
i.MX Machine Learning User's Guide

NXP Semiconductors Document identifier: IMXMLUG
User's Guide Rev. LF5.10.35_2.0.0, 30 June 2021

Contents
Chapter 1 Software Stack Introduction.. 5

Chapter 2 eIQ Inference Runtime Overview.. 7

Chapter 3 TensorFlow Lite...9
3.1 TensorFlow Lite software stack...9
3.2 TensorFlow Lite inference backends...10

3.2.1 Built-in kernels...11
3.2.2 XNNPACK delegate.. 11
3.2.3 NNAPI delegate.. 11
3.2.4 VX delegate...11

3.3 Delivery package...11
3.4 Running image classification example.. 12
3.5 Running benchmark applications.. 13
3.6 Application development... 17
3.7 Post training quantization using TensorFlow Lite converter..17

Chapter 4 Arm Compute Library.. 19
4.1 Running a DNN with random weights and inputs..19

4.1.1 Running AlexNet using graph API...19

Chapter 5 Arm NN... 21
5.1 Arm NN software stack..21
5.2 Compute backends..22
5.3 Running Arm NN tests...23

5.3.1 Caffe tests... 23
5.3.2 TensorFlow tests...25
5.3.3 TensorFlow Lite tests.. 25
5.3.4 ONNX tests... 26

5.4 Using Arm NN in a custom C/C++ application...27
5.5 Python interface to Arm NN (PyArmNN)... 28

5.5.1 Getting started...28
5.5.2 Running examples.. 29

Chapter 6 ONNX Runtime... 30
6.1 ONNX Runtime software stack..30
6.2 Execution providers...31

6.2.1 ONNX model test.. 31
6.2.2 C API...32

6.2.2.1 Enabling execution provider...32

Chapter 7 PyTorch...34
7.1 Running image classification example.. 34
7.2 Building and installing wheel packages...34

7.2.1 How to build.. 35

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 2 / 99

7.2.2 How to install...35

Chapter 8 OpenCV machine learning demos.. 36
8.1 Downloading OpenCV demos... 36
8.2 OpenCV DNN demos.. 36

8.2.1 Image classification demo...37
8.2.2 YOLO object detection example... 38
8.2.3 Image segmentation demo..39
8.2.4 Image colorization demo... 40
8.2.5 Human pose detection demo.. 41
8.2.6 Object Detection Example...41
8.2.7 CNN image classification example..42
8.2.8 Text detection..43

8.3 OpenCV classical machine learning demos ...44
8.3.1 SVM Introduction...44
8.3.2 SVM for non-linearly separable data...45
8.3.3 Prinicipal Component Analysis (PCA) introduction... 45
8.3.4 Logistic regression.. 46

Chapter 9 DeepViewRT... 48
9.1 DeepViewRT software stack... 48

Chapter 10 TVM...52
10.1 TVM software workflow... 52
10.2 Getting started...52

10.2.1 Running example with RPC verification.. 53
10.2.2 Running example individually on device... 53

10.3 How to build TVM stack on host..53
10.4 Supported models... 54

Chapter 11 NN Execution on Hardware Accelerators..56
11.1 Hardware accelerator description..56
11.2 Profiling on hardware accelerators..56
11.3 Hardware accelerators warmup time...57

Chapter 12 eIQ Demos.. 59
12.1 eIQ demos software workflow... 59
12.2 Getting started...60

12.2.1 Running object detection with video stream..60
12.2.2 Running object detection with camera stream.. 60
12.2.3 Running pose estimation with video stream..60
12.2.4 Running pose estimation with camera stream.. 60
12.2.5 Pipeline demo commands...61

Chapter 13 Revision History.. 62

Appendix A List of used variables..63

NXP Semiconductors
Contents

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 3 / 99

Appendix B Neural network API reference.. 64

Appendix C OVXLIB Operation Support with GPU..71

Appendix D OVXLIB Operation Support with NPU.. 85

NXP Semiconductors
Contents

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 4 / 99

Chapter 1
Software Stack Introduction
The NXP® eIQTM Machine Learning Software Development Environment (hereinafter referred to as "NXP eIQ") provides a set of
libraries and development tools for machine learning applications targeting NXP microcontrollers and application processors. The
NXP eIQ is contained in the meta-imx/meta-ml Yocto layer. See also the i.MX Yocto Project User's Guide (IMXLXYOCTOUG) for
more information.

The following six inference engines are currently supported in the NXP eIQ software stack: ArmNN, TensorFlow Lite, ONNX
Runtime, PyTorch, OpenCV, and DeepViewTMRT. The following figure shows the supported eIQ inference engines accross the
computing units.

Figure 1. NXP eIQ supported compute vs. inference enginees

The NXP eIQ inference engines support multi-threaded execution on Cortex-A cores. Additionally, ArmNN, ONNX Runtime,
TensorFlow Lite, and DeepViewRT also support acceleration on the GPU or NPU through Neural Network Runtime (NNRT). See
also eIQ Inference Runtime Overview.

Generally, the NXP eIQ is prepared to support the following key application domains:

• Vision

— Multi camera observation

— Active object recognition

— Gesture control

• Voice

— Voice processing

— Home entertainment

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 5 / 99

• Sound

— Smart sense and control

— Visual inspection

— Sound monitoring

NXP Semiconductors
Software Stack Introduction

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 6 / 99

Chapter 2
eIQ Inference Runtime Overview
The chapter describes an overview of the NXP eIQ software stack for use with the NXP Neural Network Accelerator IPs (GPU or
NPU). The following figure shows the data flow between each element. The below diagram has two key parts:

• Neural Network Runtime (NNRT), which is a middleware bridging various inference frameworks and the NN
accelerator driver.

• TIM-VX, which is a software integration module to facilitate deployment of Neural Networks on OpenVX enabled
ML accelerators.

The NNRT supplies different backends for Android NN HAL, Arm NN, ONNX, and TensorFlow Lite allowing quick application
deployment. The NNRT also empowers an application-oriented framework for use with i.MX8 processors. Application frameworks
such as Android NN, TensorFlow Lite, and Arm NN can be speed up by NNRT directly benefiting from its built-in backend plugins.
Additional backend can be also implemented to expand support for other frameworks.

NNRT

OVXLIB

OpenVX driver

vsi_npu
backend

Android

Android application

Android HAL

Arm NN

Backend
interface HIDL

Android ecosystem

NNAPI

C API

Extended
OVX NN 1.2

nn_runtime

ONNX runtime

vsi_npu
execution provider

Provider
interface

TIM-VX

VX delegate

TensorFlow Lite

NNAPI delegate

NNAPI
interface

C API

Delegate
interface

Figure 2. eIQ inference software architecture

NNRT supports different Machine Learning frameworks by registering itself as a compute backend. Because each framework
defines a different backend API, a lightweight backend layer is designed for each:

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 7 / 99

• For Android NN, the NNRT follows the Android HIDL definition. It is compatible with v1.2 HAL interface

• For TensorFlow Lite, the NNRT supports NNAPI Delegate. It supports most operations in Android NNAPI v1.2

• For ArmNN, the NNRT registers itself as a compute backend

• For ONNX Runtime, the NNRT registers itself as an execution provider

In doing so, NNRT unifies application framework differences and provides an universal runtime interface into the driver stack. At
the same time, NNRT also acts as the heterogeneous compute platform for further distributing workloads efficiently across i.MX8
compute devices, such as NPU, GPU and CPU.

Both the OpenCV and PyTorch inference enginees are currently not supported for running on the NXP NN
accelerators. Therefore, both frameworks are not included in the above NXP-NN architecture diagram.

 NOTE

NXP Semiconductors
eIQ Inference Runtime Overview

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 8 / 99

Chapter 3
TensorFlow Lite
TensorFlow Lite is an open-source software library focused on running machine learning models on mobile and embedded
devices (available at http://www.tensorflow.org/lite). It enables on-device machine learning inference with low latency and small
binary size. TensorFlow Lite also supports hardware acceleration using Android OS Neural Networks API (NNAPI) or VX Delegate
on various i.MX 8 platforms (in the NXP eIQ).

Features:

• TensorFlow Lite v2.4.1

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores

• Parallel computation using GPU/NPU hardware acceleration (on shader or convolution units)

• C++ and Python API (supported Python version 3)

• Per-tensor and Per-channel quantized models support

3.1 TensorFlow Lite software stack
The TensorFlow Lite software stack is shown in the following picture. The TensorFlow Lite supports computation on the following
hardware units:

• CPU Arm Cortex-A cores

• GPU/NPU hardware accelerator using the Android NN API driver or VX Delegate

See Software Stack Introduction for some details about supporting of computation on GPU/NPU hardware accelerator on different
hardware platforms.

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 9 / 99

http://www.tensorflow.org/lite

NNAPI delegate

OVXLIB

OpenVX driver

NNRTARM Neon

TensorFlow Lite

HW accelerator:
(NPU,
GC7000,
GC7000L,
GC7000UL)

CPU: Cortex-A

i.MX8 series

FrontEnd:
TensorFlow

Input Output

*.tflite

XNNPACK
delegate

XNNPACK

VX delegate

TIM-VX

Figure 3. TensorFlow Lite software stack

The TensorFlow Lite library uses the Android NN API implementation from the GPU/NPU driver for running
inference using the GPU/NPU hardware accelerator. The implemented NN API version is 1.2, which has limitations
in supported tensor data types and operations, compared to the feature set of TensorFlow Lite. Therefore,
some models may work without acceleration enabled, but may fail when using the NN API. For the full list of
supported features, see the NN HAL versions section of the NN API documentation: https://source.android.com/
devices/neural-networks#hal-versions.

The first execution of model inference using the NN API or VX Delegate always takes many times longer, because
of the time required for computational graph initialization by the GPU/NPU driver. The iterations following the graph
initialization are performed many times faster. Note the computational graph is the representation of the operations
and theirs dependencies to perform computation specified by the model. The computation graph is built during the
model parsing phase.

The NN API and VX Delagate implementations use the OpenVX™ library for computational graph execution on the
GPU/NPU hardware accelerator. Therefore, OpenVX library support must be available for the selected device to
be able to use the acceleration. For more details on the OpenVX library availability, see the i.MX Graphics User's
Guide (IMXGRAPHICUG).

The GPU/NPU hardware accelerator driver support both per-tensor and per-channel quantized models. In case of
per-channel quantized models, performance degradation varies from slight differences, depending on the model
used. This is caused by a hardware limitation, which is designed for per-tensor quantized models.

 NOTE

3.2 TensorFlow Lite inference backends
TensorFlow Lite comes with options to execute compute operation of various compute units. We will refer to them as
inference backends.

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 10 / 99

https://source.android.com/devices/neural-networks#hal-versions
https://source.android.com/devices/neural-networks#hal-versions

3.2.1 Built-in kernels
Default inference backend is the CPU with reference kernels from TensorFlow Lite implementation. Built-in kernels provide full
support for TensorFlow Lite Operator Set.

The built-in kernels are built with RUY matrix multiplication library enabled, which increases the performance of the kernels for
floating point and quantized operations.

3.2.2 XNNPACK delegate
XNNPACK library is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and
x86 platforms. The XNNPACK library is available through XNNPACK delegate in TensorFlow Lite. The compute unit is the CPU
for the XNNPACK delegate.

It provides optimized implementation for a subset of TensorFlow Lite Operator Set for floating point operators. In general, it
provides better performance than the built-in kernels for floating point operators.

3.2.3 NNAPI delegate
NNAPI delegate enables accelerating the inference on on-chip hardware accelerator. The delegate is based on Android’s
Neural Network API (NNAPI) specification. The full specification is available here: https://developer.android.com/ndk/reference/
group/neural-networks.

NNAPI specification comes with its own Operator Set, which includes most but not all operator from TensorFlow Lite Operator Set.
Moreover, not all variants of TensorFlow Lite operators are supported by NNAPI. This is valid for hardware accelerators operator
support, where some operators are supported by the accelerator but are not part of NNAPI specification.

For all operators in the model, which was refused by the NNAPI delegate the TensorFlow Lite runtime print a warning message
with reason why the operator was refused by the delegate:

WARNING: Operator ARG_MAX (v1) refused by NNAPI delegate: NNAPI only supports int32 output.

This information can be used to optimize the model for better performance.

3.2.4 VX delegate
VX delegate enables accelerating the inference on on-chip hardware accelerator. The Delegate directly uses the Hardware
accelerators driver (OpenVX with extensions) to fully utilize the accelerators capabilities. The VX delegate's performance for some
models might be lower than that of the NNAPI Delegate.

The VX delegate is in active development phase, and it is released as an experimental feature. Therefore, the VX delegate is
not enabled by default in the current Yocto Linux BSP. Interested user can enable it manually by modifying this Yocto Linux
recipe: meta-imx/meta-ml/recipes-libraries/tensorflow-lite/tensorflow-lite2.4.1.bb. To enable the VX delegate,
use -DTFLITE_ENABLE_VX=on option in the recipe.

For information how to build the Yocto Linux image, see the i.MX Yocto Project User's Guide (IMXLXYOCTOUG).

 NOTE

3.3 Delivery package
The TensorFlow Lite is available using Yocto Project recipes.

The TensorFlow Lite delivery package contains:

• TensorFlow Lite shared libraries

• TensorFlow Lite header files

• Python Module for TensorFlow Lite

• Image classification example application (label_image)

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 11 / 99

https://github.com/google/XNNPACK
https://developer.android.com/ndk/reference/group/neural-networks
https://developer.android.com/ndk/reference/group/neural-networks

• TensorFlow Lite benchmark application (benchmark_model)

For application development, the TensorFlow Lite shared libraries and header files are available in the SDK. See Section
Application development for more details.

There are following delegates available in the TensorFlow Lite 2.4.1 delivery package:

• XNNPACK Delegate

• NNAPI Delegate

• VX Delegate (experimental feature in this release)

3.4 Running image classification example
A Yocto Linux BSP image with machine learning layer included by default contains a simple pre-installed example called
‘label_image’ usable with image classification models. The example binary file is located at:

/usr/bin/tensorflow-lite-2.4.1/examples

Figure 4. TensorFlow image classification input

Demo instructions:

To run the example with mobilenet model on the CPU, use the following command:

$./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt

The output of a successful classification for the 'grace_hopper.bmp' input image is as follows:

Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter
invoked
average time: 39.271 ms
0.780392: 653 military uniform
0.105882: 907 Windsor tie
0.0156863: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 835 suit

To run the example application on the CPU with using the XNNPACK delegate, use the -x 1 switch:

$./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt -x 1

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 12 / 99

To run the example with the same model on the GPU/NPU hardware accelerator, add the -a 1 (for NNAPI Delegate) or -V 1 (for
VX Delegate) command line argument. To differentiate between the 3D GPU and the NPU, use the USE_GPU_INFERENCE switch.
For example, to run the model accelerated on the NPU hardware using NNAPI Delegate, use this command:

$ USE_GPU_INFERENCE=0 ./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l
labels.txt -a 1

The output with NPU acceleration enabled should be as follows:

Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter
INFO: Created TensorFlow Lite delegate for NNAPI.
Applied NNAPI delegate.
invoked
average time: 2.967 ms
0.74902: 653 military uniform
0.121569: 907 Windsor tie
0.0196078: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 835 suit

Alternatively, the example using the TensorFlow Lite interpreter-only Python API can be run. The example file is located at:

/usr/bin/tensorflow-lite-2.4.1/examples

To run the example using the predefined command line arguments, use the following command:

$ python3 label_image.py

The output should be as follows:

INFO: Created TensorFlow Lite delegate for NNAPI.
Applied NNAPI delegate.
Warm-up time: 9862.1 ms
Inference time: 3.2 ms
0.678431: military uniform
0.129412: Windsor tie
0.039216: bow tie
0.027451: mortarboard
0.019608: bulletproof vest

The TensorFlow Lite Python API does not contain functions for switching between execution on CPU and
GPU/NPU hardware accelerator. By default, GPU/NPU hardware accelerator with NNAPI Delegate is used for
hardware acceleration. The backend selection depends on the availability of the libneuralnetworks.so or
libneuralnetworks.so.1 in the /usr/lib directory. If the library is found by the shared library search
mechanism, then the GPU/NPU backend is used.

