Freescale Semiconductor, Inc.

MCF5272 USB SW Developer Manual.
MOTUSB Host Driver for CBI &
Isochronous Transfers.

M5272/USB/HD/CBII
Rev. 0.3 05/2002

:{‘Digitalﬂﬂﬂ e R

Trom Meirenla

mN—1 i
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

CONTENTS

Paragraph Title Page
Lo INErOAUCTION . et e e e 1-1
1.1 OVBIVIBIW ...ttt bbbt b et e et b e bbb nns 1-1
1.2. SYStEM REQUITEMENTS.eeiiiiieie et st 1-1
1.3. Driver CapabilitiES.ccueiieieeeeceese et e e 1-1
14. Driver Package CONENTc.ooiiiieiere et 1-2
1.5. QUICK SEart GUITE.......ccueeireeciieciee sttt e sr e sare e ere e 1-2
151. SYSIEM FEQUITEIMENTS.cueieiieeieie ettt sttt sre s 1-2
1.5.2. Driver inStallation SLEPS.cccvveeeieeeriere et eeeas 1-3

2. Driver MOAEel. 2-1
2.1 Driver MOl OVEINVIBW..........oiiiiriiiiesieseeee e 2-1
2.2. USB DIIVEN SEACK. ...veiuieieiesieeieeie ettt nae e 2-1
2.3. CommuniCation MOEL.ooiiiiiiri s 2-2
24. DEVICE ODJECL. ..ot 2-3
24.1. Default Device CONfigQUIatioN.ccocuereeresieereeieseeseeseeseesseeseesseesseseens 2-3
24.2. DeVviCe INEITACE ID. ..o e 2-4
24.3. Device Enumeration By CHENt.ccocveveeieieesece e 2-4
244 Establishing Connection TO DEVICE.........ccccvreererierienieeeesee e 2-6
24.5. Device ObJeCt FUNCLIONS.occveiice et 2-7
25 0T @] = o PP 2-8
251, Opening ConneCtion TO PIPE.cccueiueieereeiesie e esie e ste e ste e eneens 2-8
25.2. Pipe OBJECE FUNCLIONS.ovieieiiiieieieeie e 2-10
2.6. Attaching and Removing NOtifiCations...........cccceveereeceseese e 2-10
3. Programming INterface. ..o 3-1
3.1 THANSIES..... ettt 3-1
3.2. CONLIOl TraNSIEIS. ..o e 31
3.3. Bulk and INterrupt TranSfers.........cccveeieereceseese e eee e 31
3.3.1L BUIK W TranSIEr'S....cc.eeieeeeeceestee ettt st 3-2
3.3.2. Bulk and Interrupt Read Transfers.........oovevveeereciesee e 3-2
3.4. [SOCHIONOUS TIaNSIEN'S. ...ttt 3-3
34.1. 1SOChronOUS Write TranSfers.oveeerieiieie s 3-4
3.4.2. ISOChronouS ReAd TranSfErS.ooviiiieeiirie e 34
3.4.3. UsiNg ASYNCrONOUS 1/O.........oceeiecie e 3-5
~——"1 i

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5. DEVICE REUUESES.eeveceeeieeie ettt st e st te et e e e stesneesreenneennens 3-5
3.5.1. IOCTL_USB_CLASS OR_VENDOR_REQUESTccccocriininnerieren 3-7
35.2 [OCTL_USB_CYCLE PORT ..ottt 3-8
3.5.3. IOCTL_USB_FEATURE_CONTROLcoiiiieeienieeieeee e 3-9
354. IOCTL_USB_GET_CONFIGURATIONcccoiiriiniirierinieiesie e 3-10
3.5.5. IOCTL_USB_GET_DESCRIPTOR......cceeiiiiieerierieneeie e 3-11
3.5.6. IOCTL_USB_GET_HANDLE ...t 3-13
3.5.7. IOCTL_USB_GET _INTERFACE ..o 3-14
3.5.8. IOCTL_USB_GET_STATUS ..ot 3-15
3.5.9. [OCTL_USB_LINK _PIPEcctiiiieieesese e 3-16
35.10. IOCTL_USB LOCK_DEVICE......cccositriiiiiiinieneneniseseeeesee e 3-17
3511, IOCTL_USB RESET DEVICEccceiiiiiiieeieeeeeee e 3-18
35.12. 1OCTL_USB RESET PIPE.......cciiiiiiieieiereriese e 3-19
35.13. IOCTL_USB _SET _CONFIGURATION.....coootiiiieeieree e 3-20
35.14. 1OCTL_USB _SET_INTERFACEcccootiiiiine e 3-21
3.5.15. IOCTL_USB_UNCONFIGURE _DEVICE........cccootmiiriinieieseenieeee e 3-22

3.6. SETUCKUIES. ...t ne e s n e e nneennne e 3-23
3.6.1. USB_CLASS OR_VENDOR_REQUESTcccoiimiireenenienee e 3-23
3.6.2. USB DESC _REQUESTooiiiirieriirieeieie et s 3-24
3.6.3. USB FEATURE_REQUESTccoiiiiiiieieriesie st nnens 3-26
3.64. USB_GET_CONFIGURATION_REQUESTcccooririririenene e 3-27
3.6.5. USB_HANDLE _INFO ...t 3-28
3.6.6. USB_INTERFACE_SETTINGcceiiiiiieieere e 3-29
3.6.7. USB _ISO PACKET ..ottt sttt s nneas 3-30
3.6.8. USB _ISO _XFER ...ttt s 3-31
3.6.9. USB_ LOCK_REQUEST ...ttt 3-32
3.6.10. USB_SET_CONFIGURATION_REQUESTcccccviiriririienesenenienes 3-33
3.6.11. USB_STATUS REQUEST ..ottt e 3-34

3.7.)Y/ 01 PRSP RROPRP 3-35
3.7.1. REQUEST _TARGET ..ottt see ettt sse s s 3-35
3.7.2. USB _DEVICE_DESCRIPTOR......cccoitiiiiiieniese st 3-36
3.7.3. USB_ENDPOINT_DESCRIPTORccoteiiriinieriesesieseseseesee e see e ssesnens 3-37
3.74. USB_CONFIGURATION_DESCRIPTOR.......cccosotriniiririeiesiesie e 3-38
3.7.5. USB_INTERFACE _DESCRIPTORcccoiiiiesisesesieeeeesee e seens 3-39
3.7.6. USB_STRING_DESCRIPTOR......ccctiiiiiierienie st 3-40

3.8. ENUMENatioN TYPES. ..ottt ettt 341
3.8.1. USBRECEIPIENEScveeieceeiieesie e siee e ete e te e e teeae e saeene e nneeneeenee e 3-41
3.8.2. (0T = RSP 3-42
3.8.3. REQUESISTYIES. ...ttt s 3-43

3.9. CONSLANES. ...ttt s e e e e e e s ae e eaee e saeeseeesreeenneesnneenns 3-44
39.1 MOTUSB Defined CONSLANES.ccerveririerieriesiesiesesieseeeesee e 3-44
3.9.2 USB Specification Defined Constants.ccccoveererieneenenienseeseeee s 3-45

3.10. EITON COUBS. ..ottt 3-47

4. MOTUSB LiDFary. oot e e e e e ees 4-1

~—1 i

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.1. LIDIary OVEIVIEW.....ccueceeieeeiecieeteesie e stee e eee e ste e s e saesaesneessesneesseenseennnas 4-1
4.2. Compiling AN LINKING. ...c.coiiiiiiiiieseee e s 4-1
4.3. HANAIES. ...t 4-1
4.4. EITOr COUBS. ...ttt ettt st re e e 4-2
45, Notes about overlapped 1/O.oceeeeeceeeeee e 4-2
4.6. FUNCLIONS DESCIPLIONS.c.eeeieeiiesiee ettt s 4-2
4.6.1. USBBUIIAISOXTEN ..ot 4-5
N U 1 210 o o= | [ST 4-6
4.6.3. USBCIlassOrVendorREQUESLcccueieerieerieseesieeieeseeseeeesseesseeneesseessesneens 4-7
4.6.4. USBCIEAIFEAIUIE........coueeieeieeeetee ettt s 4-8
4.6.5. USBCIOSEDEVICE ..ottt 4-9
4.6.6. USBCIOSEPIPE. ..ot 4-10
4.6.7. USBCYCIEPOIT. ...ttt 4-11
4.6.8. USBGEICONTIGDESC.....cceeeieeeieeiiniiesie ettt 4-12
4.6.9. (WIS 21 €T (@001 110 (U= 1 o o S 4-13
4.6.10. USBGEIDEVICEDESC.ovviieiiietesiieiieieiesie ettt sae e s ssesseanas 4-14
4.6.11. USBGEIDEVICELISL......coviiiriisiesierieeieeee e 4-15
4.6.12. USBGEENAPOINIDESCocueeiiiiiriiesieeieeee ettt 4-16
4.6.13. USBGEIEIOITEXLcveiiriesie sttt 4-18
4.6.14. USBGEUNETACE.eoiieieee et 4-19
4.6.15. USBGELINEIfACEDESC.......ccuereeriirieriirieeeie et 4-20
4.6.16. USBGEISIAUScovenieiesiisiesiesiesieeeeeesee ettt sae e e ssessennis 4-22
4.6.17. USBGELSIIINGDESCcveviieriesiesiesieeieeee e see sttt seesse e sns 4-23
S R U 1 2 o 1 S 4-24
4.6.19. USBLOCKDEVICEcceeieiirie sttt s 4-26
4.6.20. USBOPENDEVICE.coiiiiirieesieeie ettt sttt sre et sreesae e 4-27
4.6.21. USBOPENPIPE......eiiieiesieste sttt 4-28
4.6.22. USBPIPEGEIDESCIIPLONccueeieeierieesieesieeee st sie et ee s e ee s nse e 4-29
4.6.23. USBREAAPIPE ..ceeiieie ettt 4-30
4.6.24. USBRegIStErDEVNOLITYocueeiiiiiiiiesieeeeee e 4-31
4.6.25. USBREEASEDEVICELISL.....cciiiriiriiriieieeese s 4-32
4.6.26. USBRESEIDEVICE.......coiiiieiieitieie ettt 4-33
4.6.27. USBRESEPIPE.eiiiiie ettt 4-34
4.6.28. USBSetCONfigUIratioN.........ccoeriieriereeiinie e sie et ee e see e 4-35
4.6.29. USBSEFEAIUE........cooeiiiiiiie ettt 4-36
4.6.30. USBUNCONTIQUIEDEVICEcoiviiiirieesieeieeee ettt 4-37
4.6.31. USBUNregisterDEVNOLITY.......cccoeieeiieecie et 4-38
4.6.32. USBWaIIO....ccuiiieieeie ettt s 4-39
4.6.33. USBWIEPIPE. ...ttt s 4-40

5. REQISTIY SetlINGS. ..o 5-1
6. Driver INStallation.coouiii 6-1
6.1. INStallation ProCedUIE.cooeiieeeeecee e e 6-1
6.2. SELUP (INF) FlE. et 6-3
~—1 v

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

6.2.1. Setup (INF) Fle TEMPIALE.cceeeeeeeceeeeeeeee e 6-4
6.3. Updating Or UNINSAiNG. ...cccuooiiiiiiie e 6-6
7. Appendix 1: USB Audio Sample for MCF5272.c.covviiiiiiiiiieiiean, 7-1
7.1. L0017 1o o SRR 7-1

T 1L OVEIVIBW ..ottt bbbttt n et st sb e b ens 7-1

7.1.2. SyStEM REQUITEMENTS. ..ot st 7-1

7.1.3. Application CapabilitieS.........ccccueieiieeiieii e eee e 7-1
7.2 APPlICALTON OVEIVIBW ..ottt st 7-2

721, SAMPIEMOUEL. ..o 7-2

7.2.2. AUAIO SYSIEM SEIUP. ...coiveeieiieieeie et s 7-3

7.2.3. Interaction With Sample.coeeiieiicece e 7-4

7.2.4. Missing Frames EMUIGLION.ccorieiiireiiisie e 7-6

7.2.5. KINOWN ISSUES. ...ttt 7-6
8. Appendix 2: USB File Transfer Sample for MCF5272.cccceveennen. 8-1
8.1 L Lo [8ox i o] o TSR 8-1

8.1.1 SyStEM REQUITEMENTS. ..ottt et 8-1

8.1.2. Application CapabilitiEs.........ccccueiieiierieeiieiisie e 8-1
8.2. APPlICALTON OVEIVIBW ..ottt 8-2

8.21. Starting APPIICALION. ...cceeiieeeeeeeseeiesee e e e sre et e e sre e 8-2

8.2.2. MAIN WINAOW. ...ttt sne e 8-2

8.2.3. ApPliCation OPEraLiONS.ccveeerueeriereesieeiteeeeseeseeseesseesseseesseesesseessesseens 8-3
9. Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-1
9.1 L Lo [FTox i o] o OSSP 9-1

9.1.1 SyStEM REQUITEMENTS. ..ot et o-1

0.1.2. TSt SUITE COMEENL. ..oveeieiieieeiesie sttt s 9-2
9.2. APPHICELION OVEIVIBW ...ttt 9-2

0.21. SEECHNG ADEVICE........e ettt 9-3

9.2.2. Automatic Standard ReqQUESES TESHING.cccvereereriierierieeee e 9-4

9.23. DEVICETESES. ...ttt sttt bbb nre s 9-5

9.24. (0000110 U1 1 [0] g Il =S £ 9-5

9.25. INEEITACE TESES. ..ottt bbb nre s 9-6

9.2.6. ENCPOINT TESL. ... 9-6

S R © 107 g = SRS 9-6
9.3. Automatic Standard ReqUESES RESUILS.cocvvveeiiniseeee e 9-7
94. =T o I = 1 o R SS 9-8

94.1. (€7 oo 1T U= (0] o ISP 9-8

9.4.2. Set CONfIQUIELION......ccueieeieeeieeeie ettt ee et e st e e e sneenneas 9-9

S G T € 1= g1 - (1< ST 9-9

9.4.4. SEEFEAIUIE. ...ttt 9-9

9.4.5. ClEAI FEALUIE.o.eeeeeeeeeeeee ettt ettt 9-10

0.4.6. GEL INEITACE.viiveriecieeiiee e 9-10

N1 v

Freescale Semiconductor, Inc.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

0.4.7. SELINEITACE. ..oviieieeciieeee e 9-10
9.5. File Transfer Firmware TESHING.ccccoveereiieneee e 9-11
9.5.1. AIQorithm desCription.c.ccvevviieeseeie e 9-11
95.2. Transfer TESNG Page.coeeiieriiiieniee e e 9-13
9.6. ISOChronouS TranSfers TESLING.ccvvveveeeereee e 9-15
S I =S ES3 B L= o 1 (o] PSSR 9-15
9.6.2. o A 0T To T = S 9-16
9.6.3. (@107 (=S £ TRURRN 9-17
10. Appendix 4: USB FILE TRANSFER LIBRARYcocciiiiiiiiiineiieeen, 10-1
10.1. L0017 1o PRSP 10-1
10.1.1. System ReQUIFEMENTScc.eceereeiecieeeesie e eee e ee st sre e neas 10-1
10.1.2. UFTPDrary CONENL.ccoviiiiieieeiienie e ie et 10-1
10.2. Programming iNtErfaCe..........cevveieieriecece e 10-2
10.2.1. FUNCLION DESCITPLIONS. ...couveiiesieeieeiesiee et sre e e s neas 10-3
0 7 O IR U o g = o R 10-3

O T2 A U o D<o g 1= o 10-4
10.2.1.3. Uftp SetPrOgreSSROULINEcvoeieriereirerisiescresesiessesesessssssesessssesessssessssessesssssessesessssssssens 10-5
10.2.1.4. UL _SENUFIIE.....ouiveerreeeseeeesseesssessssss s sssssssssssssss s sss s ssss s ssss s ssssassssssssssssnes 10-6
10.2.1.5. UFLP GEIFIIB....vuoueeieeseeeeseeesesesssss s sssssssssssssssssssss s ssssssssssssssssssssssssassssssssssssnes 10-7
10.2.1.6. UFLP_GEIFHBINFO cvveouoeeerrreerseeeesseessssseessssesssssesssssasessssesessssssssssssssssssssssssssssssssssssssns 10-8
10.2.1.7. UFtP_REAADII....oouervvrseeeeseeeesseesssesssssss s ssssssssssssssssssessssssssssssssssssssssssssssssssssssssnnes 10-9
10.2.1.8. Uftp_SaTransferLength.........orrrrrr s 10-10
10.2.1.9. UFLD DEIFIIR....ouoereeeeceiesessescssssssssssssssssssssssssssssssssssss st sssssssssssssssssssssssans 10-11
10.2.1.10. Ut _GEILASIEITON . .oveororeeesaeeesseeessseeessssssssssessssssssssssssssssessssssssssssssssssssssssssssssnns 10-12
10.2.1.11. UFPD. GELEITOITEXE ...ttt see s tens e s st se st sanssnsnnens 10-13
10.2.2. TypesuSed iN HDIary. ... e 10-14
10.2.2.1. PROGRESS_ROUTINEcccuoreummreesneesssessssssssssssssssssssssassssssassssssssssssssssssssssssnns 10-14
10.2.2.2. PROGRESS_STRUCT......ccevoummreemmssens 10-14
10.2.3. EXTON COUBS. ..ottt sttt s sb e ens 10-15
~—1 vi

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ILLUSTRATIONS
Figure Title Page
FIQ 2.1 USB SEACK.....ccuiiiieieie ettt sttt s nne s 2-1
Fig 2.2 CommuUuNiCation MOEL...........cooiiiiiieiirie e 2-2
Fig 3.1 Isochronous Transfer Buffer FOrmMaL.ccccvvevieecesieene e 3-3
Fig 7.1 SampPIe MOGEL.ooiieee e 7-2
Fig 7.2 PlaybaCk Properties.......c.ccueiveieieeieee et 7-3
Fig 7.3 RECOIING PrOPEITIES.coitieierieesieesieeeestee ettt st sr et nbe e nnee e 7-4
Fig 7.4 “Device is not connected” MeSSage BOX.cccveveeceeneerieeiieseese e eee s 7-4
Fig 7.5 Main Application WINAOW.cooiriiiieiinie e 7-5
Fig 7.6 Main Application Window (FUNNING).ccceeeereereereseenieeseeseeseeesseseesseesessseenns 7-5
Fig 8.1 “Device doesn't connected” MeSsage BOX.coceeverieneenieninneenese e 8-2
Fig 8.2 Application Main WINAOW.ccciieiieiieiieie et 8-3
Fig 8.3 “Error while transfer” message DOX.cooveiiienenieseecee e 8-3
Fig 8.4 Transfer Length DIialOg.c..cccuevieiiiiisiese et 8-4
Fig 8.5 Browse for folder dialOg.cooeieeriiriiiieseee e e 8-5
FiQ 8.6 FOIAEr trEE WINUOW.........eecieeie ettt sttt e e nne e 8-5
Fig 9.1 Device SEleCtioN Page.ccoociiieiiiiiesiesiee ettt 9-3
Fig 9.2 Standard requests (AULOMAL C) PAJE.cerveerrereereeieeeesieeeeseesre e see e eeesnee s 9-4
Fig 9.3 Standard requests (AUtOMALIC) FESUILS.cecvereererieseerieee e 9-7
Fig 9.4 Manual rEQUESES PAOE.ecveeveeierieerieeieseesteetesseesseeaesseessesnsesseesseensesseessesssesseenns 9-8
Fig 9.5 Set Configuration DIalOg.ccceveerierienienieie e 9-9
Fig 9.6 Get StAatUS DIdlOg. .. .cveeeeeeeeiieiesieerie ettt sre e e e nneeeesnee e 9-9
Fig 9.7 Set FEatUre DIalOg.ooeeiueeieiii ittt 9-9
Fig 9.8 Get FEAUre DIdlOg.cceiveeeeriieieeiesteete et e ste et ae et eaesneesnennnens 9-10
Fig 9.9 Get INterface DIalOg.cooveeereeieniinieie et s 9-10
Fig 9.10 Set INterface DIialOg.covveeeieerieeeesieeiesee s este e steesee e e esae e te e sseesseeneens 9-11
FIgO.11 Fle Transfer Page.cccooueiiiiiieiiesieeie ettt s 9-13
Fig 9.12 File Transfer TeSt ParametersS.cccvevueveereenesieseeseeseeseeesaeseeseeeesseessesnnens 9-14
Fig 9.13 Isochronous TransferS TESt Page.cocveveeieeiienieseerie e 9-15
Fig 9.14 Other tEStS PAQE. ... ecveeeeeteeeesieerieeeesteeteeeesseesteseesseeeesseesseensesseesseesesseessennsnns 9-17
~—1 vil

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

About this document.
This document describes the functionality of the MOTUSB Device Driver and user mode
library, and how it is employed in user applications.

Audience.
This document targets USB software devel opers on the Windows 2000 Host platform.

Suggested reading.
[1] Microsoft Platform SDK, Windows 2000 DDK Documentation
[2] Universal Serial Bus 1.1 Specification

Definitions, Acronyms, and Abbreviations.
The following list defines the acronyms and abbreviations used in this document.

USB Universal Serial Bus
MOTUSB Name of this Driver
Win32 Microsoft Windows 32 bit platform
ZLP Zero Length Packet
WDM Windows Driver Model
USBDI USB Driver Interface
HID Human Interface Device class
API Application programming interface
HCD Host Controller Driver
GUID Global Unique Identifier
PnP Plug and Play
SDK Software Development Kit
DDK Driver Development Kit
PC Personal Computer
1/O Input / Output
oS Operating System
~——"1 viil

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

1. Introduction.

1.1. Overview

MOTUSB is a generic Universal Serial Bus (USB) Device Driver for Windows 2000,
whose main purpose is to provide access to USB for user mode Win32 applications. This
Driver is not Device specific; so that various classes of USB Devices can use it. Support
for the USB is built into the Windows 2000 operating system, and developers can either
use the Device Driver provided, or create a USB Client Driver manualy if the OS does
not provide the Driver for that particular Device class.

By using the generic MOTUSB Device Driver it is possible to perform new USB Device
development without the necessity to spend time and effort developing a new Device
Driver. This may prove to be especially useful during development or testing of a new
Device.

12. System Requirements.
Hardware platforms:

Single CPU Intel x386 based PC with Open Host Controller or Universal Host

Controller.
Operation systems:
Windows 2000 Professional

Driver Client developer software:
Visual C++ 6.0 Professional Edition
Microsoft Platform SDK for Windows 2000 (Recommended)

Driver developer software:
Visual C++ 6.0 Professional Edition
Microsoft Windows 2000 Driver Devel opment Kit

1.3. Driver Capabilities.
- Complieswith WDM
Provides interface to access USB Device from user mode Win32 Client
application
Supports control, bulk, interrupt and isochroous transfer types
Data transmission on pipesis similar to the dataflow on file
Supports asynchronous (overlapped) 1/0
Can manage connections to several Devices at the sametime
Can be used from multiple threads (processes) at the sametime

nN—1 Introduction. 1-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

1.4. Driver Package Content

The Driver package is divided into 3 parts:

1) User Part. Severa binary modules are provided: Driver, library and installation file
for asample USB Device on the Motorola ColdFire5272 Evaluation Board.

\ bin
mot usb. sys - Kernel mode Driver
mot usb. dI | - User mode library
mcf 5272. i nf - Setup (INF) file for sample USB Device

2) Client software. Headers and libraries required for the MOTUSB Client software
developer are provided; located at.

\inc

motioctl.h - defines MOTUSB /O controls and structures

mot st atus. h - definesMOTUSB Driver and library errors codes.

mot usb. h - defines motusb.dll library programming interface

usb100. h - defines USB1.0 spec. constants and structures (provided by
Microsoft DDK).
\lib

mot usb. I'i b - static library required for linking with Client application, which

usenot usb. di | library API functions.

3) Driver and library source code.

\sc

\sys- MOTUSB Driver source code

\dll - MOTUSB dynamic library source code.

(All paths are specified relative to the MOTUSB package installation directory).

