
CodeWarrior
Development Studio

for
StarCore DSP
Architectures

SC100 Linker User
Guide

Revised: May 4, 2012

Freescale, the Freescale logo, CodeWarrior and StarCore are trademarks of Freescale Semiconductor, Inc., Reg. U.S.
Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2009–2012 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, TX 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Introduction 7
1.1 Actions of the StarCore Linker. 7

1.2 Memory Layout and Configuration for Single Core . 8

1.3 Startup Environment. 10

2 Using the Linker 15
2.1 Invoking the Linker . 15

2.2 Command-Line Options . 15

2.2.1 Specifying a Linker Command File . 29

2.2.1.1 Specifying Arguments in a File. 29

2.2.1.2 Enabling Shared Symbol References . 29

2.2.1.3 BSS Section Zeroing . 30

2.2.1.4 Reread Libraries . 30

2.2.1.5 Omit Signatures. 30

2.2.1.6 Self-Contained Libraries . 30

2.2.2 Adding Directories to the Linker Search Path . 32

2.2.3 Defining Symbols . 32

2.2.4 Estimating Stack Effect . 33

2.2.5 Renaming the Object File . 33

2.2.6 Modifying the Contents of the Object File . 33

2.2.7 Dead-Code, Dead-Data Stripping . 34

2.2.7.1 Dead-Code Stripping. 34

2.2.7.2 Dead-Data Stripping . 35

2.2.8 Code and Data Folding . 37

2.2.9 Cache Optimization . 37

2.2.10 Generating a Linker Map File . 38

2.2.11 Controlling Linker Messages. 41

2.2.12 Defining Unlikely Block of Code as Private Block of Code in a Multi-core
Application . 42

3 Linker Command File 43
3.1 Pre-Built Linker Command Files . 43
3StarCore SC100 Linker User Guide

Table of Contents
3.2 Linker Command File Syntax. .43

3.2.1 Command File Structure .43

3.2.1.1 Dynamic Stack/Heap Configuration .45

3.2.1.2 Static Stack/Heap Configuration .46

3.2.2 Expressions and Symbols. .46

3.2.3 Operators .48

3.2.4 Comments. .49

3.3 Sections .49

3.4 Linker Directives. .53

4 Overlays 93
4.1 Using Overlays .93

4.2 Overlay Manager .93

4.3 Overlay Header Table .95

4.4 Address Translation Table Examples .96

4.4.1 Example 1: Non-Overlay .96

4.4.2 .att_mmu section .100

4.5 Advanced Examples .102

4.5.1 Example 2: Irrelevant Section Placement. .102

4.5.2 Example 3: Specific Base Address. .102

4.5.3 Example 4: Two Ranges, Specific Base Addresses .102

4.5.4 Examples 5: Disjunct Virtual Spaces .103

4.5.4.1 Example 5a: All Sections in Virtual Memory .104

4.5.4.2 Example 5b: Task-Defined Spaces .105

4.5.5 Examples 6: Shared Virtual Spaces .105

4.5.5.1 Example 6a: Definitions for All Tasks .106

4.5.5.2 Example 6b: Directives for Data and Program .107

4.5.5.3 Example 6c: .concatenate Directive. .107

A Linker Messages 109

B Complex Examples 131
B.1 Multi-Core Environment Example. .131

B.2 .att_mmu_settings Example .134
4 StarCore SC100 Linker User Guide

Table of Contents
Index 141
5StarCore SC100 Linker User Guide

Table of Contents
6 StarCore SC100 Linker User Guide

1
Introduction

This chapter provides an introduction to the StarCore linker. This chapter contains the following topics:

• 1.1 Actions of the StarCore Linker

• 1.2 Memory Layout and Configuration for Single Core

• 1.3 Startup Environment

1.1 Actions of the StarCore Linker

The StarCore Linker generates an executable file by combining the object files and libraries specified in
your project. Using a linker command file (LCF), you can instruct the linker to store portions of your
executable in different areas of memory. The linker relocates and binds symbols to addresses according
to the directives in your LCF.

NOTE The StarCore linker supports the SC1000 and SC3000 architectures, and all Freescale devices
based on these architectures, including the SC140 and SC3400 and its variants.

The highlights of the linking process are:

1. Build a map of available memory according to the .memory and .reserve directives defined in the
linker command file.

2. Read the input object files and libraries. Combine like-named sections, build the global symbol table,
and resolve undefined references.

3. Strip data never used; strip the code of functions never called.

4. Place segments in memory, according to .firstfit, .org, and .segment directives. Place all
absolute sections before placing relocatable sections. If any sections are left over after processing the
.segment directives, place those remaining sections in their own segments on a first-fit basis.

5. Generate any LoadAddr_ symbols for overlays. Check each module’s symbol table to ensure that
there are no more undefined references.

6. Process the relocations to resolve external reference values.

7. Write the executable output file.
7StarCore SC100 Linker User Guide

Introduction
Memory Layout and Configuration for Single Core
1.2 Memory Layout and Configuration for Single Core

The default memory layout (for single core, such as SC140, SC3400 etc.) is a single linear block, divided
into data and code areas, as Figure 1.1 depicts.

Figure 1.1 Default Memory Layout

Note that the heap and stack use the same area of memory: this represents dynamic configuration, which
is the default. (In a static configuration, the stack and heap use different areas of memory.)

All three memory models use the same default layout, but with different values that define the
distribution of the memory areas. The definitions of these values are in the three linker command files
provided in $SC100_HOME/etc, as Table 1.1 shows.

Heap and Stack

Code

Global/Static Data

Interrupt Vector Table

TopOfMemory

StackStart, __BottomOfHeap

CodeStart

DataStart

0

DataSize

ROM

TopOfStack, __TopOfHeap

ROMStart

High
addresses

Low
addresses
8 StarCore SC100 Linker User Guide

Introduction
Memory Layout and Configuration for Single Core
Table 1.1 Default Memory Values

Memory Model Contents From To Default

Unspecified Interrupt vector table 0 0x1ff

Global & static variables DataStart DataStart+Dat
aSize-1

0x0200

Program code CodeStart StackStart-1 0x100000

Stack and heap StackStart TopOfStack 0x200000

ROM ROMStart TopOfMemory 0x300000

crtscsmm.cmd Interrupt vector table 0 0x1ff

Global & static variables DataStart DataStart+Dat
aSize-1

0x101ff

Program code CodeStart StackStart-1 0x27fff

Stack and heap StackStart TopOfStack 0x2fff00

ROM ROMStart TopOfMemory 0x3fffff

crsctmm.cmd Interrupt vector table 0 0x1ff 0x1ff

Global & static variables DataStart DataStart+Dat
aSize-1

0x81ff

Program code CodeStart StackStart-1 0x27fff

Stack and heap StackStart TopOfStack 0x2fff00

ROM ROMStart TopOfMemory 0x3fffff

crtscbmm.cmd Interrupt vector table 0 0x1ff

Global & static variables DataStart DataStart+Dat
aSize-1

0xfffff

Program code CodeStart StackStart-1 0x3ffff

Stack and heap StackStart TopOfStack 0x2fff00

ROM ROMStart TopOfMemory 0x3fffff
9StarCore SC100 Linker User Guide

Introduction
Startup Environment
You can change these default values and configure the memory map to meet your specific requirements
by modifying the appropriate linker command file. Alternatively, you can create your own linker
command file. When configuring the memory map, keep these points in mind:

• Make sure that the code size and data size values do not overlap.

• Locating the stack and heap together, in one contiguous area of memory, tracks with dynamic
configuration.

• You may split and distribute other sections of memory over non-contiguous parts of memory, as
required.

Use the -c option to force the linker to use a command file other than the default crtscsmm.cmd.

1.3 Startup Environment

The linker startup code (specifically for MSC8144 and MSC8156) consists of these steps:

1. Initialize SR with the default settings

2. Initialize the temp stack pointer

3. Initialize the VBA to .invec's origin

4. Disable translation and protection

5. Initialize C variables (zero .bss sections)

6. First HOOK (function __target_asm_start)

This hook is used to:

• enable MMU

• define the translation for stack and heap

• disable memory protection

The memory descriptor that contains the stack and MMU tables is defined using these symbols in the
LCF:

• _LocalData_b: memory descriptor virtual address

• _LocalData_size: memory descriptor size

• _LocalData_Phys_b: memory descriptor physical address

This symbol can be replaced by _LocalData_b for 1:1 mappings. In addition, this address is
used to compute the physical address for all the cores by using this expression:
_LocalData_Phys_b + core_id * _LocalData_size

Table 1.2 shows the First HOOK code in LCF.
10 StarCore SC100 Linker User Guide

Introduction
Startup Environment
The ATE bit enables or disables the address translation mechanism. If disabled, addresses are not
translated (for example, from a virtual address to a physical address). The reset value is configured
according to external DSP subsystem plug.

7. Initialize the stack pointer

The code in LCF for initializing the stack pointer is:

_StackStart

8. Second HOOK (function __target_c_start())

This hook is used to:

• define the MMU translations

• define the memory protection

• set a system task and a user task

This function is called after setting the stack pointer and before C/C++ initializations.

Table shows the Second HOOK code in LCF.

Table 1.2 First HOOK Code in LCF

Code in LCF Description

.provide
_ENABLE_MMU_TRANSLATION, 1

Enables the MMU translation. If the value is
1, the Address Translation Enable (ATE) bit
in the MMU Control Register will be set by
the __target_c_start function.

SYSTEM_DATA_MMU_DEF Specifies different attributes of MMU

Table 1.3 Second HOOK Code in LCF

Code in LCF Description

.provide
_ENABLE_MMU_PROTECTION, 1

Enables the MMU protection. If the value is
1, the Memory Protection Enable (MPE) bit
in the MMU Control Register will be set by
the __target_c_start function.

.provide
_ENABLE_MMU_TRANSLATION, 1

Enables the MMU translation. If the value is
1, the ATE bit in the MMU Control Register
will be set by the __target_c_start
function.
11StarCore SC100 Linker User Guide

Introduction
Startup Environment
NOTE The MATT descriptors priority mechanism allows memory regions to overlap. This
mechanism is handled by dividing the MATT into separate pairs of descriptors. Each pair
contains two sequential index descriptors. For example: descriptor 0 is coupled with
descriptor 1, descriptor 2 is coupled with descriptor 3, and so on. In addition, each descriptor
has a fixed priority only in the specific pair. The priority is determined by the index number of

.provide _SYSTEM_TASK_ID, 0 Specifies the system task identifier. All
descriptors for this task are enabled in
MATT. Used in function
__target_c_start to test if the descriptor
belongs to the system task.

.provide
_ENABLE_DEFAULT_TASK_ID, 1

Specifies the user task identifier. The
descriptors of this task are set by
__target_c_start function. There is only
one user task.

.provide _MMU_HIGH_PRIORITY,
0x10000000

Used in .att_mmu_settings to define the
descriptor attribute bitmask. The descriptor
attribute bitmask specifies the permission for
descriptor ranges to overlap in the virtual
memory. Based on this information, the
linker can check the associated priority and
the descriptor overlapping in virtual memory.
This attribute can be set in .att_mmu
directive in the attribute field:

.att_mmu "Data_private_mmu", \
_VIRTUAL_PRIVATE_MEM_DATA_start,
\
_VIRTUAL_PRIVATE_MEM_DATA_end, \
“descriptor__m2__cacheable_wb__sy
s__private__data”, \
attribute: SYSTEM_DATA_MMU_DEF |
_MMU_HIGH_PRIORITY, \
after_physical_address:
_M2_PRIVATE_start

The symbol is used in __target_c_start
function to relatively sort the MATT entries
so that two virtual memory overlapping
descriptors preserve the priority that you
specify.

Table 1.3 Second HOOK Code in LCF

Code in LCF Description
12 StarCore SC100 Linker User Guide

Introduction
Startup Environment
the descriptor. The higher index number has a higher priority. For example, descriptor 3 has a
higher priority over descriptor 2, but no priority over other pairs of descriptors. The descriptor
with _MMU_HIGH_PRIORITY attribute is indexed with an odd value and its pair is indexed
with a lower even value.

MPE (Memory Protection Enable) bit is a central bit that enables or disables the protection-checking
function in all the enabled segment descriptors. It also enables or disables the miss interrupt support
on a miss access.

9. Third HOOK (function __target_setting())

This hook is used to perform target specific settings, and it is empty by default. This hook is called
before enabling the interrupt system. At this level, you can write code in either C/C++ or Assembly
language.

The code in LCF for Third HOOK is:

.provide _ENABLE_CACHE, 1

Activates the cache (L1 and L2) on startup. To deactivate, set the value to "-1".

For MSC8156 architecture, you specify M2 memory size using a rule set and a new symbol,
_M2_Setting. The _M2_Setting symbol has replaced the _L2_Setting symbol.

Listing 1.1 shows the rule set.

Listing 1.1 Rule Set for _M2_Setting Symbol Values

; ---------------------------------
; _M2_Setting configuration for M2
; ------------------
; M2 size Rule-set
; ------------------
; 0KB 0x00 - all used as L2Cache
; 64KB 0x01
; 128KB 0x03
; 192KB 0x07
; 256KB 0x0f
; 320KB 0x1f
; 384KB 0x3f
; 448KB 0x7f
; 512KB 0xff
.provide _M2_Setting, 0x03

If you specify the value 0x00, entire memory is used as L2 cache.

10. Set the argv and argc arguments

11. Enable the interrupts

12. Jump to main() function
13StarCore SC100 Linker User Guide

Introduction
Startup Environment
14 StarCore SC100 Linker User Guide

2
Using the Linker

This chapter explains how to use the StarCore linker. Sections are:

• 2.1 Invoking the Linker

• 2.2 Command-Line Options

2.1 Invoking the Linker

There are two ways to invoke the StarCore linker:

• Launching the linker as part of the CodeWarrior IDE

• Entering this command on the command line:

sc100-ld [option ...] {file | -larchive} ...

where:

option

One or more of the Table 2.1 options. These options and their arguments are case sensitive. You
must maintain the spacing shown; for example, there must be a space between the -c option and
its argument, but the -l option must not have such a space.

file

One or more relocatable object files. The linker processes the files in their command-line order.

-l archive

The -l option and the name of an archive. The linker automatically appends the .elb extension
to the archive name. (Unlike earlier linker releases, this linker release does not add the lib prefix
to the archive name.)

You may specify -larchive multiple times on the command line. The linker processes the
archives in their command-line order. The linker’s default (standard) search path is
$SC100_HOME/lib.

2.2 Command-Line Options

Table 2.1 summarizes command-line options available with the linker. Subsequent subsections explain
these options in more detail.
15StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
NOTE All options of Table 2.1 are valid with the -Xlnk passthrough option of the scc command
line.

Table 2.1 StarCore Linker Command-Line Options

 Option Description

-allow-multiple-
definition

Allows the use of multiple definitions for a symbol. The first definition
found is used. By default, the sc100-ld linker does not allow multiple
definitions. To disable again, if enabled, use
-disable-allow-multiple-definition.

-arch name Specifies the target architecture. The name value can be sc110,
sc120, sc140, sc140e, msc8101, starlite, sc1200, sc1400, sc2200,
sc2400, sc3200, sc3400, or msc8144.

-bsstab-load Tells linker to use load address (physical address) when it creates
.bsstab section. (Changes default behavior for msc8144
architectures.)

-bsstab-run Tells linker to use run address (virtual address) when it creates
.bsstab section. (Changes default behavior for all architectures but
msc8144.)

-bsstable-file
<output_file.txt>

Lets you skip emitting SREC records for the .bss type sections,
which are not placed at the end of the segment. When a .bss type
section is not placed at the end of the segment, the section is
converted to a data type section during the linking process.
Therefore, no address and size information for such sections exist in
the __bss_table. When you use the -bsstable-file
<output_file.txt> command to be able to skip emitting SREC
records for such sections, the linker generates a new output file that
contains the required information. The new output file is a text file that
contains a table with the two columns:

• physical_address; represented by a 32-bit hexadecimal
unsigned integer

• size; in bytes; represented by a 32-bit hexadecimal
unsigned integer

Note that in case of multi-core msc8144 and msc8156 architectures,
the linker generates a single output file for all cores.

The syntax for running the -bsstable-file command is:
sc100-ld -bsstable-file bss_table_file.txt
file1.eln file2.eln file3.eln lib1.elb -o
file_out.eld

-c commandfile Specifies the name and location of the linker command file.
16 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-check-mnemonics Checks for bmtset.w instructions; issues a warning at link time if
such an instruction conflicts with starlite architecture. (Opposite option
is -disable-check-mnemonics.)

-check-mnemonics-
errors

Checks for bmtset.w instructions; issues an error message at link
time if such an instruction conflicts with starlite architecture.

-C Tells the linker to not use a linker command file. (Appropriate for any
programs that explicitly place code and data in memory, for example,
by means of assembly-language .org directives.)

-enable-error-placing-
section-on-first-fit-
basis

Tells the linker to generate an error message for each section when it
is not explicitly mentioned in LCF. These sections are placed on first fit
basis algorithm.

-enable-warn-section-
has-not-been-found

Tells the linker to generate a warning message for each section not
found.

-debug-reloc-load Uses load address to compute debug-section relocation information.
(Default option; new debugger support for overlay sections.)

-debug-reloc-run Uses run address to compute debug-section relocation information.
(Old debugger support for overlay sections; for backwards
compatibility.)

-disable-check-ELF Stops checking the ELF format for input files. (Opposite option is
-enable-check-ELF, which is the default.)

-disable-check-
mnemonics

Stops checking for bmtset.w instructions, suppressing associated
warnings or error messages. (Opposite option is
-check-mnemonics.)

-disable-display-
padding-info

Tells the linker to not output information for padding in map file.
(Default option. Opposite option is -enable-display-padding-
info.)

-disable-emit-att_mmu Overrides default creation of an .att_mmu section if overlay sections
are involved with the address translation table. (Opposite option is
-enable-emit-att_mmu, which is the default.)

-disable-emit-bsstab Tells the linker to not create a .bsstab section. (Opposite option is -
enable-emit-bsstab, which is the default.)

-disable-emit-note Tells the linker to not create a .note section. (Opposite option is -
enable-emit-note, which is the default.)

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
17StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-disable-emit-
signature-info

This option disables the storing of information in the other/
ovl_other field from MMU table/overlay table if the signature for
section is not set. This is default option.

-disable-emit-ovltab Tells the linker to not create an .ovltab section. (Opposite option is
-enable-emit-ovltab, which is the default.)

-disable-error-
placing-section-on-
first-fit-basis

Tells the linker to inhibit error message generation for each section
when it is not explicitly mentioned in LCF. These sections are placed
on first fit basis algorithm. This is a default option.

-disable-exception Removes exception support for the application:

• Excludes .exception and .exception_index sections
from linking process.

• Defines symbols ENABLE_EXCEPTION, __unexpected,
__throw, __rethrow, and __end_catch with value 0.
(The default LCF file uses ENABLE_EXCEPTION; the other
symbols inhibit exception support from the runtime library.)

(Opposite option is -enable exception, which is the default.)

-disable-mmu-support Inhibits automatic overlay support for sections that the .att_mmu and
.concatenate directives mention. (Opposite option is -enable-
mmu-support, which is the default.)

-disable-placing-
after-same-segment-on-
first-fit-basis

Tells the linker to set the placing to start at the address specified by
the .firstfit directive on a first fit basis.

-disable-remove-dead-
symbols

Tells the linker to keep unreferenced symbols in the ELD file,
preserving backwards compatibility. (Opposite option is -enable-
remove-dead-symbols, which is the default.)

-disable-rewrite-
padding-between-
objects

Tells the linker to accept the assembler’s padding between objects.

-disable-sort-
exception-index

Tells the linker to not sort the exception table index. (Opposite option
is -enable-sort-exception-index, which is the default.)

-disable-seq-link Turns off sequential linking mode. This is the default behavior.

-disable-stack-effect Tells the linker to not compute the stack effect (Default option.
Opposite option is -enable-stack-effect.)

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
18 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-disable-warn-stack-
effect

Tells the linker to not generate a warning if stack-effect estimation
must consider recursively called functions, even though such
functions impair the accuracy of the estimate. (Opposite option is
-enable-warn-stack-effect.)

-disable-warn-placing-
section-on-first-fit-
basis

Tells the linker to inhibit warning message generation for each section
when it is placed using the first fit basis algorithm. This is the default.

-disable-xd Tells linker to preserve backward compatibility by keeping compiler/
assembler symbols for debugging sections. (Default option. Opposite
option is -xd.)

-disable-warn-section-
has-not-been-found

Tells the linker to inhibit warning message generation for each section
not found. This is the default option.

-display-info<level>-
in-map

Specifies information that a map file displays:
level = 0: all global symbols
level = 1: all global symbols, local objects, and local functions
level = 2: all global symbols, local objects, local functions, and local
no-type symbols

-Dsymbol=value Defines a global symbol, overriding any .provide symbol of the
same name that may exist. The value argument specification may be
in octal (leading 0), decimal, or hexadecimal (leading 0x or 0X).

-enable-check-ELF Tells the linker to check the ELF format for input files. (Default option.
Opposite option is -disable-check-ELF.)

-enable-compress Enables compression support for program overlay sections. (Without
this option, overlay sections lack this support, because the
SEC_WRITE property is not set.)

-enable-display-
padding-info

Displays information for padding in map file. (Opposite option is
-disable-display-padding-info, which is the default.)

-enable-emit-att_mmu Tells the linker to create an .att_mmu section in response to any
reference to the _address_translation_table_mmu[]. (Default option.
The .att_mmu section specifies the sections involved in the memory
address translation table. Any undefined reference to the
__address_translation_table_mmu symbol blocks dead stripping.
Opposite option is -disable-emit-att_mmu.)

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
19StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-enable-emit-bsstab Tells the linker to create a .bsstab section in response to any
reference to the _bss_table[]. (Default option. The startup file uses the
_bss_table[] to initialize .bss sections with zero at runtime. Any
undefined reference to the __bss_table symbol blocks dead stripping.
Opposite option is -disable-emit-bsstab.)

-enable-emit-note Tells the linker to create a .note section. (Default option. Opposite
option is -disable-emit-note.)

-enable-emit-ovltab Tells the linker to create an .ovltab section in response to any
reference to the _overlay_table[]. (Default option. Any undefined
reference to the __overlay_table symbol blocks dead stripping.
Opposite option is -disable-emit-ovltab.)

-enable-emit-shared-
segment2cores

Tells the linker to emit the PT_LOAD type of segment for all cores.
This is the usual way to emit the loadable information.

-enable-emit-shared-
segment2cores-as-
dynamic

Tells the linker to emit segments as follows:
 - For the core that exports the shared space the linker emits the
PT_LOAD type of segment. This is the usual way to emit the loadable
information.

 - For the cores that import the shared space the linker emits the
PT_DYNAMIC type of segment. The StarCore loader tool doesn't
download this type of segment.

This option is enabled by default when the MSC8144 architecture is
selected.

-enable-emit-shared-
segment2cores-as-null

Tells the linker to emit segments as follows:
 - For the core that exports the shared space the linker emits the
PT_LOAD type of segment. This is the usual way to emit the loadable
information.

 - For the cores that import the shared space the linker emits the
PT_NULL type of segment. The StarCore loader tool doesn't
download this type of segment.

This option is enabled by default when the MSC8144 architecture is
selected.

-enable-emit-
signature-info

This option enables the storing of information in the other/
ovl_other field from MMU table/overlay table if the signature for
section is not set.

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
20 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-enable-error-
progbits-after-nobits

Generates a warning message and continue the linking process, if
SHT_PROGBITS section (a non-BSS section) is placed after
SHT_NOBITS section (a BSS section). This is the default behavior. To
disable, use -disable-error-progbits-after-nobits.

-enable-exception Activates exception support, including ascending sorting of the
exception table index by function address. (Default option. Opposite
option is -disable-exception.)

-enable-mmu-support Enables overlay support for all sections that the .att_mmu and
.concatenate directives mention. (Default option. Opposite option
is -disable-mmu-support.)

-enable-placing-after-
same-segment-on-first-
fit-basis

Tells the linker to set the placing to start after the same segment on a
first fit basis, unless a similar segment is found, in which case the
placing starts at the address specified by the .firstfit directive.

-enable-remove-dead-
symbols

Tells the linker to remove unreferenced symbols from the ELD file.
(Default option. Opposite option is -disable-remove-dead-
symbols.)

