
Freescale Semiconductor, Inc. Document Number: MQXKSDKPUG
User’s Guide Rev. 0, 03/2015

Porting an MQX RTOS Application to MQX

RTOS for Kinetis SDK

1 Introduction

Freescale MQX™ Real Time Operating System

(RTOS) for Kinetis SDK is the latest evolution

of Freescale MQX Software Solutions for

Kinetis MCUs. It is built on top of the Kinetis

Software Development Kit (KSDK) for Kinetis

MCUs, leveraging the software framework

provided by the KSDK.

Freescale MQX RTOS for Kinetis SDK

provides extensions to the SDK including the

MQX RTOS, Real-Time TCP/IP

Communication Suite (RTCS), and MQX File

System (MFS).

Starting with Kinetis SDK v1.1, Freescale MQX

RTOS is released with the Kinetis SDK.

For more information and downloads for the

Kinetis SDK, visit www.freescale.com/ksdk.

This document describes how to port

applications built for MQX RTOS v4.1.1 to

MQX RTOS for Kinetis SDK v1.1.

Table 1

Contents

1 Introduction ... 1

2 Why port? .. 2

3 What is different in the new Kinetis SDK-based
architecture? ... 2

4 Overview of porting application .. 5

5 Porting the Application ... 6

6 Conclusion .. 28

http://www.freescale.com/ksdk

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

2 Freescale Semiconductor, Inc.

This information is intended to help embedded system developers port applications based on the legacy

MQX RTOS architecture (known as classic MQX RTOS) to run on MQX RTOS for Kinetis SDK.

However, the specific details do assume the existing application is based on classic MQX RTOS release,

v4.1.1. Applications based on earlier MQX RTOS releases may require additional changes.

A specific demo application, known as the web_hvac demo, was ported and is used as the example for

this document. This demo application is included in classic MQX RTOS. The application was ported

and tested using the FRDM-K64F Freescale evaluation board. The tool-chain screenshots and examples

come from Kinetis Design Studio (KDS) v2.0 Integrated Development Environment (IDE) unless stated

otherwise.

2 Why port?

For new Kinetis MCU-based products in development, Freescale recommends upgrading to the Kinetis

SDK as the software platform. This has several advantages:

 Simpler structure – This new platform is more flexible and extendable, with a simplified

structure that is efficient for Kinetis MCU software development.

 Easier migration of applications between Kinetis MCUs – Porting and maintaining software

for Kinetis MCUs is easier with a standard software platform designed to support all Kinetis

MCU families, including the Kinetis K-series, L-series, and more.

 Easier migration of applications to custom hardware – The Kinetis SDK offers an efficient

layered architecture that allows easier customization to meet the application requirements.

 More drivers, improved drivers – The new Kinetis SDK platform is more comprehensive with

optimized drivers for key target applications

Beginning in 2015, support for new Kinetis MCUs will no longer be added to classic MQX RTOS

(v4.x) releases. These new Kinetis MCUs will be supported instead by MQX RTOS for Kinetis SDK

releases. Also, be aware that not all legacy Kinetis MCUs may be supported by the Kinetis SDK, so

Freescale encourages to check the Kinetis SDK availability.

Porting MQX RTOS-based applications to MQX RTOS for Kinetis SDK keeps up with the continuing

advancements in Kinetis MCUs and software. However, if the existing application is not ported, support

and maintenance will continue to be available for classic Freescale MQX RTOS through Freescale's

support packages. More details at www.freescale.com/mqx/support.

3 What is different in the new Kinetis SDK-based architecture?

This new architecture has a few key differences from the classic MQX RTOS architecture. This

includes:

 A new directory structure

o MQX RTOS, stacks, and middleware are integrated into the Kinetis SDK directory

structure.

http://www.freescale.com/mqx/support

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 3

o The default Kinetis SDK v1.1 installation path for Windows
®

Operating System, referenced

as ${KSDK_PATH} in this document, is at C:/Freescale/KSDK_1.1.0/.

 New library organization

o As of v1.1, there is no longer a board support package library (BSP). Much of the

equivalent functionality of the BSP library is now provided by the Kinetis SDK platform

library.

o A fully re-entrant standard C library is provided for MQX RTOS applications (called

mqx_stdlib).

o A new POSIX-compliant Shell command line interface library (called nShell) is provided.

The API is slightly changed.

