

Document Number: ZAUG
Rev. 1.3
01/2008

Freescale ZigBee™ Application
User’s Guide

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006, 2007, 2008. All rights reserved.

Freescale ZigBee™ Application User’s Guide, Rev. 1.3

Freescale Semiconductor i

Contents
About This Book. v
Audience . v
Organization . v
Conventions . v
Definitions, Acronyms, and Abbreviations . vi
References. vii
Revision History . vii

Chapter 1
Introduction

1.1 What This Document Describes . 1-1
1.2 What This Document Does Not Describe. 1-1

Chapter 2
Freescale Development Boards

2.1 HCS08 Board Details . 2-1

Chapter 3
BeeKit and CodeWarrior

3.1 Creating a BeeKit Project . 3-1
3.1.1 Basic Options . 3-4
3.1.2 Custom Configuration Options . 3-5
3.1.3 Creating Additional Devices. 3-10
3.1.4 Exporting Created BeeKit Projects. 3-11
3.2 Importing the Project into CodeWarrior . 3-12
3.3 Building a Code Image Using CodeWarrior. 3-15
3.4 Loading the Code Image into a ZigBee Device . 3-15

Chapter 4
Starting and Running a Simple ZigBee Network

4.1 Starting the Network. 4-1
4.2 Running the Network: Remotely Controlling a Light . 4-2

Chapter 5
Creating a Wireless UART application

5.1 Creating the Wireless UART BeeKit Project . 5-1
5.1.1 Custom Configuration Options . 5-4
5.1.2 Adding a Project for the End Node. 5-9
5.1.3 Exporting the BeeKit Projects . 5-11
5.2 Importing the Project into CodeWarrior . 5-12
5.2.1 Building the Wireless UART Code Image Using CodeWarrior. 5-15

Freescale ZigBee™ Application User’s Guide, Rev. 1.3

ii Freescale Semiconductor

5.2.2 Loading the Wireless UART Code Image into a ZigBee Device. 5-15
5.3 Wireless UART Setup and Operation. 5-18
5.3.1 Setting up the UART/USB Virtual Com Ports . 5-18
5.3.2 Starting the Wireless UART Application . 5-19
5.3.3 Forming and Starting the Network . 5-20
5.3.4 Using the Wireless UART Application . 5-20

Chapter 6
Example Applications

6.1 ZigBee Application Glossary . 6-1
6.2 Example Application User Interfaces . 6-2
6.3 Application Support Library (ASL) Keys . 6-2
6.3.1 Home Automation Configuration Mode. 6-2
6.3.2 Run Mode . 6-3
6.4 Application Support Library (ASL) LEDs and Display . 6-3
6.4.1 Configuration Mode . 6-3
6.4.2 Run Mode . 6-5
6.4.3 OnOffLight . 6-5
6.4.4 Keyboard. 6-5
6.4.5 Display . 6-5
6.5 OnOffSwitch. 6-5
6.5.1 Keyboard. 6-5
6.5.2 Display . 6-6
6.6 Dimmable Light . 6-6
6.6.1 Keyboard. 6-6
6.6.2 Display . 6-6
6.7 Dimmer Control Switch . 6-6
6.7.1 Keyboard. 6-6
6.7.2 Display . 6-6
6.8 Thermostat . 6-7
6.8.1 Keyboard. 6-7
6.8.2 Display . 6-7
6.9 Temperature Sensor . 6-8
6.9.1 Keyboard. 6-8
6.9.2 Display . 6-8
6.10 HA Generic Application . 6-8
6.11 HA Range Extender . 6-8
6.12 HA Combined Interface . 6-9
6.13 Manufacturer Specific Applications . 6-9
6.13.1 Manufacturer Specific Configuration Mode User Interface . 6-9
6.14 Wireless UART. 6-10
6.14.1 Keyboard. 6-10
6.14.2 Display . 6-10
6.14.3 Baud Rate Display User Interface . 6-11

Freescale ZigBee™ Application User’s Guide, Rev. 1.3

Freescale Semiconductor iii

6.15 Generic App . 6-11
6.15.1 Keyboard. 6-12
6.15.2 Display . 6-12

Freescale ZigBee™ Application User’s Guide, Rev. 1.3

iv Freescale Semiconductor

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor v

About This Book
The ZigBee Application User’s Guide explains how to install and run the ZigBee Feature Set example
applications that are included in Freescale’s BeeKit Wireless Connectivity Toolkit.

Audience
This document is the operator’s manual for the ZigBee example applications in BeeKit. Anyone needing
to demonstrate the applications or to become familiar with their behavior should read this manual. ZigBee
application developers should read this manual along with the ZigBee Application Development Guide to
understand what the applications do and how they do it.

Organization
This document is organized into the following sections.
Chapter 1 Introduction – introduces the Freescale implementation of ZigBee wireless sensor

networks.
Chapter 2 Freescale Development Boards – provides detailed installation and device configuration in-

formation using the Freescale BeeKit Wireless Connectivity Toolkit tools.
Chapter 3 BeeKit and CodeWarrior – provides a simple home lighting control network to introduce

users to simple ZigBee applications.
Chapter 4 Starting and Running a Simple ZigBee Network – provides a quick tutorial to form a Zig-

Bee network using code built and loaded into two development boards in previous chapters.
Chapter 5 Creating a Wireless UART Application - shows how to create a Freescale Wireless UART

application using the Freescale BeeKit Wireless Connectivity Toolkit.
Chapter 6 Example Applications – provides several examples to allow users to configure and run

ZigBee wireless home control applications.

Conventions
This document uses the following conventions:
Courier Is used to identify commands, explicit command parameters, code examples,

expressions, data types, and directives.
Italic Is used for emphasis, to identify new terms, and for replaceable command

parameters.

All source code examples are in C.

Freescale ZigBee™ Application, Rev. 1.3

vi Freescale Semiconductor

Definitions, Acronyms, and Abbreviations
APS Application Support sub-layer, a ZigBee stack component
APL Application Layer, a ZigBee stack component
BDM Background Debug Mode: The HCS08 MCUs used here have a BDM port that

allows a computer to program its flash memory and control the MCU's operation.
The computer connects to the MCU through a hardware device called a BDM pod.
In this application, the pod is the P&E USB HCS08/HCS12 Multilink

BeeKit Freescale Wireless Connectivity Toolkit networking software
Binding Associating two nodes in a network for specific functions (e.g., a light and switch)
Cluster A collection of attributes accompanying a specific cluster identifier (sub-type

messages.)
EVB Evaluation Board, a Freescale development board.
GUI Graphical User Interface: BeeKit and CodeWarrior, the two Windows tools

discussed here, each uses a GUI
HCS08 A member of one of Freescale's families of MCUs
IDE Integrated Development Environment: A computer program that contains most or

all of the tools to develop code, including an editor, compiler, linker, and debugger
MAC IEEE 802.15.4 Medium Access Control sub-layer
MCU Micro Controller Unit: A microprocessor combined with peripherals, typically

including memory, in one package or on one die
NCB Network Coordinator Board, a Freescale development board
Node A device or group of devices with a single radio
NWK Network Layer, a ZigBee stack component
OUI Organizational Unique Identifier (The IEEE-assigned 24 most significant bits of

the 64-bit MAC address)
PAN Personal Area Network
Profile Set of options in a stack or an application
1320x-QE128EVB 1320x-QE128 Evaluation Board, a Freescale development board with an

MC1320x transceiver and an MC9S08QE128 MCU
SARD Sensor Application Reference Design, a Freescale development board
SMAC Freescale Simple MAC, a very simple, very small proprietary wireless protocol

that uses the Freescale IEEE 802.15.4 radios
SRB Sensor Reference Board, a Freescale development board
SCI Serial Communication Interface. This is a hardware serial port on the HCS08.

With the addition of an external level shifter, it can be used as an RS232 port
SPI Serial Peripheral Interface. This is a serial port intended to connect integrated

circuits that are together on one circuit board
SSP Security Service Provider, a ZigBee stack component

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor vii

Stack ZigBee protocol stack
Toggle A toggle switch moves from one state to its other state each time it is toggled. For

instance, if the first toggle takes the switch to Off, the next toggle will be to On,
and the one after that will be to Off again. In the applications this document
describes, the switches are momentary push buttons with no memory of their
states. The HCS08 maintains each switch's state

UART Universal Asynchronous Receiver Transmitter, an MCU peripheral for access to
devices not on the same circuit board. With level shifting, the UART implements
RS-232

UI User Interface
ZC ZigBee Coordinator: one of the three roles a node can have in a ZigBee network
ZED ZigBee End Device: one of the three roles a node can have in a ZigBee network
ZR ZigBee Router: one of the three roles a node can have in a ZigBee network
802.15.4 An IEEE standard radio specification that underlies the ZigBee specification

References
The following documents were referenced to build this document.

