
NXP Semiconductors
User’s Guide

Document Number: SB0410-SB0800SWUG
Rev. 1.0, 1/2016

© NXP Semiconductors N.V. 2016. All rights reserved.

MC34ValveController Processor Expert
Component

MC34ValveController Processor Expert Component, Rev. 1.0

2 NXP Semiconductors

Contents

1 Overview .3
2 MC34ValveController Compatibility. .4

2.1 Peripheral Requirements .4
2.2 Supported Devices .4
2.3 Supported MCUs .4
2.4 Tower Board Settings .5

3 MC34ValveController Component. .6
3.1 Component Settings .7
3.2 SPI Configuration. .9
3.3 Component API .9
3.4 MC34ValveController Components .11
3.5 Fault Detection and Handling .12
3.6 Flutter Current Feature .12
3.7 Known Issues .13

4 Installing the Processor Expert Software .14
4.1 Installing Kinetis Design Studio .14
4.2 Downloading the Components and Example Projects. .14
4.3 Creating a New Project with Processor Expert and the MC34ValveController Components .20
4.4 Setting up the Project .23
4.5 Generating Driver Source Code. .23
4.6 Writing the Application Code .24

5 References .27
6 Revision History .28

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 3

Overview

1 Overview
This documentation describes how to install and use Processor Expert in conjunction with the MC34ValveController component.

The MC34ValveController component supports the following analog parts:

• MC34SB0410: Quad Valve Controller System On Chip
• MC34SB0800: Octal Valve Controller System On Chip

The TWR-SB0410-36EVB and TWR-SB0800-36EVB tower boards are evaluation platforms based on these chips. See the related user
guides and data sheets for detailed information.

MC34ValveController Processor Expert Component, Rev. 1.0

4 NXP Semiconductors

MC34ValveController Compatibility

2 MC34ValveController Compatibility

2.1 Peripheral Requirements
Peripherals and resource requirements critical to the MCU’s ability to handle a given part are as follows:

• SPI Module is required for communication (SI, SO, SCLK, CSB)
• GPIO or TPM/FTM timer (PWM, single channel) are required for direct pump motor pre-driver control (PDI, ADIN1)
• GPIO is required for device reset (RSTB)
• TPM/FTM timer (periodic interrupts, single channel) is required by the flutter current feature

2.2 Supported Devices
The MC34ValveController supports the following devices:

MC34SB0410

• One pump motor pre-driver (up to 16 kHz)
• Four low-side drivers for inductive loads. Channel 1 to 4 serve as current regulators (with PI regulator) or as PWMs (Pulse Width

Modulators)
• Two low-side drivers for resistive loads

MC34SB0800

• One high-side driver (to control the fail-safe switch for overall solenoid path)
• One pump motor pre-driver (up to 500 Hz)
• Eight low-side drivers to drives inductive loads. Channel 1 to 4 serve as current regulators (with PI regulator) or as PWMs (Pulse

Width Modulators)
• One low-side driver for resistive loads
• One high-side driver for general purpose usage

2.3 Supported MCUs
The MC34ValveController supports the MCUs listed in Table 1. The listed MCUs are a subset of MCUs supported by Processor Expert
for Kinetis using the logic device driver (LDD) layer.

Table 1. Supported MCUs

Supported MCUs CodeWarrior Support
Kinetis Design System

Support

TWR-KL25Z48M Yes Yes

TWR-KV31F120M No Yes

TWR-KV10Z32 Yes Yes

TWR-K64F120M Yes Yes

TWR-K20D72M Yes Yes

TWR-K22F120 Yes Yes

TWR-K70 Yes Yes

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 5

MC34ValveController Compatibility

See Table 2 for pin compatibility between Valve Controller tower boards and selected MCUs.

2.4 Tower Board Settings
Jumper blocks on the TWR-SB0800-36EVB and the TWR-SB0410-36EVB provide a means of configuring the boards for use with
additional MCUs. Jumper settings on the blocks define the routing of chip select SPI signals, the reset signal from the MCU, and the motor
control signal which can either be simple GPIO (low, high) or PWM. On both the TWR-SB0800-36EVB and the TWR-SB0410-36EVB, this
jumper block is labelled J13.

In addition, jumper J10 on the TWR-SB0800-36EVB and J6 on the TWR-SB0410-36EVB selects between 3.3 V and 5.0 V depending on
the requirement of the MCU being used.

Make sure to set jumper J10 or J6 to the proper voltage level and set the jumpers on J13 to the appropriate positions for the selected
MCU. Check the schematic of each tower elevator board to assure all signals are correctly connected. Figure 1 shows the selection
options on the TWR-SB0800-36EVB and the TWR-SB0410-36EVB.

Figure 1. Jumpers for IO Selection

Table 3 shows appropriate J13 jumper settings for compatible tower boards. These settings are important because the Reset (RSTB) and
Chip Select (CSB) signals must be routed to MCU IO header positions capable of handling such signals. Note that the ADIN1 pin on the
MS34SB0800 can be used either to directly control the Pump Motor Pre-Driver or to measure external voltage. The PDI pin controls the
Pump Motor Pre-Driver on the MC34SB0410.

Table 2. Pin Compatibility of Valve Controller Tower Boards with Selected MCUs

Pin
Function

TWR-KL25Z48M
(1)

TWR-KV31F120M
(1)

TWR-KV10Z32
(2)

TWR-K64F120M
(2)

TWR-K20
(1)

TWR-K22F120
(2)

TWR-K70
(2)

RSTB PTC7 PTB2 PTB0 PTE11 PTB22 PTE3 PTE0

MISO PTD3 PTE19 PTD3 PTD3 PTD3 PTD3 PTD14

MOSI PTD2 PTE18 PTD2 PTD2 PTD2 PTD2 PTD13

CSB PTE0 PTC0 PTE24 PTE0 PTC9 PTE25 PTE28

SCLK PTD1 PTE17 PTC5 PTD1 PTD1 PTD1 PTD12

ADIN1/PDI PTD4 PTD4 PTD4 PTA7 PTD4 PTC1 PTA7

Notes
1. Example provided for this MC. See Section 4.2, Downloading the Components and Example Projects, page 14
2. Create a new project based on an existing project and change the pin selection accordingly.