 NOTE

3.5 Running benchmark applications
A Yocto Linux BSP image with machine learning layer included by default contains a pre-installed benchmarking application. It
performs a simple TensorFlow Lite model inference and prints benchmarking information. The application binary file is located at:

/usr/bin/tensorflow-lite-2.4.1/examples

Benchmarking instructions are as follows:

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 13 / 99

To run the benchmark with computation on CPU, use the following command:

$./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite

You can optionally specify the number of threads with the --num_threads=X parameter to run the inference on multiple cores. For
highest performance, set X to the number of cores available.

The output of the benchmarking application should be similar to:

STARTING!
Duplicate flags: num_threads
Min num runs: [50]
Min runs duration (seconds): [1]
Max runs duration (seconds): [150]
Inter-run delay (seconds): [-1]
Num threads: [1]
Use caching: [0]
Benchmark name: []
Output prefix: []
Min warmup runs: [1]
Min warmup runs duration (seconds): [0.5]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
Input layers: []
Input shapes: []
Input value ranges: []
Input layer values files: []
Allow fp16 : [0]
Require full delegation : [0]
Enable op profiling: [0]
Max profiling buffer entries: [1024]
CSV File to export profiling data to: []
Enable platform-wide tracing: [0]
#threads used for CPU inference: [1]
Max number of delegated partitions : [0]
Min nodes per partition : [0]
Loaded model mobilenet_v1_1.0_224_quant.tflite
The input model file size (MB): 4.27635
Initialized session in 93.252ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding
150 seconds.
count=4 first=147477 curr=140410 min=140279 max=147477 avg=142382 std=2971
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding
150 seconds.
count=50 first=140422 curr=140269 min=140269 max=140532 avg=140391 std=67
Inference timings in us: Init: 93252, First inference: 147477, Warmup (avg): 142382, Inference
(avg): 140391
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the
actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=3.14062 overall=10.043

To run the inference using the XNNPACK delegate, add the --use_xnnpack=true switch:

$./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --use_xnnpack=true

To run the inference using the GPU/NPU hardware accelerator, add the --use_nnapi=true (for NNAPI Delegate) or --
use_vxdelegate=true (for VX Delegate) switch:

$./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --use_nnapi=true

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 14 / 99

The output with GPU/NPU module acceleration enabled should be similar to:

STARTING!
Duplicate flags: num_threads
Min num runs: [50]
Min runs duration (seconds): [1]
Max runs duration (seconds): [150]
Inter-run delay (seconds): [-1]
Num threads: [1]
Use caching: [0]
Benchmark name: []
Output prefix: []
Min warmup runs: [1]
Min warmup runs duration (seconds): [0.5]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
Input layers: []
Input shapes: []
Input value ranges: []
Input layer values files: []
Allow fp16 : [0]
Require full delegation : [0]
Enable op profiling: [0]
Max profiling buffer entries: [1024]
CSV File to export profiling data to: []
Enable platform-wide tracing: [0]
#threads used for CPU inference: [1]
Max number of delegated partitions : [0]
Min nodes per partition : [0]
Loaded model mobilenet_v1_1.0_224_quant.tflite
INFO: Created TensorFlow Lite delegate for NNAPI.
Applied NNAPI delegate, and the model graph will be completely executed w/ the delegate.
The input model file size (MB): 4.27635
Initialized session in 18.648ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding
150 seconds.
count=1 curr=5969598
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding
150 seconds.
count=306 first=3321 curr=3171 min=3161 max=3321 avg=3188.46 std=18
Inference timings in us: Init: 18648, First inference: 5969598, Warmup (avg): 5.9696e+06, Inference
(avg): 3188.46
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the
actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=7.60938 overall=33.7773

The delegates are not required to support the full set of operators defined by the TensorFlow Lite runtime. If the model contains
such a operation, which is not supported by the particular delegate, this operation execution falls back to CPU using the
TensorFlow Lite reference kernels. This way the computational graph represented by the model gets divided into segments and
each segment is executed . The graph segmentation or also called graph partitioning is the process, where the computational
graph defined by the model is divided into smaller segments (or partitions) and each of them is executed via the delegate or on
the CPU using reference kernels (CPU fallback), based on operation supported by the delegate.

The benchmark application is also useful to check the optional segmentation of the models if accelerated on GPU/NPU hardware
accelerator. For this purpose, the combination of the --enable_op_profiling=true and --max_delegated_partitions=<big
number> (e.g., 1000) options can be used.

In addition to the output presented above, detailed information is available why a particular layer was refused by the delegate:

INFO: Created TensorFlow Lite delegate for NNAPI.
WARNING: Operator RESIZE_BILINEAR (v1) refused by NNAPI delegate: Operator refused due

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 15 / 99

performance reasons.
WARNING: Operator RESIZE_BILINEAR (v1) refused by NNAPI delegate: Operator refused due
performance reasons.
WARNING: Operator RESIZE_BILINEAR (v1) refused by NNAPI delegate: Operator refused due
performance reasons.
WARNING: Operator ARG_MAX (v1) refused by NNAPI delegate: NNAPI only supports int32 output.
Explicitly applied NNAPI delegate, and the model graph will be partially executed by the delegate w/
2 delegate kernels.

And detailed profiling information is available:

Profiling Info for Benchmark Initialization:
================================= Run Order ===================================
[node type] [start] [first] [avg ms] [%] [cdf%]
ModifyGraphWithDelegate 0.000 4.597 4.597 95.791% 95.791%
AllocateTensors 4.528 0.198 0.101 4.209% 100.000%
======================== Top by Computation Time ==============================
[node type] [start] [first] [avg ms] [%] [cdf%]
ModifyGraphWithDelegate 0.000 4.597 4.597 95.791% 95.791%
AllocateTensors 4.528 0.198 0.101 4.209% 100.000%
Number of nodes executed: 2
=========================== Summary by node type ==============================
 [Node type] [count][avg ms] [avg %] [cdf %] [mem KB] [times called]
ModifyGraphWithDelegate 1 4.597 95.791% 95.791% 684.000 1
AllocateTensors 1 0.202 4.209% 100.000% 0.000 2
Timings (microseconds): count=1 curr=4799
Memory (bytes): count=0
2 nodes observed
Operator-wise Profiling Info for Regular Benchmark Runs:
================================ Run Order ====================================
 [node type] [start] [first] [avg ms] [%] [cdf%]
TfLiteNnapiDelegate 0.000 14.890 14.894 11.349% 11.349%
 RESIZE_BILINEAR 14.896 1.331 1.331 1.014% 12.363%
TfLiteNnapiDelegate 16.227 2.944 2.909 2.216% 14.579%
 RESIZE_BILINEAR 19.137 0.279 0.277 0.211% 14.790%
 RESIZE_BILINEAR 19.415 44.316 44.496 33.905% 48.695%
 ARG_MAX 63.912 67.438 67.332 51.305% 100.000%
========================= Top by Computation Time =============================
 [node type] [start] [first] [avg ms] [%] [cdf%]
 ARG_MAX 63.912 67.438 67.332 51.305% 51.305%
 RESIZE_BILINEAR 19.415 44.316 44.496 33.905% 85.210%
TfLiteNnapiDelegate 0.000 14.890 14.894 11.349% 96.559%
TfLiteNnapiDelegate 16.227 2.944 2.909 2.216% 98.775%
 RESIZE_BILINEAR 14.896 1.331 1.331 1.014% 99.789%
 RESIZE_BILINEAR 19.137 0.279 0.277 0.211% 100.000%
Number of nodes executed: 6
========================== Summary by node type ===============================
 [Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]
 ARG_MAX 1 67.332 51.306% 51.306% 0.000 1
 RESIZE_BILINEAR 3 46.102 35.129% 86.435% 0.000 3
TfLiteNnapiDelegate 2 17.802 13.565% 100.000% 0.000 2
Timings (microseconds): count=8 first=131198 curr=130580 min=130580 max=132766 avg=131238 std=616
Memory (bytes): count=0
6 nodes observed

Based on section “Number of nodes executed” in the output, it can be determined which part of the computation graph was
executed on GPU/NPU hardware accelerator. Every node except TfLiteNnapiDelegate falls back to CPU. In the example above,
the ARG_MAX and RESIZE_BILINEAR nodes fall back to CPU.

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 16 / 99

3.6 Application development
This section describes how to use TensorFlow Lite C++ API in the application development.

To start with TensorFlow Lite C++ application development, a Yocto SDK has to be generated first. See also the i.MX Yocto Project
User's Guide (IMXLXYOCTOUG) for more information.

After building the Yocto SDK, the TensorFlow Lite artefacts are located as follows:

• TensorFlow Lite shared library (libtensorflow-lite.a) in /usr/lib

• TensorFlow Lite header files in /usr/include

To build the image classification demo from https://github.com/tensorflow/tensorflow/tree/v2.4.1/tensorflow/lite/examples/
label_image for example, run the following compiler command under the generated Yocto SDK environment:

$CC label_image.cc bitmap_helpers.cc ../../tools/evaluation/utils.cc \
-I=/usr/include/tensorflow/lite/tools/make/downloads/flatbuffers/include \
-I=/usr/include/tensorflow/lite/tools/make/downloads/absl \ -O1 -DTFLITE_WITHOUT_XNNPACK
-ltensorflow-lite -lstdc++ -lpthread -lm -ldl -lrt

For more information about the C++ API, see the API reference at https://www.tensorflow.org/lite/api_docs/cc.

Alternatively, the Python API can be used for application development. For more information, see the Python version of the image
classification example and the Python guide at https://www.tensorflow.org/lite/guide/python.

3.7 Post training quantization using TensorFlow Lite converter
TensorFlow offers several methods for model quantization:

• Post training quantization with TensorFlow Lite Converter

• Quantization aware training using Model Optimization Toolkits and TensorFlow Lite Converter

• Various other methods available in previous TensorFlow releases

Covering all of them is beyond the scope of this documentation. This section describes the recommended approach for the post
training quantization using the TensorFlow Lite Converter.

The Converter is available as a part of standard TensorFlow desktop installation. It is used to convert and optionally quantize
TensorFlow model into TensorFlow Lite model format. There are two options how to use the tool:

• The Python API (recommended)

• Command line script

The post training quantization using the Python API is described in this chapter. The documentation useful for model conversion
and quantization is available here:

• Python API documentation: https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/lite/TFLiteConverter

• Guide for model conversion: www.tensorflow.org/lite/convert

• Guide for model quantization:https://www.tensorflow.org/lite/performance/post_training_quantization

The guides on TensorFlow page usually covers the most up to date version of TensorFlow, which might be different
from the version available in the NXP eIQ. To see what features are available, check the corresponding API for the
specific version of the TensorFlow or TensorFlow Lite.

 NOTE

The current version of the TensorFlow Lite available in the NXP eIQ is 2.4.1. It is recommended to use the TensorFlow Lite
converter from corresponding TensorFlow version. The TensorFlow Lite runtime should be compatible with models generated
by previous version of TensorFlow Lite Converter, however this backward compatibility is not guaranteed. Usage of successive
version of TensorFlow Lite converter shall be avoided.

The 2.4.1 version of the converter has the following properties:

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 17 / 99

https://github.com/tensorflow/tensorflow/tree/v2.4.1/tensorflow/lite/examples/label_image
https://github.com/tensorflow/tensorflow/tree/v2.4.1/tensorflow/lite/examples/label_image
https://www.tensorflow.org/lite/api_docs/cc
https://www.tensorflow.org/lite/guide/python
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/lite/TFLiteConverter
http://www.tensorflow.org/lite/convert
https://www.tensorflow.org/lite/performance/post_training_quantization

• In the post training quantization regime, the per-channel quantization is the only option. The per-tensor quantization is
available only in connection with quantization aware training.

• Input and output tensors quantization is supported by setting the required data type in inference_input_type
and inference_output_type.

• TOCO or MLIR based conversions are available. This is controlled by the experimental_new_converter attribute. As TOCO
is becoming obsolete, MLIR-based conversion is already set by default in the 2.4.1 version of the converter.

MLIR converter uses dynamic tensor shapes, what means the batch size of the input tensor is unspecified. Dynamic tensor
shapes are not supported, by the GPU and NPU hardware accelerators and this shall be turned off. Standard installation
of TensorFlow does not provide API to control the dynamic tensor shape feature, but can be deactivated in the tensorflow
instalation, as follows. Locate the <python-install-dir>/site-packages/tensorflow/lite/python/lite.py file and
change the private method TFLiteConverterBase._is_unknown_shapes_allowed(self) to return False value, as follows:

def _is_unknown_shapes_allowed(self):
Unknown dimensions are only allowed with the new converter.
Return self.experimental_new_converter
Disable unknown dimensions support.
return False

MLIR is a new NN compiler used by TensorFlow, which supports quantization. Before MLIR, quantization was
performed by TOCO (or TOCO Converter), which is now obsolete. See https://www.tensorflow.org/api_docs/
python/tf/compat/v1/lite/TocoConverter. For details about MLIR, see https://www.tensorflow.org/mlir.

 NOTE

Do not use the dynamic range method for models being run on NN accelerators (GPU or NPU). It converts only the
weights to 8-bit integers, but retains the activations in fp32, which results in the inference running in fp32 with an
additional overhead for data conversion. In fact, the inference is even slower compared to a fp32 model, because
the conversion is done on the fly.

 NOTE

For the full-integer post training quantization, a representative dataset is needed. The proper choice of samples in representative
dataset highly influences the accuracy of the final quantized model. The best practices for creating the representative dataset are:

• Use train samples for which the original floating points model has very good accuracy, based on metrics the model used (e.g.,
SoftMax score for classification models, IOU for object detection models, etc.).

• There shall be enough samples in representative dataset.

• The size of representative dataset and the specific samples available in it are considered as hyperparameters to tune, with
respect of the required model accuracy.

For more information about quantization using TensorFlow ecosystem, see these links:

• www.tensorflow.org/lite/convert

• www.tensorflow.org/lite/performance/post_training_quantization

• www.tensorflow.org/model_optimization

NXP Semiconductors
TensorFlow Lite

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 18 / 99

https://www.tensorflow.org/api_docs/python/tf/compat/v1/lite/TocoConverter
https://www.tensorflow.org/api_docs/python/tf/compat/v1/lite/TocoConverter
https://www.tensorflow.org/mlir
http://www.tensorflow.org/lite/convert
http://www.tensorflow.org/lite/performance/post_training_quantization
http://www.tensorflow.org/model_optimization

Chapter 4
Arm Compute Library
Arm Compute Library (ACL) is a collection of low-level functions optimized for Arm CPU and GPU architectures targeted at image
processing, computer vision, and machine learning.

Arm Compute Library is designed as a compute engine for the Arm NN framework, so it is suggested to use Arm NN unless there
is a need for a more optimized runtime.

Source codes are available at https://source.codeaurora.org/external/imx/arm-computelibrary-imx.

Features:

• Arm Compute Library 21.02

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A CPU cores

• C++ API only

• Low-level control over computation

The GPU OpenCL backend is not supported on i.MX 8 devices.

 NOTE

4.1 Running a DNN with random weights and inputs
Arm Compute Library comes with examples for most common DNN architectures like: AlexNet, MobileNet, ResNet, Inception v3,
Inception v4, Squeezenet, etc.

All available examples can be found in this example build location:

/usr/bin/arm-compute-library-21.02.imx/examples

Each model architecture can be tested using graph_[dnn_model] application.

