
MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 453

Chapter 17
Background Debug Module (BDM) Block Description

17.1 Introduction
This section describes the functionality of the background debug module (BDM) sub-block of the HCS12
core platform.

A block diagram of the BDM is shown inFigure 17-1.

Figure 17-1. BDM Block Diagram

The background debug module (BDM) sub-block is a single-wire, background debug system implemented
in on-chip hardware for minimal CPU intervention. All interfacing with the BDM is done via the BKGD
pin.

BDMV4 has enhanced capability for maintaining synchronization between the target and host while
allowing more flexibility in clock rates. This includes a sync signal to show the clock rate and a handshake
signal to indicate when an operation is complete. The system is backwards compatible with older external
interfaces.

17.1.1 Features
• Single-wire communication with host development system

• BDMV4 (and BDM2): Enhanced capability for allowing more flexibility in clock rates

• BDMV4: SYNC command to determine communication rate

• BDMV4: GO_UNTIL command

• BDMV4: Hardware handshake protocol to increase the performance of the serial communication

• Active out of reset in special single-chip mode

• Nine hardware commands using free cycles, if available, for minimal CPU intervention

• Hardware commands not requiring active BDM

• 15 firmware commands execute from the standard BDM firmware lookup table

ENBDM

SDV

16-BIT SHIFT REGISTER
BKGD

CLOCKS

DATA

ADDRESS

HOST
SYSTEM

BUS INTERFACE
AND

CONTROL LOGIC

INSTRUCTION DECODE
AND EXECUTION

STANDARD BDM
FIRMWARE

LOOKUP TABLE
CLKSW

BDMACT

ENTAG

TRACE

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

454 Freescale Semiconductor

• Instruction tagging capability

• Software control of BDM operation during wait mode

• Software selectable clocks

• When secured, hardware commands are allowed to access the register space in Special Single-Chip
mode, if the FLASH and EEPROM erase tests fail.

17.1.2 Modes of Operation

BDM is available in all operating modes but must be enabled before firmware commands are executed.
Some system peripherals may have a control bit which allows suspending the peripheral function during
background debug mode.

17.1.2.1 Regular Run Modes

All of these operations refer to the part in run mode. The BDM does not provide controls to conserve power
during run mode.

• Normal operation

General operation of the BDM is available and operates the same in all normal modes.

• Special single-chip mode

In special single-chip mode, background operation is enabled and active out of reset. This allows
programming a system with blank memory.

• Special peripheral mode

BDM is enabled and active immediately out of reset. BDM can be disabled
by clearing the BDMACT bit in the BDM status (BDMSTS) register. The
BDM serial system should not be used in special peripheral mode.

• Emulation modes

General operation of the BDM is available and operates the same as in normal modes.

17.1.2.2 Secure Mode Operation

If the part is in secure mode, the operation of the BDM is reduced to a small subset of it’s regular
run mode operation. Secure operation prevents access to FLASH or EEPROM other than allowing
erasure.

17.1.2.3 Low-Power Modes

• Wait mode

The BDM cannot be used in wait mode if the system disables the clocks to the BDM.

There is a clearing mechanism associated with the WAIT instruction when the clocks to the BDM
(CPU core platform) are disabled. As the clocks restart from wait mode, the BDM receives a soft
reset (clearing any command in progress) and the ACK function will be disabled. This is a change
from previous BDM modules.

• Stop mode

External Signal Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 455

The BDM is completely shutdown in stop mode.

There is a clearing mechanism associated with the STOP instruction. STOP must be enabled and
the part must go into stop mode for this to occur. As the clocks restart from stop mode, the BDM
receives a soft reset (clearing any command in progress) and the ACK function will be disabled.
This is a change from previous BDM modules.

17.2 External Signal Description
A single-wire interface pin is used to communicate with the BDM system. Two additional pins are used
for instruction tagging. These pins are part of the multiplexed external bus interface (MEBI) sub-block and
all interfacing between the MEBI and BDM is done within the core interface boundary. Functional
descriptions of the pins are provided below for completeness.

• BKGD — Background interface pin

• TAGHI — High byte instruction tagging pin

• TAGLO — Low byte instruction tagging pin

• BKGD andTAGHI share the same pin.

• TAGLO andLSTRB share the same pin.

NOTE
Generally these pins are shared as described, but it is best to check the
device overview chapter to make certain. All MCUs at the time of this
writing have followed this pin sharing scheme.

17.2.1 Background Interface Pin (BKGD)

Debugging control logic communicates with external devices serially via the single-wire background
interface pin (BKGD). During reset, this pin is a mode select input which selects between normal and
special modes of operation. After reset, this pin becomes the dedicated serial interface pin for the
background debug mode.

17.2.2 High Byte Instruction Tagging Pin (TAGHI)

This pin is used to tag the high byte of an instruction. When instruction tagging is on, a logic 0 at the falling
edge of the external clock (ECLK) tags the high half of the instruction word being read into the instruction
queue.

17.2.3 Low Byte Instruction Tagging Pin (TAGLO)

This pin is used to tag the low byte of an instruction. When instruction tagging is on and low strobe is
enabled, a logic 0 at the falling edge of the external clock (ECLK) tags the low half of the instruction word
being read into the instruction queue.

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

456 Freescale Semiconductor

17.3 Memory Map and Register Descriptions
A summary of the registers associated with the BDM is shown inTable 17-1. Registers are accessed by
host-driven communications to the BDM hardware using READ_BD and WRITE_BD commands.
Detailed descriptions of the registers and associated bits are given in the subsections that follow..