1. Freescale BeeStack Software Reference Manual, Document BSSRM, February 2007.
2. Document 053474r13, ZigBee Specification, ZigBee Alliance, December 2006
3. Document 075123r00, ZigBee Cluster Library Specification, ZigBee Alliance, July 2007
4. Document 053520r24, Home Automation Profile Specification, ZigBee Alliance, September 2007
5. The data sheets for the MC13193, MC13203, MC1321x radios
6. Freescale MC9S08GB/GT Data Sheet, Document MC9S08GB60, December 2004

Revision History
The following table summarizes revisions to this manual since the previous release (Rev. 1.2).

Revision History

Location Revisions

Entire document Updated for software release and added QE128 information.

Freescale ZigBee™ Application, Rev. 1.3

viii Freescale Semiconductor

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 1-1

Chapter 1
Introduction

The Freescale BeeKit Wireless Connectivity Toolkit includes a set of example applications for the ZigBee
Feature Set using the Home Automation application profile, supplemented by Accelerometer and Wireless
UART example applications. This user’s guide describes how to

• Configure the applications in BeeKit for any of the Freescale development boards that BeeKit
supports

• Export the configured applications from BeeKit
• Import the configured applications into CodeWarrior
• Build the applications in CodeWarrior
• Load the applications into Freescale development boards using a BDM pod
• Run the applications on the boards

These applications require the installation of the BeeKit Wireless Connectivity Toolkit, including the
BeeStack Codebase, and CodeWarrior for the HCS08, version 6.1 or later. They also require a P&E
Multilink Background Debug Mode pod or its equivalent to program the development boards. This
document assumes that all of these are correctly installed.

This user’s guide assumes familiarity with the purpose and major features of ZigBee Wireless Networks.
It explains only enough of BeeKit and CodeWarrior to get the applications into the development boards.
These much larger topics are explained in the references.

1.1 What This Document Describes
This document explains how to:

• Get the example ZigBee applications in BeeKit into Freescale development boards
• Run the applications

1.2 What This Document Does Not Describe
This document does not explain how to:

• Install BeeKit or CodeWarrior
• Understand or modify the application code
• Port the applications or BeeStack to a platform that BeeKit does not already support
• Learn about ZigBee. For a tutorial on ZigBee, go to www.freescale.com/zigbee and click on Online

Training

http://www.freescale.com/zigbee

Introduction

Freescale ZigBee™ Application, Rev. 1.3

1-2 Freescale Semiconductor

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 2-1

Chapter 2
Freescale Development Boards
Freescale has these development boards:

• Network Coordinator Board (NCB)
• Sensor Reference Board (SRB)
• Evaluation Board for QE128 MCUs (1320x-QE128EVB)
• Axiom GB60 (AXM-0308)
• Sensor Application Reference Design (SARD)
• MC1319x Evaluation Board (EVB)

2.1 HCS08 Board Details
Each of these boards has:

• a Freescale HCS08 MCU:
— 60KB flash for GB/GT60 MCUs or 128 KB flash for MC9S08QE128
— 4KB static RAM for GB/GT60 MCUs or up to 8KB for MC9S08QE128
— Two Serial Communication Interface (SCI) ports

– If a board has an RS232 connector, it uses SCI 1
– If a board has a USB connector or a 2nd RS232 connector, it uses SCI 2

— One Serial Peripheral Interface (SPI) port connected to the ZigBee radio

Table 2-1. Freescale Development Boards

Board Number Device Type Serial Interface Board Features

MC1321x-NCB MC13213 (SiP using
MC68HCS908GT60)

USB and RS232 LCD with two 16-character rows, PWM-driven speaker

MC1321x-SRB MC13213 (SiP using
MC68HCS908GT60)

USB 3-axis accelerometer, temperature sensor,
PWM-driven speaker

1320x-QE128EVB MC13202 and socket
for QE128 MCUs such
as Flexis 8-bit
MC9S08QE128

USB and RS232 LCD with two 16-character rows

AXM-0308 MC13193 and
MC68HCS908GB60

RS232 RF is on a daughter card

SARD MC13193 and
MC68HCS908GT60

RS232 3-axis accelerometer

EVB MC13193 and
MC68HCS908GT60

USB and RS232

Freescale Development Boards

Freescale ZigBee™ Application, Rev. 1.3

2-2 Freescale Semiconductor

• Four push button switches (S1-S4 or SW2-SW5 on 1320x-QE128EVB) on MCU input pins. Pin
assignments are not identical across all boards

• Four LEDs (LED1-LED4) on MCU output pins. Pin assignments are not identical across all boards
• A six-pin Background Debug Mode (BDM) connector for programming the flash and using the

debugger

The applications use the four switches and the four LEDs identically on all boards even though the pin
assignments differ, as explained in the next chapter.

The 1320x-QE128EVB, EVB, NCB, and SRB have a USB-UART translator circuit. That does not affect
the code on the MCU (the USB port looks like an RS232 port), but the USB port can power the board, and
it is easier to connect more than a few boards to a computer if they use USB. The boards are shown in the
following figures.

Figure 2-1. Axiom AXM-0308 Evaluation Board

Freescale Development Boards

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 2-3

Figure 2-2. EVB (DIG528-2) Evaluation Board

Figure 2-3. SARD (DIG536-2) Evaluation Board

Freescale Development Boards

Freescale ZigBee™ Application, Rev. 1.3

2-4 Freescale Semiconductor

Figure 2-4. NCB Evaluation Board

Figure 2-5. SRB Evaluation Board

USB
Connector

Serial
Connector

Power
Connector

On/Off
Switch

Reset
Button

LED1
SW1

LED2
SW2

LED3
SW3

LED4
SW4

BDM
Connector

USB
Connector

Power
Connector

On/Off
Switch

Reset
Button

LED1
SW1

LED2
SW2

LED3
SW3

LED4
SW4

BDM
Connector

Freescale Development Boards

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 2-5

Figure 2-6. 1320x-QE128EVB

Freescale Development Boards

Freescale ZigBee™ Application, Rev. 1.3

2-6 Freescale Semiconductor

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-1

Chapter 3
BeeKit and CodeWarrior
The Freescale BeeKit Wireless Connectivity Toolkit is a comprehensive Codebase of wireless networking
libraries, application templates, and sample applications. The BeeKit Graphical User Interface, part of the
BeeKit Wireless Connectivity Toolkit, allows users to create, modify, and update various wireless
networking configurations.

After the user has configured a networking project, BeeKit can generate an XML file that CodeWarrior is
able to import. Once CodeWarrior has the project contents, the user can build the target files and load them
into the Freescale development boards.

3.1 Creating a BeeKit Project
Follow these steps to create a network project and configure the individual devices.

1. Start BeeKit
2. If another Codebase (MAC or SMAC) is selected, perform the following:

a) Select File -> Select Codebase… or click the “Select Other Codebase...” link.
b) Choose the BeeStack Codebase version to use from the Codebase list.
c) Select OK.

3. From the menu, create a new project to configure a new device by selecting the following:
a) File -> New Project…

The New Project window appears as shown in Figure 3-1.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-2 Freescale Semiconductor

Figure 3-1. BeeKit New Project Window

4. Select the ZigBee Home Automation Applications project type from the left side of the window.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-3

5. As shown in Figure 3-2, select the HaOnOffLight template.
For the small network being built in this guide, fill in the text boxes for the template application as
follows:

Project name: ZcSrbHaOnOffLight
Solution Name: HaLightingSolution
Location: BeeKitSolutions (sub directory on host PC)

Figure 3-2. Project/Template Select

6. Click the OK button to create the project for the first device.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-4 Freescale Semiconductor

3.1.1 Basic Options
After the New Project window closes, the BeeKit Project Wizard Welcome window opens as shown in
Figure 3-3.

Figure 3-3. BeeKit Project Wizard Welcome Page

There are three ways to proceed from the Wizard welcome window.