 Changes to the I/O subsystem

o A new POSIX-compliant IO subsystem is provided (called nIO) for I/O file descriptor

handling. The API is slightly changed.

 Change to the peripheral driver model

o In all but a very few number of cases, MQX RTOS no longer includes its own peripheral

drivers. Instead, the Kinetis SDK peripheral drivers are used to access peripherals.

o The use of most drivers requires that they be installed by the application. For MQX RTOS

for Kinetis SDK v1.1, only the UART and Ethernet drivers (when supported) are installed

prior to the application starting up.

 Change in startup code and interrupt handling

o MQX RTOS for KSDK is using KSDK linker command files and startup files instead of

MQX RTOS files. Therefore MQX RTOS for KSDK does not contain the vectors.c file, and

the macro MQXCFG_VECTOR_ROM is no longer used to decide between RAM and ROM

vector table. The linker symbol __ram_vector_table__ is used instead. Startup code is now

located in KSDK platform folder.

 USB Stack now part of KSDK

o The USB stacks available with Kinetis SDK are different than those found with classic

MQX RTOS, however the APIs used by the application are very similar if not identical.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

4 Freescale Semiconductor, Inc.

4 What is the same in the new Kinetis SDK-based architecture?

 MQX RTOS API is unchanged

o The same full-featured and lightweight services are available and have equivalent

functionality, such as sem, lwsem, event, lwevent, etc. Also, the way tasks are created and

scheduled is the same.

 MQX RTOS RTCS API is unchanged

o Although the library location in the source tree is different, the TCP/IP stack API is the

same.

 MQX RTOS MFS API is unchanged

o Although the library location in the source tree is different, the file system API is the same.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 5

5 Overview of porting an application

5.1 MQX RTOS Core

The MQX RTOS API is the same, however the naming convention has changed with the kernel.

Classic MQX RTOS MQX RTOS for Kinetis SDK

PSP library is used for the kernel components The kernel library is simply called mqx_<board>, no longer

PSP

BSP library is used for drivers and hardware configuration BSP library has been removed and replaced by the MQX

RTOS for Kinetis SDK library - ksdk_mqx_lib

5.2 Project Settings

Aside from the peripheral driver changes, the majority of the porting effort is changing the project

settings for the application in the toolchain. With MQX RTOS for Kinetis SDK, the directory locations

of the MQX RTOS libraries and header files have changed and some libraries and paths have been

renamed. The following sections provide the details for the changes required in the application to port

to MQX RTOS for Kinetis SDK.

5.3 Drivers

As MQX RTOS now uses the Kinetis SDK peripheral drivers and hardware abstraction layer, the

application code needs to be updated for the Kinetis SDK driver APIs. The Kinetis SDK drivers offer

similar functionality, and the porting effort involves changing the initialization of the drivers in the

application, and changing the APIs used in the tasks.

Refer to the Kinetis SDK v.1.1 API Reference Manual.pdf and Kinetis SDK v.1.1 Demo Applications

User's Guide.pdf as a reference for the new drivers. These documents are located in KSDK installation

path: C:/Freescale/KSDK_1.1.0/doc

5.4 Additional Libraries and Stacks

The MFS file system, Ethernet RTCS, and Shell libraries are very similar. If any application changes

are required for these libraries, they are superficial.

The USB stacks used with MQX RTOS for Kinetis SDK are different than classic MQX RTOS. The

Kinetis SDK uses new unified USB stacks that run baremetal (no RTOS), with MQX RTOS, or with

other RTOSes. While the stacks are different, the APIs used by the application are very similar if not

identical. The Kinetis SDK USB stacks were modeled after the classic MQX RTOS stacks, and porting

is not difficult. Refer to the Kinetis SDK USB stack documentation and examples for the specific API

details. All USB stack documentation can be found in KSDK installation path also:

C:/Freescale/KSDK_1.1.0/usb/doc

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

6 Freescale Semiconductor, Inc.

6 Porting the example

A specific demo application known as the web_hvac demo is used as the example for this document.

This demo application is included in classic MQX RTOS installation path:

C:/Freescale/Freescale_MQX_4_1/demo/web_hvac

It represents the residential HVAC controller system requirements and demonstrates the following

features of MQX RTOS, stacks, middleware, and drivers.