Table 3. MCU Tower Board Jumper Selection

TWR-KL25Z48M TWR-KV31F120M TWR-KV10Z32 TWR-K64F120M TWR-K20 TWR-K22F120 TWR-K70

RSTB GPIO1 GPIO1 GPIO1 GPIO1 GPIO8 GPIO1 GPIO2

CSB GPIO2 GPIO2 GPIO2 GPIO2 GPIO9 GPIO2 GPIO3

ADIN1 PWM4 PWM4 PWM4 PWM4 PWM4 PWM0 PWM4

GPIO1

GPIO2
GPIO8

GPIO8

PWM0

PWM4
PWM1

PWM5GPIO9

GPIO2
GPIO3

GPIO8SB0410_CSB

SB0410_RESET SB0410_PDI

J13

HDR_2X10

1 2
3 4

65
7 8
9 10

11 12
13 14
15 16
17 18
19 20

GPIO1

GPIO2
GPIO8

GPIO8

PWM0

PWM4
PWM1

PWM5GPIO9

GPIO2
GPIO3

GPIO8SB0800_CSB

SB0800_RESET SB0800_ADIN1

J13

HDR_2X10

1 2
3 4

65
7 8
9 10

11 12
13 14
15 16
17 18
19 20

TWR-SB0800-36EVB TWR-SB0410-36EVB

MC34ValveController Processor Expert Component, Rev. 1.0

6 NXP Semiconductors

MC34ValveController Component

3 MC34ValveController Component
The MC34ValveController is located under the Components folder in the active projects window (see Figure 2). This folder contains two
sub-folders: Referenced_Components (containing components to configure SPI communication properties) and
VC1:MC34ValveController (containing the component to configure MC34SB0800 and MC34SB0410 features). The functionality of the
MC34ValveController depends on the component property settings assigned through Processor Expert.

Figure 2. MC34ValveController Processor Expert Component

The component also offers Help documentation, which can be accessed by right-clicking on the MC34ValveController in the component
tree. The Help on Component window provides information on all properties and methods of the component. Access the Typical Usage
section to view examples showing how to work with API methods.

API

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 7

MC34ValveController Component

3.1 Component Settings
Selecting the MC34ValveController component in the component tree gains access to properties in the Component Inspector. These
properties determine the component’s general settings and its behavior after initialization. Application code can later change some of these
properties using the provided API.

Figure 3. Valve Controller Component Properties

Valve Controller Model (MC34SB0410 / MC34SB0800) - This component supports two models of the Valve Controller. Both have much
in common, but differ in number and type of provided drivers. Therefore model selection affects which properties are available/hidden, or
enabled/disabled.

General Settings

• Reset Pin - This pin has dual functionality. It can be used for an explicit reset of the device, in which case it works as an output.
Alternatively, it can be used as a fault indication in which case it works as an input. The direction of this pin is automatically handled
by the component.

• Discharge Slew Rate - The slew rate used by the pump motor pre-driver and high-side driver for general purpose modules. When
the power FET is switched off, the gate capacitance of the FET is discharged by a constant current that is controlled as either fast
(typically 2.0 mA) or slow (typically 100 A). This feature is available for MC34SB0800 only.

• Clock Frequency - The frequency of the clock modules, i.e. the main supply clock (CLK1) and the auxiliary clock (CLK2). Clock
frequency is 14 MHz when the fixed option is selected. Otherwise frequency modulation is used. Two deviation frequencies (350 kHz
and 700 kHz) are available to spread the oscillator energy over a wide frequency band.

• Internal Clock Monitoring - The internal clock monitoring function (i.e. enable or disable CLK2). Valve Controller utilizes two clocks:
the main supply clock (CLK1) and the auxiliary clock (CLK2). CLK2 monitors main clock faults and resets the controller (using the
RST_CLK function) when a fault is detected. Disabling CLK2 has no effect on other functionality (except for the clock monitoring
function) because the main clock (CLK1) remains active.

MC34ValveController Processor Expert Component, Rev. 1.0

8 NXP Semiconductors

MC34ValveController Component

HS for Fail-safe Switch - The initial state of the high-side driver intended to control the fail-safe switch for the overall solenoid path.
(Available on the MC34SB0800 only)
LSD for Inductive Loads

• Rise Time and Fall Time - The rise time and fall time of the low-side drivers. Long rise and fall times are typically 1.7 s (rise) and
1.35 s (fall). Short rise and fall times are typically 0.5 s (rise) and 1.0 s (fall).

• Open Load Detection - Enables or disables sink current for open load detection
PWM Frequency

• Frequency of LSD 1—4 - From 3.0 kHz to 5.0 kHz.
• Frequency of LSD 5—8 - This setting is available for the MC34SB0800 only.

Current Regulation Mode - The current regulation mode setting for low-side drivers. Load current is sensed by the internal low-side
sense FET and digitized by the internal A/D converter. The digital current regulation circuitry compares the actual load current with the
target current value and steers the low-side power switch duty cycle. The PI regulator is used.

• PI Regulator
– P - Characteristic - The proportional characteristic of the PI regulator.
– I - Characteristic - The integral characteristic of the PI regulator. The regulator stays idle until a non-zero value is

applied.
– Integrator Limit - The set integrator limit. Possible values are low (1023) and high (2047).

• Minimum PWM Duty - The minimum duty cycle of the low-side driver (1 to 4) outputs. This option applies to the time interval during
which the current measurement occurs. Note that the maximum duty cycle is 100%.

• First PWM Cycle - The first duty cycle of the low-side driver (1 to 4) outputs. The first duty cycle is either controlled by current or
limited to a fixed duty cycle in which the target current is transformed.