Review the current project settings. In this example, the board is an SRB, the ZigBee node type is
coordinator, and there is no security or mesh routing enabled. (The default settings depend on the project
type.)

• If users accept all of these settings, they can select Finish now without any more configuration
• If users know the settings they want to change, they can go directly to them and select them from

the choices on the left
• If users do not know what choices are available, they can click on the Next button. This is the

choice described in Section 3.1.2, “Custom Configuration Options”

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-5

3.1.2 Custom Configuration Options
Users can modify the device configurations by clicking on the Next button in the Welcome window. The
Hardware Target selection page appears as shown in Figure 3-4.

Figure 3-4. Hardware Target Page

1. Change the device to a specific platform. This example uses the MC1321x-SRB.
2. Select the MC1321x-SRB radio button and click on the Next button. The Platform Modules page

appears as shown in Figure 3-5.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-6 Freescale Semiconductor

3.

Figure 3-5. Platform Modules Page

4. Leave the default platform modules settings unchanged. LEDs and Keyboard modules on the SRB
board will be enabled. Click Next to go to the UART Parameters page shown in Figure 3-6.

5.

Figure 3-6. UART Parameters Page

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-7

6. Leave the default UART settings unchanged. UART module will be enabled on the USB port of
the SRB and ZTC will be disabled. Click Next to go to the ZigBee Device Type Selection wizard
page shown in Figure 3-7.

Figure 3-7. ZigBee Device Type Selection Page

7. Make sure the Coordinator is selected as Device type.

NOTE
Each network requires only one coordinator. When repeating these steps for
additional devices select the correct Device type (End Device) being
configured.

8. Click the Next button. The BeeStack Network Type page appears as shown in Figure 3-8.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-8 Freescale Semiconductor

Figure 3-8. BeeStack Network Type Selection Page

9. Make sure “No security without mesh routing” is selected as the BeeStack network configuration.
10. Click Next. The Extended address and PAN ID page appears as shown in Figure 3-9.

Figure 3-9. Extended Address and PAN ID Selection Page

11. For this example, leave the Extended Address option with all zeros. BeeKit will automatically
generate a random (but not guaranteed unique) address. Alternatively, enter the full MAC address
from the label on the development board. Also leave the default PAN ID set to 0x1AAA.

12. Click Next. The Channels page appears as shown in Figure 3-10.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-9

Figure 3-10. Channels Page

WARNING
The channel and PAN ID must be the same for all devices on the network.
If users set the channel to something other than the default, verify in the
setup for subsequent devices that the channel is the same one selected for
this initial device. If users select a PAN ID, a colleague might assign the
same value to another PAN later. Expect odd behavior. If users choose
0xFFFF for their PAN ID, the coordinator selects one when it forms its
network. The nodes that join this network must be able to identify the
correct network by some method that does not involve a known PAN ID.
This is not a BeeKit issue; this is a real-world ZigBee issue. User products
must be able to cope with this.

13. Click on the Finish button.

The setup concludes when BeeKit returns to the main Project window.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-10 Freescale Semiconductor

3.1.3 Creating Additional Devices
To set up a ZigBee wireless network, the coordinator needs other devices to communicate with and control.
Create additional devices by performing the following steps:

1. From the main menu, Select Solution -> Add Project…
2. This opens the Add Project window.
3. Select ZigBee Home Automation Applications the same as was done for the coordinator. This time,

select the HA OnOffSwitch.
4. Repeat the steps as described in Section 3.1.1, “Basic Options” and Section 3.1.2, “Custom

Configuration Options”. Adjust the settings to suit the application. Note that the current settings
for the switch are different than the light.

5. After selecting Finish for the switch application, the BeeKit main window appears as shown in
Figure 3-11.

Figure 3-11. BeeKit Main Window

When users click on a component in the Solution Explorer area, useful information about that item appears
under the Property List tab. Users can also change their settings there. For example,

• To change the development board:
— Select the Platform component in the Explorer window
— Select the Hardware Target property in the Property List
— Use the pull-down menu to select the board

• To change the device type:
• Select the MacPhy component in the Explorer window

— Select the Device Type property in the Property List

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-11

— Use the pull-down menu to select coordinator, router, or end device

3.1.4 Exporting Created BeeKit Projects
Once all the devices to be used in the network have been created as BeeKit Projects and saved as a BeeKit
Solution, the files must be exported into a format for importing into the CodeWarrior IDE used for
compiling and debugging.

To export the saved solution:
1. From the Solution menu, select Export Solution. BeeKit verifies the internal consistency of the

configuration, looking for such errors as two endpoints with the same number. If the verification
succeeds, the window that opens will display all the created devices, each with a checked box as
shown in Figure 3-12.

Figure 3-12. Export BeeKit Project Solution Window

2. Click on the OK button to start the export process. While BeeKit executes this, it displays the
window shown in Figure 3-13, and the steps it takes scroll by in the Messages window pane.

Figure 3-13. Please Wait – Exporting Project Window

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-12 Freescale Semiconductor

3. When BeeKit finishes exporting, the Wait window disappears. The Messages window still contains
the export steps, which can be scrolled through. The export process is now complete.

4. Exit BeeKit by choosing File -> Exit from the menu bar.

3.2 Importing the Project into CodeWarrior
The project files created in BeeKit and saved as Solutions must now be imported into CodeWarrior to build
the binary output file suitable for programming into each MCU’s flash.

To import the code for each device, follow these steps:
1. Start CodeWarrior, which opens to a blank window and the menu at the top.
2. Select File -> Import Project… as shown in Figure 3-14.

Figure 3-14. CodeWarrior Import Project…

3. Navigate to the directory created in the BeeKit export procedure. In this example, it is:

C:\BeeKitSolutions\HaLightingSolution

4. This directory contains a directory for each device created earlier in BeeKit. In this example, the
directories are ZcSrbHAOnOffLight and ZedSrbHAOnOffSwitch. Users will need to import each
device’s project separately

5. Navigate into the ZcSrbHAOnOffLight directory as shown in Figure 3-15.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-13

Figure 3-15. CodeWarrior Open XML Window

6. Click on the BeeKit .xml file to be imported and select Open. The Open window is replaced by a
Save window in the same directory. Type in the name for the CodeWarrior project file without an
extension. This example uses the same name as the .xml file as shown in Figure 3-16. Click the
Save button.

Figure 3-16. CodeWarrior Name New Project Window

7. CodeWarrior creates and loads the project file as shown in Figure 3-17.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-14 Freescale Semiconductor

Figure 3-17. CodeWarrior ZcSrbHAOnOffLight Project Window

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-15

3.3 Building a Code Image Using CodeWarrior
Build the application binary in one of three ways:

1. Press the Make hot key F7
2. Click the “make” icon (Looks like paper with a pen in hand.)
3. From the menu select Project -> Make

CodeWarrior reports the build progress in a window it opens and then closes as shown in Figure 3-18.

Figure 3-18. CodeWarrior Build Window

3.4 Loading the Code Image into a ZigBee Device
Connect the P&E BDM pod to the host computer using the USB cable. A lighted blue LED indicates the
BDM has power and a successful USB connection.

1. Connect the BDM pod to the device. Align pin 1 of the BDM port connector with the red wire of
the flat cable connector
— EVB, SARD, and SRB: The connector is J101, and pin 1 is marked with a ‘1’
— NCB: The connector is marked “BDM”, and pin 1 has a white dot beside it
— 1320x-QE128EVB: The connector is labeled J9, and pin 1 is the one next to the label

2. Turn on the board.
3. The amber LED on the BDM will now light up, and the LED on the development board will also

light up. If not, switch the power off and on again on the board. Recheck the connection to the BDM
port. Check the power adapter connection to the board or verify that the batteries are charged.

4. Download the compiled image to the board by choosing one of three ways
a) Press the Debug hot key F5
b) Click the “Debug” icon (Looks like a bug with a green triangle.)
c) From the menu select Project -> Debug

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-16 Freescale Semiconductor

CodeWarrior opens the Debug window as shown in Figure 3-19.

Figure 3-19. CodeWarrior Debugger Window

CodeWarrior then opens the connection manager window, if this is the first programming/debug event
since it was opened, as shown in Figure 3-20.

Figure 3-20. CodeWarrior Connection Manager Window

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 3-17

5. Click on the Connect button. The programmer window displays the running status in a window as
shown in Figure 3-21 and then closes automatically.