 Multiple tasks

 Light Weight Events

 Message Passing

 Kernel Logging

 USB Stack

 File System

 Shell

 RTCS (TCP/IP stack)

 Webserver with CGI, interactive web pages with AJAX

 FTP Server

 Telnet Server

 Light Weight GPIO driver

The application was ported and tested using the FRDM-K64F Freescale evaluation board, the tool-chain

screenshots and examples come from Kinetis Design Studio (KDS) 2.0 Integrated Development

Environment (IDE) unless stated otherwise.

The next figure shows in detail all the parts that interact with this demo application.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 7

Figure 1 Web_HVAC Application Block Diagram

For features not covered by this example, additional porting may be required that is not documented

here.

6.1 Installation requirements

When using KDS with KSDK projects, the user must install the Eclipse update. The update instructions

are located in chapter 5.2 Install Eclipse update of ‘Getting Started with Kinetis SDK (KSDK)’

document, which is located in KSDK installation path: C:/Freescale/KSDK_1.1.0/doc/Getting Started

with Kinetis SDK (KSDK).pdf

It is also important to verify that KSDK_PATH environment variable points to the KSDK directory

C:/Freescale/KSDK_1.1.0. To verify, go to Windows Control Panel > System and Security > System >

Advanced System Settings and click Environment variables.

Figure 2 Windows Operating System environment variable for KSDK_PATH

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

8 Freescale Semiconductor, Inc.

6.2 Create a Base Project

A copy of the classic MQX RTOS web_hvac project is used as a porting base.

1. Go to menu File > Import > Existing Project into Workspace and search for the classic MQX

RTOS web_hvac project located in this path:

C:/Freescale/Freescale_MQX_4_1/demo/web_hvac/build/kds/web_hvac_frdmk64f.

2. Right click on the project name and select „Copy‟ in the context menu. Then, right click on the

KDS workbench and select „Paste‟.

Figure 3 KDS copy imported project

3. Write a name for the project and click „OK‟. The new project should be created.

Figure 4 Rename the project

Note

If a New Kinetis Design Studio Project is required to be used as a base

project, the user must add the Kinetis SDK support by checking the

Kinetis SDK option in the Rapid Application Development Window of the

New Kinetis Design Studio Project Wizard as shown in the figure above.

KDS IDE version 2.0 and KSDK version 1.1.0 are used in this document.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 9

Figure 5 KDS New Project Wizard settings for new KSDK project

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

10 Freescale Semiconductor, Inc.

6.3 Compiler Settings Changes

Update the project compiler settings (include paths for the header files and some processor definitions)

need to ensure that the application works with the Kinetis SDK.

Before making any changes, build all necessary libraries to create the corresponding library files (*.a).

The paths containing the libraries source code and the output (*.a) files are listed here.

MQX RTOS for KSDK Platform Lib

${KSDK_PATH}/lib/ksdk_mqx_lib/kds/K64F12

${KSDK_PATH}/lib/ksdk_mqx_lib/kds/K64F12/Debug/libksdk_platform_mqx.a

MQX RTOS Lib

${KSDK_PATH}/rtos/mqx/mqx/build/kds/mqx_frdmk64f

${KSDK_PATH}/rtos/mqx/lib/frdmk64f.kds/debug/mqx/lib_mqx.a

MQX RTOS stdlib

${KSDK_PATH}/rtos/mqx/mqx_stdlib/build/kds/mqx_stdlib_frdmk64f

${KSDK_PATH}/rtos/mqx/lib/frdmk64f.kds/debug/mqx_stdlib/lib_mqx_stdlib.a

MQX RTOS nShell Lib

${KSDK_PATH}/rtos/mqx/nshell/build/kds/nshell_frdmk64f

${KSDK_PATH}/rtos/mqx/lib/frdmk64f.kds/debug/nshell/lib_nshell.a

MFS File System

${KSDK_PATH}/filesystem/mfs/build/kds/mfs_frdmk64f

${KSDK_PATH}/filesystem/mfs/lib/frdmk64f.kds/debug/mfs/lib_mfs.a

RTCS

${KSDK_PATH}/tcpip/rtcs/build/kds/rtcs_frdmk64f

${KSDK_PATH}/tcpip/rtcs/lib/frdmk64f.kds/debug/rtcs/lib_rtcs.a

USB Host Lib

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 11

${KSDK_PATH}/usb/usb_core/host/build/kds/usbh_sdk_frdmk64f_mqx

${KSDK_PATH}/usb/usb_core/host/build/kds/usbh_sdk_frdmk64f_mqx/Debug/libusbh_mqx.a

The subsequent chapters provide information about these libraries and their equivalents in MQX RTOS

Classic.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

12 Freescale Semiconductor, Inc.

6.3.1 Assembler Include Paths

All assembler include paths can be deleted to avoid warnings. Go to menu Project > Properties C/C++

Build > Settings > Cross ARM
®
 GNU Assembler > Includes > Include paths (-I) and delete all the

classic MQX RTOS paths.

