
CodeWarrior™
Development Studio for

ColdFire®
Architectures v6.3
Targeting Manual

 Revised: 15 September 2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

7700 West Parmer Lane

Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

3ColdFire Architectures v6.3 - Targeting Manual

Table of Contents

1 Introduction 7
Read the Developer Notes. 7

Features . 7

CodeWarrior Editions . 8

About this Manual . 9

Documentation Overview . 10

Additional Information Resources . 10

2 Getting Started 13
System Requirements . 13

Host Requirements . 13

Target Board Requirements. 14

CodeWarrior IDE . 14

CodeWarrior Development Process . 15

Project Files. 17

Editing Code . 18

Building: Compiling and Linking . 18

Debugging . 19

Disassembling . 19

3 Application Tutorial 21
Create a Project . 21

Build the Project . 25

Debug the Application . 27

4 Target Settings 33
Target Settings Overview . 33

ColdFire Settings Panels . 34

Target Settings. 35

BatchRunner PreLinker. 37

BatchRunner PostLinker . 37

ColdFire Target . 38

Table of Contents

4 ColdFire Architectures v6.3 - Targeting Manual

ColdFire Assembler .38

ELF Disassembler .41

ColdFire Processor .45

ColdFire Linker .48

Debugger PIC Settings .53

5 Debugging 55
Target Settings for Debugging. .55

CF Debugger Settings Panel .56

Remote Debugging Panel .59

CF Exceptions Panel .63

Debugger Settings Panel .66

CF Interrupt Panel .68

Remote Connections for Debugging .69

Abatron Remote Connections .71

Freescale Remote Connections .73

P&E Microsystems Remote Connections .76

ISS Remote Connection. .80

BDM Debugging .83

Connecting a P&E Parallel Connector .83

Connecting an Abatron BDI Device .83

Debugging ELF Files without Projects .85

Updating IDE Preferences .85

Customizing the Default XML Project File. .86

Debugging an ELF File .87

Additional ELF-Debugging Considerations .87

Special Debugger Features .88

ColdFire Menu. .88

Working with Target Hardware .89

Using the Simple Profiler .90

6 Instruction Set Simulator 91
Features .91

ColdFire V2 .91

ColdFire V4e .92

Table of Contents

5ColdFire Architectures v6.3 - Targeting Manual

Using the Simulator . 93

Console Window . 93

Viewing ISS Registers. 94

ISS Configuration Commands . 94

bus_dump . 95

cache_size . 96

ipsbar . 96

kram_size . 97

krom_size . 97

krom_valid. 98

mbar. 98

mbus_multiplier . 99

memory . 99

sdram . 100

Sample Configuration File . 100

ISS Limitations . 101

7 Using Hardware Tools 103
Flash Programmer. 103

Hardware Diagnostics. 108

8 Using Debug Initialization Files 113
Common File Uses . 113

Command Syntax . 115

Command Reference. 116

Delay . 116

ResetHalt . 117

ResetRun . 117

Stop . 117

writeaddressreg . 117

writecontrolreg . 118

writedatareg. 118

writemem.b . 119

writemem.l. 119

writemem.w. 120

Table of Contents

6 ColdFire Architectures v6.3 - Targeting Manual

9 Memory Configuration Files 121
Command Syntax .121

Command Explanations .122

range .122

reserved .123

reservedchar. .123

Index 125

7ColdFire Architectures v6.3 - Targeting Manual

1
Introduction

This manual explains how to use CodeWarrior™ development tools to develop
applications for the Freescale™ ColdFire® family of integrated microprocessors.

This chapter consists of these sections:

• Read the Developer Notes

• Features

• CodeWarrior Editions

• About this Manual

• Documentation Overview

• Additional Information Resources

Read the Developer Notes
Before using the CodeWarrior IDE, read the developer notes. These notes contain
important information about last-minute changes, bug fixes, incompatible elements, or
other topics that may not be included in this manual.

NOTE The release notes for specific components of the CodeWarrior IDE are located
at location: {CodeWarrior_Dir}\Release_Notes, where
{CodeWarrior_Dir} is the CodeWarrior installation directory.

If you are new to the CodeWarrior IDE, read this chapter and the Getting Started chapter.
This chapter provides references to resources of interest to new users; the Getting Started
chapter helps you become familiar with the software features.

Features
The CodeWarrior Development Studio for ColdFire Architectures includes these features:

• Latest version of the CodeWarrior IDE, which the IDE User’s Guide explains.

• Support for the latest ColdFire processors: MCF5222x and MCF5223x.

• Support for previous processors of the ColdFire family, such as MCF547x/548x,
MCF5206, MCF5208, MCF5213 (and its variants MCF5211 and MCF5212),

Introduction
CodeWarrior Editions

8 ColdFire Architectures v6.3 - Targeting Manual

MCF523x, MCF5282, MCF5271, MCF5272, MCF5275, MCF5282, MCF5307,
MCF5329, and MCF5249. For more information, see ColdFire Processor

• Flash-programmer and hardware-diagnostics support. For more information, see
Using Hardware Tools.

• Remote connection debugging support for a range of protocols:

– Abitron protocols, see Abatron Remote Connections.

– Freescale’s USB TAP, see Freescale Remote Connections.

– P&E Micro protocols, see P&E Microsystems Remote Connections.

• Instruction Set Simulator (ISS) for V2 and V4e processor cores. For more
information, see Remote Connections for Debugging and Instruction Set Simulator

• Simple profiler support. For more information, see Using the Simple Profiler. (This
profiler support is not available for MCF521x, MCF5222x, and MCF5223x
processors.)

CodeWarrior Editions
There are three editions of CodeWarrior™ Development Studio for ColdFire®
Architectures, version 6.3. Table 1.1 shows their feature differences.

Table 1.1 CodeWarrior ColdFire 6.3 Edition Features

Feature Special
Edition

Standard
Edition

Professional Edition

IDE Yes Yes Yes

Compiles source
code

ASM and C ASM and C ASM, C, and C++

Code size
restrictions

128KB None None

Compiler
optimization levels

Unlimited Unlimited Unlimited

3rd-party plug-ins No RTOS No RTOS Unlimited RTOS plug-ins

CodeWarrior
Debugger

Yes Yes Yes

Introduction
About this Manual

9ColdFire Architectures v6.3 - Targeting Manual

About this Manual
Table 1.2 lists the contents of this manual.

Debugger
hardware
connections

P&E Parallel
and USB,
Cyclone Max,
and USB TAP

P&E Parallel
and USB,
Cyclone Max,
and USB TAP

P&E Parallel, USB, and
Lightning; Abatron serial
and TCP/IP, Cyclone
Max, and USB TAP

V2, V4e simulator No Yes Yes

Flash programmers CodeWarrior
Flash
Programmer
(129
megabytes) and
ColdFire
Flasher
standalone
plug-in

CodeWarrior
Flash
Programmer
and ColdFire
Flasher
standalone
plug-in

CodeWarrior Flash
Programmer and ColdFire
Flasher standalone plug-
in

Real time operating
system (RTOS)

Not available Not available Plug-ins available

Availability Free with
evaluation
board

Available
through all
channels

Available through all
channels. 30-day
evaluation copy also
available.

Table 1.2 Chapter, Appendix Contents

Chapter/Appendix Explains

Introduction New features; contents of this manual; technical
support; further documentation

Getting Started System requirements; overview of CodeWarrior
development tools

Application Tutorial Tutorial for writing and debugging programs

Target Settings Controlling the compiler and linker

Table 1.1 CodeWarrior ColdFire 6.3 Edition Features (continued)

Feature Special
Edition

Standard
Edition

Professional Edition

Introduction
Documentation Overview

10 ColdFire Architectures v6.3 - Targeting Manual

Documentation Overview
Documentation for your CodeWarrior tools comes in three formats:

• PDF manuals — in subdirectory \Help\PDF of your installation directory.

NOTE For complete information about a particular topic, you may need to look in this
Targeting manual and in the corresponding generic CodeWarrior manual.
To view any PDF document, you need Adobe® Acrobat® Reader software,
which you can download from: http://www.adobe.com/acrobat

• CHM help files — information in Microsoft® HTML Help CHM format, in folder
\Help of the CodeWarrior installation directory. To view this information, start the
CodeWarrior IDE, then select Help > Online Manuals from the main menu bar.

• CodeWarrior online help — information about using the IDE and understanding
error messages. To access this information, start the CodeWarrior IDE, then select
Help > CodeWarrior Help from the main menu bar.

Additional Information Resources
• CodeWarrior IDE and related documentation can be found in the \Help\PDF

subdirectory of your CodeWarrior installation directory:

• For general information about the CodeWarrior IDE and debugger, see the IDE 5.7
User’s Guide.

• For information specific to building (compiling and linking), see the ColdFire Build
Tools Reference.

Debugging Debugger settings panels; remote debugging
connections

Instruction Set Simulator Instruction Set Simulator, including configuration for
your requirements.

Using Hardware Tools Flash programmer and hardware diagnostics tools

Using Debug Initialization
Files

Debug initialization files

Memory Configuration Files Defining access for areas of memory

Table 1.2 Chapter, Appendix Contents (continued)

Chapter/Appendix Explains

Introduction
Additional Information Resources

11ColdFire Architectures v6.3 - Targeting Manual

• For information about the Main Standard Libraries for C/C++, see the MSL C
Reference and the MSL C++ Reference.

• For PDF-format documentation about Freescale processors and cores, go to the
\Freescale_Documentation subdirectory of your CodeWarrior installation
directory.

• For Freescale documentation and resources, visit the Freescale, Inc. web site:
http://www.freescale.com

• For additional electronic-design and embedded-system resources, visit the EG3
Communications, Inc. web site: http://www.eg3.com

• For monthly and weekly forum information about programming embedded systems
(including source-code examples), visit the Embedded Systems Programming
magazine web site: http://www.embedded.com

Introduction
Additional Information Resources

12 ColdFire Architectures v6.3 - Targeting Manual

13ColdFire Architectures v6.3 - Targeting Manual

2
Getting Started

This chapter helps you install the CodeWarrior™ Development Studio for ColdFire
Architectures. It also gives an overview of the CodeWarrior environment and tools.

This chapter consists of these sections:

• System Requirements

• CodeWarrior IDE

• CodeWarrior Development Process

System Requirements
Your host computer system and your target board must meet minimum requirements.

Host Requirements
Your computer (PC) needs:

• 800 MHz Pentium®-compatible microprocessor

• Windows® 2000 or XP operating system

• 512 megabytes of RAM

• CD-ROM drive

• 350 megabytes free memory space, plus space for projects and source code

• Serial port (or Ethernet connector), to connect your PC to the embedded target — for
debugging with an Abatron BDI device or P&E Cyclone Max through Serial

• Parallel port (or P&E Lightning board) — to use a P&E parallel cable to connect to
BDM/JTAG targets

• USB port — To use a P&E USB BDM debug cable (Cyclone Max or P&E USB
Multilink) or Freescale USB TAP

• Ethernet connector -- to connect your PC to the embedded target for debugging with
an Abatron BDI device or P&E Cyclone Max through TCP/IP

Getting Started
CodeWarrior IDE

14 ColdFire Architectures v6.3 - Targeting Manual

Target Board Requirements
Your functional embedded system needs:

• ColdFire evaluation board, with a supported processor.

• Serial or null-modem cables to connect the host computer and target board, in case
you would like to send printf output to a terminal; your target board determines the
specific cables you need.

• BDM connector to be able to connect a supported BDM cable.

• Appropriate power supply for the target board.

CodeWarrior IDE
The CodeWarrior IDE consists of a project manager, a graphical user interface, compilers,
linkers, a debugger, a source-code browser, and editing tools. You can edit, navigate,
examine, compile, link, and debug code, within the one CodeWarrior environment. The
CodeWarrior IDE lets you configure options for code generation, debugging, and
navigation of your project.

Unlike command-line development tools, the CodeWarrior IDE organizes all files related
to your project. You can see your project at a glance, so organization of your source code
files is easy. Navigation among those files is easy, too.

When you use the CodeWarrior IDE, there is no need for complicated build scripts or
makefiles. To add or delete source code files from a project, you use your mouse and
keyboard, instead of tediously editing a build script.

For any project, you can create and manage several configurations for use on different
computer platforms. The platform on which you run the CodeWarrior IDE is called the
host. From the host, you can use the CodeWarrior IDE to develop code to target various
platforms.

Note the two meanings of the term target:

• Platform Target — The operating system, processor, or microcontroller in which/
on which your code will execute.

• Build Target — The group of settings and files that determine what your code is, as
well as controlling the process of compiling and linking.

The CodeWarrior IDE lets you specify multiple build targets. For example, a project can
contain one build target for debugging and another build target optimized for a particular
operating system (platform target). These build targets can share project files, even though
each build target uses its own settings. After you debug the program, the only actions
necessary to generate a final version are selecting the project’s optimized build target and
using a single make command.

Getting Started
CodeWarrior Development Process

15ColdFire Architectures v6.3 - Targeting Manual

The CodeWarrior IDE’s extensible architecture uses plug-in compilers and linkers to
target various operating systems and microprocessors. For example, the IDE internally
calls a C translator, compiler, and linker.

Most features of the CodeWarrior IDE apply to several hosts, languages, and build targets.
However, each build target has its own unique features. This manual explains the features
unique to the CodeWarrior IDE for Freescale ColdFire processors.

For comprehensive information about the CodeWarrior IDE, see the Code Warrior IDE
User’s Guide.

CodeWarrior Development Process
The CodeWarrior IDE helps you manage your development work more effectively than
you can with a traditional command-line environment. Figure 2.1 depicts application
development using the IDE.

Getting Started
CodeWarrior Development Process

16 ColdFire Architectures v6.3 - Targeting Manual

Figure 2.1 CodeWarrior IDE Application Development

Compile Project

Manage Files (1)

Error-Free?

Create/Manage Project

Specify Target

Success?

(1) Use any combination: stationery

Debug Project

Release

(2) Compiler, linker, debugger

no

yes

Link Project

Edit Files (3)

Start

Settings

Success?

End

no

no

yes

yes

Notes:

(4)

(3) Edit source and resource files.

(4) Possible corrections:

(template) files, library files,
or your own source files.

settings; target specification;
optimizations.

adding a file, changing
settings, or editing a file.

(2)

Build (Make) Project

Getting Started
CodeWarrior Development Process

17ColdFire Architectures v6.3 - Targeting Manual

Project Files
A CodeWarrior project consists of source-code, library, and other files. The project
window (Figure 2.2) lists all files of a project, letting you:

• Add files

• Remove files

• Specify the link order

• Assign files to build targets

• Have the IDE generate debug information for files

Figure 2.2 Project Window

NOTE Figure 2.2 shows a floating project window. Alternatively, you can dock the
project window in the IDE main window or make the project window a child of
the main window. You can have multiple project windows open at the same
time; if the windows are docked, their tabs let you control which one is at the
front of the main window.

The CodeWarrior IDE automatically handles dependencies among project files, storing
compiler and linker settings for each build target. The IDE tracks which files have
changed since your last build, recompiling only those files during your next project build.

A CodeWarrior project is analogous to a collection of makefiles, as the same project can
contain multiple builds. Examples are a debug version and release version of code, both

Getting Started
CodeWarrior Development Process

18 ColdFire Architectures v6.3 - Targeting Manual

part of the same project. As earlier text explained, build targets are such different builds
within a single project.

Editing Code
The CodeWarrior text editor handles text files in MS-DOS, UNIX, and MacOS formats.

To edit a source code file (or any other editable project file), double-click its filename in
the project window. The IDE opens the file in the editor window (Figure 2.3). This
window lets you switch between related files, locate particular functions, mark locations
within a file, or go to a specific line of code.

Figure 2.3 Editor Window

NOTE Figure 2.3 shows a floating editor window. Alternatively, you can dock the
project window in the IDE main window or make the project window a child of
the main window.

Building: Compiling and Linking
For the CodeWarrior IDE, building includes both compiling and linking. To start building,
you select Project > Make, from the IDE main menu bar. The IDE compiler:

• Generates an object-code file from each source-code file of the build target,
incorporating appropriate optimizations.

Getting Started
CodeWarrior Development Process

19ColdFire Architectures v6.3 - Targeting Manual

• Updates other files of the build target, as appropriate.