1.5. Quick Start Guide.
This section is intended as a quick MOTUSB Driver INSTALLATION GUIDE for the
USB MCF5272 Development Board Firmware

1.5.1. System requirements:

Single CPU Intel i386 based PC with USB Ports.
Windows 2000 Professional OS.

nN—1 Introduction. 1-2

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

NOTE: The Firmware must be downloaded and started prior to Driver installation. The
installation will be initiated by the system automatically when connecting the Device to

the PC.

1.5.2. Driver installation steps.

1.

2.

10.

11.

Logon to Windows 2000 using an administrator account.

Ensure that the following 3 files are all contained in the Driver installation
directory: motusb.sys, motusb.dll, mcf5272.inf

Ensure that the VendorlD and ProductiD members of the Device descriptor on
Device have not changed. If you have to change them, it is necessary to make a
new instalation (INF) file for the VendorID and ProductiD member values
combination. (See MOTUSB Driver Guide, Chapter 4 for detailed information on
the INF file).

Connect the Host PC with the UFTP Device running on the MCF5272
development board viaa USB cable.

“Found New Hardware Wizard” dialog with string “USB Device” will appear.
Select “Next” button.

Select the radio button labeled "Search for a suitable Driver for your Device
(Recommended)" and then hit the "Next" button.

“Locate Driver Files’ page will appear, click the "Next" button

“Insert manufacturer installation disk on the drive...” file prompt diaog will
appear. Specify the folder where al Driver files are located and click ok.

“Driver Files Search Result” page should appear. If the Driver path is specified
correctly “Windows found a Driver for this Device” and the path to mcf5272.inf
strings will be shown at the center of the page.

Hit the "Next" button, whereupon the "copying Files' message box will be seen
briefly; then once again the "Found New Hardware Wizard" box, now displaying
the subheading "Hardware Install: The hardware installation is complete”. Hit the
"Finish" button.

A copy of motusbh.sys should be in the %SystemRoot%\System32\Drivers
directory, and the motusb.dll in the %SystemRoot%\System32 directory. If the
final "Add New Hardware Wizard" box indicates any error, or if the OS indicates
that a reboot is required in order to finish the instalation of this Device,
something has gone wrong. Check the Inf file or Install directory, follow the
instructions again for a“‘clean’ install, and start over.

nN—1 Introduction. 1-3

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

2. Driver Model.

2.1. Driver Model Overview.

The MOTUSB Driver is based on the Windows Driver Model (WDM) architecture. The
latest Microsoft Windows operating systems family has begun USB support in WDM.
They include USB Device Drivers for hubs, Host controllers and some Device classes
(audio, mass-storage, HID, etc.). Aswell as built-in software components, these systems
provide a programming interface for USB Device Drivers, called Universal Seria Bus
Driver Interface (USBDI). However USBDI can only be used by kernel-mode
components (Drivers), and none of the USB functionality is available in user-mode.

2.2. USB Driver Stack.

All USB Device Drivers in WDM are USBDI Client Drivers. WDM Client Drivers are
technically layered and organized as a Driver stack. A USB Client Driver overlays the
Drivers USBD.SYS, USBHUB.SYS, and either UHCD.SYS or OPENHCI.SYS. The
relationship between these Drivers is illustrated in Figure 21. The USB Client Drivers
call USBD.SYS to perform the Device configuration and perform the various transfer
types. MOTUSB handles the Device configuration calls and the details of communication
with the bus Drivers. However, it is of interest to know something more about how
communication occurs between the Client Driver and the bus Drivers.

USB Host Controller

Hardware + +
UHCI Hub Driver Open HCI Hub Driver
(UHCD.SYS) (OPENHCI.SYS)
= t
USB Bus Driver > USB Hub Driver
(USBD.SYS) (USBHUB.SYS)

USB Driver Interface (USBDI

?

MOTUSB Client Driver
(MOTUSB.SYS)

Kernel mode 1
User mode Win32 Application
Fig 2.1 USB Stack
P~——1 Driver Model. 1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

2.3. Communication Model.

MOTUSB Driver communication with the user mode Client application consists of
connections to Device and pipe objects. Connection to Device or pipe objectsis similar to
opening file objects. For each physical Device connected for which MOTUSB installed,
the Driver creates a Device object. The Client application can perform a Device
enumeration procedure, select the required Device and open a handle to this Device or
other pipe objects.

The MOTUSB Device Driver is not limited by the Client application handles opened to
the Device. Severa threads or processes can use the same handle to the same Device;
also a single thread (process) can open several handles. The MOTUSB Driver is not
responsible for actual Device requests and data flow logic and is represented as an
operationa block only, providing the gate to take control of the USB Device from within
the user mode Client application.

Client application #1 Client application #2

User Mode
|
MOTUSB.SYS
Device Device Device
Object #1 Object #2 Object #3
USB Stack <
\ 4 \ 4 \ 4
1.1.1.1. Hub & Bus Hub & Bus Hub & Bus
Device Device Device
Objects #1 Objects #2 Objects #3
Kernd Mode
{ Device #1 } { Device #2 } { Device #3 }
Hardware
Fig 2.2 Communication model
~—1 Driver Model. 2-2

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

2.4. Device Object.

The USB Client Driver is loaded by the system components when connecting a USB
Device to a USB port. The PCI Enumerator component performs USB Driver selection,
according to the Drivers installed on the system, which loads and invokes the Driver
AddDevice dispatch table routine. As a result of this routine the MOTUSB Device Driver
itself creates a Device object and attaches this Device object to the USB Driver stack.

Each MOTUSB Device object is associated with a physical USB Device that is connected
to the USB. Dueto thisfact, MOTUSB can handle more than one Device connection.

Table 2.1 Device object states from Client point of view.

State Description

Disconnected | No physical Device connection. Device object not created or destroyed.

responsible to close them.

All handles opened to Device became invalid and user mode Client is

Connected Physical Device connection exists. Device object created. Device became

configured (unconfigured) depending on the MOTUSB registry settings.
No invalid handles to Device became valid.

Opened The handle to the Device object opened. Client application can perform Device
request on the Device.

Configured Active configuration for Device selected. Client application can perform Device
request on the Device, open pipes and perform and interrupt transfers on those
pipes.

Unconfigured | No active configuration for Device selected. Client application can perform only
limited set of requests. No pipe connections can exist.

Note: Application developers should not use this state. The purpose of this state
provided in MOTUSB isfor USB test software only.

Locked Lock access to Device for other owners with handle for the same Device.

Client application can lock access to the Device in two ways:

for 100% of working time, to monopolize access to the Device

lock on demand ensuring that some requests or data flow sequences will not be
interrupted by another USB Client application.

2.4.1. Default Device Configuration.

When Device object creation occurs the Driver saves the Device and al configuration
descriptors. Following this the Driver performs SET_CONFIGURATION requests for
the configuration #0, and configures al the interfaces in that configuration.

N—1

Driver Model. 2-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

2.4.2. Device Interface ID.

MOTUSB registers " Device Interface ID* for every Device object it creates. The “Device
Interface ID” (henceforward “Device interface”) itself is a globa unique identifier
(GUID). The MOTUSB Device Interface GUID isdefined inthenot i oct | . h header file.

#define GU D_CLASS MOTUSB \
{0x239d60c9, Oxccaf, 0x11d5, \
{Oxac, O0x21, 0x20, Ox4c, Ox4f, Ox4f, O0x50, 0x20}}

The operating system uses this GUID to generate a unique Device name for each Device
object in the system. By using such a Device naming scheme, the OS solves all Device
naming issues across the entire system.

2.4.3. Device Enumeration By Client.
The OS provides enumeration of Devices by Device Interface ID with the Setup AP
functions:

Set upDi Get d assDevs
Set upDi EnunDevi cel nt erf aces
and ot hers

These functions require the Device Interface GUID, which can be found in notioct! . h
header file as a GUID_CLASS MOTUSB definition constant. This GUID is shared
across al components based on MOTUSB, since each Device object created by
MOTUSB has the same Device Interface ID.

As a result of Device enumeration functions SetupDi Getd assDevs and
Set upDi EnunDevi cel nt er f aces, the Client application retrieves a list of all Device
objects. In order to differentiate between the Devices an application should query the
Device descriptor or string descriptors. In this way, each Device instance can be
identified unambiguoudly.

For a detailed function description see Microsoft Platform SDK documentation.

Sample of Device enumeration:
#i ncl ude <wi ndows. h>

#i ncl ude <dbt. h>

#i nclude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <set upapi . h>

#i nclude "notioctl.h"

const QU D _GuidMotUSB = QU D CLASS MOTUSB;
HDEVI NFO USBGet Devi celi st ()
HDEVI NFO devl nf o;

~—1 Driver Model. 2-4

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

devinfo = SetupDi Get O assDevs(
(LPQUID) & QuidMot USB, // LPGQU D d assQuid,
NULL, /! PCTSTR Enuner at or,
NULL, /1 HWAD hwndPar ent ,
DI GCF_DEVI CEl NTERFACE | DI GCF_PRESENT // DWORD Fl ags

)

return (devinfo !'= I NVALI D HANDLE VALUE) ? devinfo : NULL;
}
int main(int argc, char* argv[])
{
HDEVI NFO hDevl nf o;
SP_DEVI NFO _DATA Devi cel nf oDat a;
DWORD i ;
hDevl nf o = USBGet Devi ceLi st ();
if (hDevinfo == I NVALI D HANDLE VALUE) {
/1 Insert error handling here.
return 1;
}
/1 Enunerate through all Devices in Set
Devi cel nf oDat a. cbSi ze = si zeof (SP_DEVI NFO_DATA) ;
for (i=0;SetupDi EnunDevi cel nf o(hDevl nfo, i, &evicel nfoData) ;i ++)
{
DWORD Dat aT;
LPTSTR buffer = NULL;
DWORD buf fersize = 0;
whil e (! SetupD Get Devi ceRegi st ryProperty(hDevl nfo,
&Devi cel nf oDat a,
SPDRP_DEVI CEDESC,
&Dat aT,
(PBYTE) buf f er,
buf f ersi ze,
&uffersize))
if (GetLastError() == ERROR I NSUFFI Cl ENT_BUFFER) {
/1 Change the buffer size.
if (buffer) Local Free(buffer);
buf fer = (LPTSTR) Local Al |l oc(LPTR, buffersi ze);
}
el se {
/1 Insert error handling here.
br eak;
}
}
printf("Result:[%]\n", buffer);
if (buffer) Local Free(buffer);
}
if (GetLastError()!=NO ERROR &&
Cet LastError()!=ERROR NO MORE I TEM5) {
mN—1 Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

/1 Insert error handling here.
return 1,

}
/1 deanup

Set upDi Dest r oyDevi cel nf oLi st (hDevl nf 0) ;
return O;

2.4.4. Establishing Connection To Device.

The setup APl function Set upDi Get Devi cel nterfaceDetail application finds the
Device name in the DevicePath member of the
SP_DEVICE_INTERFACE_DETAIL_DATA structure parameter. Having this name
the Client application can open a handle to the Device object using the CreateFil e
Win32 API function.

After the application has received one or more handles for the Device, operations can be
performed on the Device by using a handle. If there is more than one handle to the same
Device, it makes no difference which handle is used in order to perform a certain
operation. All handles that are associated with the same Device behave in the same
manner.

Sample of establishing a Device connection function:

HANDLE
USBOpenDevi ce(
HDEVI NFO devlLi st ,

i nt devNum
)

{
BOOL bOX;
DWORD | en;
DWORD St at us;
SP_DEVI CE_| NTERFACE DETAI L_DATA *InterfaceDat a;
SP_DEVI CE_| NTERFACE DATA DevData = {0};
HANDLE hDevi ce = | NVALI D HANDLE VALUE;

DevDat a. cbSi ze = si zeof (SP_DEVI CE_| NTERFACE_DATA) ;
bOK = Set upDi EnunmDevi cel nt erfaces(devLi st, NULL,
(LPGUI D) & Cui divbt USB, devNum &DevData);
if (I'bOK) {
return | NVALI D_HANDLE VAL UE;
}

/1 get length of the detailed information, allocate buffer
Set upDi Get Devi cel nterfaceDetail (devLi st, &DevDat a,
NULL, O, & en, NULL);
InterfaceData = (SP_DEVI CE | NTERFACE DETAI L_DATA*) calloc(1l, len);
if (!'InterfaceData)
return | NVALI D_ HANDLE VALUE;

/1 now get the detailed Device infornmation

~—1 Driver Model. 2-6

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

I nterfaceDat a- >cbSi ze = si zeof (SP_DEVI CE_| NTERFACE_DETAI L_DATA) ;
bOK = Set upDi Get Devi cel nterfaceDetail (devLi st, &DevDat a,
InterfaceData, |len, & en, NULL);
if ('bOK) {
free(InterfacebData);
return | NVALI D HANDLE VALUE;

}

hDevi ce = CreateFil e(
I nt er f aceDat a- >Devi cePat h,

GENERI C_READ | GENERI C WRI TE, /1 access node

FI LE SHARE WRI TE | FILE_SHARE READ, // share node

NULL, /1 security desc.
OPEN_EXI STI NG // how to create

NULL, /1l file attributes
NULL /1 tenplate file

)

return (hDevice);

}

To close a connection handle on a particular Device object use d oseHandl e Win32 API
function, specifying the opened handle for the Device object in question.

See the Microsoft Platform SDK documentation for further information.

2.4.5. Device Object Functions.

The Device object represents a physical Device. It provides Default Control Pipe
transfers, pipe connections, and some system control (Power Management, PnP, etc.).
Some Win32 API functions should be used to interact with the MOTUSB Device object.

Table 2.2 Win32 API operations list for a Device object.

Function Name Description

CreateFile Opens handle to Device object
CloseHandle Close handle to Device object
DeviceloControl Performs requests on Device object

All operations involving Device object handles can be requested through the
DeviceloControl function, while CreateFile and CloseHandle functions are used for
Device object connections only. Note that no data flow operations via ReadFile and
WriteFile can be performed. All data transmission to the Default Control Pipe requires
Devicel oControl usage.

The following tasks can be performed using MOTUSB Device object:
Descriptor retrieval
Configuration control
Setting / Clear Feature for specified recipient

~—1 Driver Model. 2-7

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Getting status of specified recipient
Device locking / unlocking
Interface Alternate Setting control
Sending Class or Vendor Requests
Device replugging emulation
Device resetting

For afull description of Device requests, refer to the Programming I nterface section.

2.5. Pipe Object.

Pipe objects provide the ability to perform data flow transactions through the pipes on the
Device. Each pipe object points to a particular Device endpoint. The USB 1.1
specification defines control, bulk, interrupt and isochronous endpoint types. The bulk
and isochronous endpoints specify the data flow direction from Device to PC, or from PC
to Device. A MOTUSB pipe object can be used for any endpoint type except for control.
The interface with the MOTUSB endpoint object is the same for any endpoint type.

Once the Device becomes configured, the Client application can open handles to pipe
objects. Each interface configuration on the Device defines a particular set of endpoints
through which data transmission can be performed. So only handles for pipes supported
by an active configuration, and interfaces configured within it can be obtained. No pipe
handles can be valid or opened on an unconfigured Device. Note that 'Set Configuration'
and 'Set Interface' requests will fail if pipe connections to a Device exist.

2.5.1. Opening Connection To Pipe.

MOTUSB represents pipe object connections as for the Device objects, but with a
somewhat different naming scheme. A pipe object connection can be created
independently of a Device object connection. So in order to establish a connection to a
pipe object, the programmer may use a procedure similar to the one described above, but
specifying a different file name.

NOTE: As mentioned above USDI monopolizes endpoint #0, SO no pipe connection to
this endpoint can be established. MOTUSB Device objects expose functiondlity that can
be applied to this endpoint.

The file name format for pipe objectsis as follows:
<Device instance name> \ <decimal endpoint address>, where

Device instance name is string obtained from the Set upDi Get Devi cel nt er f aceDet ai |
Setup APl call in DevicePath member;

decimal endpoint address is an endpoint address for which a pipe should be open.

~—1 Driver Model. 2-8

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Assuming that the Device instance name returned from the
Set upDi Get Devi cel nterfaceDetail callsarethefollowing:

\\ 2\ USB#Vi d_abcd&Pi d_1234#58e752ac&0&1#{ 239D60C9- CCAF- 11d5- AC21-
204CAF4F5020}

Then for the endpoint address 0x81, the user application would call Cr eat eFi | e with the
following file name input:

\\ 2\ USB#Vi d_abcd&Pi d_1234#58e752ac&0&1#{ 239D60C9- CCAF- 11d5- AC21-
204CAF4F5020}\ 129

N~——"1 Driver Model. 2-S
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

In addition the Client application must link pipe objects to a Device object. This
guaranteesthat ReadFile / WiteFil e to pipes that belong to the same Device handle,
will not be blocked when this Device handle is locked by the Device. So pipe linking is a
mandatory condition to ensure pipe objects connection. The following sample illustrates
pipe linking (assumes that Device hDevi ce is aready opened, and pipe handle hPi pe is
also open):

USB_HANDLE | NFO handl el nfo; // Kernel -node handl e to pi pe object

/1 Get the opened pipe kernel -node handl e
Devi cel oControl (hPipe, | OCTL_USB GET_HANDLE, NULL, NULL,
&handl el nfo, sizeof (USB_HANDLE | NFO, NULL);

/1 Link pipe handl e hPipe to Device hDevice
Devi cel oCont r ol (hDevi ce, | OCTL_USB LI NK_PI PE, &handl el nf o,
si zeof (USB_HANDLE | NFO), NULL, 0, NULL);

2.5.2. Pipe Object Functions.

The pipe object represents a physical channel on the Device through which data flow
transactions can be performed. The ReadFi | e and Wi t eFi | e functions are responsible
for requests for data transactions on an opened pipe handle. The Cancel | Oroutine should
be used to abort al outstanding transactions on a pipe object. CreateFile and
d oseHandl e are used for Device object connection only.

Table 2.3 Win32 API operations list for a pipe object.

Function Name Description

CreateFile Creates pipe object

CloseHandle Closes pipe object handle

WriteFile, WriteFileEx | Performs data transmission to Device. Used on bulk or isochronous
OUT pipes.

ReadFile, ReadFileEx Performs data transmission from Device. Used on bulk IN, interrupt
and isochronous IN pipes.

CancellO Cancels dl pending input and output operations that were issued by
the calling thread for the specified pipe handle.
Devicel oControl Performs requests on pipe object.

2.6. Attaching and Removing Notifications.

The Microsoft Windows operating system provides service routines for attaching a PnP
Device or removing handling. Several API functions can be found in the dbt . h header

~—1 Driver Model. 2-10

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

file in the Microsoft SDK. In order to use notifications, the Client application should
register the automatic Regi st er Devi ceNoti fi cati on API function. The caller can be
notified by a window handle. The notification transforms to a WM_DEVICECHANGE
window message, where the |Param parameter points to the buffer with
DEV_BROADCAST_DEVICEINTERFACE structure, from which the Client application
can extract the required fields concerning notification.

To be notified about Device attachment or removing events, the caller must specify the
MOTUSB Interface ID to the Regi st er Devi ceNot i fi cati on function.

Example:

#i ncl ude <dbt. h>

HDEVI NFO Regi st er DevNot i f y(HWND hwad)

{
HDEVI NFO hDevNoti fy;
DEV_BROADCAST_DEVI CElI NTERFACE filter;
i f (!hWhd)
return NULL;
ZeroMenory(&filter, sizeof(filter));
filter.dbcc_size = sizeof (DEV_BROADCAST_DEVI CElI NTERFACE) ;
filter.dbcc_Devicetype = DBT_DEVTYP_DEVI CEl NTERFACE;
filter.dbcc_classguid = g_Gui dvbt USB;
hDevNoti fy = Regi sterDeviceNotification(
hWhd,
& ilter,
DEVI CE_NOTI FY_W NDOW HANDL E
);
return hDevNoti fy;
}

NOTE: This sample requires the Microsoft SDK for Windows 2000 to be installed.
However the developer can use libraries and headers provided with Microsoft Visual C++
6.0. In this casethe“/DWINVER=0x0500" C compiler directive should be specified.

The Client application should use the Unregi st er Devi ceNoti fication Win32 AP
function when it no longer needs notification.

For further information about notifications, refer to the Microsoft Windows 2000 SDK.

~—1 Driver Model. 2-11

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3. Programming Interface.

3.1. Transfers.

The USB specification defines 4 transfer types. control, bulk, interrupt, and isochronous.
The MOTUSB Device object handle is required for control transfers, while the others
requireaMOTUSB pipe object handle to perform data I/O operations.

3.2. Control Transfers.

All USB Devices must support the control transfer type for configuration, command, and
status information. Control transfer applies to the default endpoint (zero) and
monopolized by USBDI. From the programmer point of view, the control transfers are
not represented as data flow, but rather “Device control commands’. All the control
transactions on the bus are under the responsibility of USBDI. The USB specification
defines a set of standard requests on the Default Control Endpoint. Thus, athough
USBDI provides a mechanism for direct access to the default endpoint, the MOTUSB
Driver does not make this functionality available in the user mode, and only provides a
set of standard requests.

The Client application can perform control transactions using the Devi cel oCont r ol
Win32 API function on the Device handle, specifying some /O control code and
parameters block. The following list of MOTUSB requests perform control transfer (for a
detailed requests description see Device requests section):

|IOCTL_USB_CLASS OR VENDOR REQUEST
|IOCTL_USB_CYCLE_PORT
|OCTL_USB_FEATURE_CONTROL
|OCTL_USB_GET_CONFIGURATION
|IOCTL_USB_GET_DESCRIPTOR
|OCTL_USB_GET_INTERFACE
|IOCTL_USB_GET_STATUS
|OCTL_USB_RESET DEVICE
|OCTL_USB_RESET PIPE
|OCTL_USB_SET_CONFIGURATION
|IOCTL_USB_SET_INTERFACE
|OCTL_USB_UNCONFIGURE_DEVICE

3.3. Bulk and Interrupt Transfers
Bulk and interrupt transfers may be applied through the pipes opened up on the Device.
For interrupt and bulk transfers the buffer size can be larger than the maximum packet
size of the endpoint, as reported in the endpoint descriptor.

N—1 Programming Interface. 3-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The MOTUSB Driver does not limit the transfer size. Each endpoint object should be
configured to the preferred transfer size. This value is specified in the MaxTr ansf er Si ze
member of the USBI O | NTERFACE_SETTI NG on the | OCTL_USB_SET_CONFI GURATI ON Or
| OCTL_USB_SET_| NTERFACE requests. If an application request to transfer a data buffer
that is larger that the endpoint transfer size is received, the MOTUSB Driver performs a
staging 1/0 which breaks the data buffer into parts which fit into the maximum transfer
size and requests a data I/O operation for each such part.

3.3.1. Bulk Write Transfers.

A write operation on a bulk-out endpoint performs bulk data transfer from the Host (PC)
to the Device. To perform bulk write transfers the Client application should first establish
a connection to the pipe and to call WiteFile (WiteFil eEx) Win32 API functions,
specifying the pipe object handle into the hFi |l e argument. The data buffer and buffer
size should be specified in the corresponding | pBuf f er and nNumber Of Byt esToWi te
arguments.

The transfer consists of packets. These packets are sent to the USB Device. If the last
packet of the buffer is smaller than the maximum packet size of the endpoint, a smaller
data packet is transferred. If the size of the last packet of the buffer is equal to the
maximum packet size this packet is sent. No additional zero length packet is sent by the
Driver. In order to send a zero length data packet, it is necessary to set the buffer length
to zero and use aNULL buffer pointer.

3.3.2. Bulk and Interrupt Read Transfers.

A read operation on bulk-in or interrupt endpoints performs a bulk or interrupt data
transfer from the Device to the Host (PC). To issue bulk or interrupt read transfers the
Client application should first establish a connection to the pipe and to call ReadFil e (
ReadFi | eEx) Win32 API functions, to perform transfers specifying the pipe object
handle in the hFile function argument. The data buffer and buffer size should be
specified inthe corresponding | pBuf f er and nNunmber Of Byt esToRead arguments.