-enable-sort-
exception-index

Tells the linker to sort the exception index table ascendingly, by
function address. (Default option. Opposite option is -disable-
sort-exception-index.)

-enable-seq-link Reduces the linker memory consumption by using core-by-core
internal processing. This option can be used for a subset of multicore
applications that follow these rules:

• only core0 exports the shared sections, while all other cores
import those shared sections

• for each core, the linker control file has identical
occurrences for the following directives:

.xref

.xref_module

.exclude

.rename

-enable-stack-effect Tells the linker to estimate the stack effect. (Opposite option is
-disable-stack-effect, which is the default.)

-enable-undef Permits undefined symbols in a self-contained library. Valid only with
the option -self-contained-library.

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
21StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
enable-warn-no-stack-
effect

Generates a warning (with the list of files) for functions without
pragma stack_effect information, when -enable-stack-
effect option is enabled. This is the default option. To disable, use
disable-warn-no-stack-effect.

-enable-warn-placing-
section-on-first-fit-
basis

Tells the linker to generate a warning message for each section when
it is placed using the first fit basis algorithm.

-enable-warn-stack-
effect

Tells the linker to generate a warning if stack-effect estimation must
consider recursively called functions; such functions impair the
accuracy of the estimate. (Default option. Opposite option is
-disable-warn-stack-effect.)

-env <path> This command line option is used to define the path of the compiler.
The given path must be the root of the compiler to be used. This
option overrides the SC100_HOME environment variable.

-exclude section{,
section}

Tells linker to not link the specified sections.

-exec_padding string Specifies padding characters for program sections of type
SHT_PROGBITS. Without this option, padding value is {x90, 0xC0}
(big-endian mode) or {0xC0, 0x90} (little-endian mode). (See padding
note after this table.)

-exec_padding16bits
value

For program sections, changes the default padding to the specified
16-bit value. Example: -exec_padding16bits 0x9e7c. (See
padding note after this table.)

-exec_padding32bits
value

For program sections, changes the default padding to the specified
32-bit value. Example: -exec_padding32bits 0x9f799e7c. (See
padding note after this table.)

-force-self-contained-library Tells the linker to ignore any .library_concatenate_sections
directive present in the LCF and creates a normal self-contained
library.

-fsub Try folding substring.

-inhibit-o2-place
name_section[,name_sec
tion...]

Inhibits the size optimization for the specified sections. (Opposite
option is -02-place.)

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
22 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-init-table Tells the linker to create a .rom_init_tables section, in response
to any reference to the _rom_init_tables[]. (Default option. With the
compiler -mrom command-line option, the startup file uses
_rom_init_tables[] to copy initial ROM variable values to RAM, Any
undefined reference to the __rom_init_tables symbol blocks dead
stripping,)

-init-table-load Tells linker to use load address (physical address) when it creates
.rom_init_tables section. (Changes default behavior for msc8144
architectures.)

-init-table-run Tells linker to use run address (virtual address) when it creates
.rom_init_tables section. (Changes default behavior for all
architectures but msc8144.)

-j Displays symbol index for symtab section.

-k depth Specifies maximum depth for the relocation stack.

--keep_symbols Removes all symbols, and keeps only those symbols that match a
specified criteria. For example, the following command removes all
symbols except for the global symbols that match the specified
pattern:

sc100-ld -s --keep_symbols "pattern1, pattern2, ..."
...

You use --keep_symbols option with -s option (strip all symbol
information). The pattern can be a symbol name or may contain ? or *
wildcards as well.

-l Displays original name of static symbols.

-larchive ... Links against the specified archive, in standard search path
$SC100_HOME/lib.

-Lsearchdir ... Searches the specified directory for the archive that the -larchive
option specified. This -Lsearchdir option may appear multiple
times in the command line, but all must precede -larchive.

-m Displays unmangled names for C++ symbols that have mangled
names.

-M Outputs a memory map to the standard output.

-Map mapfile Outputs a memory map to the specified file.

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
23StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-mrom_compress Tells linker to compress code stored in ROM (that is, code generated
via the scc -mrom option).

-n Inhibits dead-code and dead-data stripping.

-nc Inhibits dead-code stripping.

-nd Inhibits dead-data stripping.

-nf Disable any folding optimization.

-nfc Disable folding code, still folding data.

-nfd Disable folding data, still folding code.

-non-ovl Restricts overlay support to application sections that .overlay and
.union directives mention.

-no_exec_padding value Specifies padding value for data sections of type SHT_PROGBITS.
Without this option, padding value is zero. (See padding note after this
table.)

-no_exec_padding16bits
value

For data sections, changes the default padding to the specified 16-bit
value. Example: -no_exec_padding16bits 0x9f79. (See
padding note after this table.)

-no_exec_padding32bits
value

For data sections, changes the default padding to the specified 32-bit
value. Example: -no_exec_padding32bits 0x9f799e7c. (See
padding note after this table.)

-no-reserve-ovl-run Does not reserve memory space for overlay-section run addresses.

-N Displays never-called functions and never-used data.

-Nc Displays never-called functions.

-Nd Displays never-used data.

-o outfile Assigns the specified file name to the executable object file. The
default file name is a.eld.

-old-init-table Tells the linker to not create a .rom_init_tables section, to use
instead old-style ROM initialization. (For backward compatibility only,
with older runtime libraries or startup files.)

-o0-place Uses an unoptimized algorithm to place sections in memory space.
This default option helps preserve backward compatibility.

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
24 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-o1-place Uses an optimized algorithm to place sections in memory space.

-o2-place Enables the size optimization for intra-section space. (Opposite option
is -o0-place.)

-remove-time-stamp-
from-prefix

This option removes the time stamp information from the symbol prefix
in the self-contained library, but you must use this option only with the
-self-contained-library option.

-remove-veneer Removes unnecessary veneer functions that StarCore Compiler may
generate. This option will not take effect when used with -set-
cache1 or -o2-place. By default, -remove-veneer option is
disabled.

-reread-lib Forces the linker to reread all libraries until it cannot resolve any more
references.

-rewrite-padding-
between-objects

Forces the linker to rewrite padding between objects. (Default option.)

-s Strips all symbol information from the executable object file.

-sa Specifies aggressive stripping for both dead-code and dead-data.

-sac Specifies aggressive dead-code stripping.

-sad Specifies aggressive dead-data stripping.

-saf Ignores address taken information, assumes no address taken.

-section-alignment
factor

Specifies factor for section alignment: all sections in memory begin at
addresses that are multiples of this number. Default factor value is
0x1.

-self-contained-
library

Creates a self-contained library: one that does not have any external
references.

-set-cache1 Enables cache optimization in the linker.

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
25StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-set-mmu-info<level> This option sets the level of information that can be removed when
MMU support is used.

 <level>:

0 - Forces the linker to emit signature for the sections that are involved
in MMU support. This is default option.

1 - Forces the linker not to emit signature for the sections that are
involved in MMU support.

2 - Forces the linker to eliminate padding required by MMU

3 - Forces the linker to keep the SHT_NOBITS type alive for BSS
section by using the SHT_MIX_OVERLAY type if the BSS sections
are used only in MMU support.

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
26 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
 -set-mmu-info4 This option forces the linker to re-use the physical space required to
align the size of section to a power of two for descriptors generated by
.att_mmu directive. The reserved_mmu_padding is a new
parameter in the .att_mmu directive. If this parameter is specified for
a section, The space required to align the size of a section to power of
two is reserved in the physical space. We can call MMU padding the
space required to align the size of section to a power of two. If this
parameter is not specified, the MMU padding can be used by another
section (the MMU padding is not reserved in the physical memory
space). If the parameter is specified, it cannot be overwritten by the -
set-mmu-info4 option from linker.

The syntax is:

 .att_mmu "name", \
 {task_id: absolute_value,}\
 [{task_id: absolute_value,} ...] \
 start_address, end_address\
 [{, start_address, end_address} ...]\
 , _RESERVED_, \
 size: absolute_value, \
 region_type: "data"|"program", \
 attribute: absolute_value, \
 base_address: absolute_value, \
 physical_address: absolute_value \
 | , "section_name" \
 {, reserved_mmu_padding } \
 {, attribute: absolute_value} \
 {, single_mapped: absolute_value}\
 {, base_address: absolute_value} \
 {, physical_address |
after_physical_address:absolute_value}\
 [, _RESERVED_, \
 size: absolute_value, \
 region_type: "data"|"program", \
 attribute: absolute_value, \
 base_address: absolute_value, \
 physical_address: absolute_value \
 | , "section_name",\
 {, reserved_mmu_padding }, \
 {, attribute: absolute_value } \
 {, single_mapped: absolute_value}\
 {, base_address: absolute_value} \
 {, physical_address |
after_physical_address:absolute_value},...]

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
27StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
You may define regularly used linker options in the .sc100 argument file. The linker processes these
options definitions immediately after program defaults. The linker ignores all options not designated for
sc100-ld or all.

NOTE The linker pads program (executable) sections or data (non-executable) sections of type
SHT_PROGBITS according to the command-line options you specify. Options -
exec_padding, -exec_padding16bits, and
-exec_padding32 bits pertain to program sections. (For program sections, flag
SHF_EXECINSTR is set.) Options -no_exec_padding,

-start-reread-
lib<libraries>
-end-reread-lib

These two options tell the linker to solve interdependencies among the
specified libraries by rereading them until it cannot resolve any more
references. Only library names may be between these two options.

-stop-link-after-
first-error

Specifies that linking stop as soon as the linker finds the first error;
reports warnings and error messages at end of the link phase.

-S Strips debug information from the executable object file.

-Usymbol Creates an unresolved reference to the specified symbol.

-unmangle In error messages and map files, displays unmangled names for C++
symbols that have the format mangle_name{unmangle_name}.

-v Verbose mode: reports progress through each linking stage.

-V Displays the current version of the linker and exits.

-w Suppresses warnings.

-W<level> Sets the warning level:
Specify level value 0 (the default) to have the linker report most
warnings and remarks.
Specify level value 1 to have the linker report all warnings and
remarks.

-x Removes all local symbols from the symbol table.

-xd Tells linker to remove compiler/assembler symbols for debugging
sections. Does not affect current debugging capabilities, but can
interfere with backward capability. (Opposite option is -disable-xd,
which is the default.)

@<file> Tells the linker to accept options and arguments in the specified file,
just as if they were options of the command line itself.

Table 2.1 StarCore Linker Command-Line Options (continued)

 Option Description
28 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-no_exec_padding16bits, and -no_exec_padding32 bits pertain to data sections.
(For data sections, flag SHF_EXECINSTR is clear.)

2.2.1 Specifying a Linker Command File

If you do not specify a command file, the linker uses the default file crtscsmm.cmd, located in
$SC100_HOME/etc. To override this default behavior, use any of these options:

 -c commandfile

Specifies the linker command file that the linker will use; the argument may include an optional
pathname.

 -C

Suppresses the search for a linker command file; this lets you link without a command file. This
option may be appropriate for hand-coded programs in which you have allocated all memory and
explicitly initialized the status register.

This example command tells the linker to use command file crtsctmm.cmd, in directory
$SC100_HOME/etc;

sc100-ld -c $SC100_HOME/etc/crtsctmm.cmd foo.eln

2.2.1.1 Specifying Arguments in a File

An argument file is an ASCII text file of options and arguments, just as they would appear on the
command line. An argument file is convenient for arguments that you use frequently.

An argument file can contain multiple lines. The end-of-line character counts as a space. Use the \
character to continue a line. Start comments with the # character.

Use the @ character in the command line to specify an argument file, as in this example:

sc100-ld @arg_file

When the linker executes this command, it opens file arg_file, processing all the arguments the file
contains.

2.2.1.2 Enabling Shared Symbol References

Ordinarily it is not appropriate to have references from symbols between shared-to-private or shared-to-
shared spaces. The linker even verifies references from symbols, in this regard.

Rarely, however, such references are appropriate. If this is the case with your application, you may
suppress automatic linker verification of shared symbol references. To do so, include this option in the
command line:
29StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
-enable-shared2private

2.2.1.3 BSS Section Zeroing

The linker automatically creates a .bsstab section, which contains these symbols:

• .__bss_table — an array of type Elf32_bsstab that contains an entry for each .bss section.

• .__bss_count — the number of entries in .__bss_table; an unsigned, 32-bit integer.

The startup file uses these symbols to fill the .bss sections with zeros.

The structured type Elf32_bsstab is:

typedef struct {
Elf32_Addr start_address; /*start address of .bss section*/
ELF32_Word length; /*size of .bss section in bytes*/
}Elf32_bsstab;

File bsstab.h defines the data structures and variables needed for the .bsstab section.

NOTE Do not let the linker place the argv and argxc symbols in a .bss section. If necessary to
prevent this placement, use the -disable-emit-bsstab option to stop creation of the
.bsstab section.

2.2.1.4 Reread Libraries

To force the linker to reread all libraries until it cannot resolve any more references, use this option on the
command line:

-reread-lib

2.2.1.5 Omit Signatures

A default linker action is appending a signature to each overlay section. To disable this behavior, use this
option on the command line:

-disable-emit-signature2overlay

2.2.1.6 Self-Contained Libraries

A library that, in theory, should not have any external references is self-contained. The advantages of
such libraries are:
30 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
1. Appropriately removing dead code and dead data.

2. Hiding inside libraries all resolved symbols that are not entry points or public symbols.

To build a self-contained library, use the flag -self-contained-library in the command line, as
in this example

sc100-ld -self-contained-library -c linker-command-file.lcf
module1.eln library1.elb ... -o self_contained_library.elb

Five new directives help you create and manage a self-contained library:

.library_entry_points “entry_point_symbols”, ...

Defines the entry point symbols; mandatory for creating a self-contained library. (The compiler
prefixes all C function names with an underscore.) The linker does not strip these entry point
symbols (functions), even if they are not referenced.

.library_public_symbols “public_symbols”, ...

Defines public symbols; required for creating any self-contained library that contains public
symbols. (The compiler prefixes all C function names with an underscore.) The linker does not
strip these public symbols (variables), even if they are not referenced.

.library_undefined_symbols “symbols”, ...

Provides for unresolved global symbols. If the linker cannot resolve global symbols, it checks this
directive. Only if the symbol is not in this directive does the linker issue an error message.

.library_prefix “prefix_name”

Adds the specified prefix to all symbols that are not entry points, are not public symbols, or that
are not resolved. Each self-contained library should have a unique prefix.

.library_concatenate_sections "name", "section_name_pattern" [,
"section_name_pattern" [, ...]]

Combines the sections that parameter section_name_pattern specifies and merges them
into a new section. The parameter name specifies the name of the new section.

The related option -enable-undef permits undefined symbols in a self-contained library, but you
must use this option only in a -self-contained library command.

Additional points:

• In verbose mode, the linker displays information about undefined symbols.

• The linker can accept multiple LCF files in command-line options, but the order of the LCF files is
important.

• You can use a self-contained library as you would any other library.

The compiler includes two functionalities for self-contained libraries:

1. Using -selflib inside scc, provided that you specify all directives needed to create a self-
contained library. For this option, the scc omits the startup file and adds the runtime library at the end
31StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
of the list, with object files you specify. (The linker links the startup file with the application at the last
stage, when it builds the executable file.)

The only undefined symbols (external references) are those that the
.library_undefined_symbols directive mentions. Usually, you must mention global
symbols from the startup file in this directive. Examples are .library_undefined_symbols,
“___break”, “___syscall”, “___crt0_end”, “___stack_safety”, and
“___mem_limit”.

This functionality is useful for creating independence from the runtime library. It is possible to
combine the -selflib option with -Xlnk -enable-undef, in which case you need not specify
all undefined symbols in a .library_undefined_symbols directive.

2. Using -complib as an scc command line option, provided that you use it only for global
optimizations. The compiler uses an automatically generated linker control file to pass the
information to the linker.

NOTE If you create a library that uses global optimizations, you must also include in the application
file the list of entry points and variables that must be visible to the outside world.

2.2.2 Adding Directories to the Linker Search Path

Use the -L option to add directories to the linker’s standard search paths:

 -Lsearchdir

Searches the specified directory for the archive that the -larchive option specifies. This -
Lsearchdir option may appear multiple times in the command line, but all must precede -
larchive.

The linker first searches the standard search path, $SC100_HOME/lib. If it does not find the archive, it
subsequently searches the directories the -L option specifies, in their command-line order.

This example command links archive libalpha.elb with the file corr.eln. The linker searches the
$SC100_HOME/lib directory, then /starcore/sclib, then /scprogs/mylib.

sc100-ld -L/starcore/sclib -L/scprogs/mylib -llibalpha corr.eln

2.2.3 Defining Symbols

To define symbols from the linker command line, use these options:

-Dsymbol=value

Defines a global symbol, which overrides any .provide symbol of the same name that may
exist. You may specify the value argument in octal (leading 0), decimal, or hexadecimal
(leading 0x or 0X).
32 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
 -Usymbol

Creates an unresolved reference to the specified symbol. This option forces linking of a module
that contains a definition for symbol, if that module is in a library, so would not otherwise be
linked.

2.2.4 Estimating Stack Effect

The more possible entry points there are in an application, the larger the stack that the application needs.
The default entry points are the function main(), plus all function pointers (functions that data sections
reference). You can add additional entry points by using the -U option on the command line, or by using
the .xref or .library_entry_points directives in the linker command file.

Stack effect is a term for the necessary stack size. To have the linker estimate the stack effect, and print
the estimate in the map file, use this option:

-enable-stack-effect

To stop such estimation (restoring default behavior), use the opposite option:

-disable-stack-effect

If your application allows recursive calls to functions, the linker cannot know in advance how many such
calls there will be during execution. Consequently, the estimated stack effect for such an application
cannot be as accurate as the estimate for a non-recursive applications. The linker’s default behavior is
warning you any time that recursive calls could impair the accuracy of a stack-effect estimate. To
deliberately specify this default behavior, use this option:

-enable-warn-stack-effect

To stop such warnings, use the opposite option:

-disable-warn stack-effect

2.2.5 Renaming the Object File

The default executable object file is a.eld. To assign a different name to this file, use the -o option:

 -o outfile

Assigns the specified file name, exactly as entered, to the executable object file. Overwrites any
file with the same name.

This example command links object file corr.eln, creating executable object file corr.eld:

sc100-ld -o corr.eld corr.eln

2.2.6 Modifying the Contents of the Object File

To modify the contents of the object file the linker creates, use any of these options:
33StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
 -S

Strips debug information from the executable object file.

 -s

Strips all symbol information from the executable object file. (This keeps sections .symtab,
.strtab, and .mw_info from erasing debugger information from the executable object file.)

 -x

Removes all local symbols from the symbol table.

2.2.7 Dead-Code, Dead-Data Stripping

The linker automatically removes never-used data and the code of never-called functions. To restrict this
default behavior, use any of these options:

-n

Inhibits dead-code and dead-data stripping.

-N

Displays never-used data and never-called functions.

-sa

Specifies aggressive stripping for both dead code and dead data.

2.2.7.1 Dead-Code Stripping

The linker strips dead code only if there is a defined end-of-function symbol F<function_name> for
each function symbol function_name. A more consistent way to specify the size of a function is to
use the assembler SIZE directive.

While generating the executable files, Linker performs dead-code stripping only if the entry function
main() (or _main in the ASM source) is defined. For self-contained libraries, Linker performs dead-
code stripping using the entry function information from .library_entry_points directive in the
LCF.

There are limitations to dead-code stripping, such as its basis: relocation information. In the example
below, the linker performs an incorrect operation, removing the code of function _Func1. This is
because an absolute value references the function, so the assembler does not generate relocation
information.

....
jsr $1000
....
org$1000

_func1 TYPE FUNC
34 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
<function code>
F_func1_end

To prevent incorrect code removal, application code must reference all functions by symbol, not by
absolute (constant) values.

If two functions overlap and only one is called, the linker does not strip either function. It does not even
strip the un-overlapped part of the uncalled function. And if the linker cannot determine a function’s size
(that is, the linker cannot find the ending symbol), he linker does not perform dead-code stripping at all.

The command-line options for dead-code stripping are:

-nc

Inhibits dead-code stripping.

-Nc

Displays never-called functions.

-sac

Specifies aggressive dead-code stripping: rounds the function size up to a multiple of the section
alignment. If there is no new symbol definition in this newly allocated space, the linker strips
function code, including this padding space. But if there is a new symbol definition in this newly
allocated space, the linker performs its default dead-code stripping.

2.2.7.2 Dead-Data Stripping

Correct linker operation does not depend on default variables; you may specify global symbols that the
linker will not strip, even if they are not referenced. To do so, use the directive
.library_public_symbols, from the linker control file.

And to prevent the stripping of useful data, you can use two new, vendor-specific symbol types,
VARIABLE and INITIALIZER. These are sub-types of the ‘OBJECT” ELF type, in the ELF file.

VARIABLE symbols are for regular variables. A symbol of this type defines a regular C variable. It
always should have an associated size (the memory that the variable occupies).; the default size is 0. The
ELF type value for VARIABLE is STT_OBJECT; the sub-type (as written in the .mw_info section) is
VARIABLE.

VARIABLE rules are:

1. VARIABLE symbols do not have a mandatory location — the linker is free to move them anywhere
in the same section, so long as it maintains the same alignment. Objects that must have a fixed
location should not have the type VARIABLE.

2. If there is no explicit reference to the symbol that defines a VARIABLE, then the VARIABLE is not
used, so should be stripped.

3. Overlapping VARIABLES mean an exception to rule 2. A reference to any VARIABLE counts as a
reference to all overlapping VARIABLES, preventing stripping.
35StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
4. An object of any type, even NO_TYPE, can reference a VARIABLE symbol. Any external reference
to a symbol or group of symbols prevents stripping.

5. The alignment of a symbol always is considered to be a power of 2. Never assume that a VARIABLE
symbol could be aligned on 3, 19, 35, or any such value.

6. The only object that may overlap a VARIABLE symbol is another VARIABLE symbol.

7. If an object of non-VARIABLE type starts within an object of type VARIABLE:

a. The linker is free to strip the VARIABLE object, even if there is a reference to the other symbol;
the two symbols would have the same address.

b. The linker is free to move the VARIABLE object. This action moves the other symbol as well,
preserving the relative distance from the start of the VARIABLE symbol.

INITIALIZER symbols are for .init_table-like sections. Some applications require that data be
kept in a non-initialized (.bss) section, initialized from a ROM section. In order for the startup code to
do the initialization, you must define another (init_table) section that specifies how to copy the
initial variable values from rom to bss. As startup code always references all these variables, stripping
them normally is not possible — even if the application does not actually reference them.

But INITIALIZER symbols make such stripping possible. The ELF type value for INITIALIZER is
STT_OBJECT; the sub-type (as written in the .mw_info section) is INITIALIZER. An INITIALIZER
has the same properties and requirements as a VARIABLE symbol, except that:

1. An INITIALIZER may not overlap any other symbol

2. If an INITIALIZER contains any reference to a VARIABLE, the VARIABLE implicitly contains a
reference to the INITIALIZER.

INITIALIZERS and VARIABLES form groups of symbols that make circular references to each other:

• If the application does not reference the VARIABLE, the linker can strip the entire group
(VARIABLE from bss, VARIABLE from rom, and INITIALIZER from init_table).

• Any application reference to anything in the group (typically the VARIABLE from bss) prevents
stripping any member of the group.

The command-line options for dead-data stripping are:

-nd

Inhibits dead-data stripping.

-Nd

Displays never-used data.

-sad

Specifies aggressive dead-data stripping, beyond the scope of linker default dead-data stripping.
36 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
2.2.8 Code and Data Folding

Code and data folding is a symbol-level size optimization in the linker. If two read-only symbols have
same contents or one of them is a sub-string of another, these two symbols could be allocated in memory
overlapped.

If the application has the following example statements, linker would allocate array b in array a, from
index 6 of array a:

static const char a[] ="linkertesting";

static const char b[] ="testing";

If application is sensible with address of symbols, like comparing addresses of two symbols, this
optimization is not safe. Compiler will analyze code sources and try to find if some address is taken and
let linker know that it is not safe to do the optimization.

Compiler does not catch all the scenarios, like library compiled by old compiler or some assembly code.
In this case, user should provide information if some address is taken in this kind of code. If no address
exists, user could use -saf option in the linker to do aggressive folding optimization and get the most
size reduction.

By default, linker would turn on this optimization, check information of the address taken and not fold
sub-string symbols.