For example, to run the MobileNet v2 DNN model, use the following command:

$./graph_mobilenet_v2 --data=<path_cnn_data> --image=<input_image> --labels=<labels> --target=neon --
type=<data_type> --threads=<num_of_threads>

The parameters are not mandatory. When not provided, the application runs the model with random weights and inputs. If
inference finishes successfully, the “Test passed" message is printed.

4.1.1 Running AlexNet using graph API
In 2012, AlexNet shot to fame when it won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual
challenge that aims to evaluate algorithms for object detection and image classification. AlexNet is made up of eight trainable
layers: five convolution layers and three fully connected layers. All the trainable layers are followed by a ReLu activation function,
except for the last fully connected layer, where the Softmax function is used.

Location of the C++ AlexNet example implementation using the graph API is in this folder:

/usr/bin/arm-compute-library-21.02.imx/examples

Demo instructions:

• Download the archive file (compute_library_alexnet.zip) to the example location folder.

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 19 / 99

https://source.codeaurora.org/external/imx/arm-computelibrary-imx
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01

• Create a new sub-folder and unzip the file:

$ mkdir assets_alexnet
$ unzip compute_library_alexnet.zip -d assets_alexnet

• Set environment variables for execution:

$ export PATH_ASSETS=/usr/bin/arm-compute-library-21.02.imx/examples/assets_alexnet/

• Run the example with following command line arguments:

$./graph_alexnet --data=$PATH_ASSETS --image=$PATH_ASSETS/go_kart.ppm --labels=$PATH_ASSETS/
labels.txt --target=neon --type=f32 --threads=4

The output of a successful classification should be similar as the one below:

---------- Top 5 predictions ----------
0.9736 - [id = 573], n03444034 go-kart
0.0108 - [id = 751], n04037443 racer, race car, racing car
0.0118 - [id = 518], n03127747 crash helmet
0.0022 - [id = 817], n04285008 sports car, sport car
0.0006 - [id = 670], n03791053 motor scooter, scooter
Test passed

NXP Semiconductors
Arm Compute Library

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 20 / 99

Chapter 5
Arm NN
Arm NN is an open-source inference engine framework developed by Linaro Artificial Intelligence Initiative, which NXP is a
part of. It does not perform computations on its own, but rather delegates the input from multiple model formats such as Caffe,
TensorFlow, TensorFlow Lite, or ONNX, to specialized compute engines.

Source codes are available at https://source.codeaurora.org/external/imx/armnn-imx.

Features:

• Arm NN 21.02

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores provided by the ACL
Neon backend

• Parallel computation using GPU/NPU hardware acceleration (on shader or convolution units) provided by the VSI
NPU backend

• C++ and Python API (supported Python version 3)

• Supports multiple input formats (TensorFlow, TensorFlow Lite, Caffe, ONNX)

• Off-line tools for serialization, deserialization, and quantization (must be built from source)

5.1 Arm NN software stack
The Arm NN software stack is shown in the picture below. Arm NN supports computation on the following HW units:

• CPU Arm Cortex-A cores

• GPU/NPU hardware accelerator using the VSI NPU backend, which runs on both the GPU and the NPU depending on
which is available

See Software Stack Introduction for details about the support of GPU/NPU accelerators for each hardware platform.

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 21 / 99

https://www.linaro.org/news/linaro-announces-launch-of-machine-intelligence-initiative/
https://source.codeaurora.org/external/imx/armnn-imx

OVXLIB

OpenVX driver

NNRT

CPU Ref VSI NPU

Compute backends

Arm NN

Input Output

ARM Compute
Library

CPU Acc

Runtime optimizer

Graph builder

TensorFlow
parser

TFLite
parser

Caffe
parser

ONNX
parser

HAL
driver

Android
NN

TensorFlow TFLite Caffe ONNX

FrontEnds

ARM Neon

HW accelerator:
(NPU,
GC7000,
GC7000L,
GC7000UL)

CPU: Cortex-A

i.MX8 series

.onnx.caffemodel*.tflite*.pb

Figure 5. Arm NN SW stack

The OpenCL backend (GPU Acc) is not supported on i.MX 8 devices.

 NOTE

5.2 Compute backends
Arm NN on its own does not specialize in implementing compute operations. There is only the C++ reference backend running
on the CPU, which is not optimized for performance and should be used for testing, checking results, prototyping, or as the final

NXP Semiconductors
Arm NN

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 22 / 99

fallback, if none of the other backends supports a specific layer. The other backends delegate compute operations to other more
specialized libraries such as Arm Compute Library (ACL).

• For the CPU: there is the NEON backend, which uses Arm Compute Library with the Arm NEON SIMD extension.

• For the GPUs and NPUs: NXP provides the VSI NPU backend, which leverages the full capabilities of i.MX 8's GPUs/
NPUs using OpenVX and provides a great performance boost. ACL OpenCL backend, which you might notice in the
source codes, is not supported due to Arm NN OpenCL requirements not being fulfilled by the i.MX 8 GPUs.

To activate the chosen backend while running the examples described in the following sections, add the following argument. The
user can give multiple backends for the example applications. A layer in the model will be executed by the first backend, which
supports the layer:

<example_binary> --compute=CpuAcc --compute=VsiNpu --compute=CpuRef

• CpuRef = ArmNN C++ backend (no SIMD instructions); a set of reference implementations with NO acceleration on the CPU,
which is used for testing, prototyping, or as the final fallback. It is very slow.

• CpuAcc = ACL NEON backend (runs on CPU with NEON instructions = SIMD)

• VsiNpu = For the GPUs and NPUs, NXP provides the VSI NPU backend, which leverages the full capabilities of i.MX
8's GPUs.

To develop your own application, make sure that you pass the chosen backend (CpuAcc, VsiNpu, or CpuRef) to the Optimize
function for inference.

VsiNpu backend delegates execution to the OpenVX driver. It depends on the driver if the workload is executed on
the NPU or the GPU.

 NOTE

5.3 Running Arm NN tests
Arm NN SDK provides a set of tests, which can also be considered as demos showing what Arm NN does and how to use it.
They load neural network models of various formats (Caffe, TensorFlow, TensorFlow Lite, ONNX), run the inference on a specified
input data, and output the inference result. Arm NN tests are built by default when building the Yocto image and are installed
in /usr/bin/armnn-21.02. Note that input data, model configurations, and model weights are not distributed with Arm NN. The
user must download them separately and make sure they are available on the device before running the tests. However, Arm NN
tests do not come with a documentation. Input file names are hardcoded, so investigate the code to find out what input file names
are expected.

To help get started with Arm NN, the following sections provide details about how to prepare the input data and how to run Arm
NN tests. All of them use well-known neural network models. Therefore, with only a few exceptions, such pre-trained networks
are available freely on the Internet. Input images, models, formats, and their content was deduced using code analysis. However,
this was not possible for all the tests, because either the models are not publicly available or it is not possible to deduce clearly
what input files are required by the application. General workflow is first to prepare data on a host machine and then to deploy it
on the board, where the actual Arm NN tests will be run.

The following sections assume that neural network model files are stored in a folder called models and input image files are stored
in a folder called data. Create this folder structure on the larger partition using the following commands:

$ cd /usr/bin/armnn-21.02
$ mkdir data
$ mkdir models

5.3.1 Caffe tests
Arm NN SDK provides the following set of tests for Caffe models:

/usr/bin/armnn-21.02/CaffeAlexNet-Armnn
/usr/bin/armnn-21.02/CaffeCifar10AcrossChannels-Armnn

NXP Semiconductors
Arm NN

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 23 / 99

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon

/usr/bin/armnn-21.02/CaffeInception_BN-Armnn
/usr/bin/armnn-21.02/CaffeMnist-Armnn
/usr/bin/armnn-21.02/CaffeResNet-Armnn
/usr/bin/armnn-21.02/CaffeVGG-Armnn
/usr/bin/armnn-21.02/CaffeYolo-Armnn

Two important limitations might require preprocessing of the Caffe model file prior to running an Arm NN Caffe test. First, Arm NN
tests require the batch size to be set to 1. Second, Arm NN does not support all Caffe syntaxes, so some older neural network
model files require updates to the latest Caffe syntax.

Details about how to perform these preprocessing steps are described on the Arm NN GitHub page. Install Caffe on the host. Also
check Arm NN documentation for Caffe support.

For example, if a Caffe model has a batch size different from one or uses an older Caffe version defined by files
model_name.prototxt and model_name.caffemodel, create a copy of the .prototxt file (new_model_name.prototxt), modify
this file to use the new Caffe syntax, change the batch size to 1, and finally run the following python script:

import caffe
net = caffe.Net('model_name.prototxt', 'model_name.caffemodel', caffe.TEST)
new_net = caffe.Net('new_model_name.prototxt', 'model_name.caffemodel', caffe.TEST)
new_net.save('new_model_name.caffemodel')

For the full list of the supported operators, see caffe support.

 NOTE

The table below shows the list of all dependencies for each Arm NN Caffe binary example.

Table 1. Arm NN Caffe example dependencies

Arm NN binary Model file name Model definition Input data Renamed model
file name

CaffeAlexNet-
Armnn

bvlc_alexnet.caffemodel deploy.prototxt shark.jpg bvlc_alexnet_
1.caffemodel

CaffeInception
_BN-Armnn

Inception21k.caffemodel deploy.prototxt shark.jpg Inception-BN-
batchsize1.
caffemodel

CaffeMnist-
Armnn

lenet_iter_9000.caffemodel lenet.prototxt t10k-images.idx3-
ubyte, t10k-labels.
idx1-ubyte

lenet_iter_
9000.caffemodel

CaffeResNet-
Armnn

Model not available N/A N/A N/A

CaffeVGG-
Armnn

VGG_ILSVRC_19_
layers.caffemodel

VGG_ILSVRC_19_layers_
deploy.prototxt

shark.jpg VGG_CNN_
S.caffemodel

CaffeCifar10Ac
rossChannels-
Armnn

model not available N/A N/A N/A

CaffeYolo-
Armnn

model not available N/A N/A N/A

Perform the following steps to run each of the above examples:

1. Download the model and model definition files (see columns 2 and 3 of the table).

2. Transform the network as explained in this section.

NXP Semiconductors
Arm NN

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 24 / 99

https://github.com/ARM-software/armnn
http://caffe.berkeleyvision.org/install_apt.html
https://github.com/ARM-software/armnn/blob/master/src/armnnCaffeParser/CaffeSupport.md
https://source.codeaurora.org/external/imx/armnn-imx/tree/src/armnnCaffeParser/CaffeSupport.md?h=imx_5.10.35_2.0.0
http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
http://www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel
https://raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG

3. Rename the original model name to the new model name (see column 5 of the table).

4. Copy renamed model to the models folder on the device.

5. Download the input data (column 4) and copy it to the data folder on the device.

6. Rename the JPG image according to the expected input (shark.jpg).

7. Run the test:

$ cd /usr/bin/armnn-21.02
$./<armnn_binary> --data-dir=data --model-dir=models

5.3.2 TensorFlow tests
Arm NN SDK provides the following set of tests for TensorFlow models:

/usr/bin/armnn-21.02/TfCifar10-Armnn
/usr/bin/armnn-21.02/TfInceptionV3-Armnn
/usr/bin/armnn-21.02/TfMnist-Armnn
/usr/bin/armnn-21.02/TfMobileNet-Armnn
/usr/bin/armnn-21.02/TfResNext-Armnn

For the full list of the supported operators, see TensorFlow support.

 NOTE

The following table provides the list of all dependencies for each Arm NN TensorFlow binary example.

Table 2. Arm NN TensorFlow example dependencies

Arm NN binary Model file name Input data

TfInceptionV3-Armnn Inception_v3_2016_08_28_frozen.pb shark.jpg, Dog.jpg, Cat.jpg

TfMnist-Armnn simple_mnist_tf.prototxt t10k-images.idx3-ubyte, t10k-labels.idx1-ubyte

TfMobileNet-Armnn mobilenet_v1_1.0_224_frozen.pb shark.jpg, Dog.jpg, Cat.jpg

TfResNext-Armnn Model not available N/A

TfCifar10-Armnn Model not available N/A

Perform the following steps to run each of the above examples:

1. Download the model (column 2 of the table) and copy it to the models folder on the device.

2. Download the input data (column 3 of the table) and copy it to the data folder on the device.

3. Rename all JPG images according to the expected input (shark.jpg, Dog.jpg, Cat.jpg). All these names are case sensitive.

4. Run the test:

$ cd /usr/bin/armnn-21.02
$./<armnn_binary> --data-dir=data --model-dir=models

5.3.3 TensorFlow Lite tests
Arm NN SDK provides the following test for TensorFlow Lite models:

/usr/bin/armnn-21.02/TfLiteInceptionV3Quantized-Armnn
/usr/bin/armnn-21.02/TfLiteInceptionV4Quantized-Armnn
/usr/bin/armnn-21.02/TfLiteMnasNet-Armnn
/usr/bin/armnn-21.02/TfLiteMobileNetSsd-Armnn

NXP Semiconductors
Arm NN

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 25 / 99

https://source.codeaurora.org/external/imx/armnn-imx/tree/src/armnnTfParser/TensorFlowSupport.md?h=imx_5.10.35_2.0.0
https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
https://cdn1.playbarkrun.com/wp-content/uploads/2018/05/28100508/Lab.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/767px-Cat_November_2010-1a.jpg
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
https://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
https://cdn1.playbarkrun.com/wp-content/uploads/2018/05/28100508/Lab.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/767px-Cat_November_2010-1a.jpg

/usr/bin/armnn-21.02/TfLiteMobilenetQuantized-Armnn
/usr/bin/armnn-21.02/TfLiteMobilenetV2Quantized-Armnn
/usr/bin/armnn-21.02/TfLiteResNetV2-Armnn
/usr/bin/armnn-21.02/TfLiteVGG16Quantized-Armnn
/usr/bin/armnn-21.02/TfLiteResNetV2-50-Quantized-Armnn
/usr/bin/armnn-21.02/TfLiteMobileNetQuantizedSoftmax-Armnn
/usr/bin/armnn-21.02/TfLiteYoloV3Big-Armnn

For the full list of the supported operators, see TensorFlow Lite support.

 NOTE

The following table provides the list of all dependencies for each Arm NN TensorFlow Lite binary example.

Table 3. Arm NN TensorFlow Lite example dependencies

Arm NN binary Model file name Input data

TfLiteInceptionV3Quantized-Armnn inception_v3_quant.tflite shark.jpg, Dog.jpg, Cat.jpg

TfLiteMnasNet-Armnn mnasnet_1.3_224.tflite shark.jpg, Dog.jpg, Cat.jpg

TfLiteMobilenetQuantized-Armnn mobilenet_v1_1.0_224_quant.tflite shark.jpg, Dog.jpg, Cat.jpg

TfLiteMobilenetV2Quantized-Armnn mobilenet_v2_1.0_224_quant.tflite shark.jpg, Dog.jpg, Cat.jpg

TfLiteResNetV2-50-Quantized-Armnn Model not available N/A

TfLiteInceptionV4Quantized-Armnn Model not available N/A

TfLiteMobileNetSsd-Armnn Model not available N/A

TfLiteResNetV2-Armnn Model not available N/A

TfLiteVGG16Quantized-Armnn Model not available N/A

TfLiteMobileNetQuantizedSoftmax-Armnn Model not available N/A

TfLiteYoloV3Big-Armnn Model not available N/A

Perform the following steps to run each of the examples above:

1. Download the model (column 2 of the table) and copy it to the models folder on the device.

2. Download the input data (column 3 of the table) and copy it to the data folder on the device. Rename all JPG images
according to the expected input (shark.jpg, Dog.jpg, Cat.jpg). All these names are case sensitive.

