

MICROPROCESSOR & MEMORY TECHNOLOGIES GROUP

MPC8XXFADS

Revision ENG & Revision PILOT

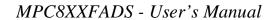

User's Manual

TABLE OF CONTENTS

1 -		General Information	1
1•	1	Introduction	1
1•	2	MPC8XX Family Support	1
1•	3	Abbreviations' List	1
1•	4	Related Documentation	1
1•	5	Revision ENG to Revision PILOT Changes	2
1•	6	Changes to This Document from Previous Issue (Draft 0.0)	2
1•	7	SPECIFICATIONS	2
1•	8	MPC8XXFADS Features	4
1•	9	MPC8XXFADS Goals	5
2 -		Hardware Preparation and Installation	6
2•		INTRODUCTION	6
2•		UNPACKING INSTRUCTIONS	6
2•		HARDWARE PREPARATION	6
	2•3•1	ADI Port Address Selection	8
	2•3•2	Clock Source Selection	8
	2•3•3	Power-On Reset Source Selection	8
	2•3•4	VDDL Source Selection	9
	2•3•5	Keep Alive Power Source Selection	9
	2•3•6	Debug Mode Indication Source Selection	9
2•		INSTALLATION INSTRUCTIONS	9
	2•4•1	Host Controlled Operation	9
	2•4•2	Debug Port Controller For Target System	10
	2•4•3	Stand Alone Operation	11
	2•4•4	+5V Power Supply Connection	12
	2•4•5	P7: +12V Power Supply Connection	12
	2•4•6	ADI Installation	13
	2•4•7	Host computer to MPC8XXFADS Connection	13
	2•4•8	Terminal to MPC8XXFADS RS-232 Connection	13
_	2•4•9	Memory Installation	14
3 -		OPERATING INSTRUCTIONS	15
3•		INTRODUCTION	15
3•		CONTROLS AND INDICATORS	15
	3•2•1	ABORT Switch SW1	15
	3•2•2	SOFT RESET Switch SW2	15
	3•2•3	HARD RESET - Switches SW1 & SW2	15
	3•2•4	DS1 - Software Options Switch	15
	3•2•5	GND Bridges	15
	3•2•6	ETH ON - LD1	16
	3•2•7	IRD ON - LD2	16
	3•2•8	RS232 Port 1 ON - LD3	16
	3•2•9	RS232 Port 2 ON - LD4	16
	3•2•10	Ethernet RX Indicator - LD5	16
	3•2•11	Ethernet TX Indicator - LD6	16
	3•2•12	Ethernet JABB Indicator - LD7	16
	3•2•13	Ethernet CLSN Indicator LD8	16
	3•2•14	Ethernet PLR Indicator - LD9	16
	3•2•15	Ethernet LIL Indicator - LD10	16

TABLE OF CONTENTS

3•2•16	5V Indicator - LD11	16
3•2•17	RUN Indicator - LD12	17
3•2•18	AUXILARY Indicator LD13	17
3•2•19	FLASH ON - LD14	17
3•2•20	DRAM ON - LD15	17
3•2•21	SDRAM ON - LD16	17
3•2•22	PCMCIA ON - LD17	17
3•3	MEMORY MAP	17
3•4	MPC Registers' Programming	18
3•4•1	Memory Controller Registers Programming	19
4 -	Functional Description	29
4•1	Reset & Reset - Configuration	29
4•1•1	Keep Alive Power-On Reset	29
4•1•2	Regular Power - On Reset	29
4•1• 3	Manual Soft Reset	29
4•1•4	Manual Hard Reset	29
4•1• 5	MPC Internal Sources	29
4•1• 6	Reset Configuration	30
4•1•	3	30
4•1•	3	30
4•1•	9	30
4•2	Local Interrupter	31
4• 3	Clock Generator	31
4•4	Buffering	31
4•5	Chip - Select Generator	32
4•6	DRAM	32
4•6•1	DRAM 16 Bit Operation	33
4•6•2	DRAM Performance Figures	33
4•6•3	Refresh Control	34
4•6•4	Variable Bus-Width Control	35
4•7	Flash Memory SIMM	37
4•8	Synchronous Dram	39
4•8•1	SDRAM Programming	40 41
4•8• 4•8•2	3	41
4•0•2 4•9	SDRAM Refresh Communication Ports	42
4•9 4•9•1	Ethernet Port	42
4•9•1 4•9•2	Infra-Red Port	42
4•9•		43
4•9•3	RS232 Ports	43
4•9•		43
4•10	PCMCIA Port	44
4•10•1	PCMCIA Power Control	46
4•11	Board Control & Status Register - BCSR	46
4•11•1	BCSR Disable Protection Logic	47
4•11•2	BCSR0 - Hard Reset Configuration Register	47
4•11•3	BCSR1 - Board Control Register 1	48
4•11•4	BCSR2 - Board Control / Status Register - 2	52

