
Freescale Semiconductor, Inc.
CodeWarrior™
Development Tools

Profiler User Guide
For More Information: www.freescale.com

Freescale Semiconductor, Inc.
Metrowerks, the Metrowerks insignia, and CodeWarrior are registered
trademarks of Metrowerks Corp. in the US and/or other countries. All other trade
names, trademarks and registered trademarks are the property of their respective
owners.
© Copyright. 2002. Metrowerks Corp. ALL RIGHTS RESERVED.
Metrowerks reserves the right to make changes without further notice to any
products herein to improve reliability, function or design. Metrowerks does not
assume any liability arising out of the application or use of any product described
herein. Metrowerks software is not authorized for and has not been designed,
tested, manufactured, or intended for use in developing applications where the
failure, malfunction, or any inaccuracy of the application carries a risk of death,
serious bodily injury, or damage to tangible property, including, but not limited
to, use in factory control systems, medical devices or facilities, nuclear facilities,
aircraft or automobile navigation or communication, emergency systems, or other
applications with a similar degree of potential hazard.
Documentation stored on electronic media may be printed for personal use only.
Except for the forgoing, no portion of this documentation may be reproduced or
transmitted in any form or by any means, electronic or mechanical, without prior
written permission from Metrowerks.
ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE SUBJECT
TO THE METROWERKS END USER LICENSE AGREEMENT FOR SUCH PRODUCT.

How to Contact Metrowerks:

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales United States Voice: 800-377-5416
United States Fax: 512-996-4910
International Voice: +1-512-996-5300
Email: sales@metrowerks.com

Technical Support United States Voice: 800-377-5416
International Voice: +1-512-996-5300
Email: support@metrowerks.com
For More Information: www.freescale.com

http://www.metrowerks.com

Table of Contents

1 Introduction 7
Read the Release Notes! 7
What’s New in This Release 7
CodeWarrior and Its Documentation 8
What’s in This Manual 8
Where to Go from Here 9

2 Getting Started 13
System Requirements 13
Installing Profiler . 14
Background on Profiling Code 14

What Is a Profiler? 15
Types of Profilers 15
A Profiling Strategy 17
Profiling Code . 18

3 Using Profiler 19
What It Does . 19
How It Works . 20
Profiling Made Easy 21

4 Viewing Results 27
What It Does . 27
How It Works . 27

MW Profiler Window 28
Window Views . 32

Finding Performance Problems 36

5 Profiling Mac OS Code 39
Profiler Libraries and Interface Files 39
Profiling Special Cases 42

Profiling Code with #pragma Statements 43
Initializing Profiler with ProfilerInit() 43
Terminating Profiler with ProfilerDump() 46
Profiling Threads 47
Viewing Threads in MW Profiler 48

Freescale Semiconductor, Inc.
Profiler User Guide PFL–3

For More Information: www.freescale.com

Table of Contents
Freescale Semiconductor, Inc.
Profiling Shared Libraries 49
Profiling Code Resources 49
Profiling C++ Static Constructors 50
Profiling MacApp 51
Profiling Asynchronous Routines 51
Profiling Abnormally Terminated Functions 52
Using the PowerPC PEF Linker 53
Debugging Profiled Code 58

Profiler Limitations . 59

6 Profiling in PowerPlant 61
Introduction to Profiling in PowerPlant 61
Profiling Strategy . 61

Rules of Thumb . 62
Profiling Class . 63

StProfileSection . 63
~StProfileSection 64

Profiling Your Code . 65
Code Exercise for Profiling 66

Profiling a Single Routine 66
Profiling an Application 71

7 Troubleshooting 73
Profile Times Vary Between Runs 73
Problems while Profiling Inline Functions 74
Profiling Library Could not be Found 75
Profiler and Virtual Memory 76
Names are Garbled when Viewing a 68K Profile Dump . . . 76

8 Profiler Reference 77
Compiler Directives. 77

Testing for the Profiler 78
Memory Usage . 78
Time and Timebases 79
Profiler Menu Reference 80

About MW Profiler 81
File Menu . 81
Edit Menu . 82
PFL–4 Profiler User Guide

For More Information: www.freescale.com

Table of Contents
Freescale Semiconductor, Inc.
View Menu . 82
Windows Menu . 84

Profiler Function Reference 84
Profiler API . 85

Index 91
Profiler User Guide PFL–5

For More Information: www.freescale.com

Table of Contents
Freescale Semiconductor, Inc.
PFL–6 Profiler User Guide

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
1
Introduction

Welcome to the CodeWarrior Profiler User Guide. Profiler is a code
analysis tool designed to help you make your code more efficient.

The introduction includes the following sections:

• Read the Release Notes!—where to go for critical, last-second
details

• What’s New in This Release—new features since the previous
release

• CodeWarrior and Its Documentation—a general description of
the CodeWarrior architecture and documentation

• What’s in This Manual—a description of the contents of this
manual

• Where to Go from Here—recommendations for further reading

Read the Release Notes!
Before you use CodeWarrior Profiler, you should read the release
notes. They contain important last-minute information about new
features, bug fixes, and incompatibilities that may not be included in
the documentation.

The release notes directory is always included as part of a standard
CodeWarrior installation. The release notes directory is also located
at the top level of the CodeWarrior CD.

What’s New in This Release
MW Profiler is Carbon compliant and thus requires the CarbonLib
from Apple to run. A version of CarbonLib is available on the
CodeWarrior CD.
Profiler User Guide PFL–7

For More Information: www.freescale.com

Introduction
CodeWarrior and Its Documentation

Freescale Semiconductor, Inc.
CodeWarrior and Its Documentation
CodeWarrior is a multi-host, multi-language, multi-target
development environment. What does that mean?

Multiple hosts CodeWarrior runs on several different operating
systems, including Windows and Mac OS. The features, human
interface, and operation of CodeWarrior are very similar on all
hosts.

Multiple languages You can use CodeWarrior to program in
several languages, including C/C++, and Java. Third-party
compilers provide support for other languages, such as Fortran.
Which languages are available to you depend upon the target for
which you are developing software.

Multiple targets You can use CodeWarrior to write software for
several different chips or operating systems. CodeWarrior products
support programming for a variety of embedded processors and
real-time operating systems, the Java Virtual Machine, and desktop
operating systems such as Windows, Mac OS.

Most features of CodeWarrior apply regardless of your preferred
host, language, or target. General features of CodeWarrior are
described in the IDE User Guide .

For a complete understanding of CodeWarrior, you must refer to
both the general documentation and the documentation that is
specific to your particular target.

While the profiling process is general, each target has its own
unique features. This manual describes both the general profiling
process and the unique features involved in profiling code for
specific targets.

What’s in This Manual
The CodeWarrior Profiler is actually a system consisting of three
components: the profiler libraries, the calls you add to your code,
and the MW Profiler application you use to view results. The
Profiler system works with C, C++, and Pascal code.
PFL–8 Profiler User Guide

For More Information: www.freescale.com

Introduction
Where to Go from Here

Freescale Semiconductor, Inc.
This manual often refers to the CodeWarrior profiler system as
“CodeWarrior profiler,” or simply as “the profiler.” This manual
will specifically refer to the MW Profiler application as “MW
Profiler.”

Table 1.1 lists every chapter in this manual, and describes the
information contained in each. See “CodeWarrior and Its
Documentation” on page 8 for a discussion of how these chapters
relate to other CodeWarrior documentation.

Table 1.1 Contents of chapters

Where to Go from Here
All the manuals mentioned here are available as part of the
CodeWarrior documentation included with your product.

Chapter Description

Introduction this chapter

Getting Started system requirements, installation
instructions, and background
information

Using Profiler a “how to” guide to profiling your
code

Viewing Results a user’s guide to displaying
profiling results with MW Profiler

Profiling Mac OS Code information about profiling Mac OS
code, including a tutorial

Troubleshooting common problems and their
answers

Profiler Reference a reference to the libraries, compiler
directives, and function calls you
use to control the CodeWarrior
profiler at compile time
Profiler User Guide PFL–9

For More Information: www.freescale.com

Introduction
Where to Go from Here

Freescale Semiconductor, Inc.
If you’re new to CodeWarrior Profiler:

• If you are unfamiliar with what a profiler is, read “What Is a
Profiler?.” This section discusses different approaches to
profiling code, and why profiling is so useful.

• Read “Using Profiler” and “Viewing Results.” These chapters
introduce you to the three components of the CodeWarrior
profiler system: the profiler libraries, the calls you add to your
code, and the MW Profiler application you use to view results.

If you’re experienced with CodeWarrior Profiler:

• For details about profiling Mac OS code, read “Profiling Mac OS
Code.”

• If you are experiencing problems using any part of the
CodeWarrior profiler system, read “Troubleshooting.”

• For technical details on the CodeWarrior profiler system,
including the libraries, API, and other issues, see “Profiler
Reference.”

• For reference on menu items in the MW Profiler application, use
“Profiler Menu Reference” as your starting point.

For everyone:

• For general information about the CodeWarrior IDE and
debugger, see the IDE User Guide .

• For information specific to the C/C++ front-end compiler, see
the C Compilers Reference.

• For information on Metrowerks’ standard C/C++ libraries, see
the MSL C Reference and the MSL C++ Reference.

For general information on profiling Mac OS code:

• Read “Optimizing PowerPC Programs,” Apple Directions, Nov.
95, p. 17.

• Read “Balance of Power,” develop, Issues 18 (p. 55) and 19 (p. 17)

• Read “PowerPC Compatibility and Performance Issues,” Tech
Note PT38.

• Read “Taking Extreme Advantage of PowerPC,” MacTech
Magazine, Eric Traut, April 95

• Read “Preparing Your Code for Future PowerPC Processors,”
Apple Directions, May 95, p. 14.
PFL–10 Profiler User Guide

For More Information: www.freescale.com

Introduction
Where to Go from Here

Freescale Semiconductor, Inc.
There is a complete index at the back of this manual.
Profiler User Guide PFL–11

For More Information: www.freescale.com

Introduction
Where to Go from Here

Freescale Semiconductor, Inc.
PFL–12 Profiler User Guide

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
2
Getting Started

This chapter gives you the information you need to get
CodeWarrior Profiler installed and running. For new users, this
chapter provides a brief overview of profiling code.

This chapter includes the following topics:

• System Requirements — hardware and software requirements

• Installing Profiler— how to install Profiler on your system

• Background on Profiling Code— a brief description of profilers
and how to implement them in your code

System Requirements
This section describes what kind of system you’ll need in order to
use CodeWarrior Profiler.

Profiler is part of a complete package that also includes the
CodeWarrior IDE, MW Profiler, and the profiler libraries. You need
all these elements to use the Profiler system effectively.

• A Macintosh-compatible computer with a PowerPC 601 or better
processor.

• Mac OS System 8.1 or later with CarbonLib 1.02 or later
installed.

• A minimum of 32 MB RAM to use the CodeWarrior IDE along
with MW Profiler.

• A CD-ROM drive to install CodeWarrior software,
documentation, and examples
Profiler User Guide PFL–13

For More Information: www.freescale.com

Gett ing Started
Installing Profiler

Freescale Semiconductor, Inc.
Installing Profiler
Your first step toward developing software for your target is to
install the CodeWarrior tools. The tools include a variety of
components such as the IDE, debugger, plug-in compilers and
linkers, standard libraries, runtime libraries and headers, and all
necessary documentation.

The CodeWarrior Installer automatically installs all necessary
components. It is strongly recommended that you use the
CodeWarrior Installer to ensure that you have all the required files.
If you have any questions regarding the installer, read the
instructions built into the CodeWarrior Installer itself.

To start the installation process, do the following:

On the Macintosh desktop, double-click the icon for the
CodeWarrior CD. Then double-click the icon for the CodeWarrior
Installer, located at the root level of the CD.

Background on Profiling Code
This section provides you with general information about what a
profiler is, different kinds of profilers, and a typical strategy you
would follow to measure program performance. Along the way
you’ll see how the CodeWarrior profiler handles the advantages
and disadvantages of profiling code.

Topics discussed are:

• What Is a Profiler?—a brief description of profilers and what
they do

• Types of Profilers—different kinds of profilers, their strengths
and weaknesses

• A Profiling Strategy—an outline you should follow when
profiling your own code

• Profiling Code—three steps to follow when profiling code
PFL–14 Profiler User Guide

For More Information: www.freescale.com

Getting Started
What Is a Profiler?

Freescale Semiconductor, Inc.
What Is a Profiler?

Speed and performance are important issues in most software
projects. In most cases, if your code doesn’t work quickly, it doesn’t
work well.

Programmers have regularly observed that 10% of their code does
90% of the work. Reworking code to make it more efficient is a non-
trivial task. You should concentrate on improving that core 10% of
your code first, and improve the infrequently-used code later, if at
all.

Wouldn’t it be really cool if you could determine precisely where
your code spent its time? That’s what a profiler does for you—it
gives you clues. More than clues, the CodeWarrior profiler gives
you hard and reliable data.

A good profiler analyzes the amount of time your code spends
performing various tasks. Armed with this information, you can
apply your efforts to improving the efficiency of core routines.

A profiler can also help you detect bottlenecks—routines your data
passes through to get to other places—and routines that are just
inordinately slow. Identifying these problems is the first step to
solving them.

Types of Profilers

The simplest profilers count how many times a routine is called.
They do not report any information about which routines are called
by other routines, or the amount of time spent inside the various
routines being profiled.