A read operation will be completed if the whole buffer is filled or a short packet is
transmitted. A short packet is a packet that is shorter than the maximum transfer size of
the endpoint. To read a data packet with a length of zero, the buffer size has to be at |least
one byte. A read operation with a NULL buffer will be completed with success by the
system without performing a read operation on the USB. The behavior of short packets
depends on the registry parameter Short Tr ansf er Ck. If this parameter valueis set, aread
operation that returns a data packet that is shorter than the maximum packet size of the
endpoint is completed with success. Otherwise, every data packet from the endpoint that
is smaller than the maximum packet size causes an error.

N—1 Programming Interface. 3-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.4. Isochronous Transfers.
Isochronous transfers can be applied through the pipes opened on the Device. The Client
application should specify the specia structure buffer to perform an isochronous transfer
operation using ReadFile / WiteFile Win32 APl functions. The buffer should consist
of a fixed header and a variable length packets header and data parts. The isochronous
transfer buffer format is shown in the figure below:

USB I1SO XFER ™
StartFrame % -
Flags 8 <
ErrorCount 7 Q8

- PacketCount
g
\
| USB 1SO PACKET

T = #2 Offset Lenath Status T
¥ 3 K{#0ft Lenath Saus| ~ 8 &
a O 2 %

#N Offset Length Status |

—» Packet #1 Buffer N

L Packet #2 Buffer
L Packet #3 Buffer > U§
0]
5 @
................................. w
Packet #N Buffer
%

Fig 3.1 Isochronous Transfer Buffer Format.

Hence, the buffer that follows the header is divided into packets. Each packet is
transmitted within one USB frame (1 ms). The size of the packet can be different in each
frame. This allows support for any data rate of the isochronous data stream.

The isochronous transfer buffer is described by the USB | SO XFER structure. This
structure contains an array of USB_| SO PACKET structures, which provide information
about packet data buffers. The Packet Count member of USB_| SO XFER determines the
packet count in a given transfer.

N—1 Programming Interface. 33

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Each USB | SO PACKET hold O f set member indicates the offset of the packet data buffer
(in Packets Data section), from the beginning of the buffer. The Length member
determines the size of a packet buffer. The St atus member indicates the 1/0 operation
result returned when the Driver completes the whole transfer.

An isochronous transfer may not be started immediately. The Client application can
specify the 11-bit St art Fr ame number in the Fixed Header part of the buffer. In this case
the transfer begins in this frame. Otherwise the USB | SO TRANSFER ASAP hit mask
should be set in the Fl ags field of USB_I| SO XFER. In such a case the Driver puts the
request in the queue and begins transmitting as soon as possible. This makes the Client
application capable of implementing a double buffering scheme. In this scheme the Client
should request a new transfer without waiting for the previous one to complete, by
gpecifying the USB_I| SO TRANSFER_ASAP flag.

When the MOTUSB Driver completes 1/0 requests the StartFrane member of
USB_I SO XFER will specify the actual frame number when a transmission was started, the
Error Count member of USB_I SO XFER will specify the total error count in this transfer.
The st at us field of each USB_| SO PACKET will be zero, for each successfully transmitted
packet, or 0x9 if an error occurred (or short packet processed).

NOTE:
No more than 255 packets can be processed within a single isochronous transfer request.

3.4.1. Isochronous Write Transfers.

A write operation on isochronous—out endpoints performs isochronous data transfer from
the Host (PC) to the Device. To perform isochronous write transfers the Client
application should first establish connection to the pipe, build an isochronous transfer
buffer and specify ittowiteFile (WiteFil eEx) Win32 API routines. The sizes of the
packets have to be less than or equal to the maximum packet size of the endpoint. There
must be no gaps between the data packets in the transfer buffer. The Of f set and Lengt h
member of the USB_| SO PACKET structures have to be initialized correctly before the
transfer is started.

When the MOTUSB Driver completes write 1/O requests, it changes the Lengt h member
of each packet according to the actua bytes which were processed in that packet.
Normally this field should be zero, indicating that all packet data was sent, otherwise this
field will contain the number of bytes remaining in the packet buffer as not sent.

3.4.2. Isochronous Read Transfers.

A read operation on isochronous—in endpoints performs an isochronous data transfer from
the Device to the Host (PC). In order to perform isochronous read transfers the Client
application should first establish a connection to the pipe, build an isochronous transfer
buffer and specify it to ReadFi | e (ReadFi | eEx) Win32 API routines. The sizes of the

N—1 Programming Interface. 3-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

packets have to be less than or equal to the maximum packet size of the endpoint. There
must be no gaps between the data packets in the transfer buffer. The O f set and Lengt h
member of the USB_| SO PACKET dtructures have to be initialized correctly before the
transfer is started. Note that because the size of the received packets may be less than the
maximum packet size, data packets are not arranged continuously within the transfer
buffer.

When the MOTUSB Driver completes read 1/0 requests, it changes the Lengt h member
of each packet according to the actual bytes which were processed in that packet.
Normally thisfield should specify the total number of bytes read for a particular pipe.

3.4.3. Using Asynchronous I/0O.

Using asynchronous (Overlapped) I/0O means a thread does not need to wait for a request
completion, to be able to perform some task while the Driver processes the /O request.
Overlapped 1/0O can be applied to any transfer type. If a Client wants to perform
overlapped operations, it should open a pipe by specifying the FI LE_FLAG OVERLAPPED
file attribute parameter to the CreateFile function. Then for each Win32 APl call
related to the Device or pipe object, the caller should specify the OVERLAPPED structure
buffer pointer.

Overlapped 1/0O is very important for isochronous transfers. The major issue with these
transfers is that for the most part the Client application should deliver or receive data in
real time. When the application performs Read or Write request to the MOTUSB Driver,
the I/0O System does not guarantee that this request will be available in the frame time
limit (1 millisecond normally). The only possible solution is to put severa requests to the
Driver, wait until some of them complete and then put further requests with the
USB_| SO TRANSFER_ASAP flag set.

3.5. Device Requests.
The /O Control requests are submitted to the Driver using the Win32 function
Devi cel oControl .

The Devi cel oCont r ol function is defined as follows:

BOCOL Devi cel oCont r ol (

HANDLE hDevi ce, // handle to Device object
DWORD dwi oCont r ol Code, I control code of operation to perform
LPVA D | pl nBuf f er, /I pointer to buffer to supply input data
DWORD nl nBuf f er Si ze, I size of input buffer
LPVA D | pQut Buf f er, /I pointer to buffer to receive output data
DWORD nQut Buf fer Si ze, Il size of output buffer
LPDWORD | pByt esRet ur ned, // pointer to variable to receive
I/ output byte count
N—1 Programming Interface. 3-5

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

LPOVERLAPPED | pOver | apped /I pointer to overlapped structure
/I for asynchronous operation

)

Refer to the Microsoft Platform SDK documentation for more information. The following
sections describe the 1/0 Control codes that may be passed to the Devi cel oContr ol
function as dw oControl Code and the parameters required for |plnBuffer,
nl nBuf f er Si ze, | pQut Buf f er, and nQut Buf f er Si ze.

Table 3.1 Device requests summary.

Request code Description

IOCTL_USB _CLASS OR VENDOR REQUEST | Performsclass or vendor request

IOCTL_USB CYCLE PORT Emulates port connecting,
disconnecting

|IOCTL_USB_FEATURE_CONTROL

Clear or sets feature on the Device

IOCTL_USB_GET_CONFIGURATION

Request the configuration from the
Device

IOCTL_USB_GET_DESCRIPTOR

Request the descriptor from the
Device

IOCTL_USB_GET HANDLE

Returns the kernd mode handle

IOCTL_USB_GET_INTERFACE

Reguests interface alternate setting

IOCTL_USB_GET STATUS

Returns status for spec. recipient

IOCTL_USB _LINK_PIPE

Links pipe handle to Device

IOCTL_USB_LOCK_DEVICE

Locks the Device

IOCTL_USB_RESET DEVICE

Resets Device

IOCTL_USB_RESET PIPE

Resets specified pipe

IOCTL_USB_SET_INTERFACE

Selects interface setting on the
Device

IOCTL_USB_SET_CONFIGURATION

Selects configuration on the Device

IOCTL_USB_UNCONFIGURE_DEVICE

Puts Device into unconfigured state

N—1 Programming Interface. 3-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.1. IOCTL _USB_CLASS OR_VENDOR REQUEST
Performs class or vendor request to the USB.

DeviceloControl parameters:

Ipl nBuffer
Pointer to the buffer containing USB_CLASS _OR VENDOR_REQUEST structure.

ninBuffer Size
Specify input buffer sSze in bytes Must be equa to sze of
USB_CLASS_OR VENDOR_REQUEST structure.

IpOutBuffer

Points to the data buffer if request has IN or OUT data stage (nQut Buf f er Si ze ! = 0).

In case of IN data stage the data from the Device will be placed in this buffer, in case of
OUT data stage the data in this buffer will be transmitted to the Device. Must be NULL if
class or vendor request does not require a data stage.

nOutBuffer Size
Specify data buffer sizein bytesin case of class or vendor request with IN or OUT data
stage. Must be O if class or vendor request does not require a data stage.

Comments:

A SETUP request appears on the default pipe (endpoint zero) of the USB Device with the
given parameters. If a data phase is required an IN or OUT token appears on the bus and
the successful transfer is acknowledged by an IN a OUT token with a zero length data
packet from the Device. If no data phase is required an IN token appears on the bus and
the Device acknowledges with a zero length data packet.

N—1 Programming Interface. 3-7

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.2. |OCTL_USB_CYCLE_PORT

The operation requests Device re-enumerati on.

DeviceloControl parameters:

Ipl nBuffer
Not used with the operation. Must be NULL.

nlnBuffer Size
Not used with the operation. Must be O.

IpOutBuffer
Not used with the operation. Must be NULL.

nOutBuffer Size
Not used with the operation. Must be O.

Comments:

This request has the same effect as disconnecting and connecting a Device to/from the
port. During this operation the MOTUSB Driver should be unloaded and loaded again by
USBDI.

When the USBI unloads the Driver all Device and pipe handles became invalid. The
Client application receives a PnP notification about the Device being removed and should
close all handles to that Device.

During Device re-enumeration the following requests appear on the bus:
Device Reset
GET_DEVICE_DESCRIPTOR
Device Reset
SET_ADDRESS
GET_DEVICE_DESCRIPTOR
GET_CONFIGURATION_DESCRIPTOR

NOTE: Additional requests can appear depending on the descriptors for the Device.

After the re-enumeration process, the operating system loads the MOTUSB Driver again.
The Client software receives a PnP notification about the Device being attached and can
reopen the required handles. This request does not work if the system-provided multi-
interface Driver is used. This Driver expects that al functional Device Drivers to send a
CYCLE_PORT request within 5 seconds.

N—1 Programming Interface. 3-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.3. |OCTL_USB_FEATURE_CONTROL

Requests set or clear specified feature.

DeviceloControl parameters:

Ipl nBuffer
Pointer to the buffer containing USB_FEATURE_REQUEST structure. The buffer must be
completely filled by the caller to specify request parameters.

ninBufferSize
Specify input buffer size in bytes. Must be equal to size of the USB_FEATURE_REQUEST
structure.

IpOutBuffer
No output information will be returned. Must be NULL.

nOutBuffer Size
No output information will be returned Must be 0.

Comments:

This request clears or sets a specified feature to the recipient. CLEAR FEATURE or
SET_FEATURE request appears on the bus depending upon the bC ear flag of the
USB_FEATURE_REQUEST input request.

N—1 Programming Interface. 3-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.4. |OCTL_USB_GET_CONFIGURATION

Requests current Device configuration value.

DeviceloControl parameters:

Ipl nBuffer
No input information specified. Must be NULL.

ninBufferSize
No input information specified. Must be O.

IpOutBuffer
Driver returns a current configuration value into USB_GET_CONFI GURATI ON_REQUEST
structure.

nOutBuffer Size
Specifies dize of output buffer. Must be equa to the dgze of the
USB_GET_CONFI GURATI ON_REQUEST structure.

Comments:

The bConfi gurationVval ue member of the descriptor of the current configuration is
returned in bConfi gVval ue of the USB_GET_CONFI GURATI ON_REQUEST structure. A value
of zero returned, should be considered as an unconfigured Device state. Within this
request no action on the bus occurred. The MOTUSB Driver mantains an interna
variable to track the active configuration index, and change it aong with changing
configuration requests.

N—1 Programming Interface. 3-10
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.5. |OCTL_USB_GET DESCRIPTOR

Requests specified descriptor from Device.

DeviceloControl parameters:

Ipl nBuffer
Pointer to the buffer containing USB_DESC REQUEST dtructure. The buffer must be
completely filled by the caller to specify requested descriptor parameters.

ninBufferSize
Specify input buffer sizein bytes. Must be equal to size of USB_DESC REQUEST structure.

IpOutBuffer

Pointer to the descriptor buffer. The type of this buffer varies depending of requested
descriptor type specified in IplnBuffer (DescriptorType member of
USB_DESC_REQUEST dtructure).

Description by Desciptor type:
for Device descriptor, Driver returns a USB_DEVI CE_DESCRI PTCR structure.

for String descriptor, Driver returns the string descriptor in a
USB_STRI NG _DESCRI PTOR structure. The string itself is found in the variable-
length bst ri ng member of the string descriptor.

for Configuration Descriptor, the Driver returns the configuration descriptor in a
USB_CONFI GURATI ON_DESCRI PTOR structure, followed by the interface and
endpoint descriptors for that configuration. The Driver can access the interface
and endpoint descriptors as USB_| NTERFACE_DESCRI PTCR, and
USB_ENDPQO NT_DESCRI PTCR structures. The Driver aso returns any class-specific
or Device-specific descriptors.

for Endpoint Descriptor, Driver returns a USB_ENDPQO NT_DESCRI PTCR structure
for requested endpoint.

for Interface Descriptor, Driver returns a USB_| NTERFACE_DESCRI PTCOR structure
for requested interface.

This buffer is completely filled by the Driver and specifies the requested descriptor
information if the request was successful.

nOutBuffer Size
Specifies output buffer size in bytes. For configuration descriptor this member must be
equa to the size of the USB_CONFI GURATI ON_DESCRI PTOR or greater (if the caler also

N—1 Programming Interface. 3-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

inquires of other descriptors for this configuration). For any other descriptor type this
member must be equal to the size of the corresponding | pQut Buf fer structure (see
| pQut Buf f er description).

Comments:

For all descriptors except the string descriptor no action on the bus occurs. They are
cached after the Device object is created. The request for Device, configuration and string
descriptors can be performed on an unconfigured Device in order to retrieve information
for further configurations and aternate interface setting selection.

To be able to request interface or endpoint descriptors, the Device must be configured
and the current configuration index must be specified in the Confi gl ndex member of
USB_DESC REQUEST dtructure, otherwise the request returns an eror. When the
configuration descriptor and other descriptors for that configuration are acquired in a
single request, the size of the output buffer should be a multiple of the packet size of the
default pipe.

For USB DESC REQUEST structure members refer to the USB_DESC REQUEST structure
description.

N—1 Programming Interface. 3-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.6. |OCTL_USB_GET HANDLE

Requests kernel mode handle by user mode handle

DeviceloControl parameters:

Ipl nBuffer
None.

nlnBuffer Size

None.

IpOutBuffer

Points to the USB_HANDLE_| NFO structure buffer.

nOutBuffer Size

Must be equal to Size of USB_HANDLE | NFO structure.

Comments:

The Client application should use this request for pipe linking. The request should appear

on a pipe object handle and should return a kernel mode pipe object for linking.

N—1

Programming Interface.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

3-13

Freescale Semiconductor, Inc.

3.5.7. |OCTL_USB_GET_INTERFACE

Requests specified interface aternate setting.

DeviceloControl parameters:

Ipl nBuffer
Pointer to the buffer containing USB_I NTERFACE_SETTI NG structure.

nlnBufferSize
Specify input buffer size in bytes. Must be equa to the size of USB_| NTERFACE_SETTI NG
structure.

IpOutBuffer
Pointer to the buffer containing USB_I NTERFACE_SETTI NG structure.

nOutBuffer Size
Specify input buffer size in bytes. Must be equal to size of USB_| NTERFACE_SETTI NG
structure.

Comments:

The GET_I NTERFACE request appears on the bus. The I nterfacel ndex member of the
input structure should specify the interface descriptor index within the selected
configuration for which the request is issued. On successful completion, the Driver fills
the Al tSettings member of this structure with the current aternate setting for the
interface The pointersto | pl nBuf f er and | pQut Buf f er may refer to the same buffer.

N—1 Programming Interface. 3-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.8. IOCTL_USB_GET _STATUS

Requests status from the specified recipient.

DeviceloControl parameters:

Ipl nBuffer
Pointer to the buffer containing USB_STATUS_REQUEST structure. The buffer must be
completely filled by the caller to specify request parameters.

ninBufferSize
Specify input buffer size in bytes. Must be equa to size of USB STATUS_REQUEST
structure.

IpOutBuffer
Pointer to the buffer containing USB_STATUS REQUEST structure.

nOutBuffer Size
Specify input buffer size in bytes. Must be equal to size of USB_STATUS REQUEST
structure.

Comments:
This request appears as a GET_STATUS request on the bus. The Client application must
specify the recipient in a Target member of the input buffer structure. If the request
succeeds, the Driver returns to the recipient, the status in the St at us member of the
output structure buffer. The pointers to | pl nBuf fer and | pQut Buf f er may refer to the
same buffer.

N—1 Programming Interface. 3-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.9. IOCTL_USB_LINK_PIPE

Requests to link a pipe object handle to a Device by the given pipe object handle

DeviceloControl parameters:

Ipl nBuffer
Pointer to USB_HANDLE | NFO structure buffer. The buffer data contents can be obtained
from 1 OCTL_USB_GET_HANDLE request.

ninBufferSize
Specify input buffer sizein bytes. Must be equal to size of USB_HANDLE_| NFO structure.

IpOutBuffer
Not applicable. Should be zero.

nOutBuffer Size
Not applicable. Should be zero.

Comments:

The Client application should perform the requests upon the establishment of a
connection to a pipe object. The request informs the Device object that the opened handle
belongs to that Device object. The Client uses this request after | OCTL_USB_GET_HANDLE
on the opened pipe handle, resulting in the kernel mode pipe handle in USB_HANDLE_| NFO
structure buffer.

N—1 Programming Interface. 3-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.10. IOCTL_USB_LOCK_DEVICE

Locks access to the Device by a specified Device handle.

DeviceloControl parameters:

Ipl nBuffer
Pointer to the buffer with USB_LOCK_REQUEST structure.

nlnBufferSize
Must be equal to Size of USB_LOCK_REQUEST structure.

IpOutBuffer
Not used with the operation. Must be NULL.

nOutBuffer Size
Not used with the operation. Must be O.

Comments:

By using this operation, the Client application can lock access to a particular Device,
preventing access by other Clients. This function locks the Device by means of the
Device handle. The Device handle specified in the request then becomes a master handle,
so that a request from any other Device handle will be blocked or returned with error.
Only access to those operations that change Device state or perform data transfers will be
blocked.

The request blocks the following operations on the Device:
IOCTL_USB RESET DEVICE
IOCTL_USB_UNCONFIGURE_DEVICE
IOCTL_USB_FEATURE_CONTROL
IOCTL_USB_CLASS OR_VENDOR_REQUEST
IOCTL_USB_CYCLE_PORT
IOCTL_USB RESET _PIPE
IOCTL_USB_SET_CONFIGURATION
IOCTL_USB_SET_INTERFACE

ReadFi |l e or Wit eFil e requests to pipe objects linked to different Device objects, will
be blocked or returned with error. The operation should be used when the Host software
allows different threads (processes) to share a single Device. In this case the request is
very useful to synchronize Device request transactions, for different Device and pipe
handle holders.

The Driver tracks the Device lock count, so that the caller must provide the same count of
unlock operations as for lock, until USB_TOTAL_UNLOCK flag is specified.

N—1 Programming Interface. 3-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.11. IOCTL_USB_RESET DEVICE

Resets Device and parent port objects.

DeviceloControl parameters:

Ipl nBuffer

Not used with the operation. Must be NULL.

nlnBuffer Size

Not used with the operation. Must be O.

IpOutBuffer

Not used with the operation. Must be NULL.

nOutBuffer Size

Not used with the operation. Must be O.

Comments:

This request sends a USB Reset over the bus. As aresult of this all pending transactions
on the bus should be aborted. This request causes al of the status and configuration
values associated with endpoints in the affected interfaces, to be set to thelr default
values. After resetting the Device, the OS sdects the active configuration and the
interfaces within it, so that the Device remains configured. All handles to Device and

pipe objects remain valid. This request should not appear on any unconfigured Device.

N—1

Programming Interface.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

3-18

Freescale Semiconductor, Inc.

3.5.12. IOCTL_USB_RESET PIPE

Request clears error condition on a pipe.

DeviceloControl parameters:

Ipl nBuffer
Not used with the operation. Must be NULL.

nlnBuffer Size
Not used with the operation. Must be O.

IpOutBuffer
Not used with the operation. Must be NULL.

nOutBuffer Size
Not used with the operation. Must be O.

Comments:

The Qient should use this request if an error occurs while transferring data to or from a
pipe. The Driver halts the pipe and returns an error code. No further transfers can be
performed while the pipe is halted. This request causes a stall condition on an endpoint
to be cleared (except for isochronous pipes). In addition the USB Host controller will be

reinitialized.

N—1 Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

3-19

Freescale Semiconductor, Inc.

3.5.13. IOCTL_USB_SET_CONFIGURATION

Select specified configuration for a Device.

DeviceloControl parameters:

Ipl nBuffer
Pointer to the buffer containing USB_SET_CONFI GURATI ON_REQUEST structure. The buffer
must be completely filled by caller.

ninBuffer Size
Specify input buffer sSze in bytes Must be equa to sze of
USB_SET_CONFI GURATI ON_REQUEST structure .

IpOutBuffer
No output information will be returned. Must be NULL.

nOutBuffer Size
No output information will be returned Must be 0.

Comments:

Within this request, the SET_CONFI GURATI ON request appears on the bus. Only the
configuration contained in descriptors can be used. This request can be used to configure
multiple interface Devices in asingle call. Additionally, the caller can specify only the set
of interfaces that will be configured for a selected configuration. To invoke this request,
the Device must be in the unconfigured state. This request causes al of the status and
configuration values associated with endpoints in the affected interfaces, to be set to their
default values. Note, that to invoke this requests no pipe connections should be open on a
Device.

N—1 Programming Interface. 3-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.14. IOCTL_USB_SET INTERFACE

Selects interface aternate setting and transfer size

DeviceloControl parameters:

Ipl nBuffer
Pointer to the USB_| NTERFACE_SETTI NG structure buffer. The buffer must be completely
filled by caller.

ninBufferSize
Specify input buffer size in bytes. Must be equal to size of USB_| NTERFACE_SETTI NG
structure.

IpOutBuffer
No output information will be returned. Must be NULL.

nOutBuffer Size
No output information will be returned Must be 0.

Comments:

The SET_I NTERFACE request appears on the USB. This request ensures that all pipes
pending requests on the bus will be aborted. The pipe objects for a specified aternate
setting will be created and will be got ready to open. If an invalid alternate is setting
specified, the Driver generates an error. The previous configuration becomes invalid and
the Client should use the Set Configuration or Set Interface calls again. Note, that to
invoke this request, no pipe connections should be open on a Device.

N—1 Programming Interface. 3-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.5.15. IOCTL_USB_UNCONFIGURE_DEVICE

This operation requests to put Device into unconfigured state.

DeviceloControl parameters:

Ipl nBuffer
Not used with the operation. Must be NULL.

nlnBuffer Size
Not used with the operation. Must be O.

IpOutBuffer
Not used with the operation. Must be NULL.

nOutBufferSize
Not used with the operation. Must be O.