TABLE OF CONTENTS

	4•11•5	BCSR3 - Board Control / Status Register 3	55
	4•11•6	BCSR4 - Board Control / Status Register 4	58
	4•12	Debug Port Controller	60
	4•12•1	MPC8XXFADS As Debug Port Controller For Target System	61
	4•12•1•1	Debug Port Connection - Target System Requirements	62
	4•12•2	Debug Port Control / Status Register	62
	4•12•3	Standard MPCXXX Debug Port Connector Pin Description	64
	4•12•3•1	VFLS(0:1)	64
	4•12•3•2	HRESET*	64
		SRESET*	64
	4•12•3•4	DSDI - Debug-port Serial Data In	64
	4•12•3•5	DSCK - Debug-port Serial Clock	65
	4•12•3•6	DSDO - Debug-port Serial Data Out	65
	4•13	Power	65
	4•13•1	5V Bus	67
	4•13•2	3.3V Bus	67
	4•13•3	12V Bus	67
5		Support Information	68
	5•1	Interconnect Signals	68
	5 • 1 • 1	P1 ADI - Port Connector	68
	5 • 1 • 2	PA2, PB2 - RS232 Ports' Connectors	69
	5 • 1 • 3	P3 - Ethernet Port Connector	69
	5 • 1 • 4	PCMCIA Port Connector	70
	5•1•5	P5 - External Debug Port Controller Input Interconnect.	73
	5•1•6	P6 - 5V Power Connector	74
	5•1•7	P7 - 12V Power Connector	74
	5•1•8	P8 - Serial Ports' Expansion Connector	74
	5•1•9 	PD1 - PD4 - Daughter Boards' Connectors Interconnect Signals	74
	5•2	MPC8XXFADS Part List	100
	5•3	Programmable Logic Equations	104
	5•3•1	U2 - Debug Port Controller	105
	5•3•2	U11 - Board Control & Status Register	133
	5•3•3	U22 - Auxiliary Board Control	174
42	PENDIX A -	ADI I/F	191
	A•1	ADI Port Signal Description	191
42	PENDIX B -	ADI Installation	193
	B•1	INTRODUCTION	193
	B•2	IBM-PC/XT/AT to MPC8XXFADS Interface	193
	B•2•1	ADI Installation in IBM-PC/XT/AT	193
	B•3	SUN-4 to MPC8XXFADS Interface	194
	B•3•1	ADI Installation in the SUN-4	195

LIST OF FIGURES

FIGURE 1-1	MPC8XXFADS Motherboard Block Diagram	5
FIGURE 2-1	MPC8XXFADS Top Side Part Location diagram	7
FIGURE 2-2	Configuration Dip-Switch - DS2	8
FIGURE 2-3	J1 - VFLS / FRZ Selection	9
FIGURE 2-4	Host Controlled Operation Scheme	10
FIGURE 2-5	Debug Port Controller For Target System Operation Scheme	11
FIGURE 2-6	Stand Alone Configuration	12
FIGURE 2-7	P6: +5V Power Connector	12
FIGURE 2-8	P7: +12V Power Connector	13
FIGURE 2-9	P1 - ADI Port Connector	13
FIGURE 2-10	PA2, PB2 - RS-232 Serial Port Connectors	14
FIGURE 2-11	Memory SIMM Installation	14
FIGURE 3-1	DS1 - Description	15
FIGURE 4-1	Refresh Scheme	35
FIGURE 4-2	DRAM Address Lines' Switching Scheme	37
FIGURE 4-3	Flash Memory SIMM Architecture	38
FIGURE 4-4	SDRAM Connection Scheme	40
FIGURE 4-5	RS232 Serial Ports' Connector	43
FIGURE 4-6	PCMCIA Port Configuration	45
FIGURE 4-7	Debug Port Controller Block Diagram	61
FIGURE 4-8	Standard Debug Port Connector	64
FIGURE 4-1	MPC8XXFADS Power Scheme	66
FIGURE A-1	ADI Port Connector	191
FIGURE B-1	Physical Location of jumper JG1 and JG2	194
FIGURE B-2	JG1 Configuration Options	194
FIGURE B-3	ADI board for SBus	195

LIST OF TABLES

TABLE 1-1.	MPC8XXFADS Specifications	2
TABLE 3-1.	MPC8XXADS Main Memory Map	18
TABLE 3-2.	SIU REGISTERS' PROGRAMMING	19
TABLE 3-3.	Memory Controller Initializations For 50Mhz	20
TABLE 3-4.	UPMA Initializations for 60nsec DRAMs @ 50MHz	22
TABLE 3-5.	UPMA Initializations for 60nsec EDO DRAMs @ 50MHz	23
TABLE 3-6.	Memory Controller Initializations For 20Mhz	23
TABLE 3-7.	UPMA Initializations for 60nsec EDO DRAMs @ 20MHz	26
TABLE 3-8.	UPMB Initializations for MB811171622A-100 upto 32MHz	27
TABLE 3-9.	UPMB Initializations for MB811171622A-100, 32+MHz - 50MHz	28
TABLE 4-1.	MPC8XXFADS Chip Selects' Assignment	32
TABLE 4-2.	Regular DRAM Performance Figures	34
TABLE 4-3.	EDO DRAM Performance Figures	34
TABLE 4-4.	DRAM ADDRESS CONNECTIONS	36
TABLE 4-5.	Flash Memory Performance Figures	39
TABLE 4-6.	Estimated SDRAM Performance Figures	39
TABLE 4-7.	SDRAM's Mode Register Programming	41
TABLE 4-8.	MPC8XX Family Comm. Ports	42
TABLE 4-9.	BCSR0 Description	48
TABLE 4-10.	BCSR1 Description	50
TABLE 4-11.	PCCVCC(0:1) Encoding	51
TABLE 4-12.	PCCVPP(0:1) Encoding	52
TABLE 4-13.	BCSR2 Description	53
TABLE 4-14.	Flash Presence Detect (4:1) Encoding	53
TABLE 4-15.	DRAM Presence Detect (2:1) Encoding	54
TABLE 4-16.	DRAM Presence Detect (4:3) Encoding	54
TABLE 4-17.	EXTOOLI(0:3) Assignment	54
TABLE 4-18.	MPC8XXFADS Daughter Boards' Revision Encoding	55
TABLE 4-19.	BCSR3 Description	56
TABLE 4-20.	Daughter Boards' ID Codes	56
TABLE 4-21.	MPC8XXFADS Revision Number Conversion Table	57
TABLE 4-22.	FLASH Presence Detect (7:5) Encoding	57
TABLE 4-23.	BCSR4 Description	58
TABLE 4-24.	Debug Port Control / Status Register	63
TABLE 4-25.	DSCK Frequency Select	63
TABLE 4-26.	Off-board Application Maximum Current Consumption	66
TABLE 5-1	P1 - ADI Port Interconnect Signals	68
TABLE 5-2.	PA2, PB2 Interconnect Signals	69
TABLE 5-3.	P3 - Ethernet Port Interconnect Signals	70
TABLE 5-4.	P4 - PCMCIA Connector Interconnect Signals	70
TABLE 5-5.	P5 - Interconnect Signals	73
TABLE 5-6.	P6 - Interconnect Signals	74
TABLE 5-7.	P7 - Interconnect Signals	74 75
TABLE 5-8.	PD1 Interconnect Signals	75
TABLE 5-9.	PD2 Interconnect Signals	80