• In case of errors, issues appropriate messages and halts.

When compilation is done, building moves on to linking. The IDE linker:

• Links the object files into one executable file, in the link order you specify.

• In case of errors, issues appropriate error messages and halts.

When linking is done, you are ready to test and debug your application.

NOTE It is possible to compile a single source file. To do so, select the filename in the
project window, then select Project > Compile from the main menu bar.
Another useful option is compiling only the modified files of the build target:
select Project > Bring Up To Date from the main menu bar.

Debugging
To debug your application, select Project > Debug from the main menu bar. The
debugger window opens, displaying your program code.

Run the application from within the debugger to observe results. The debugger lets you set
breakpoints, to check register, parameter, and other values at specific points of code
execution.

NOTE To debug code stored in Flash memory, you first must program the Flash. (The
Flash Programmer subsection explains how to program a flash device.)

When your code executes correctly, you are ready to add features, to release the
application to testers, or to release the application to customers.

NOTE Another debugging feature of the CodeWarrior IDE is viewing preprocessor
output. This helps you track down bugs caused by macro expansions or another
subtlety of the preprocessor. To use this feature, specify the output filename in
the project window, then select Project > Preprocess from the main menu bar.
A new window opens to show the preprocessed file.

Disassembling
To disassemble a compiled or ELF file of your project, select the file’s name in the project
window, then select Project > Disassemble. In order to add an ELF file to the project
view for disassembly, in Windows Explorer, point to the ELF file and drag it to the project
in the CodeWarrior IDE. Right click on the file name and select disassemble.

Getting Started
CodeWarrior Development Process

20 ColdFire Architectures v6.3 - Targeting Manual

After disassembling the file, the CodeWarrior IDE creates a .dump file that contains the
disassembled file’s object code in assembly format, and debugging information in
Debugging With Attribute Record Format (DWARF). The .dump file’s contents appear
in a new window.

21ColdFire Architectures v6.3 - Targeting Manual

3
Application Tutorial

This chapter takes you through the CodeWarrior™ IDE programming environment. This
tutorial does not teach you programming. It instead teaches you how to use the
CodeWarrior IDE to write and debug applications for a target platform.

The examples in this chapter have been chosen for MCF5208-based code development. If
you are using a different ColdFire processor, you will need to substitute the appropriate
device name in the examples. Also, this tutorial assumes that debugging will be done
using CCS-SIM instead of real hardware. See Remote Debugging Panel for details on
connecting to a physical target evaluation board (EVB).

If you are using an EVB, then before you start this tutorial, you should configure the
hardware. Typically, this entails:

• Verifying all jumper-header and switch settings,

• Connecting the EVB to your computer, and

• Connecting EVB power.

NOTE For complete setup instructions, see the EVB’s own documentation.

This chapter consists of these sections:

• Create a Project

• Build the Project

• Debug the Application

Create a Project
This section shows how to use stationery to create a new project for a ColdFire EVB, and
how to set up the project to make a standalone application. Follow these steps:

1. Select Programs > Freescale CodeWarrior > CodeWarrior for ColdFire V6.3 >
CodeWarrior IDE. The CodeWarrior IDE starts and the main window (Figure 3.1)
appears.

2. From the main menu bar, select File > New. A New dialog box (Figure 3.2) appears.

a. Select ColdFire Stationery.

b. In the Project name text box, type MyProj.

Application Tutorial
Create a Project

22 ColdFire Architectures v6.3 - Targeting Manual

NOTE The default project location is the CodeWarrior installation directory. For
example, if the project name is abc and the installation directory is
CodeWarrior_Dir, the default location is CodeWarrior_Dir\abc.
For a different location, click the Set button, then use the subsequent dialog
box to specify the location. Clicking OK returns you to the New dialog box.

c. Click OK. The New Project dialog box (Figure 3.3) appears.

Figure 3.1 CodeWarrior IDE Main Window

Figure 3.2 New Dialog Box

Application Tutorial
Create a Project

23ColdFire Architectures v6.3 - Targeting Manual

Figure 3.3 New Project Dialog Box

3. Specify CF_M5208EVB C stationery.

a. Click the CF_M5208EVB expand control — the tree structure displays the
subordinate option C.

b. Select C, as Figure 3.4 shows.

Figure 3.4 New Project Dialog Box: Selecting M5208 C Stationery

NOTE Many possible ColdFire target processors have an external bus, so can use
large external RAM devices for debugging applications during development.
But M5211, M5212, and M5213 processors do not have an external bus, so
must accommodate applications in on-chip memory. Although this on-chip
RAM accommodates CodeWarrior stationery, it probably is too small for full
development of your application. Accordingly, for these processors, you
should locate your applications in flash memory. (The Flash Programmer
subsection explains how to program a flash device.)

Application Tutorial
Create a Project

24 ColdFire Architectures v6.3 - Targeting Manual

c. Click OK. The CodeWarrior IDE creates a new project consisting of the folders
and files (header, initialization, common, and so forth) that the M5208 C stationery
specifies. The project window (Figure 3.5) appears.

Figure 3.5 Project Window

4. Make sure that the target field (immediately under the project-window tab) specifies
M5208EVB Console Debug.

NOTE Files in the project data folder include information about the project file,
various target settings, and object code. Do not change the contents of this
folder, or the CodeWarrior IDE could lose project settings.

5. This completes project creation. You are ready to build the project, per the procedure
of the next section.

NOTE While your source file (main.c) is open in the editor window, you can use all
editor features to work with your code.
If you wish, you can use a third-party editor to create and edit your code,
provided that this editor saves the file as plain text.
For information about the editor window, touching files, and file
synchronization, and removing/adding text files, see IDE User’s Guide.

Application Tutorial
Build the Project

25ColdFire Architectures v6.3 - Targeting Manual

Build the Project
This section shows how to select the linker, set up remote debugging, and build (compile
and link) your project.

NOTE The stationery for this project includes a default setup for the linker specific to
the application’s target platform.

Follow these steps:

1. Select the appropriate linker.

a. Select Edit > Target Settings (where Target is the name of the current build
target). The Target Settings window (Figure 3.6) appears.

NOTE In this tutorial, the name of the build target is M5208EVB Console Debug. So
the Target Settings window title is M5208EVB Console Debug Settings.

Figure 3.6 Target Settings Window: Target Settings Panel

b. From the Target Settings Panels list, select Target Settings.

The Target Settings panel moves to the front of the window.

c. Use the Linker list box to specify the Embedded ColdFire Linker.

d. Click Apply. The IDE saves the new linker setting for the build target.

Application Tutorial
Build the Project

26 ColdFire Architectures v6.3 - Targeting Manual

NOTE This linker change applies only to the current build target. To use a different
build target, you must specify its appropriate linker.

For an actual target board, instead of the simulator, you would need to make
board connections by this point.

2. Set Up Remote Debugging.

a. From the Target Settings Panels list, select Remote Debugging.

The Remote Debugging settings panel moves to the front of the Target Settings
window, as Figure 3.7 shows.

Figure 3.7 Target Settings Window: Remote Debugging Panel

b. Use the Connection list box to specify CCS-SIM.

c. Click OK. The IDE completes the remote debugging setup, and the Target
Settings window closes.

3. From the main menu bar, select Project > Make. The IDE updates all files, links code
into the finished application, and displays any error messages or warnings in the
Errors & Warnings window.

NOTE The Make command applies to all source files: the IDE opens them all, the
compiler generates object code, then the linker creates an executable file.
(The Compile command applies only to selected files. The Bring Up To Date

Application Tutorial
Debug the Application

27ColdFire Architectures v6.3 - Targeting Manual

command compiles all changed files, without linking.)
The Project window lets you view compiler progress, or stop the build.

4. This completes building your project. You are ready for the debugging procedure of
the next section.

Debug the Application
This section explains you how to test whether your application runs as you expect. Topics
include starting the debugger, setting a breakpoint, and viewing registers. Follow these
steps:

1. Set debugger preferences.

a. Select Edit > Target Settings, (where Target is the name of the current build
target). The Target Settings window appears.

b. From the Target Settings Panels list, select CF Debugger Settings. The CF
Debugger Settings panel moves to the front of the window, as Figure 3.8 shows.

Figure 3.8 The CF Debugger Settings Panel

c. Make sure that the Target Processor list box specifies 5208 (or the platform target
you have specified).

d. Make sure that the Target OS list box specifies BareBoard.

Application Tutorial
Debug the Application

28 ColdFire Architectures v6.3 - Targeting Manual

e. Click OK. The IDE saves the debugger settings, and the Target Settings window
closes.

NOTE The default target initialization and memory configuration files are in
subdirectory \E68K_Support\Initialization_Files, of the
CodeWarrior installation directory.

2. From the IDE main menu, select Project > Debug. A progress bar appears as the
system downloads the output file to the target. The debugger starts; the Debugger
window (Figure 3.9) appears.

NOTE For a ROM build target, you must load the application to Flash memory before
you can perform Step 2.

Figure 3.9 Debugger Window

a. Note the toolbar at the top of the window; it includes command buttons Run, Stop,
Kill, Step Over, Step Into, and Step Out.

b. Note the Stack pane, at the upper left. This pane shows the function calling stack.

c. Note the Variables pane, at the upper right. This pane lists the names and values of
any local variables.

Application Tutorial
Debug the Application

29ColdFire Architectures v6.3 - Targeting Manual

d. Note the Source pane, the largest pane of the window. This pane displays C/C++
or assembly source code.

3. Set a breakpoint.

a. In the Source pane, find the line containing the open brace ({) character.

b. In the far left-hand column of this line, click the grey dash. A red circle replaces the
dash, indicating that the debugger set a breakpoint at the location. Figure 3.10
shows the red-circle indicator.

Figure 3.10 Setting a breakpoint

4. View registers.

a. From the main menu bar, select View > Registers. The Registers window
(Figure 3.11) appears.

b. Use the expand controls to drill down through register categories to individual
registers — when you reach individual registers, their values appear at the right
side of the window.

c. You may edit register values directly in the Registers window.

d. Close the Registers window.

Breakpoint

Application Tutorial
Debug the Application

30 ColdFire Architectures v6.3 - Targeting Manual

Figure 3.11 Registers Window

5. View memory.

a. In the Source pane of the Debugger window, right-click on main. The view-
memory context menu (Figure 3.12) appears.

Figure 3.12 View Memory Context Menu

Application Tutorial
Debug the Application

31ColdFire Architectures v6.3 - Targeting Manual

b. From this context menu, select View Memory. The View Memory window Figure
3.13 appears.

Figure 3.13 View Memory Window

c. Note that the View Memory window displays hexadecimal and ascii values for
several addresses, starting at the address of main.

d. In the Display text box, type a valid address in RAM or ROM.

e. Press the Enter key. Window contents change, to display memory values starting at
the address you entered.

NOTE You can edit the contents of the View Memory window. This window also lets
you disassemble a random part of memory.

f. Close the View Memory window.

6. Run the application.

Application Tutorial
Debug the Application

32 ColdFire Architectures v6.3 - Targeting Manual

a. From the main menu bar, select Project > Run, or click the Run button of
the Debugger window. A console window (Figure 3.14) appears, displaying the
Hello-World-message result of the application.

Figure 3.14 Console Window

b. Click the Kill button of the Debugger window. The debugger stops the
application, the IDE stops the debugger, and the Debugger widow closes.

c. This completes the procedure — you have created and debugged a simple
application. You may close any open windows.

33ColdFire Architectures v6.3 - Targeting Manual

4
Target Settings

This chapter explains the settings panels specific to ColdFire software development. Use
the elements of these panels to control assembling, compiling, linking, and other aspects
of code generation.

NOTE For documentation of the target settings panels included in all CodeWarrior
products, see the IDE User Guide.

This chapter consists of these sections:

• Target Settings Overview

• ColdFire Settings Panels

Target Settings Overview
A CodeWarrior project contains one or more build targets. A build target is a named
collection of files and settings that the CodeWarrior IDE uses to generate an output file.

A build target contains all build-specific target settings. Target settings define:

• The files that belong to a build target.

• The behavior of the compiler, assembler, linker, and other build tools.

The build target feature lets you create different versions of your program for different
purposes. For example, you might have a debug build target. This build target would
include no optimizations so it is easy to debug. You might also have a release build target.
This build target would be heavily optimized so it uses less memory or runs faster.

You control target settings through target settings panels that you access through the
Target Settings window.

To open this window, select Edit > Target Settings, from the main-window menu bar.
(Target is a target name, such as CF_Simulator, within your CodeWarrior project.) An
alternate way to brig up the Target Settings window is to bring the Targets page to the
front of the project window, then double-click the project name.

Figure 4.1 shows this Target Settings window. (The CodeWarrior IDE User’s Guide
explains all elements of this window.)

Target Settings
ColdFire Settings Panels

34 ColdFire Architectures v6.3 - Targeting Manual

Use the tree listing of panels, in the Target Settings Panels pane, to display any settings
panel. If necessary, click the expand control to see a category’s list of panels. Clicking a
panel name immediately puts that panel in the Target Settings pane.

Figure 4.1 Target Settings Window

Note these buttons, at the bottom of the window:

• Apply — Implements your changes, leaving the Target Settings window open. This
lets you bring up a different settings panel.

• OK — Implements your changes, closing the Target Settings window. Use this
button when you make the last of your settings changes.

• Revert — Changes panel settings back to their most recently saved values.
(Modifying any panel settings activates this button.)

• Factory Settings — Restores the original default values for the panel.

• Import Panel — Copies panel settings previously saved as an XML file.

• Export Panel — Saves settings of the current panel to an XML file.

ColdFire Settings Panels
Table 4.1 lists the target settings panels specific to developing applications for the
ColdFire target. The following section describes these panels in detail.

Target Settings
ColdFire Settings Panels

35ColdFire Architectures v6.3 - Targeting Manual

NOTE For debugger-specific panels CF Debugger Setting, CF Exceptions,
Debugger Settings, and Remote Debugging, see the Debugging chapter.
For information about the C/C++ Language and C/C++ Warnings panels,
see the C Compilers Reference manual.
For details on all other panels, see the IDE User’s Guide.

Target Settings
Use the Target Settings panel (Figure 4.2) to define the build target and select the
appropriate linker. Table 4.2 explains the elements of this panel.

NOTE You must use this settings panel to select a linker before you can specify the
compiler, linker settings, or any other project details.

Figure 4.2 Target Settings Panel

Table 4.1 ColdFire Target Settings Panels

Target Settings ColdFire Processor

BatchRunner PreLinker ELF Disassembler

BatchRunner PostLinker ColdFire Linker

ColdFire Target Debugger PIC Settings

ColdFire Assembler

Target Settings
ColdFire Settings Panels

36 ColdFire Architectures v6.3 - Targeting Manual

Table 4.2 Target Settings Panel Elements

Element Purpose Comments

Target Name text
box

Specifies the name of the build
target; this name appears
subsequently on the Targets
page of the project window.

Default: None.

This build-target name is not
the name of your final output
file.

Linker list box Specifies the linker: Select
ColdFire.

Default: ColdFire.

Controls visibility of other
relevant panels.

Pre-linker list box Specifies the pre-linker that
performs work on object code
before linking.

Default: None.

If your project includes Flash
programming, select
BatchRunner PreLinker. For
more information, see
BatchRunner PreLinker.

Post-linker list box Specifies the post-linker that
performs additional work on the
final executable.

Default: None.

Post-linking often includes
object code format
conversion. If your project
includes Flash programming,
select BatchRunner
PostLinker. For more
information, see BatchRunner
PostLinker.

Output Directory
text box

Specifies the directory for the
final linked output file. To specify
a non-default directory, click the
Choose button. To clear this
text box, click the Clear button.

Default: Directory that
contains the project file.

Save project
entries using
relative paths
checkbox

Clear — Specifies minimal file
searching; each project file must
have a unique name.

Checked — Specifies relative
file searching; project may
include two or more files that
have the same name.

Default: Clear.

Target Settings
ColdFire Settings Panels

37ColdFire Architectures v6.3 - Targeting Manual

BatchRunner PreLinker
The BatchRunner PreLinker settings panel (Figure 4.3) lets you run a batch file before
the IDE begins linking your project. To specify such a batch file, click the Choose button,
then use the subsequent dialog box to navigate to and select the file. Clicking the OK
button of the dialog box returns you to this panel, filling in the name of the batch file.