3. Run the test:

$ cd /usr/bin/armnn-21.02
$./<armnn_binary> --data-dir=data --model-dir=models

5.3.4 ONNX tests
The Arm NN provides the following set of tests for ONNX models:

/usr/bin/armnn-21.02/OnnxMnist-Armnn
/usr/bin/armnn-21.02/OnnxMobileNet-Armnn

For the full list of the supported operators, see ONNX support.

 NOTE

The following table provides the list of all dependencies for each Arm NN ONNX binary example.

NXP Semiconductors
Arm NN

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 26 / 99

https://source.codeaurora.org/external/imx/armnn-imx/tree/src/armnnTfLiteParser/TensorFlowLiteSupport.md?h=imx_5.10.35_2.0.0
https://download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
https://cdn1.playbarkrun.com/wp-content/uploads/2018/05/28100508/Lab.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/767px-Cat_November_2010-1a.jpg
http://download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
https://cdn1.playbarkrun.com/wp-content/uploads/2018/05/28100508/Lab.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/767px-Cat_November_2010-1a.jpg
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
https://cdn1.playbarkrun.com/wp-content/uploads/2018/05/28100508/Lab.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/767px-Cat_November_2010-1a.jpg
http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
https://cdn1.playbarkrun.com/wp-content/uploads/2018/05/28100508/Lab.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/767px-Cat_November_2010-1a.jpg
https://source.codeaurora.org/external/imx/armnn-imx/tree/src/armnnOnnxParser/OnnxSupport.md?h=imx_5.10.35_2.0.0

Table 4. Arm NN ONNX example dependencies

Arm NN binary Model file name Input data Renamed model
file name

OnnxMnist-Armnn model.onnx t10k-images.idx3-ubyte, t10k-labels.
idx1-ubyte

mnist_onnx.onnx

OnnxMobileNet-
Armnn

mobilenetv2-1.0.onnx shark.jpg, Dog.jpg, Cat.jpg mobilenetv2-1.0.onnx

Perform the following steps to run each of the examples above:

1. Download the model (column 2 of the table).

2. Rename the original model name to the new model name (column 4 of the table) and copy it to the models folder on
the device.

3. Download the input data (column 3 of the table) and copy it to the data folder on the device.

4. Rename all the JPG images according to the expected input (shark.jpg, Dog.jpg, Cat.jpg). All these names are
case sensitive.

5. Run the test:

$ cd /usr/bin/armnn-21.02
$./<armnn_binary> --data-dir=data --model-dir=models

5.4 Using Arm NN in a custom C/C++ application
You can create your own C/C++ applications for the i.MX 8 family of devices using Arm NN capabilities. This requires writing
the code using the Arm NN API, setting up the build dependencies, cross-compiling the code for an aarch64 architecture, and
deploying your application. Below is a detailed description for each of these steps:

1. Write the code.

A good starting point to understand how to use Arm NN API in your own application is to go through "How-to guides"
provided by Arm. These include two applications; one shows how to load and run inference for an MNIST TensorFlow
model, and the second one shows how to load and run inference for an MNIST Caffe model.

2. Prepare and install the SDK.

From a software developer’s perspective, Arm NN is a library. Therefore, to create and build an application, which uses
Arm NN, you need header files and matching libraries. For how to build the Yocto SDK, see the i.MX Yocto Project User's
Guide (IMXLXYOCTOUG). By default, header files and libraries are not added. To make sure that the SDK contains both
the header files and the libraries, add the following to your local.conf.

TOOLCHAIN_TARGET_TASK_append += " armnn-dev"

3. Build the code.

To build the "armnn-mnist" example provided by Arm, you need to make a few modifications to make it work with a Yocto
cross-compile environment:

• Remove the definition of ARMNN_INC and all its uses from Makefile. The Arm NN headers are already available in
the default include directories.

• Remove the definition of ARMNN_LIB and all its uses from Makefile. The Arm NN libraries are already available in
the default linker search path.

• Replace "g++" with "${CXX}" in Makefile.

Build the example:

NXP Semiconductors
Arm NN

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 27 / 99

https://onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
https://s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz
http://www.norbertwu.com/nwp/landscape-subjects-for-calendars/australia_web/originals/3869.JPG
https://cdn1.playbarkrun.com/wp-content/uploads/2018/05/28100508/Lab.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/767px-Cat_November_2010-1a.jpg
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/deploying-a-tensorflow-mnist-model-on-arm-nn
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/deploying-a-tensorflow-mnist-model-on-arm-nn
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/configure-the-arm-nn-sdk-build-environment-for-caffe

• Setup the SDK environment:

$ source <Yocto_SDK_install_folder>/environment-setup-aarch64-poky-linux

• Run make:

$ make

4. Copy the built application to the board.

Input data are described in the "How-to guides". If the image you are using on your board is the same as the one for which you
built the SDK, all the runtime dynamic libraries needed to run the application should be available on the board.

5.5 Python interface to Arm NN (PyArmNN)
PyArmNN is a Python extension for Arm NN SDK. PyArmNN provides interface similar to Arm NN C++ API. It is supported only
for Python 3.x and not Python 2.x.

For full API documentation please refer to NXPmicro GitHub: https://github.com/NXPmicro/pyarmnn-release

5.5.1 Getting started
The easiest way to begin using PyArmNN is by using the Parsers. We will demonstrate how to use them below:

Install dependency.

pip3 install imageio

Create a parser object and load your model file.

import pyarmnn as ann
import imageio
ONNX, Caffe and TF parsers also exist.
parser = ann.ITfLiteParser()
network = parser.CreateNetworkFromBinaryFile('./model.tflite')

Get the input binding information by using the name of the input layer.

input_binding_info = parser.GetNetworkInputBindingInfo(0, 'input_layer_name')
Create a runtime object that will perform inference.
options = ann.CreationOptions()
runtime = ann.IRuntime(options)

Choose preferred backends for execution and optimize the network.

Backend choices earlier in the list have higher preference.
preferredBackends = [ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')]
opt_network, messages = ann.Optimize(network, preferredBackends, runtime.GetDeviceSpec(),
ann.OptimizerOptions())
Load the optimized network into the runtime.
net_id, _ = runtime.LoadNetwork(opt_network)

Make workload tensors using input and output binding information.

Load an image and create an inputTensor for inference.
img must have the same size as the input layer; PIL or skimage might be used for resizing if img

NXP Semiconductors
Arm NN

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 28 / 99

https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://github.com/NXPmicro/pyarmnn-release

has a different size
img = imageio.imread('./image.png')
input_tensors = ann.make_input_tensors([input_binding_info], [img])
Get output binding information for an output layer by using the layer name.
output_binding_info = parser.GetNetworkOutputBindingInfo(0, 'output_layer_name')
output_tensors = ann.make_output_tensors([outputs_binding_info])

Perform inference and get the results back into a numpy array.

runtime.EnqueueWorkload(0, input_tensors, output_tensors)
results = ann.workload_tensors_to_ndarray(output_tensors)
print(results)

5.5.2 Running examples
For a more complete Arm NN experience, there are several examples located in /usr/bin/armnn-21.02/pyarmnn/, which
require requests, PIL and maybe some other Python3 modules depending on your image. You may install the missing modules
using pip3 package installer. For example, for the image classification demo:

$ cd /usr/bin/armnn-21.02/pyarmnn/image_classification
$ pip3 install -r requirements.txt

To run the examples, execute them using the Python3 interpreter. There are no arguments and the resources are downloaded
by the scripts. For example, for the image classification demo:

$ python3 tflite_mobilenetv1_quantized.py

The output should be similar to the following:

Downloading 'mobilenet_v1_1.0_224_quant_and_labels.zip' from 'https://storage.googleapis.com/
download.tensorflow.org/models/tflite/mobilenet_v1_1.0_224_quant_and_labels.zip' ...
Finished.
Downloading 'kitten.jpg' from 'https://s3.amazonaws.com/model-server/inputs/kitten.jpg' ...
Finished.
Running inference on 'kitten.jpg' ...
class=tabby ; value=99
class=Egyptian cat ; value=84
class=tiger cat ; value=71
class=cricket ; value=0
class=zebra ; value=0

example_utils.pyis a file containg common functions for the rest of the scripts and it does not execute anything
on its own.

 NOTE

NXP Semiconductors
Arm NN

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 29 / 99

Chapter 6
ONNX Runtime
ONNX Runtime is an open-source inferencing framework, which enables the acceleration of machine learning models
across all of your deployment targets using a single set of API. Source codes are available at https://source.codeaurora.org/
external/imx/onnxruntime-imx.

For the full list of the CPU supported operators, see the 'operator kernels' documentation section: OperatorKernels.

For the know limitations, see the NXPReleaseNotes.

 NOTE

Features:

• ONNX Runtime 1.5.3

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores provided by the ACL and
Arm NN execution providers

• Parallel computation using GPU/NPU hardware acceleration (on shader or convolution units) provided by the VSI NPU
execution provider

• C++ and Python API (supported Python version 3)

6.1 ONNX Runtime software stack
The ONNX Runtime software stack is shown in the following figure. The ONNX Runtime supports computation on the following
HW units:

• CPU Arm Cortex-A cores

• GPU/NPU hardware accelerator using the execution providers (EP)

See Software Stack Introduction for some details about supporting of computation on GPU/NPU hardware accelerator on different
HW platforms.

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 30 / 99

https://source.codeaurora.org/external/imx/onnxruntime-imx
https://source.codeaurora.org/external/imx/onnxruntime-imx
https://github.com/microsoft/onnxruntime/blob/v1.5.3/docs/OperatorKernels.md
https://source.codeaurora.org/external/imx/onnxruntime-imx/tree/NXPReleaseNotes.md?h=imx_5.10.35_2.0.0

FrontEnd:
ONNX (e.g. from PyTorch)

OVXLIB

OpenVX driver

NNRT

CPU EPACL EP Arm NN EP VSI NPU EP

Execution provider

Parallel Distributed Graph Runner

In-memory
graph

Graph
partitioner

Registry
provider

ONNX Runtime

Input Output

ARM Neon

HW accelerator:
(NPU,
GC7000,
GC7000L,
GC7000UL)

CPU: Cortex-A

i.MX8 series

*.onnx

Figure 6. ONNX Runtime software stack

6.2 Execution providers

Execution providers (EP) are a mechanism to delegate inference execution to an underlying framework or hardware. By
default, the ONNX Runtime uses the CPU EP, which executes inference on the CPU without any specialized optimizations.
For optimized inference, ACL, Arm NN, and VSI NPU EPs are supported. ACL EP uses the Arm NEON accelerated backend
on the CPU directly. Arm NN EP uses the Arm NEON accelerated backend via ACL. For GPU or NPU acceleration, you may
use the VSI NPU EP, which delegates the execution to OpenVX. The inference will be executed depending on what hardware
is available on your i.MX8 device, thus it will be the NPU for i.MX8MP. For other i.MX8 devices it will be typically the GPU.

6.2.1 ONNX model test
ONNX Runtime provides a tool that can run the collection of standard tests provided in the ONNX model Zoo. The tool named
onnx_test_runner is installed in /usr/bin.

NXP Semiconductors
ONNX Runtime

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 31 / 99

ONNX models are available at https://github.com/onnx/models and consist of models and sample test data. Because some
models require a lot of disk space, it is advised to store the ONNX test files on a larger partition, as described in the SD card image
flashing section.

The following models from ONNX Zoo where tested with this release: MobileNet v2, ResNet50 v2, ResNet50 v1, SSD Mobilenet
v1, Yolo v3.

Here is an example with the steps required to run the mobilenet version 2 test:

• Download and unpack the mobilenet version 2 test archive to some folder, for example to/home/root:

$ cd /home/root
$ wget https://github.com/onnx/models/raw/master/vision/classification/mobilenet/model/
mobilenetv2-7.tar.gz
$ tar -xzvf mobilenetv2-7.tar.gz
$ ls ./mobilenetv2-1.0
mobilenet_v2_1.0_224.onnx test_data_set_0 test_data_set_1 test_data_set_2

• Run the onnx_test_runner tool providing mobilenetv2-1.0 folder path and setting the execution provider to Arm NN:

$ onnx_test_runner -j 1 -c 1 -r 1 -e [armnn/acl/vsi_npu] ./mobilenetv2-1.0/
result:
Models: 1
Total test cases: 3
Succeeded: 3
Not implemented: 0
Failed: 0
Stats by Operator type:
Not implemented(0):
Failed:
Failed Test Cases:
$

Use onnx_test_runner -h for the full list of supported options.

 NOTE

6.2.2 C API
ONNX Runtime also provides a C API sample code described here: https://github.com/microsoft/onnxruntime/blob/v1.5.3/
docs/C_API.md.

To build the sample from https://raw.githubusercontent.com/microsoft/onnxruntime/v1.5.3/csharp/test/
Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp, run the following build command under the generated
Yocto SDK environment:

$CXX -std=c++0x C_Api_Sample.cpp -o onnxruntime_sample -I=/usr/include/onnxruntime/core/session -
lonnxruntime

ONNX Runtime libraries and header files are not included in the SDK by default. To make sure that they will be installed, add the
following to your local.conf:

TOOLCHAIN_TARGET_TASK_append += " onnxruntime-dev"

6.2.2.1 Enabling execution provider

To enable a specific execution provider, you need to do the following in your code:

NXP Semiconductors
ONNX Runtime

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 32 / 99

https://github.com/onnx/models
https://github.com/onnx/models/blob/master/vision/classification/mobilenet/model/mobilenetv2-7.tar.gz
https://github.com/microsoft/onnxruntime/blob/v1.5.3/docs/C_API.md
https://github.com/microsoft/onnxruntime/blob/v1.5.3/docs/C_API.md
https://raw.githubusercontent.com/microsoft/onnxruntime/v1.5.3/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp
https://raw.githubusercontent.com/microsoft/onnxruntime/v1.5.3/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp

• Set the execution provider in code (see the previous C API sample how that is done for the CUDA EP). You have options to
set the following EPs in your code. If not set, the default CPU EP would be used:

— OrtSessionOptionsAppendExecutionProvider_ArmNN(session_options, 0); for the Arm NN EP.

— OrtSessionOptionsAppendExecutionProvider_ACL(session_options, 0); for the ACL EP.

— OrtSessionOptionsAppendExecutionProvider_VsiNpu(session_options, 0); for the VSI NPU EP.

• Include headers based on the EP used in the code: #include "armnn_provider_factory.h", #include
"acl_provider_factory.h" or #include "vsi_npu_provider_factory.h".

• Add includes to the build command: -I=/usr/include/onnxruntime/core/providers/armnn/, -I=/usr/include/
onnxruntime/core/providers/acl/, or -I=/usr/include/onnxruntime/core/providers/vsi_npu/

NXP Semiconductors
ONNX Runtime

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 33 / 99

Chapter 7
PyTorch
PyTorch is a scientific computing package based on Python that facilitates building deep learning projects using power of graphics
processing units.

Features:

• PyTorch 1.7.1

• Tensor computation (like NumPy) with strong GPU acceleration

• Deep neural networks built on a tape-based autograd sytem

This release of PyTorch does not yet support the tensor computation on the NXP GPU/NPU. Only the CPU is
supported. By default, the PyTorch runtime is running with floating point model. To enable quantized model, the
quantized engine should be specified explicitly as follows:

torch.backends.quantized.engine = 'qnnpack'

 NOTE

7.1 Running image classification example
There is an example located in the examples folder, which requires urllib, PIL, and maybe some other Python3 modules depending
on your image. You may install the missing modules using pip3.