Comments:
The Device will betreated as unconfigured, and only the following set of requests
can then be applied:
IOCTL_USB_GET_DESCRIPTOR
IOCTL_USB_GET_CONFIGURATION
IOCTL_USB_SET_CONFIGURATION
IOCTL_USB CYCLE PORT.

Establishing a connection to a pipe object is not permitted while the Device is
unconfigured.

After this operation the | OCTL_USB_GET_CONFI GURATI ON request should return a
zero configuration value. The Client software developer should rarely use this
operation, because some issues exist in operating system while working in this state.
However this operation can be useful for new Device testing. In addition the Client
software should use this request before setting a different configuration on the
already configured Device.

N—1 Programming Interface. 3-22
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6. Structures.
3.6.1. USB _CLASS OR VENDOR_ REQUEST

Definition:

typedef struct {
REQUEST TARGET Target;
UCHAR Type;
UCHAR ResBits;
UCHAR Request;
USHORT Value;

} USB_CLASS OR VENDOR REQUEST, *PUSB_CLASS OR VENDOR REQUEST;

Members:
Target
Request recipient defined by REQUEST_TARGET type.

Type

Specifies the type and direction of request.

Direction can be specified by ORi ng with USB_REQUEST | N MASK constant (defined in
moti oct . h) for IN — class or vendor requests (Device should return data). If this mask
is not applied, the Driver performs OUT — class a vendor request (Device returns no
data). Therequest target must can be one of values defined in 3.8.3.

ResBits

Specifies avalue, from 4 to 31 inclusive, that becomes part of the request type code in the
USB-defined setup packet. This value is defined by the USB spec. for a class request or
the vendor for avendor request.

Request
Specifies the class or vendor-defined request code for the Device, interface, endpoint, or
other Device-defined target.

Value

Is a value, specific to a request, that becomes part of the USB-defined setup packet for
the target. This value is defined by the creator of the code used in the request. Check
Device class specification for this value.

Comments:
This structureisused by | OCTL_USB_CLASS OR VENDOR_REQUEST Device request.

N—1 Programming Interface. 3-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.2. USB_DESC_REQUEST
Definition:

typedef struct _USB_DESC _REQUEST {
UCHAR Descriptor Type;
union {
struct {
char Configlndex;
char Interfacel ndex;
char AltSetting;
char Endpointlndex;
¥
struct {
USHORT Languageld;
char Index;
} 5
} USB_ DESC REQUEST, *PUSB_DESC REQUEST,;

Members:
Descriptor Type
One of descriptor types. For possible value see table 3.4 in constants section

Index
Used for string descriptors only. Specifies string index. The language table can be
obtained with zero index.

Languageld
Used for string descriptors only. Specifies the language ID of the descriptor to be
retrieved.

Configlndex

This member is used for configuration, interface or endpoint descriptor request. Specifies
index of the configuration descriptor for which the required descriptor is requested. For a
configured Device, a value of —1 implies a request descriptor from the current
configuration.

I nter facel ndex

This member is used for an interface or endpoint descriptor request. Specifies the index
of the interface descriptor in a selected configuration. If the endpoint descriptor requests
the value of —1, this means it is necessary to lookup the endpoint of the descriptor by
means of the endpoint address, among all the interfaces configured.

N—1 Programming Interface. 3-24
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltSetting
This member is used for an interface or endpoint descriptor request. It specifies an
interface alternate setting for which a descriptor was requested.

Endpointl ndex

This member is used for an endpoint descriptor request. It specifies an endpoint index in
the interface , specified by I nt er f acel ndex. In the case of I nterfacel ndex = -1 the
Client application should put an endpoint address in this member.

Comments.
This structure is used by | OCTL_USB_GET_DESCRI PTCR and
| OCTL_USB_SET DESCRI PTOR requests.

N—1 Programming Interface. 3-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.3. USB_FEATURE_REQUEST

Definition:

typedef struct {
REQUEST _TARGET Tar get;
UCHAR Featur eSelector;
BOOLEAN bClear;

} USB_FEATURE_REQUEST, *PUSB_FEATURE_REQUEST;

Members:
Target
One of the request recipients, defined by REQUEST TARGET enumeration.

Featur eSelector
Specifies feature selector.

bClear
Boolean flag indicating, what feature operation the driver must execute. A TRUE vaue
indicates clearing the feature, a FAL SE indicates setting the feature.

Comments.
This structureisused by | OCTL_USB_FEATURE _CONTROL request.

N—1 Programming Interface. 3-26
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.4. USB_GET _CONFIGURATION_REQUEST
Definition:

typedef struct _USB_GET_CONFIGURATION_REQUEST {
UCHAR bConfigValue;
} USB_GET_CONFIGURATION_REQUEST;

Members:

bConfigValue

Specifies current configuration value. This value is equal to bConfi gurati onval ue
member of the configuration descriptor for active configuration. If Device in
unconfigured state driver returns zero.

Comments:
This structureisused by | OCTL_USB_GET_CONFI GURATI ON request.

N—1 Programming Interface. 3-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.5. USB_HANDLE _ INFO
Definition:

typedef struct _USB_HANDLE_INFO {
PVOID ObjectHandle;
} USB_HANDLE_INFO;

Members:
ObjectHandle
Kernel mode pipe object handle.

Comments:
The structure used by | OCTL_USB LI NK_PI PE and | OCTL_USB_GET_HANDLE requests.
Specifies a kernel mode pipe object handle for a pipe to Device linking.

N—1 Programming Interface. 3-28
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.6. USB_INTERFACE_SETTING

Definition:

typedef struct_USB_INTERFACE_SETTING {
USHORT I nterfacel ndex;
USHORT AltSetting;
ULONG MaxTransfer Size;

} USB_INTERFACE_SETTING, *PUSB_INTERFACE_SETTING;

Members:

I nter facel ndex

Specifies zero - base interface descriptor index within configuration. If using this
structure on configured Device this value specifies index in interfaces configured within
the configuration.

AltSetting
Specifies alternate settings value for given interface.

MaxTransfer Size

Specifies maximum transfer size for all the pipes of an interface. Maximum transfer size
depends on the Device. If Client application performs a transfer with lager size than the
maximum transfer size, the driver will break this request into smaller pieces, conforming
to this value. The value of —1 is assumed to be: take default maximum transfer size for
registry settings.

Comments:
This structure IS used by | OCTL_USB_SET_CONFI GURATI ON,
| OCTL_USB_SET | NTERFACE and | OCTL_USB_GET | NTERFACE request.

N—1 Programming Interface. 3-28
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.7. USB_ISO PACKET
Definition:

typedef struct _USB _ISO_PACKET {
ULONG Offset;
ULONG Length;
ULONG Status;

} USB I1SO_PACKET, *PUSB _1SO_PACKET;

Members:

Offset

Packet buffer offset within isochronous transfer buffer pointed by USB 1SO XFER
structure.

Length

Specifies packet length in bytes. The Client application should set this value for
isochronous transfers. When driver completes transfer 1/0O it fills this member with the
number of bytes actually processed for this packet. This vaue should be less than or
equal to endpoint packet size, defined in an endpoint descriptor of the pipe for which the
I/O operation should be performed.

Status
The driver returns packet transmitting result to this member. Zero means successful
transmission, 0x9 shows that a short packet was processed.

Comments.
This structure is used as part of an isochronous transfer request using the USB_| SO XFER

structure and specifies the packet header information. The O f set member contains the
offset from the beginning of the USB_ISO_XFER buffer.

To determine the isochronous transfer buffer size by a given Packet Count and Packet
Size use | SO XFER BUF_SI ZE(Packet Count, Packet Si ze) macro. The result value
will include header, packet headers and packet data buffers sizes

To get pointer to the isochronous packet data buffer by given transfer buffer and packet
index relative to the transfer buffer use the PACKET BUFFER(xf er, i ndex) macro.

N—1 Programming Interface. 3-30
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.8. USB_ISO_XFER

Definition:

typedef struct _USB ISO_XFER {
USHORT StartFrame;
ULONG Flags,
ULONG ErrorCount;
ULONG PacketCount;

USB_ISO PACKET Packets[1];
} USB_ISO_XFER, *PUSB_|SO_XFER;

Members:

StartFrame

Specifies the frame number that the transfer should begin on. This variable must lie
within the 2048 frames. If the USB_| SO TRANSFER ASAP is set in Fl ags, this member
contains the frame number that the transfer began on, when the request was returned by
the Host controller driver. Otherwise, this member must contain the frame number that
thistransfer will begin on.

Flags

Specifies zero or a USB_| SO TRANSFER_ASAP flag. If equal to USB_| SO TRANSFER_ASAP
the transfer is set to begin on the next frame, if there were no transfers submitted to the
pipe since the pipe was opened or last reset. Otherwise, the transfer will begin on the first
frame following al currently queued requests for the pipe. The actual frame that the
transfer begins on will be adjusted for bus latency by the driver.

ErrorCount;
Contains the number of packets that completed with an error condition on return from the
driver.

PacketCount
Specifies the number of packets described by the boundless array member Packet s. This
value can be from 1 to 255.

Packets
Contains a variable-length array of USB | SO PACKET structures that describe each
transfer packet of the isochronous transfer

Comments:
This specifies the buffer form for isochronous transfers. If IsoPacket has n entries, the
Host controller transfers use n frames to transfer data, transferring Packets [i]. Length

bytes beginning, with an offset of Packets[i]. Of f set.

N—1 Programming Interface. 3-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.9. USB _LOCK_ REQUEST
Definition:

typedef struct _USB_L OCK_REQUEST {
ULONG Flags,
} USB_LOCK_REQUEST, *PUSB_LOCK_REQUEST;

Members:

Flags

Specifies zero, one, or a combination of the following flags: USB_LOCK_DEVI CE Acquires
Device lock. If there are no other handles to the same Device, the object maintains lock
and the Device object handle specified, becomes the owner of the lock. Otherwise the
request will be put in the queue by the Device lock queue and processed later. If the
application performs this request synchronously, the calling thread will be blocked until
the request is processed.

USB_TRY_LOCK_DEVICE

The request is the same as with specifying the USB_LOCK_DEVICE flag. However the
driver will not block the thread and put this request in the queue if the Device is aready
locked, instead it returns with an error immediately.

USB_UNLOCK_DEVICE
Releases single Device lock by a given Device handle.

USB TOTAL_UNLOCK
Releases all Device locks by a given Device handle.

Comments:

The structure is used by the |1 OCTL_USB_LOCK_DEVI CE requests. It is possible to lock a
Device severa times with the same handle. The Client should aso release locks as often
as it acquires them. If the Client wants to remove all locks by a particular handle, it
should specify the USB_ TOTAL_UNLOCK flag.

N—1 Programming Interface. 3-32
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.10. USB_SET_CONFIGURATION_REQUEST

Definition:

typedef struct _USB_SET_CONFIGURATION_REQUEST {
USHORT Configlndex;
LONG InterfaceCount;

USB_INTERFACE_SETTING InterfaceJUSB_MAX_INTERFACE_COUNT];
} USB_SET_CONFIGURATION_REQUEST:;

Members:
Configlndex
Index of configuration descriptor. Used to identify configuration.

I nterfaceCount

Count of interfaces that should be configured within this configuration. If —1 is specified,
al Interfaces with a configuration become configured with the zero aternate setting and
default maximum transfer size.

Interface§USB_MAX_INTERFACE_COUNT]

The array of interface settings should be configured within this configuration. This array
must contain | nt er f aceCount valid entries. Not applicableif I nt er f aceCount isequal
to—1.

Comments:

This structure is used by | OCTL_USB_SET_CONFI GURATI ON request. In addition when
I nterfaces member is used (not equa to -1), it is possible to specify the maximum
transfer sizefor each interface that was configured.

N—1 Programming Interface. 3-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.6.11. USB_STATUS REQUEST
Definition:

typedef union _USB_STATUS REQUEST {
REQUEST _TARGET Target;
USHORT Status;
} USB_STATUS REQUEST, *PUSB_STATUS REQUEST;

Members:
Target

One of the request recipients defined by REQUEST _TARGET enumeration.

Status
The status returned by the driver requested by the caller.

Comments:
Thisstructureisused by | OCTL_USB_GET_STATUS request.

N—1 Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.7. Types.
3.7.1. REQUEST TARGET
Definition:

typedef USHORT REQUEST TARGET;

Comments:

The type combines request recipient in low byte and recipient index in high byte. For the
Device target this value is zero. For interface and endpoint recipients use the following
Macros.

ENDPOINT_TARGET (index)
INTERFACE_TARGET (index)
This macros combines one of USBRecei pi ent s enumeration values and index.

To parse this type use REQUEST_TARGET TYPE(target) . returns one of
USBRecei pi ents enumeration value REQUEST_TARGET | NDEX(target) : returns
receipient index.

N—1 Programming Interface. 3-35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor,

3.7.2. USB_DEVICE_DESCRIPTOR

Definition:

typedef struct _USB_DEVICE_DESCRIPTOR {

UCHAR bLength;

UCHAR bDescriptor Type;
USHORT bcdUSB;

UCHAR bDeviceClass,
UCHAR bDeviceSubClass;
UCHAR bDeviceProtocol;
UCHAR bMaxPacketSize0;
USHORT idVendor;
USHORT idProduct;
USHORT bcdDevice;
UCHAR iManufacturer;
UCHAR iProduct;

UCHAR iSerialNumber;
UCHAR bNumConfigurations;

Comments:

Inc.

} USB_DEVICE_DESCRIPTOR, *PUSB_DEVICE_DESCRIPTOR,;

The structure represents the USB1.1 Device descriptor. For member description refer o

USB 1.1 specification.

N—1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
For More Information On This Product,

Programming Interface.

Go to: www.freescale.com

3-36

Freescale Semiconductor, Inc.

3.7.3. USB_ENDPOINT_DESCRIPTOR
Definition:

typedef struct _USB_ENDPOINT_DESCRIPTOR {
UCHAR bLength;
UCHAR bDescriptor Type;
UCHAR bEnNndpointAddress,
UCHAR bmAttributes
USHORT wM axPacketSize;
UCHAR binterval;
} USB_ENDPOINT_DESCRIPTOR, *PUSB_ENDPOINT_DESCRIPTOR;

Comments:
The structure represents USB1.1 endpoint descriptor. For member description refer to
USB 1.1 specification.

N—1 Programming Interface. 3-37
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.7.4. USB_CONFIGURATION_DESCRIPTOR
Definition:

typedef struct _USB_CONFIGURATION_DESCRIPTOR {
UCHAR bLength;
UCHAR bDescriptor Type;
USHORT wTotalL ength;
UCHAR bNumlinterfaces;
UCHAR bConfigurationValue;
UCHAR iConfiguration;
UCHAR bmAttributes,
UCHAR MaxPower,
} USB_CONFIGURATION_DESCRIPTOR,
*PUSB_CONFIGURATION_DESCRIPTOR;

Comments:
The structure represents USB1.1 configuration descriptor. For member description refer
to USB 1.1 specification.

N—1 Programming Interface. 3-38
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.7.5. USB_INTERFACE_DESCRIPTOR
Definition:

typedef struct _USB_INTERFACE_DESCRIPTOR {
UCHAR bL ength;
UCHAR bDescriptor Type;
UCHAR bl nterfaceNumber;
UCHAR bAlter nateSetting;
UCHAR bNumEndpoints,
UCHAR bl nterfaceClass;
UCHAR bl nterfaceSubClass;
UCHAR bl nterfaceProtocaol;
UCHARiInterface;
} USB_INTERFACE_DESCRIPTOR, *PUSB_INTERFACE_DESCRIPTOR;

Comments:.

The structure represents USB1.1 interface descriptor. For member description refer to
USB 1.1 specification.

N—1 Programming Interface. 3-3¢
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.7.6. USB_STRING_DESCRIPTOR
Definition:

typedef struct _USB_STRING_DESCRIPTOR {
UCHAR bL ength;
UCHAR bDescriptor Type;
WCHAR bString[1];
} USB_STRING_DESCRIPTOR, *PUSB_STRING_DESCRIPTOR;

Comments:
The structure represents USB1.1 string descriptor. For member description refer to USB
1.1 specification.

N—1 Programming Interface. 3-40
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.8. Enumeration Types.
3.8.1. USBReceipients
Definition:

enum USBReceipients {
DeviceTarget =0,
InterfaceTarget,
EndpointTarget,
OtherTarget

1

Comments:
Request recipients. These values are used by the REQUEST_TARGET type.

N—1 Programming Interface. 3-41
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.8.2. LockFlags.
Definition:

enum L ockFlags {

USB_LOCK_DEVICE =1,

USB UNLOCK_DEVICE =2,

USB TOTAL_UNLOCK =4,

USB_TRY_LOCK_DEVICE =8,

USB LOCK_MASK =USB LOCK_DEVICE |
USB_UNLOCK _DEVICE |
USB TRY_LOCK_DEVICE |
USB_TOTAL_UNLOCK;

h

Comments:
Flags used by USB_LOCK_REQUEST structure. The values specify lock type.

N—1 Programming Interface. 3-42
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.8.3. RequestsTypes.
Definition:

enum RequestsTypes {
ClassRequest =1,
VendorRequest

1

Comments:
Class or Vendor requests typesused by USB_ CLASS OR_VENDOR_REQUEST
structure. Specifies request type.

N—1 Programming Interface. 3-43
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.9. Constants.

3.9.1. MOTUSB Defined Constants.
MOTUSB defines several constant valuesin thenot i oct | . h header file.

The following table shows limitation constants applied to the MOTUSB Driver:

Table 3.2 Driver Limits.

Code Value Description
USB MAX CONFIG COUNT OX7F Maximum configurations per Device
USB_MAX _INTERFACE _COUNT | Ox7F Maximum interfaces per configuration
USB_MAX_ENDPOINTS COUNT | Ox7F Maximum endpoints per interface
USB MAX_TRANSFER SIZE OX7FFFFFFF | Maximum transfer size
USB MAX ISO PACKETS OxFF Maximum isochronous packet per transfer

The following table shows the flags used in the Driver programming interface:

Table 3.3 Driver flags.

Code Value Description

USB REQUEST IN_MASK 0x80 | Mask for vendor or class request with IN data
stage. This mask should be applied

to Type field of Class or Vendor requests input
structure

USB ISO TRANSFER ASAP 0x04 | Bit mask for Fl ags member of USB_| SO XFER
structure. The flag means isochronous transfer
should be started from the first available frame.
The isochronous transfer requests can be put in
the queue for further I/O processing.

N—1 Programming Interface. 3-44
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.9.2.

USB Specification Defined Constants.

MOTUSB programming interface uses the following USB 1.1 specification constants

provided by DDK in usbh100.h header file:

Table 3.4 Descriptor types.

Code Value Comments
USB DEVICE DESCRIPTOR_TYPE 0x01 Device Descriptor
USB_ CONFIGURATION_DESCRIPTOR TYPE 0x02 Configuration Descriptor
USB_STRING _DESCRIPTOR_TYPE 0x03 String Descriptor
USB_INTERFACE _DESCRIPTOR_TYPE 0x04 I nterface Descriptor
USB_ENDPOINT _DESCRIPTOR TYPE 0x05 Endpoint Descriptor

Table 3.5 Endpoint Types.

Code Value Comments
USB_ENDPOINT_TYPE _CONTROL 0x00 Control Endpoint
USB_ENDPOINT_TYPE_ISOCHRONOUS 0x01 | sochronous Endpoint
USB ENDPOINT _TYPE BULK 0x02 Bulk Endpoint
USB_ENDPOINT_TYPE _INTERRUPT 0x03 Interrupt Endpoint

Table 3.6 Feature Selectors.

Code Value USB Spec. Value
USB FEATURE _ENDPOINT_STALL 0x00 ENDPOINT_HALT
USB FEATURE REMOTE WAKEUP 0x01 | DEVICE_ REMOTE WAKEUP

Table 3.7 Status Values.

Code Value Comments
USB GETSTATUS SELF POWERED 0x01 Deviceis self powered
USB GETSTATUS REMOTE_WAKEUP_ENABLED 0x02 Device supports remote
wakeup
USB_GETSTATUS ENDPOINT HALT 0x01 Endpoint Stall Feature Set

N—1

Programming Interface.

3-45

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table 3.8 bmAttributes of Configuration Descriptor.

Code

Value

Comments

USB_CONFIG_BUS POWERED

0x80

Isset if this configuration
is powered by the bus

USB_CONFIG_SELF_POWERED

0x40

This configuration is self-
powered and does not use
power from the bus

USB_CONFIG_REMOTE_WAKEUP

0x20

Isset if this configuration
supports remote wakeup.

N—1 Programming Interface.

3-46

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.10. Error codes.

The Driver maps error codes returned by USBDI for MOTUSB Client applications.

These errors are returned by USBDI if an error on the bus occurs. The MOTUSB diver

provides only the gate between USBDI and the Client application and makes no

assumptions about the values. For a detailed description refer to the Microsoft DDK

Documentation.

Table 3.9 Mapped error codes.

Code Value

USB STATUS CRC OxE0100001L
USB STATUS BTSTUFF OxE0100002L
USB_STATUS DATA TOGGLE_MISMATCH OxE0100003L
USB STATUS STALL PID OxE0100004L
USB_STATUS DEV_NOT_RESPONDING OxE0100005L
USB STATUS PID_ CHECK_FAILURE OxE0100006L
USB STATUS UNEXPECTED PID OxE0100007L
USB STATUS DATA OVERRUN OxE0100008L
USB STATUS DATA UNDERRUN OxE0100009L
USB_STATUS BUFFER OVERRUN OxE010000CL
USB STATUS BUFFER_UNDERRUN OxE010000DL
USB STATUS NOT_ACCESSED OxE010000FL
USB STATUS HFO OxE0100010L
USB_STATUS ENDPOINT HALTED OxE0100030L
USB STATUS NO MEMORY OxE0100100L
USB_STATUS INVALID URB_FUNCTION OxE0100200L
USB STATUS INVALID PARAMETER 0OxE0100300L
USB STATUS ERROR BUSY OxE0100400L
USB STATUS REQUEST FAILED OxE0100500L
USB STATUS INVALID PIPE HANDLE OxE0100600L
USB STATUS NO BANDWIDTH OxE0100700L
USB STATUS INTERNAL_HC ERROR OxE0100800L
USB STATUS ERROR SHORT TRANSFER OxE0100900L
USB_STATUS BAD START FRAME OxE0100A0OL
USB_STATUS ISOCH REQUEST FAILED OxE0100B0O0L
USB_STATUS FRAME_CONTROL_OWNED OxE0100CO0L
USB_STATUS FRAME_CONTROL_NOT_OWNED OxE0100D0OL
USB STATUS CANCELED OxE0110000L
USB STATUS CANCELING OxE0120000L

N—1

Programming Interface.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

3-47

Freescale Semiconductor, Inc.

Several error codes returned by MOTUSB are specific to the MOTUSB Driver and

library.

Table 3.10 MOTUSB error codes.

Code

Description

USB_STATUS ALREADY_CONFIGURED

Deviceisalready configured

USB_STATUS UNCONFIGURED

Deviceis unconfigured

USB_STATUS NO SUCH_DEVICE

The specified Device doesn't exists

USB_STATUS DEVICE NOT_FOUND

The specified Device not found in
system

USB_STATUS |O_PENDING

I/O operation is still in progress

USB_STATUS NOT_SUPPORTED

Operation isn’t supported by Driver

USB_STATUS IO _TIMEOUT Request timeout

USB STATUS DEVICE REMOVED Device was removed

USB _STATUS PIPE NOT_LINKED Pipe not linked

USB STATUS PIPE CONNECTED Device cannot be reconfigured because
pipe connections already exist.

USB_STATUS DEVICE LOCKED

Deviceislocked by another handle

N—1

Programming Interface. 3-48

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4. MOTUSB Library.

4.1. Library Overview.

The MOTUSB library is based on the functionality of the MOTUSB Device Driver. The
purpose of this library is to smplify USB development processes for user mode Client
applications, that use the MOTUSB Device Driver. The library maps al functionality
provided by the MOTUSB Device Driver. Developers should find it preferable to use the
library programming interface than to communicate directly with the Device Driver
through Win32 API.