Figure 3-21. Status Window for Connection Manager

NOTE
If the Status window does not display the line “programming and verifying
Address,” either the BDM or USB cables are not properly connected.
Correct the problem before repeating the step.

6. Close the debugger by selecting File -> Exit.

WARNING
Exit the debug mode to avoid multiple debug appearances; having multiple
appearances while setting up boards can produce unexpected results.

7. Disconnect the board and exit the CodeWarrior project, leaving CodeWarrior running.
8. Power cycle the board or press the reset button to get the board ready for use.
9. Repeat these steps to put the ZedSrbHAOnOffSwitch code into another board.

BeeKit and CodeWarrior

Freescale ZigBee™ Application, Rev. 1.3

3-18 Freescale Semiconductor

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 4-1

Chapter 4
Starting and Running a Simple ZigBee Network
This chapter goes through the steps to establish a small Home Automation network using the two nodes
programmed in the previous chapters. The network consists of the HA OnOffLight and the HA
OnOffSwitch.

NOTE
When referring to switches SW1-SW4 in this guide, it refers to the four
push-buttons on the development boards. On the 1320x-QE128EVB the
buttons are labeled SW2-SW5 and on the SARD they are labeled
S101-S104. See Section 2.1, “HCS08 Board Details”.

4.1 Starting the Network
1. Turn on the power for the OnOffLight.

LED1 will flash to indicate that the board is not on a network (if a ZR or ZED) or that a network
has not been formed (ZC).

2. Press SW4 to select a channel other than the one selected in BeeKit (optional).
With each key press, the four LEDs will light up briefly to indicate the channels from 11 to 26. The
LEDs display the offset from channel 11 in binary: 0000 is channel 11, and 1111 is channel 26.

3. Repeat steps 1 and 2 for the OnOffSwitch. The network will not form if the two nodes are on
different channels after step 2, because the example applications are configured to look on only one
channel for a network.

Start the network with the following steps:
1. Press SW1 on the OnOffLight, which is configured as the ZC.

The LEDs 1-4 will light up in sequence and then go out until only LED1 remains lighted. This is
the first step in creating a small network, since this step serves to form the network.

2. Press SW1 on the OnOffSwitch, which is configured as the ZED.
All the LEDs on this board will flash in a series, and finally only LED1 will light to indicate that
ZED has joined the network that the OnOffLight has formed.

3. Press SW3 first on one board, then within ten seconds, press SW3 on the other board, to bind the
devices.
LED3 starts flashing, then goes solid when binding completes. If LED3 flashes, but then goes out
(unlighted), binding failed. Turn off the boards and try again.

4. Long press SW1 to go into run mode on both boards. Holding a switch down for more than one
second is a long press.

Starting and Running a Simple ZigBee Network

Freescale ZigBee™ Application, Rev. 1.3

4-2 Freescale Semiconductor

4.2 Running the Network: Remotely Controlling a Light
1. Press SW1 on the board defined as the ZED (OnOffSwitch) to toggle the light.
2. LED2 on the ZC (OnOffLight) changes state: it turns on.
3. Press SW1 on the ZED again to toggle the light.
4. LED2 on the ZC changes state again: it turns off.
5. SW1 on the ZC can also toggle the light. Press it and ZC’s LED2 changes state
6. Press SW1 on the ZED again to toggle the light again.

This completes setting up and using a small Home Automation Lighting Control network. For additional
example applications, see Chapter 5, “Creating a Wireless UART application”.

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-1

Chapter 5
Creating a Wireless UART application
This chapter shows how to create a Freescale Wireless UART application using the Freescale BeeKit
Wireless Connectivity Toolkit. The Freescale Wireless UART application is not part of the ZigBee
Alliance Home Automation (HA) profile and is not part of any other ZigBee public profiles. The Wireless
UART application is considered by the ZigBee Alliance (www.zigbee.org) as a “Manufacturer Specific”
profile, in that these applications are only meant to function with devices from a single manufacturer.

The Wireless UART runs in a fully buffered interrupt driven mode and is well suited for large file transfers.
However, the example used in this chapter only sends a small amount of text to show Wireless UART basic
functionality.

5.1 Creating the Wireless UART BeeKit Project
Follow these steps to create a BeeKit project and configure the Coordinator and End Node devices.

1. Start the BeeKit Wireless Connectivity Toolkit.
2. If another Codebase (MAC or SMAC) is selected, perform the following:

a) From the tool bar select File -> Select Codebase… or
click the “Select Other Codebase...” button.

b) From the Codebase list, choose a BeeStack Codebase version.
c) Click the OK button.

3. From the menu, create a new project to configure a new device by selecting File -> New Project…
The New Project window appears as shown in Figure 5-1.

http://www.zigbee.org/en/

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-2 Freescale Semiconductor

Figure 5-1. BeeKit New Project Window

4. Select the ZigBee Home Automation Applications project type from the left side of the window.
5. As shown in Figure 5-2, select the Wireless UART template.
6. For the small network being built in this guide, fill in the text boxes for the template application as

follows:
Project name: ZcSrbWirelessUART
Solution Name: WirelessUART Solution
Location: c:\WirelessUART (or other sub directory on host PC)

Figure 5-2. Project/Template Select

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-3

7. Click the OK button to create the project for the first device.Basic Options

After the New Project window closes, the BeeKit BeeStack Configuration Overview window appears as
shown in Figure 5-3.

Figure 5-3. BeeKit BeeStack Configuration Overview Window

There are three ways to proceed from this window.

Review the current project settings. In this example, the board is an SRB, the ZigBee node type is
coordinator, and there is no security or mesh routing enabled. (The default settings depend on the project
type.)

• If users accept all of these settings, they can select Finish now without any more configuration
• If users know the settings they want to change, they can go directly to them and select them from

the choices on the left
• If users do not know what choices are available, they can click on the Next button. This option is

described in Section 5.1.1, “Custom Configuration Options”

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-4 Freescale Semiconductor

5.1.1 Custom Configuration Options
After clicking the Next button in BeeKit BeeStack Configuration Overview window, the Select Hardware
Target window appears as shown in Figure 5-4.

1. Change the device to a specific platform. This example uses the MC1321x-SRB.

Figure 5-4. Hardware Target Page

2. Select the MC1321x-SRB option and click on the Next button. The Select Platform Modules
window appears as shown in Figure 5-5.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-5

3.

Figure 5-5. Platform Modules Page

4. Leave the default platform modules settings unchanged. (LEDs and Keyboard modules on the SRB
board enabled.) Click the Next button and the Set UART Parameters window appears as shown in
Figure 5-6. Leave the default UART settings unchanged. (The UART module enabled on the USB
port of the SRB and the ZigBee Test Client (ZTC) disabled.)

5.

Figure 5-6. UART Parameters Page

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-6 Freescale Semiconductor

6. Click the Next button and the Select ZigBee Device Type window appears as shown in Figure 5-7.
Ensure that the “Coordinator” option is selected.

Figure 5-7. ZigBee Device Type Selection Page for Coordinator Device

7. Click the Next button and the Choose BeeStack Network Type window appears as shown in
Figure 5-8. Select the “No security without mesh routing” option.

Figure 5-8. BeeStack Network Type Selection Page

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-7

8. Click the Next button and the Set Extended Address and PAN ID window appears as shown in
Figure 5-9. For this example, leave the Extended Address option with all zeros. BeeKit
automatically generates a random (but not guaranteed unique) address. Alternatively, enter the full
MAC address from the label on the development board. Leave the default PAN ID set to 0x1AAA.

Figure 5-9. Extended Address and PAN ID Selection Page

WARNING
The channel and PAN ID must be the same for all devices on the network.
If users set the channel to something other than the default, verify in the
setup for subsequent devices that the channel is the same one selected for
this initial device. If users select a PAN ID, a colleague might assign the
same value to another PAN later. Expect odd behavior. If users choose
0xFFFF for their PAN ID, the coordinator selects one when it forms its
network. The nodes that join this network must be able to identify the
correct network by some method that does not involve a known PAN ID.
This is not a BeeKit issue; this is a real-world ZigBee issue. User products
must be able to cope with this.