Figure 6 Remove Assembler include paths in KDS

6.3.2 Compiler Include Paths

The existing MQX RTOS header file directories have moved and the library paths have changed to

accommodate the new KDSK folder structure.

Go to menu Project > Properties C/C++ Build > Settings > Cross ARM C Compiler > Includes >

Include paths (-I) and change the compiler include paths of the classic MQX RTOS directories and add

the Include paths of the libraries with the Kinetis SDK directory structure.

Library Classic MQX RTOS MQX RTOS for Kinetis SDK

BSP /lib/<board>.<tool>/debug/bsp

/lib/<board>.<tool>/debug/bsp/Gene

rated_Code

/lib/<board>.<tool>/debug/bsp/Sourc

es

“${KSDK_PATH}/rtos/mqx/mqx/source/bsp”

PSP /lib/<board>.<tool>/debug/psp “${KSDK_PATH}/rtos/mqx/lib/<board>.<tool>/debug/mqx”

“${KSDK_PATH}/rtos/mqx/mqx/source/include”

Shell /lib/<board>.<tool>/debug/shell “${KSDK_PATH}/rtos/mqx/lib/<board>.<tool>/debug/nshell”

MFS /lib/<board>.<tool>/debug/mfs “${KSDK_PATH}/filesystem/mfs/lib/<board>.<tool>/debug/mfs”

RTCS /lib/<board>.<tool>/debug/rtcs “${KSDK_PATH}/tcpip/rtcs/lib/<board>.<tool>/debug/rtcs”

"${KSDK_PATH}/platform/drivers/src/enet"

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 13

USB Host /lib/<board>.<tool>/debug/usb/ “${KSDK_PATH}/usb/usb_core/include”

“${KSDK_PATH}/usb/usb_core/host/include”

“${KSDK_PATH}/usb/usb_core/host/include/<board>”

“${KSDK_PATH}/usb/usb_core/host/sources/classes/<class>”

“${KSDK_PATH}/usb/adapter/sources”

"${KSDK_PATH}/usb/adapter/sources/sdk"

"${KSDK_PATH}/usb/usb_core/host/sources/classes/hub"

Config /config/<board> “${KSDK_PATH}/rtos/mqx/lib/<board>.<tool>/debug/config”

Other /lib/<board>.<tool>/debug “${KSDK_PATH}/platform/osa/inc”

“${KSDK_PATH}/platform/drivers/inc”

“${KSDK_PATH}/platform/system/inc”

“${KSDK_PATH}/platform/hal/inc”

"${KSDK_PATH}/platform/CMSIS/Include"
1

"${KSDK_PATH}/platform/CMSIS/Include/device"
1

"${KSDK_PATH}/platform/CMSIS/Include/device/MK64F12"
1

"${KSDK_PATH}/platform/startup"
1

"${KSDK_PATH}/platform/startup/MK64F12"
1

"${KSDK_PATH}/platform/startup/MK64F12/gcc"
1

This is an example of the final compiler include paths after making the changes:

Figure 7 Compiler include paths for FRDM-K64F example

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

14 Freescale Semiconductor, Inc.

6.3.3 Compiler preprocessor settings

The Kinetis SDK source files use macros defined in the compiler preprocessor settings. These

definitions need to be added to the ported MQX RTOS application project. Below is a list of definitions

to add.

The user should review the definitions used in the Kinetis SDK example projects. To review the KSDK

definitions, open a MQX RTOS for Kinetis SDK example project for the preferred toolchain and the

development board and review the preprocessor definitions used in that project.

 "CPU_MK64FN1M0VMD12=1"

 "FSL_RTOS_MQX=1"

 "PLATFORM_SDK_ENABLED=1"

 "_AEABI_LC_CTYPE=C"

 "__VFPV4__=1"

 "__STRICT_ANSI__=1"

 "_DEBUG=1"

Figure 8 Compiler preprocessor settings from FRDM-K64F example

6.4 Linker setting changes

The user should update the application project linker settings, such as the settings for the MQX RTOS

and Kinetis SDK libraries, and the linker command file.