4.2. Compiling And Linking.

Required headers:

\inc
mot usb. h - MOTUSRB library programming interface
mot st at us. h - MOTUSB errors codes

Required libraries:
\lib
mot usb. I'i b - MOTUSB library

4.3. Handles.

The Library uses other handles than OS (HANDLE). The mgor problems with OS
handles is that in some cases they can become invaid. A MOTUSB Client should track
these cases and reopen the handles where possible. The MOTUSB library automatically
supports such tracking and, moreover, MOTUSB handles never become invalid. When
the Client application wants to perform an operation on a handle that turns out to be in an
invalid state, the library returns a corresponding error code. The Client application does
not track such cases as Device disconnection from the bus. The library closes al handles
upon disconnection and reopens them if a Device with the same VendorID / ProductiD
connectsto the bus.

The type of handle usb_t is common for both Device and pipe objects. However the
library differs between them, and requests which apply to a Device handle, should not be
used for pipe objects, and similarly pipe object handles should not be used for Device
requests.

The Library does not provide a way to open a pipe object without the assistance of the
Device. The Library maintains an open pipe list for each Device object. The Client
application first needs to open a Device object handle using the USBOpenDevi ce routine,

~—"1 MOTUSB Library. 4-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

then, provided the Device is configured, the application can request a pipe object to open
on the Device using the USBOpenPi pe routine.

In the MOTUSB library each Client should provide the handle as a parameter for most
functions.

4.4. Error codes.

All functions in the Library except USBGet Devi ceLi st, USBRel easeDevi ceLi st, and
USBGet Error Text return MOTUSB Driver error codes (See MOTUSB Error codes
section). MOTUSB shares the same error code for a Driver and a library. For further
information on “MOTUSB error codes’ in the “Ret ur ns” statement specified, refer to the
errors codes for the Driver.

4.5. Notes about overlapped I/O.

The MOTUSB library provides a way to make an overlapped 1/0O for the Client
application. Every handle in the library is opened for overlapped I/O operation, since
each handle library maintains a variable of the structure. Most functions require a
variable of the OVERLAPPED structure as a parameter structure type. The caller can
specify NULL to this parameter. In this case, the library will use an internal variable and
blocks the calling thread until the request completes. If the caller specifies a non-zero
value for this parameter, it should use the USBwai t | O function to determine where the
actual 1/0 request completes. This can be done in another thread context for example, so
that the main thread remains unblocked, and the Client can perform other operations
while waiting for the actual 1/0 to complete.

4.6. Functions Descriptions.

Table 4.1 Library functions summary.

Function | Handle | Description

Devices enumer ation

USBGetDevicelist N/A Retrieves all connected Devices for which installed

USBReleaseDevicelist N/A Frees Device list requested by prior function
Device, pipe connections

USBOpenDevice Device | Establishes connection to Device object

USBCloseDevice Device | Closes connection to Device object

USBOpenPipe Device | Establishes connection to bulk or interrupt pipe object

USBClosePipe Pipe Closes connection to bulk or interrupt pipe object
Descriptors

USBGetDeviceDesc Device | Requests Device descriptor

USBGetConfigDesc Device | Requests configuration descriptor

~—"1 MOTUSB Library. 4-2

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

USBGetInterfaceDesc Device | Requests specified interface descriptor
USBGetEndpointDesc Device | Requests specified endpoint descriptor
USBGetStringDesc Device | Requests specified string descriptor
USBPipeGetDescriptor Pipe Requests endpoint descriptor of a pipe
Configuration
USBSetConfiguration Device | Selectsthe Device configuration
USBGetConfiguration Device | Requeststhe selects selected Device configuration
USBUnNconfigureDevice Device | PutsDeviceinto unconfigured state
USBGetInterface Device | Returnsinterface alternate setting
USBSetinterface Device | Selectsinterface alternate setting
Function | Handle | Description
Device control
USBResetDevice Device | ResetsDevice
USB SetFeature Device | Setsfeature for specified recipient
USBClearFeature Device | Clearsfeature for specified recipient
USBGetStatus Device | Retrieves statusfor specified recipient
USBClassOrVendorRequest | Device | Performsclass or vendor (IN or OUT) requests
USBCyclePort Device | Emulates Device replugging
Device locking
USBLockDevice | Device | Locks/Unlocks access to Device by Device handle
Device Natifications
USBRegisterDevNotify N/A Registers Device attaching/removing notification to
the window
USBUnregisterDevNotify N/A Unregisters window form Device attaching/removing
notification
Pipes1/O
USBResetPipe Pipe Stops al pending 1/O for pipe and reintializes the Host
controller
USBReadPipe Pipe Performs data transfer from Device to Host
USBWritePipe Pipe Performs data transfer from Host to Device
USBBuildisoXfer Pipe Creates isochronous transfer buffer
Common
USBWaitlO Pipe /| Walitsuntil last pipe I/O operation completes
Device
USBIoCirl Pipe /| Performs Device request directly
Device
USBCancdlO Pipe /| Aborts all pending 1/0 requests, applied by calling
Device | thread, for particular Device or pipe handle.
Errors
USBGetErrorText | N/A | Returns error text for specified error code
~—"1 MOTUSB Library. 4-3

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

N—1

Freescale Semiconductor, Inc.

MOTUSB Library.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.1. USBBuildisoXfer
Definition:

DWORD USBAPI

USBBuildl soXfer (
IN usb t Pipe,
IN BYTE PacketCount,
IN USHORT StartFrame,
IN DWORD Hags,
OUT PVOID *Buffer,
OUT ULONG *BufferSize

);
Parameters.
Pipe
Points to the opened isochronous pipe handle.

PacketCount
Specifies packet count in transfer buffer.

StartFrame

Points to variable used for overlapped I/O. Can be NULL.

Flags

I sochronous transfer flags. Can be zero or USB_| SO TRANSER ASAP.

Buffer

Points to the buffer created by this routine. Formally this points to USB | SO XFER

structure header.

Buffer Size
The parameter will hold the created buffer size.

Returns:

On success, routine returns USB_STATUS_SUCCESS, or €lse some error code

Comments:

The function creates an isochonous transfer buffer. This buffer can be used by
USBReadPi pe and USBW i t ePi pe functions for isochronous endpoints. It fills the packets

header according to the maximum packet size for a specified endpoint.

If the Client

wants another packet length for some of the transfer packets it should modify the O f set
and Lengt h member of USB_| SO PACKET manualy. When the Client no longer needs the
buffer it should release the memory the Buf f er parameter points to, using the free

standard library routine.

N—1 MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.2. USBCancellO.

The function aborts all pending I/0 requests on a handle.
Definition:

DWORD USBAPF

USBCance IO (

IN usb t Pipe,

IN OUT OVERLAPPED *pOverlapped
);

Parameters.
Pipe
Points to the opened pipe handle.

byThread
Flag that is used to abort a pending I/O by calling athread or by means of a pipe handle.

pOverlapped
Points to a variable used for overlapped. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some error code.

Comments:
Aborts al pending I/O requests, applied by calling a thread, for a particular Device or
pipe handle.

N—1 MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.3. USBClassOrVendorRequest

Definition:

DWORD USBAPI

USBClassOrV endorRequest(
IN usb t Device,
IN PUSB_CLASS OR_VENDOR_REQUEST Request,
IN OUT LPVOID Buffer,
IN DWORD Bufsize,
IN OUT OVERLAPPED * pOverlapped
);

Parameters.

Device

Points to the opened Device handle

Request
Points to the request parameter block

Buffer
Points to the output buffer (in case of an IN request)

Bufsize
Specifies the size of output buffer in bytes.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code.

Comments:

This function performs class or vendor request. The caller must completely fill the
request parameter block of PUSB_CLASS OR VENDOR REQUEST type. The function sends
| OCTL_USB_CLASS OR VENDCR REQUEST request to the Driver.

~—"1 MOTUSB Library. 4-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

46.4. USBClearFeature

Definition:

DWORD USBAPI

USBClearFeature(
IN usb_t Device,
IN REQUEST_TARGET Target,
IN UCHAR Feature,

IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle.

Target
One of request recipients, defined by REQUEST_TARGET type.

Feature
Specifies feature selector.

pOverlapped
Points to variable used for overlapped I/0. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or €lse some MOTUSB error code.

Comments:

The function clears a specified feature for a specified recipient. Feature selectors should
be USB_FEATURE_ENDPOI NT_STALL Or USB_FEATURE_REMOTE_WAKEUP. The function
sendsal OCTL_USB FEATURE_CONTROL request to the Driver.

~—"1 MOTUSB Library. 4-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

46.5. USBCloseDevice
Definition:

DWORD USBAPI
USBCloseDevice(
IN OUT usb_t* pDevice
);

Parameters:
pDevice
Points to an opened Device handle. On function return set handle to NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments

This function closes a Device handle acquired with the USBOpenDevi ce routine. The
Client application should close each opened handle when that handle is no longer needed,
or at least at the application cleanup time. Closing the Device handle aso causes the
closure of al linking pipe handles.

~—"1 MOTUSB Library. 4-S
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.6. USBClosePipe
Definition:

DWORD USBAPI
USBClosePipe(

IN usb_t* pPipe
);

Parameters:
pPipe
Points to pipe handle. On function return set handle to NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:

The function closes the connection to a pipe object specified by the pi pe handle. The
pipe handle is unlinked from the Device object. All pending I/Os on this pipe will be
aborted.

~—"1 MOTUSB Library. 4-10
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.7. USBCyclePort
Definition:

DWORD USBAPI

USBCyclePort(

IN usb t Device,
IN OUT OVERLAPPED *pOverlapped

);
Parameters:

Device
Points to the opened Device handle.

pOverlapped

Points to variable used for overlapped I/0. Can be NULL.

Returns:

On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments
This request requests Device replugging emulation.

The function sendsal OCTL_USB_CYCLE_PORT request to the Driver.

N—1 MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

4-11

Freescale Semiconductor, Inc.

4.6.8. USBGetConfigDesc

Definition:

DWORD USBAPI

USBGetConfigDesc(
IN usb t Device,
IN int Configlndex,
OuUT LPVOID Desc,

IN OUT LPDWORD Size,
IN OUT OVERLAPPED *pOverlapped

);
Parameters:

Device
Points to the opened Device handle

Desc
Points to the buffer to return configuration descriptor in.

Size

Specifies the bytes count to be returned for the configuration. This parameter must be
equa to the size of the USB_CONFI GURATI ON DESCRI PTOR or greater (if the caller
acquires other descriptors for this configuration also). Also it should be a multiple of the
packet size of the default pipe.

Configl ndex
Specifies requested configuration descriptor index (zero - biased)

pOver lapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:

The function returns the configuration descriptor in a USB_CONFI GURATI ON_DESCRI PTOR
structure, followed by the interface and endpoint descriptors for that configuration. The
Driver can access the interface and endpoint descriptors as USB_| NTERFACE_DESCRI PTCR,
and USB_ENDPQO NT_DESCRI PTCOR structures. The Driver aso returns any class-specific or
Device-specific descriptors. The function sends a | OCTL_USB_GET_DESCRI PTOR request
to the Driver.

~—"1 MOTUSB Library. 4-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.9. USBGetConfiguration
Definition:

DWORD USBAP

USBGetConfiguration(

IN usb t Device,

OUT UCHAR *Configlndex,
IN OUT OVERLAPPED *pOverlapped

);

Parameters:

Device
Points to the opened Device handle

Configlndex
Pointsto variable to result Device defined configuration value

pOverlapped
Points to variable used for overlapped 1/0. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments

The function requests an active configuration index. Configuration value returns in the
buffer pointed by the Configlndex parameter. A zero returned value should be
consdered as unconfigured Device sate. The function sends a
| OCTL_USB_GET_CONFI GURATI ON request to the Driver.

~—"1 MOTUSB Library. 4-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.10. USBGetDeviceDesc
Definition:

DWORD USBAPI

USBGetDeviceDesc(
IN usb_t Device,
OUT PUSB_DEVICE_DESCRIPTOR Desc,

IN OUT OVERLAPPED *pOverlapped

)i
Parameters:

Device
Points to the opened Device handle

Desc
Points to the buffer for requested Device descriptor

pOver lapped

Points to variable used for overlapped I/O. Can be NULL.

Returns:

On succeess, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code

Comments:

This function requests the Device descriptor. The caller should allocate a buffer for the

Desc parameter. The function sends a | OCTL_USB_GET_DESCRI PTOR

Driver.

N—1 MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

request to the

4-14

Freescale Semiconductor, Inc.

4.6.11. USBGetDeviceList
Definition:

HDEVINFO USBAPI
USBGetDeviceList(void);

Parameters:
None

Returns:
The function returns connected MOTUSB Device list in HDEVI NFO system handle or
NULL on any error

Comments:

Using this function, the Client application can retrieve a connected MOTUSB Devices
list. Thisis an essential part of connected Devices enumeration. The caller should provide
this handle to the usBOpenDevi ce function. When the Client opens the required Device it
should release the system handle using the USBRel easeDevi ceLi st routine.

~—"1 MOTUSB Library. 4-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.12. USBGetEndpointDesc

Definition:
DWORD USBAF
USBGetEndpointDesc(
IN usb t Device,
IN BYTE Configlndex,
IN BYTE Interfacel ndex,
IN BYTE atSetting,
IN BYTE Endpointindex,
OUT PUSB_ENDPOINT_DESCRIPTOR pDescriptor,
IN OUT OVERLAPPED *pOverlapped
);
Parameters.
Device

Points to the opened Device handle

Configlndex
Specifies configuration descriptor index. The value —1 means selected configuration.

I nter facel ndex
Interface descriptor index within configuration. The value —1 means it is necessary to
look up the endpoint descriptor among all the configured interfaces.

AltSetting
Interface alternate setting to lookup endpoint the descriptor within.

Endpointlndex

Endpoint descriptor index within the interface. If | nterfacel ndex parameter is equal to
—1 this parameter should specify the endpoint address. The descriptor will be looking
through all the configured interfaces.

pDesciptor
Points to the buffer for requested endpoint descriptor

pOverlapped
Points to variable used for overlapped I/0. Can be NULL.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or €lse some MOTUSB error code.

~—"1 MOTUSB Library. 4-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Comments:

This function returns the interface descriptor in a PUSB_ENDPQO NT_DESCRI PTOR. The
caller should allocate a buffer pointed by the pDescri ptor, large enough to store the
PUSB_ENDPQ NT_DESCRI PTOR structure. The endpoint descriptor requested is relative to
the interface and configuration descriptors. The caller should properly specify the
configuration descriptor index Confi gl ndex, interface descriptor index | nt er f acel ndex
within the configuration, and the endpoint descriptor index ep_i ndex within that
interface. Alternatively by specifying —1in Confi gl ndex and I nt er f acel ndex, aClient
can obtain the descriptor by specifying the endpoint address in the Endpoi nt | ndex
parameter. The function sendsal OCTL_USB_GET_DESCRI PTOR request to the Driver.

~~——"1 MOTUSB Library. 4-17

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.13. USBGetErrorText
Definition:

LPCTSTR USBAPI
USBGetErrorText(
IN DWORD Status

);

Parameters.
Status — MOTUSB error code returned by some library routine.

Returns.

Pointer to the string with error message for specified error code. The Client should use
Local Free Win32 API function to free memory allocated by this function when it no
longer needs this message.

Comments:
The function returns error message string for specified error code.

N—1 MOTUSB Library.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

4-18

Freescale Semiconductor, Inc.

4.6.14. USBGetinterface
Definition:

DWORD USBAP
USBGetInterface(

IN usb t Device,
IN UCHAR Interfacel ndex,
OUT PUCHAR AltSettings,
IN OUT OVERLAPPED *pOverlapped
);
Parameters:
Device

Points to the opened Device handle

I nter facel ndex
Specifiesinterface descriptor index within the selected configuration

AltSettings
The function returns current alternate setting to this parameter.

pOverlapped
Points to variable used for overlapped I/0. Can be NULL.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code

Comments:
The routine requests current interface aternate setting. Performs
| OCTL_USB_GET_| NTERFACE request to the Driver.

~—"1 MOTUSB Library. 4-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.15. USBGetInterfaceDesc

Definition:

DWORD USBAPI

USBGetInterfaceDesc(
IN usb t Device,
IN BYTE Configlndex,
IN BYTE Interfacel ndex,
IN BYTE AltSetting,
IN PUSB_INTERFACE_DESCRIPTOR pDescriptor,
IN OVERLAPPED *pOverlapped
);

Parameters.

Device

Points to the opened Device handle

Configl ndex
Specifies configuration descriptor index to lookup interface descriptor. If this value
equals —1 the interfaces descriptor will be sought in the selected configuration.

I nterfacel ndex
Requested interface descriptor index within the configuration.

AltSetting
Specifies interface descriptor alternate setting.

pDescriptor
Points to the buffer for requested interface descriptor.

pOver lapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code

Comments:

This function returns the interface descriptor in a PUSB_| NTERFACE_DESCRI PTOR. The
caller should allocate a buffer pointed by the pDescri ptor, large enough to store the
PUSB_| NTERFACE_DESCRI PTCR structure. The interface descriptor requested is relative to

~—"1 MOTUSB Library. 4-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

the configuration descriptor. The caller should properly specify the configuration

descriptor index Confi gl ndex and interface descriptor index | nt er f acel ndex within the
configuration.

The function sendsal OCTL_USB_GET_DESCRI PTCR request to the Driver.

~—"1 MOTUSB Library. 4-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.16. USBGetStatus

Definition:

DWORD USBAPI

USBGetStatus(
IN usb t Device,
IN REQUEST_TARGET Targset,
OUT USHORT* wStatus,

IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

Target
One of request recipient defined by REQUEST _TARGET enumeration.

wStatus
Points to the buffer to return status.

pOver lapped
Points to variable used for overlapped I/0. Can be NULL.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code.

Comments:

The function clears a specified feature for the specified recipient. Feature selectors should
be USB_FEATURE_ENDPO NT_STALL Or USB_FEATURE REMOTE_WAKEUP.

The function sendsal OCTL_USB_STATUS CONTROL request to the Driver.

~—"1 MOTUSB Library. 4-22
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.17. USBGetStringDesc

Definition:

DWORD USBAPF

USBGetStringDesc(
IN usb t Device,
IN BYTE Index,
IN USHORT Langld,
OUT PUSB_STRING DESCRIPTOR pDescriptor,
IN OUT DWORD *cbSize,
IN OUT OVERLAPPED * pOverlapped

);
Parameters:
Device

Points to the opened Device handle

I ndex
Requested string descriptor index

Langld
Requested language ID for string descriptor

pDescriptor
Points to the buffer for requested string descriptor

cbSize
Specifies bytes count of string descriptor to be returned

pOver lapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or €lse some MOTUSB error code

Comments:

This function returns the string descriptor in a USB_STRI NG_DESCRI PTCR structure. The
string itself is found in the variable-length bSt ri ng member of the string descriptor. The
caler should alocate enough memory to store the string in the bString member. The
function sendsal OCTL_USB_GET_DESCRI PTCR request to the Driver.

~—"1 MOTUSB Library. 4-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.18. USBIloCtrl

Definition:

DWORD USBAPI

USBIoCitrl(
IN usb_t Device,
IN DWORD dwloControlCode,
IN LPVOID IplnBuffer,
IN DWORD ninBufferSize,
IN OUT LPVOID IpOutBuffer,
IN DWORD nOutBufferSize,
OUT LPDWORD |pBytesReturned,
IN OUT OVERLAPPED *pOverlapped

);
Parameters:
Device

Points to the opened Device handle

dwloControlCode
Specifies request IOCTL code.

IpInBuffer
Specifies request input buffer.

nlnBuffer Size
Specifies request input buffer size.

[pOutBuffer
Specifies request output buffer.

nOutBuffer Size
Specifies request output buffer size.

IpBytesRetur ned
Points to variable to hold actual bytes processed by request.

pOverlapped
Points to variable used for overlapped I/0O. Can be NULL.

Returns:
On succeess, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code

N—1 MOTUSB Library.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

4-24

Freescale Semiconductor, Inc.

Comments:
The routine performs MOTUSB Device request directly.

~—"1 MOTUSB Library. 4-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.19. USBLockDevice
Definition:

DWORD USBAP
USBLockDevice(

IN usb t Device,
IN DWORD Flags

);
Parameters:

Device
Points to the opened Device handle

Flags

Can be the following
USB LOCK_DEVICE
USB_TRY_LOCK_DEVICE
USB_UNLOCK_DEVICE
USB TOTAL_UNLOCK

Returns:

On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:

— aguire Device lock

— try to aquire lock Device

— release Device lock

— release all locks belongs to this handle

By using this operation the Client application can lock access to the Device for other
Clients. This function locks the Device by means of the Device handle. The Device
handle specified in this request then becomes a master handle, so that a request with any
other Device handle will be blocked or returned with error. Only access to those
operations that change the Device state and data transfers will be blocked. The function

sendsal OCTL_USB_LOCK_DEVI CE reguest to the Driver.

N—1 MOTUSB Library.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

4-26

Freescale Semiconductor, Inc.

4.6.20. USBOpenDevice
Definition:

DWORD USBAF
USBOpenDevice(

IN HDEVINFO devList,
IN int index,
OUT usb t* Device
);

Parameters.
devList
The system Device list handle provided by USBGet Devi ceLi st function.

I ndex
The Deviceindex in the list.

Device
Pointer to output Device handle for opened Device object.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or €lse some MOTUSB error code

Comments:

The Client application should use this function to establish a connection to a Device
object. Typically this should start from USBGet Devi ceLi st to acquire the Device list.
Then, for each Device index starting with zero index, it should attempt to open the
Device. If the application opens a handle, it can request the descriptor and then decide
whether it is arequired Device. If it is not a required Device, the Client should close the
handle using the USBA oseDevi ce routine and continue attempting to open Devices, by
incrementing the i ndex parameter. If the function returns USB_STATUS_NO SUCH DEVI CE,
this means that the i ndex paraneter istoo big and no Device with such an index is
available. In this case the application should stop trying to open the Device and release
the Devicelist using USBRel easeDevi ceLi st .

~—"1 MOTUSB Library. 4-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.21. USBOpenPipe
Definition:

DWORD USBAPI
USBOpenPipe(

IN usb t Device,

IN UCHAR endpointAddress,
OUT usb t* pipe

);

Parameters:

Device
Points to the opened Device handle.

enpointAddress

Endpoint address from endpoint descriptor for required pipe.

pipe
Points returned pipe handle.

Returns:

On success, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code

Comments:

This function establishes a connection to the pipe object for a specified endpoint address.
The routine returns a pipe object handle to the pi pe parameter. The pipe object handle
links to the Device handle. Closing the Device handle causes the closure of al linking

pipe handles.

N—1 MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

4-28

Freescale Semiconductor, Inc.

4.6.22. USBPipeGetDescriptor
Definition:

DWORD USBAPI

USBPipeGetDescriptor(

IN usb t pipe,
PUSB_ENDPOINT_DESCRIPTOR desc

);

Parameters:

pipe
Points to the opened pipe handle.

desc
Points to buffer to place the endpoint descriptor.

Returns:

On succeess, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code

Comments:

The routine returns an endpoint descriptor by a given pipe handle.

N—1 MOTUSB Library.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

4-29

Freescale Semiconductor, Inc.

4.6.23. USBReadPipe

Definition:

DWORD USBAPI

USBReadPipe(
IN usb t pipe,
OUT LPVOID buf,
IN OUT DWORD *gze,
IN OUT OVERLAPPED *pOverlapped

);

Parameters.

pipe

Points to the opened pipe handle.

buffer

Points buffer for input data.

size
Specifies requested bytes count. Function returns bytes count actually transmitted in the
variable pointed by this parameter.

pOver lapped
Points to variable used for overlapped 1/0. Can be NULL to issue a synchronous request.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or else some MOTUSB error code

Comments:

This function performs IN transfers from Device to Host. The caller specifies the transfer
size in bytes size parameter. With bulk and interrupt transfers, if the current maximum
transfer length is less than the requested size, the Driver breaks the transfer into blocks.
Note that for isochronous transfers, the buf f er parameter should point to the isochronous
transfer buffer (see 3.4).