Table 17-1. BDM Register Map Summary

 Address
Register

Name
Bit 7 6 5 4 3 2 1 Bit 0

$FF00 Reserved
Read: X X X X X X 0 0

Write:

$FF01 BDMSTS
Read:

ENBDM
BDMACT

ENTAG
SDV TRACE

CLKSW
UNSEC 0

Write:

$FF02 Reserved
Read: X X X X X X X X

Write:

$FF03 Reserved
Read: X X X X X X X X

Write:

$FF04 Reserved
Read: X X X X X X X X

Write:

$FF05 Reserved
Read: X X X X X X X X

Write:

$FF06 BDMCCR
Read:

CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCR0
Write:

$FF07 BDMINR
Read: 0 REG14 REG13 REG12 REG11 0 0 0

Write:

$FF08 Reserved
Read: 0 0 0 0 0 0 0 0

Write:

$FF09 Reserved
Read: 0 0 0 0 0 0 0 0

Write:

 = Unimplemented, Reserved = Implemented (do not alter)

X = Indeterminate 0 = Always read zero

Memory Map and Register Descriptions

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 457

17.3.1 BDM Status Register (BDMSTS)

Figure 17-2. BDM Status Register (BDMSTS)

Read: All modes through BDM operation

Write: All modes but subject to the following:

— BDMACT can only be set by BDM hardware upon entry into BDM. It can only be cleared by
the standard BDM firmware lookup table upon exit from BDM active mode.

— CLKSW can only be written via BDM hardware or standard BDM firmware write commands.

— All other bits, while writable via BDM hardware or standard BDM firmware write commands,
should only be altered by the BDM hardware or standard firmware lookup table as part of BDM
command execution.

— ENBDM should only be set via a BDM hardware command if the BDM firmware commands
are needed. (This does not apply in special single-chip mode).

$FF0A Reserved
Read: X X X X X X X X

Write:

$FF0B Reserved
Read: X X X X X X X X

Write:

Register Address: $FF01

7 6 5 4 3 2 1 0

R
ENBDM

BDMACT
ENTAG

SDV TRACE
CLKSW

UNSEC 0

W

Reset:

Special single-chip mode: 1 1 0 0 0 0 0 0

Special peripheral mode: 0 1 0 0 0 0 0 0

All other modes: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved = Implemented (do not alter)

Table 17-1. BDM Register Map Summary

 Address
Register

Name
Bit 7 6 5 4 3 2 1 Bit 0

 = Unimplemented, Reserved = Implemented (do not alter)

X = Indeterminate 0 = Always read zero

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

458 Freescale Semiconductor

ENBDM — Enable BDM

This bit controls whether the BDM is enabled or disabled. When enabled, BDM can be made
active to allow firmware commands to be executed. When disabled, BDM cannot be made
active but BDM hardware commands are still allowed.

1 = BDM enabled
0 = BDM disabled

NOTE
ENBDM is set by the firmware immediately out of reset in special
single-chip mode. In secure mode, this bit will not be set by the firmware
until after the EEPROM and FLASH erase verify tests are complete.

BDMACT — BDM active status

This bit becomes set upon entering BDM. The standard BDM firmware lookup table is then
enabled and put into the memory map. BDMACT is cleared by a carefully timed store
instruction in the standard BDM firmware as part of the exit sequence to return to user code
and remove the BDM memory from the map.

1 = BDM active
0 = BDM not active

ENTAG — Tagging enable

This bit indicates whether instruction tagging in enabled or disabled. It is set when the TAGGO
command is executed and cleared when BDM is entered. The serial system is disabled and the
tag function enabled 16 cycles after this bit is written. BDM cannot process serial commands
while tagging is active.

1 = Tagging enabled
0 = Tagging not enabled or BDM active

SDV — Shift data valid

This bit is set and cleared by the BDM hardware. It is set after data has been transmitted as part
of a firmware read command or after data has been received as part of a firmware write
command. It is cleared when the next BDM command has been received or BDM is exited.
SDV is used by the standard BDM firmware to control program flow execution.

1 = Data phase of command is complete
0 = Data phase of command not complete

TRACE — TRACE1 BDM firmware command is being executed

This bit gets set when a BDM TRACE1 firmware command is first recognized. It will stay set
as long as continuous back-to-back TRACE1 commands are executed. This bit will get cleared
when the next command that is not a TRACE1 command is recognized.

1 = TRACE1 command is being executed
0 = TRACE1 command is not being executed

Memory Map and Register Descriptions

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 459

CLKSW — Clock switch

The CLKSW bit controls which clock the BDM operates with. It is only writable from a
hardware BDM command. A 150 cycle delay at the clock speed that is active during the data
portion of the command will occur before the new clock source is guaranteed to be active. The
start of the next BDM command uses the new clock for timing subsequent BDM
communications.

Table 17-2shows the resulting BDM clock source based on the CLKSW and the PLLSEL (Pll
select from the clock and reset generator) bits.

NOTE
The BDM alternate clock source can only be selected when CLKSW = 0
and PLLSEL = 1. The BDM serial interface is now fully synchronized to the
alternate clock source, when enabled. This eliminates frequency restriction
on the alternate clock which was required on previous versions. Refer to the
device overview section to determine which clock connects to the alternate
clock source input.

NOTE
If the acknowledge function is turned on, changing the CLKSW bit will
cause the ACK to be at the new rate for the write command which changes it.

UNSEC — Unsecure

This bit is only writable in special single-chip mode from the BDM secure firmware and
always gets reset to zero. It is in a zero state as secure mode is entered so that the secure BDM
firmware lookup table is enabled and put into the memory map along with the standard BDM
firmware lookup table.

The secure BDM firmware lookup table verifies that the on-chip EEPROM and FLASH
EEPROM are erased. This being the case, the UNSEC bit is set and the BDM program jumps
to the start of the standard BDM firmware lookup table and the secure BDM firmware lookup
table is turned off. If the erase test fails, the UNSEC bit will not be asserted.

1 = System is in a unsecured mode
0 = System is in a secured mode

Table 17-2. BDM Clock Sources

PLLSEL CLKSW BDMCLK

0 0 Bus clock

0 1 Bus clock

1 0 Alternate clock (refer to the device overview chapter to determine the
alternate clock source)

1 1 Bus clock dependent on the PLL

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

460 Freescale Semiconductor

NOTE
When UNSEC is set, security is off and the user can change the state of the
secure bits in the on-chip FLASH EEPROM. Note that if the user does not
change the state of the bits to “unsecured” mode, the system will be secured
again when it is next taken out of reset.

17.3.2 BDM CCR Holding Register (BDMCCR)

Figure 17-3. BDM CCR Holding Register (BDMCCR)

Read: All modes

Write: All modes

NOTE
When BDM is made active, the CPU stores the value of the CCR register in
the BDMCCR register. However, out of special single-chip reset, the
BDMCCR is set to $D8 and not $D0 which is the reset value of the CCR
register.