9. Click the Next button and the Set Channels window appears as shown in Figure 5-10. Select
‘Channel 14’.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-8 Freescale Semiconductor

Figure 5-10. Channels Page

10. Click the Finish button.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-9

5.1.2 Adding a Project for the End Node
Now that the coordinator is added, users need to add a project for the End Node. To add a project for the
End Node using BeeKit, perform the following tasks.

1. From the BeeKit main window, select Solutions -> Add Project. The Add Project window appears
as shown in Figure 5-11.

Figure 5-11. Add New Project Page

2. Select “WirelessUART” and name the project WirelessUART_EndPoint as shown in Figure 5-11.
3. Continue clicking the Next button until reaching the “Select ZigBee Device Type” window as

shown in Figure 5-12. Select the “End device” option and click on the Next button.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-10 Freescale Semiconductor

Figure 5-12. Selecting the End Device as the Device Type

4. The End Device Low Power Settings window appears as shown in Figure 5-13. Leave all settings
at their default values as shown in Figure 5-13.

Figure 5-13. Select Low Power Mode

5. Click the Next button and the Choose BeeStack Network Type window appears. Select the same
network type using the same settings used for the Coordinator as shown in Figure 5-8. (No security
without mesh routing).

6. Click the Next button and set the Extended address and PAN ID the same as it was for the
Coordinator as shown in Figure 5-9.

7. Click the Next button and select the same channel as the Coordinator as shown in Figure 5-10.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-11

8. Click on the Finish button.

This completes the steps needed to create a solution/project for the Wireless UART application for a
Coordinator and an End Node. The solution is now ready for export for use in CodeWarrior. The BeeKit
main window should appear as shown in Figure 5-14.

Figure 5-14. Main Wireless UART Project Page

5.1.3 Exporting the BeeKit Projects
Once the Coordinator and End Node devices to be used in the application are created as BeeKit Projects
and saved as a BeeKit Solution, the files must be exported into a format that can be imported by
CodeWarrior, in this case, a .xml file. The CodeWarrior IDE is used for compiling and debugging.

To export the saved solution, perform the following tasks:
1. From the BeeKit main window tool bar, click on Solution -> Export Solution. BeeKit verifies the

internal consistency of the configuration and looks for errors such as two endpoints with the same
number. If verification succeeds, the window that appears displays the created device, with a
checked box as shown in Figure 5-15.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-12 Freescale Semiconductor

Figure 5-15. Export BeeKit Project Solution Window

2. Click on the OK button to start the export process. During the export process, BeeKit displays the
Export Solution window as shown in Figure 5-16. BeeKit also displays the steps it takes during the
export process in the Messages display area of the BeeKit main window.

Figure 5-16. Please Wait – Exporting Project Window

3. When BeeKit completes the export, the Export Solution window goes away, but the Messages
display area of the BeeKit main window still contains the steps taken during the export which users
can scroll through and review. The export process is now complete.

4. Exit BeeKit by choosing File -> Exit from the tool bar.

5.2 Importing the Project into CodeWarrior
The project files created in BeeKit and saved as Solutions (Coordinator and End Node) must now be
imported into CodeWarrior to build the binary output file suitable for programming into each MCU’s flash.

NOTE
This section describes the steps necessary to import the Coordinator project
.xml file. However, the steps for importing the End Node are identical with
the exception of selecting the End Node .xml file.

To import the code for a device, perform the following tasks.
1. Start the CodeWarrior IDE, which opens to a blank window with the tool bar at the top.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-13

2. Select File -> Import Project… as shown in Figure 5-17.

Figure 5-17. CodeWarrior Import Project…

3. Navigate to the directory created in the BeeKit export procedure.
For the Coordinator, the directory is:

C:\WirelessUART\WirelessUART Solution\ZcSrbWirelessUART

For the End Node, the directory is:

C:\WirelessUART\WirelessUART Solution\ZedSrbWirelessUART

These directories contains the files and directories built and needed for the Coordinator and End
Node devices created with BeeKit using the steps previously described in this chapter.
The .xml file for the Coordinator project is ZcSrbWirelessUART.xml
The .xml file for the End Node it is ZedSrbWirelessUART.xml.

NOTE
For the remainder of this example, the Coordinator is used, but the steps are
the same for the End Node.

4. Navigate to the ZcSrbWirelessUART directory as shown in Figure 5-18, and click on the .xml file
to be imported.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-14 Freescale Semiconductor

Figure 5-18. CodeWarrior Open XML Window

5. Click on the Open button. The Open window is replaced by the “Name new project as:” window
in the same directory. Type in the name for the CodeWarrior project file without an extension. This
example uses the same name as the .xml file as shown in Figure 5-18.

6. Click the Save button and CodeWarrior creates and loads the project file as shown in Figure 5-19.

Figure 5-19. CodeWarrior Name New Project Window

7. Go back to Step 4 and repeat the import process for the End Node.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-15

5.2.1 Building the Wireless UART Code Image Using
CodeWarrior

Users can build the application binary in one of three ways:
1. Press the Make hot key F7.
2. Click the “make” icon (Looks like paper with a pen in hand.).
3. From the menu select Project -> Make.

CodeWarrior reports the build progress in a window it opens and closes as shown in Figure 5-20.

Figure 5-20. CodeWarrior Build Window

5.2.2 Loading the Wireless UART Code Image into a ZigBee
Device

To use the Wireless UART application, the code images must be loaded into the Coordinator board and the
End Node board. This section describes how to load the Coordinator code image to the board, but the steps
to load the code image to the End Node board are the same.

Connect the P&E BDM pod to the host computer using the USB cable. A lighted blue LED indicates the
BDM has power and a successful USB connection.

1. Connect the BDM pod to the board. Align pin 1 of the BDM port connector with the red wire of
the flat cable connector.
— For the SRB, the connector is J101, and pin 1 is marked with a ‘1’

2. Turn on the board.
3. The amber LED on the BDM lights up and the LED on the board also lights up. If not, switch the

power off and on again on the board. Recheck the connection to the BDM port. Check the power
adapter connection to the board or verify that the batteries are charged.

4. Download the compiled image to the board in one of three ways:
a) Press the Debug hot key F5.
b) Click the “Debug” icon (Looks like a bug with a green triangle.).
c) From the menu select Project -> Debug.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-16 Freescale Semiconductor

CodeWarrior opens the Debug window as shown in Figure 5-21.

Figure 5-21. CodeWarrior Debugger Window

CodeWarrior then opens the connection manager window if this is the first programming/debug event
since it was opened, as shown in Figure 5-22.

Figure 5-22. CodeWarrior Connection Manager Window

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-17

5. Click on the Connect button. The programmer window displays the running status in a window as
shown in Figure 5-23 and then automatically closes this window.

Figure 5-23. Status Window for Connection Manager

NOTE
If the Status window does not display the line “programming and verifying
Address,” either the BDM or USB cables are not properly connected.
Correct the problem before repeating the step.

6. Close the debugger by selecting File -> Exit.

WARNING
Exit the debug mode to avoid multiple debug appearances; having multiple
appearances while setting up boards can produce unexpected results.

7. Disconnect the board and exit the CodeWarrior project, leaving CodeWarrior running.
8. Power cycle the board or press the reset button to get the board ready for use.
9. This concludes the steps needed to load the code image for the Coordinator.
10. Go to Step 1 and repeat the steps to load the code image to the End Node board but only after the

End Node is imported into CodeWarrior using the steps shown in Section 5.2, “Importing the
Project into CodeWarrior”.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-18 Freescale Semiconductor

5.3 Wireless UART Setup and Operation
The following sections show how to identify and setup the UART/USB virtual Com ports, set up
Hyperterminal, start the Wireless UART application, form the network, and use the Wireless UART
application.

5.3.1 Setting up the UART/USB Virtual Com Ports
1. To determine which com ports is being used by both nodes, plug a USB cable attached to a host

PC into each device and powering on the boards.
2. In the Windows Device Manager, under the Ports (COM & LPT) option, two devices labeled

“Freescale ZigBee/802.15.4 MAC COM Device” appear as shown in Figure 5-24. (The COM ports
shown in Figure 5-24 will be different on every PC).

Figure 5-24. COM Ports in Device Manager

3. Using Hyperterminal, set up a Virtual Com Port for each of the two nodes. Figure 5-25 and
Figure 5-26 show correct RS-232 settings used to run the Wireless UART application.

