tile linear texture to supertiled texture
vTextureTools.exe -st -src 123.bmp
Tile linear texture to multi-supertiled texture
vTextureTools.exe -2 -st-src 123.bmp
Tile linear texture to multi-supertiled texture and output rghb565
vTextureTools.exe -2 --raw=rgb565 -src 123.bmp
Tile linear texture to multi-supertiled texture with layout mode 2
vTextureTools.exe -st -2 -m 2 -src 123.bmp

DE-TILE: TILED TO LINEAR CONVERSION:
De-tile tiled texture to linear texture
vTextureTools.exe -dt -t -src 123-tiled.bmp
De-tile supertiled texture to linear texture
vTextureTools.exe -dt -st -src 123-supertiled.bmp
De-tile multi-supertiled texture to linear texture
vTextureTools.exe -dt -t -2 -src 123-tiled-multi-tiled.bmp

De-tile multi-Super-tiled texture with layout mode 2 to linear texture
vTextureTools.exe -dt -st -2 -m 2 -src 123-multi-supertiled-2.bmp

12.6 vProfiler and vAnalyzer

vProfiler is a run-time environment for collecting performance statistics of an application and the graphics pipeline.
vAnalyzer is a utility for graphically displaying the data gathered by vProfiler and aiding in visual analysis of
graphics performance. Used together, these tools can assist software developers in optimizing application
performance on Vivante enabled platforms. The GPU includes performance counters that track a variety of GPU
functions. vProfiler gathers data from these counters during runtime and can track data for a range of frames or a

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

111 NXP Semiconductors

single frame from any application. Appendix A contains a partial list of the data gathered by the hardware
performance counters. Additional counters are present in the software drivers and hardware access layer.

Trace App GLES API calls Play back GLES API trace

for playing back and
analysis

.
e e
Graphics / Compute Application < oo Stand-alone utilities i VPrOfller
1
1 1 .
| vCompiler ' | Collect real-time
1 Compile 1
: and link shaders : performance
| : : metrics of
0 1
vEmulator . : vShader vTexture i
Develop OpenGLESand | ! OpenGL ES 1 Rapidly prototype and Image transfer :
OpenCL applications . 1.1/2.0/3.0/3.1 1 optimize shader compression- | \/
using PCgraphicscards | 1 OpenCL1.1 : programs decompression tool :
1 | i .
! OpenVG 1.1 1]
: 1 vTracer vPlayer : Vp rOfI |
| : !
1 1 I
) 1
1 1

AV4
vProfllqr vAnalyzer
Collect real-time

VAnalyze
performance metrics of # fachibiocessinauicual

analysis of performance
applications and the U b r

1
1 fili It

graphics pipeline 1 LI
1

.

——————————————— ! Post-processing
Figure 43 vProfiler performance profiling save data for review in the vAnalyzer visual analyzer

12.6.1 Fundamentals of performance optimization

Whenever an application runs on a computer, it makes use of one or more of the available resources. These
compute resources include the CPU, the graphics processor, caches and memory, hard disks, and possibly even the
network. Viewed simplistically, it is always true that one of these resources is the limiting factor in how quickly the
application can finish its tasks. This limiting resource is the performance bottleneck. Remove this bottleneck, and
application performance should be improved. Note, however, that removing one limiting factor always promotes
something else to become the new performance bottleneck.

The goal of optimizing, or tuning, application performance is to balance the use of resources so that none of them
holds back the application more than any of the others. In practice there is no single, simple way to tune an
application. The whole system needs to be considered, including the size and speed of individual components as
well as interactions and dependencies among components.

vProfiler collects information on GPU usage and on calls to Vivante functions within the graphics pipeline. As such
it provides an excellent view into what is happening on the GCCORE graphics processor at any point in time, down
to the individual frame. When the application performance is GPU-bound, vProfiler and vAnalyzer are the right
tools to help determine why.

Note that the initial determination regarding which component of the computer system is the performance
bottleneck—CPU, GPU, memory, etc.—is the domain of system performance analyzers and is outside the scope of
the GPU tools. A list of such performance analysis tools can be found at Wikipedia:

en.wikipedia.org/wiki/List of performance analysis tools.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

112 NXP Semiconductors

http://en.wikipedia.org/wiki/List_of_performance_analysis_tools

12.6.2 vProfiler setup for the Linux OS

The VTK Windows OS package includes vAnalyzer for the Windows OS environment. The vProfiler tool can be
compiled for the Linux OS, as per the instructions below.

vProfiler stores software and hardware counters captured per frame in the vprofiler.vpd file. vAnalyzer reads
the .vpd file and allows the user to browse all counters, visualize application performance bottlenecks, and
measure system utilization of that application run. Presently, vProfiler does not store frame buffer images due to
excessive overhead that changes the behavior of applications.

12.6.2.1 Enable vProfiler option in kernel

When building Vivante Graphics Drivers in a Linux OS environment, the driver is built with vProfiler capability.

To activate vProfiler functionality, build the drivers per the instructions in Section “How to Build the GCCORE
Drivers for the Linux OS” in the Vivante Driver Development Guide.In Step 3 of the subsection “Run on the target
board” where insmod is used to insert the GAL kernel driver, use the command line to add the gpuProfiler=1
option, or add the option into an existing .sh script similar to the following:

#!/system/bin/sh

#

insmod /system/lib/modules/galcore.ko gpuProfiler=1 [OPTIONS]
chmod 777 /dev/graphics/*

12.6.2.2 Enable vProfiler option in U-Boot

vProfiler can also be enabled from U-Boot with kernel command parameters. Minimum Linux kernel version 3.10.y
needs to support this galcore.powerManagement=0 galcore.showArgs=1 galcore.gpuProfiler=1.

12.6.2.3 Set vProfiler environment variables

The following table summarizes the environment variables that vProfiler supports. (Note that environment
variable names for the Linux OS were changed from driver releases 4.6.9.p13 and 5.0.7 and toolkit release 1.5.)

Table 27. vProfiler Environment Variables for the Linux OS

Environment Variable Description

[0] Disable vProfiler (default), [1] Enable vProfiler,[2] Control via application call, [3]
VIV_PROFILE .) . .

Allows control over which frames to profile with vProfiler
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)
VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.
VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.
VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

Enable [1] or disable [0] the synchronous mode of vProfiler (default is synchronous

VP_SYNC_MODE enabled)

12.6.2.3.1 VIV_PROFILE

The environment variable VIV_PROFILE can be used to control enable /disable and set profiling modes for vProfiler.