6.4.1 Linker library settings

MQX RTOS for Kinetis SDK has new libraries that need to be added to the ported application.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 15

NOTE

It is critical to link the the new mqx_stdlib in the correct order. If this

library is linked in the incorrect order, the linker will link some of the

stdio functions used in the application to the wrong library. The user

should link the mqx_library after all other MQX RTOS and Kinetis SDK

libraries, but before the toolchain runtime libraries. To see the proper

order for the desired toolchain, open an MQX RTOS for Kinetis SDK

application example project and review the linking order for that project.

The existing MQX RTOS libraries have moved to new directories and have been renamed. In this table

are the new locations and their equivalents in MQX RTOS classic. Go to menu Project > Properties

C/C++ Build > Settings > Cross ARM C++ Linker > Libraries and add the library names (without lib

prefix and without .a extension) in Libraries (-l). In Miscellaneous, add the library names with the entire

path. See Figures 6 and 7.

Library Classic MQX RTOS MQX RTOS for Kinetis SDK

Platform

(BSP)

/lib/<board>.<tool>/debug/bsp/bsp.a “${KSDK_PATH}/lib/ksdk_mqx_lib/kds/<derivative>/Debug/libksdk_platform_
mqx.a”

STDIO N/A “${KSDK_PATH}/rtos/mqx/lib/<board>.<tool>/debug/mqx_stdlib/lib_mqx_stdl
ib.a”

PSP /lib/<board>.<tool>/debug/psp/psp.a “${KSDK_PATH}/rtos/mqx/lib/<board>.<tool>/debug/mqx/lib_mqx.a”

Shell /lib/<board>.<tool>/debug/shell/shell.a “${KSDK_PATH}/rtos/mqx/lib/<board>.<tool>/debug/nshell/lib_nshell.a”

MFS /lib/<board>.<tool>/debug/mfs/mfs.a “${KSDK_PATH}/filesystem/mfs/lib/<board>.<tool>/debug/mfs/lib_mfs.a”

RTCS /lib/<board>.<tool>/debug/rtcs/rtcs.a “${KSDK_PATH}/tcpip/rtcs/lib/<board>.<tool>/debug/rtcs/lib_rtcs.a”

USB Host /lib/<board>.<tool>/debug/usb/usbh.a “${KSDK_PATH}/usb/usb_core/host/build/kds/usbh_sdk_<board>_mqx/Debug
/libusbh_mqx.a”

This is an example of the linker library settings after the changes.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

16 Freescale Semiconductor, Inc.

Figure 9 Linker library settings from FRDM-K64F example

6.4.2 Linker command file

The command file, which the linker uses to add the code and the symbols to the memory, has also been

moved and renamed. Update the linker settings with the new linker file:

 “${KSDK_PATH}/platform/linker/<derivative>/<tool>

Note

New KDS IDE Projects created with KSDK support can use the default

linker file.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 17

Figure 10 Linker command file settings from FRDM-K64F example

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

18 Freescale Semiconductor, Inc.

6.5 Toolchain-specific changes

In addition to the common toolchain changes in the previous sections, some toolchains supporting

classic MQX RTOS require additional changes in the application project to build correctly with MQX

RTOS for Kinetis SDK.

6.5.1 Kinetis Design Studio (KDS)

The GCC linker used in KDS IDE strips out the vector table in the Kinetis SDK library unless a flag is

added to the linker settings. To prevent this issue, add the flag “-Xlinker --undefined=__isr_vector” to

the other linker flags field in the KDS IDE linker settings.

Figure 11 Linker flag required in KDS application project settings

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 19

Ensure that the language standard is set to the “GNU ISO C99 (-std=gnu99)” in the menu Project >

Properties C/C++ Build > Settings > Cross ARM C Compiler > Optimization.

Figure 12 Language standard settings in KDS IDE

Add the “-fno-strict-aliasing” to other compiler flag box in the menu Project > Properties C/C++

Build > Settings > Cross ARM C Compiler > Miscellaneous.

Figure 13 Other compiler flags in KDS IDE

6.6 Application project changes

Additional changes in the application source files enable the project to build with the Kinetis SDK. To

continue porting, add these folders with the indicated source files to the project. The folders can be

copied into the project or linked from their original location which is also indicated below. See Figure

12.