Clearly a good profile of the runtime performance of code requires
more information than a raw count. More advanced profilers
perform statistical sampling of the runtime environment. These
profilers are called passive or sampling profilers.

A passive profiler divides the program being profiled into evenly-
sized “buckets” in memory. It then samples the processor’s
program counter at regular intervals to determine which bucket the
counter is in.
Profiler User Guide PFL–15

For More Information: www.freescale.com

Gett ing Started
Types of Profilers

Freescale Semiconductor, Inc.
The main advantage of a passive profiler is that it requires no
modification to the program under observation. You just run the
profiler and tell it what program to observe. Also, passive profilers
distribute the overhead that they incur evenly over time, allowing
the post-processing steps to ignore it. On the other hand, they
cannot sample too frequently or the sampling interrupt will
overwhelm the program being sampled.

Passive profilers have a significant disadvantage. Although useful,
bucket boundaries do not line up with routine boundaries in the
program. This makes it difficult if not impossible to determine
which routines are heavily used. As a result, passive profilers
generate a relatively low-resolution image of what’s happening in
the program while it runs.

In addition, because they rely on a statistical sampling technique,
the program must run for a long enough period to collect a valid
sample. As a result, they do not have good repeatability—that is, the
results you get from different runs may vary unless the sampling
period is long.

The most advanced and accurate profilers are called active profilers.
The CodeWarrior profiler is an active profiler.

An active profiler tracks the precise amount of time a program
spends in each individual routine, measured directly from the
system clock.

To perform this magic, an active profiler requires that you modify
the code of the program to be observed. An active profiler gains
control at every routine entry and exit. There must be a call to the
profiler at the beginning of each profiled routine. The profiler can
then track how much time is spent in the routine.

This approach has significant advantages over a passive profiler. An
active profiler can report high-resolution results about exactly what
your program is doing. An active profiler also tracks the dynamic
call tree of a program. This information can be very useful for
determining the true cost of calling a routine. The true cost of a
routine call is not only the time spent in the routine, it is also the
time spent in its children—the subsidiary routines it calls, the
routines they call, and so on to whatever depth is necessary.
PFL–16 Profiler User Guide

For More Information: www.freescale.com

Getting Started
A Profiling Strategy

Freescale Semiconductor, Inc.
Because it uses measurements and not statistical sampling, an active
profiler is much more accurate and repeatable than a passive
profiler.

The requirement that you must modify the actual source code might
seem like a significant disadvantage. With the CodeWarrior
profiler, this disadvantage is minimal. Activating the profiler for an
entire program—or for a range of routines within a program—is
simple. The compiler does most of the work, inserting the necessary
calls to the profiler itself. You do have to recompile the project when
you turn on profiling.

Active profilers distribute their overhead by routine call frequency.
This makes it harder to compensate for the overhead during post
processing of the output. The CodeWarrior profiler tracks the
overhead automatically, compensates for it, and also reports the
overhead to you. You don’t have to worry about overhead at all.

Finally, active profilers generate a large amount of raw information.
This can lead to confusion and difficulty interpreting the results.
The MW Profiler application that is part of the CodeWarrior profiler
system handles these difficulties with aplomb. You can view and
sort the data in whatever way best suits your needs.

A Profiling Strategy

You use a profiler to measure the runtime performance of your
code. What is usually important is how your code’s performance
measures up to some standard. When approaching the problem of
measuring performance, you might want to take these three steps:

1. Establish your standards.

For example, you might decide that you want the program to load
in less than ten seconds, or check the spelling of a five-page
document that contains no misspellings in 15 seconds. Also decide
on the platform you will use for testing, since processor speeds
vary.

2. Determine how to measure time.

Your measurement device may be no more complicated than a
stopwatch, or you may need to add some simple code to count ticks.
At this phase you want to test the code in as close to its finished
Profiler User Guide PFL–17

For More Information: www.freescale.com

Gett ing Started
Profiling Code

Freescale Semiconductor, Inc.
form as possible, so measure time in a way that is accurate enough
to suit your needs, and that has the lowest impact on your code’s
natural performance. You do not want to run a full-blown profile
here, because profiling can add significant overhead, thus slowing
down your code’s raw performance.

3. Run the tests and measure results.

If you meet your performance goals, your job is done. If your code
does not meet your goals, then it’s time to profile your code.

Profiling Code

To profile your code, you do three things:

1. Run a profiler on the area of the code you want tested.

This might be a single routine, a group of routines that perform a
task, or even the entire application. What you profile depends upon
what you are testing.

2. Analyze the data collected by the profiler and improve your code.

You study the results of your profiling and look for problems and
room for improvement.

The profiling process is iterative. You repeat these two steps until
you achieve the performance gain you need to meet your goals.

The rest of this manual discusses how to perform these two steps—
profile your code and analyze the results—using the CodeWarrior
profiler system.

3. Retest your code to verify results

When you are satisfied that you have reached your goals, you have
one more step to perform. You should run your original tests—
without the profiler of course—to verify that your code in its natural
state meets your performance goals.

The CodeWarrior profiler will help you meet those goals quickly
and easily.
PFL–18 Profiler User Guide

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
3
Using Profiler

The CodeWarrior profiler lets you analyze how processor time is
distributed during your program’s execution. With this
information, you can determine where to concentrate your efforts to
optimize your code most effectively.

This chapter discusses the following principal topics:

• What It Does—an overview of the principle features of the
profiler

• How It Works—basic information on the elements of the profiler
and about how to use the profiler in your own code

• Profiling Made Easy—a step-by-step guide to using the profiler

What It Does
The CodeWarrior profiler is a state-of-the-art, user-friendly,
analytical tool that can profile C or C++ code.

For every project, from the simplest to the most complex, the
profiler offers many useful features that help you analyze your
code. You can:

• turn the profiler on and off at compile time

• profile any routine, group of routines, or an entire project

• track time spent in any routine

• track time spent in a routine and the routines it calls—its
children

• track execution paths and times in a dynamic call tree

• collect detailed or summary data in a profile

• use precision time resolutions for accurate profiling

• track the stack space used by each routine
Profiler User Guide PFL–19

For More Information: www.freescale.com

Using Profi ler
How It Works

Freescale Semiconductor, Inc.
How It Works
The CodeWarrior profiler is an active profiler. The profiling system
consists of three main components:

• a statically-linked code library of compiled code containing the
profiler

• an Application Programming Interface (API) to control the
profiler

• the MW Profiler application to view and analyze the profile
results

Details of the API are discussed in “Profiler API.” The MW Profiler
application is discussed in “Viewing Results.”

The rest of this chapter will discuss the general profiling process.
Subsequent chapters describe how to carry out the profiling process
for your particular target.

To use the profiler, you do these things:

• Include the correct profiler library and files in your CodeWarrior
project

• Modify your source code to make use of the profiler API

• Use the API to initialize the profiler, to dump the results into a
file, and to exit the profiler

• Use the MW Profiler application to view the results

You can profile an entire program if you wish or, adding compiler
directives to your code, you can profile any individual section of
your program.

Figure 3.1 illustrates the flow of events that occurs when you profile
code.
PFL–20 Profiler User Guide

For More Information: www.freescale.com

Using Profi ler
Profiling Made Easy

Freescale Semiconductor, Inc.
Figure 3.1 The profiling process

You modify the original source code slightly to initialize the
profiler, dump results, and exit the profiler when through. You may
modify the source code more extensively if you wish to profile
individual portions of your code.

Then the compiler and linker—using a profiler library—generate a
new version of your program, ready for profiling. While it runs, the
profiler generates data. Your program will run a little more slowly
because of the profiler overhead (sometimes a lot more slowly), but
that’s taken into account in the final results. When complete, you
use the MW Profiler application to analyze the data and determine
what changes are appropriate to improve performance. You can
repeat the process as often as desired until you have turned your
code into a fast, efficient, well-oiled machine.

See also “Profiler API” and “Viewing Results.”

Profiling Made Easy
This section takes you step by step through the general process of
profiling an application.

To profile an application, you do the following:

1. Add a profiler library to the project
Profiler User Guide PFL–21

For More Information: www.freescale.com

Using Profi ler
Profiling Made Easy

Freescale Semiconductor, Inc.
2. Turn on profiling

3. Include the profiler API interface

4. Initialize the profiler

5. Dump the profile results

6. Exit the profiler

In the steps that follow, we’ll detail precisely what to do in both C/
C++ and Pascal. These steps may seem a little complicated. Don’t be
alarmed. Using the CodeWarrior profiler is actually easier than
reading about how to do it.

1. Add a profiler library to the project

The code that performs the profiler magic has been compiled into
libraries. The precise library that you add to your code depends on
the target for which you’re profiling code and on the kind of code
you’re developing. For more information about adding the
appropriate libraries for your particular target, read “Profiling Mac
OS Code.”

For example, Figure 3.2 shows how to add the appropriate library
for your code model when profiling code for a Mac OS PowerPC
target.
PFL–22 Profiler User Guide

For More Information: www.freescale.com

Using Profi ler
Profiling Made Easy

Freescale Semiconductor, Inc.
Figure 3.2 The PowerPC profiler library in a project

2. Turn on profiling

You can use the following methods to turn profiling on or off:

Project-level profiling

To turn on profiling for an entire project, use the project settings. In
the Project Settings dialog, choose the processor you are generating
code for (68K Processor or PPC Processor) under the Code
Generation option. Click the Generate Profiler Information
checkbox as shown in Figure 3.3. With profiling on, the compiler
generates all the code necessary so that every routine calls the
profiler.
Profiler User Guide PFL–23

For More Information: www.freescale.com

Using Profi ler
Profiling Made Easy

Freescale Semiconductor, Inc.
Figure 3.3 Processor Preferences options for PowerPC

Routine-level profiling

To profile certain routines (rather than the entire project), use the
appropriate profiler API calls for your target to initialize the
profiler, set up profiling, and immediately turn profiling off. You
can then manually turn profiling on and off by placing profiler calls
around the routine or routines you want to profile. For example,
you could modify Mac OS code to look like Listing 3.1.

Listing 3.1 profiling a routine
void main()
{

...
err = ProfilerInit(...);

if (err == noErr)
{

PFL–24 Profiler User Guide

For More Information: www.freescale.com

Using Profi ler
Profiling Made Easy

Freescale Semiconductor, Inc.
ProfilerSetStatus(FALSE); // turn off profiling until needed.
// more code....

// now you reach routine you want to profile
ProfilerSetStatus(TRUE); // turn on profiling
foobar(); // this routine is profiled and shows up in viewer
ProfilerSetStatus(FALSE); // turn profiling off again

// more code....
ProfilerTerm();

}
}

Assuming that profiling is on for an entire project, you can turn off
profiling at any time. First, use an appropriate call to turn off
profiling. Then use another call to turn it on. Turn it on just before
calling the routine or routines you are interested in. Turn it off when
those routines return. It’s really that easy.

Alternatively, you can use #pragma statements in C/C++. These
aren’t as useful as using profiler API calls. For example, suppose
you have two routines—foo() and bar()—that each call a third
utility routine, barsoom(). If you use compiler directives to turn
on profiling for foo() and barsoom(), the result you get will
include the time for barsoom() when called from bar() as well.

3. Include the profiler API interface

To use the profiler, you add at least three profiler-related calls to
your code. These calls are detailed in the next three steps. The
process varies slightly for the different languages and targets.

Source files that make calls to the profiler API must include the
appropriate header file for your target. For example, to profile an
entire Mac OS application, you would add this line of code to the
source file that includes your main() function:

#include <profiler.h>

TIP You don’t have to include the header file in every file that contains a
profiled function, only in those that actually make direct profiler API
calls.
Profiler User Guide PFL–25

For More Information: www.freescale.com

Using Profi ler
Profiling Made Easy

Freescale Semiconductor, Inc.
4. Initialize the profiler

At the beginning of your code, you call the appropriate function for
your target. See “Profiler API” to find out the precise function name
that you’ll need for your specific target.

5. Dump the profile results

Obviously, if you profile code you want to see the results. The
profiler dumps the results to a data file. The data is in a proprietary
format understood by the MW Profiler viewing application.

TIP Although the original profiler data file is in a proprietary format, you
can use the Save As... command in the MW Profiler File menu to
save the data in a tab-delimited text file.

6. Exit the profiler

When you are all through with the profiler, before exiting the
program you must terminate the profiler by calling the correct
profiler API function. If you initialize the profiler and then exit the
program without terminating the profiler, timers may be left
running that could crash the machine.

The call to terminate the profiler stops the profiler and deallocates
memory. It does not dump any information. Any collected data that
has not been dumped is lost when you call the function to terminate
the profiler.

Having performed these quick steps, you simply compile your
program and run it. When you quit, the results will be waiting for
your analysis. MW Profiler, the viewing application, is introduced
in “Viewing Results.”

In summary, the process of using the CodeWarrior profiler is quite
easy. You add the requisite library, turn on profiling, include the
header file, initialize the profiler, dump the results, and exit. It is a
remarkably painless and simple process that quickly gets you all the
data you need to perform a professional-level analysis of your
application’s runtime behavior.
PFL–26 Profiler User Guide

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
4
Viewing Results

This chapter discusses MW Profiler—the application you use to
view the data created by the CodeWarrior profiler.