VIV_PROFILE=0:
By default, vProfiler is disabled in the driver. If vProfiler has been enabled and to disable it,set
VIV_PROFILE equal to 0:
export VIV_PROFILE=0

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

113 NXP Semiconductors

VIV_PROFILE=1:
To enable vProfiler, set VIV_PROFILE to 1:
export VIV_PROFILE=1

To limit the number of frames to analyze, use the environment variable VP_FRAME_NUM. (This
option is available only when VIV_PROFILE=1.) For example, this example setting makes
vProfiler dump performance data for the first 100 frames.

export VP_FRAME_NUM=100

VIV_PROFILE=2:
Mode VIV_PROFILE=2 (available from VIK 1.5.7) provides support for
glEnable(GL_PROFILE_VIV) and glDisable(GL_PROFILE_VIV), which are used to
choose which frames are to be profiled. In this mode, vProfiler is disabled by default. It begins to
do profiling only after a glEnable(GL_PROFILE_VIV) call from the application. And it stops
profiling when gIDisable(GL_PROFILE_VIV) is called. Note that the flag is only checked at every
frame end, i.e., in eglSwapBuffers. To use this mode, set VIV_PROFILE to 2:
export VIV_PROFILE=2

VIV_PROFILE=3:
Setting VIV_PROFILE to 3 (available from VTK 1.5.8) provides support for two environment
variables VP_FRAME_START and VP_FRAME_END, which are used to choose which frames are
to be profiled. In this mode, vProfiler is disabled by default. It begins to do profiling starting at
the frame number specified by VP_FRAME_START, and it ends the profiling after the frame
number specified by VP_FRAME_END. For example to use this mode, set VIV_PROFILE to 3:

export VIV_PROFILE=3
export VP_FRAME_START=10
export VP_FRAME_END=90

NOTE: The GPU profiling mode requires the GPU Power Management (PM) functions to be disabled to get the
precise profiling data. When kernel module “galcore” is inserted with gpuProfiler=1, the PM functions in the driver
are not disabled. The PM functions are disabled when VIV_PROFILE is set to 1, 2, or 3, and the application starts.
The PM functions are enabled when VIV_PROFILE is set to 0, and the application starts again.

12.6.2.3.2 VP_OUTPUT

The output file of vProfiler is vprofiler.vpd by default. To specify an alternate filename use the environment
variable VP_OUTPUT. For example,
exportVP_OUTPUT =sample.vpd

12.6.2.3.3 VP_SYNC_MODE

To get accurate values from the GPU counters, vProfiler needs to commit the GPU commands at the end of every
frame; this is so-called synchronous mode. The environment variable VP_SYNC_MODE can be used to enable or
disable synchronous mode. By default, vProfiler works in synchronous mode. The command below makes vProfiler
work in asynchronous mode.

export VP_SYNC_MODE=0

12.6.3 vProfiler setup for the Android platform

The vProfiler tool can be set up for use with the Android platform, as per the instructions below.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

114 NXP Semiconductors

12.6.3.1 Enable vProfiler option in kernel

When building Vivante Graphics Drivers in an Android environment, build the drivers per the instructions in the
Vivante Driver Development Guide section entitled “How to Build the GCCORE Drivers for Android Platform.” In
Step 2 of the subsection “Run on the Target board”, use the provided install-recovery.sh script or add the
gpuProfiler=1 option into the existing . sh script similar to the following:

#!/system/bin/sh
#

insmod /system/lib/modules/galcore.ko gpuProfiler=1 [OPTIONS]

chmod 777 /dev/graphics/*

Put the install-recovery.sh file in the target Android system’s /system/etc/ folder. Continue following
the instructions in the Vivante Driver Development Guide or the readme guide in the driver source package.

Use adb push to migrate the drivers to the target system, and then reboot the target Android system.

NOTE: If using an install-recovery.sh script as described above, and cannot reboot the
Android platform successfully, there may be a problem with file access permissions.
Workaround: run adb shell. Goto /system/etc/, then run the command chmod 777

install-recovery.sh.

12.6.3.2 Setting property options for vProfiler

The following table summarizes the property options that vProfiler supports through running the commands adb
shell setprop [OPTIONS]. These options are similar to the environment variables available for the Linux OS.

Table 28. vProfiler Set Property Options for Android Platform

adb shell setprop OPTIONS
setprop VIV_PROFILE 0
setprop VIV_PROFILE 1

setprop VIV_PROFILE 2

setprop VIV_PROFILE 3
setprop VP_FRAME_START
setprop VP_FRAME_END

setprop VP_PROCESS_NAME appname

setprop VP_OUTPUT newpath

Description
Run this command in adb shell to disable vProfiler in the drivers
Run this command in adb shell to enable vProfiler in the drivers

Run this command in adb shell to have vProfiler enable/disable
controlled in the application by glEnable(GL_PROFILE_VIV) and
glDisable(GL_PROFILE_VIV calls. (available from VTK 1.5.7)

Run these commands in adb shell to have vProfiler start-stop at
frames specified in VP_FRAME_START and VP_FRAME_END.
(available from VTK 1.5.8)

Run this command in adb shell to specify the application to
profile. Change the app name as needed to profile another
application.

NOTES:

There may be different sub use case names used by an app. Be sure
to accurately specify a use case name to match the name on the
command line when using ps command.

This option is only available for the Android platform, not available
for the Linux OS.

Run this command in adb shell to specify a new location for
vProfiler output.

By default, the vpd file is created under /sdcard/. If an application
has no access to the SD card, specify another path where the
application does have write permission.

NOTE: For applications which initialize during Android system boot

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

115

NXP Semiconductors

startup, such as launcher, kill the process after you change to a new
path. When the application automatically restarts, then the vpd is
accessible in a desired location.
Run this command in adb shell to limit the number of frames to
analyze. For example, to make vProfiler dump performance data for
the first 100 frames: setprop VP_FRAME_NUM 100
NOTES:
setprop VP_FRAME_NUM xxx Only use when VIV_PROFILER is set to 1.
When this option is not used, the profile file generated when running
an application for a long time can be very large. This takes up a large
amount of disk space and also makes it hard to view the data in
vAnalyzer.
Run this command in adb shell to enable or disable synchronous
mode. By default, vProfiler works in synchronous mode (=1). To get
setprop VP_SYNC_MODE 0 accurate values from the GPU counters, vProfiler needs to commit
setprop VP_SYNC_MODE 1 the GPU commands at the end of every frame; this is so-called
synchronous mode. This example command makes vProfiler work in
asynchronous mode: setpropVP_SYNC_MODEO

12.6.4 vProfiler setup for the QNX OS

The vProfiler tool can be set up to use with the QNX platform according to the instructions below.

12.6.4.1 Enable vProfiler option
When building the Vivante Graphics Drivers for QNX environment, build the driver with the vProfiler capability.