The command-line options for code and data folding are:

-nf

Disables any folding optimization.

-nfc

Disable folding code, still folding data.

-nfd

Disable folding data, still folding code.

-fsub

Try folding substring.

-saf

Ignores address taken information, assumes no address taken.

2.2.9 Cache Optimization

The cache optimization in the linker lets you reduce the paging traffic by placing the routines close to
their callers in the virtual memory. In addition, the optimization also reduces the collisions that related
and frequently used routines may have in the I/D cache.
37StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
The linker propagates the information about frequency of object call by using call graph of the respective
functions and data. Also, it places the objects in the section in decreasing order of their call frequency
(which is propagated in the call graph).

The cache optimization also helps to avoid the conflict that may appear when number of called objects,
having same line index in cache, is greater than available way slots.

NOTE You can obtain line index of the cache from virtual address of the object.

The linker places the objects in distinct line index from the cache. The PLRU algorithm is used to select
an appropriate way slot.

NOTE Use command line option -set-cache1 to enable the cache optimization. In addition, use
.cache_setting directive to specify cache settings, such as instruction cache structure.
You may also use .frequency directive to specify function call frequency and cycle count.
See Table 3.4 for more details on these directives.

2.2.10 Generating a Linker Map File

To have the linker generate a linker map file, use one of these options:

 -M

Outputs a memory map to the standard output. This map lists section allocations in virtual
memory, and contains tables that show the absolute locations of all local and global symbols.

 -Map mapfile

Outputs a memory map to a new file; the name of this new file is the exact mapfile value.

This example command links file corr.eln, generating executable file corr.eld and map file
corr.map.

sc100-ld -o corr.eln -Map corr.map corr.eln

The map file lists all sections the linker encounters in the linker input stream. For each section, the map
file includes:

• Total size of the section

• Address of the section after relocation

• Details of all section fragments: fragment size, address after relocation, input file or library module,
and any symbols the fragment references.

To identify sections, section fragments, and symbols in a map file, note their positions in the Symbol
field:

• A section always begins in column 1. The label Section: precedes the section name.
38 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
• A section fragment is on the first indent of the Symbol field. The label Section: precedes the
fragment name. After the fragment name comes the name, in parentheses, of the input file or library
module in which the linker found the fragment.

Each fragment has the same name as the section to which it belongs.

• A symbol is on the second indent of the Symbol field; it applies to the closest previous fragment
listed.

Figure 2.1 shows a partial map file that lists five sections: .intvec, .data, .bss, .default, and .text. Notice
that the .text section has an address of $10000 after relocation, and has the size of 360 bytes. This size
represents the total of all .text-section fragments assimilated from separate input files.

Table 2.2 explains the four fragments that make up the .text section.
.

Table 2.2 Composition of .text Section

Fragment Size Originating Input File Symbols Referenced
Within Fragment

1 272 /sc100/lib/crtsc100.eln ___start
___Frame0
___crt0_end

...

2 4 foo.eln _main

3 4 cpp.eln module of the library,
/sc100/lib/stdlib.elb

__do_cppini
__do_cppfin

4 80 exit.eln module of the
library, /sc100/lib/
stdlib.elb

_exit
_exit_end
39StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
Figure 2.1 Example Linker Map File

; Value Size Symbol
; ======== ==========
==
0x00000000 512 Section: .intvec
0x00000000 512 Section: .intvec(/sc100/lib/crtsc100.eln)
0x00000000 IntVec
0x00000200 180 Section: .data
0x00000200 20 Section: .data(/sc100/lib/crtsc100.eln)
0x00000200 ___size
0x00000204 ___break
0x00000208 ___stack_safety
0x0000020c ___mem_limit
0x00000210 ___timer_count
0x00000218 20 Section: .data(foo.eln)
0x0000022c 136 Section: .data(/sc100/lib/
stdlib.elb(exit.eln))
0x0000022c ___functions_registered
0x00000230 ___exit_function_registry
0x000002b4 256 Section: .bss
0x000002b4 256 Section: .bss(/sc100/lib/crtsc100.eln)
0x000002b4 ___argv
0x000003b4 0 Section: .default
0x000003b4 0 Section: .default(sc100/lib/crtsc100.eln)
0x000003b4 0 Section: .default(foo.eln)
0x000003b4 0 Section: .default(sc100/lib/
stdlib.elb(rominit.eln))
0x000003b4 0 Section: .default(sc100/lib/
stdlib.elb(cpp.eln))
0x000003b4 0 Section: .default(sc100/lib/
stdlib.elb(exit.eln))
0x00010000 360 Section: .text
0x00010000 272 Section: .text(sc100/lib/crtsc100.eln)
0x00010000 ___start
0x00010028 ___Frame0
0x00010034 ___crt0_end
0x0001003c ___crt0_send
0x000100c8 __dhalt
0x000100ca ___main
0x000100ca __main
0x000100cc ___init_c_vars
0x00010104 ___send

Section

Fragment

Symbol
40 StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
2.2.11 Controlling Linker Messages

To control the information content of linker messages, use any of these options:

 -V

Displays the current version of the linker and exits.

 -v

Specifies verbose mode: the linker reports progress through each of these stages:

• |Loading FILE|

The linker is reading the named file, merging its section contents with existing sections of the
same name, and adding its global symbol values to the internal symbol table.

• |Placing SECTION|

The linker is assigning an address to the named section.

• |Adjusting symbol values|

The linker is adjusting the values of all symbols to reflect section addresses.

• |Relocating SECTION(FILE)|

The linker is resolving external references in the named section.

• |Writing executable file.|

The linker is writing the executable file.

 -w

Suppresses warnings.

This example command links archive lib1401.elb, file crtnosat1401.eln, and file main.eln
into an executable object file. This command also tells the linker to reports progress. Listing 2.1. is
sample verbose-mode output.

sc100-ld -v -llib1401 crtnosat1401.eln main.eln

Listing 2.1 Sample Output of Linker Verbose Mode

Loading /opt/pulsar/opt/SC100/1.99/lib/crtnosat140l.eln
Loading main.eln
Loading /opt/pulsar/opt/SC100/1.99/lib/lib140l.elb(rominit.eln)
Loading /opt/pulsar/opt/SC100/1.99/lib/lib140l.elb(cpp.eln)
Loading /opt/pulsar/opt/SC100/1.99/lib/lib140l.elb(exit.eln)
Placing .intvec
Placing .data
Placing .bss
Placing .default
Placing .text
Placing .init_table
41StarCore SC100 Linker User Guide

Using the Linker
Command-Line Options
Adjusting symbol values
Relocating .text(/opt/pulsar/opt/SC100/1.99/lib/crtnosat140l.eln)
Relocating .data(/opt/pulsar/opt/SC100/1.99/lib/crtnosat140l.eln)
Relocating .intvec(/opt/pulsar/opt/SC100/1.99/lib/crtnosat140l.eln)
Relocating .init_table(/opt/pulsar/opt/SC100/1.99/lib/
crtnosat140l.eln)
Relocating .SC100.delay_slots(/opt/pulsar/opt/SC100/1.99/lib/
crtnosat140l.eln)
Relocating .text(/opt/pulsar/opt/SC100/1.99/lib/lib140l.elb(exit.eln))
Writing executable file

2.2.12 Defining Unlikely Block of Code as Private Block
of Code in a Multi-core Application

When you specify the unlikely keyword for a block of code in your application, the compiler moves
that block of code to the .unlikely section in the LCF.

In a multi-core application, however, specifying the unlikely keyword for private block of code on
multiple cores leads to linking errors because, by default, unlikely blocks of code are not considered
as private blocks of code.

In order to avoid such linking errors, follow these steps to explicitly define unlikely blocks of code as
private blocks of code in a multi-core application:

1. Rename the relevant .unlikely section to make it specific to each of the cores (if the multi-core
application model is true private), or specific to each of the subset of cores that share the code (e.g. if
the function code is common only to core 0 and core 1).

For example, for C0 private functions defined in the module C0M2function.c, use the following
linker directive:

.rename "*C0M2function.eln", ".unlikely", ".unlikely_C0M2function"

2. Place the renamed section in the private memory areas specific to the hosting core.

3. If a subset of cores share the code, export the renamed section to the other cores in the sharing subset,
and have each core in the sharing subset import the renamed section.

For example:

.export ".unlikely_C0M2function" ; on the hosting core

.import ".unlikely_C0M2function" ;on each core in the sharing subset

In addition, exclude the renamed section from the cores in the non-sharing subset.

For example:

.exclude ".unlikely_C0M2function"
42 StarCore SC100 Linker User Guide

3
Linker Command File

The linker lets you specify your output code by using directives in a linker command file (LCF). This
chapter explains the linker command file and its directives.

• 3.1 Pre-Built Linker Command Files

• 3.2 Linker Command File Syntax

• 3.3 Sections

• 3.4 Linker Directives

3.1 Pre-Built Linker Command Files

The factory provides two linker command files, one for each memory model that the StarCore
architecture supports. These files are:

• crtscsmm.cmd, for small memory mode (the default)

• crtscbmm.cmd, for big memory mode

These files are located in {CodeWarrior}\StarCore_Support\Compiler\etc.

3.2 Linker Command File Syntax

This section explains the syntax of the linker command file.

• 3.2.1 Command File Structure

• 3.2.2 Expressions and Symbols

• 3.2.3 Operators

• 3.2.4 Comments

3.2.1 Command File Structure

A linker command file is a text file; its filename ends with extension .lcf or .cmd. This file contains
the linker directives that define your program’s memory layout, segment allocations, and entry point.

To create a linker command file for a simple project:
43StarCore SC100 Linker User Guide

Linker Command File
Linker Command File Syntax
1. Identify the important memory addresses of the processor. Use the .provide directive to define
symbols for them.

2. Define the memory ranges — use the .memory and .reserve directives.

3. Combine similar sections — use the .segment directive. Map sections into memory — use the
.org directive.

4. Define the entry point.

Listing 3.1 shows a sample linker command file.

Listing 3.1 Example Linker Command File

.provide _ROMStart, 0x7f000

.provide _SR_Setting, 0xe4000c

.provide _sdram0, 0x20000000

.provide _StackStart, 0x20c00000

.provide _TopOfStack, 0x20fffff0

.provide __BottomOfHeap, _StackStrt

.provide __TopOfHeap, _TopOfStack

.provide _sdram1, 0x20ffffff

.memory 0x0 , 0xfffff , "rwx"

.memory 0x20000000 , 0x20ffffff , "rwx"

.reserve _StackStart ,_TopOfStack

.org 0x0

.segment .intvec , ".intvec"

.org _sdram0

.segment .rotable , ".init_table"

.segment .roinit , ".rom_init"

.segment .data , ".data", ".ramsp_0", ".bss"

.segment .text , ".text", ".default"

.org _sdram0 + 0x400000

.segment .text , ".text"

.entry 0x0

Note these lines of the example LCF:

.provide _ROMStart, 0x7f000

.provide _SR_Setting, 0xe4000c

.provide _sdram0, 0x20000000

.provide _StackStart, 0x20c00000

.provide _TopOfStack, 0x20fffff0

.provide __BottomOfHeap, _StackStrt

.provide __TopOfHeap, _TopOfStack

.provide _sdram1, 0x20ffffff
44 StarCore SC100 Linker User Guide

Linker Command File
Linker Command File Syntax
The .provide directives define symbols for memory locations important to the program. This lets you
refer to these locations by symbol.

.memory 0x0 , 0xfffff , "rwx"

.memory 0x20000000 , 0x20ffffff , "rwx"

.reserve _StackStart ,_TopOfStack

The .memory directive defines the memory regions for program and data storage. The .reserve
directive blocks off a portion of a memory region, preventing the linker from putting anything there. This
.reserve directive reserves space for the stack and heap.

.org 0x0

.segment .intvec , ".intvec"

The .org directive specifies the address where the linker places the subsequent .segment or
segments.

.org _sdram0

.segment .rotable , ".init_table"

.segment .roinit , ".rom_init"

.segment .data , ".data", ".ramsp_0", ".bss"

.segment .text , ".text", ".default"

.org _sdram0 + 0x400000

.segment .text , ".text"

The .segment directive combines sections. The linker locates these segments at the address the
preceding .org directive specified.

.entry 0x0

The .entry directive specifies the entry point of the program.

3.2.1.1 Dynamic Stack/Heap Configuration

In the Listing 3.1 example, one .provide directive defined symbols _StackStart and
__BottomOfHeap with the same value. Another .provide directive defined symbols
_TopOfStack and __TopOfHeap value. This is dynamic configuration — the default — in which the
stack and the heap use the same memory space.

Earlier versions of the linker offered only this dynamic configuration. The stack and heap had to use the
same memory space, because there were no bottom and start symbols for the heap.
45StarCore SC100 Linker User Guide

Linker Command File
Linker Command File Syntax
3.2.1.2 Static Stack/Heap Configuration

The new symbols __BottomOfHeap and __TopOfHeap make possible a static configuration: one in
which the heap and the stack use separate areas of memory. Simply give these symbols different address
values from their stack counterparts (_StackStart and _TopOfStack).

NOTE Old applications and LCFs lack definitions for the new symbols __BottomOfHeap and
__TopOfHeap, so you cannot link them with a new runtime library. To make such linking
possible, you must add definitions of these new symbols, setting __BottomOfHeap to the
_StackStart value, and setting __TopOfHeap to the _TopOfStack value. These new
definitions preserve the dynamic configuration of the old applications and LCFs.

3.2.2 Expressions and Symbols

An expression is a combination of symbols, constants, operators, and parentheses that represent a value to
be used as a linker-directive operand. Expressions may contain user-defined labels and their associated
integer values, or any combination of integers and linker functions.

Symbols that you define in the linker command file may begin with the underscore character, but this
character is not mandatory. To refer to a symbol from C source code, use the underscore prefix.

To create global symbols and assign addresses to them, use the .provide and .set directives. For
this example, the linker would evaluate the .provide, .segment, and .set directives in their order
here:

.provide _textSegmentStart, 0x100000

.org _textSegmentStart

.segment text, “.text”

.set _textSegmentEnd, _textSegmentStart + @segsize(text)

Table 3.1 lists the functions you can use within expressions. You must enclose section names in quotes,
as section names may include non-identifier characters.
46 StarCore SC100 Linker User Guide

Linker Command File
Linker Command File Syntax
.

NOTE The linker allows multiple definitions of absolute symbols (assembly EQUs and SETs) if all
symbols have the same value. The linker supports MULTIDEF symbol binding of the
assembler. That is, the linker accepts the first definition of such a symbol, as if the symbol
were global. Any other symbol redefinition is a fatal error.

Table 3.1 Linker Expression Functions

@iif(condition, true_result,
false_result)

Condition evaluator: gives true result if
condition is true, false result if condition is false

@mmu_align(expression) Calculates and returns a number that meets all
these conditions:

• can be represented as power of two
(2x)

• greater than or equal to the specified
expression

• greater than minimum descriptor
size as required by MMU. For
example, for 8144, the minimum
descriptor size is 0x100.

@pc() Position counter referring to the physical
memory

@secaddr("section-name") Starting address of section

@secalign("section-name") Alignment of section

@secend("section-name") First address after this section — same as
@secaddr(“section-name”)
+@secsize(“section-name)

@secsize("section-name") Size of section

@segaddr(segment-name) Starting address of segment

@segalign(segment-name) Alignment of segment

@segsize(segment-name) Size of segment

@vsecaddr(“section-name”) Starting virtual address of section

@vsecend("section-name") First virtual address after this section
47StarCore SC100 Linker User Guide

Linker Command File
Linker Command File Syntax
3.2.3 Operators

You may use standard C arithmetic, unary, shift, relational, bitwise, and logical operations when you
define or use symbols in the linker command file.

All operators are left-associative. The linker evaluates expressions according to this operator precedence
order:

1. Parenthesis

2. Unary plus, unary minus, one’s complement, logical negation

3. Multiplication, division, modulo

4. Addition, subtraction

5. Shift

6. Relational operators: less, less or equal, greater, greater or equal

7. Relational operators: equal, not equal

8. Bitwise AND, OR, EOR

9. Logical AND, OR

Table 3.2 lists the arithmetic operators.
.

Table 3.2 Arithmetic Operators

Type Operator Description

Unary highest (1) - ˜ !

2 * / %

Relational 3 + -

4 >> <<

5 asdf

6 &

7 |

8 &&

9 ||
48 StarCore SC100 Linker User Guide

Linker Command File
Sections
3.2.4 Comments

To add comments to your linker command file, use the semi-colon character (;). The LCF parser ignores
comments.

; This is a comment

3.3 Sections

A section is a relocatable block of code or data that is encapsulated by the SECTION and ENDSEC
assembler directives and has an associated section name and type. Although you can create any name for
a section, some section names are reserved by the debugger and the SmartDSP Operating System. The
application must not use these reserved names (refer to the assembler user’s guide and the corresponding
SmartDSP OS documentation).

In addition, the assembler recognizes conventional ELF sections such as .text, .data, .rodata, and
.BSS.

A space can be shared by multiple cores, if the following conditions are true:

• the core, which defines the space shares it by using the .export directive

• all other cores import the shared space by using the .import directive

The core, which imports a shared space, cannot place any private code or private data in the shared region
of physical memory. The linker automatically reserves this region of physical memory. In addition, the
linker keeps the debug information consistent across all the cores.

The following rules apply when you access the symbols defined in a shared or private space:

• symbol defined in a private space can be accessed from:

– other private spaces of the same unit

– a shared space, only if the accessed symbol is defined at the same virtual address in all the cores.
In this case, the descriptors of all the cores must have the same starting virtual address (the
base_address field from .att_mmu directive).

• symbol defined in a shared space S can be accessed from:

– any private space of the same unit

– any private space of another unit, which imports space S

– any shared space, whose import list is included in the import list of space S

The following linker directives are involved in providing multi-core support to the linker:

• .export

• .import

• .space

• .unit
49StarCore SC100 Linker User Guide

Linker Command File
Sections
Table 3.4 lists more information on these directives.

For each section that is generated by the linker, the linker expands the section size to the biggest size
occupied by this section, in order to share the same size for all cores. It is very useful to have the same
size for the object that is placed in private memory.

There are two types of sections:

1. Core specific section

The section that is prefixed by the name of core is visible only in this core (For example, c0`.data,
c0`.private_data, c0`.text, c0`.private_text sections are visible only for the "c0"
core).

2. Non-core specific section

The section that is not prefixed by the name of the core (For example, .data, .data_private,
.text, .private_text sections) is visible for all cores. These sections can be placed in the private
or shared space.

Following sections are generated by the CodeWarrior linker and compiler:

Table 3.3 Sections in LCF

Section Name Usage

.att_mmu Data section that is used in startup file/
runtime library and system operation to set
the MMU registers. File att_mmu.h defines
the data structures and variables needed for
the .att_mmu section. Placed in a private
data descriptor.

.bss Un-initialized data section that is placed in a
private data descriptor.

.bsstab Read-only data section that is used in the
startup file to fill the .bss sections with
zeros. File bsstab.h defines the data
structures and variables needed for the
.bsstab section. Placed in a private data
descriptor.
50 StarCore SC100 Linker User Guide

Linker Command File
Sections
.compress_table Contains these symbols to decompress the
compressed section:

• __compress_table: an array of
type .compress_table that
contains an entry for every
compressed section. The table is
sorted by load_address field

• __compress_count: the number
of entries in __compress_table;
an unsigned, 32-bit integer

.data Data section that is placed in a private data
descriptor.

.default Program section that is created by
assembler for code that is not put between
section <name> and endsec directives. In
Single Instruction Multi Data (SIMD)
application model, needs to be placed in a
shared program descriptor. In Multi
Instruction Multi Data (MIMD) application
model, needs to be placed in a private
program descriptor.

.exception Read-data section that is used in the startup
file/runtime library to catch the C++
Exception (Exception table). Placed in a
private data descriptor.

.exception_index Read-data section that is used in the startup
file/runtime library to catch the C++
Exception (Exception table index). Placed in
a private data descriptor.

.init_table Read-only data section that is used to
initialize the global variable ROM to RAM
(-mrom option from scc). File
init_table.h defines the data structures
and variables needed for the .init_table
section. Placed in a private data descriptor.

Table 3.3 Sections in LCF

Section Name Usage
51StarCore SC100 Linker User Guide

Linker Command File
Sections
.intvec Program section that is used to define the
interrupt vector code. Recommended to be
placed in a shared program descriptor, if
placed in a private program descriptor, need
to set the VBA register again, as the support
from runtime library assumes that the virtual
and physical address for VBA share the
same value.

os_* These sections are the system operation
sections. These sections can be for code,
data, read-only data or bss.

.ovltab Data section that is used by overlay
manager. File overlay.h defines the data
structures and variables needed for the
.ovltab section. Placed in a private data
descriptor.

reserved_crt_tls Data section that is used in reentrant runtime
library. The context local data variable is
defined in this section. Placed in a private
data descriptor.

reserved_crt_mutex Data section that is used in reentrant runtime
library. The MUTEX variables are defined in
this section. These variables are used by the
critical region. This section needs to be
mentioned in a non-cacheable descriptor
from MMU among all cores. Placed in a
shared data descriptor.

.rom Un-initialized data section that is placed in a
private data descriptor.

.rom_init_tables Read-only data section that is used to
initialize the global variable from ROM to
RAM. File init_table.h defines the data
structures and variables needed for the
.rom_init_tables section. Placed in a
private data descriptor.

Table 3.3 Sections in LCF

Section Name Usage
52 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
3.4 Linker Directives

Table 3.4 lists linker directives — the commands that control linker operation. Subsequent text explains
each directive in more detail.
.

.staticinit Read-only data section that is used in the
startup file/runtime library to initialize the C++
static objects. Placed in a private data
descriptor.

.text Program section that is placed in a shared
program descriptor.

task1_* These sections are the user sections. These
sections can be for code, data, read-only
data or bss.

.zdata Data section that is fitted in the fist first 64k of
memory.Placed in a private data descriptor.

Table 3.4 Linker Directives

.align Sets the alignment requirement of a segment (alignment must be
a power of 2)

.assert Declares the specified expression as true. The linker reports an
error, if the expression evaluates to zero (evaluates to false)

.att_mmu Creates section .att_mmu if address translation table involves
overlay sections

.att_mmu_settings Defines MMU configuration parameters.

.bss Creates a BSS segment in the executable file

.cache_setting Specifies the cache optimization settings

.concatenate Concatenates a list of overlay sections.

.define_compress Enables compression for overlay sections.

.define_overlay Enables overlay support for sections compiled without overlay
support.

Table 3.3 Sections in LCF

Section Name Usage
53StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.define_region_to_
map_virtual_addre
ssing

Defines region-to-map virtual addressing.

.define_single_ma
pped_virtual_addr
essing

Defines single-mapped virtual addressing for non-overlay (non-
translation) sections.

.entry Defines the program’s entry point

.exclude Tells the linker to not link specified sections

.export Specifies the spaces shared by the current core with other cores

.firstfit Forces the linker to place segments on a first-fit basis

.frequency Specifies the caching frequency of an object within a function.

.group Specifies the run-time overlay section ordering

.import Specifies the spaces defined in other cores that are shared by the
current core

.include Appends the content of specified LCF at the current location.

.inhibit_compress Prevents compression for overlay sections.

.inhibit_folding_sy
mbols

Enables to turn off folding optimization if it is found not appropriate
for certain symbols.

.inhibit_folding_m
odules

Enables to turn off folding optimization if it is found not appropriate
for certain modules.

.init_table_section Tells the linker to treat sections that match the specified pattern as
init_table sections.

.library_concatena
te_sections

Combines the sections in a self-contained library into a new
section.

.memory Specifies a region in memory available for linking

.non_ovl Specifies sections that will not have overlay support

.org Specifies a starting address to begin linking segments

.overlay Specifies which overlays will share a run address

.place_symbols Places the specified symbols in a target section

.provide Inserts a global symbol into the symbol table of the executable file

Table 3.4 Linker Directives (continued)
54 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.align

Aligns the program counter to the specified byte boundary. The linker aligns a segment definition that
follows an align statement accordingly.

.align n

Parameter

n

Byte boundary. Must be a power of 2.

Remarks

If the sections within a segment also have their own alignment, the linker may align the segment
to a slightly higher address than that specified by the .align directive.