In this chapter you will look at:

• What It Does—the principle features of MW Profiler

• How It Works—the MW Profiler interface and how you can
view data

• Finding Performance Problems—use the MW Profiler to locate
problems

What It Does
The MW Profiler viewer application displays profiler output for you
to analyze the results of your program’s execution. MW Profiler
reads the profiler dump files created by the calls in your code and
displays the data in a form that you can use. Using the data display
you can:

• sort data by any of several relevant criteria such as name, time in
routine, percent of time in routine, and so forth

• open multiple profiles simultaneously to compare different
versions of the profiled code

• identify trouble spots in the code

• view summary, detailed, or object-based data

The MW Profiler application is very easy to use.

How It Works
You open profile data files exactly as you open files in any
application. You can use the Open... command from the MW
Profiler User Guide PFL–27

For More Information: www.freescale.com

Viewing Results
MW Profiler Window

Freescale Semiconductor, Inc.
Profiler File menu or drop the data file’s icon on the MW Profiler
icon. Whatever approach you take, when you open a file a window
appears.

MW Profiler Window

MW Profiler allows you to view several elements of the profile data
simultaneously, as shown in Figure 4.1.

Figure 4.1 Profiler window

Profiler window header items (Mac OS)

MW Profiler allows you to view summary data, detailed data, or
object-based data. All three ways of viewing data use the same
window shown in Figure 4.1. The display of the contents changes
slightly for the different views.

See also “Window Views” on page 32.

At the top of the window is a line with information about the data
on display. The figure shows four items, but six are possible. What
they are and what they represent is listed in Table 4.1.
PFL–28 Profiler User Guide

For More Information: www.freescale.com

Viewing Results
MW Profiler Window

Freescale Semiconductor, Inc.
Table 4.1 Profile window header items

The last two items—OverflowStack and OverflowFunctions—only
appear if the parameters you passed to ProfilerInit() did not
create a buffer large enough to hold all the collected data.

The OverflowStack number includes duplicate routine calls. If it is
small, it is the amount by which you should increase the
stackDepth parameter in the call to ProfilerInit(). If it is
large, increase the value of the stackDepth parameter by some
increment and try again.

The OverflowFunctions number also includes duplicate routine
calls. It is likely to be much larger than the size by which you need
to increase the numFunctions parameter in the call to
ProfilerInit(). It might even be in the thousands.

If either overflow occurs, just increase the value of the respective
parameter in the ProfilerInit() call so the profiler allocates a
larger data buffer.

See also “ProfilerInit().”

Profiler window data columns

Below the header information is a series of columns containing data
from the profile. All times are displayed according to the resolution
of the timer that you use to profile data. The results in the window
are only as precise as the timer used.

Item Contents

Method the collection method, detailed or summary

Timebase the time base that was used to collect the profile
information

Saved at the date and time the profile data was created

Overhead time (in milliseconds) used by the profiler

OverflowStack the number of routines that were called when
the profiler’s internal stack was overflowing

OverflowFuncti
ons

the number of routines called that did not fit in
the profiler’s routine table
Profiler User Guide PFL–29

For More Information: www.freescale.com

Viewing Results
MW Profiler Window

Freescale Semiconductor, Inc.
The times shown in the data columns are displayed in milliseconds.
A millisecond (ms) is one thousandth of a second. Each time datum
is reported to three decimal places. This gives you microsecond
results. A microsecond (µs) is one thousandth of a millisecond, or
one millionth of a second. However, some time bases (most notably
ticksTimeBase) are less precise. Ticks increment 60 times a
second. See “Time and Timebases.”

Resizing data columns

Figure 4.1 does not show all the data columns. You can scroll to see
the columns beyond the right edge of the window. You can also
resize the columns to get more information in the window.

Move the cursor over one of the column lines. The cursor changes to
a directional arrow, as shown in Figure 4.2. Click and drag the
column line to where you want it.

Figure 4.2 Resize columns

Table 4.2 lists each of the columns in the profiler window (from left
to right) and the information that column contains.
PFL–30 Profiler User Guide

For More Information: www.freescale.com

Viewing Results
MW Profiler Window

Freescale Semiconductor, Inc.
Table 4.2 Profile window data columns

NOTE If you’re profiling Mac OS code, you should know that there is a
slight difference between the 68K and the PowerPC in the stack
tracking code. On a 68K machine the profiler is called before a
routine sets up its stack. Therefore, the stack values that a 68K
profile reports do not include the called routine’s stack. On a PowerPC,
the profiler is called after a routine sets up its stack. Therefore, the
stack values on a PowerPC profile do include the called routine’s
stack.

Sorting data

You can view the data sorted by the value in any column. Names
are listed alphabetically from top to bottom, numbers are listed
from greater to lesser.

Column Contents

Function name the routine name (if it is a C++ function name,
the profiler unmangles it)

Count the number of times this routine was called

Only time spent in the routine itself without
counting any time in routines called by this
routine

% percent of total time for the Only column

+Children time spent in this routine and all the routines it
calls.

% percent of total time for the +Children column

Average the average time for each routine invocation.
(the Only time divided by the number of times
the routine was called)

Maximum the longest time for an invocation of the
routine

Minimum the shortest time for an invocation of the
routine

Stack Space (Mac OS) the largest size (in bytes) of the stack
when the routine is called (for 68K code the
actual size may be slightly larger)
Profiler User Guide PFL–31

For More Information: www.freescale.com

Viewing Results
Window Views

Freescale Semiconductor, Inc.
To change the sort order, either click the column title, or choose a
menu item from the View menu. The heading becomes underlined
and data is sorted by the value in that column.

Exporting data

If you wish to export information from the results, use the Save As...
command in the File menu. This saves all the data in a tab-delimited
text file. The text file is organized the same way that the window is
organized.

Multiple windows

You can open any number of different profile windows
simultaneously, limited only by the MW Profiler’s memory
allotment. This allows you to compare the results of different runs
easily.

Window Views

In the MW Profiler View menu you may choose to view the data in
one of three ways: summary, detailed, or object. Not all possibilities
are available for all profiles.

Summary View

The summary view displays a complete, non-hierarchical, flat list of
each routine profiled. No matter what calling path was used to
reach a routine, the profiler combines all the data for the same
routine and displays it on a single line. Figure 4.3 shows a summary
view.
PFL–32 Profiler User Guide

For More Information: www.freescale.com

Viewing Results
Window Views

Freescale Semiconductor, Inc.
Figure 4.3 Summary view

The summary view is particularly useful for comparing routines to
see which take the longest time to execute. The summary view is
also useful for finding a performance problem with a small routine
that is called from many different places in the program. This view
helps you look for the routines that make heavy demands in time or
raw number of calls.

A summary view window can be displayed for any profile.

Detailed View

The detailed view displays routines according to the dynamic call
tree as shown in Figure 4.4.
Profiler User Guide PFL–33

For More Information: www.freescale.com

Viewing Results
Window Views

Freescale Semiconductor, Inc.
Figure 4.4 Detailed view

Routines that are called by a given routine are shown indented
under that routine. This means that a routine may appear more than
once in the profile if it called from different routines. This makes it
difficult to tell how much total time was spent in a routine.
However, you can use the summary view for that purpose.

The detailed view is useful for detecting design problems in code.
MW Profiler in detailed view lets you see what routines are called
how often from what other routines. Armed with knowledge of
your code’s underlying design, you may discover flow-control
problems.

For example, you can use detailed view to discover routines that are
called from only one place in your code. You might decide to fold
that routine’s code into the caller, thereby eliminating the routine
call overhead entirely. If it turns out that the little routine is called
thousands of times, you can gain a significant performance boost.

You can use the Expand All or Collapse All commands in the View
menu to open or close the entire hierarchy at once.

In detailed view, sorting is limited to routines at the same level in
the hierarchy. For example, if you sort by routine name, the routines
at the top of the hierarchy will be sorted alphabetically. For each of
those first-level routines, its second-level routines will be sorted
alphabetically underneath it, and so on.
PFL–34 Profiler User Guide

For More Information: www.freescale.com

Viewing Results
Window Views

Freescale Semiconductor, Inc.
The detailed view requires that collectDetailed be passed to
ProfilerInit() when collecting the profile. If
collectSummary is used, you cannot display the data in detailed
view.

Object View

The object view displays summary information sorted by class.
Beneath each class the methods are listed. This is a two-level
hierarchy. You can open and close a class to show or hide its
methods, just like you can in the detailed view.

When sorting in object view, functions stay with their class, just like
subsidiary functions in detailed view stay in their hierarchical
position. Figure 4.5 shows the methods sorted by count.

Object view allows you to study the performance impact of
substituting one implementation of a class for another. You can run
profiles on the two implementations, and view the behavior of the
different objects side by side. You can do the same with the
summary view on a routine-by-routine basis, but the object view
gives you a more natural way of accessing object-based data. It also
allows you to gather all the object methods together and view them
simultaneously, revealing the effect of interactions between the
object’s methods.
Profiler User Guide PFL–35

For More Information: www.freescale.com

Viewing Results
Finding Performance Problems

Freescale Semiconductor, Inc.
Figure 4.5 Object view

Object view will display “N/A” (Not Available) in the +Children
column for classes in a collectSummary profile. This is because
the detail information is missing from the file.

The object view requires that the profile contain at least one
mangled C++ name. If there is none, you cannot use object view.

Finding Performance Problems
As you work with MW Profiler, you will see that the information
provided quickly guides you to problem areas.

To look for time hogs, sort the view by either the Only column or
the +Children column. Then examine routines that appear near the
top of the list. These are the routines that swallow the greatest
percentage of your code’s time. Any improvement in these routines
will be greatly magnified in your code’s final performance.

You may also want to sort based on the number of times a routine is
called. The time you save in a heavily-used routine is saved each
time it is called.

If stack size is a concern in your code, you can sort based on the
Stack Space column. This lets you see the largest size the stack
PFL–36 Profiler User Guide

For More Information: www.freescale.com

Viewing Results
Finding Performance Problems

Freescale Semiconductor, Inc.
reached during the profile. Remember that in Mac OS 68K code the
stack for the called routine is not included in the Stack Space data.
Profiler User Guide PFL–37

For More Information: www.freescale.com

Viewing Results
Finding Performance Problems

Freescale Semiconductor, Inc.
PFL–38 Profiler User Guide

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
5
Profiling Mac OS Code

This reference section discusses profiling Mac OS code and
associated special cases.

The sections in this chapter are:

• Profiler Libraries and Interface Files—the libraries and interface
files that you add to your code in order to use the profiler

• Profiling Special Cases—special cases to consider when profiling
code

• Profiler Limitations—important information for profiling 68K
code

Profiler Libraries and Interface Files
You can find all of the profiler libraries and interface files in the
Profiler folder in the Metrowerks Utilities folder. The profiling code
that actually keeps track of the time spent in a routine exists in a
series of libraries. Depending upon the nature of your project and
the platform for which you are writing code, you link in one or
another of these libraries as appropriate.

See also “Add a profiler library to the project” and “Profiling
Special Cases” on page 42.

The profiler libraries require the Macintosh operating system. You
must have the appropriate Mac OS library added to your project as
listed in Table 5.1. Your project may need other libraries as well.

Table 5.1 Mac OS libraries

Language 68K PowerPC

C/C++ MacOS.lib InterfaceLib
Profiler User Guide PFL–39

For More Information: www.freescale.com

Profi ling Mac OS Code
Profiler Libraries and Interface Files

Freescale Semiconductor, Inc.
Table 5.2 lists the libraries you use for profiling. Both Pascal and C
use the same libraries. For 68K code, use the “Small” library for
projects using the near code model, and “Large” for the far code and
smart code models.

Table 5.2 Profiler libraries

Library Processor When To Use

Profiler 68k.Lib 68K (A5 globals) near/small model
applications

Profiler Fa(68k).Lib 68K (A5 globals) far/large/smart model
applications

Profiler 68k.A4.Lib 68K (A4 globals) near/small model code
resources

Profiler Fa(68k.A4).Lib 68K (A4 globals) far/large/smart model
code resources

Profiler CFM68k.Lib 68K (A5 globals) code fragments and
shared libraries

Profiler PPC.Lib PowerPC PowerPC applications and
shared libraries

Profiler PPC.MP.Lib PowerPC PowerPC multiprocessor
applications and shared
libraries

ProfilerMPLib PowerPC PowerPC multiprocessor
code fragments and
shared libraries.

ProfilerLib CFM 68K & PowerPC code fragments and
shared libraries

Profiler Carbon.Lib PowerPC (Carbon) PowerPC applications and
shared libraries for use on
Mac OS X or Mac OS 8.1
and above with the
Carbon libraries

ProfilerCarbonLib PowerPC (Carbon) PowerPC code fragments
and shared libraries for
use on Mac OS X or Mac
OS 8.1 and above with the
Carbon libraries
PFL–40 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Profiler Libraries and Interface Files

Freescale Semiconductor, Inc.
TIP Use ProfilerLib, ProfilerMPLib, and
ProfilerCarbonLib when you want to collect information
across shared library boundaries. If all you want is data from one
library, use one of the static link libraries and link it into your
project.

For example, say you split your application into an application and
2 shared libraries and want to profile it. You can link a static link
library to each part and get three reports, one for each piece. But
that data is very hard to interpret because each report is missing
some context that happens to be included in another report. By
using the shared library version of the profiler, you will get one
report that spans all three components.