Figure 4.3 BatchRunner PreLinker Panel

BatchRunner PostLinker
The BatchRunner PostLinker settings panel (Figure 4.4) lets you run a batch file after
the IDE builds your project. To specify such a batch file, click the Choose button, then use
the subsequent dialog box to navigate to and select the file. Clicking the OK button of the
dialog box returns you to this panel, filling in the name of the batch file.

Figure 4.4 BatchRunner PostLinker Panel

To pass the name of the output file as a parameter to the batch file, check the Pass linker
output file as %1 parameter to batch file checkbox.

Target Settings
ColdFire Settings Panels

38 ColdFire Architectures v6.3 - Targeting Manual

ColdFire Target
Use the ColdFire Target panel (Figure 4.5) to specify the type of project file and to name
your final output file. Table 4.3 explains the elements of this panel. (To create alternative
builds, compiling for different targets, use the __option() pre-processor function with
conditional compilation.)

Figure 4.5 ColdFire Target Panel

ColdFire Assembler
Use the ColdFire Assembler panel (Figure 4.6) to control the source format or syntax for
the CodeWarrior assembler, and to specify the target processor, for which you are
generating code. Table 4.4 explains the elements of this panel.

Table 4.3 ColdFire Target Panel Elements

Element Purpose Comments

Project Type list box Specifies the kind of project:
Application — executable project
Library — static library
Shared Library — shared library

Default: Application.

File Name text box Specifies the name of your final
linked output file.

Default: None.

Convention: use
extension.elf for an
application, .lib or .a
for a library.

Target Settings
ColdFire Settings Panels

39ColdFire Architectures v6.3 - Targeting Manual

Figure 4.6 ColdFire Assembler Panel

Table 4.4 ColdFire Assembler Panel Elements

Element Purpose Comments

Processor list box Specifies the target processor. Default: MCF52xx.

Processor has MAC
checkbox

Clear — Tells assembler that the
target processor does not have a
multiply accumulator (MAC) unit.

Checked — Tells assembler that the
target processor does have a MAC.

Default: Clear.

You can check both
the MAC and
EMAC checkboxes.

Processor has EMAC
checkbox

Clear — Tells assembler that the
target processor does not have an
enhanced multiply accumulator
(EMAC) unit.
For more information, see the
reference manual at
{CodeWarrior_Dir}
\Freescale_Documentation,

Checked — Tells assembler that the
target processor does have EMAC.

Default: Clear.

You can check both
the MAC and
EMAC checkboxes.

Target Settings
ColdFire Settings Panels

40 ColdFire Architectures v6.3 - Targeting Manual

Processor has FPU
checkbox

Clear — Tells assembler that the
target processor does not have a
floating-point unit (FPU).

Checked — Tells assembler that the
target processor does have an FPU.

Default: Clear

Labels Must End With
‘:’ checkbox

Clear — System does not require
labels to end with colons.

Checked — System does require
labels to end with colons.

Default: Checked.

Directives Begin With
‘:’ checkbox

Clear — System does not require
directives to start with periods.

Checked — System does require
directives to start with periods.

Default: Checked.

Case Sensitive
Identifiers checkbox

Clear — Tells assembler to ignore
case in identifiers.

Checked — Tells assembler to
consider case in identifiers.

Default: Checked.

Allow Space In
Operand Field
checkbox

Clear — Tells assembler to not allow
spaces in operand fields.

Checked — Tells assembler to allow
spaces in operand fields.

Default: Checked.

Table 4.4 ColdFire Assembler Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

41ColdFire Architectures v6.3 - Targeting Manual

ELF Disassembler
Use the ELF Disassembler panel (Figure 4.7) to control settings for the disassembly
view; you see this view when you disassemble object files. Table 4.5 explains the
elements of this panel.

Generate Listing File
checkbox

Clear — Tells assembler to not
generate a listing file.

Checked — Tells assembler to
generate a listing file.

Default: Clear.

A listing file
contains the file
source, along with
line numbers,
relocation
information, and
macro expansions.

Prefix File text box Specifies the name of the assembly
prefix file.

Default: None.

Useful for include
files that define
common constants,
global declarations,
and function
names. Otherwise,
the assembler’s
default prefix file
suffices.

Table 4.4 ColdFire Assembler Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

42 ColdFire Architectures v6.3 - Targeting Manual

Figure 4.7 ELF Disassembler Panel

Table 4.5 ELF Disassembler Panel Elements

Element Purpose Comments

Show Headers
checkbox

Clear — Keeps ELF header
information out of the
disassembled output.

Checked — Puts ELF
header information into the
disassembled output.

Default: Checked.

Verbose Info
checkbox

Clear — Uses minimum
information in disassembled
output.

Checked — Puts additional
information into the
disassembled output.

Default: Clear.

For the .symtab section,
additional information
includes numeric equivalents
for descriptive constants. For
the .line, .debug, .extab,
and .extabindex sections,
additional information
includes an unstructured hex
dump.

Show Symbol and
String Tables
checkbox

Clear — Keeps symbol table
out of the disassembled
module.

Checked — Puts symbol
table into the disassembled
module.

Default: Checked.

Target Settings
ColdFire Settings Panels

43ColdFire Architectures v6.3 - Targeting Manual

Show Relocations
checkbox

Clear — Keeps relocation
information out of the
disassembled module.

Checked — Puts relocation
information into the
disassembled module.

Default: Checked.

Relocation information
pertains to the .real.text
and .reala.data sections.

Show Code Modules
checkbox

Clear — Keeps any of the
four types of ELF code
sections out the
disassembled module;
disables the four
subordinate checkboxes.

Checked — Activates the
four subordinate
checkboxes. For each
checked subordinate
checkbox, puts ELF code
section into the
disassembled module.

Default: Checked.

Use Extended
Mnemonics checkbox

Clear — Keeps extended
mnemonics out of the
disassembled module.

Checked — Puts instruction
extended mnemonics into
the disassembled module.

Default: Checked.

This checkbox is active only if
the Show Code Modules
checkbox is checked.

Show Source Code
checkbox

Clear — Keeps source code
out of the disassembled
module.

Checked — Lists source
code in the disassembled
module. Display is mixed
mode, with line-number
information from original C
source code.

Default: Checked.

This checkbox is active only if
the Show Code Modules
checkbox is checked.

Table 4.5 ELF Disassembler Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

44 ColdFire Architectures v6.3 - Targeting Manual

Show Addresses and
Object Code checkbox

Clear — Keeps addresses
and object code out of the
disassembled module.

Checked — Lists addresses
and object code in the
disassembled module.

Default: Checked.

This checkbox is active only if
the Show Code Modules
checkbox is checked.

Show Comments
checkbox

Clear — Keeps
disassembler comments out
of the disassembled module.

Checked — Shows
disassembler comments in
sections that have comment
columns.

Default: Checked.

This checkbox is active only if
the Show Code Modules
checkbox is checked.

Show Data Modules
checkbox

Clear — Blocks output of
ELF data sections for the
disassembled module;
disables the Disassemble
Exception Tables checkbox.

Checked — Outputs
.rodata, .bss, or other
such ELF data sections in
the disassembled module.
Activates the Disassemble
Exception Tables checkbox.

Default: Checked.

Disassemble
Exception Tables
checkbox

Clear — Keeps C++
exception tables out of the
disassembled module.

Checked — Includes C++
exception tables in the
disassembled module.

Default: Clear.

This checkbox is active only if
the Show Data Modules
checkbox is checked.

Show Debug Info
checkbox

Clear — Keeps DWARF
symbolics out of the
disassembled module.

Checked — Includes
DWARF symbolics in the
disassembled module.

Default: Clear.

Table 4.5 ELF Disassembler Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

45ColdFire Architectures v6.3 - Targeting Manual

ColdFire Processor
Use the ColdFire Processor panel (Figure 4.8) to control code-generation settings. Table
4.6 explains the elements of this panel.

Figure 4.8 ColdFire Processor Panel

Table 4.6 ColdFire Processor Panel Elements

Element Purpose Comments

Target CPU list
box

Specifies the target ColdFire
processor.

Default: MCF5282.

Code Model list
box

Specifies access addressing for
data and instructions in the object
code:

Smart — Relative (16-bit) for
function calls in the same
segment; otherwise absolute (32-
bit).

Near (16 bit) — Relative for all
function calls.

Far (32 bit) — Absolute for all
function calls.

Default: Far (32 bit).

Far is useful if your source
file generates more than 32K
of code, or if there is an out-
of-range link error message.

Near requires adjusting the
.lcf. For .lcf information,
see the ColdFire Build Tools
Reference manual.

Target Settings
ColdFire Settings Panels

46 ColdFire Architectures v6.3 - Targeting Manual

Struct Alignment
list box

Specifies record and structure
alignment in memory:

68K 2-byte — Aligns all fields on
2-byte boundaries, except for
fields of only 1 byte.

68K 4-byte — Aligns all fields on
4-byte boundaries.

PowerPC 1-byte — Aligns each
field on its natural boundary.

Default: 68k 4-byte.

This panel element
corresponds to the options
align pragma.

Natural-boundary alignment
means 1-byte for a 1-byte
character, 2-bytes for a 16-
bit integer, and so on.

NOTE: When you compile
and link, alignment should
be the same for all files and
libraries.

Data Model list
box

Specifies global-data storage and
reference:

Far (32 bit) — Storage in far data
space; available memory is the
only size limit.

Near (16 bit) — Storage in near
data space; size limit is 64K.

Default: Far (32 bit).

This panel element
corresponds the far_data
pragma.

Parameter
Passing list box

Specifies parameter-passing level:

Compact — Passes on even-sized
boundary for parameters smaller
than int (2 for short and char).

Standard — Like compact, but
always padded to 4 bytes.

Register — Passes in scratch
registers D0 — D2 for integers, A0
— A1 for pointers and fp0 — fp1
when FPU codegen is selected;
this can speed up programs that
have many small functions.

Default: Compact.

These levels correspond to
the compact_abi,
standard_abi, and
register_abi pragmas.

NOTE: Be sure that all called
functions have prototypes.
When you compile and link,
parameter passing should
be the same for all files and
libraries.

Table 4.6 ColdFire Processor Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

47ColdFire Architectures v6.3 - Targeting Manual

Floating Point list
box

Specifies handling method for
floating-point operations:

Software — C runtime library code
emulates floating-point operations.

Hardware — Processor hardware
performs floating point operations;
only appropriate for processors
that have floating-point units.

Default: Software.

For software selection, your
project must include the
appropriate FP_ColdFire
C runtime library file.

Greyed out if your target
processor lacks an FPU.

4-Byte Integers
checkbox

Clear — Specifies 2-byte integers.

Checked — Specifies 4-byte
integers.

Default: Checked.

Position-
Independent
Code checkbox

Clear — Generates relocatable
code.

Checked — Generates position-
independent code (PIC) that is
non-relocatable.

Default: Clear.

PIC is available with 16- and
32-bit addressing.

A6 Stack Frames
checkbox

Clear — Disables call-stack
tracing; generates faster and
smaller code.

Checked — Enables call-stack
tracing; each stack frame sets up
and restores register A6.

Default: Checked.

Checking this checkbox
corresponds to using the
a6frames pragma.

Position-
Independent Data
checkbox

Clear — Generates relocatable
data.

Checked — Generates position-
independent data (PID) that is
non-relocatable.

Default: Clear.

PID is available with 16- and
32-bit addressing.

Emit Macsbug
Symbols
checkbox

Clear — Does not generate
Macsbug symbols.

Checked — Generates Macsbug
symbols inside code after RTS
statements.

Default: Clear.

A Macsbug symbol is the
routine name, appended
after the routine, in Pascal
format. These symbols are
appropriate only for older
debuggers.

Table 4.6 ColdFire Processor Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

48 ColdFire Architectures v6.3 - Targeting Manual

ColdFire Linker
Use the ColdFire Linker panel (Figure 4.9) to control the final form of your object code.
Table 4.7 explains the elements of this panel.

PC-Relative
Strings checkbox

Clear — Does not use program-
counter relative addressing for
storage of function local strings.

Checked — Does use program-
counter relative addressing for
storage of function local strings.

Default: Clear.

Checking this box
corresponds to using the
pcrelstrings pragma.

Generate code
for profiling

Checked — Has the processor
generate code for use with a
profiling tool.

Clear — Prevents the processor
from generating code for use with
a profiling tool.

Default: Clear.

Checking this box
corresponds to using the
command-line option
 -profile.

Clearing this checkbox is
equivalent to using the
command-line option
-noprofile

Use .sdata/.sbss
for area

All data — Select this option
button to store all data items in the
small data address space.

All data smaller than — Select this
option button to specify the
maximum size for items stored in
the small data address space;
enter the maximum size in the text
box.

Default: All data smaller
than/0.

Using the small data area
speeds data access, but has
ramifications for the
hardware memory map. The
default settings specify not
using the small data area.

Table 4.6 ColdFire Processor Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

49ColdFire Architectures v6.3 - Targeting Manual

Figure 4.9 ColdFire Linker Panel

Table 4.7 ColdFire Linker Panel Elements

Element Purpose Comments

Generate
Symbolic Info
checkbox

Clear — Does not generate
debugging information in
the output ELF file.

Checked — Puts generated
debugging information into
the output ELF file.

Default: Checked.

Store Full Path
Names checkbox

Clear — In debugging
information in the linked
ELF file, uses only names of
source files.

Checked — Includes
source-file paths in the
debugging information in
the linked ELF file.

Default: Checked.

Clearing this checkbox saves target
memory, but increases the time the
debugger needs to find the source
files.

Target Settings
ColdFire Settings Panels

50 ColdFire Architectures v6.3 - Targeting Manual

Generate Link
Map checkbox

Clear — Does not generate
a link map.

Checked — Does generate
a link map (a text file that
identifies definition files for
each object and function of
your output file); activates
the List Unused Objects and
Show Transitive Closure
checkboxes.

Default: Checked.

A link map includes addresses of all
objects and functions, a memory
map of sections, and values of
symbols the linker generates. A link
map has the same filename as the
output file, but with extension
.xMAP.

List Unused
Objects
checkbox

Clear — Does not include
unused objects in the link
map.

Checked — Does include
unused objects in the link
map.

Default: Clear.

This checkbox is active only if the
Generate Link Map checkbox is
checked.

NOTE: The linker never deadstrips
unused assembler relocatables or
relocatables built with a non-
CodeWarrior compiler. But
checking this checkbox gives you a
list of such unused items; you can
use this list to remove the symbols.

Show Transitive
Closure
checkbox

Clear — Does not include
the link map objects that
main() references.

Checked — Recursively
lists in the link map all
objects that main()
references.

Default: Checked.

This checkbox is active only if the
Generate Link Map checkbox is
checked. Listings after this table
show the effect of this checkbox.

Disable
Deadstripping
checkbox

Clear — Lets linker remove
unused code and data.

Checked — Prevents the
linker from removing
unused code or data.

Default: Clear.

Table 4.7 ColdFire Linker Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

51ColdFire Architectures v6.3 - Targeting Manual

Generate ELF
Symbol Table
checkbox

Clear — Omits the ELF
symbol table and relocation
list from the ELF output file.

Checked — Includes an
ELF symbol table and
relocation list in the ELF
output file.

Default: Checked.

Suppress
Warning
Messages
checkbox

Clear — Reports all linker
warnings.

Checked — Reports only
fatal warning messages;
does not affect display of
messages from other parts
of the IDE.

Default: Clear.

Generate S-
Record File
checkbox

Clear — Does not generate
an S-record file.

Checked — Generates an
S3-type S-record file,
suitable for printing or
transportation to another
computer system. Activates
the Max S-Record text box
and the EOL character list
box.

Default: Checked.

The S-record has the same
filename as the executable file, but
with extension .S19, .S3 records
include code, data, and their 4-byte
addresses.

Max S-Record
Length text box

Specifies maximum number
of bytes in S-record lines
that the linker generates.
The maximum value for this
text box is 252.

Default: 80.

This text box is active only if the
Generate S-Record File checkbox
is checked.

NOTE: Many embedded systems
limit S-record lines to 24 or 26
bytes. A value of 20 to 30 bytes lets
you see the S-record on a single
page.