Example

.org _CodeStart

.align 16

.puncture Makes one section of all those that a .segment directive
mentions

.rename Renames ELF sections before processing

.reserve Specifies a region in memory that is not available for linking

.segment Specifies which sections to link at the current location counter

.set Inserts a global symbol into the symbol table of the executable file

.space Specifies a memory device in a multiple core device

.union Specifies which pure data overlays share a run address

.unit Specifies the core name in a multiple core device

.virtual_memory Defines a memory region available for dynamic sements

.xref Notifies the Linker that the specified symbol has a reference, even
if the Linker does not see the reference during processing

.xref_module Inhibits dead code or dead data stripping from specified module.

Table 3.4 Linker Directives (continued)
55StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.segment .libtext, “.libtext"

.assert

Declares the specified expression as true. The linker reports an error, if the expression evaluates to zero
(evaluates to false).

.assert expression

Parameter

expression

Expression to be evaluated.

Remarks

This directive is useful for restricting or checking the maximum size of a segment. For example,
the .assert directive in the following example specifies that the INTVEC segment (the
interrupt vector table) must be exactly 512 bytes. If it is not, the linker reports an error.

Example

.org 0

.segment INTVEC, “.intvec"

.assert @segsize(INTVEC) == 512

.att_mmu

Creates an address translation table (ATT) section, of type SHT_MW_ATT_MMU (SHT_LOPROC + 4),
from existing sections or overlays.

.att_mmu “name”,\
{task_id: absolute_value,}\
[{task_id: absolute_value,}...]\
start_address, end_address, \
[{, start_address, end_address,}...]\
,_RESERVED_,\

size: absolute_value,\
region_type: “data”|”program”,\
attribute: absolute_value,\
base_address: absolute_value,\
physical_address: absolute_value\

|”section_name”,\
56 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
{, reserved_mmu_padding}\
{, attribute: absolute_value}\
{, single_mapped: absolute_value}\
{, base_address: absolute_value}\
{, physical_address|after_physical_address: absolute_value}\

[, _RESERVED_,\
size: absolute_value,\
region_type: “data”|”program”,\
attribute: absolute_value},\
base_address: absolute_value,\
physical_address: absolute_value\

|”section_name”,\
{, reserved_mmu_padding}
{, attribute: absolute_value}\
{, single_mapped: absolute_value}\
{, base_address: absolute_value}\
{, physical_address|after_physical_address:

absolute_value},...]

Parameters

name

Name for new section entry in the memory attribute translation table (MATT); double quotes must
enclose the name.

task_id

Optional task-identifier value for a section declared inside this directive. Use commas to separate
multiple task_id values. If you omit this value, the system assigns sections to the system task
that directive .att_mmu_settings defines.

start_address

Starting address in the virtual address space (virtual memory) for the new ATT section. With the
end_address value, specifies the section range: any power of 2, from 256 bytes to 4 gigabytes.
Use commas to separate multiple start_address/end_address values.

end_address

Ending address in the virtual address space (virtual memory) for the new ATT section. With the
start_address value, specifies the section range: any power of 2, from 256 bytes to 4
gigabytes. Use commas to separate multiple start_address/end_address values.

RESERVED

Keyword for reserving a memory region in both virtual and physical space. With its subordinate
parameter values, forms an entry in the ATT. Particularly useful for programming peripherals.

size

Number of bytes in the reserved memory region.
57StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
region_type

Memory type of the reserved region: “data” or “program”.

attribute

If subordinate to _RESERVED_, a mandatory absolute value that specifies extended section
attributes.
If subordinate to section_name, an optional absolute value that fills the same role for the
named section.

(The RTOS or debugger, not the linker, interprets attribute values.)

single_mapped

If this attribute is set, the linker generates a "section_name" segment that is placed starting at
<absolute_value> value on a first fit approach in virtual and physical space, but the section
preceding it will use the same range of addresses for virtual and physical space.

NOTE This field cannot appear together with the base_address, physical_address and
after_physical_address for a section.

base_address

If subordinate to _RESERVED_, a mandatory absolute value that positions the section relative to
the preceding section in virtual address space that the translation tables define. For the first
section, must have value 0. If not 0, must be a multiple of the section size.

If subordinate to section_name, an optional absolute value that fills the same role for the
named section.

physical_address

If subordinate to _RESERVED_, a mandatory absolute value that positions the section relative to
the preceding section in physical address space. For the first section, must have value 0. If not 0,
must be a multiple of the section size.

If subordinate to section_name, an optional absolute value that fills the same role for the
named section.

section_name

Name of a section for which the system creates a descriptor in the memory attribute translation
table MATT). The system automatically increases the size of this section until it conforms to the
minimum that directive .att_mmu_settings defines.

after_physical_address

Optional address value. Tells the linker to place the named section at or after this address,
wherever it first fits.
58 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Remarks

With other directives .att_mmu_settings,
.define_region_to_map_virtual_addressing, and
.define_single_mapped_virtual_addressing, provides control of the memory
management unit (MMU).

This directive checks restrictions that the memory attribute translation table (MATT) defines in
the MMU:

• Confirms the memory-region size that directive .att_mmu_settings specifies.

• Confirms that base_address alignment is 0 or a multiple of the region size.

• Sets section attributes.

• Sets task identifiers.

The task sections of .att_mmu directives define objects; for each such object, the linker
generates map-file entries for the virtual address, physical address, size, and symbol name. If
several tasks share a section, the linker makes sure that no other section overlaps this section in the
virtual space — unless the .att_mmu_settings directive permits overlapping.

If the linker finds any sections not included in .att_mmu directives, it generates a warning.

If an .att_mmu directive specifies a section larger than the max_descr_size value (of the
.att_mmu_settings directive), the linker generates an error message. If the .att_mmu
directive specifies a section smaller than the min_descr_size value, the linker pads the
section up to that minimum.

The linker places sections in virtual memory according to their base_address values. For
sections without base_address values, the linker uses an optimization algorithm to control
placement in virtual memory.

The linker places sections in physical memory according to their physical_address and
after_physical_address values. For sections without these parameter values, the linker
follows the guidance of the .org directive.

Examples

The Overlays chapter includes two extended examples of the .att_mmu directive.

.att_mmu_settings

Defines memory management unit (MMU) configuration parameters, such as region size, maximum
counter values, and prevention of descriptor overlap in virtual memory space.

.att_mmu_settings min_descr_size : absolute_value,
max_descr_size : absolute_value,\
{system_task : absolute_value,}\
59StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
{max_data_descr_count : absolute_value,}\
{max_program_descr_count : absolute_value,}\
{can_not_overlap : absolute_value
 [{,can_not_overlap : absolute_value},...],}\
{force_overlap : absolute_value}

Parameters

min_descr_size

Minimum size of a descriptor in the memory attribute translation table (MATT), but the size of the
descriptor must be aligned to the power of two. Default value: 256 bytes.

max_descr_size

Maximum size of a descriptor in the memory attribute translation table (MATT), but the size of
the descriptor must be aligned to the power of two. Default value: 4 gigabytes.

system_task

Optional value that identifies the system task. RTOS code and data can make use of this value.
Default value: 0.

max_data_descr_count

Optional value defining the number of data descriptors in the MATT. If the number of
system_task data descriptors plus the number of data descriptors for any other task exceeds this
value, the linker generates an error message. Default value : 0, which tells the linker to not
perform this validation.

max_program_descr_count

Optional value defining the number of program descriptors in the MATT. If the number of
system_task data descriptors plus the number of program descriptors for any other task exceeds
this value, the linker generates an error message. Default value : 0, which tells the linker to not
perform this validation.

can_not_overlap

Optional value defining the bit-set a descriptor attribute must contain — to prevent descriptor-
range overlap in virtual memory. Separate multiple can_not_overlap values with commas.

force_overlap

Optional value defining the bit-set a descriptor attribute must contain — to permit descriptor-
range overlap in virtual memory.

Remarks

With other directives .att_mmu, .define_region_to_map_virtual_addressing,
and .define_single_mapped_virtual_addressing, provides control of the memory
management unit (MMU).
60 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
The RTOS uses the force_overlap information to determine whether a descriptor has low or
high priority in the MATT. (You can define the MATT priority scheme. If only two descriptors
overlap in virtual memory, the linker can determine which has the highest priority.

Use the can_not_overlay and force_overlay values to define attributes of directives
.att_mmu and .define_single_mapped_virtual
_addressing. This stores this important information as bit-sets, eliminating the need to hard-
code the information.

.bss

Creates an un-initialized BSS section in the executable file.

.bss "section_name", "flags", length, alignment

Parameters

section_name

Name of the section.

flags

A string containing any combination of r, w, or x (read, write, or execute, respectively).

length

Length of the section.

alignment

Alignment of the section, which must be a power of 2.

Remarks

If a .segment directive does not explicitly specify the BSS section, the linker automatically
links the BSS section, on a first-fit basis after processing the linker command file.

Example

.bss ".bss_example", "rw", 0x100, 0x2

.cache_setting

Specifies the cache optimization settings.

.cache_setting \
type: <name_type>, \
61StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
way: <number_of_way>, \
line: <number_of_line> , \
size_of_line: <size_value>, \
line_index_mask: <line_index_mask_value>

Parameters

name_type

Specifies either Data or Instruction cache setting. Possible values are:

• “L1Data” – Data cache, level one

• ”L1Instruction” – Instruction cache, level one

number_of_way

Number of way slots for the specified cache type.

number_of_line

Number of line of the specified way.

size_value

Size value for the specified cache line.

line_index_mask_value

You can calculate the line index by performing AND bit operation between this value and the
address of the object. The linker uses the line index when number of called objects is greater than
available way slots.

Remarks

It is mandatory for the linker to perform this optimization.

Example 1: L1 Data Cache Description Information for MSC8144 Platform

.cache_setting \
type: "L1Data", \
way: 8, \
line: 16 , \
size_of_line: 256, \
line_index_mask: 0xF00

Example 2: L1 Instruction Cache Description Information for MSC8144 Platform

.cache_setting \
type: "L1Instruction", \
way: 8, \
line: 8 , \
size_of_line: 256, \
62 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
line_index_mask: 0x700

.concatenate

Concatenates a list of overlay sections, in the specified order.

.concatenate "name", "section_pattern" \
{,unmatch_pgm ("exception_sec_pattern")} \
{,unmatch_data ("exception_sec_pattern")} \
{,unmatch_bss ("exception_sec_pattern")} \
{,unmatch_rom ("exception_sec_pattern")}\
[{," section_pattern"...}, \
{,unmatch_pgm ("exception_sec_pattern")} \
{,unmatch_data ("exception_sec_pattern")} \
{,unmatch_bss ("exception_sec_pattern")} \
{,unmatch_rom ("exception_sec_pattern")}...]

Parameters

name

Name of the section that contains concatenated sections.

"section_pattern"

Pattern that identifies a section; may include wildcards (*, ?, and [) to specify an arbitrary
character sequence. Double quotes must enclose each pattern; commas must separate multiple
patterns.

unmatch_pgm ("exception_sec_pattern")

Includes all program sections (that are not defined in any other directive) in the concatenated
section.

unmatch_data ("exception_sec_pattern")

Includes all data sections (that are not defined in any other directive) in the concatenated section.

unmatch_bss ("exception_sec_pattern")

Includes all un-initialized data sections (that are not defined in any other directive) in the
concatenated section.

unmatch_rom ("exception_sec_pattern")

Includes all read only data sections (that are not defined in any other directive) in the concatenated
section.
63StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Remarks

Pertains only to overlay sections. Overlay sections in the list must share such properties as flags
and section type. The linker forms each section of the list by concatenating overlay-section
fragments, according to the specified linking order.

Example 1

.concatenate “Data1_1”, “Data1_1_1”, “Data1_1_2”, “Data1_1_3”

Figure 3.1 depicts the result of this command: section list Data1_1.

Figure 3.1 Section List Data1_1

Example 2

Consider Listing 3.2.

Listing 3.2 .concatenate Directive Example

.concatenate "descriptor__m2__cacheable__sys__shared__text", \
".m2__cacheable__sys__shared__text", \
".text", ".default"

.concatenate "descriptor__m3__cacheable__sys__shared__text", \
".m3__cacheable__sys__shared__text"

.concatenate "descriptor__ddr__cacheable__sys__shared__text", \
".ddr__cacheable__sys__shared__text",unmatch_pgm()

.att_mmu "Shared_mmu_m2", \
_M2_SHARED_start, _M2_SHARED_end, \
"descriptor__m2__cacheable__sys__shared__text", \
attribute: SYSTEM_PROG_MMU_DEF, \
after_physical_address: _M2_SHARED_start

.att_mmu "Shared_mmu_m3", \
_M3_SHARED_start, _M3_SHARED_end, \
"descriptor__m3__cacheable__sys__shared__text", \
attribute: SYSTEM_PROG_MMU_DEF, \
after_physical_address: _M3_SHARED_start

Data1_1

Data1_1_1 Data1_1_2 Data1_1_3
Padding for
Data1_1_2

Padding for
Data1_1_3
64 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.att_mmu "Shared_mmu_ddr", \
_DDR_SHARED_start, _DDR_SHARED_end, \
"descriptor__ddr__cacheable__sys__shared__text", \
attribute: SYSTEM_PROG_MMU_DEF, \
after_physical_address: _DDR_SHARED_start

The Listing 3.2 produces the following memory map in the ELD output file. Note that even
though the .unlikely section is not explicitly included in the MMU directive, it is
concatenated in the descriptor__ddr__cacheable__sys__shared__text
descriptor.

.define_compress

Enables compression for specified overlay sections.

.define_compress "section"[,"section"...]

Parameter

section

Name of section.

Remarks

To prevent compression for overlay sections, use the opposite directive:
.inhibit_compress.

;0x40000000 0x40000000 54 Section:

descriptor__ddr__cacheable__sys__shared__text

;0x40000000 0x40000000 12 Section:

.ddr__cacheable__sys__shared__text(msc8144_main.eln)

;0x40000000 0x40000000 12 _main

;0x4000000c

;0x40000010

0x4000000c

0x40000010 38

F_main_end

Section: .unlikely(msc8144_main.eln)

;0x40000010 0x40000010 38 msc8144_mainmsc8144_mainPFO (local)
65StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.define_overlay

Enables overlay support for sections compiled without overlay support.

.define_overlay "section"[,"section"...]

Parameter

section

Name of section.

Remarks

Converts the specified sections from type SHT_PROGBITS or SHT_NOBITS to type
SHT_STARCORE_OVERLAY. This enables overlay support, even for sections compiled
without overlay support.

NOTE Overlay support via this linker directive may not be the complete equivalent of compiling
sections with overlay support. If a debugger must have old-style overlay information, only the
compiler can provide that information.

.define_region_to_map_virtual_addressing

Defines region-to-map virtual addressing, useful for programming peripherals when memory protection
is on.

.define_region_to_map_virtual_addressing type_region,\
physical_start_address, virtual_start_address, size\
{,attribute : absolute_value}\
{,task_id : absolute_value}\
[{,task_id : absolute_value}...]

Parameters

type_region

Memory type of the reserved region: “data” or “program”.

physical_start_address

Absolute value that specifies the start of the physical address.

virtual_start_address

Absolute value that specifies the start of the virtual address.
66 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
size

Absolute value that specifies the size of the region.

attribute

Optional absolute value that specifies extended region attributes. The RTOS and debugger can
interpret this value.

task_id

Optional task-identifier value for a section of the region to which this directive pertains. Use
commas to separate multiple task_id values. If you omit this value, the system assigns sections
to the system task that directive .att_mmu_settings defines.

Remarks

With other directives .att_mmu, .att_mmu_settings, and
.define_single_mapped_virtual_addressing, provides control of the memory
management unit (MMU).

This directive inserts an entry in the .att_mmu section for each task.

.define_single_mapped_virtual_addressing

Defines single-mapped virtual addressing for non-overlay (non-translation) sections.

.define_single_mapped_virtual_addressing\
"section_name"\

{,attribute: absolute_value}\
{,task_id: absolute_value}\
[{,task_id: absolute_value}...]\

[,"section_name"\
{,attribute: absolute_value}\
{,task_id: absolute_value}\
[{,task_id: absolute_value}...]...]

Parameters

section_name

Name of section.

attribute

Optional absolute value that specifies extended region attributes. The RTOS and debugger can
interpret this value.
67StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
task_id

Optional task-identifier value for the section to which this directive pertains. Use commas to
separate multiple task_id values. If you omit this value, the system assigns sections to the
system task that directive .att_mmu_settings defines.

Remarks

With other directives .att_mmu, .att_mmu_settings, and
.define_region_to_map_virtual_addressing, provides control of the memory
management unit (MMU).

Use commas to separate multiple section_name clauses.

All sections this directive lists must have the same size and alignment requirements as the
translation sections. The system stores information about virtual-addressed sections in the
.att_mmu section.

.entry

Assigns the address at which to begin executing the program.

.entry expression

Parameter

 expression

The beginning address.

Example

.entry 0x8000

.exclude

Tells the linker to not link the specified sections.

.exclude "section"[,"section"...]

Parameter

section

Name of section.
68 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Example

.exclude .sec1, .sec2

.export

In a multicore environment, defines the memory devices the current core shares. (Other cores should use
the .import directive to access the segments placed in the shared spaces.)

.export "space_pattern"[,"space_pattern"...]

Parameter

space_pattern

Memory-device identifier.

.firstfit

Modifies the behavior of the linker: places segments on a first-fit basis.

.firstfit [absolute_address]

Parameters

absolute_address

The absolute_value, if specified, is an absolute start address of placing. If this parameter is
omitted, the start address of placing is zero.

Remarks

Linker default behavior is to place segments consecutively, starting at the address that the .org
directive has specified. The .firstfit directive modifies this behavior by switching to a first-fit
placement mode. In this mode, the linker uses the lowest available memory region for a segment,
and segments need not be consecutive.

Example

In this example, segment A is at address 0x1000, followed by segment B, then by segment C, with
no gaps between them except possibly for alignment padding. However, segments D, E, and F are
each at the lowest possible address. These segments might not be consecutive, and no memory
order can be inferred.

.org 0x1000

.segment A, “.section_a"

.segment B, “.section_b"
69StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.segment C, “.section_c"

.firstfit

.segment D, “.section_d"

.segment E, “.section_e"

.segment F, “.section_f"

.frequency

Specifies the caching frequency of an object within a function.

.frequency \
function: <function_name> [<self>], \
object: <object_name>, < frequency> {[, object, < frequency>] …} \
{[, function: <function_name>, \
object: <object_name>, < frequency> {[, object, < frequency>] …} …
}

Parameters

function_name

Name of the function.

self

Function's cycle count, excluding the sub-function.

object_name

Name of the object that is called from within the specified function.

frequency

Number of calls for the object in the specified function.

Remarks

If the frequency information is missing in the LCF, the linker uses the static information.

Example

.frequency \
function: "___doprnt" 791,\
object: "_fwrite", 3,\
object: "_isdigit", 1,\
object: "_memcpy", 1,\

function: "_fwrite" 209,\
object: "_atexit", 1,\
object: "_memcpy", 1,\
70 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
object: "___write", 1,\
function: "___target_c_start" 14890

You can get this information by profiling the application. Use this method:

• Generate prof_func.rep file by running this simulator command: runsim -p prof
...

• Run the following Perl script, available in StarCore_Support\compiler\bin
directory, and create a text file containing the profiling information:

cache_optimization.pl prof_func.rep > prof.txt

• For each core, include the prof.txt file in the LCF. For example, add this line in
local_data.txt:

.include "prof.txt"

.group

Defines a logical name for a group of sections. Also defines a partial ordering of the sections, by runtime
address, that match section_group_pattern.

.group "group_name"{{, load_Address},
segment_type},"section_group_pattern"{+offset}
[,"section_group_pattern"{+offset}...]

Parameters

load_address

Address where the linker loads the group of sections — as a segment. If the directive includes a
load_address value, it also must include a segment_type value.

segment_type

Type specifier: 1 = load segment; 2 = dynamic segment.

section_group_pattern

Name of a section, group of sections, or overlay. This name may include wildcards (*, ?, and [) to
specify an arbitrary character sequence.

offset

Hexadecimal value for offset placement into the group. This offset value must dovetail with
section alignment.

Remarks

Expressions that include expression functions, either directly or by substitution, may not be
arguments for this directive.
71StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Example 1

You can use this directive with the .overlay directive to create a hierarchy of overlay sections.

.overlay "Overlay1", "rwx", "Pgm7", "Pgm8", "Pgm9"

.group "Group1", "Pgm1", "Pgm2"

.group "Group2", "Pgm3", "Pgm4", "Pgm5"

.group "Group3", Overlay1", "Pgm6"

.overlay ".MyOverlay", "rwx", "Group1", "Group2", "Group3"

.org 0x10000

.segment OVER, ".MyOverlay"

Example 1 produces this memory mapping at run time:

Example 2

.group "G1", "sec_ovl1”+0x8,”sec_ovl2”,”sec_ovl3”+0x100

.group "G2", "sec_ovl4”+0x8,”sec_ovl2”,”sec_ovl5”

.overlay “OVL”,”wxr”, “G1”,”G2”

.org 0x4000

.segment RUN_OVL, "OVL"

Example 2 produces this memory mapping at run time:

0x10000:

.

.

.

0x7ffff:

[Pgm1] [PGM3] [Pgm7/Pgm/8/Pgm9]

[Pgm4] [Pgm6]

[Pgm5]

[Pgm2]

0x4000:

.

.

.

0x7ffff:

[sec_ovl5]

[sec_ovl4]

{unused}

[sec_ovl2]

[sec_ovl1]0x4008:

0x4100:

{unused}

{unused}

[sec_ovl2]

[sec_ovl3]
72 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.group_firstfit_start

Same as the .group directive, but for use with the firstfit algorithm.

.group_firstfit_start [absolute_address]

Parameters

absolute_address

The absolute_value, if specified, is an absolute start address of placing. If this parameter is
omitted, the start address of placing is zero.

.import

In a multiple core environment, specifies the external memory devices that are visible to the current core.
(Any symbols defined in the imported spaces are visible to the current core, even if they are not part of
the object file for this core.)

.import "space_pattern"[,"space_pattern"...]

Parameter

space_pattern

Memory-device identifier.

.include

Appends the content of specified LCF at the current location.

.include “lcf_name”

Parameters

lcf_name

Name of the LCF. Specify absolute path to include LCF from a different directory.

Remarks

Use this directive to segregate a large LCF into smaller parts, or to modify a LCF to link against
different architectures and memory mappings.
73StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Example

.include “file1.lcf” //if file1.lcf is local to the current
directory

.include “x:/dir1/dir2/file2.lcf” //if file2.lcf exists in some
other directory

.inhibit_compress

Prevents compression for specified overlay sections.

.inhibit_compress "section"[,"section"...]

Parameter

section

Name of section.

Remarks

To enable compression for overlay sections, use the opposite directive: .define_compress.

.inhibit_folding_symbols

Inhibit folding the specified symbols.

.inhibit_folding_symbols symbol [, symbol...]

Parameter

symbol

Any valid symbol.

Remarks

Code/data folding optimization is removing duplicated code (code that has the same contents) and
duplicated data (constant data that has the same contents).This directive lets you turn off this
folding optimization if it is not appropriate for certain symbols.
74 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.inhibit_folding_modules

Inhibit folding duplicated code or data from the specified module.

.inhibit_folding_modules "module_pattern" [,"module_pattern"...]

Parameter

module_pattern

Name of an ELF module, or a pattern that specifies a module name. Double quotes must enclose
the pattern; the pattern may include wild-card characters *, ?, or [.

Remarks

Code/data folding optimization is removing duplicated code (code that has the same contents) and
duplicated data (constant data that has the same contents). This directive lets you turn off this
folding optimization if it is not appropriate for certain modules.

Wild-card characters match any module-name character, including a slash or leading period. If
you specify the name of a library, you must start module_pattern with a * character, which
tells the linker to ignore the library path.

.init_table_section

Tells the linker to consider sections that match the specified identifier pattern to be init_table sections.
(For backward compatibility, the linker uses patterns “.init_table” and “*‘.init_table” to
recognize default init table sections.)

.init_section_table "section_pattern"[,"section_pattern"...]

Parameter

section_pattern

Section identifier.

.library_concatenate_sections

Combines the sections in a self-contained library into a new section.

.library_concatenate_sections "name", "section_name_pattern" [,
"section_name_pattern" ...]
75StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Parameters

“name”

Name of the new section where specified sections are put together. Double quotes must enclose
the name.