When entering background debug mode, the BDM CCR holding register is used to save the contents of the
condition code register of the user’s program. It is also used for temporary storage in the standard BDM
firmware mode. The BDM CCR holding register can be written to modify the CCR value.

17.3.3 BDM Internal Register Position Register (BDMINR)

Figure 17-4. BDM Internal Register Position (BDMINR)

Read: All modes

Write: Never

Register Address: $FF06

7 6 5 4 3 2 1 0

R
CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCR0

W

Reset: 0 0 0 0 0 0 0 0

Register Address: $FF07

7 6 5 4 3 2 1 0

R 0 REG14 REG13 REG12 REG11 0 0 0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Functional Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 461

REG14–REG11 — Internal register map position

These four bits show the state of the upper five bits of the base address for the system’s
relocatable register block. BDMINR is a shadow of the INITRG register which maps the
register block to any 2K byte space within the first 32K bytes of the 64K byte address space.

17.4 Functional Description
The BDM receives and executes commands from a host via a single wire serial interface. There are two
types of BDM commands, namely, hardware commands and firmware commands.

Hardware commands are used to read and write target system memory locations and to enter active
background debug mode, seeSection 17.4.3, “BDM Hardware Commands.” Target system memory
includes all memory that is accessible by the CPU.

Firmware commands are used to read and write CPU resources and to exit from active background debug
mode, seeSection 17.4.4, “Standard BDM Firmware Commands.” The CPU resources referred to are the
accumulator (D), X index register (X), Y index register (Y), stack pointer (SP), and program counter (PC).

Hardware commands can be executed at any time and in any mode excluding a few exceptions as
highlighted, seeSection 17.4.3, “BDM Hardware Commands.” Firmware commands can only be executed
when the system is in active background debug mode (BDM).

17.4.1 Security

If the user resets into special single-chip mode with the system secured, a secured mode BDM firmware
lookup table is brought into the map overlapping a portion of the standard BDM firmware lookup table.
The secure BDM firmware verifies that the on-chip EEPROM and FLASH EEPROM are erased. This
being the case, the UNSEC bit will get set. The BDM program jumps to the start of the standard BDM
firmware and the secured mode BDM firmware is turned off and all BDM commands are allowed. If the
EEPROM or FLASH do not verify as erased, the BDM firmware sets the ENBDM bit, without asserting
UNSEC, and the firmware enters a loop. This causes the BDM hardware commands to become enabled,
but does not enable the firmware commands. This allows the BDM hardware to be used to erase the
EEPROM and FLASH. After execution of the secure firmware, regardless of the results of the erase tests,
the CPU registers, INITEE and PPAGE, will no longer be in their reset state.

17.4.2 Enabling and Activating BDM

The system must be in active BDM to execute standard BDM firmware commands. BDM can be activated
only after being enabled. BDM is enabled by setting the ENBDM bit in the BDM status (BDMSTS)
register. The ENBDM bit is set by writing to the BDM status (BDMSTS) register, via the single-wire
interface, using a hardware command such as WRITE_BD_BYTE.

After being enabled, BDM is activated by one of the following1:

• Hardware BACKGROUND command

• BDM external instruction tagging mechanism

1. BDM is enabled and active immediately out of special single-chip reset.

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

462 Freescale Semiconductor

• CPU BGND instruction

• Breakpoint sub-block’s force or tag mechanism1

When BDM is activated, the CPU finishes executing the current instruction and then begins executing the
firmware in the standard BDM firmware lookup table. When BDM is activated by the breakpoint
sub-block, the type of breakpoint used determines if BDM becomes active before or after execution of the
next instruction.

NOTE
If an attempt is made to activate BDM before being enabled, the CPU
resumes normal instruction execution after a brief delay. If BDM is not
enabled, any hardware BACKGROUND commands issued are ignored by
the BDM and the CPU is not delayed.

In active BDM, the BDM registers and standard BDM firmware lookup table are mapped to addresses
$FF00 to $FFFF. BDM registers are mapped to addresses $FF00 to $FF07. The BDM uses these registers
which are readable anytime by the BDM. However, these registers are not readable by user programs.

17.4.3 BDM Hardware Commands

Hardware commands are used to read and write target system memory locations and to enter active
background debug mode. Target system memory includes all memory that is accessible by the CPU such
as on-chip RAM, EEPROM, FLASH EEPROM, I/O and control registers, and all external memory.

Hardware commands are executed with minimal or no CPU intervention and do not require the system to
be in active BDM for execution, although, they can still be executed in this mode. When executing a
hardware command, the BDM sub-block waits for a free CPU bus cycle so that the background access does
not disturb the running application program. If a free cycle is not found within 128 clock cycles, the CPU
is momentarily frozen so that the BDM can steal a cycle. When the BDM finds a free cycle, the operation
does not intrude on normal CPU operation provided that it can be completed in a single cycle. However,
if an operation requires multiple cycles the CPU is frozen until the operation is complete, even though the
BDM found a free cycle.

The BDM hardware commands are listed inTable 17-3.

1. This method is only available on systems that have a a breakpoint or a debug sub-block.

Table 17-3. Hardware Commands

Command
Opcode
 (hex)

Data Description

BACKGROUND 90 None Enter background mode if firmware is enabled. If enabled, an ACK
will be issued when the part enters active background mode.

ACK_ENABLE D5 None Enable handshake. Issues an ACK pulse after the command is
executed.

ACK_DISABLE D6 None Disable handshake. This command does not issue an ACK pulse.

READ_BD_BYTE E4 16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table in
map. Odd address data on low byte; even address data on high byte.

Functional Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 463

NOTE:
If enabled, ACK will occur when data is ready for transmission for all BDM READ commands and will occur after the write is
complete for all BDM WRITE commands.

The READ_BD and WRITE_BD commands allow access to the BDM register locations. These locations
are not normally in the system memory map but share addresses with the application in memory. To
distinguish between physical memory locations that share the same address, BDM memory resources are
enabled just for the READ_BD and WRITE_BD access cycle. This allows the BDM to access BDM
locations unobtrusively, even if the addresses conflict with the application memory map.