Flutter Frequency Settings - The setting of the flutter current function, which influences mechanical friction inside the valve. The goal is
to achieve a more precise movement. When this function is used, current is changed periodically around the target current. This results
in the current varying as a sine wave. This property is enabled automatically by the component when enabling the flutter current feature
for one or more LSDs. See Section 3.6, Flutter Current Feature, page 12.

• Timing Device - The name of the timing device used by TimerInt_LDD component.
• Control Mode - The control mode for the flutter current function. Auto means the process is automatically handled internally. Polling

means the user application code must call handler functions to achieve the desired behavior.
LSD 1 - 4 - The common settings for current regulation or PWM mode

• Maximum Current - The current limitation value in mA. This value is used in component methods.
• Control Mode - Current Regulation/PWM) - Sets the low-side driver mode. Either current regulation or PWM mode can be enabled

in time.
• Target Current - Target current in mA. Minimum value is 0 mA, maximum 2250.6 mA and step is 2.2 mA. The value is rounded to

the nearest available value.
• Flutter Frequency - Enables or disables flutter current feature for selected the LSD.

– Frequency - The frequency of the sinusoidal current curve in Hz. When the flutter current function is used by two or
more LSDs, the frequency value is corrected, because it must fit the interrupt frequency given by the LSD with the
maximum flutter frequency.

– Points per Period - The number of points per period. Single point corresponds to the deviation of current given by the
actual position on the sinusoidal curve.

– Amplitude - The amplitude of the sinusoidal curve in mA. This value defines the maximum variation from the target
current. The admissible range is from 5.0 mA to 100 mA.

• PWM Duty - The target PWM duty cycle. The admissible range is from 0 to 255. Representing 0% respective 100% duty value.
LSD 5 - 8 - The common settings (only PWM mode) - These drivers are available on MC34SB0800 only.

• PWM Duty - The target PWM duty cycle. The admissible range is from 0 to 255. Representing 0% respective 100% duty value.
Pump Motor Pre-driver - The settings of the Pump Motor Pre-driver.

• Overcurrent Masking Time - The masking time from the direct input turn-on against the malfunction on transient time. This masking
time is used by the over-current detection logic. Possible values depend on the selected valve controller model.

• Overcurrent Filter Time - The overcurrent filter time of the pump motor pre-driver. The drain-source voltage of the FET on PD_G is
checked when the pre-driver is switched on. If the measured voltage exceeds the overcurrent voltage threshold, output of the
comparator is enabled. If the output of the comparator is active longer than the defined filter time, PD_G is turned-off. For the
MC34SB0410, the filter time has a fixed value. This setting is available for MC34SB0800 only.

• Control Mode - SPI/Direct) - The pre-driver can be driven either directly by the MCU pin or through the SPI interface.
– Initial State - The initial state of the driver output in SPI control mode.
– Input Control - GPIO/PWM) - The type of direct control mode. The possible values are GPIO (general purpose

input/output pin) or PWM (pulse width modulated).

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 9

MC34ValveController Component

• Control Pin - The pin for direct control. This pin is called PDI for MC34SB0410 and ADIN1 for MC34SB0800. Note
that if ADIN1 pin is used for direct control, it cannot be used to measure the external voltage simultaneously. To use
ADIN1 for measurement, set the Pump Motor Pre-driver Control Mode to the SPI.

• PWM Frequency - The PWM frequency. The maximum value depends on the valve controller model (16 kHz for
MC34SB0410, 500 Hz for MC34SB0800).

• PWM Duty - The target PWM duty cycle. The admissible range is from 0 to 255. Representing 0% respective 100%
duty value.

• Initial State - The initial state of driver output in direct control mode.
• LD 1 for Resistive Charge - The initial state of the low-side driver 1 for a resistive charge.
• LD 2 for Resistive Charge - The initial state of the low-side driver 2 for a resistive charge. This setting is available for the

MC34SB0410 only.
HS for General Purpose - The initial state of the general purpose high-side driver. This setting is available for the MC34SB0800 only.
Initialization Behavior - Defines the behavior of the Init method. This method selects between internally blocking and unblocking while
waiting on the Reset pin to clear. If blocking version is selected, the method may hang if an error fails to clear. If the unblocking version is
selected, the method uses a timeout functionality to avoid infinite waiting.
Auto Initialization - Selects whether component initialization should be automatically called from the CPU component initialization
function PE_low_level_init or whether the user is responsible for calling the initialization method.

3.2 SPI Configuration
The Valve Controller uses the SPI communication protocol to communicate with the MCU. This protocol is implemented by the
SPIMaster_LDD component which can be found in the referenced components (shared components) folder in the Components panel (see
Figure 2). However, this component does not handle arbitration for simultaneous communication requests on the SPI bus. This
functionality is implemented by the SPI_Device component, which is exclusively inherited by the MC34ValveController component.

In SPIMaster_LDD, the (MISO, MOSI, CLK) pins and timing settings must be set according to MC34SB0410/MC34SB0800 data sheet
recommendations. The maximum admissible communication frequency is 10 MHz.

The CSB (chip select) pin has to be set separately in the BitIO_LDD component exclusively inherited by SPI_Device. Because of
component implementation limitations, the user must initialize the CSB pin value to 1 as specified in the data sheet.

Figure 4. SPI Configuration

3.3 Component API
The Valve Controller component provides API functions allowing the application code to dynamically configure a device in real-time. The
available methods and events can be viewed by clicking to expand the component in the Component folder of the Components Panel (see
Figure 2).

MC34ValveController Processor Expert Component, Rev. 1.0

10 NXP Semiconductors

MC34ValveController Component

Some of those methods/events are marked with ticks and others with crosses, which distinguishes which methods/events are supposed
to be generated. Change this setting in the Processor Expert Inspector. Note that methods with grey text are always generated because
they are needed for proper functionality. This forced behavior depends on various combinations of component property settings. For
summarization of available API methods and events and their descriptions, see Table 4.

Table 4. MC34ValveController Component API

Method Description

Init
Initializes the device and applies settings selected in the component properties. This includes initialization of inherited
components and other features.

Deinit Deinitializes the device. Sets the reset pin to low and consequently clears all registers of device.