LIST OF TABLES

TABLE 5-10.	PD3 Interconnect Signals	87
TABLE 5-11.	PD4 Interconnect Signals	94
TABLE 5-12.	MPC8XXFADS Part List	100

General Information

1 - General Information

1•1 Introduction

This document is an operation guide for the MPC8XXFADS board. It contains operational, functional and general information about the FADS. The MPC8XXFADS is meant to serve as a platform for s/w and h/w development around the MPC8XX family processors. Using its on-board resources and its associated debugger, a developer is able to download his code, run it, set breakpoints, display memory and registers and connect his own proprietary h/w via the expansion connectors, to be incorporated to a desired system with the MPC8XX processor.

This board could also be used as a demonstration tool, i.e., application s/w may be burned^A into its flash memory and ran in exhibitions etc'.

1•2 MPC8XX Family Support

The MPC8XXFADS supports the following MPC8XX family members:

- o MPC801
- o MPC821^B
- o MPC823
- o MPC850
- o MPC860^B
- o MPC860SARB
- o MPC860TB

1•3 Abbreviations' List

- FADS^C the MPC8XXFADS, the subject of this document.
- UPM User Programmable Machine
- GPCM General Purpose Chip-select Machine
- GPL General Purpose Line (associated with the UPM)
- I/R Infra-Red
- BCSR Board Control & Status Register.
- ZIF Zero Input Force
- BGA Ball Grid Array
- SIMM Single In-line Memory Module

1•4 Related Documentation

- MPC8XX User's Manuals.
- ADI Board Specification.
- A. Either on or off-board.
- B. Same Daughter Board.
 - C. Not to be mistaken for the M683XX Family Ads

General Information

1•5 Revision ENG to Revision PILOT Changes

The only electrical change between the two revisions is a bug correction in BCSR. This bug was irrelevant to ENG 0091^A and up, boards. The rest, are production associated changes, which were meant to improve boards' reliability and manufacturability, such as changes in SMD pad sizes, drill sizes and so on and are of no interest to any user.

1•6 Changes to This Document from Previous Issue (Draft 0.0)

- 1) Daughter Board's for MPC821, MPC860, MPC860SAR, MPC860T, are identical. (1•2 on page 8)
- 2) Typo error in TABLE 3-1. "MPC8XXADS Main Memory Map" on page 25 was fixed: BCSR occupies 32KByte space rather than 16KByte as implied from this table.
- 3) Typo Error in TABLE 3-3. "Memory Controller Initializations For 50Mhz" on page 27 and in TABLE 3-6. "Memory Controller Initializations For 20Mhz" on page 30 was fixed: BR0 is set 02800001. Flash base address is 0x2800000, rather than 0x2200000.
- 4) Changed Daughter-Board Codes MPC821, MPC860/860SAR/860T share the same code now (0x22). See TABLE 4-20. "Daughter Boards' ID Codes" on page 63.
- 5) Mother Board revsion codes are changed: 0 is now reserved, ENG & PILOT share the same code 1. See TABLE 4-18. "MPC8XXFADS Daughter Boards' Revision Encoding" on page 62.
- 6) Added BCSR4 functions' description for MPC821/860/860SAR/860T Daughter board, with MPC860T. (TABLE 4-23. on page 65).
- 7) Changed Mach equations for U11. Bug correction (Irrelevant for ENG091+ boards). See 5•3•2
 "U11 Board Control & Status Register" on page 140.

1•7 SPECIFICATIONS

The MPC8XXFADS specifications are given in TABLE 1-1.

TABLE 1-1. MPC8XXFADS Specifications


CHARACTERISTICS	SPECIFICATIONS
Power requirements (no other boards attached)	+5Vdc @ 1.7 A (typical), 3 A (maximum) +12Vdc - @1A.
Microprocessor	MPC8XX running upto @ 50 MHz
Addressing Total address range: Flash Memory Dynamic RAM	4 GigaBytes 2 MByte, 32 bits wide expandable to 8 MBytes 4 MByte, 32 bits wide EDO SIMM Support for up to 32 MByte, EDO or FPM SIMM
Synchronous DRAM Operating temperature	4 MBytes, organized as 1 Meg X 32 bit. 0°C - 30°C
Storage temperature	-25°C to 85°C
Relative humidity	5% to 90% (non-condensing)

A. The only implication of that bug is that ENG0001 - ENG0090 may **not** connect to MPC823FADSDB of revision PILOT. ENG0091 and up may.