17.4.4 Standard BDM Firmware Commands

Firmware commands are used to access and manipulate CPU resources. The system must be in active
BDM to execute standard BDM firmware commands, seeSection 17.4.2, “Enabling and Activating
BDM.” Normal instruction execution is suspended while the CPU executes the firmware located in the
standard BDM firmware lookup table. The hardware command BACKGROUND is the usual way to
activate BDM.

As the system enters active BDM, the standard BDM firmware lookup table and BDM registers become
visible in the on-chip memory map at $FF00–$FFFF, and the CPU begins executing the standard BDM
firmware. The standard BDM firmware watches for serial commands and executes them as they are
received.

The firmware commands are shown inTable 17-4.

READ_BD_WORD EC 16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table in
map. Must be aligned access.

READ_BYTE E0 16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table out of
map. Odd address data on low byte; even address data on high byte.

READ_WORD E8 16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table out of
map. Must be aligned access.

WRITE_BD_BYTE C4 16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table in map.
Odd address data on low byte; even address data on high byte.

WRITE_BD_WORD CC 16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table in map.
Must be aligned access.

WRITE_BYTE C0 16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table out of
map. Odd address data on low byte; even address data on high byte.

WRITE_WORD C8 16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table out of
map. Must be aligned access.

Table 17-3. Hardware Commands (Continued)

Command
Opcode
 (hex)

Data Description

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

464 Freescale Semiconductor

17.4.5 BDM Command Structure

Hardware and firmware BDM commands start with an 8-bit opcode followed by a 16-bit address and/or a
16-bit data word depending on the command. All the read commands return 16 bits of data despite the byte
or word implication in the command name.

NOTE
8-bit reads return 16-bits of data, of which, only one byte will contain valid
data. If reading an even address, the valid data will appear in the MSB. If
reading an odd address, the valid data will appear in the LSB.

Table 17-4. Firmware Commands

Command 1

1 If enabled, ACK will occur when data is ready for transmission for all BDM READ commands and will occur after the
write is complete for all BDM WRITE commands.

Opcode
(hex)

Data Description

READ_NEXT 62 16-bit data out Increment X by 2 (X = X + 2), then read word X points to.

READ_PC 63 16-bit data out Read program counter.

READ_D 64 16-bit data out Read D accumulator.

READ_X 65 16-bit data out Read X index register.

READ_Y 66 16-bit data out Read Y index register.

READ_SP 67 16-bit data out Read stack pointer.

WRITE_NEXT 42 16-bit data in Increment X by 2 (X = X + 2), then write word to location pointed
to by X.

WRITE_PC 43 16-bit data in Write program counter.

WRITE_D 44 16-bit data in Write D accumulator.

WRITE_X 45 16-bit data in Write X index register.

WRITE_Y 46 16-bit data in Write Y index register.

WRITE_SP 47 16-bit data in Write stack pointer.

GO 08 none Go to user program. If enabled, ACK will occur when leaving
active background mode.

GO_UNTIL2

2 Both WAIT (with clocks to the S12 CPU core disabled) and STOP disable the ACK function. The GO_UNTIL command
will not get an Acknowledge if one of these two CPU instructions occurs before the "UNTIL" instruction. This can be a
problem for any instruction that uses ACK, but GO_UNTIL is a lot more difficult for the development tool to time-out.

0C none Go to user program. If enabled, ACK will occur upon returning
to active background mode.

TRACE1 10 none Execute one user instruction then return to active BDM. If
enabled, ACK will occur upon returning to active background
mode.

TAGGO 18 none Enable tagging and go to user program. There is no ACK pulse
related to this command.

Functional Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 465

NOTE
16-bit misaligned reads and writes are not allowed. If attempted, the BDM
will ignore the least significant bit of the address and will assume an even
address from the remaining bits.

For hardware data read commands, the external host must wait 150 bus clock cycles after sending the
address before attempting to obtain the read data. This is to be certain that valid data is available in the
BDM shift register, ready to be shifted out. For hardware write commands, the external host must wait
150 bus clock cycles after sending the data to be written before attempting to send a new command. This
is to avoid disturbing the BDM shift register before the write has been completed. The 150 bus clock cycle
delay in both cases includes the maximum 128 cycle delay that can be incurred as the BDM waits for a
free cycle before stealing a cycle.

For firmware read commands, the external host should wait 44 bus clock cycles after sending the command
opcode and before attempting to obtain the read data. This includes the potential of an extra 7 cycles when
the access is external with a narrow bus access (+1 cycle) and / or a stretch (+1, 2, or 3 cycles), (7 cycles
could be needed if both occur). The 44 cycle wait allows enough time for the requested data to be made
available in the BDM shift register, ready to be shifted out.

NOTE
This timing has increased from previous BDM modules due to the new
capability in which the BDM serial interface can potentially run faster than
the bus. On previous BDM modules this extra time could be hidden within
the serial time.

For firmware write commands, the external host must wait 32 bus clock cycles after sending the data to be
written before attempting to send a new command. This is to avoid disturbing the BDM shift register
before the write has been completed.

The external host should wait 64 bus clock cycles after a TRACE1 or GO command before starting any
new serial command. This is to allow the CPU to exit gracefully from the standard BDM firmware lookup
table and resume execution of the user code. Disturbing the BDM shift register prematurely may adversely
affect the exit from the standard BDM firmware lookup table.

NOTE
If the bus rate of the target processor is unknown or could be changing, it is
recommended that the ACK (acknowledge function) be used to indicate
when an operation is complete. When using ACK, the delay times are
automated.

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

466 Freescale Semiconductor

Figure 17-5 represents the BDM command structure. The command blocks illustrate a series of eight bit
times starting with a falling edge. The bar across the top of the blocks indicates that the BKGD line idles
in the high state. The time for an 8-bit command is 8× 16 target clock cycles.1

Figure 17-5. BDM Command Structure

17.4.6 BDM Serial Interface

The BDM communicates with external devices serially via the BKGD pin. During reset, this pin is a mode
select input which selects between normal and special modes of operation. After reset, this pin becomes
the dedicated serial interface pin for the BDM.

The BDM serial interface is timed using the clock selected by the CLKSW bit in the status register see
Section 17.3.1, “BDM Status Register (BDMSTS).” This clock will be referred to as the target clock in the
following explanation.