“section_name_pattern”

Pattern that identifies a section; may include wildcards (*, ?, and [) to specify an arbitrary
character sequence. Double quotes must enclose each pattern; commas must separate multiple
patterns.

Remarks

When this directive is present in the LCF, the linker will create a re-locatable ELF file by
incremental linking. You may suppress this behavior by using this command line directive: -
force-self-contained-library.

NOTE The .library_concatenate_sections directive is valid only when creating a self-
contained library. See 2.2.1.6 Self-Contained Libraries for more information.

Example

Consider the ELF input files that Listing 3.3 shows.

Listing 3.3 ELF Input Files

Module1.eln
section .sec1:
_f11
…
F_f11_end

endsec

section .rela.sec1
….

endsec

Module2.eln
section .sec1:
_f21
…
F_f21_end

endsec

section .sec2:
_f22
…

76 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
F_f22_end
endsec

section .rela.sec2
….
endsec

The following command in the LCF merges the section patterns .sec1 and .sec2 into a new
section .sec_conc:

.library_concatenate_sections “.sec_conc”, “.sec1”, “.sec2”

Listing 3.4 shows the final ELF output file.

Listing 3.4 ELF Output File

Module_output.eln
section .sec_conc:
_f11
…
F_f11_end
_f21
…
F_f21_end
_f22
…
F_f22_end
endsec

section .rela.sec_conc
…
…
endsec

.memory

Defines a region in memory that is available for linking.

.memory lo_addr, hi_addr(, "flags")

Parameters

lo_addr

32-bit expression that sets the region’s low address.
77StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
hi_addr

32-bit expression that sets the region’s high address.

flags

Optional string: any combination of r, w, or x (read, write, or execute, respectively).

Remarks

Expressions that include expression functions, either directly or by substitution, may not be used
as arguments for this directive.

Example

.memory 0, 0xFFFFF

.non_ovl

Specifies sections that will not have overlay supports.

.non_ovl "name_section"[,"name_section"...]

Parameter

name_section

Name of an overlay section (one compiled with overlay support) or a section that the .overlay
directive helps define.

Remarks

For all sections this directive mentions, the linker changes types, for example
SHT_STARCORE_OVERLAY to SHT_PROGBIT and SHT_STARCORE_UNION to
SHT_NOBITS.

.org

Specifies a starting address for linking segments. (Use this directive in combination with the .segment
directive.)

.org address
78 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Parameter

address

Beginning address for consecutive placement of all .segment directives occurring after this
directive but before the next .org directive. Section alignment might result in a slightly higher
starting address being used.

Specifies only the physical address.

Example

In this example, the .org directive instructs the linker to begin linking the .text segment at the
value represented by the CodeStart variable.

.org CodeStart

.segment .text, ".text"

.overlay

Specifies which overlays share a run address. The linker combines into a new .bss section all sections that
match a section_pattern argument. The order of these section in the .bss section is the same as
their order in the .overlay directive.

.overlay “section_name,” "flags", "section_pattern"{*\-}
[,"section_pattern"{*\-} ...]

Parameters

“section_name”

Name for the new BSS section. Double quotes must enclose the name.

"flags"

p - progbits, r - read, w - write, x - execute; double quotes must surround this parameter value.

“section_pattern”

Pattern that identifies a section; may include wildcards (*, ?, and [) to specify an arbitrary
character sequence. Double quotes must enclose each pattern; commas must separate multiple
patterns.

Remarks

You may designate one of the overlay sections as a default, making the section type .progbits
instead of .bss. To do so, append the * or - character:

• The * character tells the linker to load the default section at both its load address and its run
address.
79StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
• The - character tells the linker to load the default section at its run address, but not at its load
address.

This directive creates an overlay section large enough to contain any of the specified sections.
This directive determines where the overlay will be loaded. If the overlay section is not named in
a .segment directive, the linker links the section on a first-fit basis after processing the linker
command file.

Use the p flag to specify type SHT_PROGBITS for the section, instead of the default type
SHT_NO_BITS.

Example

This example shows usage of the .overlay and .segment directives. The results: at a given
time you may run only one of the sections .ovl_alpha1, .ovl_alpha2, or .ovl_alpha3;
at a given time, you may run either .ovl_beta1 or .ovl_beta2, but not both.

.overlay ".ovlalpha", "rwx",
".ovl_alpha1",".ovl_alpha2",".ovl_alpha3"
.overlay ".ovlbeta", "rwx", ".ovl_beta1",".ovl_beta2"

.org 0x200

.segment TEXT, ".text"

.segment OVLALPHA, ".ovlalpha"

.segment OVLBETA, ".ovlbeta"

.org 0x10000

.segment RODATA, ".rodata"

.segment OVERLAYS, ".ovl_*"

.place_symbols

Places the specified symbols in a target section.

.place_symbols "file_pattern", "symbol_pattern", "section_name"

Parameters

“file_pattern”

Pattern that identifies an ELF file; may include wildcards (*, ?, and [) for specifying an arbitrary
character sequence. Double quotes must enclose each pattern; commas must separate multiple
patterns. You must use an asterisk (*) to start the name of a library. This tells the linker to ignore
the library’s path.
80 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
"symbol_pattern"

Pattern that identifies an ELF symbol; may include wildcards (*, ?, and [) for specifying an
arbitrary character sequence. Double quotes must enclose each pattern; commas must separate
multiple patterns.

"section_name"

Name of the target section. If the section you specify already exists in the linker, the symbols are
moved directly to that section. If the section does not exist, the linker creates a new section using
the attributes from the symbol's original section, and then moves the symbols.

Remarks

You can also set a target section for only one symbol. Use one of the following options to enable
or disable one symbol per section:

• -Xllt --one_symb_per_sect0: disabled

• -Xllt --one_symb_per_sect1: enabled

• -Xllt --one_symb_per_sect2: enabled only for functions

• -Xllt --one_symb_per_sect3: enabled only for variables

If the ELF file is not one symbol per section, the linker renames the original section of the symbol
(where the symbol is defined) to the specified target section name.

Example

This example shows how the library members are expressed in the file pattern search as
archive(member). In this example, all library symbols whose names begin with “_foo” are
moved to the .libtext section.

.place_symbols "*.elb(*)", "_foo*", ".libtext"

.provide

Creates a global, absolute symbol in the symbol table of the executable file.

.provide symbol_name, expression

Parameters

symbol_name

 Name of the symbol to be inserted.

expression

 Value of the symbol.
81StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Example

.provide StackStart, 0x20000

.provide ROMStart, 0x7FFF0

.provide SR_Setting, 0xE40008

.puncture

Combines into one section all the sections that the following .segment directive mentions, in the order
of the input files.

.puncture “section_name”

Parameter

section_name

 Name of the section to be created.

Example

Create one section, data_text, that contains the concatenation of input-file sections .data
and .text:

.puncture “data_text”

.org 0x30000

.segment seg_data_text, “.data”, “.text”

.rename

Renames ELF sections before processing

.rename "file_pattern", "section_pattern", "new_name"

Parameters

"file_pattern"

String to match the name of an ELF file.

"section_pattern"

String to match the name of an ELF section.

"new_name"

String: the new section name.
82 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Remarks

If the file and section names of an incoming ELF file match the file_pattern and
section_pattern arguments, the system makes the new_name value the new name of the
section.

You may use wildcards (*, ?, and [) in the file_pattern and section_pattern
arguments to specify an arbitrary character sequence. Note that the * and ? wildcards match any
character, including a slash or leading dot.

You must use an asterisk (*) to start the name of a library. This tells the linker to ignore the
library’s path.

Example

This example shows how library members are expressed in the file pattern search as
archive(member). In this example, all library .text sections are renamed to .libtext.

.rename "*.elb(*)", ".text", ".libtext"

.reserve

Defines a region in memory that is not available for linking. If any LCF directive tries to write to this
reserved region, the linker issues a warning.

.reserve lo_addr, hi_addr

Parameters

lo_addr

32-bit expression that sets the region’s low address.

hi_addr

32-bit expression that sets the region’s high address.

Remarks

Expressions that include expression functions, either directly or by substitution, may not be used
as an argument for this directive.

Example

.reserve StackStart, TopOfMemory
83StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.segment

Combines all sections and symbols that match the specified patterns into a new segment, at the current
location counter.

.segment seg_name {, segment_type}, "section_pattern" |
("file_pattern", "symbol_pattern") [,"section_pattern" |
("file_pattern", "symbol_pattern")...]

Parameters

seg_name

Name for the new segment.

segment_type

Optional p_type field number that specifies the segment structure: 1 for loadable segment, 2 for
dynamic segment, and so on.

section_pattern

Pattern that identifies a section; may include wildcards (*, ?, and [) for specifying an arbitrary
character sequence. Double quotes must enclose each pattern; commas must separate multiple
patterns.

file_pattern

Pattern that identifies an ELF file; may include wildcards (*, ?, and [) for specifying an arbitrary
character sequence. Double quotes must enclose each pattern; commas must separate multiple
patterns. You must use an asterisk (*) to start the name of a library. This tells the linker to ignore
the library’s path.

symbol_pattern

Pattern that identifies an ELF symbol; may include wildcards (*, ?, and [) for specifying an
arbitrary character sequence. Double quotes must enclose each pattern; commas must separate
multiple patterns.

Remarks

You can also set a target section for only one symbol. Use one of the following options to enable
or disable one symbol per section:

• -Xllt --one_symb_per_sect0: disabled

• -Xllt --one_symb_per_sect1: enabled

• -Xllt --one_symb_per_sect2: enabled only for functions

• -Xllt --one_symb_per_sect3: enabled only for variables
84 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
If the ELF file is not one symbol per section, the linker moves the original section of the symbol
(where the symbol is defined) to the specified location in the segment.

The ("file_pattern", "symbol_pattern") in the directive syntax identifies the
symbols.

Section and symbol order in the new segment reflect these rules:

• For sections and symbols within an executable, the order of section and symbol patterns in the
.segment directive. The symbol pattern has a higher priority than section pattern in case of a
conflict.

• For like-named sections or symbols from different files, the file order on the command line.

Consecutive .segment directives in the command file produce contiguous segments in the object
file, with possible alignment padding inserted.

The linker uses the same segment allocation algorithm, regardless of the segment type. The
default type is loadable (type 1); the loader loads each type 1 segments into its load address. The
loader does not load dynamic (type 2) segments; you must use a DMA or other external device to
load a type 2 segment.

To specify where to begin placing segments in memory, use the .org directive with the .segment
directive.

Example

.org 0

.segment TEXT, ".text", (“file1.eln”, “_foo1”), ".rodata"

.segment DATA, (“file2.eln”, “_var*”), ".data", ".mydata*", ".bss"

These directives:

• Construct a segment named TEXT, which contains all sections named .text, symbol named
_foo1 in the file1.eln, followed by all sections named .rodata.

• Construct a segment named DATA, which contains all symbols whose names begin with
“_var” in the file2.eln, then all sections named .data, then all sections whose names begin with
“.mydata”, then all sections named .bss.

• Place both segments consecutively in memory, beginning at address 0.

Figure 3.2 shows the placement of these sections and symbols. (For the purposes of this example,
assume that file1.eln was linked before file2.eln.)
85StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Figure 3.2 Placement of Sections and Symbols Using .segment Directive

.set

The .set directive creates a 32-bit global symbol in the symbol table of the executable file and assigns a
value to it. The linker generates an error if the symbol already exists.

.set symbol_name value

Parameters

symbol_name

Name of the symbol to be inserted.

value

Value of the symbol.

Example

.set TextSize, @secsize("text")

Relocatable Files*

.text

.text

.mydata1

.mydata2

file1.eln

file2.eln

Executable File

TEXT Segment:

(Segments)
(Sections)

ELF Header

prog.eld

.text (file1.eln)

.data

.rodata

.bss

_foo1

_var1

_var2

Linker

.text (file2.eln)
_foo1 (file1.eln)
.rodata (file1.eln)

DATA Segment:
_var1 (file2.eln)
_var2 (file2.eln)
.data (file1.eln)
.mydata1 (file2.eln)
.mydata2 (file2.eln)
.bss (file2.eln)
86 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
.space

Defines a space for a group of segments. This space corresponds to a physical memory device in a
multiple-core environment.

.space space_name, start_address, end_address, {"default",}
"segment_pattern"[,"segment_pattern"...]

Parameters

space_name

Name of the space.

start_address

Starting address of the space.

end_address

Ending address of the space.

"default"

Optional flag. If set, specifies that all unmatched sections (those that do not match a segment
definition) be placed into the defined space.

"segment_pattern"

String that matches the name of one or more segments.

Remarks

Use this directive to group all segments that are to be placed in a given memory device. Spaces
may not overlap, as they are uniquely identified by name and range address.

Expressions that include expression functions, either directly or by substitution, may not be used
as an argument for this directive.

.union

Determines which pure data overlay shares a run address.

.union <section_name>, "flags", "section_pattern" [, "section
pattern"...]
87StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Parameters

section_name

Name of a BSS section.

"flags"

r - read, w - write, x - execute.

"section_pattern"

String that matches a section name.

Remarks

The linker combines all the sections that match the section_pattern argument into a BSS
section with the specified flags and section name. The sections are combined in the order specified
by the pattern argument.

The section resulting from the union is large enough to contain any of the sections that match the
pattern argument. The overlay is linked normally using the .segment directive, which
determines the run address of the union section. If the overlay section is not named in a
.segment directive, the linker links the section on a first-fit basis after processing the linker
command file.

.unit

Splits a linker command file into multiple parts, so that the linker can create multiple object files from a
single linker command file. This is useful for programming in a multiple-core environment, as a one
project can produce a separate object file for each core.

.unit unit_name

Parameters

unit_name

Name of the output object file

Remarks

All directives between two .unit directives are considered to be for one object file. The
unit_name is appended to the object file name. The object file contains:

• all sections that are mapped to the unit segments

• all sections whose names begin with unit_name that are not specified in the linker command
file (for example: abs sections)

The scope of a segment name is the unit in which it is used.
88 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Example

.unit c0

.org _CodeStart_L10

.segment .text, "c0'.text"

.org _DataStart_L10

.segment .data, "c0'.data"

.unit c1

.org _CodeStart_L11

.segment .text, "c1'.text"

.org _DataSTart_L11

.segment .data, "c1'.data"

From this example, the linker generates two object files: c0_a.eld and c1_a.eld.

If you call the linker with two input files containing these sections:

input1.eln
c0'.text, c1'.data, c0'.org.text, .bss

input2.eln
c1'.text, c1'.data, c1'.data

Then the output files will contain these sections:

c0_a.eld
c0'.text, c0'.org.text, .bss

c1_a.eld
c1'.data, c1'.data, c1'.data, .bss

.virtual_memory

Defines a memory region available for dynamic segments (segments that will not be loaded).

.virtual_memory lo_addr, hi_addr(, “flags”)

Parameters

lo_addr

32-bit expression that sets the region’s low address.

hi_addr

32-bit expression that sets the region’s high address.

"flags"

r - read, w - write, x - execute.
89StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Remarks

Parameter values must not be expressions that include expression functions, either directly or by
substitution.

Example

.virtual_memory 0xFF00000, 0xFFFFFFF, “rwx”

.xref

Notifies the Linker that the specified symbol has a reference, even if the Linker does not see the reference
during processing.

.xref symbol

Parameter

symbol

Any valid symbol.

Remarks

An undefined reference to a symbol prevents the linker from dead stripping. This is useful for
forcing the linking of a module containing the specified symbol, even if there are no actual
references to the symbol in the other modules.

The .xref directive is comparable to the -U linker command-line option. You can create an
undefined reference to a symbol either by using the .xref directive in the linker command file, or
by using the -Usymbol option on the command line.

.xref_module

Inhibits stripping of dead code or dead data from the specified module.

.xref_module “module_pattern”

Parameter

module_pattern

Name of an ELF module, or a pattern that specifies a module name. Double quotes must enclose
the pattern; the pattern may include wild-card characters *, ?, or [.
90 StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
Remarks

A common optimization is stripping dead code (code that never could be executed) and dead data
(data that never could be used). But this directive lets you turn off this stripping optimization if it
is not appropriate for certain modules.

Wild-card characters match any module-name character, including a slash or leading period. If
you specify the name of a library, you must start module_pattern with a * character, which tells
the linker to ignore the library path.

Examples

The directive

.xref_module “*gamma.eln”

prevents the dead code/data stripping mechanism from removing any objects from module
gamma.eln.

The directive

.xref_module “*lib1.elb(delta.eln)”

inhibits dead code/data stripping for module delta.eln. of library lib1.elb.

An undefined reference to a symbol prevents the linker from dead stripping. This is useful for
forcing the linking of a module containing the specified symbol, even if there are no actual
references to the symbol in the other modules.

The .xref directive is comparable to the -U linker command-line option. You can create an
undefined reference to a symbol either by using the .xref directive in the linker command file, or
by using the -Usymbol option on the command line.
91StarCore SC100 Linker User Guide

Linker Command File
Linker Directives
92 StarCore SC100 Linker User Guide

4
Overlays

This chapter explains how to create and use overlays in StarCore projects.

• 4.1 Using Overlays

• 4.2 Overlay Manager

• 4.3 Overlay Header Table

• 4.4 Address Translation Table Examples

4.1 Using Overlays

To use overlays in your program, you must:

1. Define the overlays sections in your source code with the overlay pragma

2. Define the overlay space in the linker command file.

3. Add an overlay manager to your source code to copy the overlay sections from the load address to the
run address

4.2 Overlay Manager

An overlay manager copies the overlay sections from their load addresses to the run addresses. You must
implement your own overlay manager; the runtime does not contain one.

To determine the load and run addresses of each overlay, the overlay manager must read and interpret the
overlay header table created by the linker. Listing 4.1 is a simple implementation of an overlay manager.

Listing 4.1 A Simple Overlay Manager

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct ovltab {
void *ovl_run;
void *ovl_load;
unsigned long int ovl_size;
unsigned long int ovl_checksum;
unsigned long int ovl_flags;
unsigned long int ovl_other;
93StarCore SC100 Linker User Guide

Overlays
Overlay Manager
unsigned short int ovl_shndx;
unsigned short int ovl_parent;
unsigned short int ovl_sibling;
unsigned short int ovl_child;

};

extern struct ovltab _overlay_table[];
extern unsigned long int _overlay_count;

static int Loaded_Segment = -1;

void *_overlay_manager(void *load_addr)

{
int i;

#ifdef TRACE_OVL
printf("Searching load addr: %X\n", load_addr);

#endif
for (i = 0; i<_overlay_count; i++)

if ((unsigned long) _overlay_table[i].ovl_load <= (unsigned long)
load_addr &&

((unsigned long) _overlay_table[i].ovl_load +
_overlay_table[i].ovl_size) > (unsigned long) load_addr) {
#ifdef TRACE_OVL

printf("Match at index %d, Run: %X, Size: %d\n", i,
_overlay_table[i].ovl_run, _overlay_table[i].ovl_size);
#endif

if (Loaded_Segment == -1 || Loaded_Segment != i) {
#ifdef TRACE_OVL

printf("Loading segment from load address\n");
#endif

Loaded_Segment = i;
return memcpy(_overlay_table[i].ovl_run,

_overlay_table[i].ovl_load, _overlay_table[i].ovl_size);
} else {

#ifdef TRACE_OVL
printf("Segment Already loaded\n");

#endif
/* Already loaded, simply return the run address */
return (_overlay_table[i].ovl_run);

}
}

printf("Overlay manager: Failed to locate this load address: %X\n",
load_addr);
#ifdef TRACE_OVL

printf("Overlay structure is:\n");
for (i = 0; i<_overlay_count; i++) {
94 StarCore SC100 Linker User Guide

Overlays
Overlay Header Table
printf("%5d -> Run: %8X, Load: %8X, Size: %8d\n",
i, _overlay_table[i].ovl_run, _overlay_table[i].ovl_load,

_overlay_table[i].ovl_size);
}

#endif
return NULL;

}

4.3 Overlay Header Table

The linker creates a section, .ovltab, wherever overlay sections are involved. This section contains two
symbols:

• __overlay_table

This is an array of type Elf32_Ovl that contains an entry for each overlay section.

• __overlay_count

This is an unsigned 32-bit integer that represents the number of entries in __overlay_table

The structured type, Elf32_Ovl, is:

typedef struct{
Elf32_Addr ovl_run; /*overlay run address*/
Elf32_Addr ovl_load; /*overlay load address*/
Elf32_Word ovl_size; /*size of overlay section in bytes*/
Elf32_Word ovl_checksum; /*checksum of the overlay data*/
Elf32_Word ovl_flags; /*overlay flags used by overlay manager*/
Elf32_Word ovl_other; /*other information*/
Elf32_Half ovl_shndx; /*overlay section index*/
Elf32_Half ovl_parent; /*parent overlay*/
Elf32_Half ovl_sibling; /*next sibling overlay*/
Elf32_Half ovl_child; /*first child overlay*/

} Elf32_Ovl;

The field ovl_other is a bitset that may contain these flags:

• OVL_OTHER_NONE 0 — ordinary text section.

• OVL_OTHER_WRITE 1 — ordinary data section.

• OVL_OTHER_DEF_LOADED 2 — section the linker loads at its run address.

Define these ovl_other values in the overlay.h file.

Only the linker should write field ovl_other. The overlay manager may use this field to copy back
only the data sections, or to know which sections the linker will load by default at their run addresses.
95StarCore SC100 Linker User Guide

Overlays
Address Translation Table Examples
4.4 Address Translation Table Examples

The previous chapter explained the .att_mmu directive, which creates an address translation table
(ATT) section. As this command can work with overlays, its examples are in this overlay chapter.

NOTE Appendix B consists of two longer, complex examples: one for a multi-core environment, and
another that makes use of the .att_mmu_setting directive.

4.4.1 Example 1: Non-Overlay

Suppose that an application includes the sections that Table 4.1 lists. You want the linker to set the base
address for each section, and to place these sections into memory efficiently.

Table 4.1 Non-Overlay Example: Initial Sections

Section Bytes
(Decimal)

Bytes
(Hexadecimal)

Alignment

Data1_1 230 E6 1

Bss1_1 3914 F4A 4

Rom1_1 30 1E 4

Pgm1_1 3260 CBC 16

Data1_2 391 187 1

Bss1_2 17010 4272 4

Rom1_2 18 12 4

Pgm1_2 3064 8F8 16

Data2_1 432 1B0 1

Bss2_1 510 1FE 4

Rom2_1 18 12 4

Pgm2_1 2536 98E 16

Data2_2 28 187 1

Bss2_2 10 A 4
96 StarCore SC100 Linker User Guide

Overlays
Address Translation Table Examples
Use the .att_mmu directive to create a memory address translation table (MATT) section:

.att_mmu “MATT”, 0x0, 0xffffff, \
“Data1_1”, “Bss1_1”, “Rom1_1”, Pgm1_1”, \
“Data1_2”, “Bss1_2”, “Rom1_2”, Pgm1_2”, \
“Data2_1”, “Bss2_1”, “Rom2_1”, Pgm2_1”, \
“Data2_2”, “Bss2_2”, “Rom2_2”, Pgm2_2”

The linker:

• Specifies a memory range that will accommodate each section: a power of 2, 256 bytes to 4
gigabytes. The new size of this range also serves as the alignment for each section.

• Organizes memory ranges from largest to smallest, assigning virtual starting addresses so as to fill a
contiguous range of virtual memory.

• Maps each section to an appropriate range of physical memory.

Table 4.2 shows the new sizes (decimal and hexadecimal) for each section, and lists the new addresses for
each section. Figure 4.1 depicts the layout of virtual memory, and Figure 4.2 depicts the mapping to
physical memory.