WriteRegister Writes a value to the selected register. Allocates the SPI bus and calls the internal function VC_write_register.

ReadRegister Reads a value from the selected register. Allocates the SPI bus and calls the internal function VC_read_register.

GetControllerStatus Gets status information, reads two registers with related information.

ClearDriverFault
Clears selected fault flags. Handles only faults related to the driver's modules. It is not intended to clear supervision mod-
ule faults.

SetDriverState
Sets the selected driver output state. Internally handles the driver either through SPI communication or directly by output
of the MCU.

SetPDPWMDuty Sets the PWM duty cycle for the pump motor pre-driver when the direct control mode is used.

SetLSDPWMDuty Sets the PWM duty cycle for the selected low-side driver for inductive loads. LSD has to be in PWM mode.

SetLSDPWMFrequency Sets the PWM frequency for the selected group of low-side drivers for inductive loads.

SetLSDCurrent Sets the target current for the selected low-side driver for inductive loads. LSD has to be in current regulation mode.

SetPIRegulator Sets parameters of HW PI regulator used for LSDs in current regulation mode.

GetLSDPWMDuty Gets PWM duty cycle of selected LSD, which has to be in current regulation mode.

GetLSDCurrent Gets measured current of selected LSD, which has to be in PWM mode.

GetADCValue Reads and interprets ADC value of selected measured item (temperature, voltage) by device.

FeedWatchdog Feeds watchdog. Sends MCU monitoring result computed for LFSR output received from device.

GetLSDMode Gets mode (current regulation, PWM) for selected LSD.

GetResetPinVal Gets level of reset pin. Low level means that device is in fault state.

FlutterCurrent Checks whether to adjust target current of LSDs with enabled flutter current feature according to predefined settings.

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 11

MC34ValveController Component

3.4 MC34ValveController Components
The MC34ValveController consists of the valve controller component, which allows configuring MC34SB0800 and MC34B0410
capabilities, and a set of referenced components, which configure SPI communication functions. Figure 5 illustrates these components
and their relationship to each other. A description of the inherited and referenced components used by the MC34ValveController appears
immediately below Figure 5. The functionality of the MC34ValveController in terms of communication, control, etc. depends on these
components.

Figure 5. Components used by the MC34ValveController

Referenced components

SM1:SPIMaster_LDD Configuration of SPI communication—Referenced by SPI_Device
TU1:TimerUnit_LDD Referenced by FlutterFreq1:TimerInt_LDD
TU2:TimerUnit_LDD Referenced by CtrlPin1:PWM_LDD

VC1:MC34ValveController components

SPI_Device1:SPI_Device Adds bus allocation of SPI communication
CSPin1:BitIO_LDD Software chip select
RTSB1:BitIO_LDD Input/output reset pin
FlutterFreq1:TimerInt_LDD Flutter current feature, periodic interrupts
CtrlPin1:PWM_LDD or Direct control of pump motor pre-driver. Either PWM or on/off logic
CtrlPin1:BitIO_LDD

MC34ValveController Component

TimerUnit_LDD
(TPM0)

SPI_Master_LDD
(SPIO)

TimerUnit_LDD
(TPM1)

SPI_Device

BitIO_LDD
TimerInt_LDD

(Flutter current feature)

BitIO_LDD

CS

RSTB

MISO, MOSI, SCLK

PD Control

PWM_LDD

BitIO_LDD
PDI / ADIN1

MC34ValveController Processor Expert Component, Rev. 1.0

12 NXP Semiconductors

MC34ValveController Component

3.5 Fault Detection and Handling
The Valve Controller component provides methods allowing application code to read device status information and react to faults. Table 5
lists these methods and their functionality.

3.6 Flutter Current Feature
Under constant current conditions, mechanical friction inside a valve may result in movement less precise than expected. The Flutter
Current feature helps smooth out valve movement by introducing periodic minor deviations from the target current. These deviations are
both above and below the target so the overall current average matches the target current.

Figure 6. Flutter Current Function

As Figure 6 shows, the parameters of this function are frequency (of the base sinusoidal wave), resolution (the number of current changes
per period) and amplitude (the maximum current deviation). The flutter current parameters have the following limitations and admissible
ranges:

Frequency - 80 Hz to 400 Hz

Resolution - 8.0 to 48 points (with step 4)

Amplitude - 5.0 mA to 100 mA

Notice that the final current change frequency equals the sinusoidal curve frequency multiplied by the selected resolution.

To efficiently manage interrupt resources, only a single timer interrupt is used for all LSDs when the flutter current function is enabled. This
introduces a dependency among the LSD flutter frequencies in which the sum of all flutter frequencies must equal the maximum flutter
frequency. This restriction is enforced by component logic adjusting frequencies accordingly. Table 6 shows the specified ranges of
parameters in terms of the timer interrupt requirements.

Table 5. Valve Controller Methods

Method Function

VC_GetControllerStatus() Reads status information related to drivers.

VC_ClearDriverFault() Clears faults related to the driver module.

VC_GetGetResetPinVal()
Reads fault information provided by the supervision module.

VC_GetControllerStatus()

VC_Init() Recovers from a fault that caused a register reset and sets reset pin to low.

Average
Current

80Hz to 400Hz

0

Amplitude 5mA to 100mA

Time

Current

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 13

MC34ValveController Component

There are two ways to implement this feature in your application code:

1. Select Auto as the value for the Control Mode property under Flutter Frequency, in which case all of the flutter current functions
are handled automatically. With Auto selected, current changes take place directly in the internal interrupt routine. This solution is
considered more precise in terms of current change timing because the code is executed with the priority of a raised interrupt
routine.

2. Select Polling as the value for the Control Mode property under Flutter Frequency, in which case the application code is
responsible for checking whether it is necessary to enable the flutter current functions. With Polling selected, an internal interrupt
routine raises a flag indicating the maximum final flutter current frequency. Application code must continually call the
FlutterCurrent API Method to check the status of this flag and must call the internal flutter current feature handler when needed.
This solution is considered less precise in terms of current change timing because the code executes with user application code
priority and therefore may occasionally be interrupted.