$ cd /usr/bin/pytorch/examples

To run the example with inference computation on the CPU, use the following command. There are no arguments and the
resources will be downloaded automatically by the script:

$ python3 pytorch_mobilenetv2.py

The output should be similar as follows:

File does not exist, download it from
https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
... 100.00%, downloaded size: 13.55 MB
File does not exist, download it from
https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt
... 100.00%, downloaded size: 0.02 MB
File does not exist, download it from
https://s3.amazonaws.com/model-server/inputs/kitten.jpg
... 100.00%, downloaded size: 0.11 MB
('tabby, tabby cat', 46.34805679321289)
('Egyptian cat', 15.802854537963867)
('lynx, catamount', 1.1611212491989136)
('lynx, catamount', 1.1611212491989136)
('tiger, Panthera tigris', 0.20774540305137634)

7.2 Building and installing wheel packages
This release includes building script for PyTorch and TorchVision on aarch64 platform. Currently, it supports the native building
on the NXP aarch64 platform with BSP SDK.

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 34 / 99

Generally, in the yocto rootfs of the BSP SDK, the PyTorch and TorchVision wheel packages are already
integrated. There is no need to build and install from scratch. If you would like to build them by your own, perform
the steps below.

 NOTE

7.2.1 How to build
Perform the following steps:

1. Get the latest i.MX BSP from https://source.codeaurora.org/external/imx/imx-manifest.

2. Set up the build environment for one of the NXP aarch64 platforms and edit the local.conf to add the following dependency
for PyTorch native build:

IMAGE_INSTALL_append = " python3-dev python3-pip python3-wheel python3-pillow python3-setuptools
python3-numpy python3-pyyaml
python3-cffi python3-future cmake ninja packagegroup-core-buildessential git git-perltools
libxcrypt libxcrypt-dev

3. Build the BSP images using the following command:

$ bitbake imx-image-full

4. Get into the pytorch folder and execute the build script on NXP aarch64 platform to generate wheel packages. You can get
the source from https://github.com/NXPmicro/pytorch-release as well:

$ cd /path/to/pytorch/src
$./build.sh

7.2.2 How to install
If the building is successful, the wheel packages should be found under /path/to/pytorch/src/dist:

$ pip3 install /path/to/torch-1.7.1-cp37-cp37m-linux_aarch64.whl
$ pip3 install /path/to/torchvision-0.8.2-cp37-cp37m-linux_aarch64.whl

NXP Semiconductors
PyTorch

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 35 / 99

https://source.codeaurora.org/external/imx/imx-manifest
https://github.com/NXPmicro/pytorch-release

Chapter 8
OpenCV machine learning demos
OpenCV is an open source computer vision library and one of its modules, called ML, provides traditional machine learning
algorithms. OpenCV offers a unified solution for both neural network inference (DNN module) and classic machine learning
algorithms (ML module).

Features:

• OpenCV 4.5.2

• C++ and Python API (supported Python version 3)

• Only CPU computation is supported

• Input image or live camera (webcam) is supported

8.1 Downloading OpenCV demos
OpenCV DNN demos (binaries) are located at:

/usr/share/OpenCV/samples/bin

Input data, and model configurations are located at:

/usr/share/opencv4/testdata/dnn

To have the "testdata/dnn" directory above on the image, put the following in local.conf before the image
building. See Section "NXP eIQ machine learning" in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG).

PACKAGECONFIG_append_pn-opencv_mx8 += " test"

 NOTE

Binary models are not located in the image, because of the size. Before running the DNN demos, these files should be downloaded
to the device:

$ cd /usr/share/opencv4/testdata/dnn/
$ python3 download_models_basic.py

Use the download_models.py script if all possible models and configuration files are needed (10 GB SD
card size is needed). Use the download_models_basic.py script if only basic models for the following DNN
examples are needed (1 GB SD card size is needed).

 NOTE

Copy all downloadable dependencies (models, inputs, and weights) to:

/usr/share/OpenCV/samples/bin

Download the configuration model.yml. This file contains preprocessing parameters for some DNN examples, which accepts the
--zoo parameter. Copy the model file to:

/usr/share/OpenCV/samples/bin

8.2 OpenCV DNN demos
The OpenCV DNN module implements an inference engine and does not provide any functionalities for neural network training.

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 36 / 99

https://raw.githubusercontent.com/opencv/opencv/4.5.2/samples/dnn/models.yml

8.2.1 Image classification demo
This demo performs image classification using a pretrained SqueezeNet network. Demo dependencies are from
opencv_extra-4.5.2.zip or from:

/usr/share/opencv4/testdata/dnn

• dog416.png

• squeezenet_v1.1.caffemodel

• squeezenet_v1.1.prototxt

Other demo dependencies:

• classification_classes_ILSVRC2012.txt from

/usr/share/OpenCV/samples/data/dnn

• models.yml from github

Running the C++ example with image input from the default location:

$./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet

Figure 7. Image classification graphics output

Running the C++ example with the live camera connected to the port 3:

$./example_dnn_classification --device=3 --zoo=models.yml squeezenet

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 37 / 99

https://github.com/opencv/opencv_extra/archive/4.5.2.zip

Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command
to check it.

 NOTE

8.2.2 YOLO object detection example
The YOLO object detection demo performs object detection using You Only Look Once (YOLO) detector. It detects objects on
camera, video, or image. Find out more information about this demo at OpenCV Yolo DNNs page. Demo dependencies are from
opencv_extra-4.5.2.zip or from:

/usr/share/opencv4/testdata/dnn

• dog416.png

• yolov3.weights

• yolov3.cfg

Other demo dependencies:

• models.yml from github

• object_detection_classes_yolov3.txt from

/usr/share/OpenCV/samples/data/dnn

Running the C++ example with image input from the default location:

$./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -input=dog416.png -rgb -
zoo=models.yml yolo

Figure 8. YOLO object detection graphics output

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 38 / 99

https://arxiv.org/pdf/1506.02640v5.pdf
https://docs.opencv.org/4.5.2/da/d9d/tutorial_dnn_yolo.html
https://github.com/opencv/opencv_extra/archive/4.5.2.zip

Running the C++ example with the live camera connected to the port 3:

$./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 --device=3 -rgb -
zoo=models.yml yolo

Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command
to check it.

 NOTE

Running this example with live camera input is quite slow, because of running the example on the CPU only.

 NOTE

8.2.3 Image segmentation demo
The image segmentation means dividing the image into groups of pixels based on some criteria grouping based on color, texture,
or some other criteria. Demo dependencies are from opencv_extra-4.5.2.zip or from:

/usr/share/opencv4/testdata/dnn

• dog416.png

• fcn8s-heavy-pascal.caffemodel

• fcn8s-heavy-pascal.prototxt

Other demo dependencies are models.yml from github. Run the C++ example with image input from the default location:

$./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png --
zoo=models.yml fcn8s

Figure 9. Image segmentation graphics output

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 39 / 99

https://github.com/opencv/opencv_extra/archive/4.5.2.zip

Running the C++ example with the live camera connected to the port 3:

$./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --device=3 --zoo=models.yml fcn8s

Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command
to check it.

 NOTE

Running this example with live camera input is quite slow, because of running the example on the CPU only.

 NOTE

8.2.4 Image colorization demo
This sample demonstrates recoloring grayscale images with DNN. The demo supports input images only, not the live camera
input. Demo dependencies are from opencv_extra-4.5.2.zip or from:

/usr/share/opencv4/testdata/dnn

• colorization_release_v2.caffemodel

• colorization_deploy_v2.prototxt

Other demo dependencies are basketball1.png from

/usr/share/OpenCV/examples/data

Running the C++ example with image input from the default location:

$./example_dnn_colorization --model=colorization_release_v2.caffemodel --
proto=colorization_deploy_v2.prototxt --image=../data/basketball1.png

Figure 10. Image colorization graphics output

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 40 / 99

https://github.com/opencv/opencv_extra/archive/4.5.2.zip

8.2.5 Human pose detection demo
This application demonstrates human or hand pose detection with a pretrained OpenPose DNN. The demo supports input images
only and no live camera input. Demo dependencies are from opencv_extra-4.5.2.zip or from:

/usr/share/opencv4/testdata/dnn

• grace_hopper_227.png

• openpose_pose_coco.caffemodel

• openpose_pose_coco.prototxt

Running the C++ example with image input from the default location:

$./example_dnn_openpose --model=openpose_pose_coco.caffemodel --proto=openpose_pose_coco.prototxt --
image=grace_hopper_227.png --width=227 --height=227 --dataset=COCO

Figure 11. Human pose estimation graphics output

8.2.6 Object Detection Example
This demo performs object detection using a pretrained SqueezeDet network. The demo supports input images only, not the live
camera input. Demo dependencies are the following:

• SqueezeDet.caffemodel model weight file

• SqueezeDet_deploy.prototxt model definition file

• Input image aeroplane.jpg

Running the C++ example with image input from the default location:

$./example_dnn_objdetect_obj_detect SqueezeDet_deploy.prototxt SqueezeDet.caffemodel aeroplane.jpg

Running the model on the aeroplane.jpg image produces the following text results in the console:

Class: aeroplane

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 41 / 99

https://github.com/opencv/opencv_extra/archive/4.5.2.zip
https://github.com/kvmanohar22/caffe/blob/obj_detect_loss/proto/SqueezeDet.caffemodel
https://github.com/kvmanohar22/caffe/blob/obj_detect_loss/proto/SqueezeDet_deploy.prototxt
https://github.com/opencv/opencv_contrib/blob/4.5.2/modules/dnn_objdetect/tutorials/images/aeroplane.jpg

Probability: 0.845181
Co-ordinates:

Figure 12. Object detection graphics output

8.2.7 CNN image classification example
This demo performs image classification using a pretrained SqueezeNet network. The demo supports input images only, not the
live camera input. Demo dependencies are the following:

• SqueezeNet.caffemodel model weight file

• SqueezeNet_deploy.prototxt model definition file

• Input image space_shuttle.jpg from

/usr/share/opencv4/testdata/dnn

Running the C++ example with image input from the default location:

$./example_dnn_objdetect_image_classification SqueezeNet_deploy.prototxt SqueezeNet.caffemodel
space_shuttle.jpg

Running the model on the space_shuttle.jpg image produces the following text results in the console:

Best class Index: 812
Time taken: 0.649153
Probability: 15.8467

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 42 / 99

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/tree/4.5.2/modules/dnn_objdetect/samples/data

8.2.8 Text detection
This demo is used for text detection in the image using EAST algorithm. Demo dependencies are from opencv_extra-4.5.2.zip
or from:

/usr/share/opencv4/testdata/dnn

• frozen_east_text_detection.pb

Other demo dependencies are imageTextN.png from

/usr/share/OpenCV/samples/data

Running the C++ example with image input from the default location:

$./example_dnn_text_detection --model=frozen_east_text_detection.pb --input=../data/imageTextN.png

This example accepts the PNG image format only.

 NOTE

Figure 13. Text detection graphics output

Running the C++ example with the live camera connected to the port 3:

$./example_dnn_text_detection --model=frozen_east_text_detection.pb --device=3

Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command
to check it.

 NOTE

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 43 / 99

https://arxiv.org/abs/1704.03155
https://github.com/opencv/opencv_extra/archive/4.5.2.zip

8.3 OpenCV classical machine learning demos
After deploying OpenCV on the target device, Non-Neural Networks demos are installed in the rootfs in

/usr/share/OpenCV/samples/bin/

8.3.1 SVM Introduction
This example demonstrates how to create and train an SVM model using training data. Once the model is trained, labels for test
data are predicted. The full description of the example can be found in (tutorial_introduction_to_svm). For displaying the result, an
image with Qt5 enabled is required.

After running the demo, the graphics result is shown on the screen:

$./example_tutorial_introduction_to_svm

Result:

• The code opens an image and shows the training examples of both classes. The points of one class are represented with
white circles, and other class uses black points.

• The SVM is trained and used to classify all the pixels of the image. This results in a division of the image into a blue region
and a green region. The boundary between both regions is the optimal separating hyperplane.

• Finally, the support vectors are shown using gray rings around the training examples.

Figure 14. SVM introduction graphics output

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 44 / 99

https://docs.opencv.org/4.5.2/d1/d73/tutorial_introduction_to_svm.html

8.3.2 SVM for non-linearly separable data
This example deals with non-linearly separable data and shows how to set parameters of SVM with linear kernel for this data. For
more details, go to SVM_non_linearly_separable_data.

After running the demo, the graphics result is shown on the screen (it requires Qt5 support):

$./example_tutorial_non_linear_svms

Result:

• The code opens an image and shows the training data of both classes. The points of one class are represented with light
green, the other class uses light blue points.

• The SVM is trained and used to classify all the pixels of the image. This results in a division of the image into blue
green regions. The boundary between both regions is the separating hyperplane. Since the training data is non-linearly
separable, some of the examples of both classes are misclassified; some green points lay on the blue region and some
blue points lay on the green one.

• Finally, the support vectors are shown using gray rings around the training examples.

Figure 15. SVM for Non-linear training data

8.3.3 Prinicipal Component Analysis (PCA) introduction
Principal Component Analysis (PCA) is a statistical method that extracts the most important features of a dataset.
This section describes how to use PCA to calculate the orientation of an object. For more details, check the OpenCV
tutorial Introduction_to_PCA.

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 45 / 99

https://docs.opencv.org/4.5.2/d0/dcc/tutorial_non_linear_svms.html
https://docs.opencv.org/4.5.2/d1/dee/tutorial_introduction_to_pca.html

After running the demo, the graphics result is shown on the screen (it requires Qt 5 support):

$./example_tutorial_introduction_to_pca ../data/pca_test1.jpg

Results:

• Open an image (loaded from ../data/pca_test1.jpg).

• Find the orientation of the detected objects of interest.

• Visualizes the result by drawing the contours of the detected objects of interest, the center point, and the x-axis, y-axis
regarding the extracted orientation.

Figure 16. PCA graphics output

8.3.4 Logistic regression
In this sample, logistic regression is used for prediction of two characters (0 or 1) from an image. First, every image matrix is
reshaped from its original size of 28x28 to 1x784. A logistic regression model is created and trained on 20 images. After training,
the model can predict labels of test images. The source code is located on the logistic_regression link, and can be run by typing
the following command.

Demo dependencies (preparing the train data files):

$ wget https://raw.githubusercontent.com/opencv/opencv/4.5.2/samples/data/data01.xml

After running the demo, the graphics result is shown on the screen (it requires Qt 5 support):

$./example_cpp_logistic_regression

Results:

• Training and test data are shown

• Comparison between original and predicted labels is displayed.

The console text output is as follows (the trained model reaches 95% accuracy):

original vs predicted:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 46 / 99

https://github.com/opencv/opencv/blob/4.5.2/samples/cpp/logistic_regression.cpp

accuracy: 95%
saving the classifier to NewLR_Trained.xml
loading a new classifier from NewLR_Trained.xml
predicting the dataset using the loaded classifier...done!
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]
accuracy: 95%

Figure 17. Logistic regression graphics output

NXP Semiconductors
OpenCV machine learning demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 47 / 99

Chapter 9
DeepViewRT
DeepViewRT is a proprietary neural network inference engine optimized for NXP microprocessors and microcontrollers, which not
only implements its own compute engine, but it is also able to leverage popular 3rd party ones.

Features:

• Plugin API allowing for various compute engines:

— DeepViewRT (CPU/Neon)

— DeepViewRT (OpenVX)

— TensorFlow Lite

— Arm NN

— ONNX Runtime

• C and Python API

• Per-tensor and per-channel quantization model support

• Defines custom operations or custom behavior for existing operations

• Models to be deployed to all targets without explicitly programming the computation graph

9.1 DeepViewRT software stack
The DeepViewRT Software stack includes DeepView RT library, modelrunner library and modelrunner server - see the
following picture:

DeepView Creator & Model Tool

ModelRunner HTTP API server

ModelRunner Plugin API

DeepViewRT TFLite Arm NN ONNX

ModelRunner Library

Inference Enginees

ModelRunner Server

Desktop Tools

Figure 18. DeepViewRT SW stack

DeepView Creator and Model Tool are parts of the eIQ Toolkit.