EOL Character
list box

Specifies the end-of-line
character for the S-record
file, by operating system:
DOS, UNIX, or MAC.

Default: DOS.

This text box is active only if the
Generate S-Record File checkbox
is checked.

Table 4.7 ColdFire Linker Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

52 ColdFire Architectures v6.3 - Targeting Manual

Listing 4.1 and Listing 4.2 show the effect of the Show Transitive Closure checkbox.

Listing 4.1 Sample Code for Transitive Closure

void alpha1(){
int a = 1001;

}
void alpha(){

int b = 1002;
alpha1();

}
int main(void){

alpha();

Generate Binary
Image checkbox

Clear — Does not create a
binary version of the S-
record file.

Checked — Saves a binary
version of the S-record file
to the project folder; The
binary file has the .b
filename extension.
Activates the Max Bin
Record Length text box.

Default: Clear.

Binary file format is address (4
bytes), byte count (4 bytes), and
data bytes (variable length).

Max Bin Record
Length text box

Specifies data-byte length
for each binary record. The
maximum value is 252.

Default: None.

This text box is active only if the
Generate Binary Image checkbox is
checked.

Entry Point text
box

Specifies the program
starting point: the first
function the debugger uses
upon program start.

Default: __start.

(This default function is in file
ColdFire__startup.c. It sets
up the ColdFire EABI environment
before code execution. Its final task
is calling main().

Force Active
Symbols text box

Specifies symbols to be
included in the output file
even if not referenced;
makes such symbols
immune from deadstripping.

Default: None.

Use spaces to separate multiples
symbols.

Table 4.7 ColdFire Linker Panel Elements (continued)

Element Purpose Comments

Target Settings
ColdFire Settings Panels

53ColdFire Architectures v6.3 - Targeting Manual

return 1;
}

If you checked the Show Transitive Closure checkbox of the ColdFire Linker panel and
compiled the source files,

• The linker would generate a link map file, and

• The link map file would include text such as that of Listing 4.2.

Listing 4.2 Link Map: Effects of Show Transitive Closure

Link map of __start
1] __start (func, global) found in C_4i_CF_Runtime.a E68k_startup.o

2] __main (func, global) found in main.c
3] __alpha (func, global) found in main.c
4] __alpha1 (func, global) found in main.c

Debugger PIC Settings
Use the Debugger PIC Settings panel (Figure 4.10) to specify an alternate address where
you want your ELF image downloaded on the target.

Figure 4.10 Debugger PIC Settings Panel

Usually, Position Independent Code (PIC) is linked so that the entire image starts at
address 0x00000000. To specify a different target address for loading the PIC module:

1. Check the Alternate Load Address checkbox — this activates the text box.

2. Enter the address in the text box.

At download time, the debugger downloads your ELF file to this new address of the target.

NOTE The debugger does not verify that your code can execute at the new address.
However, the PIC generation settings of the compiler and linker, and the
startup routines of your code, correctly set any base registers and perform any
appropriate relocations.

Target Settings
ColdFire Settings Panels

54 ColdFire Architectures v6.3 - Targeting Manual

55ColdFire Architectures v6.3 - Targeting Manual

5
Debugging

This chapter explains aspects of debugging that are specific to the ColdFire architectures.
For more general information about the CodeWarrior debugger, see the IDE 5.7 User’s
Guide.

To start the CodeWarrior debugger, select Project > Debug. The debugger window
appears; the debugger loads the image file that the current build target produces. You can
use the debugger to control program execution, insert breakpoints, and examine memory
and registers.

NOTE The automatic loading of the previous paragraph depends on the load options
you specify, and on whether your application code is in ROM or Flash
memory.

This chapter consists of these sections:

• Target Settings for Debugging

• Remote Connections for Debugging

• BDM Debugging

• Debugging ELF Files without Projects

• Special Debugger Features

Target Settings for Debugging
Several target settings panels control the way the debugger works:

• CF Debugger Settings Panel

• Remote Debugging Panel

• CF Exceptions Panel

• Debugger Settings Panel

• CF Interrupt Panel

To access these panels, select Edit > Target Settings, from the main menu bar. (Target
is the current build target in the CodeWarrior project.) The Target Settings window
(Figure 5.1) appears.

Debugging
Target Settings for Debugging

56 ColdFire Architectures v6.3 - Targeting Manual

Figure 5.1 Target Settings Window

Table 5.1 lists additional panels that can affect debugging.

CF Debugger Settings Panel
Use the CF Debugger Settings panel (Figure 5.2) to select debugger hardware and
control interaction with the target board. Table 5.2 explains the elements of this panel.

Table 5.1 Additional Settings Panels That May Affect Debugging

Panel Impact See

C/C++ Warnings compiler warnings C Compilers Reference

ColdFire Linker controls symbolics,
linker warnings

ColdFire Linker

ColdFire Processor optimizations ColdFire Processor

Global Optimizations optimizations IDE User’s Guide

Debugging
Target Settings for Debugging

57ColdFire Architectures v6.3 - Targeting Manual

Figure 5.2 CF Debugger Settings Panel

Table 5.2 CF Debugger Settings Panel Elements

Element Purpose Comments

Target
Processor list
box

Specifies the target processor. Your stationery selection automatically makes
this specification.

Target OS list
box

Specifies a real-time operating
system; for bare board
development, select BareBoard.

Default: BareBoard.
If you have Professional-Edition software and
install an RTOS, that RTOS becomes a
selection of this list box. (Special- and
Standard-Edition software, however, does not
support an RTOS.)

Use Target
Initialization File
checkbox

Clear — Specifies not using a
target initialization file; deactivates
file subordinate text box and
Browse button.

Checked — Tells the debugger to
use the specified target
initialization file. To enter a
pathname in the text box, click the
Browse button, then use the file-
select dialog box to specify the
file.

Default: checked.
The initialization file is in subdirectory
\E68K_Support\Initialization_Files
, of the CodeWarrior installation directory (or
directory that contains your project).
Clear this checkbox, if you are using an
Abatron-based remote connection.
Make sure this checkbox is checked, if you
are using a P&E Micro-based remote
connection.

Debugging
Target Settings for Debugging

58 ColdFire Architectures v6.3 - Targeting Manual

Use Memory
Configuration
File checkbox

Clear — Specifies not using a
memory configuration file;
deactivates file subordinate text
box and Browse button.

Checked — Tells the debugger to
use the specified memory
configuration file. To enter a
pathname in the text box, click the
Browse button, then use the file-
select dialog box to specify the
file.

Default: Unchecked.
The memory configuration file is in
subdirectory
\E68K_Support\Initialization_Files
, of the CodeWarrior installation directory (or
directory that contains your project).
Do not check this checkbox, if you are using a
Abatron-based remote connection.
Check this checkbox, if you are using a P&E
Micro-based remote connection.

Initial Launch:
Executable
checkbox

Clear — Does not download
program executable code or text
sections for initial launch.

Checked — Downloads program
executable code and text sections
for initial launch.

Default: Checked.
Initial launch is the first time you debug the
project after you start the debugger from the
IDE.

Initial Launch:
Constant Data
checkbox

Clear — Does not download
program constant data sections
for initial launch.

Checked — Downloads program
constant data sections for initial
launch.

Default: Checked.
Initial launch is the first time you debug the
project after you start the debugger from the
IDE.

Initial Launch:
Initialized Data
checkbox

Clear — Does not download
program initialized data sections
for initial launch.

Checked — Downloads program
initialized data sections for initial
launch.

Default: Checked.
Initial launch is the first time you debug the
project after you start the debugger from the
IDE.

Initial Launch:
Uninitialized
Data checkbox

Clear — Does not download
program uninitialized data
sections for initial launch.

Checked — Downloads program
uninitialized data sections for
initial launch.

Default: Clear.
Initial launch is the first time you debug the
project after you start the debugger from the
IDE.

Table 5.2 CF Debugger Settings Panel Elements (continued)

Element Purpose Comments

Debugging
Target Settings for Debugging

59ColdFire Architectures v6.3 - Targeting Manual

Remote Debugging Panel
Use the Remote Debugging panel (Figure 5.3) to set up connections for remote
debugging. Table 5.3 explains the elements of this panel. Text following the figure and
table provides more information about adding and changing remote connections.

Successive
Runs:
Executable
checkbox

Clear — Does not download
program executable code or text
sections for successive runs.

Checked — Downloads program
executable code and text sections
for successive runs.

Default: Clear.
Successive runs are debugging actions after
initial launch. Note that rebuilding the project
returns you to the initial-launch state.

Successive
Runs: Constant
Data checkbox

Clear — Does not download
program constant data sections
for successive runs.

Checked — Downloads program
constant data sections for
successive runs.

Default: Clear.
Successive runs are debugging actions after
initial launch. Note that rebuilding the project
returns you to the initial-launch state.
NOTE: If you check this checkbox, avoid
cycling board power. Doing so can prevent
application rebuilding and code reloading,
making debugging unnecessarily difficult.

Successive
Runs: Initialized
Data checkbox

Clear — Does not download
program initialized data sections
for successive runs.

Checked — Downloads program
initialized data sections for
successive runs.

Default: Checked.
Successive runs are debugging actions after
initial launch. Note that rebuilding the project
returns you to the initial-launch state.

Successive
Runs:
Uninitialized
Data checkbox

Clear — Does not download
program uninitialized data
sections for successive runs.

Checked — Downloads program
uninitialized data sections for
successive runs.

Default: Checked.
Successive runs are debugging actions after
initial launch. Note that rebuilding the project
returns you to the initial-launch state.

Verify Memory
Writes
checkbox

Clear — Does not confirm that a
section written to the target
matches the original section.

Checked — Confirms that any
section written to the target
matches the original section.

Default: Clear.

Table 5.2 CF Debugger Settings Panel Elements (continued)

Element Purpose Comments

Debugging
Target Settings for Debugging

60 ColdFire Architectures v6.3 - Targeting Manual

NOTE Special-Edition software supports the following remote connections: P&E
Microsystems USB, P&E Microsystems Cyclone Max, and Freescale USB
TAP. Standard-Edition software supports only P&E Microsystems USB
remote connection. For any other type of remote connection, you must have
Professional-Edition software.

Figure 5.3 Remote Debugging Panel

Table 5.3 Remote Debugging Panel Elements

Element Purpose Comments

Connection
list box

Specifies the remote-connection
type: the remote debugger, along
with its default settings.

Possible remote connections
include Abatron Serial or TCP/
IP; CCS-SIM; and P&E
Microsystems Parallel, USB,
Cyclone Max, and Lightning,
and Freescale USB TAP.
However, you must add any
such additional connection
before it is available in this list
box.

Edit
Connection
button

Starts process of adding a remote
connection, or changing settings of
an existing remote connection.

For instructions, see text after
this table.

Debugging
Target Settings for Debugging

61ColdFire Architectures v6.3 - Targeting Manual

Adding Remote Connections

NOTE Special-Edition software supports the following remote connections: P&E
Microsystems USB, P&E Microsystems Cyclone Max, and Freescale USB
TAP. Standard-Edition software supports only P&E Microsystems USB
remote connection. For any other type of remote connection, you must have
Professional-Edition software.

Remote
download
text box

Specifies the absolute path to the
directory in which to store
downloaded files.
This option does not apply to
bareboard development.

Default: None.

Launch
remote host
application
checkbox

Clear — Prevents the IDE from
starting a host application on the
remote computer.
Checked — IDE starts a host
application on the remote computer.
(Also enables the corresponding text
box, for the absolute path to the
remote host application:)
This option does not apply to
bareboard development.

Default: Clear

Download
OS
checkbox

Clear — Prevents downloading a
bootable image to the target system.
Checked — Downloads the specified
bootable image to the target system.
(Also enables the Connection list box
and OS Image Path text box.)

Default: Clear

Connection
list box

Specifies the remote-connection type
for downloading the bootable image
to the target board.

Disabled if the Download OS
checkbox is clear.
Lists only the remote
connections you add via the
Remote Connections panel.

OS Image
path

Specifies the host-side path of the
bootable image to be downloaded to
the target board.

Disabled if the Download OS
checkbox is clear.

Table 5.3 Remote Debugging Panel Elements (continued)

Element Purpose Comments

Debugging
Target Settings for Debugging

62 ColdFire Architectures v6.3 - Targeting Manual

To add a remote connection, use the Remote Connections panel:

1. Select Edit > Preferences. The IDE Preferences window appears.

2. From the IDE Preferences Panels list, select Remote Connections. The Remote
Connections panel moves to the front of the IDE Preferences window. Figure 5.4
shows the IDE Preferences window at this point.

Figure 5.4 IDE Preferences Window: Remote Connections Panel

3. Click the Add button. The New Connection dialog box (Figure 5.5) appears.

Figure 5.5 New Connection Dialog Box

4. In the Name text box, enter a name for the new connection.

Debugging
Target Settings for Debugging

63ColdFire Architectures v6.3 - Targeting Manual

5. Use the Debugger list box to specify the debugger for the new remote connection:
ColdFire Abatron, ColdFire P&E Micro, or ColdFire CCS (the simulator and USB
TAP).

6. Check the Show in processes list checkbox to add this new connection to the official
list. (To see this list of processes, select View > Systems > List.) Checking this
checkbox also adds this new connection to the remote-connection list that pops up
when you debug certain kinds of files.)

7. Use the Connection Type list box to specify the type — the remaining fields of the
dialog box change appropriately.

8. Use the remaining fields of the New Connection dialog box to make any appropriate
changes to the default values for connection type, port, rate, and so forth.

9. Click OK. The dialog box closes; the Remote Connections panel window displays
the new connection.

10. This completes adding the new connection. You may close the IDE Preferences
window.

Changing Remote Connections
To change to an already-configured remote connection, use the Remote Debugging panel
(Figure 5.3):

1. Click the arrow symbol of the Connection list box. The list of connections appears.

2. Select another connection. The list collapses; the list box displays your selection.

3. Click the Edit Connections button. A dialog box appears, showing the configuration
of the remote connection.

4. Use the dialog box to make any appropriate configuration changes.

5. Click OK. The dialog box closes, confirming your configuration changes.

NOTE Any changes you make using the Remote Debugging panel apply to all targets
that use the specified connection.

CF Exceptions Panel
The CF Exceptions panel (Figure 5.6) is available with P&E Microsystems, simulator,
and Freescale USB TAP remote connections. Use this panel to specify hardware
exceptions that the debugger should catch. Table 5.4 explains the elements of this panel.

Before you load and run the program, the debugger inserts its own exception vector for
each exception you check in this panel. To use your own exception vectors instead, you
should clear the corresponding checkboxes.

Debugging
Target Settings for Debugging

64 ColdFire Architectures v6.3 - Targeting Manual

If you check any boxes, the debugger reads the Vector_Based_Register (VBR), finds the
corresponding existing exception vector, then writes a new vector at that register location.
The address of this new vector is offset 0x408 from the VBR address. For example, if the
VBR address is 0x0000 0000, the new vector at address 0x0000 0408 covers the checked
exceptions.

The debugger writes a Halt instruction and a Return from Exception instruction at this
same location.

NOTE If your exceptions are in Flash or ROM, do not check any boxes of the CF
Exceptions panel.
Abatron remote connections ignore this panel, using instead the exception
definitions in the Abatron firmware.

Figure 5.6 CF Exceptions Panel

Table 5.4 CF Exceptions Panel Elements

Element Purpose Comments

2 Access Error
checkbox

Clear — Ignores access errors.
Checked — Catches and displays access
errors.

Default: Checked

3 Address Error
checkbox

Clear — Ignores address errors.
Checked — Catches and displays address
errors.

Default: Checked

4 Illegal
Instruction
checkbox

Clear — Ignores invalid instructions.
Checked — Catches and displays invalid
instructions.

Default: Checked

Debugging
Target Settings for Debugging

65ColdFire Architectures v6.3 - Targeting Manual

5 Divide by zero
checkbox

Clear — Ignores an attempt to divide by zero.
Checked — Catches and displays any
attempt to divide by zero.

Default: Checked

8 Privilege
Violation
checkbox

Clear — Ignores privilege violations.
Checked — Catches and displays privilege
violations.

Default: Checked

10
Unimplemented
Line-A Opcode
checkbox

Clear — Ignores unimplemented line-A
opcodes.
Checked — Catches and displays
unimplemented line-A opcodes.