The BDM serial interface uses a clocking scheme in which the external host generates a falling edge on
the BKGD pin to indicate the start of each bit time. This falling edge is sent for every bit whether data is
transmitted or received. Data is transferred most significant bit (MSB) first at 16 target clock cycles per
bit. The interface times out if 512 clock cycles occur between falling edges from the host.

The BKGD pin is a pseudo open-drain pin and has an weak on-chip active pull-up that is enabled at all
times. It is assumed that there is an external pull-up and that drivers connected to BKGD do not typically
drive the high level. Because R-C rise time could be unacceptably long, the target system and host provide
brief driven-high (speedup) pulses to drive BKGD to a logic 1. The source of this speedup pulse is the host
for transmit cases and the target for receive cases.

1. Target clock cycles are cycles measured using the target MCU’s serial clock rate. See Section 17.4.6, “BDM Serial Interface,”
and Section 17.3.1, “BDM Status Register (BDMSTS),” for information on how serial clock rate is selected.

HARDWARE

HARDWARE

FIRMWARE

FIRMWARE

GO,

44-BC

BC = BUS CLOCK CYCLES

COMMAND ADDRESS

150-BC
DELAY

NEXT

DELAY

8 BITS
AT ∼16 TC/BIT

16 BITS
AT ∼16 TC/BIT

16 BITS
AT ∼16 TC/BIT

COMMAND ADDRESS DATA
NEXT

DATAREAD

WRITE

READ

WRITE

TRACE

COMMAND
NEXT

COMMAND DATA

64-BC
DELAY

NEXT

COMMAND

150-BC
DELAY

32-BC
DELAY

COMMAND

COMMAND

COMMAND

COMMANDDATA

NEXT
COMMAND

TC = TARGET CLOCK CYCLES

Functional Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 467

The timing for host-to-target is shown inFigure 17-6 and that of target-to-host inFigure 17-7 and
Figure 17-8. All four cases begin when the host drives the BKGD pin low to generate a falling edge.
Because the host and target are operating from separate clocks, it can take the target system up to one full
clock cycle to recognize this edge. The target measures delays from this perceived start of the bit time
while the host measures delays from the point it actually drove BKGD low to start the bit up to one target
clock cycle earlier. Synchronization between the host and target is established in this manner at the start
of every bit time.

Figure 17-6shows an external host transmitting a logic 1 and transmitting a logic 0 to the BKGD pin of a
target system. The host is asynchronous to the target, so there is up to a one clock-cycle delay from the
host-generated falling edge to where the target recognizes this edge as the beginning of the bit time. Ten
target clock cycles later, the target senses the bit level on the BKGD pin. Internal glitch detect logic
requires the pin be driven high no later that eight target clock cycles after the falling edge for a logic 1
transmission.

Because the host drives the high speedup pulses in these two cases, the rising edges look like digitally
driven signals.

Figure 17-6. BDM Host-to-Target Serial Bit Timing

The receive cases are more complicated.Figure 17-7 shows the host receiving a logic 1 from the target
system. Because the host is asynchronous to the target, there is up to one clock-cycle delay from the
host-generated falling edge on BKGD to the perceived start of the bit time in the target. The host holds the
BKGD pin low long enough for the target to recognize it (at least two target clock cycles). The host must
release the low drive before the target drives a brief high speedup pulse seven target clock cycles after the
perceived start of the bit time. The host should sample the bit level about 10 target clock cycles after it
started the bit time.

EARLIEST
START OF
NEXT BIT

TARGET SENSES BIT

10 CYCLES

SYNCHRONIZATION
UNCERTAINTY

CLOCK
TARGET SYSTEM

HOST
TRANSMIT 1

HOST
TRANSMIT 0

PERCEIVED
START OF BIT TIME

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

468 Freescale Semiconductor

Figure 17-7. BDM Target-to-Host Serial Bit Timing (Logic 1)

Figure 17-8 shows the host receiving a logic 0 from the target. Because the host is asynchronous to the
target, there is up to a one clock-cycle delay from the host-generated falling edge on BKGD to the start of
the bit time as perceived by the target. The host initiates the bit time but the target finishes it. Because the
target wants the host to receive a logic 0, it drives the BKGD pin low for 13 target clock cycles then briefly
drives it high to speed up the rising edge. The host samples the bit level about 10 target clock cycles after
starting the bit time.

Figure 17-8. BDM Target-to-Host Serial Bit Timing (Logic 0)

HIGH-IMPEDANCE

EARLIEST
START OF
NEXT BIT

R-C RISE

10 CYCLES

10 CYCLES

HOST SAMPLES
BKGD PIN

PERCEIVED
START OF BIT TIME

BKGD PIN

CLOCK
TARGET SYSTEM

HOST
DRIVE TO
BKGD PIN

TARGET SYSTEM
SPEEDUP

PULSE

HIGH-IMPEDANCE

HIGH-IMPEDANCE

EARLIEST
START OF
NEXT BIT

CLOCK
TARGET SYS.

HOST
DRIVE TO
BKGD PIN

BKGD PIN

PERCEIVED
START OF BIT TIME

10 CYCLES

10 CYCLES

HOST SAMPLES
BKGD PIN

TARGET SYS.
DRIVE AND

SPEEDUP PULSE

SPEEDUP PULSE

HIGH-IMPEDANCE

Functional Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 469

17.4.7 Serial Interface Hardware Handshake Protocol

BDM commands that require CPU execution are ultimately treated at the MCU bus rate. Because the BDM
clock source can be asynchronously related to the bus frequency, when CLKSW = 0, it is very helpful to
provide a handshake protocol in which the host could determine when an issued command is executed by
the CPU. The alternative is to always wait the amount of time equal to the appropriate number of cycles at
the slowest possible rate the clock could be running. This sub-section will describe the hardware
handshake protocol.

The hardware handshake protocol signals to the host controller when an issued command was successfully
executed by the target. This protocol is implemented by a 16 serial clock cycle low pulse followed by a
brief speedup pulse in the BKGD pin. This pulse is generated by the target MCU when a command, issued
by the host, has been successfully executed (seeFigure 17-9). This pulse is referred to as the ACK pulse.
After the ACK pulse has finished: the host can start the bit retrieval if the last issued command was a read
command, or start a new command if the last command was a write command or a control command
(BACKGROUND, GO, GO_UNTIL, or TRACE1). The ACK pulse is not issued earlier than 32 serial
clock cycles after the BDM command was issued. The end of the BDM command is assumed to be the
16th tick of the last bit. This minimum delay assures enough time for the host to perceive the ACK pulse.
Note also that, there is no upper limit for the delay between the command and the related ACK pulse,
because the command execution depends upon the CPU bus frequency, which in some cases could be very
slow compared to the serial communication rate. This protocol allows a great flexibility for the POD
designers, because it does not rely on any accurate time measurement or short response time to any event
in the serial communication.