General Information TABLE 1-1. MPC8XXFADS Specifications

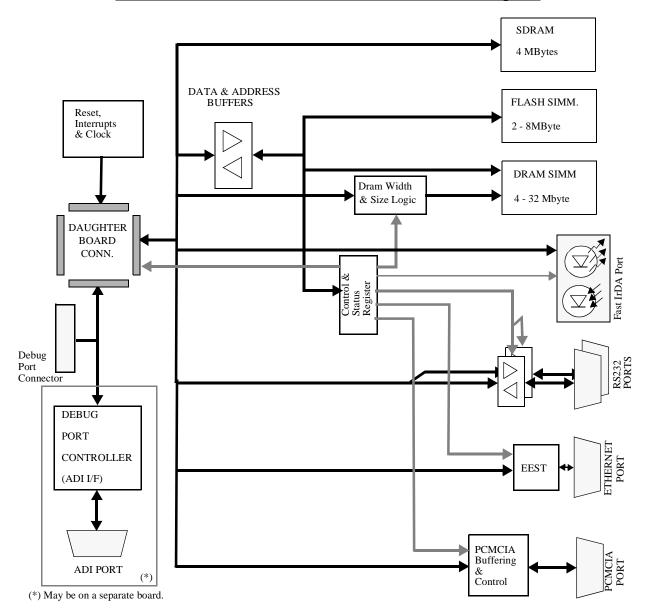
CHARACTERISTICS	SPECIFICATIONS
Dimensions: Length Width Thickness	9.173" (233 mm) 6.3" (160 mm) 0.063" (1.6 mm)

General Information

1•8 MPC8XXFADS Features

- 4 MByte, Unbuffered, Synchronous Dram On-Board.
- 4 MByte EDO 60nsec delay DRAM SIMM. Support for 4 32 MByte FPM or EDO Dram SIMM, with Automatic Dram SIMM identification. 16 Bit Data-Bus Width Support.
- 2 MByte Flash SIMM. Support for upto 8 MByte, 5V or 12V Programmable, with Automatic Flash SIMM identification.
- Memory Disable Option for each local memory map slaves.
- Board Control & Status Register BCSR, Controlling Board's Operation.
- Programmable Hard-Reset Configuration via BCSR.
- 5V only PCMCIA Socket With Full Buffering, Power Control and Port Disable Option. Complies with PCMCIA 2.1+ Standard.
- Module Enable Indications.
- o 10-Base-T Port On-Board, with Stand-By Mode.
- o Fast-IrDA (4MBps) Port with Stand-By Mode.
- Dual RS232 port with Low-Power Option per each port.
- o On Board Debug Port Controller with ADI I/F.
- MPC8XXFADS Serving as Debug Station for Target System option.
- Optional Hard-Reset Configuration Burned in Flash^A.
- External Tools' Identification Capability, via BCSR.
- o Soft / Hard^B Reset Push Button
- o ABORT Push Button
- Single^C 5V Supply.
- Reverse / Over Voltage Protection for Power Inputs.
- o 3.3V / 2V MPC Internal Logic Operation^D, 3.3V MPC I/O Operation.
- Power Indications for Each Power Bus.
- o Software Option Switch provides 16 S/W options via BCSR.

A. Available only if supported also on the MPC8XX.


B. Hard reset is applied by depressing BOTH Soft Reset & ABORT buttons.

C. Unless a 12V supply is required for a PCMCIA card or for a 12V programmable Flash SIMM.

D. Implemented on Daughter Board.

| General Information | FIGURE 1-1 | MPC8XXFADS | Motherboard | Block Diagram

1•9 MPC8XXFADS Goals

The MPC8XXFADS is meant to become a general platform for s/w and h/w development around the MPC8XX family. Using its on-board resources and its associated debugger, the developer is able to load his code, run it, set breakpoints, display memory and registers and connect his own proprietary h/w via the expansion connectors, to be incorporated to a system with the MPC.

This board could also be used as a demonstration tool, i.e., application s/w may be programmed^A into its flash memory and ran in exhibitions etc.

A. Either on or off-board.

2 - Hardware Preparation and Installation

2•1 INTRODUCTION

This chapter provides unpacking instructions, hardware preparation, and installation instructions for the MPC8XXFADS.

2•2 UNPACKING INSTRUCTIONS

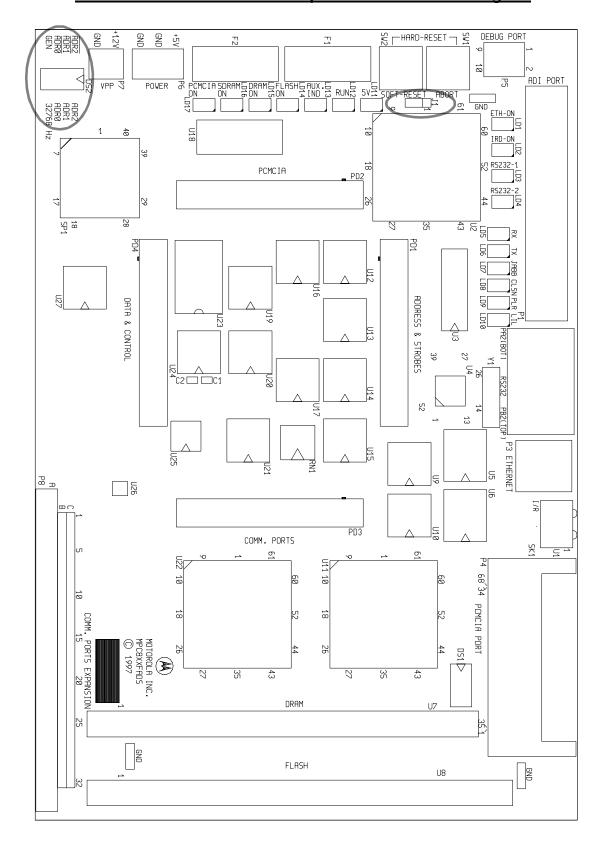
NOTE

If the shipping carton is damaged upon receipt, request carrier's agent to be present during unpacking and inspection of equipment.

Unpack equipment from shipping carton. Refer to packing list and verify that all items are present. Save packing material for storing and reshipping of equipment.