Rom2_2 18 12 4

Pgm2_2 5200 1450 16

Table 4.2 Non-Overlay Example: Final Sections

Section Initial Size New Size
(decimal)

New Size
(hex)

Virtual
Address

Physical
Address

Data1_1 230 256 100 0xE600 0x1900

Bss1_1 3914 4096 1000 0xD000 0x14000

Rom1_1 30 256 100 0xE900 0x6B00

Pgm1_1 3260 4096 1000 0xA000 0x12000

Data1_2 391 512 200 0xE400 0x1200

Bss1_2 17010 32768 8000 0x0000 0x8000

Rom1_2 18 256 100 0xE700 0x6A00

Table 4.1 Non-Overlay Example: Initial Sections

Section Bytes
(Decimal)

Bytes
(Hexadecimal)

Alignment
97StarCore SC100 Linker User Guide

Overlays
Address Translation Table Examples
Pgm1_2 3064 4096 1000 0xC000 0x13000

Data2_1 432 512 200 0xE000 0x1400

Bss2_1 510 512 200 0xE200 0x1000

Rom2_1 18 256 100 0xEA00 0x1B00

Pgm2_1 2536 4096 1000 0xB000 0x7000

Data2_2 28 256 100 0xEB00 0x6800

Bss2_2 10 256 100 0xEC00 0x1A00

Rom2_2 18 256 100 0xE800 0x6900

Pgm2_2 5200 8192 2000 0x8000 0x10000

Table 4.2 Non-Overlay Example: Final Sections

Section Initial Size New Size
(decimal)

New Size
(hex)

Virtual
Address

Physical
Address
98 StarCore SC100 Linker User Guide

Overlays
Address Translation Table Examples
Figure 4.1 Non-Overlay Example: Virtual Memory Layout
FFFF

ED00

EC00

EB00

EA00

E900

E800

E200

D000

C000

B000

A000

Bss1_2 (8000)

8000

0000

Pgm2_2 (2000)

Pgm1_1 (1000)

Pgm2_1 (1000)

Pgm1_2 (1000)

Data1_1 (100)
E600

Data1_2 (200)
E400

Bss2_1 (200)

Data2_1 (200)
E000

Bss1_1 (1000)

Rom1_1 (100)

Rom2_2 (100)

Rom1_2 (100)
E700

Rom2_1 (100)

Data2_2 (100)

Bss2_2 (100)

[unmapped]
99StarCore SC100 Linker User Guide

Overlays
Address Translation Table Examples
Figure 4.2 Non-Overlay Example: Physical Memory Layout

4.4.2 .att_mmu section

Wherever overlay sections are involved in the address translation table, the linker creates an .att_mmu
section, which contains these symbols:

6C00

6B00

1C00

1A00

1900

1600

1400

Bss2_1 (200)

1200

1000

Data1_2 (200)

Data2_1 (200)

Data1_1 (100)

Rom2_2 (100)
6900

Data2_2 (100)
6800

Rom2_1 (100)
1B00

Bss2_2 (100)

Rom1_1 (100)

Rom1_2 (100)
6A00

14000

13000

12000

10000

Pgm2_1 (1000)

8000

7000

Bss1_2 (8000)

Pgm2_2 (2000)

Pgm1_1 (1000)

Pgm1_2 (1000)

15000

Bss1_1 (1000)
100 StarCore SC100 Linker User Guide

Overlays
Address Translation Table Examples
1. __address_translation_table_mmu

This is an array of type ELF32_ATT_MMU. Listing 4.2 explains the structure of this type. (Sorting in
this array is in ascending order of the physical_address field.)

2. __address_translation_table_mmu_count

This is an unsigned, 32-bit integer.

3. __task_table

This is an array of type Elf32_TASK_DESCRIPTOR. Listing 4.3 explains the structure of this type.
(Sorting in this array is in ascending order of the task_id field, then the desc_index field.)

4. __task_table_count

This is an unsigned 32-bit integer.

Listing 4.2 ELF32_ATT_MMU Structure

typedef struct att_mmu{
Elf32_Addr base_address; //virtual address/
Elf32_Addr physical_address; //physical address
Elf32_Word physical_size; //size (bytes) of overlay section
Elf32_Word attribute; //bit-set for section attributes

//(like cacheable...), which RTOS,
//debugger, and so forth can use.

Elf32_Half physical_shndx; //overlay section index
Elf32_Half other; //other information

} Elf32_ATT_MMU;

The other field is a bit set that may contain these flags:

OVL_OTHER_NONE 0 — ordinary section
OVL_OTHER_WRITE 1 — ordinary data section
OVL_OTHER_EXEC 8 — ordinary text section

is in ascending order of the physical_address field.

Listing 4.3 ELF32_TASK_DESCRIPTOR Structure

typedef struct task_map{
Elf32_Half task_id; //task identifier
Elf32_Half desc_index; //descriptor index in

// __address_translation_table_mmu
//table

} Elf32_TASK_DESCRIPTOR;

File att_mmu.h defines the data structures and variables needed to work with the .att_mmu section.
101StarCore SC100 Linker User Guide

Overlays
Advanced Examples
4.5 Advanced Examples

The final examples of this chapter help clarify how the address translation table feature can be of help to
you.

NOTE Examples 2, 3, and 4 each pertain to a task — that consists of .text, .data, .rom, and
.bss sections — and which is to execute in virtual address space.

4.5.1 Example 2: Irrelevant Section Placement

Requirements:

1. Virtual address space is from 0x0 to 0xffff.

2. Within this space, it does not matter where the linker places each section.

The appropriate linker directive is:

.att_mmu“task”,0x0,0xffff,”.text”,”.data”,”.rom”,”.bss”

As this command does not specify any base addresses, the linker places all sections in virtual memory on
a first-fit basis.

4.5.2 Example 3: Specific Base Address

Requirements:

1. Virtual address space is from 0x0 to 0xffff.

2. The .text section must start at address 0x100 in virtual memory.

The appropriate linker directive is:

.att_mmu“task”,0x0,0xffff,”.text”,base_address:0x100,”.data”,”.rom”,”.
bss”

This command specifies a base address for the .text section, so the linker’s first action is placing this
section — that is, fixing its position in virtual memory at address 0x100. Next, the linker places the
.data, .rom, and .bss sections on a first-fit basis.

4.5.3 Example 4: Two Ranges, Specific Base Addresses

Requirements:

1. Virtual address space is from 0x0 to 0xffff, and from 0xf0000 to 0xf1000.

2. The .text section must start at address 0x200 in virtual memory — and at address 0x10000 in
physical memory.
102 StarCore SC100 Linker User Guide

Overlays
Advanced Examples
3. The .data section must start at address 0xf0000 in virtual memory — and its extended section
attribute must have the value 0x4.

The appropriate linker directives are:

.att_mmu“task”,0x0,0xffff,0xf0000,0xf1000,\
 ”.text”,base_address:0x200,\
 ”.data”,base_address:0xf000,attribute:0x4,\
 ”.rom”,”.bss”
.org 0x10000
.segment text, “.text”

In response, the linker performs these actions:

1. Per the .att_mmu directive, places the .text section in virtual memory at address 0x200.

2. Per the same directive, places the .data section in virtual memory at address 0xf0000, assigning
the 0x4 attribute value.

3. Per the same directive, places the .rom, and .bss sections in virtual memory on a first-fit basis.

4. Per the .org and .segment directives, places the .text section in physical memory. (The
.att_mmu directive does not control section placement in physical memory. Just as with placing an
ordinary section in physical memory, placing the .text section there requires the .org and
.segment directives.)

4.5.4 Examples 5: Disjunct Virtual Spaces

Examples 5a and 5b (as well as examples 6a and 6b) pertain to three tasks, each consisting of four
sections:

• Task one — “.text1”, “.data1”, “.rom1”, and “.bss1”

• Task two — “.text2”, “.data2”, “.rom2”, and “.bss2”

• Task three — “.text3”, “.data3”, “.rom3”, and “.bss3”

For examples 5a and 5b, execution of the three tasks takes place in disjunct virtual address space. Within
the system, use of each virtual address is unique. This is single-mapped virtual addressing, which means
that different tasks do not use the same virtual addresses at the same time. Figure 4.3 represents this
arrangement.
103StarCore SC100 Linker User Guide

Overlays
Advanced Examples
Figure 4.3 Single-Mapped Virtual Addressing

4.5.4.1 Example 5a: All Sections in Virtual Memory

Requirement: Place all sections of all tasks in virtual memory.

The appropriate linker directive is:

.att_mmu“tasks”,0x0,0xfffff,\
 ”.text1”,.data1”,”.rom1”,”.bss1”\
 ”.text2”,.data2”,”.rom2”,”.bss2”\
 ”.text3”,.data3”,”.rom3”,”.bss3”

Task three virtual
address space

Virtual address
space

Physical address
space

Task two virtual
address space

Task one virtual
address space

0

0

0

0

0

232-1

232-1

232-1

232-1

232-1
104 StarCore SC100 Linker User Guide

Overlays
Advanced Examples
4.5.4.2 Example 5b: Task-Defined Spaces

Requirement: Place the sections corresponding to each task in the virtual address spaces that each task
defines.

The appropriate linker directives are:

.att_mmu“task1”,0x0,0xfffff,\
 ”.text1”,.data1”,”.rom1”,”.bss1”\
.att_mmu“task2”,@secaddr(“task1)+@secsize(“task1”),0xfffff,\
 ”.text2”,.data2”,”.rom2”,”.bss2”\
.att_mmu“task3”,@secaddr(“task2)+@secsize(“task2”),0xfffff,\
 ”.text3”,.data3”,”.rom3”,”.bss3”

By using the linker function, you can compute the size and starting address in the virtual memory of the
sections that .att_mmu defines. This function is useful for preserving virtual memory space.

4.5.5 Examples 6: Shared Virtual Spaces

In examples 6a through 6c, execution of the three tasks takes place in shared virtual address space. Each
task generates virtual addresses; address translation maps these virtual addresses to different physical
memory. This is multi-mapped virtual addressing, which Figure 4.4 represents.
105StarCore SC100 Linker User Guide

Overlays
Advanced Examples
Figure 4.4 Multi-Mapped Virtual Addressing

4.5.5.1 Example 6a: Definitions for All Tasks

Requirement: Define each individual task.

The appropriate linker directives are:

.att_mmu“task1”,0x0,0xfffff,”.text1”,”.data1”,”.rom1”,\
 ”.bss1”
.att_mmu“task2”,0x0,0xfffff,”.text2”,”.data2”,”.rom2”,\
 ”.bss2”
.att_mmu“task3”,0x0,0xfffff,”.text3”,”.data3”,”.rom3”,\
 ”.bss3”

Task three virtual
address space

Virtual address
space

Physical address
space

Task two virtual
address space

Task one virtual
address space

0

0

0

0

0

232-1

232-1

232-1

232-1

232-1
106 StarCore SC100 Linker User Guide

Overlays
Advanced Examples
4.5.5.2 Example 6b: Directives for Data and Program

Requirements:

1. Use only .att_mmu directives.

2. Define each individual task.

The solution is to use two .att_mmu directives for each task — one for virtual data and the other for
virtual program. The appropriate linker directives are:

.att_mmu “task1_data”, task_id:0x1,0x0,0xfffff,”data1”,
”.rom1”,”.bss1”

.att.mmu ”task1_program”,task_id:0x1,0x0,0xfffff,”.text1”

.att_mmu “task2_data”, task_id:0x2,0x0,0xfffff,”data2”,
”.rom2”,”.bss2”

.att.mmu ”task2_program”,task_id:0x2,0x0,0xfffff,”.text2”

.att_mmu “task3_data”, task_id:0x3,0x0,0xfffff,”data3”,
”.rom3”,”.bss3”

.att.mmu ”task3_program”,task_id:0x3,0x0,0xfffff,”.text3”

4.5.5.3 Example 6c: .concatenate Directive

Requirements:

1. Define each individual task, as for Example 6b.

2. Reduce the size and number of MMU descriptors.

As with the previous example, two .att_mmu directives are necessary to define each task. But
satisfying the second requirement requires the .concatenate directive. The appropriate linker
directives are:

.concatenate”data1”,”.data1”,”.rom1”,”.bss1”

.concatenate”data2”,”.data2”,”.rom2”,”.bss2”

.concatenate”data3”,”.data3”,”.rom3”,”.bss3”

.att_mmu”task1_data”,task_id:0x1,0x0,0xfffff,”data1”

.att_mmu”task2_data”,task_id:0x1,0x0,0xfffff,”data2”

.att_mmu”task3_data”,task_id:0x1,0x0,0xfffff,”data3”

.att_mmu”task1_program”,task_id:0x1,0x0,0xfffff,”text1”

.att_mmu”task2_program”,task_id:0x1,0x0,0xfffff,”text2”

.att_mmu”task3_program”,task_id:0x1,0x0,0xfffff,”text3”

NOTE Appendix B consists of two longer, complex examples: one for a multi-core environment, and
another that makes use of the .att_mmu_setting directive.
107StarCore SC100 Linker User Guide

Overlays
Advanced Examples
108 StarCore SC100 Linker User Guide

A
Linker Messages

This appendix lists linker warnings and error messages. The linker always routes such messages to the
standard output.

• Table A.1 lists linker warnings.

• Table A.2 lists linker error messages.

• Table A.3 lists linker error codes and their explanations.

• Table A.4 lists various directives and their associated priority in the LCF.

Table A.1 Linker Warnings

Warning Explanation

Warning: can’t close directory
<DIRECTORY>.
Warning: can’t open directory
<DIRECTORY>.
Warning: can’t remove directory
<DIRECTORY>.
Warning: can’t remove temporary
file <FILE>.

The linker created its output file, but could not remove
the temporary directory or file that it also created. Any
of these warnings should include a brief explanation
for the failure.

Warning: Code/data stripping
cannot be performed.

In verbose mode, these additional messages
are possible:
Information: Duplicate function
symbol <function_name>.
Information: Function
<function_name> not found.
Information: In module
<module_name>: end of function
symbol <symbol_name> not defined.

• Not all function symbols function_name
had the corresponding end-of-function
symbol definitions F<function-
name>_end.

• For applications, the entry function _main
is not defined. For self-contained libraries,
no entry functions are defined using
.library_entry_points directive.

• Not all function symbols had valid sizes.
109StarCore SC100 Linker User Guide

Linker Messages
Warning: Ignore overlay support
for section <section_name>.

Command-line option -non-ovl specified sections
that the .overlay or .union directive named.
(Otherwise, the linker would change section types:
SHT_STARCORE_OVERLAY to SHT_PROGBIT,
SHT_STARCORE_UNION to SHT_NOBITS.)

Another way to avoid this warning is to use the
.non_ovl directive in the linker control file.

Warning: In module <module_name>:
size of symbol <symbol_name> has a
wrong value <value>.

STT_FUNC or STT_OBJECT symbol failed the size
validity check, so dead-code/dead-data stripping is
not possible. The sum of the symbol value plus
symbol size must not exceed the size of the section
that contains the symbol definition.

Warning: integer overflow. A numeric quantity in the linker control file is too big
for internal representation, so has been clamped.

Warning: no linker command file;
using internal defaults.

No -c option specified the command file, nor the linker
find one in file $SC100_HOME/etc/crtscsmm.cmd.
The linker used default options, producing behavior as
for a command file containing only:
.memory 0, 0xffffffff
.entry 0

Warning: non-standard escape
sequence \<CHAR>.

A quoted string in the linker command file contained a
backslash character not recognized as a valid escape
sequence; the linker ignored the backslash. (Valid
escape sequences are \”, \’, \?, \\, \a, \b, \f, \n,
\r, \t, and \v, as well as octal and hexadecimal
character literals.)

Warning: The <section_name>
absolute overlay section has a
different alignment <value>; the
current alignment is <value>.
Warning: The <section_name>
absolute overlay section has a
different size <value>; the
current size is <value>.

Linker accepts unmatched absolute overlay sections
(sections whose names do not match any .overlay
directives). The linker generates an absolute bss
section for all overlay sections that have the same run
address. The section size is the maximum over the
overlay section sizes. The linker generates a warning
if the absolute overlay sections have different sizes or
alignments.

Table A.1 Linker Warnings (continued)

Warning Explanation
110 StarCore SC100 Linker User Guide

Linker Messages
Table A.2 Linker Error Messages

Error Message Explanation

Error: <FILE>: unknown SC100 core
type.
Error: <FILE>: unknown <CORE>
core revision.

An input file was marked as being generated for a core
type (or core revision) that the linker did not recognize.
The linker may be out of date with respect to the
assembler, but either message could indicate an
assembler bug or a vendor-specific extension.

Error: <SECTION>: absolute
section may not be combined.

The input files contained two or more absolute sections
that had the same name. Absolute sections should
have unique names; this is why the StarCore
assembler incorporates addresses into section names.

Error: <SYMBOL> is unresolved,
referenced from <FILE> ...

All input files were read, but a required symbol
remained undefined. This message lists all files that
reference this symbol.

Error: absolute section <SECTION>
cannot be linked at address
<ADDRESS>. The address range
[<LOW>,<HIGH>] is unavailable.

Linking was not possible for an absolute section.
Either: (1) Another absolute section already occupied
all or part of its address range, (2) The range was not a
valid memory region -- reserved with the .reserve
directive or never allocated with the .memory directive.

Error: can’t create a temporary
directory (<DIRECTORY> is full).

The temporary directory is full. If you cannot correct
this condition, set the TMPDIR environment variable to
point to a different temporary directory.

Error: can’t create temporary
file <FILE>.

The linker could not create a temporary file; the
message includes the reason for this failure.

Error: can’t have .segment before
first .org or .firstfit.

A .segment directive preceded the first .org or .firstfit
directive.

Error: can’t fit section
<SECTION> at address <ADDRESS>.

The section did not fit at the memory location that the
linker control file specified.

Error: Can’t link group section
<section_name> explicitly.

Attempt to use a .group section for the .segment
directive.

Error: can’t link non-allocatable
section <SECTION>.

You requested linking for a debugging section, or some
other section not intended to be linked.

Error: can’t link section
<section_name> (<size_of_section>
bytes, align <value>).

Insufficient memory space for this section.
111StarCore SC100 Linker User Guide

Linker Messages
Error: can’t link section
<section_name> (<size_of_section>
bytes, align <value>) at
<offset_value>.

The section did not fit into the memory location that the
linker control file specified.

Error: cannot find <LIBRARY> in
any of <DIRECTORY> ...

The -l option specified a library that the linker could not
find in any search path that the -L option specified.

Error: Computation of overlay
section cannot be done because
there are sections
<ection_1_name>, <section_2_name>
that have different run
addresses.

1. At least one section specified in the .group directives
was to be place at two run addresses.

2. Possible loops.

Error: directory <DIRECTORY> does
not exist or is not writable.

The linker could not access the system’s temporary
directory. If you cannot correct this condition, set the
TMPDIR environment directory to point to a different
temporary directory.

Error: Do not reserve running
space for overlay. It is illegal
to use a default configuration for
overlay.

No space was reserved for the run address, so it was
not possible to load a configuration in that space.
Remove an asterisk or minus sign, so that you no
longer have a default configuration.

Error: export <export_name>
already exists in command file.

More than one .export directive used the same export
name.

Error: expression is not
absolute.

A linker directive expected a parameter that evaluated
to an absolute quantity, but the parameter was
undefined or referred to a relocatable address.

Error: group <group_name> already
exists in command file.

More than one .group directive used the same group
name.

Table A.2 Linker Error Messages (continued)

Error Message Explanation
112 StarCore SC100 Linker User Guide

Linker Messages
Error: illegal external
references to symbol
<symbol_name> in <module_name>
 definition in <space_name> of
unit <unit_name>.
 reference from <space_name> of
unit <unit_name>.

1. A symbol was defined in private space; a reference
to the symbol was not in another private place of the
same unit.

2. A symbol was defined in private space; a reference
to the symbol was from shared space, but shared
spaces were not defined at the same address in all
cores.

3. A symbol was defined in shared space S; a
reference to the symbol was not in any private space of
the unit, nor was it in any private space of another unit
that imported S.

4. A symbol was defined in shared space S; a
reference to the symbol was not from shared space
whose import list was included in the S import list.

Error: illegal mapping
[<LOW,<HIGH>] (low > high).

A .memory or .reserve directive specified a memory
region that did not make sense.

Error: import <import_name>
already exists in command file.

More than one .import directive used the same import
name.

Error: invalid alignment (must be
power of 2).

The .align directive received an inappropriate
alignment value.

Error: invalid token at
<CHARACTER>
Error: expected <TEXT> at
<CHARACTER>.

A parse error occurred during the reading of the linker
control file. The input was malformed (for example, a
number contained a non-digit) or the expected type of
text was not found (for example, a string appeared
where a directive was expected).

Error: It is illegal to have the
section <section_name> in default
configuration for overlay,
because it is not a group section
or an overlay section.

Attempt to specify a non-group or non-overlay section
as default configuration for an .overlay directive.

Error: It is illegal to have two
default configurations into an
overlay directive.

Attempt to have the linker load two sections at the
same run address. Remove an asterisk or a minus
sign.

Error: mapping overlaps existing
mapping [<LOW>,<HIGH>].

A .memory directive specified a memory region that a
previous .memory directive already specified (partially
or completely).

Table A.2 Linker Error Messages (continued)

Error Message Explanation
113StarCore SC100 Linker User Guide

Linker Messages
Error: mapping overlaps existing
segment <SEG<ENT> at <LOW
ADDRESS>...<HIGH ADDRESS>.

An .org directive specified an address that overlaps the
start address of another .org directive.

Error: module <FILE> contains no
symbol table.

An input file contained relocations but no symbol table.
This prevents linking any section that contains external
references or section-relative internal references.

Error: multiple absolute sections
at address <ADDRESS>.

The input files contained two or more absolute sections
that had the same starting address.

Error: multiple entry points
specified.

The .entry directive appeared more than once in the
linker control file.

Error: .org values must increase
monotonically.

The linker control file contained a .org directive with a
starting address less than that of the previous .org
directive. The linker requires section specification from
the lowest address to the highest address.

Error: out of memory. The linker ran out of memory. Some operating systems
let you increase available memory by closing open
applications or specifying a resource limit.

Error: overlay <overlay_name>
already exists in command file.

More than one .overlay directive used the same
overlay name.

Error: part or all of address
range is already unmapped.

A .reserve directive specified a memory region (1)
already partially or completely specified by a previous
.reserve directive or (2) never allocated via a .memory
directive.

Error: redefinition of symbol
<SYMBOL> in <FILE>.

An input file defined a symbol already defined by either
the linker control file or another input file.

Error: Relocation Error. A relocation could not be performed; the message
includes additional details.

A likely reason for this message: the input file
contained a data or code reference to a symbol value,
but the symbol was unaligned or outside the machine
instruction’s allowable representation. For example,
you may have compiled or assembled code assuming
that all data would be in the first 64K of memory, but
the linker control file specified data placement outside
that range.

Table A.2 Linker Error Messages (continued)

Error Message Explanation
114 StarCore SC100 Linker User Guide

Linker Messages
Error: <section_name> has already
been overlaid.

More than one .overlay directive mentioned the
section.

Error: <section_name> is not an
overlay/union section.

An .overlay/.union directive specified a non-overlay
section.

Error: <section_name> section is
not placed into space.

The section was not placed in memory space. Check
all rename directives for inappropriate renaming of this
section.

Error: section <SECTION> can not
be linked.

The section would not fit into any available memory
region.

Error: section <SECTION> in
<FILE> has flags <FLAGS>
incompatible with existing flags
<FLAGS>.

The input files contained two or more sections with the
same name but different flag sets. For example, a
.data section could be writable in one file but not in
another. This is why the StarCore assembler assigns
standard flags to the conventional section names
(.text, .rodata, .data, and .bss).

Error: section <SECTION> is
already linked.

The linker control file specified linking a section more
than once: the section’s name matches more than one
pattern of a .segment directive.

Error: section <section_name>
already exists in overlay
<overlay_name>.

An overlay directive specified the same section twice.

Error: Section <section_name> in
<module_name> has flags <value>
(<list_of_flag_name>). The
section punctured must have flags
<value> (<list_of_flag_name>).

At least one section following a punctured section did
not have flags specified in the flag directive.

Error: Section <section_name> in
<module_name> has loading space
(<space_name> in unit
<core_name>) incompatible with
running space (<space_name> in
unit <space_name>), both spaces
must have the same unit.

Loading and running spaces were not in the same unit,
keeping necessary information from the overlay
manager.

Error: Section <section_name> was
not mentioned in any .overlay/
.union directive.

An overlay/union section must be present in only one
overlay/union directive.

Table A.2 Linker Error Messages (continued)

Error Message Explanation
115StarCore SC100 Linker User Guide

Linker Messages
Error: space <space_name> already
exists in command file.

More than one .space directive used the same space
name.

Error: The directive
.library_entry_points was omitted
in the linker command file.

Attempt to create a self-contained library without this
mandatory directive.

Error: The <name> instruction is forbidden at
offset <value> in (section index:<value> and
module name: <name>).

The instruction is not compatible with the specified
target architecture.