Default: Checked

11
Unimplemented
Line-F Opcode
checkbox

Clear — Ignores unimplemented line-F
opcodes.
Checked — Catches and displays
unimplemented line-F opcodes.

Default: Checked

12 Non-PC
breakpoint
debug interrupt
checkbox

Clear — Ignores non-PC breakpoint debug
interrupts.
Checked — Catches and displays non-PC
breakpoint debug interrupts.

Default: Checked

13 PC
breakpoint
debug interrupt
checkbox

Clear — Ignores PC breakpoint debug
interrupts.
Checked — Catches and displays PC
breakpoint debug interrupts.

Default: Clear

14 Format Error
checkbox

Clear — Ignores format errors.
Checked — Catches and displays format
errors.

Default: Checked

15 Uninitialized
Interrupt
checkbox

Clear — Ignores uninitialized interrupts.
Checked — Catches and displays
uninitialized interrupts.

Default: Checked

24 Spurious
Interrupt
checkbox

Clear — Ignores spurious interrupts.
Checked — Catches and displays spurious
interrupts.

Default: Checked

31 IRQ7 - break
button
checkbox

Clear — Ignores use of the IRQ7 break
button.
Checked — Catches and displays uses of
the IRQ7 break button.

Default: Checked

Table 5.4 CF Exceptions Panel Elements (continued)

Element Purpose Comments

Debugging
Target Settings for Debugging

66 ColdFire Architectures v6.3 - Targeting Manual

Debugger Settings Panel
Use the Debugger Settings panel (Figure 5.7) to select and control the debug agent. Table
5.5 explains the elements of this panel.

Figure 5.7 Debugger Settings Panel

46 TRAP #14
for Console I/O
checkbox

Clear — Ignores trap 14 for console I/O.
Checked — Catches and displays uses of
trap 14 for console I/O.

Default: Clear.

61 Unsupported
instruction
checkbox

Clear — Ignores unsupported instructions.
Checked — Catches and displays
unsupported instructions.

Default: Clear.

Table 5.4 CF Exceptions Panel Elements (continued)

Element Purpose Comments

Debugging
Target Settings for Debugging

67ColdFire Architectures v6.3 - Targeting Manual

Table 5.5 Debugger Settings Panel Elements

Element Purpose Comments

Location of
Relocated
Libraries and
Code Resources
text box

Specifies the pathname of
libraries or other resources
related to the project. Type the
pathname into this text box.
Alternatively, click the Choose
button, then use the subsequent
dialog box to specify the
pathname.

Default: None

Stop on
application
launch checkbox

Clear — Does not specify any
debugging entry point;
deactivates the subordinate
options buttons and text box.
Checked — Specifies the
debugging entry point, via a
subordinate option button:
Program entry point, Default
language entry point, or User
specified.

Default: Checked, with Default
language entry point option
button selected.
If you select the User specified
option button, type the entry
point in the corresponding text
box.

Auto-target
Libraries
checkbox

Clear — Does not use auto-
target libraries.
Checked — Uses auto-target
libraries.

Default: Clear

Log System
Messages
checkbox

Clear — Does not log system
messages.
Checked — Logs system
messages.

Default: Checked

Update data
every checkbox

Clear — Does not update data;
deactivates the subordinate text
box.
Checked — Regularly updates
data; enter the number of
seconds in the subordinate text
box.

Default: Clear

Cache
symbolics
between runs
checkbox

Clear — Does not store symbolic
values in cache memory
between runs.
Checked — After each run,
stores symbolic values in cache
memory.

Default: Checked

Debugging
Target Settings for Debugging

68 ColdFire Architectures v6.3 - Targeting Manual

CF Interrupt Panel
Debugging an application involves single-stepping through code. But if you do not modify
interrupts that are part of normal code execution, the debugger could jump to interrupt-
handler code, instead of stepping to the next instruction.

So before you start debugging, you must mask some interrupt levels, according to your
processor. To do so, use the CF Interrupt panel (Figure 5.8); Table 5.6 explains the
elements of this panel.

Figure 5.8 CF Interrupt Panel

Stop at
Watchpoints
checkbox

Clear — Does not stop at
watchpoints.
Checked — Stops at
watchpoints.

Default: Checked

Console
Encoding list
box

Specifies the type of console
encoding.

Default: None

Table 5.6 CF Interrupt Panel Elements

Element Purpose Comments

Mask Interrupts
checkbox

Clear — Ignores interrupts.
Checked — Masks interrupts of
the specified and lower levels,
but allows higher-level interrupts.

Default: Clear.

Interrupt Level
list box

Specifies the interrupt level, from
0 (low) to 7 (high).

Default: 0.

Table 5.5 Debugger Settings Panel Elements (continued)

Element Purpose Comments

Debugging
Remote Connections for Debugging

69ColdFire Architectures v6.3 - Targeting Manual

NOTE The exact definitions of interrupt levels are different for each target processor,
and masking all interrupts can cause inappropriate processor behavior. This
means that finding the best interrupt level to mask can involve trial and error.

Be alert for any code statements that change the interrupt mask: stepping over
such a statement can modify your settings in this panel.

Remote Connections for Debugging
To debug an application on the remote target system, you must use a remote connection.

A remote connection is the physical connection from the host to the target board, together
with the settings that describe how the CodeWarrior IDE should connect to and control
program execution on target boards or systems. The remote connection includes the
debugger protocol, connection type, and connection parameters the IDE should use when
it connects to the target system. This section shows you how to access remote connections
in the CodeWarrior IDE, and describes the various debugger protocols and connection
types the IDE supports.

NOTE We have included several types of remote connections in the default
CodeWarrior installation. You can modify these default remote connections to
suit your particular needs.

TIP When you import a Makefile into the CodeWarrior IDE to create a CodeWarrior
project, the IDE asks you to specify the type of debugger interface (remote
connection) you want to use. To debug the generated CodeWarrior project, you
must properly configure the remote connection you selected when you created the
project.

For Special- and Standard-Edition software, the ColdFire debugger uses a plug-in
architecture to support the P&E Microsystems Parallel and USB remote-connection
protocols.

For Professional-Edition software, the ColdFire debugger uses a plug-in architecture to
support any of these remote-connection protocols:

• Abatron Serial

• Abatron TCP-IP

• Freescale USB-TAP

• P&E Microsystems Parallel

• P&E Microsystems USB

Debugging
Remote Connections for Debugging

70 ColdFire Architectures v6.3 - Targeting Manual

• P&E Microsystems Lightning

• P&E Microsystems Cyclone MAX Serial

• P&E Microsystems Cyclone MAX TCP-IP

• P&E Microsystems Cyclone MAX USB

• Simulator (CCS-SIM)

NOTE In addition to the protocols mentioned above, Code Warrior for ColdFire now
also allows use of additional run control devices through the GDI protocol. For
hardware interfaces which use the GDI protocol, please refer to the user's
manual of that particular interface for installation procedures. As interfaces
which use the GDI protocol make use of proprietary DLL files, Freescale does
not offer support for capabilities of a particular interface or guarantee
functionality. Please contact your interface supplier for any support questions.

Before you debug a project, you must configure or modify the settings of your remote-
connection protocol. Follow these steps:

1. From the main menu bar, select Edit > Target Settings. The Target Settings window
appears.

2. Select Target Settings Panels > Debugger > Remote Debugging. The Remote
Debugging panel moves to the front of the window.

3. Use the Connection list box to specify a remote connection. The supported list of
remote connections is shown in Figure 5.9.

Debugging
Remote Connections for Debugging

71ColdFire Architectures v6.3 - Targeting Manual

Figure 5.9 Connection List selection panel

4. Click the Edit Connection button. A corresponding remote connection dialog box
appears.

5. Use the dialog box to input communication settings, according to text below.

Abatron Remote Connections
Figure 5.10 shows the configuration dialog box for an Abatron serial remote connection.
Figure 5.11 show the configuration dialog box for an Abatron TCP/IP remote connection.
Table 5.6 explains the elements of these dialog boxes.

Figure 5.10 Serial Abatron Remote-Connection Dialog Box

Debugging
Remote Connections for Debugging

72 ColdFire Architectures v6.3 - Targeting Manual

Figure 5.11 TCP/IP Abatron Remote-Connection Dialog Box

Table 5.7 Abatron Dialog-Box Elements

Element Purpose Comments

Name text box Identifies the remote connection. For an existing connection,
already has a value.

Debugger list
box

Identifies the debugger. For an existing connection,
already specifies ColdFire
Abatron

Show in
processes list
checkbox

Clear — Leaves the connection
off the official list.
Checked — Adds connection to
the official list (select View >
Systems > List); also adds
connection to the pop-up list for
debugging certain kinds of file.

Default: Clear

Connection
Type list box

Specifies serial or TCP/IP. Changing this value changes
the subordinate elements of
the dialog box, as Figure 5.10
and Figure 5.11 show.

Port list box Specifies the serial port: COM1,
COM2, COM3, ... or COM256.

Default: COM1.

Rate list box Specifies transfer speed: 300,
1200, 2400, 9600, 9,200, 38,400,
57,600, 115,200, or 230,400
baud.

Default: 38,400 baud

Data Bits list box Specifies number of data bits per
character: 4, 5, 6, 7, or 8.

Default: 8

Debugging
Remote Connections for Debugging

73ColdFire Architectures v6.3 - Targeting Manual

NOTE For an Abatron remote connection, be sure to clear the checkboxes Use Target
Initialization File and Use Memory Configuration File, of the CF Debugger
Settings panel.

Freescale Remote Connections
Figure 5.12 shows the dialog box that appears for Freescale’s USB TAP remote
connection when the Connection Type list box is set to USB-TAP BDM. Figure 5.13
shows the dialog box that appears when the Connection Type list box is set to CCS
Remote Connection. Table 5.8 explains the elements of these dialog boxes.

Parity list box Specifies parity type: None, Odd,
or Even.

Default: None

Stop Bits list box Specifies number of stop bits: 1,
1.5, or 2

Default: 1

Flow Control list
box

Specifies flow-control type:
None, Hardware (RTS/CTS), or
Software (XONN, XOFF).

Default: None

Log
Communications
Data to Log
Window

Clear — Does not copy
communications in log window.
Checked — Copies
communications in log window.

Default: Clear

IP Address text
box

Specifies IP address. Must be in format
127.0.0.1:1000 or in format
host.domain.com:1000.

Table 5.7 Abatron Dialog-Box Elements (continued)

Debugging
Remote Connections for Debugging

74 ColdFire Architectures v6.3 - Targeting Manual

Figure 5.12 USB-TAP BDM

Figure 5.13 CCS Remote Connection

Debugging
Remote Connections for Debugging

75ColdFire Architectures v6.3 - Targeting Manual

Table 5.8 USB TAP Dialog Box Elements

Element Purpose Comments

Name text box Identifies the remote connection. For an existing
connection,
already has a
value.

Debugger list box Identifies the debugger. For an existing
connection,
already specifies
ColdFire CCS

Show in processes
list checkbox

Clear — Leaves the connection off the
official list.
Checked — Adds connection to the official
list (select View > Systems > List); also
adds connection to the pop-up list for
debugging certain kinds of file.

Default: Clear

Connection Type list
box

Specifies USB-TAP BDM or CCS remote
connection. Changing this value changes
the other elements of this dialog box, as in
Figure 5.12 and Figure 5.13.

Default: USB-
TAP BDM

Use Default Serial
Number (in USB-TAP
BDM dialog box)

Each USB TAP device has a serial number
(SN) burned into flash memory. The SN
enables using multiple USB TAP devices
during a single debugging session.
Normally is checked.

Default:
Checked.

USB TAP Serial
Number (hex) (in
USB-TAP BDM
dialog box)

If the “Use Default Serial Number”
checkbox is checked, enter the serial
number here. Should be same SN burned
into flash on the device.

Default: Grayed
out and blank.

CCS Timeout Timeout (in seconds) that CCS waits for a
reply from the target before retrying.

Default: 10

Interface Clock
Frequency (in USB-
TAP BDM dialog box)

Clock speed of the BDM or JTAG interface. Default:
5.12MHz

Use Remote CCS (in
CCS Remote
Connection dialog
box)

If checked, CCS uses Server IP Address to
communicate with remote USB TAP (via
TCP-IP).

Default: Not
checked

Debugging
Remote Connections for Debugging

76 ColdFire Architectures v6.3 - Targeting Manual

P&E Microsystems Remote Connections
Figure 5.14, Figure 5.15, Figure 5.16, Figure 5.17, Figure 5.18, and Figure 5.19 show the
configuration dialog boxes for PE Micro remote connections. Table 5.9 explains the
elements of these dialog boxes.

Server IP Address (in
CCS Remote
Connection dialog
box)

IP address of the CCS server or debug
interface device, to be used if Use Remote
CCS checkbox is checked.

Default: Grayed
out, with value:
127.0.0.1

Specify CCS
Executable (in CCS
Remote Connection
dialog box)

If checked, then enter the path and file
name of the CCS executable you’d like to
use.

Default: Not
checked

Multi-Core
Debugging (in CCS
Remote Connection
dialog box)

If checked, then enables multi-core
debugging support.

Default: Not
checked. In
ColdFire
debugging, not
used.

JTAG Configuration
File (in CCS Remote
Connection dialog
box)

If Multi-Core Debugging is checked, then
this field can be used to specify a desired
JTAG configuration file.

Default: Grayed
out. In ColdFire
debugging, not
used.

Reset Target on
Launch

Determines whether target board (and
processor) is reset when debugging is
initiated.

Default:
Checked

Enable Logging If checked, logs CCS communications to
log window or file.

Default: Not
checked

Table 5.8 USB TAP Dialog Box Elements (continued)

Debugging
Remote Connections for Debugging

77ColdFire Architectures v6.3 - Targeting Manual

Figure 5.14 P&E Micro Remote Connection (Parallel)

Figure 5.15 P&E Micro Remote Connection (USB)

Figure 5.16 P&E Micro Remote Connection (Lightning)

Debugging
Remote Connections for Debugging

78 ColdFire Architectures v6.3 - Targeting Manual

Figure 5.17 P&E Micro Remote Connection (Cyclone Max Serial)

Figure 5.18 P&E Micro Remote Connection (Cyclone Max USB)

Figure 5.19 P&E Micro Remote Connection (Cyclone Max TCPIP)

Debugging
Remote Connections for Debugging

79ColdFire Architectures v6.3 - Targeting Manual

Table 5.9 P&E Micro Dialog Box Elements

Element Purpose Comments

Name text box Identifies the remote connection. For an existing connection,
already has a value.

Debugger list
box

Identifies the debugger. For an existing connection,
already specifies ColdFire
P&E Micro

Show in
processes list
checkbox

Clear — Leaves the connection
off the official list.
Checked — Adds connection to
the official list (select View >
Systems > List); also adds
connection to the pop-up list for
debugging certain kinds of file.

Default: Clear

Connection Type
list box

Specifies Parallel, USB,
Lightning, Cyclone Max Serial,
Cyclone Max USB, or Cyclone
Max TCPIP.

Changing this value changes
the subordinate elements of
the dialog box, as Figure 5.14,
Figure 5.15, Figure 5.16,
Figure 5.17, Figure 5.18, and
Figure 5.19 show.

Log
Communications
Data to Log
Window

Clear — Does not copy
communications in log window.
Checked — Copies
communications in log window.

Default: Clear

Parallel Port list
box

Specifies the parallel port: LPT1,
LPT2, LPT3, or LPT4.

Default: LPT1.

Speed text box
(in parallel dialog
box)

Integer that modifies the data
stream transfer rate: 0 specifies
the fastest rate. The greater the
integer, the slower the rate.

For a parallel remote
connection there is no firm
mathematical relationship, so
you may need to experiment to
find the best transfer rate. In
case of problems, try value 25.

USB Port list box
(in USB dialog
box and Cyclone
Max USB dialog
box)

Specifies the USB port: USB 0,
USB 1, USB 2, or USB 4.

Default: USB 0

Debugging
Remote Connections for Debugging

80 ColdFire Architectures v6.3 - Targeting Manual

NOTE For a P&E Micro remote connection, be sure to check the checkboxes Use
Target Initialization File and Use Memory Configuration File, of the CF
Debugger Settings panel.