Figure 17-9. Target Acknowledge Pulse (ACK)

NOTE
If the ACK pulse was issued by the target, the host assumes the previous
command was executed. If the CPU enters WAIT or STOP prior to
executing a hardware command, the ACK pulse will not be issued meaning
that the BDM command was not executed. After entering wait or stop mode,
the BDM command is no longer pending.

16 CYCLES

BDM CLOCK
(TARGET MCU)

TARGET
TRANSMITS

PULSEACK

HIGH-IMPEDANCE

BKGD PIN

MINIMUM DELAY
FROM THE BDM COMMAND

32 CYCLES

EARLIEST
START OF
NEXT BIT

SPEEDUP PULSE

16th TICK OF THE
LAST COMMAD BIT

HIGH-IMPEDANCE

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

470 Freescale Semiconductor

Figure 17-10shows the ACK handshake protocol in a command level timing diagram. The READ_BYTE
instruction is used as an example. First, the 8-bit instruction opcode is sent by the host, followed by the
address of the memory location to be read. The target BDM decodes the instruction. A bus cycle is grabbed
(free or stolen) by the BDM and it executes the READ_BYTE operation. Having retrieved the data, the
BDM issues an ACK pulse to the host controller, indicating that the addressed byte is ready to be retrieved.
After detecting the ACK pulse, the host initiates the byte retrieval process. Note that data is sent in the form
of a word and the host needs to determine which is the appropriate byte based on whether the address was
odd or even.

Figure 17-10. Handshake Protocol at Command Level

Differently from the normal bit transfer (where the host initiates the transmission), the serial interface ACK
handshake pulse is initiated by the target MCU by issuing a falling edge in the BKGD pin. The hardware
handshake protocol inFigure 17-9 specifies the timing when the BKGD pin is being driven, so the host
should follow this timing constraint in order to avoid the risk of an electrical conflict in the BKGD pin.

NOTE
The only place the BKGD pin can have an electrical conflict is when one
side is driving low and the other side is issuing a speedup pulse (high). Other
“highs” are pulled rather than driven. However, at low rates the time of the
speedup pulse can become lengthy and so the potential conflict time
becomes longer as well.

The ACK handshake protocol does not support nested ACK pulses. If a BDM command is not
acknowledge by an ACK pulse, the host needs to abort the pending command first in order to be able to
issue a new BDM command. When the CPU enters WAIT or STOP while the host issues a command that
requires CPU execution (e.g., WRITE_BYTE), the target discards the incoming command due to the
WAIT or STOP being detected. Therefore, the command is not acknowledged by the target, which means
that the ACK pulse will not be issued in this case. After a certain time the host should decide to abort the
ACK sequence in order to be free to issue a new command. Therefore, the protocol should provide a
mechanism in which a command, and therefore a pending ACK, could be aborted.

READ_BYTE

BDM ISSUES THE

BKGD PIN BYTE ADDRESS

BDM EXECUTES THE
READ_BYTE COMMAND

HOST TARGET

HOSTTARGET

BDM DECODES
THE COMMAND

ACK PULSE (OUT OF SCALE)

HOST TARGET

(2) BYTES ARE
RETRIEVED

NEW BDM
COMMAND

Functional Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 471

NOTE
Differently from a regular BDM command, the ACK pulse does not provide
a time out. This means that in the case of a WAIT or STOP instruction being
executed, the ACK would be prevented from being issued. If not aborted, the
ACK would remain pending indefinitely. See the handshake abort procedure
described inSection 17.4.8, “Hardware Handshake Abort Procedure.”

17.4.8 Hardware Handshake Abort Procedure

The abort procedure is based on the SYNC command. In order to abort a command, which had not issued
the corresponding ACK pulse, the host controller should generate a low pulse in the BKGD pin by driving
it low for at least 128 serial clock cycles and then driving it high for one serial clock cycle, providing a
speedup pulse. By detecting this long low pulse in the BKGD pin, the target executes the SYNC protocol,
seeSection 17.4.9, “SYNC — Request Timed Reference Pulse,” and assumes that the pending command
and therefore the related ACK pulse, are being aborted. Therefore, after the SYNC protocol has been
completed the host is free to issue new BDM commands.

Although it is not recommended, the host could abort a pending BDM command by issuing a low pulse in
the BKGD pin shorter than 128 serial clock cycles, which will not be interpreted as the SYNC command.
The ACK is actually aborted when a falling edge is perceived by the target in the BKGD pin. The short
abort pulse should have at least 4 clock cycles keeping the BKGD pin low, in order to allow the falling
edge to be detected by the target. In this case, the target will not execute the SYNC protocol but the pending
command will be aborted along with the ACK pulse. The potential problem with this abort procedure is
when there is a conflict between the ACK pulse and the short abort pulse. In this case, the target may not
perceive the abort pulse. The worst case is when the pending command is a read command (i.e.,
READ_BYTE). If the abort pulse is not perceived by the target the host will attempt to send a new
command after the abort pulse was issued, while the target expects the host to retrieve the accessed
memory byte. In this case, host and target will run out of synchronism. However, if the command to be
aborted is not a read command the short abort pulse could be used. After a command is aborted the target
assumes the next falling edge, after the abort pulse, is the first bit of a new BDM command.

NOTE
The details about the short abort pulse are being provided only as a reference
for the reader to better understand the BDM internal behavior. It is not
recommended that this procedure be used in a real application.

Because the host knows the target serial clock frequency, the SYNC command (used to abort a command)
does not need to consider the lower possible target frequency. In this case, the host could issue a SYNC
very close to the 128 serial clock cycles length. Providing a small overhead on the pulse length in order to
assure the SYNC pulse will not be misinterpreted by the target. SeeSection 17.4.9, “SYNC — Request
Timed Reference Pulse.”