The graphics.conf file contains the configuration information for Screen and is found under the following directory:
SCREEN-DIR/usr/lib/graphics/TARGET-SPECIFIC

To activate the vProfiler functionality, add the gpu-gpuProfiler=1 option into the khronos section of the
corresponding graphics.conf file:

begin khronos

Bééin wfd device 1
éﬁd-gpuProfiler:l
é&é wfd device
eéa.khronos

When the QNX Screen graphic subsystem is started, it reads this option from the config file and enables the
vProfiler function.

12.6.4.2 Setting property options for vProfiler

The following table summarizes the property options that vProfiler supports by setting environment variables.
These options are similar to the environment variables available for the Linux OS.

Table 29. vProfiler Set Property Options for Android Platform

Environment Variable Description

export VIV_PROFILE=0 Set VIV_PROFILE to O to disable vProfiler in the drivers

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

116 NXP Semiconductors

export VIV_PROFILE=1 Set VIV_PROFILE to 1 to enable vProfiler in the drivers. Optionally set

export VP_FRAME_NUM=100 the VP_FRAME_NUM to specify the number of frames dumped by
vProfiler.
Set VIV_PROFILE to 2 to control the vProfiler in the application by
export VIV_PROFILE=2 glEnable(GL_PROFILE_VIV) and gIDisable(GL_PROFILE_VIV) calls.
(available from VTK 1.5.7)
export VIV_PROFILE=3 Set VIV_PROFILE to 3 to have vProfiler start-stop at frames specified
export VP_FRAME_START=10 in VP_FRAME_START and VP_FRAME_END. (available from VTK
export VP_FRAME_END=90 1.5.8)

The output file of vProfiler is vprofiler.vpd by default. To specify an
alternate filename use the environment variable VP_OUTPUT. For
example, export VP_OUTPUT=/tmp/sample.vpd. Make sure the
directory specified has correct access rights.

export VP_OUTPUT=newpath

export VP_SYNC_MODE=0 Set VP_SYNC_MODE to enable [1] or disable [0] synchronous mode.
export VP_SYNC_MODE=1 By default, vProfiler works in synchronous mode (=1).
export VP_USE_GLFINISH=0 Set the VP_USE_GLFINISH to enable [1] or disable [0] the use of
export VP_USE_GLFINISH=1 glFinish() instead of eglSwapBuffers() as the frame delimiter (default
is disabled).

12.6.5 vProfiler collecting performance data

vProfiler is implemented by using hardware counters and a group of instrumentations inserted into drivers that are
controlled by compilation flags.

12.6.5.1 Performance counters

vProfiler counters are divided into five sets: HAL (Vivante Graphics driver), (shader) program, OpenGL and
OpenVG. The counters provide detailed per frame runtime information about the application that can help the
developer monitor and tune an application’s resource usage. The following table briefly lists the various profile
counter sets. For further information, see Appendix A at the end of this document.

Table 30. Performance Counter Types

Counter Type Description

HALCounters Driver memory usage

Program Statistics of the shaders loaded in the GPU (Note: Available only for OpenGL ES 2.0 applications.)
OGLCounters Various OpenGL (OpenGL ES 20 or 11) counters, such as APl usage and primitives drawn.
OVGCounters Various OpenVG counters, such as API usage and primitives drawn.

12.6.6 vAnalyzer viewing and analyzing a run-time profile

vAnalyzer is a GUI-based tool whose purpose is to help the user view and analyze GPU performance data that was
collected using counters during an application run. The performance data from a binary file (*.vpd) written by
vProfiler is displayed by vAnalyzer both in text lists and as line graphs. vAnalyzer features a multi-tab, multi-pane,
graphical user interface that gives the user several ways to inspect any frame in a captured animation sequence.

12.6.6.1 Loading profile files

vAnalyzer accepts a profile for input, which is a .vpd file of performance data created by the Vivante vProfiler
during a run. For example, the saved file may have a name such as sample.vpd.

A .vpd file can be selected using the File/Load Profile Data menu option.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

117 NXP Semiconductors

When a performance profile is loaded, vAnalyzer populates the title bar with information about the GPU and the
CPU.

The vAnalyzer screen shot below shows the vAnalyzer GUI immediately after loading a.vpd performance file, and
moving the frame number slider to frame 700. By default, the main pane of the vAnalyzer window displays the
Charts tab which provides charts for frame time, driver time and GPU idle cycles. Additional charts can be added in
the graph window by selecting from the list of variables on the right. Different combinations of counters can be
displayed in graphical and list form to illustrate resource utilization for any portion of the profiled application. A
second tab contains system information.

I Vivante VAnalyzer - Host GPU: Vivante GC4000 revision="5.2.2_rc2" , OpenGL ES 2.0

File Chart Viewer Help

Chart | System Info Tz
183658 4 Summary Detail
Frame Number: 700

139071 Driver Utiization: |75,

= AV AR e =
4%-%%%@&7 ’N‘vﬂ\"‘ﬁwu 1 ! I | Primive Rate: 3,985,206 Primisec

53124

6,974,692 Vertex/sec

[~ Frame time (microsec)| :
Driver time (microsec Phxel Rate: 56 MPixeljsec

265246393
Texture Rate: 437 texturessec

199010493 AXIBandwidth: 17,7967 bytes

00000000

1327745934 Frame Selection
Slow Frames | Critical Frames.

Top 10 Slowest Frames (Click to Select)

66538693

Li, s S oy Frame 2: 7,508,777
ST o orttratira ot W S N A A LA) e me 1254 54,9
rame 700: 183,658
o 313 627 940 1254 Frame 1097: 181,172
—GPU cycles Frame 1098: 180,436
Frame 1099: 180,284
Frame 1095: 178,567
Frame Number Frame 110S: 178,386
Frame 1100: 177,509
J Frame 1104: 177,471
0 700 1254

Figure 44 vAnalyzer GUI Main Window

12.6.6.2 vAnalyzer menu bar

The vAnalyzer main window opens when a user launches vAnalyzer. The main menu bar contains drop-down
menus for File,Chart, Viewer and Help. Menu options include the following:

File
— Load Profile Data: load a .vpd profile file
— Export Current Frame Data: dump all the counters for the frame being viewed to a .cvs file
— Exit: exit vAnalyzer

Chart

— Create chart: create a new chart

— Customize chart: add or delete counters in an existing chart

— Remove chart: delete a chart

— Export data from chart: dump the counters in a chart to a .csv file
— Save chart to png: dump the chart to a .png file

— View: zoom in, zoom out or fit the chart

— OpenGL function call viewer: display the OpenGL function call statistics
— Program viewer: display the shader program statistics

— About: gives version information for vAnalyzer

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

118 NXP Semiconductors

12.6.7 vAnalyzer charts

12.6.7.1 vAnalyzer upper left pane: chart tab and menu options

On the Chart tab in the vAnalyzer main window two default line graphs are displayed.