CAUTION

AVOID TOUCHING AREAS OF INTEGRATED CIRCUITRY; STATIC DISCHARGE CAN DAMAGE CIRCUITS.


2•3 HARDWARE PREPARATION

To select the desired configuration and ensure proper operation of the MPC8XXFADS board, changes of the Dip-Switch settings may be required before installation. The location of the switches, LEDs, Dip-Switches, and connectors is illustrated in FIGURE 2-1. The board has been factory tested and is shipped with Dip-Switch settings as described in the following paragraphs. Parameters can be changed for the following conditions:

- ADI port address
- MPC Clock Source
- Power-On Reset Source.
- MPC Keep Alive Power Source
- MPC Internal Logic Supply Source
- Debug Mode Indication Source

FIGURE 2-1 MPC8XXFADS Top Side Part Location diagram

2•3•1 ADI Port Address Selection

The MPC8XXFADS can have eight possible slave addresses set for its ADI port, enabling up to eight MPC8XXFADS boards to be connected to the same ADI board in the host computer. The selection of the slave address is done by setting switches 1, 2 & 3 in the Dip-Switch - DS2. Switch 1 stands for the most-significant bit of the address and switch 3 stands for the least-significant bit. If the switch is in the 'ON' state, it stands for logical '1'. In FIGURE 2-2 DS1 is shown to be configured to address '0'.

FIGURE 2-2 Configuration Dip-Switch - DS2

Table 2-1 describes the switch settings for each slave address:

ADDRESS Switch 1 Switch 2 Switch 3 0 OFF **OFF OFF** OFF 1 OFF ON 2 OFF ON OFF 3 OFF ON ON 4 ON OFF OFF 5 ON OFF ON OFF 6 ON ON 7 ON ON ON

Table 2-1 ADI Address Selection

2•3•2 Clock Source Selection

Switch #4 on DS2 selects the clock source for the MPC. When it is in the 'ON' position while the FADS is powered-up, the on-board 32.768 KHz crystal resonator^A becomes the clock source and the PLL multiplication factor becomes 1:513. When switch #4 is in the 'OFF' position while the FADS is powered-up, the on-board 4^BMHz clock generator^A becomes the clock source while the PLL multiplication factor becomes 1:5.

2•3•3 Power-On Reset Source Selection

As there are differences between MPC revisions regarding the functionality of the Power-On Reset logic,

A. Located on the Daughter-Board

B. A 5MHz clock generator is packed as well.

Hardware Preparation and Installation

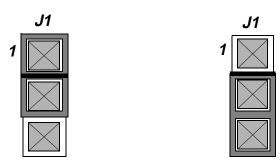
it is therefore necessary to select different sources for Power-ON reset generation.

The above selection is done on the Daughter Board and therefore, documented in the specific Daughter Board user's manual.

2•3•4 VDDL Source Selection

This selection is done on the Daughter Board and therefore, documented in the specific Daughter Board user's manual.

2•3•5 Keep Alive Power Source Selection


This selection is done on the Daughter Board and therefore, documented in the specific Daughter Board user's manual.

2•3•6 Debug Mode Indication Source Selection

Jumper J1 selects between VFLS(0:1) signals and FRZ signal of the MPC as an indication for debug mode state. Since with the MPC8XXs, each of these signals has alternate function, it may be necessary to switch between the two sources, in favor of alternate function being used.

When a jumper is positioned between pins 1 and 2 of J1 - VFLS(0:1) are selected towards the debug-port controller. When a jumper is placed between positions 2 - 3 of J1(2) - FRZ signal is selected.

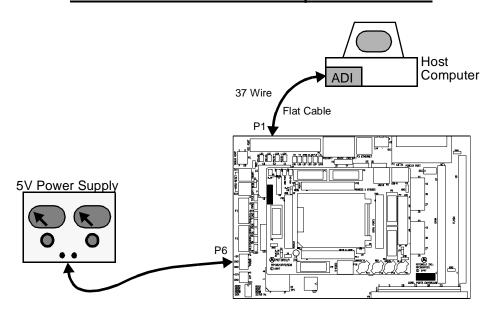
FIGURE 2-3 J1 - VFLS / FRZ Selection

VFLS(0:1) Selected

FRZ Selected

2•4 INSTALLATION INSTRUCTIONS

When the MPC8XXFADS has been configured as desired by the user, it can be installed according to the required working environment as follows:


- Host Controlled Operation
- Debug Port Controller for Target System
- Stand-Alone

2•4•1 Host Controlled Operation

In this configuration the MPC8XXFADS is controlled by a host computer via the ADI through the debug port. This configuration allows for extensive debugging using on-host debugger.

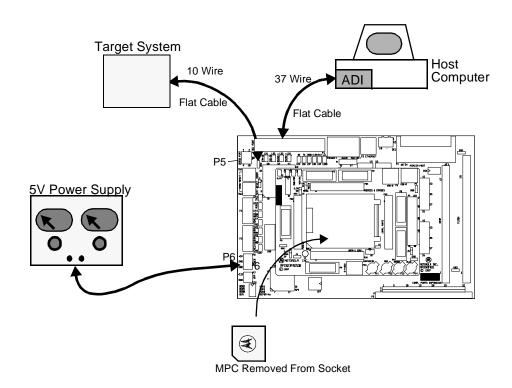
FIGURE 2-4 Host Controlled Operation Scheme

2•4•2 Debug Port Controller For Target System

This configuration resembles the previous, but here the local MPC is removed from its socket while the FADS is connected via a 10 lead Flat-Cable between P5 and a matching connector on a target system.