 NOTE

DeepViewRT supports the following hardware:

• CPU Arm Cortex-A cores

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 48 / 99

• GPU/NPU hardware accelerator using the VSI NPU backend, which runs on both the GPU and the NPU depending on which
is available

Python API C API

RT Models

GPU NPUCortex-M

DeepViewRT API

libdeepview-rt libdeepview-rt-openvx

HW acceleratorsCPUs

Cortex-A

i.MX8 series

Figure 19. DeepViewRT computing enginees

Run modelrunner with different inference engines to measure performance:

• DeepViewRT

To run modelrunner with DeepViewRT backend and measure its performance:

$ modelrunner -e rt -c 0 -m mobilenet_v1_1.0_224_quant.rtm -b 50 -t 4
Plugin: libmodelrunner-rt.so;
Average model run time: 129.0078 ms (layer sum: 0.0000 ms)

The .rtm is the file format used internally by DeepViewRT. The .rtm can be converted from .tflite by eIQ Toolkit
(see EIQTUG.pdf).

 NOTE

• OpenVX

To run modelrunner with OpenVX by accelerating with NPU and measure its performance:

$ modelrunner -e ovx -m mobilenet_v1_1.0_224_quant.rtm -b 50
Plugin: libmodelrunner-ovx.so;
RTMx Output indices = [87]
Created empty VX graph, inputs = 1, outputs = 1
RTMx Layer count = 88
…
Average model run time: 2.2397 ms

Skip those RTM Layer information

 NOTE

NXP Semiconductors
DeepViewRT

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 49 / 99

• TensorFlow Lite

To run modelrunner with TensorFlow Lite and NNAPI delegate and measure its performance:

$ modelrunner -e tflite -c 1 -m mobilenet_v1_1.0_224_quant.tflite -b 50
Plugin: libmodelrunner-tflite.so;
Loaded model
resolved reporter
INFO: Created TensorFlow Lite delegate for NNAPI.
Applied NPU delegate.
interpreter invoked
average time: 2.51356 ms
Average layer sum: 2.5105 ms

It can also tensorflow-lite with CPU by replace “-c 1” with “-c 0”.

 NOTE

• Arm NN

To run modelrunner with Arm NN and Vsi_Npu backend and measure its performance:

$ modelrunner -e armnn -c 3 -m mobilenet_v1_1.0_224_quant.tflite -b 50 -t 4
Plugin: libmodelrunner-armnn.so;
NPU backend preference
Model loaded and validated, size = 150528
…
Inference Time in ms = 2.56184

It can be changed to use CpuAcc by replacing “-c 3” with “-c 0”.

 NOTE

• ONNX Runtime

To run modelrunner with ONNX Runtime and Vsi_Npu execution provider and measure its performance:

$ modelrunner -e onnx -c 3 -m mobilenet_v1_1.0_224_quant.onnx -b 50
Plugin: libmodelrunner-onnx.so;
WARNING: Since openmp is enabled in this build, this API cannot be used to configure intra op num
threads. Please use the openmp environment variables to control the number of threads.
Prefer Vsi_Npu execution provider
Input name=input, type=1, num_dims=4, shape=[1 3 224 224]
Number of outputs = 1
Output 0 : name=TFLITE2ONNX_Quant_MobilenetV1/Predictions/Reshape_1_dequantized
Loaded ONNX model.
Average model run time: 434.220155 ms

To run modelrunner with ONNX Runtime and Arm NN execution provider and measure its performance:

$ modelrunner -e onnx -c 2 -m mobilenet_v1_1.0_224_quant.onnx -b 50 -t 4
Plugin: libmodelrunner-onnx.so;
WARNING: Since openmp is enabled in this build, this API cannot be used to configure intra op num
threads. Please use the openmp environment variables to control the number of threads.
Prefer ArmNN execution provider
Input name=input, type=1, num_dims=4, shape=[1 3 224 224]
Number of outputs = 1
Output 0 : name=TFLITE2ONNX_Quant_MobilenetV1/Predictions/Reshape_1_dequantized
Loaded ONNX model.
Average model run time: 233.127588 ms

NXP Semiconductors
DeepViewRT

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 50 / 99

It can be changed to use “ArmNN” as execution provider by replacing “-c 3” with “-c 2”

 NOTE

NXP Semiconductors
DeepViewRT

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 51 / 99

Chapter 10
TVM
Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims
to enable machine learning engineers to optimize and run computations efficiently on any hardware backend.

Features:

• TVM 0.7.0

• Compilation of deep learning models into minimum deployable modules

• Infrastructure to automatic generate and optimize models on more backend with better performance

• GPU/NPU support for i.MX8 (except for i.MX8MM and i.MX8MN) platforms with OpenVX library

• TVM builder supported for Ubuntu 18.04, x86_64 platform

Refer TVM Documentation for more detailed information.

 NOTE

10.1 TVM software workflow
The pre-trained model will be transformed into the Relay IR and passed through to the TVM model optimizations like
constant-folding, memory planning, and finally passed to a codegen phase. In this phase, the operators supported by the
target device are transformed as intrinsic calls into the offloading library which connects the model accelerator devices such as
GPU/NPU.

Figure 20. TVM software workflow

10.2 Getting started

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 52 / 99

https://tvm.apache.org/docs/

10.2.1 Running example with RPC verification
TVM provides the Remote Procedure Call (RPC) capability to run a model on the remote device.

User can run examples at tests/python/contrib/test_vsi_npu with RPC verification. The model running result on device will
be verified against the result on host with same input.

• Launch the RPC server on the device

$ python3 -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090

• Export the system variables:

$ export TVM_HOME=/path/to/tvm
$ export PYTHONPATH=$TVM_HOME/python

• Run the specified models on the host PC:

$ python3 tests/python/contrib/test_vsi_npu/test_tflite_models.py -i {device_ip} -
m mobilenet_v2_1.0_224_quant

• Run all supported TensorFlow Lite models on the host PC:

$ python3 tests/python/contrib/test_vsi_npu/test_tflite_models.py -i {device_ip}

This test will download the model automatically, please be sure the network can access the public internet.
Example scripts may import additional Python libraries. Please check scripts and make sure they are
installed correctly.

 NOTE

10.2.2 Running example individually on device
In this mode, the model is compiled on the host offline and saved as model.so. Please refer tests/python/contrib/
test_vsi_npu/compile_tflite_models.py to compile a TensorFlow Lite model on the host.

Below script snippet shows how to load and run a compiled model at the device:

ctx = tvm.cpu(0)
load the compiled model
lib = tvm.runtime.load_module(args.model)
m = graph_runtime.GraphModule(lib["default"](ctx))
set inputs
data = get_img_data(args.image, (args.input_size, args.input_size), args.data_type)
m.set_input(args.input_tensor, data)
execute the model
m.run()
get outputs
tvm_output = m.get_output(0)

Please refer tests/python/contrib/test_vsi_npu/label_image.py to a complete label image example with pre-processing
of image decoding and post-processing to generate label.

10.3 How to build TVM stack on host
Conceptually, TVM can be split into two parts:

• TVM build stack: compiles the deep learning model at host

• TVM runtime: loads and interprets the model at device

NXP Semiconductors
TVM

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 53 / 99

This build stack is using the LLVM to cross-compile the generated source as a deployable dynamic library for device. Please,
follow the LLVM Doc to install LLVM on the host. If installed successfully, llvm-config should be found under /usr/bin.

To build the tvm, please be sure below dependence packages installed on the host:

• cmake

• python3-dev

• build-essential

• llvm-dev

• g++-aarch64-linux-gnu

• libedit-dev

• libxml2-dev

• python3-numpy

• python3-attrs

• python3-tflite

For Ubuntu 18.04, the user could use below commands to install all dependences:

$ sudo apt-get update
$ sudo apt-get install -y python3 python3-dev python3-setuptools
$ sudo apt-get install -y cmake llvm llvm-dev g++-aarch64-linux-gnu gcc-aarch64-linux-gnu
$ sudo apt-get install -y libtinfo-dev zlib1g-dev build-essential libedit-dev libxml2-dev
$ python3 -m pip install numpy decorator scipy attrs six tflite

Follow below instructions to build TVM stack on the host:

$ export TOP_DIR=`pwd`
$ git clone --recursive {this git} tvm-host
$ cd tvm-host
$ mkdir build
$ cp cmake/config.cmake build
$ cd build
$ sed -i 's/USE_LLVM\ OFF/USE_LLVM\ \/usr\/bin\/llvm-config/' config.cmake
$ cmake ..
$ make tvm -j4 # make tvm build stack

10.4 Supported models
Below models are verified with TVM:

Table 5. TVM models ZOO

Model float32 int8 Input size

mobilenet_v1_0.25_128 mobilenet_v1_0.25_128 mobilenet_v1_0.25_128_quan
t

128

mobilenet_v1_0.25_224 mobilenet_v1_0.25_224 mobilenet_v1_0.25_224_quan
t

224

mobilenet_v1_0.5_128 mobilenet_v1_0.5_128 mobilenet_v1_0.5_128_quant 128

Table continues on the next page...

NXP Semiconductors
TVM

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 54 / 99

https://llvm.org/docs/
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_128.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_128_quant.tgz

Table 5. TVM models ZOO (continued)

Model float32 int8 Input size

mobilenet_v1_0.5_224 mobilenet_v1_0.5_224 mobilenet_v1_0.5_224_quant 224

mobilenet_v1_0.75_128 mobilenet_v1_0.75_128 mobilenet_v1_0.75_128_quan
t

128

mobilenet_v1_0.75_224 mobilenet_v1_0.75_224 mobilenet_v1_0.75_224_quan
t

224

mobilenet_v1_1.0_128 mobilenet_v1_1.0_128 mobilenet_v1_1.0_128_quant 128

mobilenet_v1_1.0_224 mobilenet_v1_1.0_224 mobilenet_v1_1.0_224_quant 224

mobilenet_v2_1.0_224 mobilenet_v2_1.0_224 mobilenet_v2_1.0_224_quant 224

inception_v1 N/A inception_v1_224_quant 224

inception_v2 N/A inception_v2_224_quant 224

inception_v3 inception_v3 inception_v3_quant 299

inception_v4 inception_v4 inception_v4_299_quant 299

deeplab_v3_257_mv_gpu deeplab_v3_256_mv_gpu N/A 257

deeplab_v3_mnv2_pascal N/A deeplab_v3_mnv2_pascal 513

ssdlite_mobiledet ssdlite_mobiledet_cpu_320x3
20_coco

N/A 320

NXP Semiconductors
TVM

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 55 / 99

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_128.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_128.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v1_224_quant_20181026.tgz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v2_224_quant_20181026.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_v3_2018_04_27.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_v4_2018_04_27.tgz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v4_299_quant_20181026.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/deeplabv3_257_mv_gpu.tflite
https://github.com/google-coral/edgetpu/raw/master/test_data/deeplabv3_mnv2_pascal_quant.tflite
http://download.tensorflow.org/models/object_detection/ssdlite_mobiledet_cpu_320x320_coco_2020_05_19.tgz
http://download.tensorflow.org/models/object_detection/ssdlite_mobiledet_cpu_320x320_coco_2020_05_19.tgz

Chapter 11
NN Execution on Hardware Accelerators
11.1 Hardware accelerator description
The i.MX8 class devices are deployed with two kind of NN accelerators:

• Neural Processing Unit (NPU)

• Graphical Processing Unit (GPU)

Neural processing unit is optimized for fixed point arithmetic, in 8-bit and 16-bit width. For optimal performance on the NPU,
quantized models shall be used.

Graphical processing unit is optimized for fixed point arithmetic and half precision floating point arithmetic. For optimal
performance on the GPU, quantized models or floating-point models with half precision shall be used.

The TensorFlow Lite framework enables to compute the floating-point models directly in 16-bit half
precision arithmetic.

 NOTE

OpenVX Driver

SW Stack

Neural
Processing

Unit

Graphical
Processing

Unit

i.MX8 Series

Figure 21. NN accelerator SW stack

Interface to NPU/GPU HW accelerator is provided via the OpenVX v1.2 with NN Extensions. OpenVX is an open, royalty-free
standard for cross platform acceleration of computer vision applications. It provides[1]:

• a library of predefined and customizable vision functions

• a graph-based execution model to combine function enabling both task and data independent execution

• a set of memory objects that abstract the physical memory

Open VX defines a C-application programming interface for building, verifying and coordinating graph execution and accessing
memory objects. More information about OpenVX can be find on the OpenVX home page.

In the current OpenVX driver implementation, the maximum number of nodes supported in OpenVX graph is 2048.

 NOTE

11.2 Profiling on hardware accelerators
This section describes how to enable profiler on the GPU/NPU, and how to capture logs.

[1] OpenVX 1.2 specification; https://www.khronos.org/registry/OpenVX/specs/1.2/html/index.html

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 56 / 99

https://www.khronos.org/openvx

1. Stop the EVK board in the U-Boot by pressing Enter.

2. Update mmcargs by adding galcore.showArgs=1 and galcore.gpuProfiler=1.

u-boot=> editenv mmcargs
edit: setenv bootargs ${jh_clk} console=${console} root=${mmcroot}
galcore.showArgs=1 galcore.gpuProfiler=1
u-boot=> boot

3. Boot the board and wait for the Linux OS prompt.

4. The following environment flags should be enabled before executing the application. VIV_VX_DEBUG_LEVEL and
VIV_VX_PROFILE flags should always be 1 during the process of profiling. The CNN_PERF flag enables the driver’s
ability to generate per layer profile log. NN_EXT_SHOW_PERF shows the details of how compiler estimates performance and
determines tiling based on it.

export CNN_PERF=1 NN_EXT_SHOW_PERF=1 VIV_VX_DEBUG_LEVEL=1 VIV_VX_PROFILE=1

5. Capture the profiler log. We use the sample ML example part of standard NXP Linux release to explain the following section.

• TensorFlow Lite profiling

Run the TensorFlow Lite application with GPU/NPU backend as follows:

$ cd /usr/bin/tensorflow-lite-2.4.1/examples
$./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l labels.txt
-a 1 -v 0 > viv_test_app_profile.log 2>&1

• ArmNN profiling

Run the ArmNN application (here TfMobilNet is taken as example) with GPU/NPU backend as follows:

$ cd /usr/bin/armnn-21.02/
$./TfMobileNet-Armnn --data-dir=data --model-dir=models --compute=VsiNpu >
viv_test_app_profile.log 2>&1

The Armnn profiling example assumes that both the model file and input data are located at the respective
subfolders. See also Running Arm NN tests.

 NOTE

The log captures detailed information of the execution clock cycles and DDR data transmission in each layer.

The average time for inference might be longer than usual, as the profiler overhead is added.

 NOTE

11.3 Hardware accelerators warmup time
For both Arm NN and TensorFlow Lite, the initial execution of model inference takes longer time, because of the model graph
initialization needed by the GPU/NPU hardware accelerator. The initialization phase is known as warmup. This time duration
can be decreased for subsequent application that runs by storing on disk the information resulted from the initial OpenVX graph
processing. The following environment variables should be used for this purpose:

VIV_VX_ENABLE_CACHE_GRAPH_BINARY: flag to enable/disable OpenVX graph caching

VIV_VX_CACHE_BINARY_GRAPH_DIR: set location of the cached information on disk

For example, set these variables on the console in this way:

export VIV_VX_ENABLE_CACHE_GRAPH_BINARY="1"
export VIV_VX_CACHE_BINARY_GRAPH_DIR=`pwd`

NXP Semiconductors
NN Execution on Hardware Accelerators

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 57 / 99

By setting up these variables, the result of the OpenVX graph compilation is stored on disk as network binary graph files (*.nb).
The runtime performs a quick hash check on the network and if it matches the *.nb file hash, it loads it into the NPU memory
directly. These environment variables need to be set persistently, for example, available after reboot. Otherwise, the caching
mechanism is bypassed even if the *.nb files are available.