183658]
139071 |
94485 |
49898+ | .0

s3t240 "

— Frame time (microsec)
— Driver time (microsec)
165246393
99010493
32774593

i W
S S

A
O D O i U O
302793 2 A AMAAA LSy A g ¥

it A A M M

0 313 627

—GPU cycles
—GPU idle cycles

940

Figure 45 vAnalyzer Performance Counter Charts

12.6.7.2 Chart customization

Chart/Customize: Additional performance counters can be added to existing chart using the Customize Chart
dialog window, which can be invoked from the drop menu Chart/Customize, or from a pop-up menu, which can be

invoked by right clicking in the Chart tab area.

Create New Chart: A new chart can be added in a similar way. A single chart can display up to four (4) counters,
and the Chart pane can hold up to eight (8) charts. Thus a maximum of thirty-two (32) counters can be graphed at

the same time.

Remove Chart: Any chart can be removed from the display using the drop menu Chart/Remove Chart.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

119

NXP Semiconductors

Create New Chart ﬁ

Performance Counter

Counter Name

= Counters Per Frame -
_ Dvera”

v Frame rate (frames/sec
- Driver utilization (%) |~ Add ==
- Frame time (microsec)
- Driver time (microsec)

.

n

it

<< Remove
LI GPU cycles
- OpenGL
- {#k-Wartaw nrnraccinn Remove All
4 1 ¢
F
oK ‘ l Close

L []

Figure 46 vAnalyzer Create New Chart Dialog

12.6.7.2.1 Chart components and navigation

Frame Marker: On the plots displayed in the chart example above there is a blue, vertical frame marker. This
marks the current frame position in the timeline.

Zoom:

Zooming in on a set of frames can be achieved in one of two ways.

* One method is to hold down the left mouse button and then sweep a selection box across a range of frame
numbers, either on a plot itself or in the common X-axis (frame numbers) in the “Chart” pane, before releasing the
mouse button. All charts in the “Chart” pane zooms in to the same range of frames.

* Alternatively, if the mouse has a scroll wheel, zoom in by rolling the wheel forward--toward the screen.

To zoom out move the scroll wheel backward.
To reset zoom to the default, which shows the entire timeline, press the escape key (ESC) on the keyboard. The
chart view changes to include all frames, from start to end.

12.6.7.2.2 Data export

The performance counters in a chart can be dumped to a .csv file by selecting from the dropdown menu Chart /
Export Data From. The .csv file can be viewed using Excel or another text viewer.
The chart can also be dumped to a .png file by selecting from the main menu Chart / Save chart to PNG.

12.6.7.3 vAnalyzer lower left pane: frame number slider bar

In the lower left pane of the vAnalyzer window, there is a Frame Number gauge in the form of a slider bar.
Numbers at each end of the bar indicate the initial frame (0) and the last frame available in the loaded sample. By
left-clicking and holding the slider, the user can change which frame is selected for analysis. When the frame

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

120 NXP Semiconductors

number is changed, the blue vertical line which indicates the current frame is moved, and the reported Frame
Number changes in the upper right pane Frame Analysis Summary.

Frame Number

i
374 1107

Figure 47 vAnalyzer Frame Number Slider Bar

12.6.7.4 vAnalyzer left pane: System Info tab

When a .vpd profile is loaded, system information about the profiled machine populates the fields on the System
Info pane. Some information is repeated in the title bar of the main GUI for quick reference.
Chart ~ System Info

Hardware Info
GPU Core:

Driver Info

GPU Driver:

Driver Config:

Profiler Info

Profiler Version:

Data Summary

Total Frame Number:

Average Frame Rate:

Screen Size:

Vivante GC4000 revision="5.2.2_rcz

OpenGL ES 2.0

Normal

1.3

1255

10.439 Frames/Sec

1920 x 1128

Figure 48 vAnalyzer System Info Tab

12.6.7.5 vAnalyzer upper right pane: Frame Analysis

A selection of performance counters for the frame being viewed are displayed on the right side of the vAnalyzer
main GUI. The user can convert this pane to a pop-up window by dragging the pane outside the application
window. Drag it back to the right pane area of the application window to reintegrate the pane.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

121

NXP Semiconductors

Summary Detail
Frame Anslyss Frame Analysss
Summary Deotad Summary Detail
Frame Number: 700 Courter Name Vo
= Frame Nomber 700 A
Drivor Utiization:
75% L] Soved
: Fraine roto (frotmes/cec) 5444
GPULRAZMMON: [63% E] Oriver utization (%) 7%
. : Frame time (microsec) 183,658
Shader Liiization: | 229, =1 Driver time (mirosec) 137,69
GPU weiization (%) 63
Privitive Rate: 3,985,206 Prienjsec [D GPU cydes 6.83007
GPU ide cytles 3.279¢7
Vertox Rate: 6,974,692 Vertoxjsac @ & Operdil
& Veertox peocossng
Pocel Rate: 56 MPixelfsac | | + Prienkive processng
Picel processng
Texture Rate: 437 texturesfsec l | * Shader Processing ¥
AXT Bandwadth: Frame rate, messured in frames per second ~
7.79607 btes l I Tps: The smoothness of animation is largely determinad by the

lowest fraeoe rate. Snce the maximun frames per second (fps) o

Figure 49 vAnalyzer Frame Analysis Summary and Detail Tabs

12.6.7.5.1 Summary tab

The Summary tab displays summary information for the frame being viewed.

The Selected Frame Number can be changed by entering a new frame number in the text box at the top of the list.
The user must press Enter after the input to activate the change. Then Summary values, sliders, and charts all
change to reflect the newly entered frame number.

The Summary values below frame number are not directly changeable. They change only when the frame number
is changed, either in the Summary tab, by moving the Frame Number slider, or by selecting a frame from the
Frame Selection pane. Clicking the “...” button to the right of a Summary item brings up the corresponding
counters in the Detailtab. For example, clicking the “...” button to the right ofPrimitive Rate: switches the view to
the Detail tab and expands the Primitive processingcatogory. Clicking the “...” button forDriver Utilization: brings
up the pop-p window OpenGL function call viewer.

12.6.7.5.2 Detail tab

The Detail tab reports values for overall performance evaluation, such as Frame Rate, Driver Utilization, and GPU
cycles. Additionally counter detail is accessible on this tab. The categories of available counters in the Detail
tabare: Overall, OpenGL, Vertex processing, Primitive processing, Pixel processing, Shader Processing, Texturing
and AXI Bandwidth. Appendix A lists performance as well as hardware counters.