Error: The symbol <symbol_name>
has different addresses on all
cores. Value <value> from unit
<unit_name> in <module_name>.

A symbol defined in a private space can be referred to
from shared space on defined at the same address in
all cores.

Error: union <union_name> already
exists in command file.

More than one .union directive used the same union
name.

Error: unit <unit_name> already
exists in command file.

More than one .unit directive used the same unit name.

Error: This is a symbol
<symbol_name> in a section
<section_name> that was cloned
for overlay purposes. Cannot find
the section <section_name>.

Linker could not set the index of the section for this
symbol.

Error: unknown option <OPTION>. A command-line option was not recognized.

Error: unrecognized directive
<DIRECTIVE>.

The linker could not recognize a directive in the linker
control file.

Error: You cannot place section
<section_name> at offset <value>
in group <group_name>. Section
<section_name> could not be
aligned to <value>. Try again
using offset <value>.

Linker could not use the specified offset. Try the
suggested offset.

Error: You could try to place
segment <segment_name> at
<address>.

Linker could not use the specified address. Try the
suggested address.

Table A.2 Linker Error Messages (continued)

Error Message Explanation
116 StarCore SC100 Linker User Guide

Linker Messages
Table A.3 Linker Error Codes

Error Code/Message Explanation

Error(E1001): LCF syntax:
unknown directive
‘bad_directive’.
segment8.cmd(1):
.bad_directive

Unsupported directive. The linker interprets
any text beginning with a dot as a directive.

Error(E1002): unit c0: LCF
syntax: missing token ‘,’
after ‘shared_m2’.
unit c0:
os_msc814x_link.lcf(36):
.space shared_m2

Error(E1002): unit c0: LCF
syntax: missing token ','
before '".shared_data_m2"'.
unit c0:
os_msc814x_link.lcf(37):
.space shared_m2, 0xc000,
0xcfff ".shared_data_m2"

Incomplete directive definition.

Error(E1003): LCF syntax:
unknown permission flag 'e',
expect [rwx].
bss2.cmd(21): "rew"

Incorrect permission flag for .bss section.
The LCF only accepts ‘r’, ‘w’, ‘x’ or a
combination of these three characters as
.bss section flag.

Error(E1004): LCF syntax:
invalid or missing directive
name, expect string or
identifier after '.group'.
group2.cmd(53): .group 1234,
"Pgm4"

Incorrect directive name. Directive name
should be a string or an identifier.

Error(E1005): LCF syntax:
invalid or empty expression,
expect segment_type or
section_pattern.
segment3.cmd(24): .segment
DATA1,

Incomplete directive definition.

Error(E1006): LCF syntax:
unexpected identifier 'DATA'
at 'DATA) + segsize(DATA)'.
segment2.cmd(23): DATA) +
@segsize(DATA)

Incorrect directive definition.
117StarCore SC100 Linker User Guide

Linker Messages
Error(E1007): LCF syntax:
unexpected expression after
token '\'.
align1.cmd(11): \ "rwx"

Incorrect syntax after the line continuation
character ‘\’. Do not specify any other
character after the line continuation
character. Move the text after the
continuation character to a new line.

E1008 RESERVED.

Error(E1009): LCF syntax:
invalid or empty expression,
expect constant expression
after '.align'.
align3.cmd(26): .align sad

Incorrect expression in the directive
definition. Specify a constant value
expression.

Error(E1010): LCF syntax:
invalid or empty expression,
expect constant expression
for length field in .bss
directive.
bss4.cmd(21): .bss
"BSS","rxw",sada

Incorrect directive definition. Some non-trivial
directives may have more than one field in
the syntax structure, which must be written in
the specified order.

Error(E1011): LCF
configuration: redefinition
of directive .group with same
name 'G1'.
group3.cmd(52): .group
"G1","Pgm1","Pgm2"
group3.cmd(53): .group "G1"

Identical directive name in the LCF. Specify
a unique name for the directive definition.

Error(E1012): LCF
configuration: redefinition
of directive .rename with
same pattern '*.elb(*) .text
.libtext'.
rename8.cmd(1): .rename
"*.elb(*)", ".text",
".libtext"
rename8.cmd(2): .rename
"*.elb(*)", ".text",
".libtext"

Same pattern definition for more than one
directive of the same type. Specify unique
pattern definition for each directive.

Table A.3 Linker Error Codes

Error Code/Message Explanation
118 StarCore SC100 Linker User Guide

Linker Messages
Error(E1013): LCF
configuration: redefinition
of directive .entry.
entry5.cmd(20): .entry
@segaddr(INTVEC)

Two definitions for the .entry directive.
Specify a single entry point for an
application.

Error(E1014): LCF
configuration: duplicate
pattern '_Usymbol' in/for
directive .xref.
xref3.cmd(31): .xref _Usymbol
xref3.cmd(34): .xref _Usymbol

Duplicate in/for pattern expression for a
directive.

Error(E1015): LCF
configuration: invalid
expression for alignment
field in directive .align,
expect power of 2 alignment.
align4.cmd(26): .align 19

Incorrect align expression. Specify an
alignment with a power of 2.

Error(E1016): LCF
configuration: undefined
section '.libtext' used in
expression @secalign(...).
rename6.cmd(26):
@secalign(".libtext")

Unable to find the definition of section
“.libtext” in the LCF.

Error(E1017): LCF
configuration: undefined
segment 'DATA9' used in
expression @segsize(...).
segment2.cmd(23): _DataStart
+ @segsize(DATA9) +
@segalign(DATA)

Unable to find the definition of segment
“DATA9” in the LCF. Compared with
@secxxxx(…) expression, the argument for
@segxxxx(…) does not require quotes, while
the argument for secxxxx(…) requires
quotes. For example: @secalign(“sec1”),
@segalign(seg1).

Error(E1018): LCF
configuration: too late for
directive .xref, because
reading input files is
already done.
xref2.cmd(31): .xref _Usymbol
fdw eqf

Incorrect priority in the LCF. Linker
processes the directives with a low priority
number before processing the directives with
a higher priority number. This error occurs
when the linker encounters any
inconsistencies in the directive priorities.

Table A.3 Linker Error Codes

Error Code/Message Explanation
119StarCore SC100 Linker User Guide

Linker Messages
Fatal(F1019): System error:
fail to run directive .align.
align4.cmd(26): .align 19

Incorrect directive definition. This error
generally occurs because of an earlier
reported error from the same memory
location.

E1020 RESERVED.

Error(E1021): LCF
configuration: directive
.align cannot precede the
first .org directive
align1.cmd(18): .align 16

Directive .align cannot occur before the first
.org directive. Check the first occurrence of
.align directive in the LCF and make sure
that some .org directive precedes it.

E1022 RESERVED.

Error(E1023): LCF
configuration: section
'.unlikely' is not placed
explicitly in linker control
file.

Error placing a section on first fit basis. Use
one of the following method to explicitly
place a section in the LCF:

• place the section in a .segment
and then place this segment by the
.org directive

• place the section in a .concatenate
directive and then place this
concatenate section in .att_mmu
directive with argument “physical
_address” set. Alternatively, place
the section in .att_mmu directive
directly.

• place the section in a .group
directive with argument
“load_address” set.

This error occurs only when -enable-
error-placing-section-on-first-
fit-basis is used on command line.

Fatal(F1024): LCF
configuration: missing
overlay definition for
section 'Pgm3', expect it's
defined by .overlay or
.att_mmu directive.

Missing .overlay directive in the LCF. The
linker assumes that when .att_mmu directive
is present in the LCF and the hardware
architecture is equipped with the MMU, all
sections receive the overlay attribute during
link time. Make sure that the section
specified in the error message is defined in
an .overlay or .att_mmu directive.

E1025 RESERVED.

Table A.3 Linker Error Codes

Error Code/Message Explanation
120 StarCore SC100 Linker User Guide

Linker Messages
E1026 RESERVED.

E1027 RESERVED.

E1028 RESERVED.

Fatal(F1029): LCF
configuration: cannot create
segment for group 'G2', same
name segment exists.
group1.cmd(62): .segment
G2,".data",".ramsp_0",".defau
lt",".bss"
group1.cmd(52): .group "G2",
_Load_G2,Load_Segment,"Pgm3",
"Pgm2","Pgm4"

Duplicate segment name. The linker creates
a segment with the name specified for a
.group directive. This error message occurs
when the linker finds a segment already
defined with .group directive name.

Error(E1030): LCF
configuration: incorrect
memory range(0x0000ffff,
0x0000fffe), low_addr >=
high_addr.
reserve4.cmd(17): .reserve
_CodeStart-1, _CodeStart-2,

Incorrect memory range specified in the
directive definition.

Fatal(F1031): LCF
configuration: memory
range(0x00010000, 0x00ffffff)
overlapped with another
memory range.
memory11.cmd(15): .memory
0x10000, 0xfffff, "r"
memory11.cmd(16): .memory
0x10000, 0xffffff, "rxw"

Overlapped .memory directives. The
.memory directive is used to configure
available physical memory block in the
system.

Fatal(F1032): LCF
configuration: cannot reserve
memory(0x0000fffe,
0x0000ffff), memory range is
not covered by any .memory
directive.
align1.cmd(13): .reserve
_CodeStart-2, _CodeStart-1

Missing .memory directive definition. Check
.memory directive definitions in the LCF and
make sure that the requested memory region
is included.

Table A.3 Linker Error Codes

Error Code/Message Explanation
121StarCore SC100 Linker User Guide

Linker Messages
Error(E1033): unit c0: LCF
configuration: cannot reserve
space shared_m2(0xd0020000,
0xd0900000), memory range is
used by other segment/
reserve(s) or not covered by
any .memory directive.
Space memory map for unit
"c0":
|0x40000000..0x60000000| free
|0xc0000000..0xc0080000| free
|0xd0000000..0xd001ffff| free
|0xd0020000..0xd0900000|
shared_m3
|0xd0900001..0xd0a00000| free

Conflict in specified memory range. This
error indicates that linker cannot allocate
memory region for the specified space,
because:

• the memory region is used by
another segment or space

• the memory region is reserved by
.reserve directive or reserve
clause in .att_mmu directive

• the memory region is not covered
by any .memory directive

E1034 RESERVED.

Error(E1035): LCF
configuration: cannot
allocate memory(0x00010000,
0x00010349) for segment
TEXT(842 bytes, align 16,
perms r-x), incompatible
permission with .memory
directive.
memory10.cmd(15): .memory
0x10000, 0xfffff, "r"

Incorrect access attributes. Verify .memory
and .segment directive definitions in the LCF
and make sure that the segment is placed in
a compatible memory region. In addition:

• all the sections placed in a
segment must have same access
attribute

• segment must be placed in a
memory region with compatible
access attributes

Error(E1036): LCF
configuration: cannot
allocate memory(0x00000000,
0x00000fff) segment
.intvec(4096 bytes, align 2,
perms r-x), too large to fit
into remaining memory.

Unable to allocate the requested memory for
the specified segment. Expand the .memory
directive so that it covers the memory region
specified in the error message.

Table A.3 Linker Error Codes

Error Code/Message Explanation
122 StarCore SC100 Linker User Guide

Linker Messages
Error(E1037): LCF
configuration: cannot
allocate memory(0x00014e20,
0x0001501f) for segment
SEG(512 bytes, align 16,
perms rwx), the memory range
is overlapped with other
segment/reserve(s)..
Memory map:
r-x |0x00000000..0x00000fff|
segment INTVEC (4096 bytes)
rwx |0x00001000..0x0000112b|
segment DATA (300 bytes)
rwx |0x0000112c..0x0000fffd|
free (61138 bytes)
|0x0000fffe..0x0000ffff|
reserved (2 bytes)
r-x |0x00010000..0x00010349|
segment TEXT (842 bytes)
rwx |0x0001034a..0x0001034f|
free (6 bytes)
r-x |0x00010350..0x00015595|
segment LIBTEXT (21062 bytes)
rwx |0x00015596..0x00027fff|
free (76394 bytes)
|0x00028000..0x0007eff0|
reserved (356337 bytes)
rwx |0x0007eff1..0x00ffffff|
free (16257039 bytes)
You could try to place
segment SEG at 0x000155A0.

Overlapped memory region. The specified
memory region is used by another segment
or reserve.

Table A.3 Linker Error Codes

Error Code/Message Explanation
123StarCore SC100 Linker User Guide

Linker Messages
Error(E1038): LCF
configuration: cannot
allocate memory(0x00014e20,
0x0001501f) for segment
SEG(512 bytes, align 16,
perms rwx), the memory range
is not defined by any .memory
directive.
Memory map:
r-x |0x00000000..0x00000fff|
segment INTVEC (4096 bytes)
rwx |0x00001000..0x0000112b|
segment DATA (300 bytes)
rwx |0x0000112c..0x0000fffd|
free (61138 bytes)
|0x0000fffe..0x0000ffff|
reserved (2 bytes)
r-x |0x00010000..0x00010349|
segment TEXT (842 bytes)
rwx |0x0001034a..0x0001034f|
free (6 bytes)
r-x |0x00010350..0x00015595|
segment LIBTEXT (21062 bytes)
rwx |0x00015596..0x00027fff|
free (76394 bytes)
|0x00028000..0x0007eff0|
reserved (356337 bytes)
rwx |0x0007eff1..0x00ffffff|
free (16257039 bytes)
You could try to place
segment SEG at 0x000155A0.

Unable to allocate the requested memory
because no .memory directive defines the
specified memory region.

Table A.3 Linker Error Codes

Error Code/Message Explanation
124 StarCore SC100 Linker User Guide

Linker Messages
Error(E1039): LCF
configuration: cannot find
available free memory for
segment
.vfrw_buffers_bss(16777216
bytes, align 16777216, perms
rw-).
Memory map:
|0x00000000..0x3fffffff|
reserved (1073741824 bytes)
rwx |0x40000000..0x40000020|
free (33 bytes)
|0x40000021..0xbfffffff|
reserved (2147483615 bytes)
rwx |0xc0000000..0xc0080000|
free (524289 bytes)
|0xc0080001..0xcfffffff|
reserved (267911167 bytes)
rwx |0xd0000000..0xd0a00000|
free (10485761 bytes).

Unable to find a free memory block to place
the specified segment using first fit strategy.
Add a new .memory directive or adjust an
existing directive to accommodate the
specified segment.

Error(E1040): unit c0: LCF
configuration: cannot fit
segment
os_shared_data_seg(0xc0040000
, 0xc00400ff) into space
shared_ddr(0x40004000,
0x60000000).
unit c0:
os_msc814x_link.lcf(84):
.segment .os_shared_data_seg,
".os_shared_data" ;Non
cacheable

Unable to place the segment in specified
space memory region because the segment
is already placed using fixed or first-fit
method in another memory region which is
not covered by the space memory region.

Table A.3 Linker Error Codes

Error Code/Message Explanation
125StarCore SC100 Linker User Guide

Linker Messages
Error(E1041): LCF
configuration: inconsistent
flag for section components
in output section .text.
d:\cwsc\StarCore_Support\comp
iler\lib\sc140\rtlib_le.elb(e
xit.eln)(.data): flag=
SEC_ALLOC SEC_WRITE SEC_BITS
d:\cwsc\StarCore_Support\comp
iler\lib\sc140\startup_le.eln
(.text): flag= SEC_ALLOC
SEC_EXEC SEC_BITS

Inconsistent attributes composed into an
output section. The linker expects all the
section components of an output section to
have consistent attributes, such as
loading_space, running_space, flags, etc.
This error may also occur because of wrong
.rename definitions:
.rename "*.elb(*)", ".data",
".text"

E1042 RESERVED.

E1043 RESERVED.

E1044 RESERVED.

Fatal(F1045): LCF
configuration: cannot link
section '.data', section
already linked to segment
'DATA'
segment7.cmd(24): .segment
DATA1,".data",".ramsp_0",".bs
s",".default"

Duplicate section placement. Verify the
section placement in the LCF.

Fatal(F1046): LCF
configuration: multiple link
section '.text' by
directives:
segment5.cmd(32):
.concatenate cc1, ".text"
segment5.cmd(24): .segment
TEXT, ".text"

Duplicate section placement. When you
place a section using .concatenate directive,
you cannot place the same section using
.segment directive again.

E1047 RESERVED.

Table A.3 Linker Error Codes

Error Code/Message Explanation
126 StarCore SC100 Linker User Guide

Linker Messages
Fatal(F1048): LCF
configuration: cannot link
section 'G2' explicitly,
because it's a group section.
group1.cmd(61): .segment
.data,".data",".ramsp_0",".de
fault",".bss", "G2"

Incorrect section specification. The group
section can only be linked with .group and
.overlay directive. In addition, once linked
with .group and .overlay directive, the group
section cannot be used in .segment or
.concatenate section again.

E1049 RESERVED.

Fatal(F1050): unit c0: LCF
configuration: cannot include
concatenated section
'.os_kernel_text' into
another .concatenate
directive.
unit c0:
os_msc814x_link.lcf(43):
.concatenate
".os_kernel_text", ".osvecb",
".text",
".oskernel_text_run_time",
".oskernel_text_run_time_crit
ical",
".private_load_text",".defaul
t", ".intvec"
unit c0:
os_msc814x_link.lcf(44):
.concatenate "CC", ".data",
".os_kernel_text"

Incorrect directive specification. The
concatenated sections cannot be included in
another .concatenate directive.

Fatal(F1051): unit c1: LCF
configuration: undefined unit
'bad_unit' in linker command
file.
unit c1:
os_msc814x_link.lcf(119):
.import "bad_unit`shared_m3"

Undefined unit used as section or space
name prefix in the LCF.

Error(E1052): Symbol
resolution: undefined symbol
'_Usymbol' used in .xref
directive.
xref3.cmd(31): .xref _Usymbol

Undefined symbol used in the .xref directive.

Table A.3 Linker Error Codes

Error Code/Message Explanation
127StarCore SC100 Linker User Guide

Linker Messages
Error(E1053): unit c0: Symbol
resolution: found
inconsistent address for
symbol
'_g_os_pram_memory_size'
which is defined in section
'.os_shared_data'.
Value 0xC0040010 from unit c0
in src/
os_msc814x_debug_noassert.elb
(os_shared_data.eln)
Value 0x40000010 from unit c3
in src/
os_msc814x_debug_noassert.elb
(os_shared_data.eln)
Value 0x40000010 from unit c2
in src/
os_msc814x_debug_noassert.elb
(os_shared_data.eln)
Value 0x40000010 from unit c1
in src/
os_msc814x_debug_noassert.elb
(os_shared_data.eln)

Inconsistent addresses for the symbols with
same name on different cores. Do one of the
following:

• move the section containing the
symbol definition into a shared
space.

• if the section containing the
symbol definition is required in a
private space, make sure that this
section is placed on the same
virtual address on all the cores.

E1054 RESERVED.

Error(E1055): Symbol
resolution: unresolved
reference to symbol 'dsadas'.

Undefined symbol ‘dsadas’ encountered at
the linking time. Use the compiler option ‘-v’
to show full line option, all the input modules
and the libraries for the linker.

E1056 RESERVED.

Fatal(F1057): Symbol
resolution: redefinition of
symbol '_main'.
set8.cmd(32): .set _main,
@secalign(".libtext")
hello.eln(.text)

Duplicate definitions for a symbol name. Use
one of the following methods to define a
symbol:

• define the symbol in a source file
and assemble it to a section in the
module file.

• define the symbol using the linker
command line option: -
Dsymbol=value

• define the symbol using .set or
.provide directive in the LCF

Table A.3 Linker Error Codes

Error Code/Message Explanation
128 StarCore SC100 Linker User Guide

Linker Messages
Table A.4 Linker Directives Priority Table

Directive Name Priority

.unit 0

.include 0

.assert 0

.entry 0

.force 0

.memory 0

.virtual_memory 0

.non_ovl 0

.provide 0

.rename 0

.library_entry_points 0

.library_undefined_symbols 0

.library_prefix 0

.library_public_symbols 0

.inhibit_folding_symbols 0

.inhibit_folding_modules 0

.reserve 0

.set 0

.xref_module 0

.xref 0

.concatenate 0

.define_overlay 0

.att_mmu_settings 0

.define_single_mapped_virtual
_addressing

0

129StarCore SC100 Linker User Guide

Linker Messages
.inhibit_compression 0

.define_compression 0

.library_concatenate_section 0

.place_symbols 0

.space 1

.export 2

.import 3

.group 10

.align 10

.bss 10

.firstfit 10

.org 10

.overlay 10

.union 10

.puncture 10

.segment 10

.att_mmu 10

.exclude 10

.init_table_section 10

.define_region_to_map_virtual
_addressing

10

.group_firstfit_start 10

.group_firstfit_end 10

Table A.4 Linker Directives Priority Table

Directive Name Priority
130 StarCore SC100 Linker User Guide

B
Complex Examples

This appendix provides two complex examples of multi-mapped virtual addressing:

• B.1 Multi-Core Environment Example

• B.2 .att_mmu_settings Example

B.1 Multi-Core Environment Example

One of the last examples in Chapter 4 was using the .concatenate directive to reduce the size and
number of MMU descriptors. The appropriate linker directives are:

.concatenate”data1”,”.data1”,”.rom1”,”.bss1”

.concatenate”data2”,”.data2”,”.rom2”,”.bss2”

.concatenate”data3”,”.data3”,”.rom3”,”.bss3”

.att_mmu”task1_data”,task_id:0x1,0x0,0xfffff,”data1”

.att_mmu”task2_data”,task_id:0x1,0x0,0xfffff,”data2”

.att_mmu”task3_data”,task_id:0x1,0x0,0xfffff,”data3”

.att_mmu”task1_program”,task_id:0x1,0x0,0xfffff,”text1”

.att_mmu”task2_program”,task_id:0x1,0x0,0xfffff,”text2”

.att_mmu”task3_program”,task_id:0x1,0x0,0xfffff,”text3”

A translation of this previous example is appropriate for a SIMD model in a multi-core environment. We
split shared memory into two logical parts:

• logical private memory — for data

• logical shared memory — for the program

Follow these configuration steps:

1. Enter the directives to define Core 0:

.unit”c0”,””

.provide _Core_ID,0

2. Enter the directives that establish the number of cores:

.provide _Number_of_cores,2

.provide _Private_size,0x10000

.provide _Shared_size,0x20000

.provide _Mem_start,0x0

.provide _Mem_end,_Private_size*_Number_of_cores
+_Shared_size
131StarCore SC100 Linker User Guide

Complex Examples
Multi-Core Environment Example
3. Enter the directives that define the logical private memory:

.provide _Private_start,_Mem_start+_Core_ID*_Private_size

.provide _Private_end,_Mem_start+_Core_ID*_Private_size
+Private_size-1

.memory _Private_start,_Private_end,”rwx”

4. Enter the directives that define the logical shared memory:

.provide _Shared_start,_Private_size*_Number_of_cores

.memory _Shared_start,_Mem_end,”rwx”

5. Enter the directives that define shared space:

.space “shared”,_Private_size*_Number_of_cores,_Mem_end,
”.seg_task_pgm

.export “shared”

6. Group sections .dataX, .romX, and .bssX into section dataX, in order to decrease the memory
size and number of MMU descriptors. Enter these directives:

.concatenate”data1”,”.data1”,”.rom1”,”.bss1”

.concatenate”data2”,”.data2”,”.rom2”,”.bss2”

.concatenate”data3”,”.data3”,”.rom3”,”.bss3”

7. Define virtual data memory by putting sections data1, data2, and data3 into segment
.seg_task_data. This segment is private for each core, so each core needs a definition of virtual/
physical memory. Enter these directives:

.att_mmu”task1_data”,task_id:0x1,0x0,0xfffff,”data1”

.att_mmu”task2_data”,task_id:0x1,0x0,0xfffff,”data2”

.att_mmu”task3_data”,task_id:0x1,0x0,0xfffff,”data3”

8. Define virtual program memory by putting sections .text1, .text2, and .text3 into the
segment .seg_task_pgm that this core exports. The core that imports shared space from Core 0
does not need to redefine virtual/physical memory for the program, because the .import directive
automatically propagates this information. Enter these directives:

.att_mmu”task1_program”,task_id:0x1,0x0,0xfffff,”text1”

.att_mmu”task2_program”,task_id:0x1,0x0,0xfffff,”text2”

.att_mmu”task3_program”,task_id:0x1,0x0,0xfffff,”text3”

9. Enter the directives that configure physical memory and put data into logical private memory:

.org _Private_start

.segment”.seg_task_data”,”data1”,”data2”,”data3”

10. Enter the directives to put the program into logical shared memory:

.org _Shared_start

.segment”.seg_task_pgm”,”text1”,”text2”,”text3”
132 StarCore SC100 Linker User Guide

Complex Examples
Multi-Core Environment Example
11. Enter the directives to define Core 1:

.unit”c1”

.provide _Core_ID,1

12. Enter the directives that establish the number of cores:

.provide _Number_of_cores,2

.provide _Private_size,0x10000

.provide _Shared_size,0x20000

.provide _Mem_start,0x0

.provide _Mem_end,_Private_size*_Number_of_cores
+_Shared_size

13. Enter the directives that define the logical private memory:

.provide _Private_start,_Mem_start+_Core_ID*_Private_size

.provide _Private_end,_Mem_start+_Core_ID*_Private_size
+Private_size-1

.memory _Private_start,_Private_end,”rwx”

14. Enter the directives that define the logical shared memory:

.provide _Shared_start,_Private_size*_Number_of_cores

.memory _Shared_start,_Mem_end,”rwx”

15. Enter the .import directive, which automatically propagates shared-space information from Core
0:

.import “c0‘shared”

16. Group sections .dataX, .romX, and .bssX into section dataX, in order to decrease the memory
size and number of MMU descriptors. Enter these directives:

.concatenate”data1”,”.data1”,”.rom1”,”.bss1”

.concatenate”data2”,”.data2”,”.rom2”,”.bss2”

.concatenate”data3”,”.data3”,”.rom3”,”.bss3”

17. Define virtual data memory by putting sections data1, data2, and data3 into segment
.seg_task_data. This segment is private for each core, so each core needs a definition of virtual/
physical memory. Enter these directives:

.att_mmu”task1_data”,task_id:0x1,0x0,0xfffff,”data1”

.att_mmu”task2_data”,task_id:0x1,0x0,0xfffff,”data2”

.att_mmu”task3_data”,task_id:0x1,0x0,0xfffff,”data3”

18. Enter the directives that configure physical memory and put data into logical private memory:

.org _Private_start

.segment”.seg_task_data”,”data1”,”data2”,”data3”

This completes the example.
133StarCore SC100 Linker User Guide

Complex Examples
.att_mmu_settings Example
B.2 .att_mmu_settings Example

This example involves five tasks to be executed in virtual memory space:

• Task 1 — a system task, consisting of sections .text, .data, .share_data, .rom, and .bss.