The iterations following the graph initialization are performed many times faster. When evaluating the performance of an
application running on GPU/NPU, the time should be measured separately for warmup and inference. Warmup time usually affects
only the first inference run. However, depending on the machine learning model type, it might be noticeable for the first few
inference runs. Some preliminary tests must be done to make a decision on what to consider warmup time. When this phase
is well delimited, the subsequent inference runs can be considered as pure inference and used to compute an average for the
inference phase.

NXP Semiconductors
NN Execution on Hardware Accelerators

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 58 / 99

Chapter 12
eIQ Demos
The following section demonstrates how to use Gstreamer in co-operation with the eIQ. GStreamer is a pipeline-based multimedia
framework that links together a wide variety of media processing systems to complete complex workflows. Many of the virtues of
the GStreamer framework come from its modularity; GStreamer can seamlessly incorporate new plugin modules. This software
is based on a new GStreamer’s plugin module about Neural Network Inference for NXP i.MX processors. Currently, it supports
object detection and pose estimation examples.

Features:

• TensorFlow Lite inference and neural network API delegate

• GPU/NPU hardware acceleration for i.MX8 platforms

• OpenCV drawing for inference result shapes

12.1 eIQ demos software workflow
When Gstreamer does a specific task, a pipeline needs to be created through the corresponding command. The pipeline is a chain
of elements linked together and let data flow through this chain of elements. An element has one specific function, which can be
the reading of data from a file, decoding of this data or outputting this data to the graphic card. The following diagram is the eIQ
demos software workflow:

Figure 22. eIQ demos software workflow

The video file or camera input is used as the source for the pipeline. The decoded frames are generated through the decoder
block. Then the frames are transformed into RGB data, and set up as input tensor for TensorFlow Lite interpreter. The inference is
accomplished based on NNAPI delegate, NNRT, OVXLIB, OpenVX driver and hardware acceleration GPU/NPU. The inference
result shapes, such as object detection rectangle and pose object that contains a list of keypoints, are drawn by OpenCV. The
inference average time, current time and inference frames per second will be shown too.

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 59 / 99

12.2 Getting started
Firstly, download the related models and copy them to the directories at the device as below:

$ wget https://github.com/google-coral/project-posenet/raw/master/models/
mobilenet/posenet_mobilenet_v1_075_353_481_quant_decoder.tflite
$ cp posenet_mobilenet_v1_075_353_481_quant_decoder.tflite {rootfs}/usr/share/gstnninferencedemo/
google-coral/project-posenet/
$ wget https://dl.google.com/coral/canned_models/all_models.tar.gz
$ tar -xvzf all_models.tar.gz
$ cp mobilenet_ssd_v2_coco_quant_postprocess.tflite {rootfs}/usr/share/gstnninferencedemo/google-
coral/examples-camera/

Then, you could run the following examples, they are already installed in the Yocto rootfs.

12.2.1 Running object detection with video stream
There is an example to run object detection with video stream. It is recommended to use 720p30 video:

$ /usr/bin/gstnninferencedemo-mobilenet-ssd-video </path/to/video_file>

12.2.2 Running object detection with camera stream
There is an example to run object detection with camera stream. Both the MIPI camera or USB camera are possible to use. The
camera device name is <dev/video?>:

$ /usr/bin/gstnninferencedemo-mobilenet-ssd-camera </dev/video?>

Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command
to check it.

 NOTE

12.2.3 Running pose estimation with video stream
There is an example to run pose estimation with video stream. It is recommended to use 720p30 video:

$ /usr/bin/gstnninferencedemo-posenet-video </path/to/video_file>

12.2.4 Running pose estimation with camera stream
There is an example to run pose estimation with camera stream. Both the MIPI camera or USB camera are possible to use. The
camera device name is <dev/video?>:

$ /usr/bin/gstnninferencedemo-posenet-camera </dev/video?>

Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command
to check it.

 NOTE

NXP Semiconductors
eIQ Demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 60 / 99

12.2.5 Pipeline demo commands
For the above examples, shell scripts can be used to run the demos. There is a corresponding GStreamer command in each shell
script, and several variables which can be changed for the pipeline. Take above Running pose estimation with video stream as
an example, the full command pipeline is as below:

GST_COMMAND="gst-launch-1.0 -v filesrc location=${VIDEO_FILE} ! decodebin ! queue max-size-
time=0 ! nninferencedemo rotation=${ROT} demo-mode=${DEMO_MODE} model=${MODEL} label=${LABEL}
use-nnapi=${USE_NNAPI} num-threads=${NUM_THREADS} display-stats=${DISPLAY_STATS} enable-inference=$
{ENABLE_INFERENCE} ! waylandsink sync=${SYNC}"

The variables can be defined as you need. The following settings represents the default values:

DEMO_MODE=posenet
MODEL=/usr/share/gstnninferencedemo/google-coral/project-
posenet/posenet_mobilenet_v1_075_353_481_quant_decoder.tflite
LABEL=no-label
DISPLAY_STATS=true
ENABLE_INFERENCE=true
USE_NNAPI=true
ROT=none (Rotation)
SYNC=true

NXP Semiconductors
eIQ Demos

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 61 / 99

Chapter 13
Revision History
This table provides the revision history.

Table 6. Revision history

Revision number Date Substantive changes

L5.4.47_2.2.0 09/2020 Initial release

L5.4.70_2.3.0 01/2021 i.MX 5.4 consolidated GA for release i.MX boards including i.
MX 8M Plus and i.MX 8DXL.

LF5.10.9_1.0.0 03/2021 Kernel upgrade to 5.10.9 and Machine Learning upgrades

L5.4.70_2.3.2 04/2021 Patch release

LF5.10.35_2.0.0 06/2021 Upgraded to Yocto Project Hardknott and the kernel upgraded
to 5.10.35

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 62 / 99

Appendix A
List of used variables
The following table provides the summary of used variables described in this document for the particular inference engine. Use
the export command to apply these variables:

Table 7. System variables summary

Variable name Description

CNN_PERF 0: Disable (default)

1: Prints the execution time for each operation (requires VIV_VX_
DEBUG_LEVEL=1). If VIV_VX_PROFILE=1 is set, the default value is 1.

NN_EXT_SHOW_PERF 0: Disable (default)

1: Shows more profiling details (requires VIV_VX_DEBUG_LEVEL=1)

PATH_ASSETS Sets the export path for user assets.

USE_GPU_INFERENCE Selection between the 3D GPU (1) and the NPU (0).

VIV_VX_CACHE_BINARY_GRAPH_DIR Specifies the path of the cached NBG. Default is the current
work directory.

VIV_VX_DEBUG_LEVEL 0: Disable (default)

1: Prints the debug information of driver on the console. Generally, this
environment variable is used together with other environment variables to
print logs.

VIV_VX_ENABLE_CACHE_GRAPH_BINARY 0: Disable (default)

1: Enables graph cache mode. The network loads the NBG file to run if the
cached NBG file exists. Otherwise, it generates an NBG file. It can save
the time for the verification stage.

VIV_MEMORY_PROFILE 0: Disable (default)

1: Prints the memory footprint of the system (CPU) and GPU (VIP)
(requires VIV_VX_DEBUG_LEVEL=1)

VIV_VX_PROFILE 0: Disable (default)

1: Prints the DDR read and write bandwidth, AXI_SRAM read and write
bandwidth, and the cycle count of VIP execution. The counter is per-
node-process (requires VIV_VX_DEBUG_LEVEL=1).

2: Prints the DDR read and write bandwidth, AXI_SRAM read and write
bandwidth, and the cycle count of VIP execution. The counter is per-
graph-process (requires VIV_VX_DEBUG_LEVEL=1).

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 63 / 99

Appendix B
Neural network API reference
The neural-network operations and corresponding supported API functions are listed in the following table.

Table 8. Neural-network operations and supported API functions

Op Category/Name Android NNAPI 1.2 DeepViewRT TensorFlow Lite
2.4.1

Arm NN

21.02

ONNX 1.5.3

Activation

elu - - ELU - Elu

floor ANEURALNETWO
RKS_FLOOR

- Floor Floor Floor

leakyrelu - leaky_relu LEAKY_RELU Activation/
LeakyReLu

LeakyReLu

prelu ANEURALNETWO
RKS_PRELU

prelu PRELU PreLu PreLu

relu ANEURALNETWO
RKS_RELU

relu RELU Activation/ReLu ReLu

relu1 ANEURALNETWO
RKS_RELU1

- RELU1 - -

relu6 ANEURALNETWO
RKS_RELU6

relu6 RELU6 - -

relun - - RELU_N1_TO_1 - -

swish - swish - - -

Hard_swish ANEURALNETWO
RKS_HARD_
SWISH

- HARD_SWISH - -

rsqrt ANEURALNETWO
RKS_RSQRT

rsqrt RSQRT - -

sigmoid ANEURALNETWO
RKS_LOGISTIC

sigmoid/
sigmoid_fast

LOGISTIC Activation/Sigmoid Sigmoid

softmax ANEURALNETWO
RKS_SOFTMAX

softmax SOFTMAX Softmax Softmax

softrelu - - - Activation/
SoftReLu

-

sqrt ANEURALNETWO
RKS_SQRT

- SQRT Activation/Sqrt Sqrt

tanh ANEURALNETWO
RKS_TANH

- TANH Activation/TanH TanH

Table continues on the next page...

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 64 / 99

Table 8. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT TensorFlow Lite
2.4.1

Arm NN

21.02

ONNX 1.5.3

bounded - - - Activation/
BoundedReLu

-

linear - linear - Activation/Linear -

Dense Layers

dense - dense - - -

Element Wise

abs ANEURALNETWO
RKS_ABS

abs ABS Activation/Abs Abs

add ANEURALNETWO
RKS_ADD

add ADD Addition Add

add_n - - ADD_N - -

clip_by_value - - - - Clip

div ANEURALNETWO
RKS_DIdV

divide DIV Division Div

equal ANEURALNETWO
RKS_EQUAL

- EQUAL - Equal

exp ANEURALNETWO
RKS_EXP

exp EXP - Exp

log ANEURALNETWO
RKS_LOG

log LOG - Log

floor_div - - FLOOR_DIV - -

greater ANEURALNETWO
RKS_GREATER

- GREATER - Greater

greater_equal ANEURALNETWO
RKS_GREATER_
EQUAL

- GREATER_
EQUAL

- -

less ANEURALNETWO
RKS_LESS

- LESS - Less

less_equal ANEURALNETWO
RKS_LESS_
EQUAL

- LESS_EQUAL - -

logical_and ANEURALNETWO
RKS_LOGICAL_
AND

- LOGICAL_AND - And

Table continues on the next page...

NXP Semiconductors
Neural network API reference

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 65 / 99

Table 8. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT TensorFlow Lite
2.4.1

Arm NN

21.02

ONNX 1.5.3

logical_or ANEURALNETWO
RKS_LOGICAL_
OR

- LOGICAL_OR - Or

minimum ANEURALNETWO
RKS_MINIMUM

- MINIMUM Minimum Min

maximum ANEURALNETWO
RKS_MAXIMUM

- MAXIMUM Maximum Max

multiply ANEURALNETWO
RKS_MUL

multiply MUL Multiplication Mul

negative ANEURALNETWO
RKS_NEG

- NEG - Neg

not_equal ANEURALNETWO
RKS_NOT_EQUAL

- NOT_EQUAL - -

pow ANEURALNETWO
RKS_POW

- POW - POW

select ANEURALNETWO
RKS_SELECT

- SELECT - -

square - - SQUARE Activation/Square -

sub ANEURALNETWO
RKS_SUB

substract SUB Substraction Sub

where - - WHERE - Where

Image Processing

image_resize ANEURALNETWO
RKS_RESIZE_
BILINEAR

bilinear_interpolati
on

RESIZE_
BILINEAR

- Unsample

image_resize ANEURALNETWO
RKS_RESIZE_
NEAREST_
NEIGHBOR

resize_nearest_nei
ghbor

RESIZE_
NEAREST_
NEIGHBOR

- Resize

Matrix Multiplication

fullconnect ANEURALNETWO
RKS_FULLY_
CONNECTED

- FULLY_
CONNECTED

FullyConnected -

matrix_mul - matmul/
matmul_cache

- - -

Normalization -

Table continues on the next page...

NXP Semiconductors
Neural network API reference

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 66 / 99

Table 8. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT TensorFlow Lite
2.4.1

Arm NN

21.02

ONNX 1.5.3

batch_normalize - batchnorm - BatchNormalizatio
n

BatchNormalizatio
n

instance
_normalize

- - - Normalization InstanceNormalizat
ion

l2normalize ANEURALNETWO
RKS_L2_
NORMALIZATION

- L2_
NORMALIZATION

L2Normalization -

localresponsenorm
alization

ANEURALNETWO
RKS_LOCAL_
RESPONSE_
NORMALIZATION

- LOCAL_
RESPONSE_
NORMALIZATION

- LRN

Reshape

batch2space ANEURALNETWO
RKS_BATCH_TO_
SPACE_ND

- BATH_TO_
SPACE_ND

BatchToSpaceNd -

concat ANEURALNETWO
RKS_
CONCATENATIO
N

- CONCATENATIO
N

Concat Concat

depth_to_space ANEURALNETWO
RKS_DEPTH_TO_
SPACE

- DEPTH_
TO_SPACE

- DepthToSpace

expanddims ANEURALNETWO
RKS_EXPAND_
DIMS

- EXPAND_DIMS - -

flatten ANEURALNETWO
RKS_RESHAPE

- - - -

gather ANEURALNETWO
RKS_GATHER

- GATHER - Gather

pad ANEURALNETWO
RKS_PAD

- PAD/
MIRROR_PAD

Pad Pad

permute ANEURALNETWO
RKS_
TRANSPOSE

- TRANSPOSE Permute Transpose

reducemean ANEURALNETWO
RKS_MEAN

reduce_mean MEAN Mean ReduceMean

reducesum ANEURALNETWO
RKS_SUM

reduce_sum SUM - ReduseSum

gathernd - - GATHER_ND - GatherND

Table continues on the next page...

NXP Semiconductors
Neural network API reference

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 67 / 99

Table 8. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT TensorFlow Lite
2.4.1

Arm NN

21.02

ONNX 1.5.3

reducemax ANEURALNETWO
RKS_REDUCE_
MAX

reduce_max REDUCE_MAX - ReduceMax

reducemin ANEURALNETWO
RKS_REDUCE_
MIN

reduce_min REDUCE_MIN - ReduceMin

reduceproduct - reduce_product - - -

reshape ANEURALNETWO
RKS_RESHAPE

- RESHAPE Reshape Reshape

reverse - - - - ReverseSequence

slice ANEURALNETWO
RKS_SLICE

- SLICE - Slice

space2batch ANEURALNETWO
RKS_SPACE_TO_
BATCH_ND

- SPACE_TO_
BATCH_ND

SpaceToBatchNd -

split ANEURALNETWO
RKS_SPLIT

- SPLIT Split Split

squeeze ANEURALNETWO
RKS_SQUEEZE

- SQUEEZE Squeeze Squeeze

strided_slice ANEURALNETWO
RKS_STRIDED_
SLICE

- STRIDED_SLICE StridedSlice -

unstack - - UNPACK Unpack -

RNN

gru - gru - - GRU

lstm - - UNIDIRECTIONAL
SEQUEENCE
LSTM

- -

lstmunit ANEURALNETWO
RKS_LSTM

- LSTM LstmUnit LSTM

rnn ANEURALNETWO
RKS_RNN

- RNN - -

Sliding Window

avg_pool ANEURALNETWO
RKS_AVERAGE_
POOL

avgpool/
avgpool_ex

AVERAGE_
POOL_2D

Pooling2D/avg AveragePool

Table continues on the next page...