TIP We have some more tips! When you use a PPC multiprocessor
library for profiling, add

#include <ProfilerMPHelper.h>

to any file that calls MPWaitOnQueue(),
MPWaitOnSemaphore() or MPEnterCriticalRegion(). This
helps the profiler adjust the timings from the main task. MP
Profiling only works for version 1.4 of the MP software.

The profiler also has separate interface files for C/C++ and Pascal.
They are listed in Table 5.3.

Table 5.3 Profiler interface files

profiler.h The header file for the profiler API for C and
C++. Include this file to make calls to control the
profiler.

profiler.p The interface file for the profiler API for Pascal.
Include this file to make calls to control the
profiler.
Profiler User Guide PFL–41

For More Information: www.freescale.com

Profi ling Mac OS Code
Profiling Special Cases

Freescale Semiconductor, Inc.
Profiling Special Cases
The profiler handles recursive and mutually recursive calls
transparently. The profiler also warns you when profiling
information was lost because of insufficient memory. (The profiler
uses memory buffers to store profiling data.)

For leading-edge programmers, the profiler transparently handles
and reliably reports the times for asynchronous completion
routines, multiple threads, 68K code resources, PowerPC shared
libraries, and even abnormally terminated routines exited through
the C++ exception handling model (try, throw, catch) or the ANSI C
library setjmp() and longjmp() routines.

C++ programmers may wish to consult the Metrowerks PowerPlant
documentation for information on the StProfileSection class.
This class automates the process of initializing the profiler,
dumping results, and exiting the profiler. You do not need to use
the rest of PowerPlant to take advantage of the
StProfileSection class.

This section describes the special cases that are specific to profiling
Mac OS code:

• Profiling Code with #pragma Statements

• Initializing Profiler with ProfilerInit()

• Terminating Profiler with ProfilerDump()

• Profiling Threads

• Viewing Threads in MW Profiler

• Profiling Shared Libraries

• Profiling Code Resources

• Profiling C++ Static Constructors

• Profiling MacApp

• Profiling Asynchronous Routines

• Profiling Abnormally Terminated Functions

• Using the PowerPC PEF Linker

• Debugging Profiled Code
PFL–42 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Profiling Code with #pragma Statements

Freescale Semiconductor, Inc.
Profiling Code with #pragma Statements

You can substitute #pragma statements for profiler API function
calls to profile your C/C++ code on the function level. However,
this is not as useful as the profiler calls. See “Routine-level
profiling” for more information.

Setting the “Generate Profiler Calls” Processor preference option
sets a preprocessor variable named __profile__ to 1. If profiling
is off, the value is zero. You can use this value at compile time to test
whether profiling is on.

Instead of, or in addition to, setting the option in the Processor
preferences, you can turn on profiling at compile time. The C/C++
compiler supports three preprocessor directives that you can use to
turn compiling on and off at will.

You can use these directives to turn profiling on for any functions
you want to profile, regardless of the settings in the Processor
preferences. You can also turn off profiling for any function you
don’t want to profile.

Initializing Profiler with ProfilerInit()

At the beginning of your code, you call ProfilerInit() to
initialize the Profiler. Table 5.4 shows the prototypes for
ProfilerInit() for C/C++.

#pragma profile on enables calls to the profiler in
functions that are declared
following the pragma

#pragma profile off disables calls to the profiler in
functions that are declared
following the pragma

#pragma profile
reset

sets the profile setting to the value
selected in the preferences panel
Profiler User Guide PFL–43

For More Information: www.freescale.com

Profi ling Mac OS Code
Initializing Profiler with ProfilerInit()

Freescale Semiconductor, Inc.
Table 5.4 ProfilerInit() prototypes

The parameters tell the profiler how this collection run is going to
operate, and how much memory the profiler should allocate for its
data buffers. Each parameter and its purpose is given in Table 5.5.

Table 5.5 ProfilerInit() parameters

The collection method may be either collectDetailed or
collectSummary. If you collect detailed data, you get information
for the calling tree—the time in each routine and each of its children
in the calling hierarchy. Summary data collects data for the time
spent in each routine without regard to the calling chain. Collecting
detailed data requires more memory.

The timeBase may be—in order of decreasing precision—
bestTimeBase, PPCTimeBase, microsecondsTimeBase,
timeMgrTimeBase, or ticksTimeBase. The bestTimeBase
option automatically selects the most precise timing mechanism
available on the computer running the profiled software.
PPCTimeBase is only available with PowerPC chips.

The numFunctions parameter is the approximate number of
routines to be profiled. The stackDepth parameter is the
approximate maximum depth of your calling chain. You don’t need
to know the precise values ahead of time. If the profiler runs out of

C/C++ pascal OSErr ProfilerInit(
 ProfilerCollectionMethod method,
 ProfilerTimeBase timeBase,
 short numFunctions, short
 stackDepth);

Parameter Purpose

method collect detailed or summary data

timeBase time scale to use in measurements

numFunction
s

maximum number of routines to profile

stackDepth approximate maximum depth of deepest
calling tree
PFL–44 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Initializing Profiler with ProfilerInit()

Freescale Semiconductor, Inc.
memory to hold data in its buffers, it loses some data but you’ll be
told in the results. You can then modify the parameters in the call to
ProfilerInit() to increase the buffers and preserve all your
data.

The profiler allocates buffers in temporary memory based on the
method of collection, the number of routines, and the depth of the
calling tree. Using temporary memory reduces the effect that the
profiler has on the application’s memory partition.

The call to ProfilerInit() returns a non-zero error value if the
call fails for any reason. Use the return value to ensure that memory
was allocated successfully before continuing with the profiler.
Typically you would add this call as conditionally compiled code so
that it compiles and runs only if profiling is on and the call to
ProfilerInit() was successful.

You call ProfilerInit() before any profiling occurs. Typically
you make the call at the beginning of your code.

See also “Time and Timebases” and “Memory Usage.”

Calling ProfilerInit() in C/C++

In C/C++, the call would be at the beginning of your main()
function.

The call might look like this:
if (!ProfilerInit(collectDetailed, bestTimeBase, 20, 5))
{
// your profiled code
}

Of course, your parameters may vary depending upon how many
routines you have and the depth of your calling chains.

See also “Profiling C++ Static Constructors” on page 50.

Calling ProfilerInit() in Pascal

Call ProfilerInit() at the beginning of your application. In
Pascal, it might look like this:

IF ProfilerInit(collectDetailed,
bestTimeBase, 20, 5) = noErr THEN

BEGIN
Profiler User Guide PFL–45

For More Information: www.freescale.com

Profi ling Mac OS Code
Terminating Profiler with ProfilerDump()

Freescale Semiconductor, Inc.
{ your profiled code }
END

Of course, your parameters may vary depending upon how many
routines you have and the depth of your calling chains.

Terminating Profiler with ProfilerDump()

The profiler dumps its data to a file when you call
ProfilerDump(). The file appears in the current default directory,
usually the project directory.

You provide a file name when you call ProfilerDump(). You may
dump results as often as you like. You can provide a different file
name for intermediate results (if you have multiple calls to
ProfilerDump()), or use the same name. If the specified file
already exists, a new file is created with an incrementing number
appended to the file name for each new file. This allows the dump
to be called inside a loop with a constant file name. This can be
useful for dumping intermediate results on a long task.

ProfilerDump() does not clear accumulating results. If you want
to clear results you can call ProfilerClear().

A typical call to ProfilerDump() would be placed just before you
exit your program, or at the end of the code you are profiling. The
prototypes for ProfilerDump() are listed in Table 5.6.

Table 5.6 ProfilerDump() prototypes

Calling ProfilerDump()

There is only one parameter. It must be a pointer to a Pascal-style
string that becomes the file name for your results. A typical call
might look like this:

error = ProfilerDump("\pMyCode.prof");

WARNING! Calls to UnloadSeg() in a 68K application cause serious problems
for the profiler. The profiler maintains pointers to locations in the

C/C++ OSErr ProfilerDump(
 unsigned char *filename);
PFL–46 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Profiling Threads

Freescale Semiconductor, Inc.
code. If you unload a segment that has profiled routines, that code is
free to move around in memory, or be purged. At that time the
profiler’s internal pointers become invalid. This is the leading cause
of corrupted profile data files.

Profiling Threads

You may use the profiler to study cooperative threads. The profiler
does not support preemptive threads.

To profile a cooperative thread, you do a little setup work when you
create the thread. You call ProfilerCreateThread() to tell the
profiler to allocate the necessary buffers. (This doesn’t actually
create a thread, just the necessary structures so the profiler can keep
track of a thread.) You provide three parameters. You specify the
number of routines, the byte size of the stack created for the thread,
and provide the address where the profiler can return a reference to
this thread’s profile data. You must keep track of this reference for
use in other thread-related profiler calls.

When your thread gains control and executes, its SwapIn callback
routine is called. In that routine, call
ProfilerSwitchToThread() to tell the profiler that this thread
is now running. You provide the profiler’s thread reference you got
when you called ProfilerCreateThread().

NOTE Do not profile the swapIn routine itself. Thread callback procs
(swapIn & swapOut for example) should be compiled to not call the
profiler.

When your thread finishes, call ProfilerDeleteThread(). You
provide the profiler’s thread reference to identify which thread is
involved. This call cleans up the profiler’s thread-tracking
structures. You do not need to dump your data before calling
ProfilerDeleteThread(). The data collection buffers are
separate from the memory used to track each thread.

You do not need to call ProfilerCreateThread() for the
implicit main thread created for your process. However, if you
profile code in some other thread and then want to profile the main
Profiler User Guide PFL–47

For More Information: www.freescale.com

Profi ling Mac OS Code
Viewing Threads in MW Profiler

Freescale Semiconductor, Inc.
thread, you will need to call ProfilerSwitchToThread() to
resume profiling the main thread. You can get the necessary thread
reference by calling ProfilerGetMainThreadRef().

TIP If you are programming in C++, you may want to consider using the
PowerPlant LThread class. This class has built-in support for
profiling threads. See the PowerPlant source code and
documentation for more details on this class.

Viewing Threads in MW Profiler

If you are profiling a multi-threaded application, you should be
aware of how the results are shown in MW Profiler.

In summary mode, the profiler will mix all the threads together, and
you can’t tell what is called from what thread. Object mode does the
same as summary mode.

In detailed mode, if the threads have a different top-level procedure
(the procedure you register with the Thread Manger), then the
profiler will show them as separate top-level entries. Threads with
the same top-level name will be combined together. For example,
say you have a program whose main() initializes the profiler,
starts up 3 threads, and then calls a function to run event loop.

Listing 5.1 Profiling multi-threaded code
main()
{

ProfilerInit(collectDetailed,bestTimeBase,20,5);

//...Create a DoBackGroundWork thread
//...Create another DoBackGroudWork thread
//...Create a thread that runs DoIdleStuff

DoMainEventLoop();

ProfilerDump(‘test”);
ProfilerTerm();

}

PFL–48 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Profiling Shared Libraries

Freescale Semiconductor, Inc.
The profile output file for this will have three top-level functions
listed in detail mode: DoBackGroundWork, DoIdleStuff, and
DoMainEventLoop. The two threads that are running
DoBackGroundWork would combine their profile information.

Profiling Shared Libraries

The profiler supports profiling shared libraries for PowerPC and
CFM 68K.

Add the shared library named ProfilerLIB to your project
instead of the static link library ProfilerPPC.lib. Include the
same header (profiler.h).

The shared library profiler collects data from an application and any
shared libraries simultaneously. This allows you to split an
application into multiple shared libraries and a smaller application,
but still profile as if all the components were one large application.
Each shared library you create must be compiled with Generate
Profiler Information selected in the Code Generation pane in the
Project Settings dialog.

NOTE If you are compiling code for the PowerPC, click the Profiler
Information checkbox in the Code Generation pane.

See also “Turn on profiling.”

Profiling Code Resources

The profiler supports profiling code resources.

For 68K code resources, add the Profiler68kA4.lib library to
your project instead of Profiler68k.lib. Include the same
header (profiler.h).

The code resource must not move in memory between the
ProfilerInit() and ProfilerTerm() calls. This is because the
A4 globals can move. The profiler has a pointer to them that is not
updated except when you call ProfilerInit().

For PowerPC code resources, you may use either the static link
library ProfilerPPC.lib or the shared library ProfilerLIB. You must
Profiler User Guide PFL–49

For More Information: www.freescale.com

Profi ling Mac OS Code
Profiling C++ Static Constructors

Freescale Semiconductor, Inc.
make sure that the PowerPC code resource does not move in
memory while profiling. This means that profiling accelerated
resources under applications that unlock the code resource after
each call is not supported.

Profiling C++ Static Constructors

It is possible to profile static constructor calls if the profiler is
initialized before the static constructor is called. If you are working
with shared libraries, you need to determine the order in which the
shared libraries are loaded. Put the initialize call to the profiler in
the first one loaded.

To profile the static constructors called from __sinit(), the
profiler must be initialized before calling __sinit().

To do this with the 68K compiler, use the function
__PreInit__(void) declared in Listing 5.2.

Listing 5.2 __myinit: Initializing the 68K compiler in C++
extern "C" void __PreInit__(void);
void __PreInit__(void)
{

OSErr error;
error=ProfilerInit(collectDetailed,

bestTimeBase, 20, 5);
}

Of course, you’ll set the parameters in the call to ProfilerInit()
appropriately for your work.