NOTE
There is no flow control used on either node.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-19

Figure 5-25. Default BeeKit RS-232 Settings

Figure 5-26. Additional Terminal Program Settings

5.3.2 Starting the Wireless UART Application
1. Connect both the Coordinator and End Node to a host PC using USB cables.
2. Open up each of the Hyperterminal programs for each virtual COM port using the Hyperterminal

settings set up in Section 5.3, “Wireless UART Setup and Operation”.
3. Turn on the power for the Wireless UART Coordinator and End Node.

LED1 flashes to indicate that the board is not on a network or that a network has not been formed
ZigBee Coordinator (ZC).

4. As an option, on each node, press SW4 to select a channel other than the one selected in BeeKit.
This is only needed if there are interference issues.
With each key press, the four LEDs light up briefly to indicate the channels from 11 to 26. The
LEDs display the offset from channel 11 in binary: 0000 is channel 11, and 1111 is channel 26.

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-20 Freescale Semiconductor

NOTE
The network will not form if the two nodes are on different channels after
Step 2, because the example applications are configured to look on only one
channel for a network.

5.3.3 Forming and Starting the Network
1. Press SW1 on the Wireless UART node that is configured as the Coordinator.

LEDs 1-4 light up in sequence and then go out until only LED1 is on. This is the first step in
forming this small network.

2. Press SW1 on the Wireless UART node that is configured as the End Node.
All of the LEDs on this board will flash in a series, and finally only LED1 stays lit to indicate that
the End Node has joined the network that the Coordinator has formed.

3. To bind the devices, press SW3 first on one board, then within ten seconds, press SW3 on the other
board.
LED3 starts flashing, then goes solid when binding is complete. If LED3 flashes, but then goes out,
the bind process failed. Turn off the boards and try again by repeating Steps 1-3 of this section.

4. On both boards, perform a long press (more than one second) of SW1 to bring both boards into run
mode.

5.3.4 Using the Wireless UART Application
Once the Wireless UART application is loaded to boards, the application is started, and the network is
formed and running, the Wireless UART application is ready to use.

1. Type some text in one of the Hyperterminal windows as shown in Figure 5-27.

Figure 5-27. Text Typed in First Hyperterminal Window

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 5-21

2. The typed text is displayed as output in the second Hyperterminal as shown in Figure 5-28

Figure 5-28. Text Echoed in Second Hyperterminal Window

Creating a Wireless UART application

Freescale ZigBee™ Application, Rev. 1.3

5-22 Freescale Semiconductor

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 6-1

Chapter 6
Example Applications
BeeStack includes example applications to:

• Enable building a simple network before writing any code
• Provide example-quality code for ZigBee applications

6.1 ZigBee Application Glossary
The following concepts explain a few of the significant elements in a ZigBee network.
Cluster A container for one or more attributes in a command structure. If a command

structure does not use attributes (such as the ZigBee Device Profile), each
command and response within it is a cluster. Each cluster is identified by an
enumeration that is unique within an application profile.

Cluster Identifier An enumeration that uniquely identifies a cluster within an application profile.
Cluster identifiers are designated as inputs or outputs in the simple descriptor for
use in creating a binding table.

Application Profile An agreement for messages, message formats and processing actions that enable
developers to create an interoperable, distributed activity among applications that
reside on separate devices. These profiles enable devices to send commands,
request data and process commands and requests. For instance, a thermostat on
one node can communicate with a furnace on another node. Together, they
co-operatively form a heating application profile. A profile can be public, such as
the Home Automation profile, so that many vendors can independently build
ZigBee nodes that will interoperate. Or a profile can be private, so that a vendor
can add proprietary features instead of or in addition to one or more public
profiles.

Profile ID The 16-bit number that identifies an application profile. Each unique profile must
have a unique profile ID. The ZigBee Alliance issues profile IDs. Every data
message and acknowledgement contains the ID of the profile that generated it.
ZigBee nodes use this ID as a filter so they can discard any messages for a profile
that the receiving node does not implement.

Group An associated set of ZigBee nodes. Group addressing allows any node to send a
message to all members of a group and to no other node. This allows a set of nodes
to act together.

Scene A stored set of configuration values that an incoming message can invoke, such as
a light level on a dimmable lamp. Scenes work naturally in groups, so that a single

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

6-2 Freescale Semiconductor

command can configure any number of related nodes for a particular purpose,
such as configuring a media room for watching video.

6.2 Example Application User Interfaces
All of the Freescale ZigBee development boards have four LEDs (LED1-LED4) and four push-buttons
(SW1-SW4). The example applications run on any of the boards. The NCB and 1320x-QE128EVB also
have a two-line LCD screen in addition to the LEDs. All the example applications display status and
command information on the LCD in addition to the four LEDs when they are built for the NCB. On every
board, the push-buttons are in a row and the LEDs are in a row. On the EVB, 1320x-QE128EVB, NCB,
and SRB, LED1 is above SW1, LED2 is above SW2, and so on.

NOTE
When referring to switches SW1-SW4 in this guide, it refers to the four
push-buttons on the development boards. On the 1320x-QE128EVB the
buttons are labeled SW2-SW5 and on the SARD they are labeled
S101-S104. See Section 2.1, “HCS08 Board Details”.

6.3 Application Support Library (ASL) Keys
Most of the application use a library of common routines referred to as the Application Support Library
(ASL). These routines include all of the common user interface elements of the applications, including the
concept of two keyboard modes (configuration mode and run-mode), and a common set of keys that map
to specific ZigBee functions.

All the example applications use the same keys to cause any activity that they all can do, such as join or
leave a network. This section describes the key presses that are common to all the example applications.

The included key driver can read a long (approximately one second) keypress and a short (less than one
second) keypress from each of the four keys. The example applications take advantage of this to support
up to eight user-initiated events in each mode. The keypress interpretation is entirely in the application
code; the applications can be rewritten to do anything.

The applications have two modes: configuration and run. The applications always start in configuration
mode, where key presses cause the network formation and setup. When that is done, another key press
takes the application to run mode, where it can do whatever the application is designed to do: turn a light
on or off remotely, for instance.

6.3.1 Home Automation Configuration Mode
Short push button presses do the following:

• SW1 – Form/join network (form if ZC, join if ZR or ZED) with previous configuration
• SW2 – Toggle permit join (ZC/ZR) or toggle low power mode (ZED)
• SW3 – End device bind/match
• SW4 – Change radio channel: each press steps to the next higher channel and briefly displays a

channel indicator on all four LEDs: 0000 is channel 11, 1111 is channel 26

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 6-3

Long push button presses do the following:
• Long SW1 – Go to run mode
• Long SW2 – Leave the network
• Long SW3 – Remove all bindings
• Long SW4 – Form/join network (form if ZC, join if ZR or ZED) with new configuration

6.3.2 Run Mode
Short push button presses do the following:

• SW1 – This does the main action of the application: toggle a light, etc.
• SW2 –
• SW3 – Toggle identify mode
• SW4 – Recall scene

Long push button presses do the following:
• Long SW1 – Go to configuration mode
• Long SW2 –
• Long SW3 – Send “Add group if in Identify mode” command
• Long SW4 – Send “Store scene if in Identify mode” command

6.4 Application Support Library (ASL) LEDs and Display
Most of the application use a library of common routines referred to as the Application Support Library
(ASL). These routines include all of the common user interface elements of the applications, including
keeping track of two displays, one for configuration mode and one for run mode. These two displays affect
both the LEDs and the LCD display.

The LEDs on each board serve a variety of roles defined by a given application. Each LED can be used to
indicate a variety of states, depending on whether it is on or off, flashes once or continuously, or serves as
an indicator of what other LEDs are doing at the same time. This allows four LEDs to provide a wide array
of information and offers the developer many choices for application testing.

6.4.1 Configuration Mode
Table 6-1. Configuration Mode LED Status

Internal State LED1 LED2 LED3 LED4

Idle (not in a network, not joining) Flashing Off Off Off

Forming (ZC) or joining a network All four LEDs in a flash sequence

Network formed (ZC) On On Off Off

Network joined (ZR or ZED) On Off Off Off

Permit join toggle (ZC or ZR) On/Off

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

6-4 Freescale Semiconductor

When SW4 is pressed, the example applications change the channel to the next higher one and display a
pattern on all four LEDs (Table 6-2) for one second before returning to the previous display pattern.