Figure 17-11 shows a SYNC command being issued after a READ_BYTE, which aborts the
READ_BYTE command. Note that, after the command is aborted a new command could be issued by the
host computer.

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

472 Freescale Semiconductor

Figure 17-11. ACK Abort Procedure at the Command Level

NOTE
Figure 17-11 does not represent the signals in a true timing scale

Figure 17-12 shows a conflict between the ACK pulse and the SYNC request pulse. This conflict could
occur if a POD device is connected to the target BKGD pin and the target is already in debug active mode.
Consider that the target CPU is executing a pending BDM command at the exact moment the POD is being
connected to the BKGD pin. In this case, an ACK pulse is issued along with the SYNC command. In this
case, there is an electrical conflict between the ACK speedup pulse and the SYNC pulse. Because this is
not a probable situation, the protocol does not prevent this conflict from happening.

Figure 17-12. ACK Pulse and SYNC Request Conflict

NOTE
This information is being provided so that the MCU integrator will be aware
that such a conflict could eventually occur.

The hardware handshake protocol is enabled by the ACK_ENABLE and disabled by the ACK_DISABLE
BDM commands. This provides backwards compatibility with the existing POD devices which are not
able to execute the hardware handshake protocol. It also allows for new POD devices, that support the

READ_BYTE READ_STATUSBKGD PIN MEMORY ADDRESS NEW BDM COMMAND

NEW BDM COMMAND

HOST TARGET HOST TARGET HOST TARGET

SYNC RESPONSE
FROM THE TARGET
(OUT OF SCALE)

BDM DECODE
AND STARTS TO EXECUTES

THE READ_BYTE CMD

READ_BYTE CMD IS ABORTED
BY THE SYNC REQUEST

(OUT OF SCALE)

BDM CLOCK
(TARGET MCU)

TARGET MCU
DRIVES TO

BKGD PIN

BKGD PIN

16 CYCLES

SPEEDUP PULSE

HIGH-IMPEDANCE

HOST
DRIVES SYNC
TO BKGD PIN

ACK PULSE

HOST SYNC REQUEST PULSE

AT LEAST 128 CYCLES

ELECTRICAL CONFLICT
HOST AND
TARGET DRIVE
TO BKGD PIN

Functional Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 473

hardware handshake protocol, to freely communicate with the target device. If desired, without the need
for waiting for the ACK pulse.

The commands are described as follows:

• ACK_ENABLE — enables the hardware handshake protocol. The target will issue the ACK pulse
when a CPU command is executed by the CPU. The ACK_ENABLE command itself also has the
ACK pulse as a response.

• ACK_DISABLE — disables the ACK pulse protocol. In this case, the host needs to use the worst
case delay time at the appropriate places in the protocol.

The default state of the BDM after reset is hardware handshake protocol disabled.

All the read commands will ACK (if enabled) when the data bus cycle has completed and the data is then
ready for reading out by the BKGD serial pin. All the write commands will ACK (if enabled) after the data
has been received by the BDM through the BKGD serial pin and when the data bus cycle is complete. See
Section 17.4.3, “BDM Hardware Commands,” andSection 17.4.4, “Standard BDM Firmware
Commands,” for more information on the BDM commands.

The ACK_ENABLE sends an ACK pulse when the command has been completed. This feature could be
used by the host to evaluate if the target supports the hardware handshake protocol. If an ACK pulse is
issued in response to this command, the host knows that the target supports the hardware handshake
protocol. If the target does not support the hardware handshake protocol the ACK pulse is not issued. In
this case, the ACK_ENABLE command is ignored by the target since it is not recognized as a valid
command.

The BACKGROUND command will issue an ACK pulse when the CPU changes from normal to
background mode. The ACK pulse related to this command could be aborted using the SYNC command.

The GO command will issue an ACK pulse when the CPU exits from background mode. The ACK pulse
related to this command could be aborted using the SYNC command.

The GO_UNTIL command is equivalent to a GO command with exception that the ACK pulse, in this
case, is issued when the CPU enters into background mode. This command is an alternative to the GO
command and should be used when the host wants to trace if a breakpoint match occurs and causes the
CPU to enter active background mode. Note that the ACK is issued whenever the CPU enters BDM, which
could be caused by a breakpoint match or by a BGND instruction being executed. The ACK pulse related
to this command could be aborted using the SYNC command.

The TRACE1 command has the related ACK pulse issued when the CPU enters background active mode
after one instruction of the application program is executed. The ACK pulse related to this command could
be aborted using the SYNC command.

The TAGGO command will not issue an ACK pulse because this would interfere with the tagging function
shared on the same pin.

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

474 Freescale Semiconductor

17.4.9 SYNC — Request Timed Reference Pulse

The SYNC command is unlike other BDM commands because the host does not necessarily know the
correct communication speed to use for BDM communications until after it has analyzed the response to
the SYNC command. To issue a SYNC command, the host should perform the following steps:

1. Drive the BKGD pin low for at least 128 cycles at the lowest possible BDM serial communication
frequency (the lowest serial communication frequency is determined by the crystal oscillator or the
clock chosen by CLKSW.)

2. Drive BKGD high for a brief speedup pulse to get a fast rise time (this speedup pulse is typically
one cycle of the host clock.)

3. Remove all drive to the BKGD pin so it reverts to high impedance.

4. Listen to the BKGD pin for the sync response pulse.

Upon detecting the SYNC request from the host, the target performs the following steps:

1. Discards any incomplete command received or bit retrieved.

2. Waits for BKGD to return to a logic 1.

3. Delays 16 cycles to allow the host to stop driving the high speedup pulse.

4. Drives BKGD low for 128 cycles at the current BDM serial communication frequency.

5. Drives a one-cycle high speedup pulse to force a fast rise time on BKGD.

6. Removes all drive to the BKGD pin so it reverts to high impedance.

The host measures the low time of this 128 cycle SYNC response pulse and determines the correct speed
for subsequent BDM communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.

As soon as the SYNC request is detected by the target, any partially received command or bit retrieved is
discarded. This is referred to as a soft-reset, equivalent to a time-out in the serial communication. After the
SYNC response, the target will consider the next falling edge (issued by the host) as the start of a new
BDM command or the start of new SYNC request.