ISS Remote Connection
NOTE Special-Edition software does not support the ISS. To use the ISS, you must

have Standard- or Professional-Edition software.

Figure 5.20 shows the configuration dialog box for ColdFire Instruction Set Simulator
(ISS) remote connections. Table 5.10 explains the elements of this dialog box.

Speed text box
(in USB dialog
box)

Integer N that specifies the data
stream transfer rate per the
expression (1000000/(N+1))
hertz.

0 specifies 1000000 hertz, or 1
megahertz. 1 (the default)
specifies 0.5 megahertz. 31
specifies the slowest transfer
rate: 0.031 megahertz.

PCI card slot list
box

Specifies PCI slot that the board
uses.

Default: 1

Speed text box
(in Lightning
dialog box)

Integer N that specifies the data
stream transfer rate per the
expression (33000000/(2*N+5))
hertz.

0 specifies 6600000 hertz, or
6.6 megahertz. 1 (the default)
specifies 4.7 megahertz. 31
specifies the slowest transfer
rate: 0.49 megahertz.

COM Port list
box (in Cyclone
Max Serial dialog
box)

Specifies the serial port: COM1,
COM2, COM3, ... or COM256.

Default: COM1.

IP Address text
box (in Cyclone
Max TCP/IP
dialog box)

Specifies IP address. Must be in format
127.0.0.1:1000 or in format
host.domain.com:1000.

Speed text box
(in Cyclone Max
dialog boxes)

Integer N that specifies the data
stream transfer rate per the
expression (50000000/(2*N+5))
hertz.

0 specifies 5000000 hertz, or
5.0 megahertz. 5 (the default)
specifies 3.33 megahertz. 31
specifies the slowest transfer
rate: 0.75 megahertz.

Table 5.9 P&E Micro Dialog Box Elements (continued)

Debugging
Remote Connections for Debugging

81ColdFire Architectures v6.3 - Targeting Manual

Figure 5.20 ISS Remote Connection

NOTE To use the ISS for V2 and V4e cores, create a CCS remote connection.
Alternatively, use the default CCS - SIM connection from the Remote
Connection panel list.

Table 5.10 ISS Dialog-Box Elements

Elements Purpose Comments

Name text box Identifies the remote connection. For an existing
connection, already has
a value.

Debugger list
box

Identifies the debugger. For an existing
connection, already
specifies ColdFire CCS

Show in
processes list
checkbox

Clear — Leaves the connection off the
official list.
Checked — Adds connection to the
official list (select View > Systems >
List); also adds connection to the pop-
up list for debugging certain kinds of file.

Default: Clear

Debugging
Remote Connections for Debugging

82 ColdFire Architectures v6.3 - Targeting Manual

Connection
Type list box

Specifies CCS Remote Connection Changing this value
changes other elements
of the dialog box.

Use Remote
CCS checkbox

Clear — Launches the CCS locally.

Checked — Starts debug code on a
remote target; activates Server IP
Address text box.

ISS must be running and
connected to a remote
target device.

Server IP
Address text
box

Specifies IP address of the remote
machine, in format 127.0.0.1:1000 or
host.domain.com:1000.

Available only if you
check the Use

Remote CCS checkbox.

Port # text box Specifies the port number the CCS uses Use only 40969 — the
number of the port pre-
wired for the simulator.

Specify CCS
Executable
checkbox

Clear — Uses the default CCS
executable file.

Checked — Lets you specify a different
CCS executable file, activating the text
box and Choose button. To do so, click
the Choose button, then use the
subordinate dialog box to select the
executable file. Clicking OK puts the
pathname in the text box.

Does not pertain to the
simulator.

Multi-Core
Debugging
checkbox

Clear — Does not debug code on a
multicore target.

Checked — Lets you specify the JTAG
chain for debugging on a multicore
target, activating the text box and
Choose button. To do so, click the
Choose button, then use the
subordinate dialog box to select the
executable file. Clicking OK puts the
pathname in the text box.

Does not apply to the
simulator.

CCS Timeout
text box

Specifies the number of seconds the
CCS should wait for a connection to go
through, before trying the connection
again.

Table 5.10 ISS Dialog-Box Elements (continued)

Elements Purpose Comments

Debugging
BDM Debugging

83ColdFire Architectures v6.3 - Targeting Manual

BDM Debugging
This section show two examples of connections for Background Debugging Mode (BDM)
debugging of a ColdFire target board.

Connecting a P&E Parallel Connector
Figure 5.21 depicts connections for a P&E Parallel Remote Connection.

Figure 5.21 P&E Parallel Remote Connector Setup

Follow these steps:

1. Plug the P&E Parallel Connector onto the target-board BDM connector.

2. Connect the parallel cable to the P&E Parallel Connector.

3. Connect the other end of the parallel cable to a parallel port of your PC.

4. This completes P&E Parallel connection. The P&E Parallel Remote Connection
automatically installs a default set of drivers and interface dlls on your PC.

NOTE You must have the correct P&E Parallel Connector for your target. If
necessary, contact P&E Microsystems for assistance.
The Windows drivers for P&E Microsystems BDM cables are available as well
in subdirectory bin\Plugins\Support\ColdFire\pemicro of your
CodeWarrior installation directory.

Connecting an Abatron BDI Device
Figure 5.22 depicts connections for an Abatron BDI device.

Target board

Parallel cable

P&E Parallel Connector

BDM connector

to PC parallel port

Debugging
BDM Debugging

84 ColdFire Architectures v6.3 - Targeting Manual

Figure 5.22 Abatron BDI Connections

Follow these steps:

1. Connect the BDI device to your computer.

a. Serial connection: Connect a serial cable between the BDI serial connector and a
serial port of the PC, as Figure 5.22 shows.

b. TCP/IP connection: Connect a TCP/IP cable between the BDI TCP/IP connector
and an appropriate port of your PC.

2. Connect the appropriate RCD cable between the BDI JTAG connector and the JTAG
connector of your target board. (The board JTAG connector is a 26-pin Berg-type
connector.)

NOTE Certain target boards, such as the MCF5485, MCF5475, MCF5235, and
MCF5271, require a different RCD cable than do other ColdFire boards. To
make sure that your cable is correct, see the Abatron reference manual or visit
http://www.abatron.ch.

3. Connect the power cable between the BDI power connector and a 5-volt, 1-ampere
power supply, per the guidance of the Abatron user manual.

4. This completes cable connections.

NOTE Before using an Abatron remote connection, you must
1. Make sure that you have the correct drivers and configuration utility for your
target board.
2. Use Abatron software to configure the BDI device, per the guidance of the
Abatron user manual.

BDI

Serial cable

Power cable

RCD cable

TCP/IP connector

Power connector

Serial connector

JTAG connector
(on end of BDI)

to PC serial port

To target-board
JTAG connector

Debugging
Debugging ELF Files without Projects

85ColdFire Architectures v6.3 - Targeting Manual

Before you use the BDI for ROM/Flash debugging, you must check the Use
Breakpoint Logic checkbox of the BDI Working Mode dialog box.

Debugging ELF Files without Projects
The CodeWarrior debugger can debug an ELF file that you created in a different
environment. But before you begin, you must update IDE preferences and customize the
default XML project file. (The CodeWarrior IDE uses the XML file to create a project
with the same target settings for any ELF file that you open to debug.)

Updating IDE Preferences
Follow these steps:

1. From the main menu bar, select Edit > Preferences. The IDE Preferences window
appears.

2. From the IDE Preferences Panels pane, select Build Settings. The Build Settings
panel (Figure 5.23) moves to the front of the window.

Figure 5.23 Build Settings Panel

3. Make sure that the Build before running list box specifies Never.

NOTE Selecting Never prevents the IDE from building the newly created project,
which is useful if you prefer to use a different compiler.

4. Select Edit > Preferences > Global Settings. The Global Settings panel (Figure
5.24) moves to the front of the window.

Debugging
Debugging ELF Files without Projects

86 ColdFire Architectures v6.3 - Targeting Manual

Figure 5.24 Global Settings Panel

5. Make sure that the Cache Edited Files Between Debug Sessions checkbox is clear.

6. Close the IDE Preferences window.

7. This completes updating IDE preference settings; you are ready to customize the
default XML project file.

Customizing the Default XML Project File
CodeWarrior software creates a new CodeWarrior project for any ELF file that you open
to debug. To create the new project, the software uses the target settings of the default
XML project file:

bin\plugins\support\CF_Default_Project.xml

For different target settings, you must customize this default XML file. Follow these steps:

1. Import the default XML project file.

a. Select File > Import Project — a file-select dialog box appears.

b. Navigate to subdirectory bin\plugins\support.

c. Select file CF_Default_Project.xml.

d. Click OK — a new project window appears for file
CF_Default_Project.xml.

2. Change target settings of the new project.

a. Select Edit > Target Settings — the Target Settings window appears.

b. From the Target Settings Panels pane, select any panel — that panel moves to the
front of the window.

c. Review/update panel settings.

Debugging
Debugging ELF Files without Projects

87ColdFire Architectures v6.3 - Targeting Manual

d. Repeat substeps b and c for all other appropriate panels.

e. When all settings are correct, click OK — the Target Settings window closes; the
system updates project settings.

3. Close the project window.

4. Export the modified target settings.

a. Select File > Export Project — a file-select dialog box appears.

b. Navigate to subdirectory bin\plugins\support.

c. Select the file you just modified: CF_Default_Project.xml.

d. Click OK — the system saves your modified file CF_Default_Project.xml
over the old file.

5. This completes XML-file customization — the new CF_Default_Project.xml
file includes your target-settings changes; you are ready to debug an ELF file.

Debugging an ELF File
Once you have updated IDE preferences and customized the default XML file, you are
ready to debug an ELF file (that includes symbolics information). Follow these steps:

1. Confirm that a remote connection exists for the ColdFire target.

2. Open Windows Explorer.

3. Navigate to the ELF file.

4. Drag the ELF file to the IDE main window — the IDE uses the default XML file to
create a new project, opening a new project window.

NOTE As ELF-file DWARF information does not include full pathnames for
assembly (.s) files; the IDE cannot find these files when it creates the project.
But when you debug the project, the IDE does find the assembly files that
reside in a directory that is a project access path. If any assembly files still lack
full pathnames, you can add their directory to the project manually, so that the
IDE finds the directory whenever you open the project.

5. Select Project > Debug — the IDE starts the debugger; the debugger window
appears.

6. Begin debugging.

Additional ELF-Debugging Considerations
Any of these points may make your debugging more efficient:

Debugging
Special Debugger Features

88 ColdFire Architectures v6.3 - Targeting Manual

• Once the IDE creates a .mcp project for your ELF file, you can open that project
instead of dropping your ELF file onto the IDE.

• To delete an old access path that no longer applies to the ELF file, use either of two
methods:

– Use the Access Path target settings panel to remove the access path from the
project manually.

– Delete the existing project for the ELF file, then drag the ELF file to the IDE to
recreate a project.

• To have the project include only the current files, you must manually delete project
files that no longer apply to the ELF.

• To recreate a project from an ELF file:

– If the project is open, close it.

– Delete the project (.mcp) file.

– Drag the ELF file to the IDE — the IDE opens a new project, based on the ELF
file.

Special Debugger Features
This section explains debugger features that are unique to ColdFire-platform targets.

ColdFire Menu
To see the unique Coldfire debugger menu, select Debug > ColdFire. Table 5.11 lists its
selections.

Table 5.11 ColdFire Debug Menu

Selection Explanation

Reset Target Sends a reset signal to the target processor. (Not available
unless the target processor supports this signal.)

Save Memory Saves target-board data to disk, as a binary image file.

Load Memory Writes previously saved, binary-file data to target-board
memory.

Fill Memory Fills a specified area of memory with a specified value.

Save Registers Saves contents of specified register to a text fie.

Debugging
Special Debugger Features

89ColdFire Architectures v6.3 - Targeting Manual

Working with Target Hardware
To have the IDE work with target hardware, use Debug-menu selections Connect and
Attach.

Connect
This selection tells the IDE to read the contents of target-board registers and memory;
these contents help you determine the state of the processor and target board. You can use
this selection in combination with the Load/Save Memory and Fill Memory selections of
the ColdFire menu to create a memory dump, load memory contents, or initialize memory
with specific patterns of data.

You can have the IDE connect to a target board that uses ColdFire Abatron or ColdFire
P&E Micro protocols.

The Connect selection works with a remote connection that you define in a project:

1. Bring forward the project you want to use. (The project must have at least one remote
connection defined for the target hardware.)

2. Select Debug > Connect — a Thread window appears, showing where the IDE
stops program execution. The debugger configuration file is executed.

3. Use the Thread window, with other IDE windows, to see register views and memory
contents.

Restore Registers Writes previously saved register contents back to the
registers.

Watchpoint Type Specifies the type:
Read — A read from the specified memory address stops
execution.

Write — A write to the specified memory address stops
execution.

Read/Write — Either a read from or write to the specified
memory address stops execution.

(Not available unless the target processor and debug
connection support watchpoints.)

Table 5.11 ColdFire Debug Menu (continued)

Selection Explanation

Debugging
Special Debugger Features

90 ColdFire Architectures v6.3 - Targeting Manual

Using the Simple Profiler
NOTE For a detailed explanation of how to instrument your code for profiling and

how to interpret the results, see the “Profiler” chapter in the IDE 5.7 User’s
Guide.

The following steps for enabling and using the profiling tool make reference to ColdFire-
specific features that may not be mentioned in the IDE User’s Guide:

1. Specify profiling, in one of these ways:

a. In the ColdFire Processor panel, check the Generate code for profiling checkbox.

b. Use the #pragma profile on directive before the function definition and use
the #pragma profile off directive after the function definition.

c. Use the -profile option or the #pragma directives with the command-line
compiler.

2. If you use the #pragma directives, add the profiler libraries to your project. (These
libraries are in subdirectory \E68K_Support\Profiler\Lib\ of your
CodeWarrior installation directory.)

3. In your source code, use the #include directive to include header file
Profiler.h. (This file is in subdirectory
\E68K_Support\Profiler\include\ of your CodeWarrior installation
directory.)

4. If necessary, instrument your code with the following function calls. These functions
are documented in the “Profiler” chapter of the IDE User’s Guide:

a. ProfilerInit — initializes the profiler.

b. ProfilerClear — removes existing profiling data.

c. ProfilerSetStatus — turns profiling on (1) or off (0).

d. ProfilerDump("filename") — dumps the profile data to a profiler window
or to the specified file.

e. ProfilerTerm — exits the profiler.

The profiler libraries use the external function getTime to measure the actual execution
time.

NOTE For a list of ColdFire platforms supported by the profiler, see the subdirectory
\E68K_support\Profiler\Support\ of your CodeWarrior
installation directory. The files in that directory also contain examples using
the getTime() function.

91ColdFire Architectures v6.3 - Targeting Manual

6
Instruction Set Simulator

This chapter explains how to use the Instruction Set Simulator (ISS). Using the ISS with
the CodeWarrior™ debugger, you can debug code for a ColdFire target.

Additionally, if you run the ISS on your host computer, you can share target-board access
with remote users of the CodeWarrior debugger.

In the same way, you can access the target board of any remote computer that is running
the ISS, provided that you know the IP address and ISS port number of that remote
computer.

NOTE Special-Edition software does not support the ISS; to use the ISS, you must
have Standard- or Professional-Edition software.

Do not move the ISS folders or files from its location in subdirectory
\Bin\Plugins\Support\Sim, of your CodeWarrior installation
directory. You can start the ISS only from the CodeWarrior debugger.

This chapter consists of these sections:

• Features

• Using the Simulator

• ISS Configuration Commands

• Sample Configuration File

• ISS Limitations

Features
Your CodeWarrior software supports the Instruction Set Simulator (ISS) for V2 and V4e
cores.

ColdFire V2
For V2 cores the ISS features are:

• Instruction set — modeling only of the original ColdFire v2 instruction set, without
ISA+ support of the 5282 processor.

Instruction Set Simulator
Features

92 ColdFire Architectures v6.3 - Targeting Manual

• MAC — modeling of the MAC without the EMAC of the 5282 processor. (This
affects register accesses.)

• Cache — modeling of the original ColdFire v2 direct-mapped instruction cache,
without modeling of the 5282 instruction and data cache.

• Format exceptions — not implemented.