End device bind request: find a bind partner Flash

End device bind success On

End device bind failure Off

Low power ZED in light sleep Off On Off Off

Low power ZED in deep sleep Off Off Off On

Table 6-2. Channel to LED State

Channel
Number LED1 LED2 LED3 LED4

11 Off Off Off Off

12 Off Off Off On

13 Off Off On Off

14 Off Off On On

15 Off On Off Off

16 Off On Off On

17 Off On On Off

18 Off On On On

19 On Off Off Off

20 On Off Off On

21 On Off On Off

22 On Off On On

23 On On Off Off

24 On On Off On

25 On On On Off

26 On On On On

Table 6-1. Configuration Mode LED Status

Internal State LED1 LED2 LED3 LED4

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 6-5

6.4.2 Run Mode
In run mode, if the node is acting as a light, one or more of the LEDs acts as the light, but that behavior is
specific to the individual application, so it is described later in this section. The LED behavior across all
example applications is shown in Table 6-3.

6.4.3 OnOffLight
This application acts as a lamp that can be turned on or off, but it cannot be dimmed.

6.4.4 Keyboard
This application allows the user to press a switch that toggles an LED on the same board. This feature is
intended to allow the user to verify that the board is in the run mode and operating properly regardless of
the state of any other node in the network.

• SW1 – Toggle local light (if on, turn off; if off, turn on)

6.4.5 Display
• The local light in this application is LED2.
• LED2 represents the state of the light

6.5 OnOffSwitch
A common use of a home automation lighting control is turning on and off a remote entity. It can run in
any ZigBee node type, including a ZED with low power operation enabled (a “sleepy” end device). This
application includes the ability to request that the receiving node acknowledge the command.

6.5.1 Keyboard
In run mode, key presses do the following:

• SW1 – Toggle remote light
• SW2 – Turn on remote light with acknowledgement
• Long SW2 – Turn off remote light with acknowledgement

Table 6-3. Run Mode LED Behavior (All Example Applications)

Internal State LED1 LED2 LED3 LED4

Normal application display Off Off Off Off

Add group Blink

Store scene On

Identify mode Flash

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

6-6 Freescale Semiconductor

6.5.2 Display
The LEDs in run mode do this.

• LED2 – Toggles with each toggle command (this can get out of synchronization with the remote
light because the remote light’s state can also be changed by other methods)

• LED2 on – Sent On Light Command with acknowledge
• LED2 off – Sent Off Light Command with acknowledge

6.6 Dimmable Light
The dimmable light application uses LED2-LED4 to represent a light with four states.

6.6.1 Keyboard
• SW1 – Decrease local light’s level
• SW2 – Increase local light’s level
• Long SW2 – Toggle local light on/off

6.6.2 Display
Once in run mode, the dimmable light control configuration makes the following LED assignments to
indicate low through high lighting intensity.

• All LEDs off – Light off
• LED2 on – Low light intensity
• LED2 and LED3 on – Medium light intensity
• LED2, LED3 and LED4 on – Maximum light intensity

6.7 Dimmer Control Switch
This controls the dimmable light.

6.7.1 Keyboard
• SW1 – Decrease level of light
• SW2 – Increase level of light
• Long SW2 – Toggle light on/off

6.7.2 Display
LED2 toggle – When sending an increase or decrease message to a dimmable light

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 6-7

6.8 Thermostat
This application represents a device to control the temperature on a heating, ventilation, or air conditioning
(HVAC) system. The thermostat uses two values of the temperature: a local value: Local Temperature (LT)
and a desirable value: Desirable Temperature (DT). The difference between the two values establishes the
state of the thermostat. That is, whether it is cooling, heating, or idle. When the LT is below the DT by a
few degrees, the thermostat will be in heating mode (HeatOn). When DT is greater than the LT, the
thermostat will be in cooling mode (CoolOn). When the two values are close, the thermostat is idle. The
exact limits that set the mode are stored internally using the OccupiedCoolingSetpoint and
OccupiedHeatingSetpoint attributes that are computed based on the value set externally for the DT. When
the Thermostat is bound with a temperature sensor that is configured to report the sensed temperature, the
thermostat will receive notifications from the other device and will update the LT to the value received
from the sensor.

6.8.1 Keyboard
• SW1 – Decrease Desirable Temperature
• SW2 – Increase Desirable Temperature
• Long SW2 – Toggle (oF / oC)

6.8.2 Display
• LED2 flashing – LT is below -5oC
• All LEDs Off – LT is between -5oC and 10oC
• LED2 On, LED3 and LED4 Off – LT is between 10oC and 20oC
• LED2 and LED3 On, LED4 Off – LT is between 20oC and 30oC
• LED2, LED3 and LED4 On – LT is between 30oC and 40oC
• LED2, LED3 On and LED4 Flashing – LT is above 40oC
• While changing the DT using the switches, the state of the LEDs as specified above will reflect the

value of DT until LT is updated again
• LCD “LT=temp oF / oC” - When LT acquired from the temperature sensor is between the

OccupiedCoolingSetpoint and OccupiedHeatingSetpoint.
• LCD “LT=temp oF / oC HeatOn” - When LT acquired from the temperature sensor is lower than

the OccupiedHeatingSetpoint.
• LCD - “LT=temp oF / oC CoolOn” - When LT acquired from the temperature sensor is higher than

the OccupiedCoolingSetpoint.
• LCD - “DT=temp oF / oC” – When changing the Desirable Temperature.

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

6-8 Freescale Semiconductor

6.9 Temperature Sensor
The temperature sensor application uses the hardware temperature sensor found on the MC1321x-SRB
boards or a simulated temperature value when the application runs on the other boards or the hardware
sensor is disabled. Users should note that the temperature reported by the hardware sensor can be slightly
different than the actual room temperature.

The Temperature Sensor can send its temperature value using indirect mode, that is, using the local binding
table. It typically sends this data when another node has requested that the Temperature Sensor enter
reporting mode using the ZigBee Cluster Library (ZCL) report attribute command or when the sensor is
indicated to report using a Long SW2 press.

Use SW3 End Device Bind or the Configuration Tool application to bind the Temperature Sensor to a
Thermostat, so that the Thermostat can receive temperature reports from the Sensor.

6.9.1 Keyboard
• SW1 – Decrease simulated temperature when hardware sensor is not used
• SW2 – Increase simulated temperature when hardware sensor is not used
• Long SW2 – Turn the Report Temperature On, and begins sending the temperature using indirect

transmission (reports are sent to the devices to which the sensor is bound).

6.9.2 Display
• LED1 flashing – sensor is sending OTA temperature reports to bound devices
• LED2 flashing – sensed temperature is below -5oC
• LED2, LED3, LED4 Off – sensed temperature is between -5oC and 10oC
• LED2 On, LED3, LED4 Off – sensed temperature is between 10oC and 20oC
• LED2 and LED3 On, LED4 Off– sensed temperature is between 20oC and 30oC
• LED2, LED3 and LED4 On – sensed temperature is between 30oC and 40oC
• LED2, LED3 On and LED4 Flashing – sensed temperature is above 40oC

6.10 HA Generic Application
The generic application is a device with no unique features. It uses only the common user interface.

6.11 HA Range Extender
The range extender is a router with no unique features. It uses only the common user interface.

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 6-9

6.12 HA Combined Interface
The Combined Interface application acts as a gateway between a personal computer and the ZigBee
network by using the ZTC library for UART communication. The run mode of the application does not
include any functionality except the “Go to configuration mode” which is enabled by a long press of SW1
of the evaluation board. The behavior of the switches and LEDs in Configuration mode is the same as all
other Home Automation applications as shown in Section 6.3.1, “Home Automation Configuration Mode”
and Section 6.4.1, “Configuration Mode”.

6.13 Manufacturer Specific Applications
The Wireless UART and Accelerometer applications are examples that are not part of the Home
Automation Application Profile. They are not part of any other ZigBee public profile and therefore are
considered to be custom application profiles, which the ZigBee Alliance calls “Manufacturer Specific”.
These applications are only meant to interoperate among devices from a single manufacturer or another
manufacturer if permitted by the primary manufacturer.

6.13.1 Manufacturer Specific Configuration Mode User Interface
The following Configuration Mode User Interface is slightly different from that for the Home Automation
applications.