~—"1 MOTUSB Library. 4-30
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.24. USBRegisterDevNotify
Definition:

HDEVINFO USBAPI
USBRegisterDevNotify(
IN HWND hwnd

);

Parameters.
hwnd specifies window handle for which notification enables.

Returns.
Function returns system notification handle. This handle should be used by
USBUNr egi st er DevNot i fy when the caller deregisters notifications or this window is
destroyed.

Comments:

This function registers a specified window for Device notifications. The notification
becomes as the Wy DEVI CECHANGE window message, where the | Par amparameter points
to the buffer with DEV_BROADCAST_DEVI CEI NTERFACE structure, from which the Client
application can extract required fields about notification.

~—"1 MOTUSB Library. 4-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.25. USBReleaseDevicelList
Definition:

void USBAPI
USBReleaseDevicel ist(
IN HDEVINFO devList

);

Parameters.
devList
the system Device list handle provided by the USBGet Devi ceLi st function.

Returns:
None

Comments:
This function releases the system Devices list handle. The Client application should call
this routine when it no longer needs the Device list.

~—"1 MOTUSB Library. 4-32
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.26. USBResetDevice
Definition:

DWORD USBAPI

USBResetDevice(

IN usb_t Device,

IN OUT OVERLAPPED *pOverlapped

);
Parameters:
Device
Points to the opened Device handle.

pOverlapped

Points to variable used for overlapped /0. Can be NULL.

Returns:

On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:.

This function is used to reset the Device port. All the pending transactions on the bus
should be aborted. The request causes all of the gatus and configuration values associated
with endpoints in the affected interfaces, to be set to their default values.

The function sendsal OCTL_USB_RESET_DEVI CE request to the Driver.

N—1 MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

4-33

Freescale Semiconductor, Inc.

4.6.27. USBResetPipe
Definition:

DWORD USBAPI

USBResetPipe(

IN usb t pipe,

IN OUT OVERLAPPED *pOverlapped
);

Parameters:
pipe
Points to the opened pipe handle.

pOverlapped
Points to variable used for overlapped I/0. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:

This function resets a stalled pipe. It cancels al pending I/O on the pipe and sends
CLEAR_FEATURE with USB_FEATURE_ENDPQO NT_STALL selector for the specified endpoint.
When receiving USB_STATUS_STALL_PI D error code an bulk or interrupt transfers, the
Client application should try to reset the pipe. If this does not help, the Client should try
to reset the Device.

The function sendsal OCTL_USB_RESET_PI PE request to the Driver.

~—"1 MOTUSB Library. 4-34
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.28. USBSetConfiguration

Definition:
DWORD USBAP
USBSetConfiguration(
IN usb t Device,
IN UCHAR Configlndex,
IN LONG I nterfaceCount,
IN PUSB_INTERFACE_SETTING Interfaces,
IN OUT OVERLAPPED * pOverlapped
);
Parameters.
Device

Points to the opened Device handle.

Configl ndex
Configuration descriptor index.

I nterfaceCount
Interfaces count that should be configured with this call. Should be more than or equa to
1. If -1 is specified, al interfaces are configured.

I nterfaces

Points to the buffer that contains the array of interface information items for each
interface configured. The count of valid entries should be equa to I nterfaceCount.
Must be NULL if I nterfaceCount isequal to—1.

pOverlapped
Points to variable used for overlapped I/0. Can be NULL.

Returns:
On success, routine returns USB_ STATUS SUCCESS, or else some MOTUSB error
code.

Comments:

This function configures the Device. The caller can specify only the set of interfaces that
will be configured for a selected configuration. To invoke this request, the Device first
must be unconfigured. This request causes all of the status and configuration vaues
associated with endpoints in the affected interfaces, to be set to their default values.

The function sendsal OCTL_USB_SET_CONFI GURATI ON request to the Driver.

~~——"1 MOTUSB Library. 4-35

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.29. USBSetFeature

Definition:

DWORD USBAPI

USBSetFeature (
IN usb_t Device,
IN REQUEST_TARGET target,
IN UCHAR feature,

IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle.

tar get
One of request recipients defined by REQUEST_TARGET enumeration.

feature
Specifies feature selector.

pOver lapped
Points to variable used for overlapped I/0. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
This function sets a specified feature for the specified recipient. Feature selectors should
be USB_FEATURE_ENDPOI NT_STALL Or USB_FEATURE_REMOTE_WAKEUP.

The function sendsal OCTL_USB_FEATURE_CONTRCOL request to the Driver.

~—"1 MOTUSB Library. 4-36
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.30. USBUnconfigureDevice
Definition:

DWORD USBAPI
USBUnNconfigureDevice(

IN usb_t Device,

IN OUT OVERLAPPED *pOverlapped

);
Parameters:

Device
Points to the opened Device handle.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS _SUCCESS, or €lse some MOTUSB error code.

Comments:

This function puts the Device into the unconfigured state. This operation should be rarely
used by Client software developers, due to issues with the Operating System working in
this state. However this operation can be very useful for new Device testing. In addition
the Client software should use this request before setting different configurations on an
already configured Device.

The function sendsal OCTL_USB_UNCONFI GURE_DEVI CE request to the Driver.

~—"1 MOTUSB Library. 4-37
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.31. USBUnregisterDevNotify
Definition:

void USBAPI
USBUnregisterDevNotify(
IN HDEVINFO hDeviInfo

);

Parameters.
hDevInfo
Specifies the system notification handle obtained from USBRegister DevNotify.

Returns:
None

Comments:
This function deregisters a specified window from Device notifications.

~—"1 MOTUSB Library. 4-38
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.6.32. USBWaitlO
Definition:

DWORD USBAP

USBWaitl O(

IN usb t handle,

OUT DWORD *BytesTransferred,
IN DWORD Timeout,

IN OUT OVERLAPPED *pOverlapped

);

Parameters.
handle
Points to the opened Device or pipe handle.

BytesTransferred

Points to buffer for output data size. Can be NULL if not used.

Timeout

Specified interval for a waiting I/0O completion in milliseconds. If no timeout value

should be used the I NFI NI TE constant should be specified.

pOverlapped

Points to variable used for overlapped 1/0O, that was specified for the last I/O operation on

the specified handle.

Returns:

On success, routine returns USB_STATUS _SUCCESS, or €lse some MOTUSB error code

Comments:

The Client should call this function if it specifies it's own vaue for the pOver| apped
parameter. The function waits until the 1/0O operation completes. The calling thread of this
routine will be blocked until the function completes. On return the function returns a
bytes count actually transmitted into the variable pointed by BytesTransferred

parameter (if no NULL is specified).

N—1 MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

4-39

Freescale Semiconductor, Inc.

4.6.33. USBWritePipe

Definition:

DWORD USBAPF

USBWritePipe(
IN usb t pipe,
OUT LPVOID buf,
IN DWORD size,
IN OUT OVERLAPPED *pOverlapped

);

Parameters:

pipe

Points to the opened pipe handle.

buffer

Points to the buffer with data to transfer.

size
Specifies bytes count to send.

pOverlapped
Points to variable used for overlapped /0. Can be NULL of no overlapped I/O required.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:

This function performs OUT transfers from Host to Device. The caler specifies the
transfer size in bytes in the si ze parameter. If the current maximum transfer length is less
than requested size, the Driver breaks the transfer into blocks (for bulk and interrupt
transfer types). Note that for isochronous transfers, the buf f er parameter should point to
the isochronous transfer buffer (see 3.4).

~—"1 MOTUSB Library. 4-40
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

5. Registry Settings.

The default settings for MOTUSB Driver are stored in the registry. These settings are
applied to every Device on which the MOTUSB Driver is installed. The registry settings
are stored under the following key: HKLM \ SYSTEM \ Current Control Set \
Services \ notusb \ Paraneters.

All the registry settings are shown in the following table:

Table 5.1 Registry settings summary

Value Name

Default
Value

Description

CancelloOnSuspend

0

Handling of outstanding read or write requests when the
Device goesinto a suspend state (leaves DO):

1 = abort pending requests

0 = do not abort pending requests

MaxTransferSize

65535

Default maximum transfer size in bytes. This value is used on
default Device configuration or when the Client application
specifies use of default maximum transfer sizein

Set Configuration or Set Interface calls.

Can be from 4096 to 2147483647

RequestTimeout

5000

Timeout interval for synchronous [/O requests, in
milliseconds. Zero means infinite (no timeout).

USB1.1 specification defines 5 seconds timeout.

However this value can be useful during firmware debugging

ShortTransferOK

Specifies that short packets in bulk and interrupt transfers are
accepted with no errors.

UnsafeRemova Ul

Specifies whether Windows “Unsafe Remova” dialog should
appear on hot Device disconnection.

1 = dialog should appear

0 = dialog should not appear

N—1

Registry Settings. 5-1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

6. Driver Installation.

6.1. Installation Procedure.

Various Devices can use the MOTUSB Device Driver. The Device vendor must provide
aproper Setup (INF) file for Device.

Assuming the name is < your_oem >.inf to Device Driver the following steps are
required:

12. Logon to Windows 2000 using an administrator account.

13. Ensure that the following 3 files are al contained in the Driver instalation
directory: motusb.sys, motusb.dll, mcf5272.inf

14. Ensure that the VendorID and ProductiD members of the Device descriptor on
Device have not changed. If you have to change them, it is necessary to make a
new instalation (INF) file for the VendorID and ProductiD member values
combination. (See MOTUSB Driver Guide, Chapter 4 for detailed information on
the INF file).

15. Connect the Host PC with the UFTP Device running on the MCF5272
development board viaa USB cable.

16. “Found New Hardware Wizard” dialog with string “USB Device” will appear.
Select “Next” button.

17. Select the radio button labeled "Search for a suitable Driver for your Device
(Recommended)” and then hit the "Next" button.

18. “Locate Driver Files’ page will appear, click the "Next" button

19. “Insert manufacturer instalation disk on the drive...” file prompt diaog will
appear. Specify the folder where all Driver files are located and click ok.

20. “Driver Files Search Result” page should appear. If the Driver path is specified
correctly “Windows found a Driver for this Device” and the path to mcf5272.inf
strings will be shown at the center of the page.

21. Hit the "Next" button, whereupon the "copying Files’ message box will be seen
briefly; then once again the "Found New Hardware Wizard" box, now displaying
the subheading "Hardware Install: The hardware installation is complete”. Hit the
"Finish" button.

22. A copy of motush.sys should be in the %SystemRoot%\System32\Drivers
directory, and the motusb.dll in the %SystemRoot%\System32 directory. If the

N—1 Driver Installation. 6-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

final "Add New Hardware Wizard" box indicates any error, or if the OS indicates
that a reboot is required in order to finish the installation of this Device,
something has gone wrong. Check the Inf file or Install directory, follow the
instructions again for a“‘clean’ install, and start over.

1. Make sure that the following 3 files are al contained in the Driver installation
directory:
motush.sys, motusb.dll, <your_oem>.inf

2. Connect Host PC to arunning Device viathe USB cable.

3. “Found New Hardware Wizard” dialog with string “USB Device” will appear.
Select “Next” button.

4. Select the radio button labeled "Search for a suitable Driver for your Device
(Recommended)" and then hit the "Next" button.

5. “Locate Driver Files’ page will appear, click the "Next" button

6. “Insert manufacturer instalation disk on the drive...” file prompt diaog will
appear.

7. Specify the folder where all Driver files are located and click ok.

8. “Driver Files Search Result” page should appear. If Driver path is specified
correct “Windows found a Driver for this Device” and path to <your_oem>.inf
strings will be shown on the center of the page.

9. Hit the"Next" button. "Copying Files' dialog will be seen briefly, then once again
the "Found New Hardware Wizard" box, now displaying the sub-heading,
"Hardware Install: The hardware installation is complete”. Hit the "Finish" button.

10. A copy of motush.sys should now be in the %SystemRoot%\System32\Drivers
directory, and motush.dll in the %SystemRo0t%\System32. If the fina "Add New
Hardware Wizard" box indicates any error, or if the OS indicates that a reboot is
required in order to finish the installation of this Device, something has gone wrong.
Check the Inf file or Install directory, follow the instructions in the section below for
a‘clean’ ingtall, and start over again.

Depending on the inf file content, the vendor Device Driver setup may be somewhat
different.

NOTE: For Windows 2000, to be able to install a Device Driver, administrator rights are
required. The MOTUSB Driver is installed in the same way as any other Plug& Play

N—1 Driver Installation. 6-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Device Driver, where the installation requires administrator rights. Once the MOTUSB
Driver is installed, standard user rights are sufficient to load the Driver and to use the
Driver by accessing its programming interface.

6.2. Setup (INF) File.

To be installed correctly, Drivers must have an INF file. An INF file is a text file that
contains all the necessary information about the Device(s) and file(s) to be installed, such
as Driver images, registry information, version information, and so on, to be used by the
Setup components. An INF file is basically an ASCII text file. The contents and the
syntax of an INF file are documented in the Microsoft Windows 2000 DDK.

The INF file is loaded and interpreted by an operation software component that is closely
related to the Plug& Play Manager, called the Device Ingtadler. It handles hot plugging
and remova of USB Devices. If the new USB Device has been detected, the system
searches its internal INF file database, located in %SystemRoot%\Inf\, for a matching
Driver. If no Driver can be found the New Hardware Wizard pops up and the user will be
asked for a Driver.

A particular Device can be associated with the MOTUSB Driver through a string that is
caled Hardware ID. The operation system PnP software component builds this string
from the 16-bit vendor ID (VID), the 16-hit product ID (PID), optionally the revision
code (REV) and other components. For USB Devices, the Hardware ID is prefixed by the
‘USB’ identifier. The OS uses the ordered Hardware ID lists provided by the bus Driver,
along with INF information, to select Drivers to load for a Device. Starting at the top of
the ordered Hardware ID ligt, the OS tries to match the Hardware ID there with a
Hardware ID in asystem INF file entry.

Here is the template for Hardware ID string, that the vendor should specify in the INF
file.

USB\VID xxxx&PID_yyyy& REV zzzz
USB\VID_xxxx&PID_yyyy

The MOTUSB Diriver ingtallation should install the Driver not usb. sys and dynamic link
library mot usb. dI | images. However not usb. di | isoptional and if the vendor wants to
use the Driver directly, no library image is required.

The description of other INF file entries is outside the scope of this guide, please refer to
Microsoft Windows 2000 DDK for detailed information. The setup information file
template is shown in the next section and should provide the basis for making the INF file
to install the MOTUSB Driver on a vendor Device. Note that the template assumes that
MOTUSB image files are located in a same directory with an INF file. The minimum set
of information should be known before modifying this template:

N—1 Driver Installation. 6-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ProductID and VendorI D values of Device descriptor

Manufaturer
statement)

Device class (optionaly)

Please see comments in the template for a more detailed description.

6.2.1. Setup (INF) File Template.

1

This is a MOTUSB Driver Setup Information (INF) file tenplate.

[Ver si on]

Signature = "$W NDONS NT$"

Pr ovi der = 9%Vf gNanme%

Driver Ver = 02/ 23/ 2002, 1. 23. 0000. 00
Cat al ogFi | e = notusb. cat

Cl ass Section

; Select an appropriate class for the Device.

There are several options:
;. + Use the MOTUSB cl ass.
+ Define your own class by generating a GU D and a specify class description.

; + Use a predefined system cl ass.
(HHD, Mass Storage, USB Audio for exanple)

H D Exanpl e:
; C ass=Hl DC ass

Cl assQui d={ 745a17a0- 74d3- 11d0- b6f e- 00a0c90f 57da}

This is required for system defined cl asses

bl ass = MOTUSB

ClassGUI D = {31A6857E- E756- 413f - 93B2- 9FCO5EDB7608}

Class Install Section

The following 3 sections used for own vendor classes only.
; system defined Device class

Renmove’ em i f using

iCI asslnstal |]
Addr eg=MOTUSBCI assReg

[asslnstal | 32]
Addr eg=MOTUSBCl assReg

[MOTUSBC assReq]
HKR, , , , YWy assNane%
HKR, , I con, , - 20

;. Use USB | con

Control Flags Section

[Contr ol Fl ags]
Excl udeFr onSel ect =*

Driver Source Sections

[Sour ceDi sksNanes]
1=9%0i skl D%, ,

N—1

Driver Installation.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

name (replaces ‘_Your_Device Manufacturer_ Name Here ’

Freescale Semiconductor, Inc.

[Sour ceDi sksFi | es]
not ush. sys = 1
nmotusb.dll =1

; NOTE: Repl ace _Your_Devi ce_Manufacturer_Name_Here_ wi th Manufacturer

[Manuf act urer]
%vf gNanme%-_Your _Devi ce_Manuf act urer _Nanme_Here_

namne

; Devi ce List Section

; There is the place to add your Device. MOTUSB Driver wll

be installed

; for Devices your declared here on the Driver installation tine.

; To decl are your Device:

; + Productl D and Vendor| D val ues of Device descriptor should be known.
; + Put YourDeviceDescXXX variable to the string section bel ow

; + Put line like follow ng here (assune Vendor| D=0x1045, Product| D=0x23):

; %Col dFi re. Devi ceDesc0%MOTUSB, USB\ VI D_1045&PI D_0023

; NOTE: Repl ace _Your_Device_Manufacturer_Nane_Here_ wi th Manufacturer

[_Your _Devi ce_Manuf act urer _Nane_Here_]
%Your Devi ceDesc0%MOTUSB, USB\ VI D_ABCD&PI D_1234
%vrour Devi ceDesc1%MOTUSB, USB\ VI D_ABCD&PI D 1235

name

Msc Driver file sections

[DestinationDirs]

Defaul t DestDi r =12
MOTUSB. Fi | es. Sys = 10, SystenB2\Dri vers
MOTUSB. Fil es. DIl = 10, Syst enB2

[mot ushb]
CopyFil es = MOTUSB. Fi |l es. Sys, MOTUSB. Fil es. D |
AddReg = MOTUSB. AddReg, Devi cePar ans. NTx86

[mot usb. NTx86]
CopyFi | es=MOTUSB. Fi | es. Sys, MOTUSB. Fil es. Dl |
AddReg=MOTUSB. AddReg, Devi cePar ans. NTx86

[mot usb. NTx86. Ser vi ces]
Addservi ce = notusb, 0x00000002, MOTUSB. NTx86. AddSer vi ce

[mot usb. NTx86. AddSer vi ce]

Servi ceBi nary
LoadOr der Group

%4.0% Syst enB2\ Dri ver s\ not usb. sys
Base

Di spl ayNane = YMOTUSB. SvcDesc%

Servi ceType =1 ; SERVI CE_KERNEL_DRI VER
Start Type =3 ; SERVI CE_DEMAND_START
Error Contr ol =1 ; SERVI CE_ERROR_NORMAL

[mot usb. AddReg]
HKR, , DevLoader, , *nt kern
HKR, , NTMPDr i ver, , MOTUSB. sys

[motushb. Fi |l es. Sys]
not usb. sys

[motusb. Files.D 1]
not usb. dl |

; Regi stry Settings

; The default registry setting stored here. The last value is a particul ar
; registry setting value. This values can be nodified by vendor to specify

mN—1 Driver Installation.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

; different registry setting

[Devi cePar ans. NTx86]

HKLM " %Conf i gPat h9s \ " %evi ceConf i gPat h% , Request Ti neout, 0x10001, 5000
HKLM " %Conf i gPat h9 \ " %evi ceConf i gPat h% , Unsaf eRenpval U, 0x10001, O
HKLM " %Conf i gPat h9s \ " %evi ceConf i gPat h9 , Short Tr ansf er OK, 0x10001, 1
HKLM " %Conf i gPat h9 \ " %evi ceConf i gPat h% , MaxTr ansf er Si ze, 0x10001, 65535

; String Section
[Strings]

M gNane "<<< Put nanufacturer name here >>>"
Myd assName "<<< Put vendor defined class here >>>"

Your Devi ceDescO
Your Devi ceDescl

"<<< Put your Device #0 description here >>>"
"<<< Put your Device #1 description here >>>"

Di skl D "<<< Insert your distribution disk description here >>>"
MOTUSB. SvcDesc "Motorola USB I /O Driver"
ConfigPath " SYSTEM Cur r ent Cont r ol Set\ Ser vi ces\ not usb"

Devi ceConfi gPat h " Par anet er s"

6.3. Updating Or Uninstalling.

In order to update or uninstall the MOTUSB Driver, the Device Manager has to be used.
In the Device Manager double-click on the entry of the Device and choose the property
page that is labeled "Driver". The Driver reinstallation can be issued through the "Update
Driver" button. The operating system launches the Upgrade Device Driver Wizard, which
searches for Driver files or lets it select a Driver. In order to uninstall the Driver, the
"Uninstall" button should be used. The operating system will reinstall a Driver the next
time the Device is connected or the system is rebooted. In some cases such automatic
reinstallation may be unwelcome, and to avoid this it is necessary to manually remove the
INF file that was created by the system at Driver installation time.

During Driver installation Windows stores a copy of the INF file in its internal INF file
database that is located in %System32%\INF\. The original INF file is renamed and
stored as oemXX.inf for example, where XX is a decima number. The best way to find
the correct INF file is to do a search for some significant string (Device name in Device
Manager for example) in al the INF files in the directory %System32%\INF and its
subdirectories. Once the INF file has been located, remove it. This will prevent Windows
from automaticaly reingtaling the MOTUSB Driver at the time of attaching a USB
Device. Instead, the New Hardware Wizard will be launched and the user will be asked
for aDriver.

N—1 Driver Installation. 6-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

7. Appendix 1: USB Audio Sample for
MCF5272.

7.1. Introduction.

7.1.1. Overview.

The following describes a very small application for isochronous transfers demonstration
from Host to Device, and from Device to Host. It is designed especially for Motorola
ColdFire5272 USB Protocol Stack audio sample (see [3]) firmware. The Client
application demonstrates how the ColdFire firmware Driver handles control and
isochronous transfers. The MCF5272 USB Driver and audio sample Client firmware
components work together on the Device, to perfform PCM samples loop-back using
simultaneous isochronous transfers through isochronous IN/OUT endpoints. The
application is capable of demonstrating the Stand-Alone and uClinux versions of the
Device-side firmware component, due to USB protocol transparency. Additionaly the
application demonstrates a working MOTUSB Driver and dynamic link library software
components on the Host side.

7.1.2. System Requirements.

Hardware:
Single CPU Intel 1386 based PC (> 600mHz) with Open Host Controller or
Universal Host Controller.

Sound adapter with
0 44.1kHz and 8 kHz sample rates supported
0 Line-Inor Mic-In sockets

Software:
OS: Windows 2000 Professional
MOTUSB Driver for USB Audio Sample Deviceinstalled

7.1.3. Application Capabilities.

Demonstrates that isochronous ColdFire 5272 USB firmware can meet rea time
requirements.

Able to show how Device processes missed frame tokens (by using syshal t
utility).

Shows Device s'w can process Isochronous IN and Isochronous OUT transfers
transactions smultaneoudly.

Shows how Device s’'w can process Control and Isochronous transfers
transactions Simultaneoudly.

N—1 Appendix 1:USB Audio Sample for MCF5272. 7-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

7.2. Application overview.

7.2.1. Sample Model.

The sample demonstrates an audio loop-back through Isochronous USB firmware on the
ColdFire MCF5272. The sound data from a microphone is sent by the Client application
to the USB Device. The Client application receives this data from USB and the speech
may be heard on the headphones. Thus the audio source samples circulate over the bus
and returns to the audio output Device. In addition to the audio loop-back, the Device
performs some simple audio processing: changes the volume level according to the
commands that the Host Client sends during control transfers.

To perform a loop-back the application has to accomplish the following 4 tasks
simultaneously:

1) Takes PCM samples data from Sound-In (microphone for example)

2) Transfers Sound-In Samplesto USB through Isochronous OUT endpoint

3) Receives Device loop-back results from Isochronous IN endpoint

4) Writes Device loop-back results to Sound-Out Device (speakers for example)

Client app. ColdFire
1 2
MIC. [—P» Wave IN] ouT
Endpoint

Speskers 447 Wave OUT 437 IN Endpoint

Fig 7.1 Sample model.