For PowerPC code, write a small routine __myinit that initializes
the profiler, then calls __sinit. Put __myinit in the initialization
routine in the Linker preferences pane in the Project Settings dialog.

Listing 5.3 __myinit: Initializing the PPC compiler in C++
OSErr __myinit(InitBlockPtr initBlock)
{

OSErr error;

error=ProfilerInit(collectDetailed,
bestTimeBase, 20, 5);
PFL–50 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Profiling MacApp

Freescale Semiconductor, Inc.
if (error == noErr)
__sinit();

return error;
}

Profiling MacApp

Before profiling a MacApp-based 68K project, go through the
MacApp source code and comment out all calls to UnloadSeg().
There are only a few.

In a 68K project, calls to UnloadSeg() cause serious problems for
the profiler. The profiler maintains pointers to locations in the code.
If you call UnloadSeg() on a segment that has profiled routines,
that block of code is free to move around in memory, or be purged.
At that time the profiler’s internal pointers become invalid. This is
the leading cause of “corrupted” profile data files.

Profiling Asynchronous Routines

The CodeWarrior profiler supports profiling asynchronous
completion routines, VBL tasks, Time Manager tasks, deferred
tasks, and related code. This is essentially transparent and a by-
product of the internal structure and design of the profiler.

However, there are some things to be aware of when working with
asynchronous routines and other code that runs at interrupt time.

• Don’t try to call the profiler in a socket listener because the
profiler adds too much latency for both LocalTalk and Ethernet
devices.

• Be aware that running the profiler at interrupt time may cause
problems because of the increased time that interrupts are
disabled.

• Use the large code model for 68K code resources.

The small and smart code models for 68K can cause problems for
completion routines. They use A5 relative addressing to call the
profiler. Because A5 is not always set up when a completion routine
is called, the embedded call to the profiler will not work. The large
code model uses absolute addressing to call the profiler, which
avoids the problem.
Profiler User Guide PFL–51

For More Information: www.freescale.com

Profi ling Mac OS Code
Profiling Abnormally Terminated Functions

Freescale Semiconductor, Inc.
Another way around this problem is to have a small stub routine
that sets up A5 and calls your routine that does the real work. The
stub routine should be compiled without a call to the profiler, and
the real routine can call the profiler.

Profiling Abnormally Terminated Functions

The profiler correctly reports data for abnormally terminated
functions that exited through the C++ exception handling model
(try, throw, catch) or the ANSI C library setjmp() and
longjmp() routines. You do not have to do anything to get this
feature, it is automatic and part of the profiler’s design.

However, there is a possibility of some errors in the reported results
for an abnormally terminated function.

First, the profiler does not detect the abnormal termination until the
next profiling call after the abnormal termination. Therefore, some
additional time will be reported as belonging to the terminated
function.

Second, if the next profiler event is a profiler entry, and the new
stack frame for that function is larger than the frames that were
abnormally exited, the profiler will not immediately detect that the
original function was abnormally terminated. In that case the
profiler will treat the function just entered as a child of the function
abnormally terminated. The profiler will correct itself on the next
profiling event without this property—that is, when the stack
returns to a point smaller than it was when the abnormally
terminated function exited.

Finally, remember that the profiler is not closed properly and the
output file is not dumped when ExitToShell() is called. If you
need to call ExitToShell() in the middle of your program and
want the profiler output, call ProfilerDump().

If you are using the profiler, you must always call
ProfilerTerm() before ExitToShell().
PFL–52 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Using the PowerPC PEF Linker

Freescale Semiconductor, Inc.
WARNING! If a program exits after calling ProfilerInit() without calling
ProfilerTerm(), timers may be left running that could crash the
machine.

Using the PowerPC PEF Linker

If you have a PowerPC target, there is one final optimization you
can perform to make your code run faster. Sorry, but this
optimization does not apply to 68K programming!

The way in which code is organized in memory has a subtle
influence on its execution speed. Some functions frequently refer to
one another. If we can organize memory so that these functions are
placed close together, we can improve the hit rates for the
instruction cache. Maximizing the hit rate of the cache makes
memory access, and thus our program, faster.

Calling code up from disk is slower than calling it up from RAM. By
grouping functions together, the code may live in RAM for a longer
time and reduce the amount of time spent on disk access.

Though it is possible that some of your functions may be too large to
exist in the cache at the same time, this is less likely these days on
systems with an L2 cache of 1MB or more. Figure 5.1 illustrates how
your code makes its way from the disk to your CPU.

Figure 5.1 Movement of code from disk to CPU

Generating a Link Arrangement File

To optimize the way our code is loaded and executed at runtime, we
can ask the profiler to generate a link arrangement (.arr) file. The
.arr file groups the functions in our application by their call
frequency—functions that refer to each other often will be clustered
together. CodeWarrior uses the data in the .arr file to generate a
faster executable.
Profiler User Guide PFL–53

For More Information: www.freescale.com

Profi ling Mac OS Code
Using the PowerPC PEF Linker

Freescale Semiconductor, Inc.
The two options available to you are Generate Arrange File which
uses a less-sophisticated depth-first traversal algorithm, and
Generate Weighted Arrange File which incorporates true call
frequency ordering. For general use, you will find that the call
frequency ordering of a Weighted Arrange File provides the best
function arranging.

To generate and use a Weighted Arrange File, follow these steps:

1. Load the profiler data file into the Profiler.

2. Generate the .arr file.

Select File > Generate Weighted Arrange File from the Profiler
menu as shown in Figure 5.2. The name you choose for your link
arrangement file must end with the .arr extension. MyApp.arr
will do nicely.

The Profiler may spend several minutes generating .arr file for a
large application. However, a small application will only take a few
seconds.

Figure 5.2 Generating the .arr file

3. Return to your project in the CodeWarrior IDE.
PFL–54 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Using the PowerPC PEF Linker

Freescale Semiconductor, Inc.
4. Add the .arr extension to File Mapping.

CodeWarrior should already be set up with the .arr file mapping
for new projects by default. If you converted an older project
without the file mapping, make your project aware of your .arr
file by adding its extension to the File Mappings panel. In Target
Settings > File Mappings, create a new mapping for the .arr type.
As shown in Figure 5.3, you should map the .arr extension as a
TEXT file, with no active flags or compiler settings.

Figure 5.3 File Mappings for the .arr extension.

5. Add the .arr file to your project.

Drag MyApp.arr into your project window as shown in Figure 5.4.
Profiler User Guide PFL–55

For More Information: www.freescale.com

Profi ling Mac OS Code
Using the PowerPC PEF Linker

Freescale Semiconductor, Inc.
Figure 5.4 Adding the .arr file to your project.

6. Activate the .arr file in the PPC PEF panel.

Go to the Target Settings > PPC PEF panel and click the Code
Sorting check box. Choose Use “.arr” file from the menu choices
available, then save your settings.
PFL–56 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Using the PowerPC PEF Linker

Freescale Semiconductor, Inc.
Figure 5.5 Configuring the PPC PEF to use the .arr file.

7. Build your application.

The application that CodeWarrior builds will be optimized to
provide you with the fastest memory accesses possible. If you add
new functions or function calls to your application in the future, you
need to generate a new .arr file.

Do not be alarmed if an error message such as the following
appears:

Link Warning : sort file 'MyAppName.arr' did not
list all code symbols

This warning is normal and should be expected. When the profiler
generates the .arr file, it only includes functions and symbols that
are profiled. For instance, MSL library calls will not appear in the
.arr file because the MSL is compiled with profile information off.
The warning message appears to notify you of this.

You may disable these warnings by checking the Suppress Warning
Messages checkbox in the PPC Linker panel.
Profiler User Guide PFL–57

For More Information: www.freescale.com

Profi ling Mac OS Code
Debugging Profiled Code

Freescale Semiconductor, Inc.
TIP When using the profiler to optimize your code, we recommend that
you create separate targets; include your profiler libraries in one, but
not the other. You can then use the profiler target to generate the
.arr file, and then drop the .arr file into your streamlined release
target.

Debugging Profiled Code

It is possible to debug code that has calls to the profiler in it.
However, the profiler does interfere with stepping through code.
You may find it simpler to debug non-profiled code, and profile
separately. In this section, We’ll take you through what happens
when you step into a profiled routine and step out of a profiled
routine. In addition, we’ll talk about the effect that stopping in the
debugger has on the profile results.

See also the CodeWarrior IDE User Guide for more information on
how to use the debugger.

Stepping into a profiled routine

If you step into a profiled routine you’ll see assembly code instead
of source code. The compiler has added calls to __PROFILE_ENTRY
at the start of the routine. This is how the profiler knows when to
start counting time for the routine.

If you step through the assembly code far enough to get to the code
derived from the original source code, then switch the view from
source to assembly and back again, you can see the original source
code.

Stepping out of a profiled routine

If you single-step out of a routine being profiled, you end up in the
__PROFILE_EXIT assembly code from the profiler library. This is
how the profiler knows when to stop counting time for the routine.

Effect of stopping on the profile results

If you stop in a profiled routine, the profiler counts all the time you
spend in the debugger as time that routine was running. This skews
the results.
PFL–58 Profiler User Guide

For More Information: www.freescale.com

Profi l ing Mac OS Code
Profiler Limitations

Freescale Semiconductor, Inc.
WARNING! If you debug profiled code, you must be careful not to kill the code
from the debugger. Remember, if you have called
ProfilerInit() you must call ProfilerTerm() on exit or you
may crash the computer.

Profiler Limitations
For application programming, the CodeWarrior profiler has only
one limitation. You must not call UnloadSeg() in a 68K
application.

In a 68K project, calls to UnloadSeg() cause serious problems for
the CodeWarrior profiler. The profiler maintains pointers to
locations in the code. If you call UnloadSeg() on a segment that
has profiled routines, that block of code is free to move around in
memory, or be purged. At that time the profiler’s internal pointers
become invalid. This is the leading cause of “corrupted” profile data
files.

See also “Profiling Special Cases” on page 42 for additional
considerations in non-application projects.
Profiler User Guide PFL–59

For More Information: www.freescale.com

Profi ling Mac OS Code
Profiler Limitations

Freescale Semiconductor, Inc.
PFL–60 Profiler User Guide

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
6
Profiling in PowerPlant

The PowerPlant Profiler Class is a wrapper class for the Profiler
API. It provides an easy to use interface for the initialization and
termination functions of the profiler.

Introduction to Profiling in PowerPlant
If you have used the profiler before to profile C or Pascal code, you
are already familiar with how the initialization and termination
routines work. In PowerPlant, you never need to call these routines
directly. Instead, these calls are handled for you by the constructor
and destructor of the profiling class.

In this chapter, you’ll learn:

• Profiling Strategy—a brief review of profiling in general

• Profiling Class—shows you how the profiling class is set up and
what is required to use it

• Profiling Your Code—a short description on how to profile your
code

There is a code exercise provided at the end of this chapter to give
you a full working tutorial on how to use the profiler class in your
PowerPlant programs.

Profiling Strategy
Before you delve into the depths of the Profiler Class, you should
familiarize yourself with the profiler in general. We recommend
that you read the Profiler Guide first to become familiar with all
aspects of the profiler. Some information is reiterated here, but you
should read the Profiler Guide for more in-depth information.
Profiler User Guide PFL–61

For More Information: www.freescale.com

Profi ling in PowerPlant
Rules of Thumb

Freescale Semiconductor, Inc.
You use a profiler to measure the runtime performance of your
code. What is usually important is how your code’s performance
measures up to some standard. When approaching the problem of
measuring performance, you might want to take these three steps.

1. Establish your standards.

For example, you might decide that you want the program to load
in less than ten seconds, or check the spelling of a five-page
document that contains no misspellings in 15 seconds. Decide the
platform you will use for testing as well: a Power Macintosh is a bit
faster than a Mac Plus.

2. Determine how to measure time.

Your measurement device may be no more complicated than a
stopwatch, or you may need to add some simple code to count ticks.
At this phase you want to test the code in as close to its finished
form as possible, so measure time in a way that is accurate enough
to suit your needs, and that has the lowest impact on your code’s
natural performance. You do not want to run a full-blown profile
here, because profiling can add significant overhead, thus slowing
down your code’s raw performance.

3. Run the tests and measure results.

If you meet your performance goals, your job is done. If your code
does not meet your goals, then it’s time to profile your code.

Rules of Thumb

To make sure you get a good profile of your code, there are few
general rules of thumb you need to follow.

1. Turn off all optimizations

Optimization settings will cause skewed results in the profiler
output. Part of the reason for profiling your code is so you can
optimize it yourself as much as possible. Once you are confident
you’ve done all you can, you can turn on optimizations in the final
build of your application.

2. Turn off virtual memory or RAM Doubler

Profiling code with virtual memory or RAM Doubler active
produces erratic and skewed result times. If your program runs
quickly without virtual memory or RAM Doubler active, it will run
quickly with them active.
PFL–62 Profiler User Guide

For More Information: www.freescale.com

Profi l ing in PowerPlant
Profiling Class

Freescale Semiconductor, Inc.
3. Disable Speed Doubler

Speed Doubler is a performance enhancement series of extensions.
As such, it will skew your result times and should therefore be
disabled while profiling your code.

TIP It’s actually best to turn off all extensions when doing a profile of
your code. This will eliminate any chances of extension problems
and background tasks skewing the profile results. Restart your
computer with the Shift key held down to disable extensions.