Note that the precision and performance of this function depends on the frequency of SPI communication and the CPU clock.

3.7 Known Issues
The MC34ValveController component has following issues which must be taken in consideration before usage.

1. The Flutter Current (Flutter Frequency) function cannot share the TimerUnit_LDD component (a timer) with the pump motor
pre-driver when the driver is in PWM mode.

Table 6. Requirements on MCU Interrupts

Frequency (Hz)
Interrupt Frequency (Interrupts per Second)

8 Points 16 Points 24 Points 32 Points 40 points 48 Points

80 640 1280 1920 2560 3200 3840

100 800 1600 2400 3200 4000 4800

120 960 1920 2880 3840 4800 5760

140 1120 2240 3360 4480 5600 6720

160 1280 2560 3840 5120 6400 7680

180 1440 2880 4320 5760 7200 8640

200 1600 3200 4800 6400 8000 9600

220 1760 3520 5280 7040 8800 10560

240 1920 3840 5760 7680 9600 11520

260 2080 4160 6240 8320 10400 12480

280 2240 4480 6720 8960 11200 13440

300 2400 4800 7200 9600 12000 14400

320 2560 5120 7680 10240 12800 15360

340 2720 5440 8160 10880 13600 16320

360 2880 5760 8640 11520 14400 17280

380 3040 6080 9120 12160 15200 18240

400 3200 6400 9600 12800 16000 19200

MC34ValveController Processor Expert Component, Rev. 1.0

14 NXP Semiconductors

Installing the Processor Expert Software

4 Installing the Processor Expert Software
This chapter describes the installation of Kinetis Design Studio and the use of Processor Expert for application development. Processor
Expert software is available as part of the CodeWarrior Development Studio for Microcontrollers, Kinetis Design Studio or as an
Eclipse-based plug-in for installation into an independent Eclipse environment (Microcontroller Driver Suite). For more information about
Processor Expert refer to this link:
www.nxp.com/products/software-and-tools/software-development-tools/processor-expert-and-embedded-components:BEAN_STORE_
MAIN?fsrch=1&sr=1&pageNum=1.

4.1 Installing Kinetis Design Studio
This procedure explains how to obtain and install the latest version of Kinetis Design Studio (version 3.0.0 in this guide). The procedure
for CodeWarrior installation is very similar.

NOTE
The component and some examples in the component package are intended for CodeWarrior 10.6
(or above) and Kinetis Design Studio 3.0.0 (and above). If CodeWarrior 10.6 and Kinetis Design
Studio 3.0.0 are already installed on the system, skip this section.

1. Obtain the latest Kinetis Design Studio 3.0.0 installer file from the Freescale website here:
www.nxp.com/products/software-and-tools/run-time-software/kinetis-software-and-tools/ides-for-kinetis-mcus/kinetis-design-studi
o-integrated-development-environment-ide:KDS_IDE

2. Run the executable file and follow the instructions.

4.2 Downloading the Components and Example Projects
The examples used in this section are based on a pre-configured CodeWarrior project. To download the project and its associated
components:

1. Go to the NXP website www.nxp.com/MC34VALVECONTROLLER-PEXPERT

2. Download the zip file containing components and example projects.

3. Unzip the downloaded file and check to see that the folder contains the files listed in Table 7.

Table 7. MC34ValveController Example Project and Components

Folder Name Folder Contents

Components

MC34ValveController_b160104.PEupd This component configures MC34SB0800 and MC34SB0410 features.

SPI_Device_b1401.PEupd This component configures SPI communication properties.

CodeWarrior Examples

 VC_KL25Z_4VAPS_DriverControl
This project demonstrates the use of the MC34ValveController component in conjunction with MC34SB0410
valve controller drivers. The target MCU is the TWR-KL25Z48M.

 VC_KL25Z_4VAPS_DriverMonitoring
This project demonstrates how to monitor status of the MC34SB0410 valve controller using
MC34ValveCotontroller component. The target is the TWR-KL25Z48M MCU board.

 VC_KL25Z_4VAPS_FlutterCurrent
This project shows how to use Flutter Current function to control low-side drivers for inductive loads using
MC34ValveController component. The targets are the MC34SB0410 device and the TWR-KL25Z48M MCU
board.

 VC_KL25Z_8VAPS_DriverControl
This project shows how to work with drivers of MC34SB0800 valve controller using MC34ValveController
component. The target MCU is the TWR-KL25Z48M.

 VC_KL25Z_8VAPS_DriverMonitoring
This project shows how to use the MC34ValveController component to monitor MC34SB0800 valve controller
status. The target is the TWR-KL25Z48M MCU board.

VC_KL25Z_8VAPS_FlutterCurrent
This project shows how to use Flutter Current function to control low-side drivers for inductive loads using the
MC34ValveController component. The target is the MC34SB0800 device and the TWR-KL25Z48M MCU
board.

Kinetis Design Studio Examples

 VC_K20D72M_4VAPS_DriverControl
This demo project shows how to work with drivers of MC34SB0410 valve controller using
MC34ValveController component. Target MCU is TWR- K20D72M.

www.nxp.com/products/software-and-tools/software-development-tools/processor-expert-and-embedded-components:BEAN_STORE_MAIN?fsrch=1&sr=1&pageNum=1
www.nxp.com/products/software-and-tools/software-development-tools/processor-expert-and-embedded-components:BEAN_STORE_MAIN?fsrch=1&sr=1&pageNum=1
www.nxp.com/products/software-and-tools/run-time-software/kinetis-software-and-tools/ides-for-kinetis-mcus/kinetis-design-studio-integrated-development-environment-ide:KDS_IDE
www.nxp.com/MC34VALVECONTROLLER-PEXPERT

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 15

Installing the Processor Expert Software

 VC_ K20D72M
_4VAPS_DriverMonitoring

The purpose of this project is to show how to monitor status of MC34SB0410 valve controller using
MC34ValveCotontroller component. It is intended for TWR- K20D72M MCU board.