When adjusting the volume, the Client application sends a special command to the
Device (this task is not shown in the figure) using control transfers. On request of this
command, the ColdFire firmware performs volume processing, so that the PCM samples
that the Device returns, are not the same as those received from the microphone. Note
that due to buffering on the Host Client application and the Device firmware, the returned
samples will be delayed approximately ~200ms.

Another option is the sample rate selection. The following sample rates may be selected:
44kHz and 8 kHz. Each sample rate corresponds to a specified alternate setting on the
Device. Therefore sample rate selection changes the endpoints’ parameters, set according
to the interface alternate setting. For sound data transmission with the 44 kHz sample
rate, one short packet is transmitted for every 10 packets [3]. For 8 kHz sample rate, no
short packets are transmitted. For Device endpoints and interface configurations please
refer to [3]. The Stand-Alone firmware is somewhat different from the uClinux firmware

N—1 Appendix 1:USB Audio Sample for MCF5272. 7-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

for the isochronous transfer model, so here the short packets processing can be a point of
interest.

7.2.2. Audio System Setup.
As mentioned above the sample requires a sound source and a sound output Device. The
microphone is a good example of a sound source. Other sound sources can be connected
to the Mic-In socket (in case of microphone) or Line-In (TV Tuner as an example). The
sound should be heard through the sound output Device (speakers). There are a number
of possible causes of missing sound:

The microphone line (or Line-In) is muted.

The volume of the microphone line (or Line-In) isturned to the minimum.

The wave balance is muted or turned to the minimum.

The following figure shows right Line-1n and Microphone Balance setting.

Cpkions Help
Yolume Control | “Wave S Synth icrophone Line In
Balance; Balance: Balance: Balance: Balance;
Wolurme; WolLire W alume; W olLinpe
[Mute al [pise ¥ ute [
|Gamesurrl:uund MIJSE sL

Fig 7.2 Playback properties.

If the sound source Device is working correctly, check the ‘Mute’ Line-In and
Microphone Balance settings. This ensures that no signal should appear on the sound
output Device from the sound source input. Otherwise an echo will be heard during
sample application execution.

Next go to Options menu and select Properties; check Recording box and press OK, the
following dialog should appear:

N—1 Appendix 1:USB Audio Sample for MCF5272. 7-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

i
Cptions Help
Mizrophone CD &udio Line In W ave
Balance: Balance: Balance: Balance:
Wolume: YWallme;
= ands = =
M Mute W Mute
|Gamesurr|:|und MIJSE 5L

Fig 7.3 Recording properties.

This dialog provides the ability to setup miscellaneous sound source settings. Uncheck
the ‘Mute’ box and setup the volume Line-In and Microphone Balance properties.

7.2.3. Interaction With Sample.

Before starting the application, it is necessary to ensure that the ColdFire USB audio
sample firmware was first downloaded to the Device RAM and started up. Connect the
Device to the PC via the USB capable. If firmware does not download or start, or some
other error occurs, the following message will appear on application startup:

zl
1 L
Device doesn't connected ko the system
Please connect device and run program again

|

Fig 7.4 “Device is not connected” Message Box.

NOTE:
This message box implies that the MOTUSB Driver did not load. Also it may be the

cause of Host or Device software failure, or invalid Vendor | D and Pr oduct | D members
of Device descriptor on the Device.

~—"11 Appendix 1:USB Audio Sample for MCF5272. 7-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The application expects the following Device descriptor values:
VendorID =0xABCD
ProductID = 0x1236

If the application started successfully the user should see the window asin Fig 7.5. This
is the main application window through which the user can interact with the Device on

ColdFire.

ﬁ USE Audio Sample for , : =101 x|

Select Sample Rate Begin =ample
Sample Rafe J—x
|44100kHz, moro, 168t | Stant

USE Qutput Samples

—PFCH Loopback Scope

—USB Frames processed

iFramE§ i Yolume Control - o

Fig 7.5 Main Application Window.

44.1kHz or 8 kHz sample rate can be selected before starting the sample. In order to start
audio loop-back click the “Start” button. The application begins PCM samples delivery
from the sound source to the USB Device on ColdFire and receiving processed data from
the bus. The sample rate selection becomes unavailable during the loop-back operation.
The Device delivered samples will be shown in PCM Loop-back Scope (fig 7.6). Volume
control changes will affect the volume level of the data from the Device.

& usB Audio Sample for ColdFire MCF52 - O] x|

S ample A ate

| 44700 kHz: mong, 16-bit __‘;'_i
Cloze |

-F'I:M LDDDbaCkSCE F I I|I n TE'MITIE
!'i]hfl\\"q\"'L""*'r“"*"""”hlﬂ"‘ilk'\fﬁ1{|“~ﬂ,"|1r'lh'i'!'l|,[I'n”.‘l'|"|‘ﬂ;'d|[“-ir' 'i\'m"hﬁ.“h‘ 5

Fig 7.6 Main Application Window (running).

N—1 Appendix 1:USB Audio Sample for MCF5272.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

In order to stop the loop-back push the “Stop” button. The stop command will be sent to
the Device and data delivery should be stopped within 100 milliseconds.

7.2.4. Missing Frames Emulation.

The additional utility syshal t. exe can be used to provide missing frame emulation. The
utility halts all the running processes for 5 seconds. Thus, when transmitting data over the
bus is in progress, the utility stops audio sampling along with Driver isochronous data
delivery. This means that the Device does not receive IN and OUT tokens. The Device
firmware and the sample should normally handle such a situation (Host real-time data
delivery failure) and continue the loop-back when the system becomes unhalted. Due to
the data buffering in this sample some noise may be observed within the first 100
milliseconds after system unhats. For further information on processing of Device
missing frames, refer to [2] and [3].

7.2.5. Known Issues.

The sample application is very time critical and involves the use of small buffers (for 50
milliseconds) for data transmission from sound adapter to USB, in order to achieve low
latencies (~200ms). From time to time, depending upon the system loading, this can
cause the sound to cut off. Another possible issue is that the USB and the sound adapter
can become momentarily out of sync (no sample rate converter is implemented in the
sampler). This manifests itself as an audible click during the consequent 50 milliseconds
buffer reiteration. Moreover the syshal t utility may alow the USB data OUT transfer to
overtake the IN transfer, in a single frame. In such a case the critical error message
“Error: USB Mistiming” will be shown, and the sound loop-back will be stopped. This
may be easily remedied by restarting. All the above mentioned issues should not cause
isochronous transfer deadlock, and streaming will continue as soon as possible thereafter.
In additiona it should be noted that while this sample was tested on a 1 GHz Intel
Pentium I11 processor, it should yield asimilar performance on lower speed processors.

N—1 Appendix 1:USB Audio Sample for MCF5272. 7-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

8. Appendix 2: USB File Transfer
Sample for MCF5272.

8.1. Introduction.

This section describes a small application for file transfers from Host to Device, and from
Device to Host. It's based on the UFTP protocol and designed specially for Motorola
ColdFire5272 USB Protocol Stack file transfer sample (see [3]) firmware. The Client
application demonstrates how the ColdFire firmware Driver handles control, bulk and
interrupt transfers. The MCF5272 USB Driver and UFTP Client firmware components
are working together on Device to represent a directory and perform transmission over
the bus. The application is capable of demonstrating both uCLinux and Stand-Alone
versions of the Device-side firmware components on account of the USB protocol
transparency. In addition the application can be used to demonstrate a working MOTUSB
Driver with dynamic link library and UFTP library software components on the Host
side.

8.1.1. System Requirements.
Hardware:

Single CPU Intel 1386 based PC with Open Host Controller or Universa Host
Controller.

At least 800x600, 256 color video adapter

Software:
OS: Windows 2000 Professional
MOTUSB Driver for UFTP Deviceinstalled

8.1.2. Application Capabilities.
This demo application Client is based on the UFTP Device protocol and possesses the
following capabilities:
- View directory content on Device

Transmit files from Host to Device

Transmit files from Device to Host

Setting various transfers length for file transfers

Deleting files on the Device

I~—"0 Appendix 2:USB File Transfer Sample for MCF5272. 8-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

8.2. Application overview.

8.2.1. Starting Application.

Before starting the application, it is necessary to ensure that the File Transfer firmware is
downloaded to the Device Ram and started up. Connect the Device to the PC via a USB
cable. If the firmware was not correctly downloaded or started, or some other errors
occurs the following message box will appear at application startup:

x

1 I
Q Device doesn't connected ko the syskem

Flease connect device and run pragram again

|

Fig 8.1 “Device doesn't connected” Message Box.

NOTE:

This message box implies that the MOTUSB Driver was not loaded properly. Also it may
be due to Host or Device software failure, or invalid Vendor | D and Pr oduct | D members
of the Device descriptor on the Device. The application expects the following Device
descriptor values:

VendorID = 0xABCD
ProductI D = 0x1235

8.2.2. Main Window.

If the application started up successfully the user should see a window similar to the one
shown in Fig 8.2. This is the main application window through which the user can
interact with the File Transfer Device on ColdFire.

The window contains two filelists:
1) PCBox - showsfilesat selected folder location
2) ColdFireBox - showsfileson File Transfer Device

The ColdFire Box does not perform updates on any external changes made to the Device.
The ColdFirefile list updates on each write or delete operation.

EI~—~"1 Appendix 2:USB File Transfer Sample for MCF5272. 8-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

h o
g |

Freescale Semiconductor, Inc.

LUSB File Transfers for ColdFire MCF5272 e

File Location or BT

=|arcsetup.exe AUTOEREC.BAT
comreads.dbg

CONFIG.5YS 10,545

T|MTDETECT . COM ntldr

pedriver, kxk

4] MSDOS.5%S | Makefile, bl

1. ouk ; Linwx_docs.rar

[h] IOMGR.H |h] IOCTLH

@ I0.H @ I0-MET.H

T |Ethernet Crverview,pdf
dbgview.log COMNFIG.5YS
board ip.txk

Fig 8.2 Application Main Window.

8.2.3. Application Operations.

1) Towritefilesfrom Host to Device
Selects the required files in the PC Box and click the “Write File” button. The files
should start transmitting to the Device. If any error occurs during file transmission the
following error message box should appear:

%

Error while coping CHMOTUSE. RAR: Device not responding
Do you wank bo continue operation?

Fig 8.3 “Error while transfer” message box.

From this box the user can select whether he wants to continue transmission of other
selected files or not.

EI~—~"1 Appendix 2:USB File Transfer Sample for MCF5272. 8-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

2) Toread filesfrom Deviceto Host

Select the required files in the ColdFire Box and click the “Read File” button in the
main window. The specified files will be transmitted to the current PC location (which
the PC Box shows). This operation does not request a file overwrite operation, should
any file with the same name already exist. Therefore any non-system file with the
same name will be automatically overwritten without any further warning. If an error
occurs during file transmission, the error message box should appear. From this box
the user can select whether he wants to continue reception of other selected files or
not.

3) To deletefileson Device
Select files in the ColdFire Box window and click the “Delete File’ button in the
main window. If any error occurs during file deletion the error message box should
appear. From this box the user can select whether he wants to continue deletion of
other selected files or not.

4) Setting transfer unit
Click the “ Set transfer length button”. The following dialog should appear:

Set Transfer Length i

— Static

‘ Transfer Length |4|:IEIE bytes
Caticel | ;

Fig 8.4 Transfer Length Dialog.

In this dialog the user can specify different transfer lengths and submit this selection by
clicking OK. Note that due to specific UFTP configuration, the maximum transfer length
can be up to 1M.

5) Different folder selection on the PC
If the user wants to change the current folder on the PC, the “Browse button” should be
selected. The following dialog will appear:

I~—"0 Appendix 2:USB File Transfer Sample for MCF5272. 8-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Browse for Folder el B3
Please select a Folder
-2 3.5 Floppy (A1) Al
Elg DS iC)

:I 4= 5532 (D)
.J A=) SysMT (E:]
i l_‘ L] cygwin
=_] Devstudio
; 4_| Cocuments and Settings
4_| MSDI"-.I

.: 4_| M';.-' Installatluns
] PCIView
= | Program Files

G MTRINT L!

Fig 8.5 Browse for folder dialog.

From this dialog the user can select different folders to be displayed in the PC Box. Once
the OK button is selected, the PC Box will be updated with the contents of the newly
selected folder. In addition this folder will be inserted into the folder tree window (near
the “Browse” button), and the user should be able to select this folder from there.

= m Desktop

._] {;:J My Computer

{_@ 3.5 Floppy (8:)

= DOS (T
(=2 5Y53Z (D)
[=]-=20 SysMT (B2
= Ej WIMMT
] system3z
= d MEDN

4= Wark (F:)
) FATBOY SLIM (G:)
‘o[Contral Panel

(B My Netwaork Places
S Wy Documents

Fig 8.6 Folder tree window.

I~—"0 Appendix 2:USB File Transfer Sample for MCF5272. 8-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9. Appendix 3: Test Suite for MCF5272
USB Protocol Stack.

9.1. Introduction.
The USB Test Suite for a UFTP Device is provided to test out most of the software
functionality of the Device and Host sides. The following Host software components
take a part in some of the tests, and hence are automatically tested themselves:

MQOTUSB Device Driver and library

UFTP library

The following Device USB Protocol Stack firmware components can be tested (Stand —
Alone or uClinux versions):

CBI USB Driver for MCF5272

CBI & Isochronous USB Driver for MCF5272

USB File Transfer Application

USB Audio Application

The Test Suite does not communicate with the MOTUSB Driver directly. Instead it uses
the MOTUSB library to request USB services. Note that this application in no way is
intended to provide a USB compliance test. For this the “Microsoft Compliance Test
Suite” from USB-IF should be used for USB Device framework testing or other USB
Device classes.

9.1.1. System Requirements.
Hardware:

Single CPU Intel 1386 based PC with Open Host Controller or Universa Host
Controller.

At least 640x480, 256 color video adapter

Software:
OS: Windows 2000 Professional
MOTUSB Driver for Device installed

Firmware on MCF 5272 Evaluation Board:
USB File Transfer Client running (VendorlD = OXABCD, ProductiD = 0x1235)
or
USB Audio Client running (VendorlD = 0xABCD, ProductlD = 0x1236)

I~—"0 Appendix 3:Test Suite for MCF5272 USB Protocol Stack. 91
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.1.2. Test Suite content.
The single executable file provided. Location:
\bin

testsuit.exe — test suite executable

(All paths specified relative to the package installation directory).

9.2. Application Overview
As was mentioned above the Test Suite application is provided especialy for the
MCF5272 USB Protocol Stack firmware.

The test suite application consist from the following sections:
1) USB Standard Requests Testing

2) FileTransfer Testing (appliesto USB File Transfer Application
and USB Driver firmware)

3) Isochronous Transfers Testing (appliesto USB Audio Application
and USB Driver firmware)

4) Other tests

Sections (2) and (3) are mutually exclusive, in that one of these tests becomes available,
according to the Device firmware. Other tests apply to any Device for which the
MOTUSB Driver isinstalled.

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.2.1. Selecting a Device.
The first screen to appear while executing the Test Suite prompts the user to select a
suitable USB Device.

SIETE]
Welcome to USB Test Suite for Motorola ColdFire 5272 3 -. il
Fleaze zelect device faor testing. . ﬁ

Thiz application performs several automatic testz of LISE zoftware
components on device and host zide. Pleaze be ensure that device iz

connected ko system and
Update device list e
| efresh |

Select one of following device far testing:

b anufacturer I D escription I
LoldFireRzs2 UFTF Device

Li=t of attached MOTUSE devices

Hardware ID for
selected device

Hardware |0 : lLl SBAid_abcdFid 1 Eﬁﬂev_ﬂ'l 1]
Go to the first test

H
% Back I _ﬁe:-:w I Cancel Help

Fig 9.1 Device Selection Page.

USB Devices for which the MOTUSB Driver is installed should appear (disappear) in the
Devices list attachment (removal). Once the USB Device is selected, the "Next" is
clicked in order to go to the first test page. By using multiple instances of the Test Suite
application, it is possible to test more than one Device at the same time. The Test Suite
alows multiple instances of MOTUSB Client applications. However using only a single
instance of the MOTUSB Client application is strongly recommended for testing. Using
multiple instances of MOTUSB Client applications at the simultaneously while testing a
Device, can lead to unexpected results.

NOTE:

In order to successfully select the Device for testing the firmware should be downloaded
to the Device RAM and executed. If the MOTUSB Driver has not yet been installed, this
would be an appropriate time to connect the Device to a PC and install the Driver. The
Device should then appear in the Device list and can be selected for testing.

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.2.2. Automatic Standard Requests Testing.

After the Device selection page the next page is as follows.

*— UUSB Test Suite]
Standart requests testing = e
Select options for testing ... ﬁ

Select to perform manual request

Altarnatic | Manual«i/

—Device Tests —Interface Tests
W Get Descrptor: ¥ Get [Alternate] Interface
- e R ¥ Set [alernate] Interface
W Set Feature - Endpoint Testz
¥ Clear Feature ¥ Get Status
¥ Check Device Dezcriptar Values ¥ Set Feature

— Configuration Testz [¥ Clear Feature

¥ Get Descriptor

! : — Other Tests
¥ Get Configuration : .
; ! ¥ Get Sting Descriptors
¥ Set Configuration
¥ Check Configuration Descriptor Yalues W Perform Remote Wakeup
| Select Al | | Deszelect Al I Click here to start test » Start Test I
i

i —
De=zelect all options
f; N _p_t_ Goto the next test

/Sﬂlﬂﬂ‘t all options < Back I Mext » :I Cancel | Help |

Fig 9.2 Standard requests (Automatic) page.

This is a page for automatic standard requests testing, which provides for some Device
and Host side components testing. In this page the user can select various options for
automatic Standard request testing. A Device may be tested in either the configured or
unconfigured states. It should be noted that this test will lock the Device while it
performs the necessary operations. Hence no other Client application can use the Device
at that time.

The user should pay particular attention in the following circumstances:

1) If the tester aborts the procedure in the middle of a test, the test can unlock access to
the Device in an undetermined state. So other Clients may report an error;

N—1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

2) It is strongly recommended to never disconnect the Device during this test. USBDI
will disrupt the system if the Device becomes disconnected while the Device
Unconfigure request is pending. In such a case thiswill result in the classic “blue screen”.

The user can specify options for testing by selecting or deselecting the various choices.
See option descriptions below.

9.2.3. DeviceTests.

Get Descriptor.

Requests Device descriptor. If this option is not specified, configuration and other Device
tests cannot be selected.

Get Status
Gets status from the Device. If the Device status receipt was successful, the Test Suite
verifies the status value. Device status valid values range from 0x00 to 0x03.

Set Feature / Clear Feature:

This test issues a Set Renote Wakeup Feat ure command for each configuration if this
feature is supported as indicated in the bmat tri but es field. [If the specified option is
selected, the Test Suite sets the Remote Wakeup feature on the Device. It then performs
Get St at us, and checks if the Remote Wakeup bit is set. The application then clears this
feature and verifies the Device again with GET_STATUS.

Check Device Descriptor Values:
Checks all Device descriptor fields.

9.2.4. Configuration Tests.

Get Descriptor:

Requests the configuration descriptor. If this option is not selected no other tests for
configuration can be performed.

Get Configuration:
This test issues a Get Confi gurati on command and verifies that the Device responds
with success.

Set Configuration:

This test issues a Get Confi gurati on command. Thisinitialy unconfigures the Device.
Then al configuration tests are performed for each configuration. This causes the
interface and endpoint tests to be performed for every configuration on the Device.

Check Configuration Descriptor Values:
Checks all configuration descriptor members.

N—1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.2.5. Interface Tests.

Get (Alternate) Interface:

This test issues a Get | nter f ace command, which receives the aternate setting for the
specified interface number. A Device without aternate interfaces should either support
this command or respond with a stall, otherwise awarning is generated.

Set (Alternate) Interface:

This test issues a Set Interface command, which sets the alternate setting for the
specified interface number. A Device without aternate interfaces should either support
this command or respond with a stall, otherwise awarning is generated.

9.2.6. Endpoint test.

Get Status:

Gets status from the endpoint. If Set Feature or O ear Feature options are selected
the endpoint is verified with endpoint status ENDPQ NT_HALT bit.

Set Feature:

This test issues a Set Feature Stall command. This test is run on interrupt and bulk
endpoints only. If the Get St at us option is selected, the ENDPO NT_HALT bit should be
set, and thiswill be verified with aGet St at us request.

Clear Feature:

This test issues a d ear Feature Stall command. Thistest is run on interrupt and bulk
endpoints only. If the Get Status option is selected, the ENDPO NT_HALT bit should be
reset, and thiswill be verified with aGet St at us request.

9.2.7. Other Tests.

Get String Descriptors

If this option is specified, the string corresponding to the string descriptor will be
acquired for the Device, along with configuration and interface descriptors.

Perform remote wakeup
This option is not supported by this Driver version. It may be supported in later versions
of Driver.

To start automatic testing click “ Start” button.

To cancdl test click “ Stop” button.

To select al options click “Select All” button.

To deselect al options click “Deselect All” button.

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.3. Automatic Standard Requests Results.
Thefollowing diagram shows the result of the complete automatic test.

IETTES— IETEY

Standart requests testing o ol ;
Select options for testing ... a sl

¢ Bukornatic | bd sl !

Test | Reszult I Commentz 4]
- et Status Paszed wSkatuz = Ol [HALTED]
- Clear Feature [STALL] FPaszed
- et Status Fazzed witatus = Oxl [not HALTED]
ENDEOINT Z0es o et prittow
- Get Status FPazzed witatus = Oxl [not HALTED]
- Set Feature [STALL) Fazzed
- et Statuz Paszed wSkatuz = Ol [HALTED]
- Clear Feature [STALL] FPaszed
- et Status Fazzed wiStatus = Oxl [not HALTED] =
1| |
| E,-fS.EWE Log | |Elnse Windnl.ﬂd
Save results to log f_qﬁe_muhmf
% Back | Mest » | Cancel | Help |

Fig 9.3 Standard requests (Automatic) results.

The user can choose where to save resultsto alog file, by clicking “Save Log” button or
to close the results window. The user may also opt to select the “Next” button, to keep the
result window active and go on to next test.

N—1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.4. Manual Testing

In this page the user can perform Standard requests manually and see the result in the
output log window.

*— USE Test Suite

Standart requests testing =
Select options for testing ... ﬂ

Automatic Manual |

[aet Configuration bedllsE : =110 ;I
- - bHaxPacket S izel L 1
= et Lonfiguration blevicellass : 0=0 View request output
EFLiEsanakar hleyiceSubllazs : =0
- blewiceProtocal : O=0
Get Status idVendar : DxABED
Cet |rterface idProduct @ MR1235
iHanuf acturer : Dl (Hotorolal
Get Interfacs iProduct : Dx2 (HCF5272 ColdFire Processor]
S et Feature iSerialHunber : 0z0
bHunConf igurat iong 2 Oul -
-
1| | 3
| Cycle Port I | FReset Part | | IInconfigure I

% Back | Mest » | Cancel | Help |

Fig 9.4 Manual requests page.

The names of the buttons on this page correspond to the names of requests. The following
sections describe the requests a user can invoke from this page:

9.4.1. Get Configuration.

The current configuration value should appear in the output log window.

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.4.2. Set Configuration
The following dialog should appear.

Set Configuration i

Config. Indes [hex] Im
Configuration Index \

Fig 9.5 Set Configuration Dialog.

The user can specify the index of the configuration descriptor for the configuration
desired. When the user submits a request, the Test Suite attempts to set the configuration
and outputs results to the log window.

9.4.3. Get Status.
The following dialog should appear.

(== Device Status -
Indes [P‘ua:-:]I':'H':I \M&ﬁ Caricel I

Reclplent Index

Fig 9.6 Get Status Dialog.

The user can specify the recipient and recipient index. When the user submits a request,
the Test Suite attempts to set the configuration and outputs results to the log window.