12.6.7.6 vAnalyzer lower right pane: Frame Selection

As with the Frame Analysis pane, this pane can be dragged to display as an independent popup window.

12.6.7.6.1 Slow Frames tab

The “Slow Frames” tab lists the ten (10) slowest frames in the animation sequence, by time in ascending order
from slowest to tenth slowest.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

122 NXP Semiconductors

The user can left click on any entry, or can use the arrow keys to move up and down the list, and the display in
each of the other GUI panes changes to match that frame.

E3l

Slow Frames | critical Frames |

Top 10 Slowest Frames (Click to Select)

Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame
Frame

Frame

T03: 942,432
653: 886,384
0: 720,725
2359: 544,408
241: 528,337
842: 374,248
1047: 357,053
1048: 343,501
851: 295,404
1046: 215,320

Figure 50 vAnalyzer Frame Selection Slow Frames Tab

12.6.7.6.2 Critical Frames tab

Select the “Critical Frames” tab to customize the criteria by which a frame is chosen for inspection. One or more of
the performance counters can be specified in building the query, which also allows for AND and OR logic.

Queries should follow a pattern such as:

“counter name” condition(‘<’,’>’,’==’) values.
Users can identify counter names from those in the Frame Analysis pane Detail tab. An example is provided just

below the Query input text box.

Edl

Slow Frames

Critical Frames

Query: "GPU cycles" > 1e7

Bxample: "Frame time" = 2e5 && "GPU cycles" = 1e7

703
6593

0
239
241
842

a

Frame/GPU cycles

4.985e8
4.6%1le8
3.555e9
2.883e8
2.7%98e8
1.587e8

4 maa o~

[u

Total: 139, Listed: 50

Figure 51 vAnalyzer Frame Selection Critical Frames Tab

12.6.8 vAnalyzer viewers

The Viewer information pop-up window can be launched by selecting Viewer/Function Call Viewer or
Viewer/Program Viewer from the Main menu. The selected Viewer appears in a pop-up window.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

123

NXP Semiconductors

[

B Vivante VAnalyzer - Host GPL: Vivante GC880 revi

File Chart | Viewer | Help

Chart | Sy Function Call Viewer ...

41'1653216_[Program Viewer ..,

Figure 52 vAnalyzer viewers

12.6.8.1 OpenGL Function Call viewer

The OpenGL function call viewer includes three information areas.

e The OGL Function Name area contains a table which lists the available OpenGL ES functions by Function Name
and Function Type, the run time and the number of times each has been called for this frame. Functions can
be sorted by clicking in the column heading area. For example, sort the functions by call count or run time by
clicking the title bar of “# of Call” or “Time (ms)”.

e The Top 5 Functions area contains a histogram which shows the top 5 call count of the listed OpenGL
functions.

e The Property view area shows the summary when no function is selected; while it shows performance hints
for the function when one is selected.

| OGL Function Call Viewer - el X
OGL Function Name # Of Call Time (ms) Function Type i
glActiveTexture 327 349
glAttachShader 16 21 State Change
glBindBuffer 14 33 State Change
glBindTexture 327 400 State Change =
glBlendFunc 3 7 State Change
glBufferData 6 177 State Change
glClear 2 155
glClearColor 5 17 State Change
glCompileShader 16 165969
glCreateProgram 8 246 State Change
glCreateShader 16 179 State Change
glDeleteBuffers 2 19 State Change
glDeleteProgram 1 63 State Change
glDeleteShader 16 28 State Change
glDepthFunc 3 3 State Change
glDepthMask 3 6 State Change
glDepthRangef 3 4] State Change
glDisable 12 19 State Change i

Top 5 Functions Property View
AL 0OpenGLES20 Counters -
2797.50- Total calls: 15279
Total drawCalls: 484
Total state change calls:
1865.00+ 8378
Point count: @
Line count: 0
932.50 Triangle count: 2904
0.00- I
glGetError gluniformaf glTexParameteriv glGetUniformLocation glGetattribLy

Figure 53 vAnalyzer OpenGL function call viewer window

12.6.8.2 Program viewer

For a given Frame Number, the Program Viewer gives the statistics for shader programs: uniforms, attributes, and
the number of instructions in the shader. This is only for OpenGLES2, ES3 profile data. The description of the item

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

124 NXP Semiconductors

is displayed in the lower text window when selecting the item. Expand by clicking on VS or PS submenu to expand
the detail for that shader’s source code.

| Program Viewer

=-ps

Counter Name
{=} Frame Number
=~ Program

Instruction Count

ALU Instruction Count
Texture Instruction Count
Attribute Count

Uniform Count

Function Count

Instruction Count
ALU Instruction Count

Value
0

O=NO ®m

—

| €

T T | (=)

void main()

attribute vecd my_Vertex;
attribute vecd my_Color;
uniform mat4 my_TransformMatrix;

varying vec4 color;

>

12.7 Debug and performance counters

Availability of some counters varies depending on core capabilities and software source tree.

12.7.1 AXI bandwidth

* Read bandwidth (byte)
* Write bandwidth (byte)
e Total bandwidth (byte)

Figure 54 vAnalyzer Program Viewer

* AXlcycles when read request stalled
* AXl cycles when write request stalled
e AXl cycles when write data stalled

12.7.2 Overall

* Frame rate (frames/sec)
e Driver utilization (%)

* Frame time (microsec)

e Driver time (microsec)

e GPU utilization (%)

* GPU cycles

* GPUidle cycles

12.7.3 OpenGL

e Total calls

* Total draw calls

* Total state change calls
* Point count

* Line count

e Triangle count

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

125

NXP Semiconductors

12.7.4 Pixel processing

Valid pixel count

% alpha test fail

% depth&stencil test fail
Overdraw

12.7.5 Shader processing

VS instruction count

VS branch instruction count
VS texture fetch count
Rendered vertex count

PS instruction count

PS branch instruction count
PS texture fetch count
Rendered pixel count

12.7.6 Texturing

Total bilinear requests
Total trilinear requests
Total texture requests
Total discarded texture requests

12.7.7 Vertex processing

Input vertex count
Vertics per batch
Vertics per primitive

12.7.8 Vertex shader and fragment shader
(per shader, for ES20 and ES30 applications only)

Total instruction count
ALU instruction count
Texture instruction count
Function calls

Attribute count

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

126

NXP Semiconductors

Chapter 13 GPU Tools
13.1 gpuinfo tool

13.1.1 Introduction

gpuinfo is a script to gather GPU runtime status through debugfs interface. It exports below information:

e GPU hardware information.

e GPU total memory usage.

e GPU memory usage of certain process or all processes (user space only).
e GPU idle percentage.