VC_ K20D72M _4VAPS_FlutterCurrent
This example project shows how to use Flutter Current function to control low-side drivers for inductive loads
using MC34ValveController component. It is intended for MC34SB0410 device and TWR- K20D72M MCU
board.

 VC_ K20D72M _8VAPS_DriverControl
This demo project shows how to work with drivers of MC34SB0800 valve controller using
MC34ValveController component. Target MCU is TWR- K20D72M.

 VC_ K20D72M
_8VAPS_DriverMonitoring

The purpose of this project is to show how to monitor status of MC34SB0800 valve controller using
MC34ValveCotontroller component. It is intended for TWR- K20D72M MCU board.

 VC_ K20D72M
_8VAPS_FlutterCurrent

This example project shows how to use Flutter Current function to control low-side drivers for inductive loads
using MC34ValveController component. It is intended for MC34SB0800 device and TWR- K20D72M MCU
board.

 VC_KL25Z_4VAPS_DriverControl
This demo project shows how to work with drivers of MC34SB0410 valve controller using
MC34ValveController component. Target MCU is TWR-KL25Z48M.

 VC_KL25Z_4VAPS_DriverMonitoring
The purpose of this project is to show how to monitor status of MC34SB0410 valve controller using
MC34ValveCotontroller component. It is intended for TWR-KL25Z48M MCU board.

 VC_KL25Z_4VAPS_FlutterCurrent
This example project shows how to use Flutter Current function to control low-side drivers for inductive loads
using MC34ValveController component. It is intended for MC34SB0410 device and TWR-KL25Z48M MCU
board.

VC_KL25Z_4VAPS_FlutterCurrentAut
o

This example project shows how to use Flutter Current function in automatic mode. It is intended for
MC34SB0410 device and TWR-KL25Z48M MCU board.

VC_KL25Z_4VAPS_FreeMASTER

This project demonstrates features of MC34SB0410 valve controller with TWR-KL25Z48M MCU board. It
uses FreeMASTER tool for visualization and control. Latest Freemaster installation package:
http://www.nxp.com/products/power-management/wireless-charging-ics/freemaster-run-time-debug-
ging-tool:FREEMASTER

VC_KL25Z_4VAPS_SW_PID_Current
Regulation

Example of PID current regulation driven by TWR-KL25Z48M MCU board with use of MC34SB0410 valve
controller.

 VC_KL25Z_8VAPS_DriverControl
This demo project shows how to work with drivers of MC34SB0800 valve controller using
MC34ValveController component. Target MCU is TWR-KL25Z48M.

 VC_KL25Z_8VAPS_DriverMonitoring
The purpose of this project is to show how to monitor status of MC34SB0800 valve controller using
MC34ValveCotontroller component. It is intended for TWR-KL25Z48M MCU board.

VC_KL25Z_8VAPS_DriverMonitoring_i
ar

The purpose of this project is to show how to monitor status of MC34SB0800 valve controller using
MC34ValveCotontroller component. It is intended for TWR-KL25Z48M MCU board and IAR compiler instead
of GNU C.

 VC_KL25Z_8VAPS_FlutterCurrent
This example project shows how to use Flutter Current function to control low-side drivers for inductive loads
using MC34ValveController component. It is intended for MC34SB0800 device and TWR-KL25Z48M MCU
board.

VC_KL25Z_8VAPS_FlutterCurrentAuto
This example project show how to use Flutter Current function in automatic mode. It is intended for
MC34SB0800 device and TWR-KL25Z48M MCU board.

 VC_KL25Z_8VAPS_FreeMASTER

This project demonstrates features of MC34SB0800 valve controller with TWR-KL25Z48M MCU board. It
uses FreeMASTER tool for visualization and control. Latest Freemaster installation package:
http://www.nxp.com/products/power-management/wireless-charging-ics/freemaster-run-time-debug-
ging-tool:FREEMASTER

VC_KL25Z_8VAPS_PD_SPI_PWM
The purpose of this example project is to show how to implement PWM for Pump Motor Pre-driver when SPI
control is used.

VC_KL25Z_8VAPS_SW_PID_Current
Regulation

Example of PID current regulation driven by TWR-KL25Z48M MCU board with use of MC34SB0800 valve
controller.

VC_KV31F_4VAPS_DriverControl
This demo project shows how to work with drivers of MC34SB0410 valve controller using
MC34ValveController component. Target MCU is TWR- KV31F120M.

VC_KV31F_4VAPS_DriverMonitoring
The purpose of this project is to show how to monitor status of MC34SB0410 valve controller using
MC34ValveCotontroller component. It is intended for TWR- KV31F120M MCU board.

Table 7. MC34ValveController Example Project and Components (continued)

Folder Name Folder Contents

www.nxp.com/products/power-management/wireless-charging-ics/freemaster-run-time-debugging-tool:FREEMASTER
www.nxp.com/products/power-management/wireless-charging-ics/freemaster-run-time-debugging-tool:FREEMASTER

MC34ValveController Processor Expert Component, Rev. 1.0

16 NXP Semiconductors

Installing the Processor Expert Software

4.2.1 Import the MC34ValveController Components into the Processor Expert
Library

1. Launch Kinetis Design Studio. When the Kinetis Design Studio IDE opens, go to the menu bar and click Processor Expert ->
Import Component(s).

2. In the pop-up window, locate the component file (.PEupd) in the folder MC34ValveController_PEx_SW\Component. Select
MC34ValveController_bxxxx.PEupd and SPI_Device_bxxxx.PEupd files then click Open (see Figure 7).

Figure 7. Import the MC34ValveController Components

 VC_KV31F_4VAPS_FlutterCurrent
This example project shows how to use Flutter Current function to control low-side drivers for inductive loads
using MC34ValveController component. It is intended for MC34SB0410 device and TWR- KV31F120M MCU
board.

 VC_KV31F_8VAPS_DriverControl
This demo project shows how to work with drivers of MC34SB0800 valve controller using
MC34ValveController component. Target MCU is TWR- KV31F120M.