9.4.4. Set Feature.
The following dialog should appear.

Set Feature 1

Becipient I Device j |_DK_I
Receipient
e P _Eanu:el
Receipient Index

Feature Selector |[ElG NN A 0TS g

Fig 9.7 Set Feature Dialog.

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-¢
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The user can specify the recipient, recipient index and feature selector. When the user
submits a request, the Test Suite attempts to set the configuration and outputs results to
the log window.

9.4.5. Clear Feature.
The following dialog should appear.

Clear Feature 1

Recipient I e j | K I
lodes e Ol

Feature Selector [miNSmrrt a2 u i ~

Fig 9.8 Get Feature Dialog.

The user can specify the recipient, recipient index and feature selector. When the user
submits a request, the Test Suite attempts to set the configuration and outputs results to
the log window.

9.4.6. Get Interface.

When the user sdlects the Get | nterface button, the Get | nterface window appears
as shown in Figure 9.9. The user must specify the interface number to which the program
will retrieve the alternate setting. The success or failure of the command is displayed in
an output window.

Get Interface

Interface Mumber

ll:l
Cancel |

Fig 9.9 Get Interface Dialog.

9.4.7. Set Interface.

When the user selects the Set I nterface button, the Set I nterface window appears
as shown in Figure 9.10. The user must specify the interface number to which the
program will retrieve the alternate setting. The success or fallure of the command is
displayed in an output window.

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-10
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Set Interface
Interface Mumber !U

Alternate Setting |21

I] I | Cancel |

Fig 9.10 Set Interface Dialog.

9.5. File Transfer Firmware Testing.

This test appears only on “File Transfer Device” (i.e. with VendorID = OxABCD,
ProductID = 0x1235). The test procedure performs continuous file transfers with various
file length and maximum transfer length parameters. A random file is generated, with a
random name, which is written to the Device. It then reads the file from the Device and
compares source file with destination file. In addition the test tracks the directory
structure and can verify it. When the Device returns memory allocation errors on writing
afile, the test removes al files it created (deleting phase) and continues write/read/verify
sequences.

9.5.1. Algorithm description.
At the start of this test al files from the Device are removed. The test then prepares a
directory on the PC, where all files will be located. This directory is located in the

following path:
YT EMP% usbt est\ <Devi ce_i nst ance_nunber >,

where the Devi ce_i nst ance_nunber is equa to hexadecimal testing Device instance
address. Using such a path, the Test Suite can test more that a single File Transfer
Device, because of unique files location for each of the Devices under test.

The test consists of the following stages:

1.Write Phase.

The test procedure generates a file on the PC according to given file boundaries

parameter, and then sends (generating transfer length by give transfer boundaries

parameter) thisfile to the Device. If the Device returns one of following errors:
UFTP_NO_POSITION_FOR_NEW_FILE
UFTP_NOT_ENOUGH_SPACE_FOR _FILE
UFTP_MEMORY_ALLOCATION_FAIL

the test procedure goes to point (3). Following successful completion of the point (3)

stage, the test then tries to write a file and if an error occurs, an error message will be

shown and test will be stopped. If all the transactions in this stage result in success, the

~—"11 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

procedure goes to stage 2 or the test completes (in case of all specified file and transfer
parameter values have aready been generated). In the case of test completion, al files
will be removed from the Device.

2. Read/Verify Phase.

If the “Check directory on each write” option is set, the Device directory content is
verified with the directory content on the PC. If these contents are not the same, an error
message appears in output window. If the Device returns
UFTP_MEMORY_ALLOCATI ON_FAI L during directory read from the Device, these tests will
be skipped and the test procedure will print out warning message. The test then reads a
newly created file in stage 1 and verifies that this is the same file on the PC. If file
contents are not identical an error message will again be generated and will appear in the
output window. On successful completion on this stage, the procedure goes to stage 1.

3. Deletion Phase.

This test procedure removes al files on the Device. If the ‘file must exist on delete
option is set, the test procedure assumes that a file for deletion must exist on the Device.
If this condition fails, the test procedure shows an error. If the *Check content on delete
option is set, the test procedure reads the file from the Device and verifies it's content
with the contents of same file on the PC, before deletion. If the file content is different,
the test procedure stops and shows an error message dialog.

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.5.2. Transfer Testing Page.

As mentioned above, if the File Transfer Device is selected for testing, the following Test
Suite page appears.

*— USE Test Suite 13

File Transfer Testing z i i i
PModity test parameters and test it ﬂ

— File Parameters

Bulk: Tranzfer Parameters

Waration Type Fandom Wariation Type R andom

Loopsz Per File 20 Loopz Per Transfer 20

Boundaries From 127 ko 32768 bytez Boundaries Fram 127 to 2048 bytes
—Additional Options b iy

¥ Check directory on each wiite
Modi et
¥ Check content on delete Ll L

¥ File must exist on delete

Other test options

Current T ask File Length Start tegtin
[

Transfer
Owerall progress
[Current T ask Start test |

Test progress bar

% Back

Cancel | Help |

Fig 9.11 File Transfer Page.

Before starting this test the default setting can be modified, in order to specify more
detailed test parameters.

Additional test options:

Check directory on each write - verifies directory after each new file
written

Check content on delete - verifies file content when entering deleting
phase

File must exist on delete - verifies each written file exists on deleting
phase

The user can modify file transfer test parameters by clicking the “Modify” button. The
following dialog should then appear:

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

File Transfer Params

File Length—
File zize wariation
~| Fom [127 bytes Cancel |
Ta IEE?EE bytes
Loopz per file IEEI 5:

Bulk. Transfer Linit—

IInit length wariation

Randam ;I From |'|2? bytes
Loops per EG Ta |2EMB buytes

tranzfer

Fig 9.12 File Transfer Test Parameters.
The following variation types can be selected for file and transfer:

Li near: The parameter variation will be incremented on each test stage until “To” value
reached.

Fi xed: No variationfor parameter. The parameter remains fixed for al test stages.

Randont Random variation for the parameter, which can vary in the range [“From”,“To"]
values;

L oops per file — perform several write/read/verify sequences for each file length
L oops per transfer — perform several write/read/verify sequences for transfer size

Clicking the «Start» button will start the test. The output window and log errors are
shown in this window. The user also has the ability to cance the test. After the test
terminates (by canceling or ending) the user can save the stest resultsto alog file.

NOTE: It's recommended to minimize count of running processes, which active use
CPU while transfer testing stage. It should get better testing transfer speed, so can
minimize transfer testing time. The list of such processes can be acquired from Task
Manger “Processes’ page.

~—"11 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.6. Isochronous Transfers Testing.

This test appears only on “USB Audio” firmware (i.e. with VendorID = OXABCD,
ProductID = 0x1236). In case of selected “USB Audio” firmware Device the following
page should appear.

*— LISE Test Suite — =] =]

Isochronous Transfers Testing = e B
Select the test and subrit ﬁ S

Transfer results information_
IMPORTAMT: Don't start new test while device iz printingout test information to terminal

[~
- Packet 17, Read = 160, Status = 0, Datax 12417 117 117 117 117 117 117 117 1
- Packet 18, Read = 160, Status = 0, Datax 118 118 118 118 118 118 118 118 118 1
- Packet 19, Read = 160, Status = 0, Datax 119 119 119 119 119 119 119 119 119 1
- Packet 20, Read = 160, Status = 0, Dataz 120 120 120 120 120 120 120 120 120 1
- Packet 21, Read = 160, Status = 0, Dataz 121 121 121 121 121 121 121 121 121 1
- Packet 22, Read = 160, Status = 0, Datax 128 122 122 122 122 122 122 122 122 1
- Packet 23, Read = 160, Status = 0, Datax 123 123 123 123 123 123 123 123 123
- Packet 24, Read = 160, Status = 0, Datar 124 124 124 124 124 124 124 124 124 1~
4| Start selected test | >

il

— Dezcnption
| aave Log Device sends b buffers # & packets data o
Save output to log host. Each byte in packet is equal to 100 bazed

packet number. The rezults will be shown in
autpLt windaw

Select test far isachronous transfers
] 2. M transfer _:I

. Selecttest Test description

¢ Back | Mest > Cancel Help

Fig 9.13 Isochronous Transfers Test Page.

The test consists of 6 isochronous transfers test procedures, which covers most of
firmware isochronous transfers processing.

9.6.1. Tests Description.

1. OUT Transfer
Host sends 5 buffers X 5 packets of data to the Device. Each byte in a packet is equa to
zero based packet number. Device prints output results to the terminal.

2. IN Transfer
Device sends 5 buffers X 5 packets data to the Host. Each byte in a packet is equal to 100
based packet number. The results will be shown in the output window.

~—"11 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Simultaneous IN/OUT transfers

This test sends data from Host to Device and from Device to Host at the same time. Both
transfers consist of 5 buffers X 5 packets. The data transmitted to the Device consists of
each byte in packet equal to zero based packet number. The Device returns the data from
the Host with 1 buffer (for Stand-Alone firmware) or 2 buffers (for uClinux firmware)
delay. Delayed buffers will be filled by the Device with 100 based packet number. Other
packets should contain information transmitted from the Host.

In all of tests above (1-3) all packets with Status = O expected. Short Packets should
be assumed as abnormal Device behavior.

The other 3 tests are provided to test how the Device process missing frames (Host does
not send IN or/and OUT tokens to isochronous pipes). Normally the Device should be
able to process such cases, and continue working in real time when tokens from Host
appear on the USB. Note that in some cases when the Host starts to send tokens, short
packets buffer (with Status = 0x9) should be expected as normal.

4. OUT transfer (with missing frames)
This test is the similar to the OUT transfer test (1) with missing OUT tokens simulation.
OUT tokens for packets #8, #9, #10, #15, #19 are missed (i.e. not sent by the Host).

5. IN transfer (with missing frames)
This test is the smilar to the OUT transfer test (2), with missing IN tokens simulation. IN
tokensfor packets#7, #10, #14, #15 are missed (i.e. not received by the Host).

6. Smultaneous IN/OUT (with missing frames)

This test is smilar to the Simultaneous IN/OUT transfers test (3), with missing IN tokens
simulation. IN and OUT tokens for packet #6 are missed (i.e. not sent and received by the
Host)

In al of above tests (3—6) some packets (located closely to missed frame packets) with
Status = 0x9 are expected. Short Packets can be assumed as normal Device behavior.

9.6.2. Performing Tests.

It is important not to overlook the connection of the evauation board with the terminal

cable in order to see the Device output. Select the test from test selecting combo box.

Submit the ‘Start Test’ button, check the results in the output window, and on the
terminal (Device output). Test results can also be saved to the log file. Please note that
the Test Suite outputs only the first 30 bytes for each packet, so the results in the output
window and the log file will be somewhat truncated. However the rest of the packet
information (in the case of test success) should be the same.

NOTE: No new test should be started while the Device is printing out test information to
the terminal. If this should occur by accident, the Device firmware should be restarted in
order to restore correct working.

~—"1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack. 9-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.6.3. Other tests.

The following page performs testing of cases, with different file length and maximum

transfer length parameters.

l‘:_' MCF5272 USB Test Suite o

Other tests 3
Select optionz for tezting. .. ﬂ

Test | Rezult | Comments *J

Device removal on transter

- Clear Device Fazzed Filest =100

- Replugging Fazzed

- Reconnect Pazzed

- Werify file exizt Faszsed status = OxEFO017100 =

« | ES
— Optione

¥ |riealid parameters paszing [Host] ¥ UFTP Pratocal errars handing

¥ Device unplugging during transfer V¥ Huost bulk write failure
| Selectal || Deselect Al

< Back Finizh Cancel Help

Fig 9.14 Other tests page.

Invalid parameters passing
Testsinvalid parameters passing (thistest isfor Host software only).

Device unplugging during transfer (on File Transfer Device)
Tests Device unplugging during transfer.

UFTP Protocol errorshandling (on File Transfer Device)

This test is not valid in this version d the Test Suite, but may be provided in later

versions.

Host bulk writefailure (on File Transfer Device)
Test for bulk write failure. To start thistest click start button.

N—1 Appendix 3: Test Suite for MCF5272 USB Protocol Stack.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

9-17

Freescale Semiconductor, Inc.

10. Appendix 4: USB FILE TRANSFER
LIBRARY.

10.1. Introduction.

10.1.1. System Requirements .
Hardware platforms:
Single CPU Intel 1386 based PC with Open Host Controller or Universa Host

Controller.
Operation systems:
Windows 2000 Professional

Developer software tools:
Visual C++ 6.0 Professional Edition
Microsoft Platform SDK for Windows 2000 (Recommended)

10.1.2. UFTP library content.

Location:
\inc

uftp. h — library header file

progress. h — transfer progress routine header file
\lib

uftp.lib —static library

Additiona to link with UFTP library application must be linked with not usb. I'i b filein
the\lib directory. The UFTP library depends from not usb. di | .

~—"11 Appendix 4:USB FILE TRANSFER LIBRARY. 10-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.

Programming interface

The UFTP library provides the programming interface for communication with a UFTP
Device. The USB file transfer protocol defines the following set of requests:

Table 10.1 UFTP requests.

UFTP_READ Read file from Device to Host
UFTP_WRITE Write file from Device to Host
UFTP_GET_FILE_INFO Retrievefile information
UFTP_GET DIR Retrieve directory structure

UFTP_SET_TRANSFER LENGTH

Set maximum transfer length

UFTP DELETE

Déelete file from the Device

The library encapsulates these requests into C language functions. In this way the library
provides the smplest way to communicate with the UFTP Device. The library use
handles to track the request from different thread contexts. The Client should connect the
UFTP interface and receive a handle (HUFTP) in order to perform any library

operation.

Table 10.2 Functions Summary.

Function Name

Description

Ut p_Connect

Connect the UFTP interface

Ut p_Di sconnect

Disconnect the UFTP interface

Ut p_Set ProgressRouti ne

Set the progress routine

Utp_SendFile

Send file from Host to Device

Utp_CetFile Send file from Device to Host

Utp_CetFilelnfo Get file information about particular file on Device
Ut p_ReadDir Get directory information

Ut p_Set TransferLength | Set maximum transfer length

Utp_DelFile Delete file from Device

Ut p_Get Last Error

Get the last UFTP error

Ut p_Get Error Text

Get the string message for specified UFTP error

N—1

Appendix 4:USB FILE TRANSFER LIBRARY .

10-2

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1. Function Descriptions.

10.2.1.1. Uftp_Connect
Definition:

HUFTP
Uftp_Connect(
usb_t Device

);

Parameters.
Device — handle to MOTUSB Device object.

Returns.
The function returns handle to UFTP object or NULL if UFTP interface cannot be found
on the Device.

Comments:

The function establishes connection with UFTP object. Once the connection is
established to the Client, it can perform the required UFTP operations using this handle.
When the handle is no longer needed, the Client should use the Uft p_Di sconnect
routine to disconnect the UFTP object handle. The UFTP object maintains information on
the CBI endpoint configuration, 1/O operation performed, Device locking state along with
other data.

~—"1 Appendix 4:USB FILE TRANSFER LIBRARY. 10-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.2. Uftp_Disconnect
Definition:

void
Uftp_Disconnect(
HUFTP hUftp

);

Parameters.
hUftp — handle to UFTP object obtained from the Uf t p_Connect routine.

Returns:
None.

Comments:
The function breaks the connection with the UFTP object. The UFTP Client should use
this routine when the connection is no longer used.

~—"11 Appendix 4:USB FILE TRANSFER LIBRARY. 10-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.3. Uftp_SetProgressRoutine

Definition:
BOOL
Uftp_SetProgressRoutineg(
HUFTP hUftp,
PROGRESS ROUTINE progressRoutine,
LPVOID param
);
Parameters:
hUftp —handle to UFTP object obtained from the Uf t p_Connect routine.
ProgressRoutine — pointer to transfer progress callback routine. Caller can specify
NULL, meaning that no progress routine should be called when the
library performs transfer operations.
param — miscellaneous parameter passed to progress routine, when it is
called. If caler specifies NULL for progress routine, it must
specify NULL for this parameter also.
Returns:

TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Get Last Er r or Win32 API function.

Comments:

The function attaches progress routine to the specified UFTP object. The progress routine
iscaled by Ut p_SendFile or Ut p_GetFil e routines as calback for catching transfer
progress notifications. The Client can specify a zero value to param and
progr essRout i ne parameters to detach the progress routine from the UFTP object.

~—"11 Appendix 4:USB FILE TRANSFER LIBRARY. 10-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.4. Uftp_SendFile

Definition:
BOOL
Uftp_SendFile(
HUFTP hUftp,
LPCTSTR PathName
);
Parameters.
hUftp — handleto UFTP object obtained from Uf t p_Connect routine.
PathName — specifies full path to the file on the Host, which should be transmitted to
the Device.
Returns:

TRUE if operation completes successfully. FALSE if any eror occurred. To get
extended error information the Client should call the Uft p_Get Last Error Win32 API
function.

Comments:
This function sends file from the Host specified by path name Pat hNane to the Device. If
any progress routine is attached to the UFTP object, it will be invoked on each transfer
unit transmitted. The following UFTP request will appear on the bus:
UFTP_SET_TRANSFER LENGTH
UFTP_WRITE
The function locks the Device for the following request while transmitting the file, thus
severa applications can request send file operation.

~—"1 Appendix 4:USB FILE TRANSFER LIBRARY. 10-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.5. Uftp_GetFile
Definition:

BOOL
Uftp_GetFile(

HUFTP hUftp,
LPCTSTR DestFileName,
LPCTSTR SrcFileName

);

Parameters:
hUftp — handleto UFTP object obtained from Uf t p_Connect routine.

DestFileName — specifies full path to the file on the Host, which should be transmitted
from the Device.

SrcFileName — specifies requested file name from the Device.

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uf t p_Get Last Err or Win32 API function.

Comments:
This function sends a file from the Device specified by file name SrcFi | eNane to the
Host file, specified by full file path Dest Fi | eNarre. If any progress routine is attached to
the UFTP object, it will be invoked on each transfer unit transmitted.
The following UFTP requests will appear on the bus:

UFTP_GET_FILE INFO

UFTP_SET_TRANSFER LENGTH

UFTP_READ
The function locks the Device for following request while transmitting the file, thus
several application can request get file operation.

~—"11 Appendix 4:USB FILE TRANSFER LIBRARY. 10-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.6. Uftp_GetFilelnfo

Definition:
BOOL
Uftp_GetFilelnfo(

HUFTP hUftp,

LPCTSTR FileName,

UFTP_FILE_INFO* filelnfo

);

Parameters.
hUftp — handle to UFTP object obtained from Uftp_Connect routine.
FileName — gspecifies requested file name from the Device
Filelnfo — pointsto the buffer to return file information
Returns:

TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uf t p_Get Last Err or Win32 APl function.

Comments:

This function requests information about the file on the Device specified by file name.
The information about the requested file is placed into a buffer pointed to by the
fil el nf o parameter. The following UFTP requests will appear on the bus:

UFTP_GET_FILE_INFO

The function locks the Device for the following request while transmitting the file, thus
several applications can request the get file operation.

~—"1 Appendix 4:USB FILE TRANSFER LIBRARY. 10-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.7. Uftp_ReadDir
Definition:

BOOL
Uftp_ReadDir(

HUFTP hUftp,

TCHAR **rgFileNameq[],
DWORD *dwFilesCount

);
Parameters:
hUftp — handle to UFTP object obtained from Uf t p_Connect routine.
rgFileNames — array with string, that contain file names.
dwFilesCount — points to the buffer to return total file count on Device.
Returns:

TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uft p_Get Last Error Win32 APl function.

Comments

This function requests an information directory for the Device. The function alocates an
array of strings rgFi | eNames and puts the file name into this array. The array contains
dwFi | esCount valid entries. The caller should free each file name, and then free
dwFi | esCount itself, when the file list array is no longer required. The following UFTP
requests will appear on the bus:

UFTP_GET DIR

The function locks the Device for the following request while transmitting the file, thus
several applications can request the get file operation.

~—"1 Appendix 4:USB FILE TRANSFER LIBRARY. 10-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.8. Uftp_SetTransferLength
Definition:

BOOL

Uftp_SetTransferLength(
HUFTP hUftp,

DWORD dwTransferLength

);

Parameters.
hUftp — handleto UFTP object obtained from Uf t p_Connect routine.

dwTransferLength — transfer unit to usein I/O operations.

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uft p_Get Last Error Win32 API function.

Comments:

This function sets the transfer unit to communicate with the Device. The bigger transfer
unit increase transmission speed but requires more memory on the Device. With this
function no UFTP requests will appear on the bus.

~—"1 Appendix 4:USB FILE TRANSFER LIBRARY. 10-1C
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.9. 2.1.9 Uftp_DelFile
Definition:

BOOL

Uftp DelFilg(

HUFTP hUftp,
LPCTSTR FileName

);

Parameters:

hUftp — handle to UFTP object obtained from Uf t p_Connect routine.
FileName — gpecifiesfile name on the Device

Returns.

TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uft p_Get Last Error Win32 API function.

Comments:

This function deletes the file specified by Fi | eName from the Device. If no file with such
a name exists, the Device returns UFTP error. The following UFTP requests will appear
on the bus:

UFTP_DELETE

The function locks the Device for the following request.

~—"11 Appendix 4:USB FILE TRANSFER LIBRARY. 10-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.10. Uftp_GetLastError
Definition:

DWORD
Uftp_GetL astError(
HUFTP hUFTP

);

Parameters:
hUftp — handle to UFTP object obtained from Uf t p_Connect routine.

Returns:
The function returns the last error. This can be either aUFTP error, aMOTUSB error or a
system error.

Comments:
The function returns the last error for the specified UFTP object handle. This can be
UFTP, MOTUSB, or system error.

~—"1 Appendix 4:USB FILE TRANSFER LIBRARY. 10-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.1.11. Uftp_GetErrorText
Definition:

LPTSTR
Uftp GetErrorText(
DWORD errCode

);

Parameters.
errCode — error code returns by UFTP operation.

Returns:
The function returns a string error message for the specified error code.

Comments:
The Client application can use this operation to get a uftp error message for the specified
error code.

~—"1 Appendix 4:USB FILE TRANSFER LIBRARY. 10-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.2. Types used in library.

10.2.2.1. PROGRESS ROUTINE
Definition:
typedef void (*PROGRESS ROUTINE)(PPROGRESS STRUCT);

10.2.2.2. PROGRESS STRUCT
Definition:

typedef struct {
BYTE eventCode;
LPVOID param;
DWORD timeMs,
DWORD bytesDone;
DWORD bytesTotal;
} PROGRESS STRUCT, *PPROGRESS STRUCT;

Members:

eventCode

Can be one of the following constant:
EVENT_START - operation starts
EVENT_STOP - operation stops
EVENT_UPDATE - operation has progress

param
Misc. parameter that the Client specifies in Uft p_Set ProgressRoutine param
parameter.

timeMs
Time in milliseconds since transfer operation started.

bytesDone
Transferred bytes count.

BytesT otal
Tota bytes count to transmit.

Comments:

This structure is used by the progress callback routine. The UFTP library calls the
progress routine when it has to transfer results, and puts the pointer to this structure as a
parameter. In this way the UFTP Client by using Uft p_Set ProgressRoutine can
retrieve notifications of progress results.

~—"11 Appendix 4:USB FILE TRANSFER LIBRARY. 10-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.3. Error codes.

To obtain an error code, the Client should use the Uft p_Get Last Error routine. The
library defines the following UFTP error codes:

UFTP_SUCCESS 0

UFTP_FILE_DOES NOT_EXIST OXEF001100L
UFTP_MEMORY_ALLOCATION_FAIL OXEF002100L
UFTP_NO_POSITION_FOR _NEW _FILE OXEF003100L
UFTP_NOT_ENOUGH_SPACE_FOR FILE OXEF004100L

All these error codes are defined by the UFTP protocol. Check USB CBI Transfers Type
Client Application Developers Guide for a description of these values. The library can
also return any MOTUSB or System error. The Client should use Uft p_Get Err or Text
function to get the error message of any error type.

~—"11 Appendix 4:USB FILE TRANSFER LIBRARY. 10-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