Short push button presses do the following:
• SW1 – Form/join network (form if ZC, join if ZR or ZED)
• SW2 – Leave network
• SW3 – End-device-bind (bind/unbind toggle with another node) / Match
• SW4 – Choose channel, walks through all channels (uses 4 LEDs for a binary number 0- 15 which

equates to channels 11-26)

Long (greater than 1 second) push button presses do the following:
• Long SW1 – Go to Run Mode
• Long SW2 – Toggle Permit Join
• Long SW3 – Unbind all
• Long SW4 – Reset node to factory defaults

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

6-10 Freescale Semiconductor

6.14 Wireless UART
The Wireless UART can replace a serial cable with two or more ZigBee nodes. It can multi-hop for
extended range using mesh routing. ZigBee is half-duplex and generally low data rate, so it is not
applicable for all serial applications.

6.14.1 Keyboard
This application uses the standard ASL user interface, with a few exceptions. Since the Wireless UART
does not have scenes or identify mode, SW3, SW4, and Long SW4 do not perform the same functions that
they perform in most other applications.

This wireless UART application can replace a wire, and it supports HW flow control to make sure it does
not miss messages. Flow control is only supported in one direction; the ZigBee node will assert flow
control to tell the PC to stop transmitting. The ZigBee node does not recognize flow control asserted by
the PC.

The Wireless UART application can be char or block mode, and/or in loop back mode.

In char mode, every character that is received from the UART is immediately sent to the remote node. This
is intended for keyboards and other, similar applications.

In block mode, bytes from the UART are gathered together and sent as a block to the far end. This mode
makes more efficient use of the available radio bandwidth (more bytes of payload transferred per ZigBee
packet), and is intended for file transfers.

In loopback mode, every byte received from the UART is sent back out the UART. No data from the UART
is sent over the air.

• SW1 – Toggle char vs. block mode
• SW2 – Toggle loopback mode on/off
• SW3 – Not used
• SW4 – Toggle through baud rates 1200,2400,4800,9600,19200,38400

• Long SW1 – Go to Configuration Mode
• Long SW2 – Not used
• Long SW3 – Add Group
• Long SW4 – Not Used

6.14.2 Display
The LEDs in application mode will display as follows:

• LED1 – on when in char mode, off when in block mode
• LED2 – on when in loopback mode, off otherwise
• LED3 – toggles on each packet sent to the remote node
• LED4 – toggles on each packet sent to the PC via the UART

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

Freescale Semiconductor 6-11

• LCD (on NCB) indicates # of packets transferred
• line LCD 1: “Rx 1234 Tx 1234” (in hex)
• Line 2 on LCD will not be changed as this is used for the standard ASL interface.

6.14.3 Baud Rate Display User Interface

6.14.3.1 Application Mode
Each time SW4 is pressed to change baud rates, the LEDs will change for a moment to display the new
baud rate as shown in the following table:

The default baud rate is 38400. The serial port is always set to 8N1:
• Eight data bits
• No parity
• One stop bit

6.15 Generic App
The Generic App application measures and displays movement of a board in three axis using the built-in
accelerometer in the SRB and SARD boards, and shows this movement by lighting LEDs on another
display board. Use SW3 to find the other board so that the display of movement takes place on the remote
board instead of the local board.

The purpose of the Generic App (also called Accelerometer) application is to:
• Show how to interact with BeeStack 2006 without using the ASL interface
• Demonstrate a very simple application as a starting point for custom applications
• Show how to interact with hardware in the multi-tasking BeeStack environment

The Generic App application does not use the ASL interface. Instead, it blinks LED1 to indicate that it is
not on the network when it first starts. When button 1 is pressed, it forms the network as a ZigBee
Coordinator (ZC), or it joins a network as a ZigBee Router (ZR) or a ZigBee End Device (ZED). It does
NOT have the application vs. configure mode like the ASL does, but instead uses the LED and keyboard
routines directly from the driver. It also does not use the NVM interface. When not on hold, the
accelerometer transmits once every 500 milliseconds to the remote display.

Table 6-4. Baud Rate LED Display

Baud Rate LED1 LED2 LED3

1200 On Off Off

2400 Off On Off

2400 On On Off

9600 Off Off On

19200 On Off On

38400 Off On On

Example Applications

Freescale ZigBee™ Application, Rev. 1.3

6-12 Freescale Semiconductor

NOTE
Program the Generic App application into two boards. One board will be the
accelerometer and the other board will be the remote display. Only press
SW3 on the board that will be the accelerometer. The other board, without
any key presses, will then be the display for the accelerometer.

6.15.1 Keyboard
In run mode, key presses do the following:

• SW1 – join/form the network
• SW2 – Walks through 5 tilt states (all LEDS off, 1 -4 on). SARD and SRB boards ignore this button

and use actual accelerometer hardware.
• LSW2 – Toggles “hold” (starts/stops detecting and transmitting accelerometer data). “hold” is the

default state when the board boots.
• SW3 – Find accelerometer display using match descriptor (LED3 will light on both boards)
• SW4 – Toggles through display axis (X, Y or Z). On NCB, all axes are displayed on LCD, but only

1 axis on LEDs. Will briefly display LED1=X, LED2=Y, LED3=Z to indicate which axis will be
displayed on the LEDs.

6.15.2 Display
The LEDs in run mode do the following:

• LED1 blinks when not on network.
• LED1 is solid when joined/formed the network.
• LED3 is solid on when display is found.
• LEDs 1-4 indicate 5 states of tilt for the currently displayed access (0 to 4 LEDs on). All LEDs off

means upside down on Z-axis. All LEDs on means right side up on Z-axis.

	About This Book
	Audience
	Organization
	Conventions
	Definitions, Acronyms, and Abbreviations
	References
	Revision History
	Chapter 1 Introduction
	1.1 What This Document Describes
	1.2 What This Document Does Not Describe

	Chapter 2 Freescale Development Boards
	2.1 HCS08 Board Details

	Chapter 3 BeeKit and CodeWarrior
	3.1 Creating a BeeKit Project
	3.1.1 Basic Options
	3.1.2 Custom Configuration Options
	3.1.3 Creating Additional Devices
	3.1.4 Exporting Created BeeKit Projects

	3.2 Importing the Project into CodeWarrior
	3.3 Building a Code Image Using CodeWarrior
	3.4 Loading the Code Image into a ZigBee Device

	Chapter 4 Starting and Running a Simple ZigBee Network
	4.1 Starting the Network
	4.2 Running the Network: Remotely Controlling a Light

	Chapter 5 Creating a Wireless UART application
	5.1 Creating the Wireless UART BeeKit Project
	5.1.1 Custom Configuration Options
	5.1.2 Adding a Project for the End Node
	5.1.3 Exporting the BeeKit Projects

	5.2 Importing the Project into CodeWarrior
	5.2.1 Building the Wireless UART Code Image Using CodeWarrior
	5.2.2 Loading the Wireless UART Code Image into a ZigBee Device

	5.3 Wireless UART Setup and Operation
	5.3.1 Setting up the UART/USB Virtual Com Ports
	5.3.2 Starting the Wireless UART Application
	5.3.3 Forming and Starting the Network
	5.3.4 Using the Wireless UART Application

	Chapter 6 Example Applications
	6.1 ZigBee Application Glossary
	6.2 Example Application User Interfaces
	6.3 Application Support Library (ASL) Keys
	6.3.1 Home Automation Configuration Mode
	6.3.2 Run Mode

	6.4 Application Support Library (ASL) LEDs and Display
	6.4.1 Configuration Mode
	6.4.2 Run Mode
	6.4.3 OnOffLight
	6.4.4 Keyboard
	6.4.5 Display

	6.5 OnOffSwitch
	6.5.1 Keyboard
	6.5.2 Display

	6.6 Dimmable Light
	6.6.1 Keyboard
	6.6.2 Display

	6.7 Dimmer Control Switch
	6.7.1 Keyboard
	6.7.2 Display

	6.8 Thermostat
	6.8.1 Keyboard
	6.8.2 Display

	6.9 Temperature Sensor
	6.9.1 Keyboard
	6.9.2 Display

	6.10 HA Generic Application
	6.11 HA Range Extender
	6.12 HA Combined Interface
	6.13 Manufacturer Specific Applications
	6.13.1 Manufacturer Specific Configuration Mode User Interface

	6.14 Wireless UART
	6.14.1 Keyboard
	6.14.2 Display
	6.14.3 Baud Rate Display User Interface

	6.15 Generic App
	6.15.1 Keyboard
	6.15.2 Display