 BSP_Files

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

20 Freescale Semiconductor, Inc.

o ${KSDK_PATH}/rtos/mqx/mqx/source/bsp

 init_bsp.c

 init_hardware.c

 mqx_init.c

 mqx_main.c

o ${KSDK_PATH}/rtos/mqx/mqx/source/include

 mqx.h

 KSDK_ Files

o ${KSDK_PATH}/boards/<board>

 board.h

 gpio_pins.c

 gpio_pins.c

 hardware_init.c

 pin_mux.c

 pin_mux.c

 Debug_Console

o ${KSDK_PATH}/platform/utilities/inc

 fsl_debug_console.h

 fsl_misc_utilities.h

o ${KSDK_PATH}/platform/utilities/src

 fsl_debug_console.c

 fsl_misc_utilities.c

 print_scan.c

 print_scan.h

Note

Classic MQX RTOS projects which use the USB Host stack include the

usb_classes.c source file. Because MQX RTOS for Kinetis SDK does not

use this file, the file should be removed from the application project.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 21

Figure 14 Additional source files added to application project

Add these folders paths in menu Project > Properties C/C++ Build > Settings > Cross ARM C

Compiler > Includes > Include paths (-I).

Note that if creating a virtual folder, add the path where the original files are located.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

22 Freescale Semiconductor, Inc.

Figure 15 Additional include directories added to application project

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 23

6.7 Application source code changes

After the project settings have been updated, modify the application source files to build with MQX

RTOS for Kinetis SDK.

6.7.1 Port application to Kinetis SDK drivers

Because the peripheral drivers in Kinetis SDK are different than the classic MQX RTOS drivers, these

changes are likely the most significant for the porting effort. Kinetis SDK includes documentation and

examples for all the new drivers and the HAL APIs. Use these references to find similar driver

functionality in Kinetis SDK and update the application.

This is an example from porting the web_hvac demo to MQX RTOS for Kinetis SDK. This demo uses

the LWGPIO driver from classic MQX RTOS to control the LEDs and read the input switches. The

demo was ported to the Kinetis SDK GPIO driver with these changes in hvac_io.c file:

 Header files included in source code

o Remove include of lwgpio.h form hvac_io.c

 Initialize driver

o Classic MQX RTOS used lwgpio_init() for the LED and button pins initialization. E.g.

lwgpio_init(&led1, LED_1, LWGPIO_DIR_OUTPUT, LWGPIO_VALUE_NOCHANGE);

lwgpio_init(&button1, TEMP_PLUS, LWGPIO_DIR_INPUT, LWGPIO_VALUE_NOCHANGE);

o MQX RTOS for KSDK uses GPIO_DRV_Init(). In hvac_io.c remove all the classic MQX

RTOS pin initializations and call the KSDK driver init function.

bool HVAC_InitializeIO(void)
{
 /* Init Gpio for Leds and switches */
 GPIO_DRV_Init(switchPins, ledPins);

 return (input_port!=0) && (output_port!=0);
}

 Set the output pin to the LED

o Classic MQX RTOS uses lwgpio_set_value(). E.g.

lwgpio_set_value(&led1, LWGPIO_VALUE_HIGH);

o MQX RTOS for Kinetis SDK uses GPIO_DRV_WritePinOutput(). In hvac_io.c replace all

the classic MQX RTOS calls for the KSDK driver function.

void HVAC_SetOutput(HVAC_Output_t signal,bool state)
{
 if (HVAC_OutputState[signal] != state) {
 HVAC_OutputState[signal] = state;
 if (output_port) {
 switch (signal) {
 case HVAC_FAN_OUTPUT:
 (state) ? GPIO_DRV_WritePinOutput(kGpioLED1, 1):GPIO_DRV_WritePinOutput(kGpioLED1, 0);
 break;
 case HVAC_HEAT_OUTPUT:
 (state) ? GPIO_DRV_WritePinOutput(kGpioLED2, 1):GPIO_DRV_WritePinOutput(kGpioLED2, 0);
 break;

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

24 Freescale Semiconductor, Inc.

 case HVAC_COOL_OUTPUT:
 (state) ? GPIO_DRV_WritePinOutput(kGpioLED3, 1):GPIO_DRV_WritePinOutput(kGpioLED3, 0);
 break;
 }
 }
 }
}

 Read input pin from push button

o Classic MQX RTOS uses lwgpio_get_value(). E.g.

value = lwgpio_get_value(&button1);

o MQX RTOS for Kinetis SDK uses GPIO_DRV_ReadPinInput (). In hvac_io.c replace all

the classic MQX RTOS calls for the KSDK driver function.