WARNNING

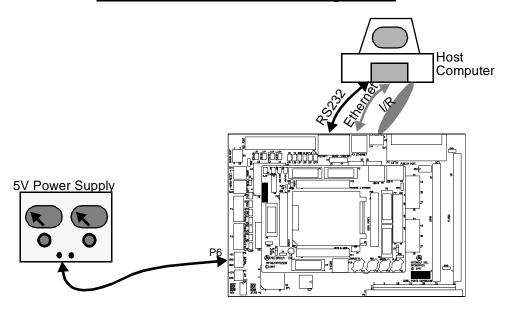
When connecting the FADS to a target system via P5 and a 10 lead flat-cable, the MPC MUST be REMOVED from its SOCKET. Otherwise, PERMANENT DAMAGE might be inflicted to either the Local MPC or to the Target MPC.


With this mode of operation, all on-board modules are disabled and can not be accessed in anyway, except for the debug port controller. Also, all indications except for 5V power, 3.3V-Power^A and RUN are darkened.

All debugger commands and debugging features are available in this mode, including s/w download, breakpoints, etc'... The target system may be reset or interrupted by the debug port or reset by the FADS's RESET switches. It is the responsibility of the target system designer, to provide Power-On-Reset and HARD-Reset configurations, while SOFT-Reset configuration is provided by the debug-port controller. See also 4•12•1 "MPC8XXFADS As Debug Port Controller For Target System" on page 68.

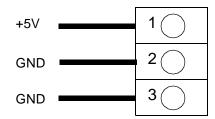
A. On Daughter Board.

FIGURE 2-5 Debug Port Controller For Target System Operation Scheme



2•4•3 Stand Alone Operation

In this mode, the FADS is not controlled by the host via the ADI/Debug port. It may connect to host via one of its other ports, e.g., RS232 port, I/R port, Ethernet port, etc'. Operating in this mode requires an application program to be programmed into the board's Flash memory (while with the host controlled operation, no memory is required at all).


FIGURE 2-6 Stand Alone Configuration

2•4•4 +5V Power Supply Connection

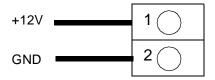
The MPC8XXFADS requires +5 Vdc @ 5 A max, power supply for operation. Connect the +5V power supply to connector P6 as shown below:

FIGURE 2-7 P6: +5V Power Connector

P6 is a 3 terminal block power connector with power plug. The plug is designed to accept 14 to 22 AWG wires. It is recommended to use 14 to 18 AWG wires. To provide solid ground, two Gnd terminals are supplied. It is recommended to connect both Gnd wires to the common of the power supply, while VCC is connected with a single wire.

<u>NOTE</u>

Since hardware applications may be connected to the MPC8XXFADS via the Daughter-Boards' expansion connectors PX1, PX2 PX3, PX4 or FADS's P8, the additional power consumption should be taken into consideration when a power supply is connected to the MPC8XXFADS.


2•4•5 P7: +12V Power Supply Connection

The MPC8XXFADS requires +12 Vdc @ 1 A max, power supply for the PCMCIA channel Flash programming capability or for 12V programmable Flash SIMM. The MPC8XXFADS can work properly without the +12V power supply, if there is no need to program either a 12V programmable PCMCIA flash card or a 12V programmable Flash SIMM.

Connect the +12V power supply to connector P7 as shown below:

FIGURE 2-8 P7: +12V Power Connector

P7 is a 2 terminal block power connector with power plug. The plug is designed to accept 14 to 22 AWG wires. It is recommended to use 14 to 18 AWG wires.

2•4•6 ADI Installation

For ADI installation on various host computers, refer to APPENDIX B - "ADI Installation" on page 200.

2•4•7 Host computer to MPC8XXFADS Connection

The MPC8XXFADS ADI interface connector, P1, is a 37 pin, male, D type connector. The connection between the MPC8XXFADS and the host computer is by a 37 line flat cable, supplied with the ADI board. FIGURE 2-9 below shows the pin configuration of the connector.

FIGURE 2-9 P1 - ADI Port Connector

Gnd Gnd Gnd Gnd Gnd Gnd (+ 12 v) N.C. HOST_VCC HOST_VCC HOST_VCC HOST_ENABLE~ Gnd Gnd Gnd PD0 PD2 PD4 PD6	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	N.C D_C~ HST_ACK ADS_SRESET ADS_HRESET ADS_SEL2 ADS_SEL1 ADS_SEL0 HOST_REQ ADS_ACK N.C. N.C. N.C. N.C. PD1 PD3 PD5 PD7
---	--	---	--

NOTE: Pin 26 on the ADI is connected to +12 v power supply, but it is not used in the MPC8XXFADS.

2•4•8 Terminal to MPC8XXFADS RS-232 Connection

A serial (RS232) terminal or any other RS232 equipment, may be connected to the RS-232 connectors PA2 and PB2. The RS-232 connectors is a 9 pin, female, Stacked D-type connector as shown in FIGURE 2-10.

The connectors are arranged in a manner that allows for 1:1 connection with the serial port of an IBM-AT^A or compatibles, i.e. via a flat cable.

A. IBM-AT is a trademark of International Business Machines Inc.

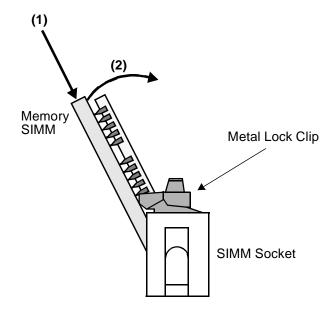
FIGURE 2-10 PA2, PB2 - RS-232 Serial Port Connectors

CD	1		
TX	2	6	DSR
	-	7	RTS
RX	3	8	CTS
DTR	4	_	
GND	5	9	N.C.
GIND			

NOTE: The RTS line (pin 7) is not connected on the MPC8XXFADS.

2•4•9 Memory Installation

The MPC8XXFADS is supplied with two types of memory SIMM:


- Dynamic Memory SIMM
- Flash Memory SIMM.