• Task 2 — a user task, consisting of sections .sw1_text, .sw1_data, .sw1_rom, .sw1_bss,
.sw12_text, .sw12_data, .sw14_text, and .sw14_data.

• Task 3 — a user task, consisting of sections .sw2_text, .sw2_data, .sw2_rom, .sw2_bss,
.sw12_text, and .sw12_data.

• Task 4 — a user task, consisting of sections .sw3_text, .sw3_data, .sw3_rom, and
.sw3_bss.

• Task 5 — a user task, consisting of sections .sw4_text, .sw4_data, .sw4_rom, .sw4_bss,
.sw14_text, and .sw14_data.

Notice that sections .sw12_text and .sw12_data are common to Tasks 2 and 3. Similarly, sections
.sw14_text and .sw14_data are common to Tasks 2 and 5. This means that these sections must not
overlap in virtual memory unless code enables a priority mechanism.

The directives of Listing B.1, below, provide the appropriate configuration, which involves these
considerations:

1. The minimum size of the descriptor section is 256 bytes. If the original section size is smaller, the
linker expands the size to 256 bytes.

2. The maximum size of the descriptor section is 0x10000 bytes. If section size is greater, the linker
generates an error message.)

3. All descriptors that have attributes MMU_PROG_DEF_SYSTEM or MMU_DATA_DEF_SYSTEM
cannot overlap in virtual memory unless the priority mechanism is enabled.

a. Task 4 enables the priority mechanism, because .data_sw3 includes attribute
MMU_DATA_DEF_SYSTEM and .sw3_text includes attribute MMU_PROG_DEF_SYSTEM.
This means that:

• .data_sw3 can overlap the .sw12_data and .sw14_data spaces (.sw12_data and
.sw14_data do not overlap in virtual memory).

• .sw3_text can overlap the .sw12_text and .sw14_text spaces (.sw12_text and
.sw14_text do not overlap in virtual memory).

b. Task 5 does not enable the priority mechanism, so:

• .data_sw4 cannot overlap the .sw12_data space.

• .sw4_text cannot overlap the .sw12_text space

Listing B.1 .att_mmu_setting Configuration Example

.provide MMU_PROG_GLOBAL_PROGRAM_1, 0x00100000

.provide MMU_PROG_GLOBAL_PROGRAM_0, 0x0008000
134 StarCore SC100 Linker User Guide

Complex Examples
.att_mmu_settings Example
.provide MMU_PROG_PREFETCH_ENABLE, 0x00040000

.provide MMU_PROG_BURST_SIZE_8, 0x00030000

.provide MMU_PROG_BURST_SIZE_4, 0x00020000

.provide MMU_PROG_BURST_SIZE_2, 0x00010000

.provide MMU_PROG_BURST_SIZE_1, 0x00000000

.provide MMU_PROG_DEF_SHARED, 0x00000010

.provide MMU_PROG_DEF_CACHEABLE, 0x00000008

.provide MMU_PROG_DEF_XPERM_USER, 0x00000004

.provide MMU_PROG_DEF_XPERM_SUPER, 0x00000008

.provide MMU_PROG_DEF_SYSTEM, MMU_PROG_DEF_SHARED

.provide _MMU_PROG_DEF_SYSTEM, MMU_PROG_DEF_SHARED

.provide MMU_DATA_NONCACHEABLE_WRITE_THROUGH_STALL, 0x00C00000

.provide MMU_DATA_NONCACHEABLE_WRITE_THROUGH, 0x00800000

.provide MMU_DATA_CACHEABLE_WRITE_BACK, 0x00400000

.provide MMU_DATA_CACHEABLE_WRITE_THROUGH, 0x00000000

.provide MMU_DATA_GLOBAL_DATA_2, 0x00200000

.provide MMU_DATA_GLOBAL_DATA_1, 0x00100000

.provide MMU_DATA_GLOBAL_DATA_0, 0x00080000

.provide MMU_DATA_PREFETCH_ENABLE, 0x00040000

.provide MMU_DATA_BURST_SIZE_8, 0x00030000

.provide MMU_DATA_BURST_SIZE_4, 0x00020000

.provide MMU_DATA_BURST_SIZE_2, 0x00010000

.provide MMU_DATA_BURST_SIZE_1, 0x00000000

.provide MMU_DATA_DEF_MIXED_ENDIAN_MEMORY_REGION, 0x00000040

.provide MMU_DATA_DEF_SHARED, 0x00000020

.provide MMU_DATA_DEF_WPERM_USER, 0x00000010

.provide MMU_DATA_DEF_RPERM_USER, 0x00000008

.provide MMU_DATA_DEF_WPERM_SUPER, 0x00000002

.provide MMU_DATA_DEF_RPERM_SUPER, 0x00000004

.provide MMU_DATA_DEF_SYSTEM, MMU_DATA_DEF_SHARED

.provide _MMU_DATA_DEF_SYSTEM, MMU_DATA_DEF_SHARED

.provide USER_DATA_MMU_DEF, MMU_DATA_CACHEABLE_WRITE_THROUGH|\
MMU_DATA_PREFETCH_ENABLE|\
MMU_DATA_DEF_WPERM_USER|\
MMU_DATA_DEF_RPERM_USER|\
MMU_DATA_DEF_WPERM_SUPER|\
MMU_DATA_DEF_RPERM_SUPER|\
MMU_DATA_BURST_SIZE_4

.provide SHARED_DATA_MMU_DEF, MMU_DATA_NONCACHEABLE_WRITE_THROUGH|\
MMU_DATA_PREFETCH_ENABLE|\
MMU_DATA_DEF_SHARED|\
MMU_DATA_DEF_WPERM_USER|\
135StarCore SC100 Linker User Guide

Complex Examples
.att_mmu_settings Example
MMU_DATA_DEF_RPERM_USER|\
MMU_DATA_DEF_WPERM_SUPER|\
MMU_DATA_DEF_RPERM_SUPER|\
MMU_DATA_BURST_SIZE_4

.provide SYSTEM_DATA_MMU_DEF, MMU_DATA_CACHEABLE_WRITE_THROUGH|\
MMU_DATA_PREFETCH_ENABLE|\
MMU_DATA_DEF_SHARED|\
MMU_DATA_DEF_WPERM_USER|\
MMU_DATA_DEF_RPERM_USER|\
MMU_DATA_DEF_WPERM_SUPER|\
MMU_DATA_DEF_RPERM_SUPER|\
MMU_DATA_BURST_SIZE_4

.provide USER_PROG_MMU_DEF, MMU_PROG_DEF_CACHEABLE|\
MMU_PROG_PREFETCH_ENABLE|\
MMU_PROG_DEF_XPERM_USER|\
MMU_PROG_DEF_XPERM_SUPER|\
MMU_PROG_BURST_SIZE_4

.provide SHARED_PROG_MMU_DEF, MMU_PROG_DEF_CACHEABLE|\
MMU_PROG_PREFETCH_ENABLE|\
MMU_PROG_DEF_SHARED|\
MMU_PROG_DEF_XPERM_USER|\
MMU_PROG_DEF_XPERM_SUPER|\
MMU_PROG_BURST_SIZE_4

.provide SYSTEM_PROG_MMU_DEF, SHARED_PROG_MMU_DEF

.provide MMU_HIGH_PRIORITY, 0x10000000

.set PRIVATE_Mx_start, 0xC0000000

.set SHARED_Mx_start, 0xC0040000

.set VIRTUAL_SYSTEM__DATA_start, 0x0

.set VIRTUAL_SYSTEM__DATA_size, 0x8000

.set VIRTUAL_SYSTEM__DATA_end, VIRTUAL_SYSTEM__DATA_start
+ VIRTUAL__SYSTEM_DATA_size -1

.set VIRTUAL_SHARED_DATA_start, 0x40000

.set VIRTUAL_SHARED_DATA_size, 0x10000

.set VIRTUAL_SHARED_DATA_end, VIRTUAL_SHARED_DATA_start
+ VIRTUAL_SHARED_DATA_size -1

.set PERIPHERAL_start, 0xFFF10000

.set PERIPHERAL_size, 0x000F0000

.set PERIPHERAL_end, PERIPHERAL_start + PERIPHERAL_size -1

.set VIRTUAL_SHARED_PROGRAM_start, 0x40000

.set VIRTUAL_SHARED_PROGRAM_size, 0x10000

.set VIRTUAL_SHARED_PROGRAM_end, VIRTUAL_SHARED_PROGRAM_start
+ VIRTUAL_SHARED_PROGRAM_size -1
136 StarCore SC100 Linker User Guide

Complex Examples
.att_mmu_settings Example
.set VIRTUAL_DATA_USER_start, VIRTUAL_SYSTEM_DATA_end

.set VIRTUAL_DATA_USER_size, 0x8000

.set VIRTUAL_DATA_USER_end, VIRTUAL_DATA_USER_start
+ VIRTUAL_DATA_USER_size -1

.set VIRTUAL_PROGRAM_start, 0x0

.set VIRTUAL_PROGRAM_size, 0x10000

.set VIRTUAL_PROGRAM_end, VIRTUAL_PROGRAM_start
+ VIRTUAL_PROGRAM_size -1

.set _task_two_id, 0x2

.set _task_three_id, 0x3

.set _task_four_id, 0x4

.set _task_five_id, 0x5

.att_mmu_settings min_descr_size: 256, max_descr_size: 0x10000, \
system_task: 0, \
max_data_descr_count: 20, \
max_program_descr_count: 12, \
can_not_overlap: MMU_DATA_DEF_SYSTEM, \
can_not_overlap: MMU_PROG_DEF_SYSTEM, \
force_overlap: MMU_HIGH_PRIORITY

; System Task
.concatenate “data_local”,”.data”,”.bss”
.att_mmu “data_task_one_mmu”, \

VIRTUAL_SYSTEM__DATA_start, VIRTUAL_SYSTEM_DATA_end \
“data_local”, \

attribute: SYSTEM_DATA_MMU_DEF, \
after_physical_address: PRIVATE_Mx_start

.att_mmu “shared_data_task_one_mmu”, \
VIRTUAL_SHARED_DATA_start, VIRTUAL_SHARED_DATA_end \
“.rom”, \

attribute: SYSTEM_DATA_MMU_DEF, \
after_physical_address: SHARED_Mx_start

“.share_data”, \
attribute: MMU_SHARE_DATA, \
after_physical_address: SHARED_Mx_start

.att_mmu “peripheral_task_one_mmu”, \
PERIPHERAL_start, PERIPHERAL_end \
RESERVED, \

size: PERIPHERAL_size, \
region_type: “data”, \
attribute: SYSTEM_DATA_MMU_DEF, \
137StarCore SC100 Linker User Guide

Complex Examples
.att_mmu_settings Example
base_address: PERIPHERAL_start, \
physical_address: PERIPHERAL_start

.att_mmu “program_task_one_mmu”, \
VIRTUAL_SHARED_PROGRAM_start, VIRTUAL_SHARED_PROGRAM_end \
“.text”, \

attribute: MMU_SYSTEM_PROGRAM, \
base_address: SHARED_Mx_start, \
physical_address: SHARED_Mx_start

; Task two - user task
.concatenate “data_sw2”,”..sw2_data”,”.sw2_rom”,.sw2_bss”
.att_mmu “data_task_two_mmu”, \

task_id: _task_two_id,
VIRTUAL_DATA_USER_start, VIRTUAL_DATA_USER_end \
“.data_sw2”, \

attribute: USER_DATA_MMU_DEF, \
after_physical_address: PRIVATE_Mx_start

.att_mmu “program_task_two_mmu”, \
task_id: _task_two_id, \
VIRTUAL_PROGRAM_start, VIRTUAL_PROGRAM_end \
“.sw2_text”, \

attribute: USER_PROG_MMU_DEF, \
after_physical_address: SHARED_Mx_start

; Task three - user task
.concatenate “data_sw3”,”..sw3_data”,”.sw3_rom”,.sw3_bss”
.att_mmu “data_task_three_mmu”, \

task_id: _task_three_id,
VIRTUAL_DATA_USER_start, VIRTUAL_DATA_USER_end \
“.data_sw3”, \

attribute: USER_DATA_MMU_DEF, \
after_physical_address: PRIVATE_Mx_start

.att_mmu “data_task_two_three_mmu”, \
task_id: _task_three_id, task_id: _task_two_id, \
VIRTUAL_DATA_USER_start, VIRTUAL_DATA_USER_end, \
“.sw23_data”, \

attribute: USER_DATA_MMU_DEF| MMU_DATA_DEF_SYSTEM, \
after_physical_address: PRIVATE_Mx_start

.att_mmu “program_task_three_mmu”, \
task_id: _task_three_id, \
VIRTUAL_PROGRAM_start, VIRTUAL_PROGRAM_end \
“.sw3_text”, \
138 StarCore SC100 Linker User Guide

Complex Examples
.att_mmu_settings Example
attribute: USER_PROG_MMU_DEF, \
after_physical_address: SHARED_Mx_start

.att_mmu “program_task_two_three_mmu”,\
task_id: _task_three_id, task_id: _task_two_id, \
VIRTUAL_PROGRAM_start, VIRTUAL_PROGRAM_end,\
“.sw23_text”, \

attribute: USER_PROG_MMU_DEF| MMU_PROG_DEF_SYSTEM, \
after_physical_address: SHARED_Mx_start

; Task four - user task
.concatenate “data_sw4”,”..sw4_data”,”.sw4_rom”,.sw4_bss”
.att_mmu “data_task_four_mmu”, \

task_id: _task_four_id,
VIRTUAL_DATA_USER_start, VIRTUAL_DATA_USER_end \
“.data_sw4”, \

attribute: USER_DATA_MMU_DEF| MMU_HIGH_PRIORITY, \
after_physical_address: PRIVATE_Mx_start

.att_mmu “program_task_four_mmu”, \
task_id: _task_four_id, \
VIRTUAL_PROGRAM_start, VIRTUAL_PROGRAM_end \
“.sw4_text”, \

attribute: USER_PROG_MMU_DEF| MMU_HIGH_PRIORITY, \
after_physical_address: SHARED_Mx_start

; Task five - user task
.concatenate “data_sw5”,”..sw5_data”,”.sw5_rom”,.sw5_bss”
.att_mmu “data_task_five_mmu”, \

task_id: _task_five_id,
VIRTUAL_DATA_USER_start, VIRTUAL_DATA_USER_end \
“.data_sw5”, \

attribute: USER_DATA_MMU_DEF| MMU_HIGH_PRIORITY, \
after_physical_address: PRIVATE_Mx_start

.att_mmu “program_task_five_mmu”, \
task_id: _task_five_id, \
VIRTUAL_PROGRAM_start, VIRTUAL_PROGRAM_end \
“.sw5_text”, \

attribute: USER_PROG_MMU_DEF| MMU_HIGH_PRIORITY, \
after_physical_address: SHARED_Mx_start
139StarCore SC100 Linker User Guide

Complex Examples
.att_mmu_settings Example
140 StarCore SC100 Linker User Guide

Index

Symbols
.align linker command file directive 55
.assert linker command file directive 56
.att_mmu linker command file directive 56–59
.att_mmu section 100, 101
.att_mmu_setting example 134–139
.att_mmu_setting linker command file

directive 59, 61
.bss linker command file directive 61
.concatenate linker command file directive 63, 64
.define_compress linker command file

directive 65
.define_overlay linker command file directive 66
.define_region_to_map_virtual_addressing linker

command file directive 66
.define_single_mapped_virtual_addressing linker

command file directive 67
.entry linker command file directive 68
.exclude linker command file directive 68
.export linker command file directive 69
.firstfit linker command file directive 69
.frequency 70
.group linker command file directive 71, 72
.import linker command file directive 73
.include 73
.inhibit_compress linker command file

directive 74
.inhibit_folding_modules 75
.inhibit_folding_modules linker command file

directive 75
.inhibit_folding_symbols 74
.inhibit_folding_symbols linker command file

directive 74
.init_table_section linker command file

directive 75
.memory linker command file directive 75, 77
.non-ovl linker command file directive 78
.org linker command file directive 78
.overlay linker command file directive 79, 80
.provide linker command file directive 81
.puncture linker command file directive 82
.rename linker command file directive 82, 83

.reserve linker command file directive 83

.segment linker command file directive 84, 86

.set linker command file directive 86

.space linker command file directive 87

.union linker command file directive 87

.unit linker command file directive 88, 89

.virtual_memory linker command file
directive 89, 90

.xref linker command file directive 90

.xref_module linker command file directive 90

A
actions, SC100 linker 7
adding directories 32
address translation table 56
address translation table advanced examples 102–

107
address translation table examples 96–107

non-overlay 96–100
advanced address translation table examples

disjunct spaces 103–105
irrelevant section placement 102
shared spaces 105–107
specific base address 102
two ranges 102

advanced examples, address translation
table 102–107

arguments in files 29

B
bss section zeroing 30

C
Cache Optimization 37
Code and data folding, code/data folding, code,

data 37
command file 29–32, 43–91
command-line options 15–29
comments, linker command file 49
complex examples 131–139
configuration, memory 8
141StarCore SC100 Linker User Guide

controlling messages 41, 42

D
dead code/data stripping 34–36
dead code/data stripping, preventing 90
Dead-Code Stripping 34
Dead-Data Stripping 35
defining symbols 32
directives

.align 55

.assert 56

.att_mmu 56–59

.att_mmu_setting 59, 61

.bss 61

.concatenate 63, 64

.define_compress 65

.define_overlay 66

.define_region_to_map_virtual_addressing
66

.define_single_mapped_virtual_addressing
67

.entry 68

.exclude 68

.export 69

.firstfit 69

.group 71, 72

.import 73

.inhibit_compress 74

.inhibit_folding_modules 75

.inhibit_folding_symbols 74

.init_table_section 75

.memory 75, 77

.non-ovl 78

.org 78

.overlay 79, 80

.provide 81

.puncture 82

.rename 82, 83

.reserve 83

.segment 84, 86

.set 86

.space 87

.union 87

.unit 88, 89

.virtual_memory 89, 90

.xref 90

.xref_module 90
directives, linker command file 53–91
directories, adding 32
dynamic stack,heap configuration 45

E
error messages 111–116
example 1 (non-overlay) address translation 96–

100
example 3 (irrelevant placement) address

translation 102
example 4 (base address) address translation 102
example 5 (two ranges) address translation 102
examples

.att_mmu_setting 134–139
complex 131–139
multi-core environment 131–133

examples 6 (disjunct spaces) address
translation 103–105

examples 7 (shared spaces) address
translation 105–107

examples, address translation table 96–107
expression functions 47
expressions, linker command file 46, 47

F
file, argument 29
First HOOK Code in LCF 11
functions, expression 47

H
header table, overlay 95

I
introduction 7
invoking the linker 15

L
layout, memory 8
libraries, rereading 30
libraries, self-contained 30–32
142 StarCore SC100 Linker User Guide

linker
command file 29–32, 43–91
invoking 15
map file 38–40
messages 109–116
options 15–29
using 15–42

linker command file
comments 49
directives 53–91
expressions 46, 47
operators 48
structure 43–46
symbols 46, 47

M
manager, overlay 93–95
map file 38–40
memory

configuration 8
layout 8

messages
controlling 41, 42
error 111–116
warnings 109, 110

modifying object file 33
multi-core environment example 131–133

O
object file

modifying 33
renaming 33

omitting signatures 30
operators, linker command file 48
options, command line 15–29
options, valid with -Xlnk 16–28
overlay

header table 95
manager 93–95
using 93

overlays 93–107

P
preventing dead code/data stripping 90

R
renaming object file 33
rereading libraries 30

S
SC100 linker actions 7
Sections 49
Sections Generated by Compiler Linker 49
self-contained libraries 30–32
shared segments

PT_DYNAMIC 20
PT_LOAD 20
PT_NULL 20

shared symbol references 29
signatures, omitting 30
Startup Environment 10
Static stack, heap configuration 46
stripping dead code/data 34–36
structure, linker command file 43–46
symbol references, shared 29
symbols, defining 32
symbols, linker command file 46, 47

U
using overlays 93
using the linker 15–42

V
valid options for -Xlnk 16–28

W
warnings 109, 110

X
-Xlnk, valid options 16–28

Z
zeroing, bss section 30
143StarCore SC100 Linker User Guide

	Introduction
	1.1 Actions of the StarCore Linker
	1.2 Memory Layout and Configuration for Single Core
	1.3 Startup Environment

	Using the Linker
	2.1 Invoking the Linker
	2.2 Command-Line Options
	2.2.1 Specifying a Linker Command File
	2.2.2 Adding Directories to the Linker Search Path
	2.2.3 Defining Symbols
	2.2.4 Estimating Stack Effect
	2.2.5 Renaming the Object File
	2.2.6 Modifying the Contents of the Object File
	2.2.7 Dead-Code, Dead-Data Stripping
	2.2.8 Code and Data Folding
	2.2.9 Cache Optimization
	2.2.10 Generating a Linker Map File
	2.2.11 Controlling Linker Messages
	2.2.12 Defining Unlikely Block of Code as Private Block of Code in a Multi-core Application

	Linker Command File
	3.1 Pre-Built Linker Command Files
	3.2 Linker Command File Syntax
	3.2.1 Command File Structure
	3.2.2 Expressions and Symbols
	3.2.3 Operators
	3.2.4 Comments

	3.3 Sections
	3.4 Linker Directives

	Overlays
	4.1 Using Overlays
	4.2 Overlay Manager
	4.3 Overlay Header Table
	4.4 Address Translation Table Examples
	4.4.1 Example 1: Non-Overlay
	4.4.2 .att_mmu section

	4.5 Advanced Examples
	4.5.1 Example 2: Irrelevant Section Placement
	4.5.2 Example 3: Specific Base Address
	4.5.3 Example 4: Two Ranges, Specific Base Addresses
	4.5.4 Examples 5: Disjunct Virtual Spaces
	4.5.5 Examples 6: Shared Virtual Spaces

	Linker Messages
	Complex Examples
	B.1 Multi-Core Environment Example
	B.2 .att_mmu_settings Example

	Index