VC_KV31F_8VAPS_DriverMonitoring
The purpose of this project is to show how to monitor status of MC34SB0800 valve controller using
MC34ValveCotontroller component. It is intended for TWR- KV31F120M MCU board.

 VC_KV31F_8VAPS_FlutterCurrent
This example project shows how to use Flutter Current function to control low-side drivers for inductive loads
using MC34ValveController component. It is intended for MC34SB0800 device and TWR- KV31F120M MCU
board.

Table 7. MC34ValveController Example Project and Components (continued)

Folder Name Folder Contents

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 17

Installing the Processor Expert Software

3. If the import is successful, the MC34ValveController component appears in Components Library -> SW -> User Component (see
Figure 8). The component is now ready to use.

Figure 8. MC34ValveController Component Location After Importing to Kinetis Design Studio

MC34ValveController Processor Expert Component, Rev. 1.0

18 NXP Semiconductors

Installing the Processor Expert Software

4.2.2 Importing an Example Project into Kinetis Design Studio
The following steps show how to import an example from the downloaded zip file into Kinetis Design Studio.

1. In the Kinetis Design Studio menu bar, click File -> Import… In the pop-up window, select General -> Existing Projects into
Workspace and click Next.

Figure 9. Importing an Example File (a)

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 19

Installing the Processor Expert Software

2. Click Browse and locate the folder wherewith unzipped downloaded example files are located. Find the folder
MC34ValveController_PEx_SW\KDS_Examples and select a project to import. (see Figure 10, which shows
VC_K20D72M_4VAPS_DriverControl as the imported project). Then click OK.

Figure 10. Importing an Example File (b)

3. With the project now loaded in the Select root directory box, click on the Copy projects into workspace check box. Then click
Finish. Figure 11 shows the Projects panel and the Components panel after the project has been successfully imported. The
project is now in the Kinetis Design Studio workspace where it can build and run.

Figure 11. Importing an Example File (c)

MC34ValveController Processor Expert Component, Rev. 1.0

20 NXP Semiconductors

Installing the Processor Expert Software

4.3 Creating a New Project with Processor Expert and the
MC34ValveController Components

If choosing not to use the example projects, the following instructions describe how to create and setup a new project using the
MC34ValveController components. If the MC34ValveController does not have components in the Processor Expert Library, follow steps
in Section 4.2.1, Import the MC34ValveController Components into the Processor Expert Library, page 16.

To create a new project do the following:

1. In the Kinetis Design Studio menu bar, select File -> New -> Kinetis Project. When the New Kinetis Project dialog box opens,
enter a project name into the text box and then click Next. (see Figure 12).

Figure 12. Creating a Kinetis Project

2. In the Devices dialog box, select the MCU class for the appropriate MCU. In Figure 13 MKL25Z128 has been selected. Then click
Next.

3. In the Rapid Application Development dialog box, make sure that the Processor Expert option is selected. Then click Next.

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 21

Installing the Processor Expert Software

4. In the Processor Expert Target Compiler dialog box, select a compiler to use (GNU C Compiler in Figure 13) and click Finish.

Figure 13. Selecting a Device, the Rapid Application Development Options and Compiler

5. Figure 14 shows the Projects Explorer panel and the Components panel after the project has been successfully created.

Before the project can be built and run, add the component (imported in Section 4.2.2, Importing an Example Project into Kinetis Design
Studio, page 18) into the project. Section 4.3.1, Adding a MC34ValveController Component into the Project, page 22 outlines this
procedure.

Figure 14. Project Explorer and Components Panels with Project Created

MC34ValveController Processor Expert Component, Rev. 1.0

22 NXP Semiconductors

Installing the Processor Expert Software

4.3.1 Adding a MC34ValveController Component into the Project
1. Find the MC34ValveController component in the Components Library and add it into the project (see Figure 15). It is located in

the workspace directory selected when importing the component (My Repository in the example).

Figure 15. Add the MC34ValveController Component to the Project

2. Figure 16 shows the Components panel after the component was added. To view the Component Inspector options,
double-click on the MC34ValveController component in the Components panel.

Figure 16. Show the Component Inspector

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 23

Installing the Processor Expert Software

4.4 Setting up the Project
Once the new project has been created and the MC34ValveController component has been added into it, the component properties in the
project must be set up. Make sure to read Section 3.1, Component Settings, page 7, which describes the component’s capabilities and
what must be done to configure its properties.

MC34ValveController uses several components (see Figure 17). Configure all the components in the following order:

1. Set up the MC34ValveController component.

2. Set up the referenced SPI_Master_LDD component.

3. Set up the CS pin under the inherited SPI_Device component.

Figure 17. Setting up the Components

4.5 Generating Driver Source Code
After having completed configuring the components, the application is ready to generate the driver code to be incorporated. The process
is as follows:

1. Click on the Generate Processor Expert Code icon in the upper right corner of the Components panel.

Figure 18. Generating the Source Code and Code Location

2. The driver code for the device is generated into the Generated_Code folder in the Project Explorer panel. The component only
generates the driver code. It does not generate application code. Figure 18 shows the locations of the generated driver source
and the application code.

MC34ValveController Processor Expert Component, Rev. 1.0

24 NXP Semiconductors

Installing the Processor Expert Software

4.6 Writing the Application Code
All of the application code must reside in the Sources folder in the project directory. The code may modified in main.c and Events.c, but
retain the original comments related to usage directions.

To add a component method into the application source code:

1. In the Components panel for the project, click on Components. Find the desired method to add to the code.

2. Drag and drop the method directly into the source code panel.

3. Add the appropriate parameters to the method. Hovering the mouse over the method displays a a list of the required parameters.

For example, open the MC34ValveController component method list, drag and drop ReadRegister into main.c and add the necessary
parameters. (See Figure 19).

Figure 19. Adding Component Methods

Hovering the mouse over any of the methods displays a description of the method, including a list of required parameter.