To avoid shipment damage, these memories are packed aside rather than being installed in their sockets. Therefore, they should be installed on site. To install a memory SIMM, it should be taken out of its package, put diagonally in its socket (no error can be made here, since the Flash socket has 80 contacts, while the DRAM socket has 72) and then twisted to a vertical position until the metal lock clips are locked. See FIGURE 2-11 "Memory SIMM Installation" below.

CAUTION

The memory SIMMs have alignment nibble near their # 1 pin. It is important to align the memory correctly before it is twisted, otherwise damage might be inflicted to both the memory SIMM and its socket.

FIGURE 2-11 Memory SIMM Installation

3 - OPERATING INSTRUCTIONS

3•1 INTRODUCTION

This chapter provides necessary information to use the MPC8XXFADS in host-controlled and stand-alone configurations. This includes controls and indicators, memory map details, and software initialization of the board.

3•2 CONTROLS AND INDICATORS

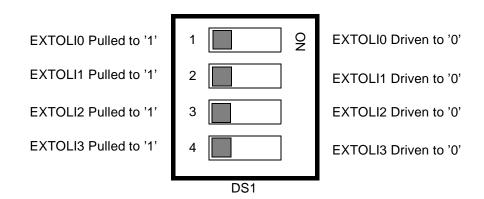
The MPC8XXFADS has the following switches and indicators.

3•2•1 ABORT Switch SW1

The ABORT switch is normally used to abort program execution, this by issuing a level 0 interrupt to the MPC. If the FADS is in stand alone mode, it is the responsibility of the user to provide means of handling the interrupt, since there is no resident debugger with the MPC8XXFADS. The ABORT switch signal is debounced, and can not be disabled by software.

3•2•2 SOFT RESET Switch SW2

The SOFT RESET switch SW2 performs Soft reset to the MPC internal modules, maintaining MPC's configuration (clocks & chip-selects) Dram and SDram contents. The switch signal is debounced, and it is not possible to disable it by software. At the end of the Soft Reset Sequence, the Soft Reset Configuration is sampled and becomes valid.


3•2•3 HARD RESET - Switches SW1 & SW2

When BOTH switches - SW1 and SW2 are depressed simultaneously, HARD reset is generated to the MPC. When the MPC is HARD reset, all its configuration is lost, including data stored in the DRAM or SDRAM and the MPC has to be re-initialized. At the end of the Hard Reset sequence, the Hard Reset Configuration stored in BCSR0 becomes valid.

3•2•4 DS1 - Software Options Switch

DS1 is a 4-switches Dip-Switch. This switch is connected over EXTOLI(0:3) lines which are available at BCSR, S/W options may be manually selected, according to DS1 state.

FIGURE 3-1 DS1 - Description

3•2•5 GND Bridges

There are 3 GND bridges on the MPC8XXFADS. They are meant to assist general measurements and

logic-analyzer connection.

Warning

When connecting to a GND bridge, use only INSULATED GND clips. Failure in doing so, might result in permanent damage to the MPC8XXFADS.

3•2•6 ETH ON - LD1

When the yellow ETH ON led is lit, it indicates that the ethernet port transceiver - the MC68160 EEST, is active. When it is dark, it indicates that the EEST is in power down mode, enabling the use of its associated SCC pins off-board via the expansion connectors.

3•2•7 IRD ON - LD2

When the yellow IRD ON led is lit, it indicates that the Infra-Red transceiver - the TFDS6000, is active and enables communication via that medium. When it is dark, the I/R transceiver is in shutdown mode, enabling the use of its associated SCC pins off-board via the expansion connectors.

3•2•8 RS232 Port 1 ON - LD3

When the yellow RS232 Port 1 ON led is lit, it designates, that the RS232 transceiver connected to PA2, is active and communication via that medium is allowed. When darkened, it designates that the transceiver is in shutdown mode, so its associated MPC pins may be used off-board via the expansion connectors.

3•2•9 RS232 Port 2 ON - LD4

When the yellow RS232 Port 2 ON led is lit, it designates that the RS232 transceiver connected to PB2, is active and communication via that medium is allowed. When darkened, it designates, that the transceiver is in shutdown mode, so its associated MPC pins may be used off-board via the expansion connectors.

3•2•10 Ethernet RX Indicator - LD5

The green Ethernet Receive LED indicator blinks whenever the EEST is receiving data from one of the Ethernet port.

3•2•11 Ethernet TX Indicator - LD6

The green Ethernet Receive LED indicator blinks whenever the EEST is transmitting data via the Ethernet port.

3•2•12 Ethernet JABB Indicator - LD7

The red Ethernet TP Jabber LED indicator - JABB, lights whenever a jabber condition is detected on the TP ethernet port.

3•2•13 Ethernet CLSN Indicator LD8

The red Ethernet Collision LED indicator CLSN, blinks whenever a collision condition is detected on the ethernet port, i.e., simultaneous receive and transmit.

3•2•14 Ethernet PLR Indicator - LD9

The red Ethernet TP Polarity LED indicator - PLR, lights whenever the wires connected to the receiver input of the ethernet port are reversed. The LED is lit by the EEST, and remains on while the EEST has automatically corrected for the reversed wires.

3•2•15 Ethernet LIL Indicator - LD10

The yellow Ethernet Twisted Pair Link Integrity LED indicator - LIL, lights to indicate good link integrity on the TP port. The LED is off when the link integrity fails.

3•2•16 5V Indicator - LD11

The yellow 5V led, indicates the presence of the +5V supply at P6.

OPERATING INSTRUCTIONS

3•2•17 RUN Indicator - LD12

When the green RUN led - LD12 is lit, it indicates that the MPC is not in debug mode, i.e., VFLS0 & VFLS1 == 0 (or FRZ == 0, which ever selected by J1).