13.1.2 Usage

The script is located at Yocto rootfs /unit_tests/. There are three ways to run it.

1. Normal run to get all GPU-related processes information:
>/unit_tests/gpuinfo.sh

2. Get GPU information for certain process by clarifying the process id.

The process id (pid) can be got by command ps or top. Take the process 1035 as example.

>/unit_tests/gpuinfo.sh 1035

3. Get the GPU information for certain process by clarifying part of process name.
Take the process sample_test_fbo as an example.
>/unit_tests/gpuinfo.sh sample_test_fbo
or
>/unit_tests/gpuinfo.sh sample
or
>/unit_tests/gpuinfo.sh test

13.1.3 Sample log information

13.1.3.1 GPU hardware information

This section shows all GPU cores model name and revision information with index in the SoC.

The sample information:

GPU Info
gpu 0
model : 2000

revision : 5108

gpu 1
model : 320
revision : 5007

gpu 2

model : 355
revision : 1215

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

127

NXP Semiconductors

13.1.3.2 Total memory information

This part shows total GPU memory information.

Table 31. Total memory information

gcvPOOL_SYSTEM: GPU reserved system memory.

gcvPOOL_CONTIGUOUS: contiguous memory allocated from CMA pool, low
memory zone and high memory zone.

gcvPOOL_VIRTUAL: non-contigous memory allocated from low memory
zone and high memory zone.

NON PAGED MEMORY: Allocated from CMA pool(mainly for command
buffer)

The sample information:
VIDEO MEMORY:
gcvPOOL_SYSTEM:
Free : 124170474 B
Used : 10047254 B
Total : 134217728 B
gcvPOOL_CONTIGUOUS:

Used : 0B
gcvPOOL_VIRTUAL:
Used : 0B

NON PAGED MEMORY:
Used : 0B
Paged memory Info
low: 892928 bytes
high: @ bytes
CMA memory info
cma: O bytes

13.1.3.3 Process user space GPU memory usage information

This part shows detail user space GPU memory usage per process.

Table 32. User space GPU memory usage

Index memory for index buffer.

Vertex memory for vertex data buffer.
Texture memory for texture buffer.

RT memory for render target buffer.
Depth memory for depth buffer.
Bitmap memory for bitmap buffer.

TS memory for tile status buffer.
Image memory for vg image buffer.
Mask memory for vg mask buffer.
Scissor memory for vg scissor buffer.
HZDepth memory for hierarchical Z depth buffer.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

128 NXP Semiconductors

The sample information:
VidMem Usage (Process 1106):
Counter: vidMem (for each surface type)

All Index Vertex Texture RT Depth Bitmap TS Image Mask Scissor
HZDepth
Current 10047254 489362 1213248 435200 3866624 3727360 0 36352 0
(2] 0 245760
Maximum 10047254 489362 1213248 435200 3866624 3727360 0 36352 0
(2] 0 245760
Total 10047254 489362 1213248 435200 3866624 3727360 0 36352 0
(2] 0 245760
Counter: vidMem (for each pool)All 1 2 3 5 7
8 9
Current 10047254 0 0 (%] 10047254 0
0
Maximum 10047254 0 0 (7] 10047254 0
0
Total 10047254 0 0 (7] 10047254 0
0
Counter: nonPaged
All
Current 0
Maximum (%]
Total (%]
Counter: contiguous
All
Current 0
Maximum (%]
Total (%]
Counter: mapUserMemory
All
Current 0
Maximum 0
Total (%]
Counter: mapMemory
All
Current 134217728
Maximum 134217728
Total 134217728

13.1.3.4 GPU idle percentage
This part shows GPU idle percentage in past 1s.

The sample information:
SOOOOOIO555O555>>
Idle percentage:0.00%
SOOOOOIO555O555555555555555555 5555555555555 555555555555>>

13.2 gmem_info tool

e The gmem_info tool is developed to trace the overall memory utilization in classification of memory
pools.(referring to chapter 9.2)

e The available memory size is reported for the reserved pool.

e GPU idle time is reported from the last capture.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

129 NXP Semiconductors

.a
.a
.a
.£
.a
.a
. &
.a
.a
.a

Figure 55 gmem_info tool

13.3 Apitrace user guide

13.3.1 Introduction

Apitrace is a set of tools enhanced from open source project apitrace, supported by i.MX 6, i.MX 7, and i.MX 8 with
Vivante GPU IP. This tool can dump OpenGL/GLES1.1/GLES2.0/GLES3.0 API calls and replay on a wide range of
other devices.

For more information, see apitrace.github.io/.

13.3.2 Install

13.3.2.1 Yocto

APITrace source code release part of the i.MX Yocto Project Linux BSP release. The source code have more patches
added on top of official API Trace release. The Yocto Project recipes pull the apitrace source package and install as
needed for X11, Framebuffer or Wayland backend.Yocto FB/DFB/Wayland

13.3.2.2 Android Platform

It will be preinstalled in next release. Currently have to install them by hand:

Mount release package to Android system:
mkdir /data/share; busybo mount -t nfs -o nolock <host> /data/share
cp -r apitrace/android/apitrace /data/

A convenient alternative:
adb push apitrace/android/ /data/local/tmp/

Note 1: If install to a directory other than /data/apitrace, update apitrace/bin/apitrace_dalvik.sh to use the new
path.

Note 2: Pay attention to file attributes. You need to grant access to the whole file path of eglretrace for normal
user, because Java applications are running as normal user even if it is started by root user.

13.3.2.3 PC

APITrace have set of PC tools. Prebuilt binary packages can be directly downloaded from APITrace website.

Currently supports Ubuntu 14.04 LTS, 64-bit.
sudo apt-get install libglesl-mesa libgles2-mesa libqt4-dev

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

130 NXP Semiconductors

https://apitrace.github.io/

13.3.3 Usage

13.3.3.1 Trace OpenGL ES1.1/2.0/3.0 application

apitrace trace --api=egl <app name and arguments>
e.g., apitrace trace --api=egl es2gears_x11
It generates trace file (.trace) under the current directory. To specify a new path, use --output=<path_name>

13.3.3.2 Trace OpenGLES 1.1/2.0/3.0 Java application on the Android platform

On the Android platform, a GLES application can be native (e.g., frameworks/native/opengl/angeles). This type of
application can be traced as normal Linux application. Some other applications involving the Java virtual machine
cannot run in this way. A script apitrace_dalvik.sh is provided to run this type of application. This is an example to
trace com.android.settings:

sh /data/apitrace/bin/apitrace_dalvik.sh com.android.settings start
To stop tracing, run:

sh /data/apitrace/bin/apitrace_dalvik.sh com.android.settings stop
Because there is no “current” directory for a Java application, the trace file is stored to under /sdcard/
If apitrace is installed in a different directory, you need to update apitrace_dalvik.sh by hand