Another use of the SYNC command pulse is to abort a pending ACK pulse. The behavior is exactly the
same as in a regular SYNC command. Note that one of the possible causes for a command to not be
acknowledged by the target is a host-target synchronization problem. In this case, the command may not
have been understood by the target and so an ACK response pulse will not be issued.

17.4.10 Instruction Tracing

When a TRACE1 command is issued to the BDM in active BDM, the CPU exits the standard BDM
firmware and executes a single instruction in the user code. As soon as this has occurred, the CPU is forced
to return to the standard BDM firmware and the BDM is active and ready to receive a new command. If
the TRACE1 command is issued again, the next user instruction will be executed. This facilitates stepping
or tracing through the user code one instruction at a time.

Functional Description

MC9S12NE64 Data Sheet, Rev 1.0

Freescale Semiconductor 475

If an interrupt is pending when a TRACE1 command is issued, the interrupt stacking operation occurs but
no user instruction is executed. Upon return to standard BDM firmware execution, the program counter
points to the first instruction in the interrupt service routine.

17.4.11 Instruction Tagging

The instruction queue and cycle-by-cycle CPU activity are reconstructible in real time or from trace history
that is captured by a logic analyzer. However, the reconstructed queue cannot be used to stop the CPU at
a specific instruction. This is because execution already has begun by the time an operation is visible
outside the system. A separate instruction tagging mechanism is provided for this purpose.

The tag follows program information as it advances through the instruction queue. When a tagged
instruction reaches the head of the queue, the CPU enters active BDM rather than executing the instruction.

NOTE
Tagging is disabled when BDM becomes active and BDM serial commands
are not processed while tagging is active.

Executing the BDM TAGGO command configures two system pins for tagging. TheTAGLO signal shares
a pin with theLSTRB signal, and theTAGHI signal shares a pin with the BKGD signal.

Table 17-5shows the functions of the two tagging pins. The pins operate independently, that is the state of
one pin does not affect the function of the other. The presence of logic level 0 on either pin at the fall of
the external clock (ECLK) performs the indicated function. High tagging is allowed in all modes. Low
tagging is allowed only when low strobe is enabled (LSTRB is allowed only in wide expanded modes and
emulation expanded narrow mode).

17.4.12 Serial Communication Time-Out

The host initiates a host-to-target serial transmission by generating a falling edge on the BKGD pin. If
BKGD is kept low for more than 128 target clock cycles, the target understands that a SYNC command
was issued. In this case, the target will keep waiting for a rising edge on BKGD in order to answer the
SYNC request pulse. If the rising edge is not detected, the target will keep waiting forever without any
time-out limit.

Consider now the case where the host returns BKGD to logic one before 128 cycles. This is interpreted as
a valid bit transmission, and not as a SYNC request. The target will keep waiting for another falling edge
marking the start of a new bit. If, however, a new falling edge is not detected by the target within 512 clock

Table 17-5. Tag Pin Function

TAGHI TAGLO Tag

1 1 No tag

1 0 Low byte

0 1 High byte

0 0 Both bytes

Chapter 17 Background Debug Module (BDM) Block Description

MC9S12NE64 Data Sheet, Rev 1.0

476 Freescale Semiconductor

cycles since the last falling edge, a time-out occurs and the current command is discarded without affecting
memory or the operating mode of the MCU. This is referred to as a soft-reset.

If a read command is issued but the data is not retrieved within 512 serial clock cycles, a soft-reset will
occur causing the command to be disregarded. The data is not available for retrieval after the time-out has
occurred. This is the expected behavior if the handshake protocol is not enabled. However, consider the
behavior where the BDC is running in a frequency much greater than the CPU frequency. In this case, the
command could time out before the data is ready to be retrieved. In order to allow the data to be retrieved
even with a large clock frequency mismatch (between BDC and CPU) when the hardware handshake
protocol is enabled, the time out between a read command and the data retrieval is disabled. Therefore, the
host could wait for more then 512 serial clock cycles and still be able to retrieve the data from an issued
read command. However, as soon as the handshake pulse (ACK pulse) is issued, the time-out feature is
re-activated, meaning that the target will time out after 512 clock cycles. Therefore, the host needs to
retrieve the data within a 512 serial clock cycles time frame after the ACK pulse had been issued. After
that period, the read command is discarded and the data is no longer available for retrieval. Any falling
edge of the BKGD pin after the time-out period is considered to be a new command or a SYNC request.

Note that whenever a partially issued command, or partially retrieved data, has occurred the time out in the
serial communication is active. This means that if a time frame higher than 512 serial clock cycles is
observed between two consecutive negative edges and the command being issued or data being retrieved
is not complete, a soft-reset will occur causing the partially received command or data retrieved to be
disregarded. The next falling edge of the BKGD pin, after a soft-reset has occurred, is considered by the
target as the start of a new BDM command, or the start of a SYNC request pulse.

	Chapter�17 Background Debug Module (BDM) Block Description
	17.1 Introduction
	17.1.1 Features
	17.1.2 Modes of Operation
	17.1.2.1 Regular Run Modes
	17.1.2.2 Secure Mode Operation
	17.1.2.3 Low-Power Modes

	17.2 External Signal Description
	17.2.1 Background Interface Pin (BKGD)
	17.2.2 High Byte Instruction Tagging Pin (TAGHI)
	17.2.3 Low Byte Instruction Tagging Pin (TAGLO)

	17.3 Memory Map and Register Descriptions
	17.3.1 BDM Status Register (BDMSTS)
	17.3.2 BDM CCR Holding Register (BDMCCR)
	17.3.3 BDM Internal Register Position Register (BDMINR)

	17.4 Functional Description
	17.4.1 Security
	17.4.2 Enabling and Activating BDM
	17.4.3 BDM Hardware Commands
	17.4.4 Standard BDM Firmware Commands
	17.4.5 BDM Command Structure
	17.4.6 BDM Serial Interface
	17.4.7 Serial Interface Hardware Handshake Protocol
	17.4.8 Hardware Handshake Abort Procedure
	17.4.9 SYNC — Request Timed Reference Pulse
	17.4.10 Instruction Tracing
	17.4.11 Instruction Tagging
	17.4.12 Serial Communication Time-Out