• IPSBAR Functionality (5282 Peripherals) — modeling of the IPSBAR register and
Synchronous DRAM Controller (SDRAMC) module. (No modeling of other 5282
peripherals or related behavior.)

• IPSBAR register fields — all implemented.

• SDRAMC registers — five present:

– DCR

– DACR0

– DACR1

– DMR0

– DMR1

• DCR — this model includes reads from and writes to this register, but ignores all
internal fields of this register.

• DACRx — this model includes reads from and writes to these fields. (The SDRAMC
model covers functionality only of DACRx register fields BA and CBM, ignoring
other fields.)

• DMRx — this model includes reads from and writes to these fields. (The SDRAMC
model covers functionality only of DMRx register fields BAM and V, ignoring other
fields.)

• KRAM, KROM — support as much as 512 kilobytes of memory.

• Memory wait states — supported.

• A-line exceptions — not generated, as this model includes MAC.

NOTE The V2 ISS has pipeline delays that can lead to debugger defects.

ColdFire V4e
For V4e cores the ISS features are:

• Instruction set — modeling for all instructions.

• EMAC — modeling of the EMAC.

• FPU — not supported.

Instruction Set Simulator
Using the Simulator

93ColdFire Architectures v6.3 - Targeting Manual

• Cache — modeling of the ColdFire V4e four-way set-associative instruction and data
caches. (Caches always are physically tagged and physically addressed.)

• MMU model — partially supported.

• WDEBUG instruction — not supported, as the model does not support the
WDEBUG module.

• WDDATA instruction — not supported, as the model does not support the WDDATA
module.

• PULSE instruction — not supported, as the model does not support the PULSE
debug module.

• IPSBAR Functionality (5282 Peripherals) — modeling of the IPSBAR register. (No
modeling of other peripherals or related behavior.)

• A-line exceptions — not generated, as this model includes EMAC.

• F-line exceptions — not generated, as this model includes an FPU.

• Clock multiplier — not supported.

• Memory wait states — not supported.

NOTE Pipeline delay can lead to appearance problems in the debugger variable
viewer.

Using the Simulator
When you use a local ISS connection for debugging, the IDE starts the ISS automatically;
the ISS icon appears on the taskbar.

Right-click the icon to access the ISS pop-up menu. Its selection are:

• Configure — opens the ISS configuration options dialog box

• Show console — displays the ISS console window. (Another way to open this
console window is double-clicking the ISS icon.)

• Hide console — hides the ISS console window

• About CCSSIM2 — displays version information

• Quit CCS — stops the ISS.

Console Window
Use the ISS console window to view and change server connection options. You may type
commands at the command line, or select them from the menu bar.

Instruction Set Simulator
ISS Configuration Commands

94 ColdFire Architectures v6.3 - Targeting Manual

NOTE Do not use the console window to modify settings during a debug session. This
would affect the debug state.

Viewing ISS Registers
To view the ISS registers, select View > Registers — the Registers window (Figure 6.1)
appears.

Figure 6.1 Register Window: ISS Register Values

 You may edit the ISS register values that this window shows.

• INSTCNT (Instruction Count) is the number of instructions executed in a debug
session.

• CYCLCNT (Cycle Count) is the number of elapsed clock cycles in a debug session.

NOTE These registers are unique to ISS projects; other projects do not have these
registers.

ISS Configuration Commands
The ISS reads configuration information from configuration files ColdFire2.cfg (V2
core) and ColdFire4.cfg (V4e core). Both files are in subdirectory
\Bin\Plugins\Support\Sim\ccssim2\bin of your CodeWarrior installation
directory.

NOTE Do not change the location of the configuration files, or the ISS may not work
properly.

If you cannot use the ISS to start a debug session, you probably must reduce
the memory that file ColdFire2.cfg or ColdFire4.cfg defines. And
for an MCF5282 or other processor core that had IPSBAR, you must use the
ipsbar command to configure the settings.

The configuration files consist of text commands, each on a single line:

Instruction Set Simulator
ISS Configuration Commands

95ColdFire Architectures v6.3 - Targeting Manual

• Some argument values are numerical.

• Possible boolean argument values are true (or yes) and false (or no).

• Comment lines must start with the # character.

The rest of this section consists of explanations for the ISS configuration commands:

• bus_dump

• cache_size

• ipsbar

• kram_size

• krom_size

• krom_valid

• mbar

• mbus_multiplier

• memory

• sdram

bus_dump

Controls dumping bus signals to the processor.bus_dump file. bus_dump switch

bus_dump switch

Parameter

switch

Boolean value yes (or true) or no (or false).

Remarks

If environment variable CF_REG_DUMP is set, a yes or true switch value for
this command also dumps the CPU register values to the
processor.reg_dump file.

Example

bus_dump true

Instruction Set Simulator
ISS Configuration Commands

96 ColdFire Architectures v6.3 - Targeting Manual

cache_size

Configures the cache size.

cache_size size_parameter

Parameter

size_parameter

Default value 0 (off), or another code number for the size, per Table 6.1.

Example

cache_size 7

ipsbar

Provides beginning address and offset, enabling V4-core IPSBAR registers. (The V4
counterpart command is mbar.)

ipsbar switch

Parameter

switch

Boolean value yes (or true) or no (or false).

Example

ipsbar true

Table 6.1 Cache Size Parameter Conversion

size_paramet
er

Kilobytes size_paramet
er

Kilobytes

0 0 4 4

1 0.5 5 8

2 1 6 16

3 2 7 32

Instruction Set Simulator
ISS Configuration Commands

97ColdFire Architectures v6.3 - Targeting Manual

kram_size

Configures the KRAM size.

kram_size size_parameter

Parameter

size_parameter

Code number for the size, per Table 6.2.

Example

kram_size 7

krom_size

Configures the KROM size.

krom_size size_parameter

Parameter

size_parameter

Code number for the size, per Table 6.3.

Table 6.2 kram Size Parameter Conversion

size_paramet
er

Kilobytes size_paramet
er

Kilobytes

0 0 6 16

1 0.5 7 32

2 1 8 64

3 2 9 128

4 4 10 256

5 8 11 512

Instruction Set Simulator
ISS Configuration Commands

98 ColdFire Architectures v6.3 - Targeting Manual

Example

krom_size 11

krom_valid

Controls KROM mapping to address $0 at boot-up.

krom_valid switch

Parameter

switch

Boolean value yes (or true) or no (or false).

Example

krom_valid true

mbar

Provides beginning address and offset, enabling V2-core MBAR registers. (The V4
counterpart command is ipsbar.)

mbar switch

Table 6.3 krom Size Parameter Conversion

size_paramet
er

Kilobytes size_paramet
er

Kilobytes

0 0 6 16

1 0.5 7 32

2 1 8 64

3 2 9 128

4 4 10 256

5 8 11 512

Instruction Set Simulator
ISS Configuration Commands

99ColdFire Architectures v6.3 - Targeting Manual

Parameter

switch

Boolean value yes (or true) or no (or false).

Example

mbar true

mbus_multiplier

For a V2-core processor, multiplies the core clock speed.

mbus_multiplier value

Parameter

value

 Any integer between 1 and 10.

Example

mbus_multiplier 10

memory

Configures sections of external memory.

memory start end wait_states line_wait_states

Parameters

start

Starting address of the contiguous section of memory.

end

Ending address of the contiguous section of memory.

wait_states

Number of wait states inserted for normal access (for V2 ISS only).

line_wait_states

Number of wait states inserted for line access (for V2 ISS only).

Instruction Set Simulator
Sample Configuration File

100 ColdFire Architectures v6.3 - Targeting Manual

Remarks

There may be any number of MBUS memories, each with different wait states
settings.

You must provide wait_states and line_wait_states values for a V2
ISS, but you should not provide these values for a V4 ISS.

Examples

memory 0x00000000 0x0fffffff 0 0

memory 0x200000000 0x3000ffff 0 0

sdram

Configures SDRAM.

sdram bank_bits num_bytes wait_states line_wait_states

Parameters

bank_bits

Number of bank bits used (only two banks are allowed).

num_bytes

Number of bytes allocated.

wait_states

Number of wait states inserted for normal access (for V2 ISS only).

line_wait_states

Number of wait states inserted for line access (for V2 ISS only).

Example

sdram 2 0x8000 0 0

Sample Configuration File
Listing 6.1 shows configuration file ColdFire2.cfg.

Listing 6.1 ColdFire2.cfg File Example

#Example Configuration File
memory 0x0000 0x7fff 0 0

Instruction Set Simulator
ISS Limitations

101ColdFire Architectures v6.3 - Targeting Manual

kram_size 8
bus_dump on
sdram 2 0x8000 0 0
ipsbar true

ISS Limitations
These limitations apply to the ISS:

• You cannot set hardware breakpoints, because debugging is not happening on an
actual hardware board.

• You cannot set watchpoints in source code.

• You cannot use the Attach feature while you use the ISS.

• The Run Without Debugger button does not work, if you use the ISS to run
your application.

Instruction Set Simulator
ISS Limitations

102 ColdFire Architectures v6.3 - Targeting Manual

103ColdFire Architectures v6.3 - Targeting Manual

7
Using Hardware Tools

This chapter explains the CodeWarrior IDE hardware tools, which you can use for board
bring-up, test, and analysis. These tools are not used with CCS-SIM or other simulators.

This chapter consists of these sections:

• Flash Programmer

• Hardware Diagnostics

Flash Programmer
Use the CodeWarrior flash programmer to program target-board flash memory with code
from any CodeWarrior IDE project, or with code from any individual executable files.

The flash programmer runs as a CodeWarrior plug-in, using the CodeWarrior debugger
protocol API to communicate with the target boards. The CodeWarrior flash programmer
lets you use the same IDE to program the flash of any of the embedded target boards.

NOTE For Special-Edition software, the CodeWarrior flash programmer is limited to
128 kilobytes. There is no such limitation for Standard-Edition or Professional-
Edition software.
Each software edition also comes with an optional ColdFire flash programmer,
available in subdirectory
\bin\Pugins\Support\Flash_Programmer of the CodeWarrior
installation directory.

Follow these steps:

1. Make sure to build the application you want to program into flash memory.

2. From the IDE main menu bar, select Tools > Flash Programmer — the Flash
Programmer window (Figure 7.1) appears.

Using Hardware Tools
Flash Programmer

104 ColdFire Architectures v6.3 - Targeting Manual

Figure 7.1 Flash Programmer Window: Target Configuration Panel

3. If the Target Configuration panel is not visible, select if from the list at the left — the
panel moves to the front of the Flash Programmer window.

4. Verify Target Configuration settings.

a. If the Default Project field specifies your project, skip ahead to substep c.

b. Otherwise, from the main menu bar, select Project > Set as default project to
specify your project.

c. If the Default Target field specifies the correct Flash target, skip ahead to substep e.

d. Otherwise, from the main menu bar, select Project > Set as default target to
specify the correct Flash target.

e. Make sure that the Use Custom Settings checkbox is clear.

f. Click the Load Settings button. A file browser will appear.

g. Browse to bin\Pugins\Support\Flash_Programmer\ColdFire and
select the appropriate xml file, then press Open — the system updates other
settings for the default project and target.

5. Configure the flash device.

Using Hardware Tools
Flash Programmer

105ColdFire Architectures v6.3 - Targeting Manual

a. From the pane list at the left of the Flash Programmer window, select Flash
Configuration — the Flash Configuration panel moves to the front of the window,
as Figure 7.2 shows.

Figure 7.2 Flash Programmer Window: Flash Device Configuration Panel

b. Make sure that the Device list box specifies your external flash device, or the on-
chip flash of your ColdFire-derivative processor.

c. Make sure that the Flash Memory Base Address text box specifies the appropriate
base address.

d. The Organization and Sector Address Map boxes display appropriate additional
information.

6. Erase the destination flash-memory sectors.

Using Hardware Tools
Flash Programmer

106 ColdFire Architectures v6.3 - Targeting Manual

a. From the pane list at the left of the Flash Programmer window, select Erase/
Blank Check — the Erase/Blank Check panel moves to the front of the window,
as Figure 7.3 shows.

Figure 7.3 Flash Programmer Window: Erase/Blank Check Flash Panel

b. In the panel’s list box, select the sectors you want to erase. (To select them all,
check the All Sectors checkbox.)

c. Click the Erase button — the flash programmer erases the sectors.

d. (Optional) To confirm erasure, select the same sectors, then click the Blank Check
button — a message reports the status of the sectors.

7. Flash your application.

Using Hardware Tools
Flash Programmer

107ColdFire Architectures v6.3 - Targeting Manual

a. From the pane list at the left of the Flash Programmer window, select Program/
Verify — the Program/Verify Flash panel moves to the front of the window, as
Figure 7.4 shows.

Figure 7.4 Flash Programmer Window: Program/Verify Flash Panel

b. Make sure that the Use Selected File checkbox is clear.

c. Click the Program button — the flash programmer programs your application into
the target sectors of flash memory.

d. (Optional) To confirm programming, click the Verify button — the flash
programmer compares the data now in flash sectors to the image file on disk.

8. (Optional) For an additional test of programmed flash sectors, run a checksum.

Using Hardware Tools
Hardware Diagnostics

108 ColdFire Architectures v6.3 - Targeting Manual

a. From the pane list at the left of the Flash Programmer window, select Checksum
— the Checksum panel moves to the front of the window, as Figure 7.5 shows.

Figure 7.5 Flash Programmer Window: Checksum Panel

b. In the Compute Checksum Over area, select the appropriate option button: File on
Target, File on Host, Memory Range on Target, or Entire Flash.

c. If this selection activates the Address Range text boxes, enter the appropriate Start
and Size values.

d. Click the Calculate Checksum button — the flash programmer runs the checksum
calculation; a message tells you the result.

9. This completes flash programming.

Hardware Diagnostics
Use the CodeWarrior hardware diagnostics tool to obtain several kinds of information
about the target board. The Hardware Diagnostics feature is not supported by the ISS.

Select Tools > Hardware Diagnostics from the IDE main menu bar — the Hardware
Diagnostics window (Figure 7.6) appears.

Using Hardware Tools
Hardware Diagnostics

109ColdFire Architectures v6.3 - Targeting Manual

Figure 7.6 Hardware Diagnostics window: Configuration Panel

Figure 7.6 shows the Configuration panel. Click any name in the list pane to bring the
corresponding panel to the front of the window:

• Memory Read/Write Test — which Figure 7.7 shows.

• Scope Loop Test — which Figure 7.8 shows.

• Memory Tests — which Figure 7.9 shows.

NOTE In Figure 7.7, Figure 7.8, and Figure 7.9, be sure to use addresses which are in
the memory map for your hardware configuration (which are defined through
the configuration file).

Using Hardware Tools
Hardware Diagnostics

110 ColdFire Architectures v6.3 - Targeting Manual

Figure 7.7 Hardware Diagnostics window: Memory Read/Write Test Panel

Figure 7.8 Hardware Diagnostics window: Scope Loop Test Panel

Using Hardware Tools
Hardware Diagnostics

111ColdFire Architectures v6.3 - Targeting Manual

Figure 7.9 Hardware Diagnostics window: Memory Tests Panel

The Hardware Diagnostics window lists global options for the hardware diagnostic tools;
these preferences apply to every open project file. For more information about each
hardware-diagnostics panel, see the IDE User’s Guide .

Using Hardware Tools
Hardware Diagnostics

112 ColdFire Architectures v6.3 - Targeting Manual

113ColdFire Architectures v6.3 - Targeting Manual

8
Using Debug Initialization
Files

This appendix explains background debugging mode (BDM) support for the ColdFire
reference boards. BDM controls the processor, accessing both memory and I/O devices
via a simple serial, wiggler interface. BDM can be very useful during initial debugging of
control system hardware and software; it also can simplify production-line testing and
end-product configuration.

Specifically, this appendix explains how to use debug initialization files with the P&E
Micro wiggler. Debug initialization files contain commands that initialize the target board
to write the program to memory, once the debugger starts the program.

Each time you start the debugger, and each time you select Debug > Reset Target, the
system processes a debug initialization file. Such a file perform such functions as
initializing registers and memory in targets that do not yet have initialization code in
ROM.

This appendix consists of these sections:

• Common File Uses

• Command Syntax

• Command Reference

You specify whether to use a debug initialization file — and which to use — via the
ColdFire Target Settings panel.