4. Do not use UnloadSeg() in 68K code

Calls to UnloadSeg() will cause garbage output when you look at
your data with the MW Profiler application. Comment out, or
remove calls to UnloadSeg() until the final build of your program.

Profiling Class
The PowerPlant profiler class is called StProfileSection and is
found in UProfiler.cp. The “St” means that this is a stack-based
class and functions accordingly. This class is an independent class
and can therefore be used with or without the rest of PowerPlant.

StProfileSection makes two assumptions when calling
ProfilerInit(). First, it uses collectDetailed as the data
collection method. Second, it uses bestTimeBase for the timing
method parameter. StProfileSection only has two member
functions, a constructor and a destructor.

See Also “Profiler Function Reference” for more information on the
parameters used for ProfilerInit().

StProfileSection

The class constructor takes three parameters and performs two
main operations. It initializes three data members with the values
you provide, and calls ProfilerInit() using these values. The
constructor is declared as follows:

StProfileSection(Str255 inDumpFileName,
SInt16 inNumFunctions,
Profiler User Guide PFL–63

For More Information: www.freescale.com

Profi ling in PowerPlant
~StProfileSection

Freescale Semiconductor, Inc.
SInt16 inStackDepth);

TIP If you are profiling your entire PowerPlant program, you should use
large values for inNumFunctions and inStackDepth. The
values you use will depend on the size of your program. For
example, use 2500 for inNumFunctions and 100 for
inStackDepth to start, then increase either of these values if
necessary after each profile run. Also, remember it may become
necessary to increase the memory size of your application program
as profiling takes more memory than would normally be required.

The three data members are shown in Table 6.1.

Table 6.1 StProfileSection data members

~StProfileSection

~StProfileSection() is the class destructor. It is called
automatically as soon as the code you are profiling goes out of
scope. If you are profiling one area of your code, it’s when that
function ends. If you are profiling your entire application, it’s when
the application quits.

The destructor does all the house cleaning work. It calls
ProfilerSetStatus() to stop profiling while it performs the
clean up, calls ProfilerGetDataSizes() to test memory
requirements and sends an Assert_() if there wasn’t enough
memory, calls ProfilerDump() to dump the results to the file,
and finally, calls ProfilerTerm() to end the profile session.

Data Member Stores

mProfilerDumpFil
e

pascal string for the dump filename

mNumFunctions number of routines to create buffer
space for

mStackDepth number of routines deep the stack can
get
PFL–64 Profiler User Guide

For More Information: www.freescale.com

Profi l ing in PowerPlant
Profiling Your Code

Freescale Semiconductor, Inc.
NOTE If you get an Assert_() message, it means the values you
provided for inNumFunctions and inStackDepth are too low.
You will need to re-profile your code using larger values.

Profiling Your Code
To profile your code, you do four things.

1. Set up your project for profiling

This step is very similar to the description given in the Profiler Guide.
The only changes are the source file you add to your project, and the
header file you add to your code. More detail on this is given in the
code exercise.

2. Run a profiler on the area of the code you want tested.

This might be a single routine, a group of routines that perform a
task, or even the entire application. What you profile depends upon
what you are testing.

Declare a local StProfileSection variable, and provide the
proper setup information. Your declaration will look something like
this:

StProfileSection theProfile(“\pTest”, 50, 50);

All code that runs from that point on, until theProfile goes out of
scope, will be profiled.

3. Analyze the data collected by the profiler and improve your code.

You study the results of your profiling and look for problems and
room for improvement. For details on how to review the results, see
“Viewing Results.”

The profiling process is iterative. You repeat steps 2 and 3 until you
achieve the performance gain you need to meet your goals.

4. Run your code without the profiler

When you are satisfied that you have reached your goals, you have
one more step to perform. You should run your original tests—
without the profiler of course—to verify that your code in its natural
state meets your performance goals.

Implementing the above steps in your program is simple and only
requires two lines of code.
Profiler User Guide PFL–65

For More Information: www.freescale.com

Profi ling in PowerPlant
Code Exercise for Profiling

Freescale Semiconductor, Inc.
Code Exercise for Profiling
This code exercise uses the Documents solution code from the File
I/O chapter of The PowerPlant Book. The code can be found on the
CodeWarrior Reference CD, in the CodeWarrior Examples:
MacOS Examples:PP Book Code:Chap 13 Solution Code
folder.

WARNING! It is important for this exercise that you use the Solution code for
the Documents application. Using the Starter Code will either not
compile, or crash when run, unless you have finished it in the
exercise in The PowerPlant Book.

In this exercise you will perform two different profiles. The first
profile will only focus on one routine (and any routines it calls). The
second profile will be the entire application. The steps for each are
similar.

Profiling a Single Routine

There is one important thing to remember when you want to profile
a single routine. You are also profiling all other routines called
directly or indirectly by the routine being profiled. This is important
in order to provide the correct parameters to the constructor. This
part of the code exercise will profile the OpenFile() routine in
CTextDocument.cp.

WARNING! When you are profiling a single routine, you must declare your
StProfileSection variable in the function that calls the routine
you want to profile. If you declare an StProfileSection variable
inside the function you want to profile, you will not see the name of
your routine in the MW Profiler application. Your routine would still
be profiled, but you would be missing an important point of
reference in the resulting data.

1. Set up the project for profiling

There are two things you need to do for this step. You can do these
in any order you wish. First, add the necessary source and library
PFL–66 Profiler User Guide

For More Information: www.freescale.com

Profi l ing in PowerPlant
Profiling a Single Routine

Freescale Semiconductor, Inc.
files to your project. Then turn on profiling from the preference
panel. These steps are the same for both 68K and PowerPC projects.

a. Adding files to the project

Add UProfiler.cp to your project as well as the appropriate
library. The library you add depends on the type of program you
are writing and your target platform (68K or PowerPC). Table 6.2
lists the libraries and shows you when to use them.

Table 6.2 Profiler libraries

Library Processor When To Use

Profiler 68k.Lib 68K (A5 globals) near/small model
applications

Profiler Fa(68k).Lib 68K (A5 globals) far/large/smart model
applications

Profiler 68k.A4.Lib 68K (A4 globals) near/small model code
resources

Profiler Fa(68k.A4).Lib 68K (A4 globals) far/large/smart model
code resources

Profiler CFM68k.Lib 68K (A5 globals) code fragments and
shared libraries

Profiler PPC.Lib PowerPC PowerPC applications and
shared libraries

Profiler PPC.MP.Lib PowerPC PowerPC multiprocessor
applications and shared
libraries

ProfilerMPLib PowerPC PowerPC multiprocessor
code fragments and
shared libraries.

ProfilerLib CFM 68K & PowerPC code fragments and
shared libraries
Profiler User Guide PFL–67

For More Information: www.freescale.com

Profi ling in PowerPlant
Profiling a Single Routine

Freescale Semiconductor, Inc.
The example shown in Figure 6.1 uses ProfilerPPC.lib for this
exercise.

See Also “Profiler Libraries and Interface Files” for more
information on profiler libraries.

Profiler Carbon.Lib PowerPC (Carbon) PowerPC applications and
shared libraries for use on
Mac OS X or Mac OS 8.1
and above with the
Carbon libraries

ProfilerCarbonLib PowerPC (Carbon) PowerPC code fragments
and shared libraries for
use on Mac OS X or Mac
OS 8.1 and above with the
Carbon libraries

Library Processor When To Use
PFL–68 Profiler User Guide

For More Information: www.freescale.com

Profi l ing in PowerPlant
Profiling a Single Routine

Freescale Semiconductor, Inc.
Figure 6.1 Adding profiler files to the project

b. Turn on profiling for the project

Select Profiler Information from the PPC Processor preference
panel as shown in Figure 6.2Figure 6.2.
Profiler User Guide PFL–69

For More Information: www.freescale.com

Profi ling in PowerPlant
Profiling a Single Routine

Freescale Semiconductor, Inc.
Figure 6.2 Generate profiler calls

2. Add the header file

CTextDocument.cp

You need to include UProfiler.h in the file that makes the call to
the StProfileSection class. It is not needed in any other file in
your project even if the routine your profiling calls routines in a
different file.

#include <UProfiler.h>

3. Declare an StProfileSection variable

CTextDocument() CTextDocument.cp

In order to profile the routine you want, you declare the
StProfileSection variable in the routine that makes the call to
the function you are concerned with. In this case, you put the
declaration in the class constructor right before the call to
OpenFile().
PFL–70 Profiler User Guide

For More Information: www.freescale.com

Profi l ing in PowerPlant
Profiling an Application

Freescale Semiconductor, Inc.
// Set name of window or open file.
if (inFileSpec == nil) {

NameNewDoc();

} else {
// Profile the OpenFile routine
StProfileSection theProfile("\pTest", 50,

50);
OpenFile(*inFileSpec);

}

4. Build and run the application

That’s all there is to it! Once the application builds successfully, run
the application, open a file, then quit. There will be a file called
“Test” in the same folder as the application. You can then use the
MW Profiler application to view the results.

See Also “Viewing Results” for more information on how to view
your data.

Profiling an Application

You might decide you want to get the “big picture” of what’s
happening in your code. To do that, you would profile your entire
PowerPlant program.

The steps you perform are exactly the same as shown above with
the exception of steps two and three. If you’ve performed the above
tasks, remove the header file and the declaration of
StProfileSection and replace them with the following steps.

1. Add the header file

CDocumentsApp.cp

Add the header file to the top of CDocumentsApp.cp.
#include<UProfiler.h>

2. Declare the StProfileSection variable
Profiler User Guide PFL–71

For More Information: www.freescale.com

Profi ling in PowerPlant
Profiling an Application

Freescale Semiconductor, Inc.
main() CDocumentsApp.cp

You do not necessarily need to profile the initialization code unless
you feel it is a concern. The code below declares the class before the
Run() command is given. You may put it at the top of main() if
you wish.

// Create the application object and run it.
CDocumentsApp theApp;
StProfileSection theProfile("\pApp", 2500,
100);

theApp.Run();

3. Build and run the application

That’s all there is to it! Once the application builds successfully and
runs, a complete profile of the application will be built. You have to
quit the application for the StProfileSection class to go out of
scope, write the data, and close the file. Once you’ve done that,
there will be a file called “App” in the same folder as the
application. You can then use the MW Profiler application to view
the results.

TIP If you run multiple profiles of your code, the profiler routines are
smart enough not to overwrite the same dump file. Instead, it will
append a number after the file name (e.g.: App2). This is useful if
you want to compare different profiles of your program (as you make
changes) and not have to change your code. For example, you may
want to compare the 68K version with the PowerPC version. For
reliable comparisons, make sure you profile exactly the same
routines each time, and in each version.

See Also “Viewing Results” for more information on how to view
your data.
PFL–72 Profiler User Guide

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
7
Troubleshooting

This chapter contains frequently asked questions (and answers)
about the Profiler. If you have a problem with the profiler, come
here first. Others may have encountered similar difficulties, and
there may be a simple solution.

The general topics that are covered include:

• Profile Times Vary Between Runs

• Problems while Profiling Inline Functions

• Profiling Library Could not be Found

• Profiler and Virtual Memory

• Names are Garbled when Viewing a 68K Profile Dump

Profile Times Vary Between Runs

Problem

I’m getting different results (within 10%) in MW Profiler every time
I run my program.

Background

There are two potential reasons that this may be happening. Both
are time-related problems. The first problem that can occur is
inadequate time in the function relative to the profiler resolution.
The second problem is clock resonance.

Inadequate time in the function

If the function time that you are trying to measure is only 10 times
greater than the resolution of the timebase you are using, you’ll
have this problem.

The profiler uses these timebases:
Profiler User Guide PFL–73

For More Information: www.freescale.com

Troubleshooting
Problems while Profiling Inline Functions

Freescale Semiconductor, Inc.
Solution

To solve this problem, increase the number of times your function is
called, then the average the profiler computes will be more accurate.

Sometimes it is helpful to pull a routine out of a program, and into a
special test program which calls it many times in a loop for
performance tuning purposes. However, this technique is
susceptible to cache differences between the test and real program.

Clock resonance

If the operations you are performing in your profiled code coincide
with the incrementing of the profiler clock, the results can be
distorted, and could show wild variations.

Solution

One way to avoid this problem is to increase the number of times
your function is called.

Another way to avoid this problem is to increase the accuracy of the
clock the profiler is using. You can only do this with the PowerPC
profiler. The PowerPC profiler can use the RTC or TB registers of the
PowerPC chip which have 128 ns or better resolution. Make a
PowerPC version of your project and use bestTimeBase in your
call to ProfilerInit().

Problems while Profiling Inline Functions

Problem

My inline functions are not getting inlined when I’m profiling my
code. What’s happening?

Name Resolution Code

Ticks ~16700 µs 68K and PPC

Time Manager ~ 20 µs 68K and PPC

Microseconds ~ 20 µs 68K and PPC
PFL–74 Profiler User Guide

For More Information: www.freescale.com

Troubleshooting
Profiling Library Could not be Found

Freescale Semiconductor, Inc.
Background

When the compiler switch for profiling is turned on, the default
setting for “don’t inline functions” is changed to true. This is so that
these functions will have profiling information collected for them.

Solution

Place a #pragma dont_inline off in your source file to turn on
function inlining again. You will not collect profile information for
inline functions. In effect, a function can be inlined or profiled, but
not both. The profiler cannot profile an inlined function.