bool HVAC_GetInput(HVAC_Input_t signal)
{
 bool value=FALSE;
 if (input_port){
 switch (signal) {
 case HVAC_TEMP_UP_INPUT:
 value = !GPIO_DRV_ReadPinInput(kGpioSW1);
 break;
 case HVAC_TEMP_DOWN_INPUT:
 value = !GPIO_DRV_ReadPinInput(kGpioSW2);
 break;
#if defined(FAN_ON_OFF)
 case HVAC_FAN_ON_INPUT:
 value = !GPIO_DRV_ReadPinInput(kGpioSW3);
 break;
#endif
 }
 }
 return value;
}

6.7.2 Adjust task priorities

The ported application may need the application task priorities adjusted to use the Kinetis SDK features.

6.7.2.1 Operating System Abstraction (OSA) priority scheme used by the Kinetis SDK

To support multiple Operating Systems (OS), the Kinetis SDK provides an Operating System

Abstraction (OSA) layer that is used as interface between the KSDK stacks and operating systems.

Because each supported Operating System (OS) uses a different priority scheme, any tasks created by

the OSA API, require their OSA priority to be mapped to the corresponding OS priority. OSA supports

application tasks priorities from 0 to unlimited, where the priority 0 is the highest priority and higher

numbers equal lower priority.

MQX RTOS supports application tasks priorities from 7 to unlimited, where the priority 7 is the highest

priority and higher numbers equal lower priority. MQX RTOS task priorities 0 to 6 are used directly by

operating system.

Any task created using the OSA API function "OS_Task_create()"use OSA priority levels. Any task

created using the MQX RTOS API function "_task_create()"use MQX RTOS priority levels.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 25

Therefore, application developers should keep in mind the priority mapping of OSA to MQX RTOS,

which is:

MQX RTOS Priority = OSA Priority + 7

6.7.2.2 Adjustment to the application task priorities to accommodate the default USB

stack task priorities

One example where adjustment to the task priorities is necessary occurs when using the Kinetis SDK

USB Host stack. This library creates two tasks for the USB host controller. Tasks should be set to a

higher priority (lower task priority number) than the other application tasks which uses their

functionality to ensure that the stack can operate properly.

The USB Host stack defines these macros:

USBCFG_HUB_TASK_PRIORITY (set to OSA priority 7 by default)

USBCFG_HOST_KHCI_TASK_PRIORITY (set to OSA priority 8 by default)

This corresponds to MQX RTOS task priorities 14 and 15.

Therefore, to ensure the USB stack operates properly, all other application tasks and stack task priorities

should be set to 16 or higher (higher the number = lower the priority).

The RTCS stack creates tasks with priority set by the macro

RTCSCFG_DEFAULT_RTCSTASK_PRIO. By default, this is set to MQX RTOS priority 6. Since

web server in web_hvac example reads from USB, RTCSCFG_DEFAULT_RTCSTASK_PRIO in this

case should be adjusted to MQX RTOS priority level 16.

Note that the RTCS creates tasks at RTCSCFG_DEFAULT_RTCSTASK_PRIO and

RTCSCFG_DEFAULT_RTCSTASK_PRIO+1. Therefore, the application tasks should start from MQX

RTOS priority level 18.

6.7.2.3 Example web_hvac task priorities

Example of task priorities:

Task MQX RTOS Priority Level

USBCFG_HUB_TASK 14 (Highest Priority)

 [Set by USB stack using OSA priority 7]

USBCFG_HOST_KHCI_TASK 15

 [Set by USB stack using OSA priority 8]

RTCSCFG_DEFAULT_RTCSTASK 16

USB_TASK 18

HVAC_TASK 19

SWITCH_TASK 20

ALIVE_TASK 21

LOGGING_TASK 22

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

26 Freescale Semiconductor, Inc.

SHELL_TASK 23 (Lowest Priority)

Note

USB_TASK is an application task in web_hvac for handling USB data in

the application. This is not to be confused with the USB stacks tasks. It

should be a lower priority than the USB stack tasks and RTCS stack tasks.

Note

When MQX_LITE_CONFIG is chosen with static allocations, maximum

priority level is limited by the MQXCFG_LOWEST_TASK_PRIORITY

macro. It has to be changed to at least level 23 in this case.