The MC34ValveController component encompasses a help, which describes component properties, methods and typical usage. To show
the help, do the following:

1. In the Components view, right-click MC34ValveController component and select Help on Component.

2. A web page with the Help information displays.

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 25

Installing the Processor Expert Software

4.6.1 Compiling, Downloading and Debugging
To compile a project, click on the compile icon in the tool bar (see Figure 20).

Figure 20. Compiling the Application

The process for downloading an application on board in Kinetis Design Studio may differ according to MCU board used. For any questions,
see the Kinetis Design Studio user's guide.

To download and debug on TWR-KL25Z48M MCU board, do the following:

1. Click the arrow next to the debug icon in the tabular and select Debug Configurations… (see Figure 21)

Figure 21. Downloading the Application (a)

2. In the Debug Configurations dialog box, click Example_Debug_PNE under GDB PEMicro Interface Debugging (see Figure 22).

MC34ValveController Processor Expert Component, Rev. 1.0

26 NXP Semiconductors

Installing the Processor Expert Software

3. Make sure that C/C++ Application contains a path to the .elf file of the project (see Figure 22).

Figure 22. Downloading the Application (b)

4. Click the Debugger tab and set Interface option to OpenSDA Embedded Debug - USB Port. Then click Refresh button next to
the Port setting to update list of available USB ports (see Figure 23).

5. Make sure the Target is set to KL25Z128M4. If not, change the target with use of the Select Device button. Click the button, in
the Select Target Device dialog box go to Freescale -> KL2x -> KL25Z128M4 and confirm with the Select button.

6. Click Debug. Kinetis Design Studio will download and launch the program on board.

Figure 23. Downloading the Application (c)

MC34ValveController Processor Expert Component, Rev. 1.0

NXP Semiconductors 27

References

5 References
Following are URLs where you can obtain information on related NXP products and application solutions:

5.1 Support
Visit www.nxp.com/support for a list of phone numbers within your region.

5.2 Warranty
Visit www.nxp.com/warranty to submit a request for tool warranty.

Table 8. References

NXP.com Support Pages Description URL

MC34SB0410 Product Summary Page www.nxp.com/MC34SB0410

MC34SB0800 Product Summary Page www.nxp.com/MC34SB0800

TWR-SB0410-36EVB Tool Summary Page www.nxp.com/TWR-SB0410-36EVB

TWR-SB0800-36EVB Tool Summary Page www.nxp.com/TWR-SB0800-36EVB

Tower System
Tower System Modular
Development Board
Platform

www.nxp.com/tower

Kinetis Design Studio Software www.nxp.com/kinetis

CodeWarrior Software www.nxp.com/codewarrior

Processor Expert Code
Model

Code Walkthrough Video
www.freescale.com/video/processor-expert-code-model-codewarrior-code-walkthrough:PR
OEXPCODMODCW_VID

www.nxp.com/warranty
www.nxp.com/MC34SB0800
www.nxp.com/products/discretes-and-logic/mosfets/low-side-switches/octal-valve-controller-system-on-chip:MC34SB0800?lang_cd=en
http://www.nxp.com/products/discretes-and-logic/mosfets/low-side-switches/quad-valve-controller-system-on-chip:MC34SB0410
http://www.nxp.com/products/discretes-and-logic/mosfets/low-side-switches/quad-valve-controller-system-on-chip:MC34SB0410
http://www.nxp.com/TWR-SB0410-36EVB
www.nxp.com/TWR-SB0800-36EVB
www.nxp.com/tower
www.nxp.com/kinetis
www.nxp.com/codewarrior
www.freescale.com/video/processor-expert-code-model-codewarrior-code-walkthrough:PROEXPCODMODCW_VID
www.freescale.com/video/processor-expert-code-model-codewarrior-code-walkthrough:PROEXPCODMODCW_VID
http://www.nxp.com/support/sales-and-support:SUPPORTHOME
http://www.nxp.com/support/sales-and-support/buy-direct/returns-and-warranty-information:WTBUY_DTD_RETURNS?tid=vanwarranty
http://www.freescale.com/support
http://www.freescale.com/support
http://www.freescale.com/warranty
http://www.nxp.com/products/discretes-and-logic/mosfets/low-side-switches/quad-valve-controller-system-on-chip:MC34SB0410

MC34ValveController Processor Expert Component, Rev. 1.0

28 NXP Semiconductors

Revision History

6 Revision History

Revision Date Description of Changes

1.0 1/2016 • Initial release

Information in this document is provided solely to enable system and software implementers to use Freescale products.

There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no

warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be

provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.

Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.

SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their

respective owners.

© NXP Semiconductors N.V. 2016. All rights reserved.

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Document Number: SB0410-SB0800SWUG
Rev. 1.0

1/2016

http://www.nxp.com/about/terms-of-use:TERMSOFUSE
http://www.nxp.com/support/sales-and-support:SUPPORTHOME
http://www.nxp.com/

	MC34ValveController Processor Expert Component
	1 Overview
	2 MC34ValveController Compatibility
	2.1 Peripheral Requirements
	2.2 Supported Devices
	2.3 Supported MCUs
	2.4 Tower Board Settings

	3 MC34ValveController Component
	3.1 Component Settings
	3.2 SPI Configuration
	3.3 Component API
	3.4 MC34ValveController Components
	3.5 Fault Detection and Handling
	3.6 Flutter Current Feature
	3.7 Known Issues

	4 Installing the Processor Expert Software
	4.1 Installing Kinetis Design Studio
	4.2 Downloading the Components and Example Projects
	4.2.1 Import the MC34ValveController Components into the Processor Expert Library
	4.2.2 Importing an Example Project into Kinetis Design Studio

	4.3 Creating a New Project with Processor Expert and the MC34ValveController Components
	4.3.1 Adding a MC34ValveController Component into the Project

	4.4 Setting up the Project
	4.5 Generating Driver Source Code
	4.6 Writing the Application Code
	4.6.1 Compiling, Downloading and Debugging

	5 References
	5.1 Support
	5.2 Warranty

	6 Revision History