13.3.3.3 Trace OpenGL application

apitrace trace --api=glx <app name and arguments>
Only the X11 backend supports this feature

13.3.3.4 Replay

This utility is also called retrace. It reads in the trace file and executes OpenGL(ES) APIs one by one. Each
OpenGL(ES) API call is processed by a callback function. In that callback function, a hook can be inserted for debug
or analysis purposes.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

131 NXP Semiconductors

glretrace

Figure 56 Replay

OpenGL ES 1.1/2.0/3.0 applications can be replayed with eglretrace; Open GL applications can be replayed with

glretrace:
eglretrace <trace file>
glretrace <trace file>

Supported platforms:

eglretrace Glretrace
Yocto-X11 X X
Yocto-FB/DFB/Wayland | X
Android
PC X X

For ES 3.0 replay, only i.MX supports this feature. It is not available on PC.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

132 NXP Semiconductors

13.3.3.5 Analysis

gapitrace provides a detailed look at the trace file. It can only run on a PC. Verified on Ubuntu 14.04 LTS 64-bit. The
command is:
gapitrace <trace file name>

QApiTrace - vmware-vmx.trace
File Edit View Trace

Current State B®
Events

glUniformafvARB(0, 4, [2.00764, -0.114628, -0.0389087, 0.29284 ...6]) parameters R lE i e e
gluniform4fvARB(4, 1, [0, 0, 0, 1])
glBindBufferARB(GL_ARRAY_BUFFER, 41)
glVertexAttribPointerARB(0, 3, GL_FLOAT, GL_FALSE, 16, NULL)

& Only show non-defaults

glVertexAttribDivisorARB(0, 0) Variable v Value
glDisableVertexAttribArrayARB(1)
9lBindBUFFerARB(GL ARRAY BUFFER, 0) GL_BLEND_SRC_RGB GL_ONE_MINUS_DST_COLOR

GL_BLUE_BITS (]

GL_COLOR_CLEAR_VALUE [0,0,0, 1]
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0) GL_COLOR_WRITEMASK [GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE]
glUniformafvARB(0, 4, [2.00764, -0.114628, -0.0389087, -0.1211 ...6]) GL_CULL_FACE GL_TRUE
gluniformdfvARB(4, 1, [0, 0, 0, 1)) GL_CURRENT_PROGRAM 49
glBindBufferARB(GL_ARRAY_BUFFER, 43) GL_DEBUG_LOGGED_ME... 128
g:xer:ex:::r!::?I:\ter:::((g, 03), GL_FLOAT, GL_FALSE, 16, NULL) GL_DEBUG_NEXT LOGG... 137
giVertex; i Ivisor, h
glBindBufferARB(GL_ARRAY_BUFFER, 0) SLDEFTH EUNC SLELEQUAL
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 44) GLZDERTH_TEST. GL_TRUE
glDrawElementsinstanced ARB(GL_TRIANGLES, 8220, GL_UNSIGNED_SHORT, NULL, 1) GL_DITHER GL_FALSE
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0) GL_DOUBLEBUFFER GL_FALSE
gluniformafvARB(0, 4, [2.00764, -0.114628, -0.0389087, 0.01414 ...5]) GL_DRAW_BUFFER GL_ZERO
gluniformafvARB(4, 1, [0, 0, 0, 1]) GL_DRAW_BUFFERO GL_ZERO
glBindBufferARB(GL_ARRAY_BUFFER, 45) » GL_DRAW FRAMEBUFFER
glVertexAttribPointerARB(0, 3, GL_FLOAT, GL_FALSE, 16, NULL) GL DRAW FRAMEBUFFE... 5
glVertexAttribDivisorARB(0, 0) GL_ELEMENT_ARRAY_B... 42

glBindBuFferARB(GL_ARRAY_BUFFER, 0)
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 46) GL_FRAMEBUFFER SRG... GL_FALSE
glDrawElementsinstancedARB(GL_TRIANGLES, 2784, GL_UNSIGNED_SHORT, NULL, 1) GL_GPU_MEMORY_INFO... 7928
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0) U_MEMO ... 28126
alBindBufferARB(GL ARRAY BUFFER, 47) : i

Jetails View. Frame 100, Call 1112334 B®

1112334) gIDrawElementsInstanced ARB(mode = GL_TRIANGLES, count = 30045, type = GL_UNSIGNED_SHORT, indices = NULL, primcount = 1)

Figure 57 Checking state of every API call

File Edit V

QApiTrace - Surface at glDrawRangeElementsEXT (895384) rrent State

Events
glDrav
glPopl
glPush
glmult
glscale
glcolo
glProg
glProg
glProg
glDrav
glPopl
glPush
glMult
glscali
glColo
glProg
© glD
glPopt
glBind
glBind
glDisal
glDisal
glDisal
glPush
glmult
glscal(
glBind
glBind
glEnak

Parameters Shaders = Surfaces = Uniforms

Thumbnail Description
» Textures
v Framebuffers

GL_BACK, GL_RGB, 1024 x 768

GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT,
1024 x 768

GL_STENCIL_INDEX,
GL_STENCIL_INDEX, 1024 x
768

Details View. |

895384) gl : = = = . UNSIGNED_SHORT, indices = NULL)
Lower | 0.00 Upper | 1.00 . Flip Opaque Alpha

Figure 58 Checking Framebuffer

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

133 NXP Semiconductors

File Edit Viev

Events
glDrawRan¢
glPopMatri;
glPushMatr
glMultMatr
glscalef(0.2
glColoraf(0
glProgramEg
glProgramg
glProgramg
glDrawRang
glPopMatrii
glPushMatr
glMultMatr
glscalef(0.2
glColoraf(0,
glProgramg
© glorawR
glPopMatri
glBindBuffe
glBindBuff¢
glDisablecl
glDisablecl
glDisableclt
glPushMatr
glMultMatr
glScalef(0.2
glBindBuff¢
glBindBuff¢
glEnablecli

retails View. Fram¢

895384) glDray

QApiTrace - Surface at glDrawRangeElementsEXT (895384)

Lower | 0.00

_ | Upper

1.00

Flip Opaque

Alpha

urrent State

Thumbnail
v Textures

Parameters Shaders = Surfaces

Uniforms

Description

GL_TEXTUREO, GL_TEXTURE_2D, level
=0, GL_RGB, 256 x 256

GL_TEXTUREO, GL_TEXTURE_2D, level
=1,GL_RGB, 128x 128

GL_TEXTUREO, GL_TEXTURE_2D, level
=2, GL_RGB, 64 x 64

GL_TEXTUREO, GL_TEXTURE_2D, level
=3,GL_RGB, 32 x 32

GL_TEXTUREO, GL_TEXTURE_2D, level
=4,GL_RGB, 16X 16

GL_TEXTUREO, GL_TEXTURE_2D, level
=5,GL_RGB,8x8

L_UNSIGNED_SHORT, indices = NULL)