6.7.2.4 Alternative example web_hvac task priorities

The USBCFG_HUB_TASK_PRIORITY can be decreased to (e.g. OSA priority 0) and

USBCFG_HOST_KHCI_TASK_PRIORITY (e.g. OSA priority 1). The priorities of the application

and RTCS stack task can be appropriately adjusted. The operation of the system is the same as above.

Task MQX RTOS Priority Level

USBCFG_HUB_TASK 7 (Highest Priority)

 [Set by USB stack using OSA priority 0]

USBCFG_HOST_KHCI_TASK 8

 [Set by USB stack using OSA priority 1]

RTCSCFG_DEFAULT_RTCSTASK 9

USB_TASK 11

HVAC_TASK 12

SWITCH_TASK 13

ALIVE_TASK 14

LOGGING_TASK 15

SHELL_TASK 16 (Lowest Priority)

Note

The macros PRIORITY_OSA_TO_RTOS(osa_prio) and

PRIORITY_RTOS_TO_OSA(rtos_prio) help to recalculate right priority

level.

6.8 Other changes

Additional minor changes are necessary to ensure that the application can build with the Kinetis SDK.

Use the Kinetis SDK documentation and code examples as references for these changes.

These are some examples encountered while porting the web_hvac demo:

1. With the changes to the USB Host stack and MFS file system, the web_hvac demo was updated

to enable mounting the file system on a USB flash drive. The header file usbmfs.h from classic

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

Freescale Semiconductor, Inc. 27

MQX RTOS is no longer used in Kinetis SDK, and the inclusions to this file were removed from

the application. Also, the application USB task was updated using the example project at

/filesystem/mfs/examples/usbdisk. These files were taken from this example and used in the

application:

 usb_file.h

 usb_file.c

 main.c (usbdisk) -> usb_task.c (web_hvac)

2. Inclusions need to be added for stdio.h in any source files using those features. After the STDIO

features have been pulled out of the PSP library and are included in mqxstd_lib, they are no

longer included in the application through mqx.h.

3. In MQX RTOS for Kinetis SDK, the TFS driver has been renamed to nio_tfs. The functionality

is the same, but web_hvac needed these changes to continue using that driver:

 Change header file includes to nio_tfs.h

 Change structures and driver APIs to nio_tfs

4. Some types and declarations have changed. For example, the type MQX_FILE_PTR used in

web_hvac is no longer defined in MQX RTOS for Kinetis SDK. The demo was updated to use

type “int” instead.

 Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK User’s Guide, Rev. 0, 03/2015

28 Freescale Semiconductor, Inc.

7 Conclusion

Porting an application from classic MQX RTOS to MQX RTOS for Kinetis SDK requires changes

which are manageable with the documentation and examples provided. After the transition is made,

embedded system developers will benefit from the Kinetis SDK architectural advantages, while still

leveraging the benefits of the popular MQX RTOS kernel, stacks, and middleware.

Visit www.freescale.com/mqx for updates and information about all Freescale MQX RTOS software.

Additionally, visit the freescale.com/community/mqx to access the moderated online community and get

answers to questions, tips and tricks, and other helpful resources related to MQX RTOS.

http://www.freescale.com/mqx
https://usc-word-edit.officeapps.live.com/we/community.freescale.com/community/mqx
https://usc-word-edit.officeapps.live.com/we/community.freescale.com/community/mqx

Document Number: MQXKSDKPUG

Rev. #0

03/2015

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo and Kinetis are trademarks of Freescale Semiconductor,

Inc., Reg. U.S. Pat. & Tm. Off. ARM and ARM powered logo are registered trademarks

of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All

other product or service names are the property of their respective owners. All rights

reserved.

© 2015 Freescale Semiconductor, Inc.

	Porting an MQX RTOS Application to MQX RTOS for Kinetis SDK
	1 Introduction
	2 Why port?
	3 What is different in the new Kinetis SDK-based architecture?
	4 What is the same in the new Kinetis SDK-based architecture?
	5 Overview of porting an application
	5.1 MQX RTOS Core
	5.2 Project Settings
	5.3 Drivers
	5.4 Additional Libraries and Stacks
	6 Porting the example
	6.1 Installation requirements
	6.2 Create a Base Project
	6.3 Compiler Settings Changes
	6.4 Linker setting changes
	6.5 Toolchain-specific changes
	6.6 Application project changes
	6.7 Application source code changes
	6.8 Other changes
	7 Conclusion