TIP If you use the #pragma dont_inline off in your code, you may
see profile results for some inline functions.
When you declare an inline function, the compiler is allowed, but not
required to inline the function. It is perfectly legal for the compiler to
inline some functions, but not others. Data is collected only for the
calls that were not inlined. The calls that were inlined have their time
added into the time of the calling function.

Profiling Library Could not be Found

Problem

While trying to profile my dynamically linked library (shared
library), I get an error message saying that the profiling library
could not be found.

Background

This problem occurs when trying to use the profiling library to
profile your dynamically linked library and the profiling library is
not in the search path.

Solution

Add the profiling library to the search path. If you are using the
CodeWarrior IDE, see the CodeWarrior IDE User’s Guide for
information on search paths. If you are using MPW, see your MPW
User’s Manual.
Profiler User Guide PFL–75

For More Information: www.freescale.com

Troubleshooting
Profiler and Virtual Memory

Freescale Semiconductor, Inc.
ProfileLib is a shared library and should be in your Extensions
folder. Make sure a path to the Extensions folder is set for your
project.

Profiler and Virtual Memory

Profiling code with virtual memory or RAM Doubler active
produces erratic and skewed result times. Make sure virtual
memory or RAM Doubler are disabled when profiling your code.

TIP It’s actually best to turn off all extensions when performing a profile
of your code. This will eliminate any chances of extension problems
and background tasks skewing the profile results. Restart your
computer with the Shift key held down to disable extensions.

Names are Garbled when Viewing a 68K Profile
Dump

Problem

I see garbage names in MW Profiler on 68K (non-CFM) profile runs.

Background

You’ve left calls to UnloadSeg() in your program. Calls to
UnloadSeg() in a 68K application cause serious problems for the
profiler. The profiler maintains pointers to locations in the code. If
you unload a segment that has profiled routines, that code is free to
move around in memory, or be purged. At that time the profiler’s
internal pointers become invalid. This is the leading cause of
corrupted profile data files.

Solution

Remove, or comment out, the calls to UnloadSeg() when profiling
your code.
PFL–76 Profiler User Guide

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
8
Profiler Reference

This chapter contains the detailed technical reference information
you may need when using the profiler.

The topics discussed include:

• Compiler Directives—handling compiler directives in Mac OS
code

• Memory Usage—understanding memory usage in Mac OS code

• Time and Timebases—the available time resolutions for Mac OS
code

• Profiler Menu Reference—a reference for the main menus in
MW Profiler

• Profiler Function Reference—a reference for all of the profiler
API functions

Compiler Directives
You can control routine-level profiling using compiler directives.

The C/C++ compiler supports three preprocessor directives that
you can use to turn compiling on and off at will.

#pragma profile on enables calls to the profiler in
functions that are declared following
the pragma

#pragma profile
off

disables calls to the profiler in
functions that are declared following
the pragma

#pragma profile
reset

sets the profile setting to the value
selected in the preferences panel
Profiler User Guide PFL–77

For More Information: www.freescale.com

Profi ler Reference
Testing for the Profiler

Freescale Semiconductor, Inc.
You can use these directives to turn profiling on for any functions
you want to profile, regardless of the settings in the Processor
preferences. You can also turn off profiling for any function you
don’t want to profile.

Testing for the Profiler

As there are compiler directives to turn the profiler on and off, there
are also directives to test if the profiler is on. You can use these tests
in your code so that you can run your program with or without the
profiler and not have to modify your code each time.

In C/C++, use the #if-#endif clause. For example:
void main()
{
#if __profile__ // is the profiler on?

if (!ProfilerInit(collectDetailed, bestTimeBase, 20, 5))
{

#endif
test(15);

#if __profile__
ProfilerDump("\pExample.prof");
ProfilerTerm();

}
#endif
}

In Pascal, use the following test:
{$IFC OPTION(PROF)}

if (ProfilerInit(collectDetailed, bestTimebase,
100, 20) = noErr) then begin

{$ENDC}

See also “Routine-level profiling.”

Memory Usage
The profiler allocates two buffers in temporary memory to hold
data as it collects information about your code: one based on the
number of routines, and one based on the stack depth. You pass
these parameters in your call to ProfilerInit().
PFL–78 Profiler User Guide

For More Information: www.freescale.com

Profiler Reference
Time and Timebases

Freescale Semiconductor, Inc.
In summary collection mode, the profiler allocates 64 bytes *
numFunctions and 40 bytes * stackDepth.

In detailed collection mode, the profiler allocates 12 * 64 *
numFunctions bytes and 40 * stackDepth bytes.

As an example, assume numFunctions is set to 100, and
stackDepth to 10. In summary mode the profiler allocates buffers
of 6,400 bytes and 400 bytes. In detailed mode it allocates buffers of
76,800 bytes and 400 bytes.

ProfilerGetDataSizes() lets you query the profiler for the
current size of the data collected in the function and stack tables.
This information can be used to tune the parameters passed to
ProfilerInit().

See also “ProfilerInit()” on page 85.

Time and Timebases
The CodeWarrior profiler supports four timebases. A timebase is
the clock interval used to measure time in a routine. The shorter the
interval, the more precise the measurements.

When you call ProfilerInit() you specify the desired timebase.
The constant bestTimeBase tells the profiler to figure out the most
precise timebase available on your platform and to use it.

Table 8.1 describes each timebase:

Table 8.1 Profiler timebases

Timebase Description

bestTimeBase This is the preferred timebase. Using this timebase, the
profiler selects the timebase with the highest resolution
for your machine.
Profiler User Guide PFL–79

For More Information: www.freescale.com

Profi ler Reference
Profiler Menu Reference

Freescale Semiconductor, Inc.
WARNING! PPCTimeBase does not work correctly under Mac OS X. If you use
it, you actually get microseconds timing instead.

Profiler Menu Reference
This reference section discusses the functionality of each menu item
in MW Profiler, the data viewing application for the CodeWarrior
profiler system.

These are the main menus:

• About MW Profiler—learn about MW Profiler

PPCTimeBase This timebase is only available on a Power Macintosh
from PowerPC code. It cannot be used in 68k code. It
uses the built-in timing facilities of the PowerPC
processor. On a 601 it uses the RTC registers. On
subsequent PowerPC processors it uses the TB
registers. This timebase is very low overhead and high
accuracy. If this timebase is specified but not available,
ProfilerInit() returns paramErr.

microsecondsTimeBase This timebase uses the _Microseconds trap to
measure time. It has the same accuracy as the
timeMgrTimeBase, but less overhead (one trap vs.
three traps). This timebase may not be available on all
Macintosh computers. If this timebase is specified but
not available, ProfilerInit() returns paramErr.

timeMgrTimeBase This timebase uses the microseconds timing ability of
the Time Manager. This is more accurate than the
ticksTimeBase, (~20 µs), but has more overhead. On
a Power Macintosh running System 7.1.2, the traps
called run emulated, so there are three mixed mode
switches for every routine call. This timebase is
available on all Macintoshes with System 7.0 or
greater.

ticksTimeBase This counter increments 60 times a second. It is a very
low overhead timebase with coarse accuracy. This
timebase is available on all Mac OS computers.
PFL–80 Profiler User Guide

For More Information: www.freescale.com

Profiler Reference
About MW Profiler

Freescale Semiconductor, Inc.
• File Menu—open, close, save, and print profiler data files, and
quits the application

• Edit Menu—provided for compatibility with other applications,
no item is functional in MW Profiler

• View Menu—allows you to control the order and appearance of
data in the MW Profiler window

• Windows Menu—a list of all open profiler data files

About MW Profiler

Choosing About Metrowerks Profiler from the Apple menu
displays copyright and author information about the application.

File Menu

The File menu contains commands to open, close, save, and print
documents, and to quit the application, as illustrated in Figure 8.1.

Figure 8.1 The File menu

Open displays the standard open file dialog that allows you to
select and open an existing MW Profiler document.

Close closes the active window.
Profiler User Guide PFL–81

For More Information: www.freescale.com

Profi ler Reference
Edit Menu

Freescale Semiconductor, Inc.
Save Report As or Save As saves the contents of the active window
as a tab-delimited text document. The text file is organized the same
way that the window is organized.

Generate Arrange File generates a link arrangement file using a
depth-first traveral algorithm. The final .arr file can then be linked
back into your project to produce even faster code.

Generate Weighted Arrange File is the same as Generate Arrange
File but uses a true call frequency ordering algorithm which
produces better results. The final .arr file can then be linked back
into your project to produce even faster code.

Page Setup or Print Setup displays the standard page setup dialog
for the current printer.

TIP To fit the profiler output across one page, select landscape
orientation and 85% reduction.

Print Preview shows what the data file will look like when you
print it out on paper.

Print prints the MW Profiler document in accord with the current
view and sort order in the window.

Quit quits the MW Profiler application.

Edit Menu

All Edit menu items are disabled. There is nothing to cut, copy,
paste, clear, or select in an MW Profiler window.

View Menu

The View menu contains commands to sort and view MW Profiler
data. The currently active option has a check mark in front of the
menu item. You may also click on the column header to sort the
data by the values in that column. Figure 8.2 shows the options that
you can choose.
PFL–82 Profiler User Guide

For More Information: www.freescale.com

Profiler Reference
View Menu

Freescale Semiconductor, Inc.
Figure 8.2 The View menu

• Summary displays the active profiler window in summary view.
Summary view consists of one row for each routine in the profile
data. Summary view is available for any profile.

• Object displays the active profiler window in object view. Object
view is a summary of each class. Each class can be expanded to
show the detail of each method within the class. Object view
requires that the profile contain one or more mangled C++ class
method names.

• Detailed displays the active profiler window in detailed view.
Detailed view consists of one row for each path in the call tree.
Detailed view requires that the collectDetailed method be
used.

• Expand All expands all rows in an Object or Detailed view.

• Collapse All collapses all rows in an Object or Detailed view.

• by Function Name sorts the data in the active window by
routine name.

• by Count sorts the data in the active window by count.

• by Only sorts the data in the active window by the Only time.
Profiler User Guide PFL–83

For More Information: www.freescale.com

Profi ler Reference
Windows Menu

Freescale Semiconductor, Inc.
• by Only % of Total sorts the data in the active window sorted
by Only percentage. This has the same effect as sorting by Only.

• by +Children sorts the data in the active window by +Children
time.

• by +Children % of Total sorts the data in the active window by
+Children percentage. This has the same effect as sorting by
+Children.

• by Average sorts the data in the active window by Average time.

• by Maximum sorts the data in the active window by Maximum
time.

• by Minimum sorts the data in the active window by Minimum
time.

• by Stack Space sorts the data in the active window by Stack
Space.

Windows Menu

The windows menu lists all the open profiler data windows.

Profiler Function Reference
This is a reference for all Profiler functions mentioned in the text of
this manual. The functions described in this chapter are:

• ProfilerInit()

• ProfilerTerm()

• ProfilerSetStatus()

• ProfilerGetStatus()

• ProfilerGetDataSizes()

• ProfilerDump()

• ProfilerClear()

• ProfilerCreateThread()

• ProfilerDeleteThread()

• ProfilerSwitchToThread()

• ProfilerGetMainThreadRef()
PFL–84 Profiler User Guide

For More Information: www.freescale.com

Profiler Reference
Profiler API

Freescale Semiconductor, Inc.
Profiler API

The discussion of each function includes the following attributes:

• Description: A high-level description of the function

• Prototypes: The entire C/C++ prototypes for the function

• Remarks: Implementational or other notes about the function

ProfilerInit()

Description ProfilerInit() prepares the profiler for use and turns the
profiler on. The parameters tell the profiler how this collection run
is going to operate, and how much memory to allocate.
ProfilerInit() must be the first profiler call before you can call
any other routine in the profiler API.

Prototypes typedef enum {
collectDetailed,
collectSummary

} ProfilerCollectionMethod;

typedef enum {
ticksTimeBase,
timeMgrTimeBase,
microsecondsTimeBase,
PPCTimeBase,
bestTimeBase

} ProfilerTimeBase;

pascal OSErr ProfilerInit(
ProfilerCollectionMethod method,
ProfilerTimeBase timeBase,
long numFunctions,short stackDepth);

Remarks ProfilerInit() attempts to allocate memory in the Process
Manager heap (temporary memory). If it can't get the required
memory in that heap, it tries in the current heap. This strategy
minimizes the effect that the profiler has on the application’s
memory partition.

ProfilerInit() can return memory manager errors such as
memFullErr and paramErr. If paramErr is returned, it means
that one of the constants passed in was out of range, or that
ProfilerInit() has already been called.
Profiler User Guide PFL–85

For More Information: www.freescale.com

Profi ler Reference
Profiler API

Freescale Semiconductor, Inc.
The method and timeBase parameters select the appropriate
profiler options. The numFunctions parameter indicates the
number of routines in the program for which the profiler should
allocate buffer storage. If the profiler is operating in detailed mode,
this number is internally increased (exponentially), because of the
branching factors involved. The stackDepth parameter indicates
how many routines deep the stack can get.

A call to ProfilerInit() must be followed by a matching call to
ProfilerTerm().

ProfilerTerm()

Description ProfilerTerm() stops the profiler and deallocates the profiler’s
buffers. It calls ProfilerDump() to dump out any information
that has not been dumped. ProfilerTerm() must be called at the
end of a profile session.