NXP Semiconductors
Neural network API reference

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 68 / 99

Table 8. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT TensorFlow Lite
2.4.1

Arm NN

21.02

ONNX 1.5.3

convolution ANEURALNETWO
RKS_CONV_2D

conv2d/conv_ex CONV_2D Convolution2D Conv

deconvolution ANEURALNETWO
RKS_
TRANSPOSE_
CONV_2D

- TRANSPOSE_
CONV

- ConvTranspose

depthhwise_
convolution

ANEURALNETWO
RKS_
DEPTHWISE_
CONV_2D

- DEPTHWISE_
CONV_2D

Depthwise
Convolution

-

Log_softmax ANEURALNETWO
RKS_LOG_
SOFTMAX

- LOG_SOFTMAX - Logsoftmax

l2pooling ANEURALNETWO
RKS_L2_POOL

- L2_POOL_2D Pooling2D/L2 -

max_pool ANEURALNETWO
RKS_MAX_POOL

maxpool/
maxpool_ex

MAX_POOL_2D Pooling2D/max MaxPool

Others

argmax ANEURALNETWO
RKS_ARGMAX

argmax ARGMAX - ArgMax

argmin ANEURALNETWO
RKS_ARGMIN

- ARGMIN - ArgMin

dequantize ANEURALNETWO
RKS_
DEQUANTIZE

- DEQUANTIZE Dequantize DequantizeLinear

quantize ANEURALNETWO
RKS_QUANTIZE

- QUANTIZE Quantize QuantizeLinear

roi_pool ANEURALNETWO
RKS_ROI_ALIGN

- - - -

shuffle_channel ANEURALNETWO
RKS_CHANNEL_
SHUFFLE

- - - -

tile ANEURALNETWO
RKS_TILE

- TILE - Tile

svdf ANEURALNETWO
RKS_SVDF

- SVDF - -

embedding_lookup ANEURALNETWO
RKS_
EMBEDDING_
LOOKUP

- EMBEDDING_
LOOKUP

- -

Table continues on the next page...

NXP Semiconductors
Neural network API reference

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 69 / 99

Table 8. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT TensorFlow Lite
2.4.1

Arm NN

21.02

ONNX 1.5.3

cast ANEURALNETWO
RKS_CAST

- CAST - Cast

svm - svm - - -

decode - decode_centernet - - -

NXP Semiconductors
Neural network API reference

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 70 / 99

Appendix C
OVXLIB Operation Support with GPU
This section provides a summary of the neural network OVXLIB operations supported by the NXP Graphics Processing Unit
(GPU) IP with hardware support for OpenVX and OpenCL and a compatible Software stacks. OVXLIB operations are listed in the
following table.

The following abbreviations are used for format types:

• asym-u8: asymmetric_affine-uint8

• asym-i8: asymmetric_affine-int8

• fp32: float32

• pc-sym-i8: perchannel_symmetric_int8

• h: half

• bool8: bool8

• int16: int16

• int32: int32

Table 9. OVXLIB operation support with GPU

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

Basic Operations

VSI_NN_OP_
CONV2D

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 p8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

VSI_NN_OP_
CONV1D

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 p8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

VSI_NN_OP_
DEPTHWISE_
CONV1D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 asym-i8 asym-i8 ✔

VSI_NN_OP_
DECONVOLUTIO
N

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 p8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

VSI_NN_OP_FCL asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 p8 asym-i8 ✔ ✔

Table continues on the next page...

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 71 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

Activation
Operations

VSI_NN_OP_ELU asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
HARD_SIGMOID

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SWISH

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
LEAKY_RELU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
PRELU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
RELU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
RELUN

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 72 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_
RSQRT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SIGMOID

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SOFTRELU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SQRT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
TANH

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_ABS asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_CLIP asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_EXP asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 73 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

h h ✔ ✔

VSI_NN_OP_LOG asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_NEG asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_MISH asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SOFTMAX

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
LOG_SOFTMAX

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SQUARE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_SIN asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

Elementwise
Operations

VSI_NN_OP_ADD asym-u8 asym-u8 ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 74 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SUBTRACT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
MULTIPLY

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
DIVIDE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
MAXIMUN

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
MINIMUM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_POW asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
FLOORDIV

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 75 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_
MATRIXMUL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
RELATIONAL_
OPS

asym-u8 bool8 ✔ ✔

asym-i8 bool8 ✔ ✔

fp32 bool8 ✔ ✔

h bool8 ✔ ✔

bool8 bool8 ✔ ✔

VSI_NN_OP_
LOGICAL_OPS

bool8 bool8 ✔ ✔

VSI_NN_OP_
SELECT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

bool8 bool8 ✔ ✔

VSI_NN_OP_
ADDN

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

Normalization
Operations

VSI_NN_OP_
BATCH_NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_LRN asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_LRN2 asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 76 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_L2_
NORMALIZE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
L2NORMALZESC
ALE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
LAYER_NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
INSTANCE_
NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
BATCHNORM_
SINGLE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
MOMENTS

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

Reshape
Operations

VSI_NN_OP_
SLICE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 77 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_
SPLIT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
CONCAT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
STACK

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
UNSTACK

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
RESHAPE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SQUEEZE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
PERMUTE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
REORG

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 78 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

h h ✔ ✔

VSI_NN_OP_
SPACE2DEPTH

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
DEPTH2SPACE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
BATCH2SPACE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SPACE2BATCH

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_PAD asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
REVERSE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
STRIDED_SLICE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
CROP

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 79 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
REDUCE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
ARGMX

asym-u8 asym-u8/int16/
int32

✔ ✔

asym-i8 asym-u8/int16/
int32

✔ ✔

fp32 int32 ✔ ✔

h asym-u8/int16/
int32

✔ ✔

VSI_NN_OP_
ARGMIN

asym-u8 asym-u8/int16/
int32

✔ ✔

asym-i8 asym-u8/int16/
int32

✔ ✔

fp32 int32 ✔ ✔

h asym-u8/int16/
int32

✔ ✔

VSI_NN_OP_
SHUFFLECHANN
EL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

RNN Operations

VSI_NN_OP_
LSTMUNIT_
OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 p8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

VSI_NN_OP_
LSTM

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 80 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_
GRUCELL_
OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 p8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

VSI_NN_OP_
GRU_OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 p8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

VSI_NN_OP_
SVDF

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 p8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

h h h ✔ ✔

Pooling Operations

VSI_NN_OP_ROI_
POOL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
POOLWITHARGM
AX

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
UPSAMPLE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

Miscellaneous
Operations

VSI_NN_OP_
PROPOSAL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 81 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_
VARIABLE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
DROPOUT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
RESIZE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
DATACONVERT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_A_
TIMES_B_PLUS_C

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
FLOOR

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
EMBEDDING_
LOOKUP

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
GATHER

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 82 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

h h ✔ ✔

VSI_NN_OP_
GATHER_ND

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_TILE asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
RELU_KERAS

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
ELTWISEMAX

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
INSTANCE_
NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_FCL2 asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
POOL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

VSI_NN_OP_
SIGNAL_FRAME

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 83 / 99

Table 9. OVXLIB operation support with GPU (continued)

OVXLIB
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
CONCATSHIFT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

h h ✔ ✔

NXP Semiconductors
OVXLIB Operation Support with GPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 84 / 99

Appendix D
OVXLIB Operation Support with NPU
This section provides a summary of the neural network OVXLIB operations supported by the NXP Neural Processor Unit (NPU)
IP and a compatible Software stacks. OVXLIB operations are listed in the following table.

The following abbreviations are used for format types:

• asym-u8: asymmetric_affine-uint8

• asym-i8: asymmetric_affine-int8

• fp32: float32

• pc-sym-i8: perchannel_symmetric-int8

• h: half

• bool8: bool8

• int16: int16

• int32: int32

The following abbreviations are used to reference key Execution Engines (NPU) in the hardware:

• NN: Neural-Network Engine

• PPU: Parallel Processing Unit

• TP: Tensor Processor

Table 10. OVXLIB operation support with NPU

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

Basic
Operations

VSI_NN_OP_
CONV2D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

h h h ✔

VSI_NN_OP_
CONV1D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

h h h ✔

VSI_NN_OP_
DEPTHWISE_
CONV1D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 asym-i8 asym-i8 ✔

VSI_NN_OP_
DECONVOLUTI
ON

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

Table continues on the next page...

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 85 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 fp32 ✔

h h h ✔

VSI_NN_OP_
FCL

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

h h h ✔

Activation
Operations

VSI_NN_OP_
ELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
HARD_
SIGMOID

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SWISH

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
LEAKY_RELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
PRELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
RELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 86 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

VSI_NN_OP_
RELUN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
RSQRT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SIGMOID

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SOFTRELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SQRT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
TANH

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
ABS

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
CLIP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 87 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

h h ✔

VSI_NN_OP_
EXP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
LOG

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
NEG

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
MISH

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SOFTMAX

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
LOG_
SOFTMAX

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SQUARE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SIN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 88 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 ✔

h h ✔

Elementwise
Operations

VSI_NN_OP_
ADD

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SUBTRACT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
MULTIPLY

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
DIVIDE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
MAXIMUN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
MINIMUM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
POW

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 89 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

VSI_NN_OP_
FLOORDIV

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
MATRIXMUL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
RELATIONAL_
OPS

asym-u8 bool8 ✔

asym-i8 bool8 ✔

fp32 bool8 ✔

h bool8 ✔

bool8 bool8 ✔

VSI_NN_OP_
LOGICAL_OPS

bool8 bool8 ✔

VSI_NN_OP_
SELECT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

bool8 bool8 ✔

VSI_NN_OP_
ADDN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

Normalization
Operations

VSI_NN_OP_
BATCH_NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
LRN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 90 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
LRN2

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
L2_
NORMALIZE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
L2NORMALZE
SCALE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
LAYER_NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
INSTANCE_
NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
BATCHNORM_
SINGLE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
MOMENTS

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

Reshape
Operations

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 91 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

VSI_NN_OP_
SLICE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SPLIT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
CONCAT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
STACK

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
UNSTACK

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
RESHAPE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SQUEEZE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
PERMUTE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 92 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

h h ✔

VSI_NN_OP_
REORG

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SPACE2DEPT
H

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
DEPTH2SPAC
E

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

bool8 bool8

VSI_NN_OP_
BATCH2SPAC
E

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SPACE2BATC
H

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
PAD

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
REVERSE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 93 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

VSI_NN_OP_
STRIDED_
SLICE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
CROP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
REDUCE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
ARGMAX

asym-u8 asym-u8/int16/
int32

✔

asym-i8 asym-u8/int16/
int32

✔

fp32 int32 ✔

h asym-u8/int16/
int32

✔

VSI_NN_OP_
ARGMIN

asym-u8 asym-u8/int16/
int32

✔

asym-i8 asym-u8/int16/
int32

✔

fp32 int32 ✔

h asym-u8/int16/
int32

✔

VSI_NN_OP_
SHUFFLECHA
NNEL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

RNN
Operations

VSI_NN_OP_
LSTMUNIT_
OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 94 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 fp32 ✔

h h h ✔ ✔

VSI_NN_OP_
LSTM

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

h h h ✔ ✔

VSI_NN_OP_
GRUCELL_
OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

h h h ✔ ✔

VSI_NN_OP_
GRU_OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

h h h ✔ ✔

VSI_NN_OP_
SVDF

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

h h h ✔ ✔

Pooling
Operations

VSI_NN_OP_
ROI_POOL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔

h h ✔ ✔

VSI_NN_OP_
POOLWITHAR
GMAX

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
UPSAMPLE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 95 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

Miscellaneous
Operations

VSI_NN_OP_
PROPOSAL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
VARIABLE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
DROPOUT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
RESIZE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
DATACONVER
T

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_A_
TIMES_B_
PLUS_C

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
FLOOR

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 96 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

VSI_NN_OP_
EMBEDDING_
LOOKUP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
GATHER

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
GATHER_ND

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
TILE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
RELU_KERAS

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
ELTWISEMAX

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
INSTANCE_
NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
FCL2

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

Table continues on the next page...

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 97 / 99

Table 10. OVXLIB operation support with NPU (continued)

OVXLIB
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

h h ✔

VSI_NN_OP_
POOL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
SIGNAL_
FRAME

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

VSI_NN_OP_
CONCATSHIFT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

h h ✔

NXP Semiconductors
OVXLIB Operation Support with NPU

i.MX Machine Learning User's Guide, Rev. LF5.10.35_2.0.0, 30 June 2021
User's Guide 98 / 99

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 30 June 2021
Document identifier: IMXMLUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Software Stack Introduction
	2 eIQ Inference Runtime Overview
	3 TensorFlow Lite
	3.1 TensorFlow Lite software stack
	3.2 TensorFlow Lite inference backends
	3.2.1 Built-in kernels
	3.2.2 XNNPACK delegate
	3.2.3 NNAPI delegate
	3.2.4 VX delegate

	3.3 Delivery package
	3.4 Running image classification example
	3.5 Running benchmark applications
	3.6 Application development
	3.7 Post training quantization using TensorFlow Lite converter

	4 Arm Compute Library
	4.1 Running a DNN with random weights and inputs
	4.1.1 Running AlexNet using graph API

	5 Arm NN
	5.1 Arm NN software stack
	5.2 Compute backends
	5.3 Running Arm NN tests
	5.3.1 Caffe tests
	5.3.2 TensorFlow tests
	5.3.3 TensorFlow Lite tests
	5.3.4 ONNX tests

	5.4 Using Arm NN in a custom C/C++ application
	5.5 Python interface to Arm NN (PyArmNN)
	5.5.1 Getting started
	5.5.2 Running examples

	6 ONNX Runtime
	6.1 ONNX Runtime software stack
	6.2 Execution providers
	6.2.1 ONNX model test
	6.2.2 C API
	6.2.2.1 Enabling execution provider

	7 PyTorch
	7.1 Running image classification example
	7.2 Building and installing wheel packages
	7.2.1 How to build
	7.2.2 How to install

	8 OpenCV machine learning demos
	8.1 Downloading OpenCV demos
	8.2 OpenCV DNN demos
	8.2.1 Image classification demo
	8.2.2 YOLO object detection example
	8.2.3 Image segmentation demo
	8.2.4 Image colorization demo
	8.2.5 Human pose detection demo
	8.2.6 Object Detection Example
	8.2.7 CNN image classification example
	8.2.8 Text detection

	8.3 OpenCV classical machine learning demos
	8.3.1 SVM Introduction
	8.3.2 SVM for non-linearly separable data
	8.3.3 Prinicipal Component Analysis (PCA) introduction
	8.3.4 Logistic regression

	9 DeepViewRT
	9.1 DeepViewRT software stack

	10 TVM
	10.1 TVM software workflow
	10.2 Getting started
	10.2.1 Running example with RPC verification
	10.2.2 Running example individually on device

	10.3 How to build TVM stack on host
	10.4 Supported models

	11 NN Execution on Hardware Accelerators
	11.1 Hardware accelerator description
	11.2 Profiling on hardware accelerators
	11.3 Hardware accelerators warmup time

	12 eIQ Demos
	12.1 eIQ demos software workflow
	12.2 Getting started
	12.2.1 Running object detection with video stream
	12.2.2 Running object detection with camera stream
	12.2.3 Running pose estimation with video stream
	12.2.4 Running pose estimation with camera stream
	12.2.5 Pipeline demo commands

	13 Revision History
	A List of used variables
	B Neural network API reference
	C OVXLIB Operation Support with GPU
	D OVXLIB Operation Support with NPU