Profile Results

Timeline | Histogram

Figure 59 Checking Texture

B®

Frame | 544 l545 |$46]S47 |S4B |S49 ISSO =
cPU gls... | Jgts...| .| | ol... | o
178
187 | | [111 Il [RN
151 1
190
175 | [1 1 J I 1 \
277
91 | | | I I I
184
226 |

|DrawElementsinstancedARB

100 Il I galt:mzo’:ﬂéé > < Il I I I Il

8s || CPUStart: 1m4.039 s |

58 | | | | GPU Start: 1 m 4.044 s I I [

199 CPU Duration: 6.806 ps

172 | GPU Duration: 1.068 ms

154 Pixels Drawn: 4,497

157 | [\ \ |

49 \ | | \ |

112 |

289 |

169 |

139 I | | | |

166

1 ! | I \ I I
163
Program Calls Total GPU Time =~ Total CPU Time Total Pixels Drawn Avg GPU Time Avg CPU Time Avg Pixels Drawn

178 98,085 7.115s 286.667 ms 1,777,394,032 72.543 ps 2.922 ps 18,120
187 58,375 5.685s 200.241 ms 2,036,329,330 97.379 ps 3.43ps 34,883
151 42,153 3.006s 218.013 ms 347,420,906 71.302 ps 5.171ps 8,241
190 24,533 1.962s 95.706 ms 247,806,449 79.973 ps 3.901 ps 10,100
175 20,116 1.868s 74.07 ms 859,602,183 92.857 ps 3.682 ps 42,732
277 1,567 1.68 s 8.259 ms 1,372,895,590 1.072 ms 5.27 us 876,129

Figure 60 Checking performance

13.3.4 Reference

1. Apitrace introduction: apitrace.github.io/

2. More uses: github.com/apitrace/apitrace/blob/master/README.markdown

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

134

NXP Semiconductors

http://apitrace.github.io/
https://github.com/apitrace/apitrace/blob/master/README.markdown

Chapter 14 GPU Memory Introduction

14.1 GPU memory overview

14.2

OpenGL-ES
o Texture buffer
Vertex buffer
Index buffer
PBuffer surface
Color buffer
Z/Stencil buffer
HZ depth buffer
Tiled status buffer
3D Command buffer
o 3D Context buffer
OpenVG
o Image buffer
o Tessellation buffer
o VG command buffer
o VG context buffer
2D buffers
o 2D command buffer
o 2D temporary buffer

O O O O O O O O

GPU memory pools

Reserved memory

In the Linux 3.10.y kernel, the memory is reserved from CMA implemented in the GPU kernel driver, the
size can be changed through U-Boot args with “galcore.contiguoussize =xxx”

The memory allocation and lock very fast, but cannot support cacheable attribute.

Contiguous memory

The contiguous memory is from CMA or Normal or Highmem with alloc_pages_exact.

The GPU driver tries the CMA allocator for non-cacheable request first. If CMA memory is used up, it goes
to system allocator.

The CMA allocator does not support the cacheable attribute, the system allocator supports cacheable
attribute, but the memory performance is slow with the additional cache flush operations.

Virtual memory pool

The virtual memory is from Normal or Highmem with multiple page_alloc.

The memory support cacheable attribute, but slow with GPU MMU and cache flush.

The GPU virtual command buffer is allocated from virtual memory pool directly.

Nonpaged memory pool

In the 5.x GPU driver, this pool is not used any more

14.3 GPU memory allocators

Two kinds of allocators are implemented in i.MX GPU kernel driver, see drivers/mxc/gpu-viv/

The video memory allocator implementation is very complicated. The memory is from the reserved pool,
system contiguous pool (supports CMA), or system virtual pool (enables GPU MMU).

The CMA allocator supports non-cacheable contiguous memory. It is implemented as a part of contiguous
pool. When the system requests contiguous memory, the allocator tries CMA first. If CMA is used up, it
goes to allocate the system contiguous pages.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

135

NXP Semiconductors

e GPU memory-killer is implemented for special requirement of force contiguous GPU memory.

OK when success,
OOM when fail

Y Y

Texture,
N N
:r:;t::' » Reserved Pool > »{ Contiguous Pool » @ »
etc
I gpumem-killer |

Fig.1 Gpu video memary allocator

contiguous »> Virtual Pool

20/30 command buf - OK when success,
ol OOM when fail

k4
v

Fig.2 Gpu virtual command allocator

Figure 61 GPU memory allocators

14.4 GPU reserved memory

e The reserved memory is managed by two dual linked lists, one is free list, and another is node list.

e When allocate the reserved memory, the free list is scanned from head to tail until a available node is
selected, it is very fast but makes more memory fragments, under test, 10~20M of 128M is not available
to use after a lot of allocate/free operations.

e When the available node is selected, it is removed from the free list, but it always keeps the dual linked
nodes to merge the conjoint available memory when freed.

e The reserved memory is mapped once when application process is attached, during 3D application
running, the memory map/un-map operations are very fast, the virtual address is just calculated with
logical base and offset.

14,5 GPU memory base address

e GPU support contiguous physical memory within (0~2G) address directly:
o GPU address = CPU Physical address — GPU BaseAddress
e GPU MMU is enabled for two kinds of memory type as below:
o Separated page memory from Virtual memory pool
o Contiguous page memory with address out of (0~2G)
e BaseAddress should be set to RAM start address to achieve the better performance by reducing GPU
MMU mapping.

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

136 NXP Semiconductors

GPU Address

reserved memory

nonpaged memory

contiguous memory

2G

virtual memory

4G |

CPU Physical Memory Address

0]
~
~
\
~
~
~
~
~
~
~
BaseAddres3~
reserved memory
~ ~ nonpaged memory
~
~
~ ~
~ contiguous memory
~
~
BaseAddress+2G
e e o virtual memory
2G+

Figure 62 GPU memory base address

i.MX Graphics User’'s Guide, Rev. 0, 03/2018

137

NXP Semiconductors

Chapter 15 Application Programming Recommendations

The recommendations listed below take a holistic approach centered on overall system level optimizations that
balance graphics and system resources.

15.1 Understand the system configuration and target application

Knowing details about the application and use case allows developers to correctly utilize the hardware resources in
an ideal access pattern. For example, an implementation for a 2D or 3D GUI could