Prototypes void ProfilerTerm(void);

Remarks If a program exits after calling ProfilerInit() without calling
ProfilerTerm(), timers may be left running that could crash the
machine.

ProfilerSetStatus()

Description ProfilerSetStatus() lets you turn profiler recording on and off
in the program. This makes it possible to profile specific sections of
your code such as screen redraw or a calculation engine. The
profiler output makes more sense if the profiler is turned on and off
in the same routine, rather than in different routines.

Prototypes pascal void ProfilerSetStatus(short on);

Remarks This routine and ProfilerGetStatus() are the only profiler
routines that may be called at interrupt time.

Pass 1 to turn recording on and 0 to turn recording off.

ProfilerGetStatus()

Description ProfilerGetStatus() lets you query the profiler to determine if
it is collecting profile information.

Prototypes pascal short ProfilerGetStatus(void);
PFL–86 Profiler User Guide

For More Information: www.freescale.com

Profiler Reference
Profiler API

Freescale Semiconductor, Inc.
Remarks This routine and ProfilerSetStatus() are the only profiler
routines that may be called at interrupt time.

ProfilerGetStatus() returns a 1 if the profiler is currently
recording, 0 if it is not.

ProfilerGetDataSizes()

Description ProfilerGetDataSizes() lets you query the profiler for the
current size of the data collected in the function and stack tables.
This information can be used to tune the parameters passed to
ProfilerInit().

Prototypes pascal void ProfilerGetDataSizes(
long *functionSize,
long *stackSize);

Remarks If you have passed collectDetailed to ProfilerInit(),
ProfilerGetDataSizes() returns the number of actual routines
in the table, which may be larger than the value passed to
ProfilerInit() in numFunctions. This is because the profiler
multiplies numFunctions by 12 when it allocates the table. The
multiplication is done so that you can easily switch between
collectDetailed and collectSummary methods without
changing the parameters.

ProfilerDump()

Description ProfilerDump() dumps the current profile information without
clearing it. The filename passed must be a Pascal string.

Prototypes pascal OSErr ProfilerDump(StringPtr filename);

Remarks This can be useful for dumping intermediate results on a long task.
If the specified file already exists, a new file is created with an
incrementing number appended to the filename. This allows the
dump to be called inside a loop with a constant filename.

ProfilerDump() can return memory manager errors such as
memFullErr, or file system errors.

ProfilerClear()

Description ProfilerClear() clears any profile information from the buffers.

Prototypes pascal void ProfilerClear(void);
Profiler User Guide PFL–87

For More Information: www.freescale.com

Profi ler Reference
Profiler API

Freescale Semiconductor, Inc.
Remarks ProfilerClear() retains the settings of collectionMethod
and timeBase that were set by ProfilerInit(). It does not
deallocate the buffers.

ProfilerCreateThread()

Description Use ProfilerCreateThread() to create a profiler thread
structure to track the information in a new thread. You should call
this routine whenever you create a new thread. This call creates the
necessary profiler buffers and returns a reference used by the
profiler. The threadRef provided by this routine must be stored
with the thread and passed to ProfilerSwitchToThread() in
the thread's swapIn proc.

Prototypes typedef unsigned long ProfilerThreadRef;
pascal OSErr ProfilerCreateThread(

short stackSize, long byteStackSize,
ProfilerThreadRef *threadRef);

Remarks The stackSize parameter is the number of profiler frames to use.
The byteStackSize parameter is the size in bytes of the stack that
was created. This is done so that you can use these routines with
any threads package, the profiler does not include any explicit calls
to the Thread Manager.

This routine allocates memory in the current heap.

ProfilerDeleteThread()

Description When a thread terminates, call ProfilerDeleteThread() to
clean up the profiler thread tracking structures.

Prototypes pascal void ProfilerDeleteThread(
ProfilerThreadRef thread);

Remarks Returns paramErr if the ProfilerThreadRef passed in is not a
threadRef returned from ProfilerCreateThread().

ProfilerSwitchToThread()

Description Call ProfilerSwitchToThread() from the swapIn proc of the
thread, passing the threadRef returned from
ProfilerCreateThread().

Prototypes pascal void ProfilerSwitchToThread(
ProfilerThreadRef thread);
PFL–88 Profiler User Guide

For More Information: www.freescale.com

Profiler Reference
Profiler API

Freescale Semiconductor, Inc.
Remarks Returns paramErr if not a threadRef returned from
ProfilerCreateThread().

ProfilerGetMainThreadRef()

Description ProfilerGetMainThreadRef() returns the threadRef of the
implicitly created main thread. threadRef is a pointer to an
internal data structure.

Prototypes pascal ProfilerThreadRef
ProfilerGetMainThreadRef();

Remarks Use this call to get the threadRef. Necessary to switch back to the
main thread with ProfilerSwitchToThread().

TIP PowerPlant has been set up to make the profiler thread calls for you.
Look at the threads classes for examples on how to use the profiler
thread routines.
Profiler User Guide PFL–89

For More Information: www.freescale.com

Profi ler Reference
Profiler API

Freescale Semiconductor, Inc.
PFL–90 Profiler User Guide

For More Information: www.freescale.com

Index

Symbols
#pragma directives, profiler 77
.arr File 53, 82

See also Generate Arrange File
__copy_vectors() 85
__PROFILE_ENTRY 58
__PROFILE_EXIT 58
__sinit 50
~StProfileSection() 64

A
abnormal termination 52
accuracy, Profiler 29
active profiler 16
API, including Profiler 25
Apple menu 81
asynchronous routines 51

B
bestTimeBase 44, 63, 79
by +Children % of Total 84
by +Children command (Profiler) 84
by Average command (Profiler) 84
by Count command (Profiler) 83
by Function Name command (Profiler) 83
by Maximum command (Profiler) 84
by Minimum command (Profiler) 84
by Only % of Total command (Profiler) 84
by Only command (Profiler) 83
by Stack Space command (Profiler) 84

C
cache hits, improving 53
call frequency, sorting functions by 53
Close command (Profiler) 81
code resources 49
CodeWarrior

described 8
installing 14

Collapse All command (Profiler) 34, 83
collectDetailed 63
collection method 29, 44

compiler directives 43, 77

D
data

detailed 28
exporting 32
finding problems 36
object-based 28
sorting 31, 83
summary 28
viewing 27

data columns
contents 30
resizing 30

debugging
profiled code 58

depth-first traversal, sorting functions by 54
design problems, finding 34
Detailed command (Profiler) 83
detailed data, collecting 44
detailed view 33

finding design problems 34
directives

C/C++ 77
compiler 43

display accuracy, Profiler 29
dumping results 26

E
early profilers 15
Edit menu 82
exceptions 52
exiting Profiler 26
ExitToShell() 52
Expand All command (Profiler) 34, 83
exporting data 32

F
File Mappings panel 55
File menu 81
finding problems 36
function overflow 29
function-level profiling 24, 77

Freescale Semiconductor, Inc.
Profiler User Guide PFL–91

For More Information: www.freescale.com

Index
Freescale Semiconductor, Inc.
G
Generate Arrange File 54

menu item 82
Generate Profiler Information 23
Generate Weighted Arrange File 54

menu item 82

I
initialize Profiler 26
installing CodeWarrior 14
interface files 25
interrupt tasks 51
interrupt time

and profiler 87
interrupt time, and profiler 86

L
Libraries

Profiler 39–41, 67
Link Arrangement file

See .arr File
link arrangement files 53
longjmp() 52

M
MacApp profiling 51
main thread

profiling 47
memory usage 45, 78
Menus

Apple menu 81
Edit 82
File 81
View 32, 82
Window 84

microsecond 30
microsecondsTimeBase 44, 80
millisecond 30

O
Object command (Profiler) 83
object performance 35
object view 35
Open command (Profiler) 27, 81
overflow functions 29

overflow stack 29
Overhead 29

P
Page Setup command (Profiler) 82
passive profiler 15
PowerPC PEF Linker 53
PPCTimeBase 44, 80

under Mac OS X 80
preprocessor directives 43

C/C++ 77
Print command (Profiler) 82
Print Preview 82
Print Setup 82
printing profiler output 82
Profiler

accuracy 29
active 16
components 20
defined 15
early 15
exiting 26
getting results 26
including API 25
initialize 26
libraries 39–41, 67
memory usage 45
passive 15
printing output 82
recursive calls 42
sampling 15
Using Debugger with 58

Profiler Function Reference 84–89
ProfilerClear() 87
ProfilerCreateThread() 88
ProfilerDeleteThread() 88
ProfilerDump() 87
ProfilerGetDataSizes() 87
ProfilerGetMainThreadRef() 89
ProfilerGetStatus() 86
ProfilerInit() 85
ProfilerSetStatus() 86
ProfilerSwitchToThread() 88
ProfilerTerm() 86

Profiler menus
See Menus

Profiler window 28
data columns 29–31
PFL–92 Profiler User Guide

For More Information: www.freescale.com

Index
Freescale Semiconductor, Inc.
header items 28
ProfilerClear() 87
ProfilerCreateThread() 47, 88
ProfilerDeleteThread() 47, 88
ProfilerDump() 52, 87
ProfilerGetDataSizes() 87
ProfilerGetMainThreadRef() 48, 89
ProfilerGetStatus() 86
ProfilerInit()

used in StProfileSection 63
ProfilerInit() 45, 78, 85

data buffer 29
problems with profiler 74
used in StProfileSection 63
warning 53, 59

ProfilerSetStatus() 86
ProfilerSwitchToThread() 47
ProfilerSwitchToThread() 88
ProfilerTerm() 52, 86

warning 53, 59
ProfilerThreadRef, defined 88
profiling

activating 23
asynchronous routines 51
by function 24, 77
code resources 49
exceptions 52
far code 40
inline functions 74
interface files 41
interrupt tasks 51
MacApp 51
main thread 47
near code 40
setjmp() 52
shared libraries 49
smart code 40
static constructors 50
strategy 61
threads 47
with RAM Doubler 62
with Speed Doubler 63

Profiling C++ Static Constructors 50
Profiling in PowerPlant 61–72
Profiling MacApp 51
Project Settings 23

Q
Quit command (Profiler) 82

R
RAM Doubler and profiling 62
recursive calls 42
requirementsþþSee system requirements
results

dumping 26
exporting 32
finding problems 36
opening 27
sorting 31, 83

RTC registers 74

S
sampling profiler 15
Save As command (Profiler) 26, 32, 82
Save Report As 82
saving results 26
setjmp() 52
shared libraries 49
sorting data 31, 83
Speed Doubler and profiling 63
stack overflow 29
stack space, finding problems 36
static constructors 50
StProfileSection 42, 63

data members 64
destructor 64

StProfileSection() constructor 63
Summary command (Profiler) 83
summary data 44
summary view 32
Suppress Warning Messages 57
system requirements 13

T
TB registers 74
Threads

Profiling 47
Viewing Results 48

tick, defined 30
ticksTimeBase 30, 44, 80
time hogs, finding 36
Profiler User Guide PFL–93

For More Information: www.freescale.com

Index
Freescale Semiconductor, Inc.
Timebase 29
timebase 44, 79

defined 79
timeMgrTimeBase 44, 80

U
UnloadSeg() 59

in Profiling 63
problems with profiler 46, 51, 59, 76

UProfiler.cp 63
Use “.arr” file 56

V
view in profiler

detailed 33
object 35
summary 32

View menu 32, 82

W
what’s in this manual 8
where to learn more 9
Windows menu 84
PFL–94 Profiler User Guide

For More Information: www.freescale.com

	Introduction
	Read the Release Notes!
	What’s New in This Release
	CodeWarrior and Its Documentation
	What’s in This Manual
	Where to Go from Here

	Getting Started
	System Requirements
	Installing Profiler
	Background on Profiling Code
	What Is a Profiler?
	Types of Profilers
	A Profiling Strategy
	Profiling Code

	Using Profiler
	What It Does
	How It Works
	Profiling Made Easy

	Viewing Results
	What It Does
	How It Works
	MW Profiler Window
	Window Views

	Finding Performance Problems

	Profiling Mac OS Code
	Profiler Libraries and Interface Files
	Profiling Special Cases
	Profiling Code with #pragma Statements
	Initializing Profiler with ProfilerInit()
	Terminating Profiler with ProfilerDump()
	Profiling Threads
	Viewing Threads in MW Profiler
	Profiling Shared Libraries
	Profiling Code Resources
	Profiling C++ Static Constructors
	Profiling MacApp
	Profiling Asynchronous Routines
	Profiling Abnormally Terminated Functions
	Using the PowerPC PEF Linker
	Debugging Profiled Code

	Profiler Limitations

	Profiling in PowerPlant
	Introduction to Profiling in PowerPlant
	Profiling Strategy
	Rules of Thumb

	Profiling Class
	StProfileSection
	~StProfileSection

	Profiling Your Code
	Code Exercise for Profiling
	Profiling a Single Routine
	Profiling an Application

	Troubleshooting
	Profile Times Vary Between Runs
	Problems while Profiling Inline Functions
	Profiling Library Could not be Found
	Profiler and Virtual Memory
	Names are Garbled when Viewing a 68K Profile Dump

	Profiler Reference
	Compiler Directives
	Testing for the Profiler

	Memory Usage
	Time and Timebases
	Profiler Menu Reference
	About MW Profiler
	File Menu
	Edit Menu
	View Menu
	Windows Menu

	Profiler Function Reference
	Profiler API

	Index