Common File Uses
The most common use for debug initialization files is configuring the essential set of
memory-control registers, so that downloads and other memory operations are possible.
This is appropriate if your target system or evaluation board does not yet have
initialization code in target ROM. It also can be an appropriate way to override an existing
initialization after a reset.

To create this section of the debug initialization file, you mirror the values that the
processor chip-select, pin-assignment, and other memory control registers should have
after execution of initialization code. However, the set of registers that need initialization

Using Debug Initialization Files
Common File Uses

114 ColdFire Architectures v6.3 - Targeting Manual

varies by processor. For details, see your processor data book, as well as the sample files
in the CodeWarrior subdirectory \E68K_Tools\Initialization_Files.

Other uses and guidance items are:

• Sample files are specific to processor, and, in most cases, evaluation board. Use the
sample templates for your own board.

• Use a debug initialization file only to initialize memory setup. Trying to use such a
file for additional initialization, such as for on-board peripherals or setup ports,
would prevent these other initializations during normal execution. As the program
does not use BDM in normal execution, it would not initialize such peripherals, so
the program could fail to execute properly.

• Put non-memory and non-exception-setup initialization instructions in the
init_hardware function of processor startup code instead of in a debug
initialization file. Another valid place for such instructions is your own start routine.
These methods take care of initialization.

• Once debugging is done, your startup code must initialize the memory management
unit, setting up the memory appropriately for non-debugger program execution.

• Listing 8.1 is a sample BDM initialization file for the MCF5272C3 board.

Listing 8.1 Sample BDM Initialization file

; Set VBR to start of future SDRAM
; VBR is an absolute CPU register
; SDRAM is at 0x00000000+0x0400000

writecontrolreg 0x0801 0x00000000

; Set MBAR to 0x10000001
; MBAR is an absolute CPU register, so if
; you move MBAR, you must change all subsequent
; writes to MBAR-relative locations

writecontrolreg 0x0C0F 0x10000001

; Set SRAMBAR to 0x20000001
; SRAMBAR is an absolute CPU register, the
; location of chip internal 4k of SRAM

writecontrolreg 0x0C04 0x20000001

; Set ACR0 to 0x00000000

writecontrolreg 0x04 0x00000000

; Set ACR1 to 0x00000000

Using Debug Initialization Files
Command Syntax

115ColdFire Architectures v6.3 - Targeting Manual

writecontrolreg 0x05 0x00000000

; 2MB FLASH on CS0 at 0xFFE00000

writemem.1 0x10000040 0xFFE00201
writemem.1 0x10000044 0xFFE00014

; CS7 4M byte SDRAM
; Unlike 5307 and 5407 Cadre 3 boards,
; the 5272 uses CS7 to access SDRAM

writemem.1 0x10000078 0x00000701
writemem.1 0x1000007C 0xFFC0007C

; Set SDRAM timing and control registers
; SDCTR then SDCCR

writemem.1 0x10000184 0x0000F539
writemem.1 0x10000180 0x00004211

; Wait a bit

delay 600

writemem.1 0x10000000 0xDEADBEEF

; Wait a bit more

delay 600

Command Syntax
The syntax rules for commands in a debug initialization file are:

• The system ignores space characters and tabs.

• The system ignores character case in commands.

• Numbers may be in hexadecimal, decimal, or octal format:

– Hexadecimal values must start with 0x, as in 0x00002222, 0xA, or
0xCAfeBeaD.

– Decimal values must start with a numeral 1 through 9, as in 7, 12, 526, or
823643.

– Octal values must start with a zero, as in 0123, or 0456.

Using Debug Initialization Files
Command Reference

116 ColdFire Architectures v6.3 - Targeting Manual

• Start comments with a colon (;), or pound sign (#). Comments end at the end of the
line.

Command Reference
This section explains the commands valid for debug initialization files:

• Delay

• ResetHalt

• ResetRun

• Stop

• writeaddressreg

• writecontrolreg

• writedatareg

• writemem.b

• writemem.l

• writemem.w

NOTE Old data initialization files that worked with a Macraigor interface may not
work with a P&E interface because command writereg SPRnn changed to
writecontrolreg 0xNNNN. Please update files accordingly.

Delay

Delays execution of the debug initialization file for the specified time.

Delay <time>

Parameter

time

Number of milliseconds to delay.

Example

This example creates a half-second pause in execution of the debug initialization
file:

Delay 500

Using Debug Initialization Files
Command Reference

117ColdFire Architectures v6.3 - Targeting Manual

ResetHalt

Resets the target, putting the target in debug state.

ResetHalt

ResetRun

Resets the target, letting the target execute from memory.

ResetRun

Stop

Stops program execution, putting the target in a debug state.

Stop

writeaddressreg

Writes the specified value to the specified address register.

writeaddressreg <registerNumber> <value>

Parameters

registerNumber

Any integer, 0 through 7, representing address register A0 through A7.

value

Any appropriate register value.

Example

This example writes hexadecimal ff to register A4:

writeaddressreg 4 0xff

Using Debug Initialization Files
Command Reference

118 ColdFire Architectures v6.3 - Targeting Manual

writecontrolreg

Writes the specified value to the address of a control register.

writecontrolreg <address> <value>

address is the address of the control register.

Parameters

address

Address of any control register.

value

Any appropriate value.

Example

This example writes hexadecimal c0f to control-register address 20000001:

writecontrolreg 0xc0f 0x20000001

writedatareg

Writes the specified value to the specified data register.

writedatareg <registerNumber> <value>

Parameters

registerNumber

Any integer, 0 through 7, representing data register D0 through D7.

value

Any appropriate register value.

Example

This example writes hexadecimal ff to register D3:

writedatareg 3 0xff

Using Debug Initialization Files
Command Reference

119ColdFire Architectures v6.3 - Targeting Manual

writemem.b

Writes the specified byte value to the specified address in memory.

writemem.b <address> <value>

Parameters

address

One-byte memory address.

value

Any one-byte value.

Example

This example writes decimal 255 to memory decimal address 2345:

writemem.b 2345 255

writemem.l

Writes the specified longword value to the specified address in memory.

writemem.l <address> <value>

Parameters

address

Four-byte memory address.

value

Any four-byte value.

Example

This example writes hexadecimal 00112233 to memory hexadecimal address
00010000:

writemem.l 0x00010000 0x00112233

Using Debug Initialization Files
Command Reference

120 ColdFire Architectures v6.3 - Targeting Manual

writemem.w

Writes the specified word value to the specified address in memory.

writemem.w <address> <value>

Parameters

address

Two-byte memory address.

value

Any two-byte value.

Example

This example writes hexadecimal 12ac to memory hexadecimal address
00010001:

writemem.w 0x00010001 0x12ac

121ColdFire Architectures v6.3 - Targeting Manual

9
Memory Configuration Files

In your overall memory map, there can be gaps or holes between physical memory
devices. If the debugger tries a read or write to an address in such a hole, the system would
issue an error message, and debugging might not even be possible.

To prevent such developments, use a memory configuration file (MCF). An MCF
identifies valid memory address ranges to the debugger, and even specifies valid access
types.

NOTE The memory configuration file for your project should be updated to the latest
memory configuration file for your hardware configuration. Up-to-date
memory files can be found in
\E68K_Support\Initialization_Files.

A sample memory configuration file is
\E68K_Support\Initialization_Files\MCF5485EVB.mem of the
CodeWarrior installation directory.

This appendix consists of these sections:

• Command Syntax

• Command Explanations

Command Syntax
The syntax rules for commands in a memory configuration file are:

• The system ignores space characters and tabs.

• The system ignores character case in commands.

• Numbers may be in hexadecimal, decimal, or octal format:

– Hexadecimal values must start with 0x, as in 0x00002222, 0xA, or
0xCAfeBeaD.

– Decimal values must start with a numeral 1 through 9, as in 7, 12, 526, or
823643.

– Octal values must start with a zero, as in 0123, or 0456.

• Comments can be in standard C or C++ format.

Memory Configuration Files
Command Explanations

122 ColdFire Architectures v6.3 - Targeting Manual

Command Explanations
This section explains the commands you can use in a memory configuration file:

• range

• reserved

• reservedchar

range

Specifies a memory range for reading or writing.

range <loAddr> <hiAddr> <sizeCode> <access>

Parameters

loAddr

Starting address of memory range.

hiAddr

Ending address of memory range.

sizeCode

Size, in bytes, for memory accesses by the debug monitor or emulator.

access

Read, Write, or ReadWrite.

Example

These range commands specify three adjacent ranges: the first read-only, with 4-
byte access; the second write-only, with 2-byte access; and the third read/write,
with 1-byte access.

range 0xFF000000 0xFF0000FF 4 Read

range 0xFF000100 0xFF0001FF 2 Write

range 0xFF000200 0xFFFFFFFF 1 ReadWrite

Memory Configuration Files
Command Explanations

123ColdFire Architectures v6.3 - Targeting Manual

reserved

Reserves a range of memory, preventing reads or writes.

reserved <loAddr> <hiAddr>

Parameters

loAddr

Starting address of reserved memory range.

hiAddr

Ending address of reserved memory range.

Remarks

If the debugger tries to write to any address in the reserved range, no write takes
place.

If the debugger tries to read from any address in the reserved range, the system fills
the memory buffer with the reserved character. (Command reservedchar
defines this reserved character.)

Example

This command prevents reads or writes in the range 0xFF00024 — 0xFF00002F:

reserved 0xFF000024 0xFF00002F

reservedchar

Specifies a reserved character for the memory configuration file.

reservedchar <char>

Parameter

char

Any one-byte character.

Remarks

If an inappropriate read occurs, the debugger fills the memory buffer with this
reserved character.

Memory Configuration Files
Command Explanations

124 ColdFire Architectures v6.3 - Targeting Manual

Example

reservedchar 0xBA

125ColdFire Architectures v6.3 - Targeting Manual

Index

A
Abatron

BDI connection 83, 85
remote connections 71–73

application development diagram 16
application tutorial 21–32

B
batchrunner postlinker settings panel 37
batchrunner prelinker settings panel 37
BDM debugging 83, 85
build settings panel 85
building 18, 19
building a project 25, 27
bus_dump simulator configuration command 95

C
cache_size simulator configuration command 96
CF

debugger settings panel 27, 56–59
exceptions panel 63–66
interrupt panel 68

checksum panel 108
CodeWarrior

development process 15–20
IDE 14

ColdFire
assembler panel 38–41
linker panel 48–53
processor panel 45–48
settings panels 34–53
target panel 38

commands
debug initialization files 116–120
memory configuration files 122–124
simulator configuration 94–100

compiling 18, 19
configuration files, memory 121–124
configuration panel 109
connections

Abatron BDI 83, 85

remote 61–63
wiggler 83

console window 32
creating a project 21–24

D
debug initialization files 113–120

commands 116–120
Delay 116
ResetHalt 117
ResetRun 117
Stop 117
writeaddressreg 117
writecontrolreg 118
writedatareg 118
writemem.b 119
writemem.l 119
writemem.w 120

syntax 115
uses 113–115

debugger PIC settings 53
debugger settings panel 66, 68
debugger window 28
debugging 19, 55–90

Abatron remote connections 71–73
an application 27–32
BDM debugging 83, 85

connecting a wiggler 83
connecting Abatron BDI 83, 85

ELF files 85–88
customizing XML file 86, 87
IDE preferences 85, 86

Freescale remote connections 73–76
ISS remote connection 80–82
P&E Micro remote connections 76–80
remote connections 69–82
simple profiler 90
special features 88–90
target settings 55–69

CF debugger settings panel 56–59
CF exceptions panel 63–66
CF interrupt panel 68

126 ColdFire Architectures v6.3 - Targeting Manual

debugger settings panel 66, 68
remote connections 61–63
remote debugging panel 59–61

Delay debug initialization command 116
development process, CodeWarrior 15–20
dialog boxes

new 22
new connection 62
new project 23

disassembling 19
documentation 10, 11

E
editing 18
editions 8, 9
editor window 18
ELF

disassembler panel 41–44
files

customizing XML file 86, 87
debugging 85–88
IDE preferences 85, 86

erase/blank check flash panel 106

F
features 7, 8
features, simulator 91–93
files

debug initialization 113–120
memory configuration 121–124
project 17

flash device configuration panel 105
flash programmer 103–108
flash programmer window 104–108
Freescale

remote connections 73–76

G
getting started 13–20
global settings panel 86

H
hardware diagnostics 108–111

hardware diagnostics window 109–111
hardware tools 103–111

flash programmer 103–108
hardware diagnostics 108–111

I
IDE

CodeWarrior 14
preferences, updating 85, 86

IDE preferences window 62
instruction set simulator 91–101

limitations 101
sample configuration file 100

introduction 7–11
ipsbar simulator configuration command 96
ISS

configuration commands 94–100
bus_dump 95
cache_size 96
ipsbar 96
kram_size 97
krom_size 97, 98
krom_valid 98
mbar 98, 99
mbus_multiplier 99
memory 99, 100
sdram 100

features 91–93
remote connection 80–82

K
kram_size simulator configuration command 97
krom_size simulator configuration command 97,

98
krom_valid simulator configuration command 98

L
limitations, simulator 101
linking 18, 19

M
main window 22
mbar simulator configuration command 98, 99

127ColdFire Architectures v6.3 - Targeting Manual

mbus_multiplier simulator configuration
command 99

memory configuration files 121–124
commands 122–124

range 122
reserved 123
reservedchar 123, 124

syntax 121
memory read/write test panel 110
memory simulator configuration command 99,

100
memory tests panel 111

N
new connection dialog box 62
new dialog box 22
new project dialog box 23

O
overview, target settings 33, 34

P
P&E Micro remote connections 76–80
panels

batchrunner postlinker 37
batchrunner prelinker 37
build settings 85
CF debugger settings 27, 56–59
CF exceptions 63–66
CF interrupt 68
checksum 108
ColdFire assembler 38–41
ColdFire linker 48–53
ColdFire processor 45–48
ColdFire settings 34–53
ColdFire target 38
configuration 109
debugger settings 66, 68
ELF disassembler 41–44
erase/blank check flash 106
flash device configuration 105
global settings 86
memory read/write test 110

memory tests 111
program/verify flash 107
remote connections 62
remote debugging 26, 59–61
scope loop tests 110
target configuration 104
target setting 35–36
target settings 25

PIC
settings 53

profiler 90
program/verify flash panel 107
project

building 25, 27
creating 21–24
debugging 27–32
files 17
window 17

project window 24

R
range memory configuration command 122
registers window 30, 94
remote connections 61–63

debugging 69–82
panel 62

remote debugging panel 26, 59–61
requirements, system 13, 14
reserved memory configuration command 123
reservedchar memory configuration

command 123, 124
ResetHalt debug initialization command 117
ResetRun debug initialization command 117

S
sample code

transitive closure 52, 53
sample ISS configuration file 100
scope loop tests panel 110
sdram simulator configuration command 100
settings

panels 34–53
target 33–53
target, debugging 55–69

128 ColdFire Architectures v6.3 - Targeting Manual

simple profiler 90
simulator 91–101
simulator configuration commands 94–100
simulator, using 93, 94
software editions 8, 9
special features, debugging 88–90
starting 13–20
Stop debug initialization command 117
syntax

debug initialization files 115
memory configuration files 121

system requirements 13, 14

T
target configuration panel 104
target settings 33–53

debugging 55–69
overview 33, 34
panel 35–36
window 34, 56

target settings panel 25
target settings window 25, 26
tools

flash programmer 103–108
hardware 103–111
hardware diagnostics 108–111

transitive closure sample code 52, 53
tutorial 21–32

U
USB TAP 73–76
uses for debug initialization files 113–115
using the simulator 93, 94

V
view memory window 31

W
wiggler connection 83
windows

console 32
debugger 28
editor 18

flash programmer 104–108
hardware diagnostics 109–111
IDE preferences 62
main 22
project 17, 24
register 30, 94
target settings 25, 26, 34, 56
view memory 31

writeaddressreg debug initialization
command 117

writecontrolreg debug initialization
command 118

writedatareg debug initialization command 118
writemem.b debug initialization command 119
writemem.l debug initialization command 119
writemem.w debug initialization command 120

X
XML file, customizing 86, 87