3•2•18 AUXILARY Indicator LD13

This indication has no dedicated function over the FADS. It is meant to provide some visibility for program behavior. It is controlled by the Signal Lamp bit in BCSR4.

3•2•19 FLASH ON - LD14

When the yellow FLASH ON led is lit, it indicates that the FLASH SIMM is enabled in the BCSR1 register. I.e., any access done to the CS0~ address space will hit the flash memory. When it is dark, the flash is disabled and CS0~ may be used off-board via the expansion connectors.

3•2•20 DRAM ON - LD15

When the yellow DRAM ON led is lit, it indicates the DRAM SIMM is enabled in BCSR1. Therefore, any access made to CS2~ (or CS3~) will hit on the DRAM. When it is dark, it indicates that either the DRAM is disabled in BCSR1, enabling the use of CS2~ and CS3~ off-board via the expansion connectors.

3•2•21 SDRAM ON - LD16

When the yellow SDRAM ON led is lit, it indicates the SDRAM is enabled in BCSR1. Therefore, any access made to CS4~ (will hit on the SDRAM. When it is dark, it indicates that either the SDRAM is disabled in BCSR1, enabling the use of CS4~ off-board via the expansion connectors.

3•2•22 PCMCIA ON - LD17

When the yellow PCMCIA ON led is lit, it indicates the following:

- 1) Address & strobe buffers are driven towards the PCMCIA card
- Data buffers are driven to / from the PCMCIA card whenever CE1A~A or CE2A~B signals are asserted.
- 3) Card status lines are driven towards the MPC from the PCMCIA card.

When it is dark, it indicates that all the above buffers are tri-stated and the pins associated with PCMCIA channel A^C, may be used off-board via the expansion connectors.

3•3 MEMORY MAP

All accesses to MPC8XXFADS's memories are controlled by the MPC's memory controller. Therefore, the memory map is reprogrammable to the desire of the user. After Hard Reset is performed by the debug station, the debugger checks to see the size, delay and type of the DRAM and FLASH SIMMs mounted on

A. Connected to CE1B~ for MPC823FADSDB.

B. Connected to CE2B~ for MPC823FADSDB.

C. Or B for MPC823FADSDB.

OPERATING INSTRUCTIONS

board and initializes the chip-selects accordingly. The DRAM, SDRAM and the FLASH memory respond to all types of memory access i.e., user / supervisory, program / data and DMA.

TABLE 3-1. MPC8XXADS Main Memory Map

	ADDESS RANGE	Memory Type		Devid	се Туре		Port Size
	00000000 - 003FFFFF	DRAM SIMM	MB321Bx ^a 08	MB322Bx ^a 08	MC324Cx ^a 00	MB328Cx ^a 00	32
	00400000 - 007FFFF						32
	00800000 - 00FFFFF						32
	01000000 - 01FFFFF					-	32
	02000000 - 020FFFFF	Empty Space					
I	02100000 - 02107FFF	BCSR(0:4) ^b					32 ^c
I	02100000 - 02107FE3	BCSR0					
I	2100004 - 02107FE7	BCSR1					
I	2100008 - 02107FEB	BCSR2					
I	210000C - 02107FEF	BCSR3					
I	2100010 - 02107FF3	BCSR4					
I	02108000 - 021FFFFF	Empty Space					
	02200000 - 02207FFF	MPC Internal MAP ^d					32
	02208000 - 027FFFF	Empty Space					
	02800000 - 029FFFFF	Flash SIMM	MCM29F020	MCM29F040	MCM29F080		32
	02A00000 - 02BFFFFF			SM732A1000A	SM732A2000		32
	02C00000 - 02FFFFF			1			32
	03000000 - 033FFFFF	SDRAM			<u>'</u>	•	32
	03400000 - FFFFFFF	Empty Space					

a. $x \in [B,T]$

3•4 MPC Registers' Programming

The MPC provides the following functions on the MPC8XXFADS:

- 1) DRAM Controller
- 2) SDRAM Controller
- 3) Chip Select generator.

b. The device appears repeatedly in multiples of its size. E.g., BCSR0 appears at memory locations 2100000, 2100020, 2100040..., while BCSR1 appears at 2100004, 2100024, 2100044... and so on.

c. Only upper 16 bit (D0-D15) are in fact used.

d. Refer to the relevant MPC User's Manual for complete description of the MPC internal memory map.

OPERATING INSTRUCTIONS

- 4) UART for terminal or host computer connection.
- 5) Ethernet controller.
- 6) Infra-Red Port Controller
- 7) General Purpose I/O signals.

The internal registers of the MPC must be programmed after Hard reset as described in the following paragraphs. The addresses and programming values are in hexadecimal base.

For better understanding the of the following initializations refer to the MPC821 or to the MPC860 User's Manual for more information.

	TABLE 3-2.	SIU	REGISTER	S' PROGR	RAMMING
--	-------------------	-----	----------	----------	---------

Register	Init Value[hex]	Description
SIUMCR	01012440	Internal arbitration, External master arbitration priority - 0, External arbitration priority - 0, PCMCIA channel II pins - PCMCIA, Debug Port on JTAG port pins, FRZ/IRQ6~ - FRZ, debug register - locked, No parity for non-CS regions, DP(0:3)/IRQ(3:6)~ pins - DP(0:3), reservation disabled, SPKROUT - Tri-stated, BS_A(0:3)~ and WE(0:3)~ are driven just on their dedicated pins, GPL_B5~ enabled, GPL_A/B(2:3)~ function as GPLs.
SYPCR	FFFFF88	Software watchdog timer count - FFFF, Bus-monitor timing FF, Bus-monitor - Enabled, S/W watch-dog - Freeze, S/W watch-dog - disabled, S/W watch-dog (if enabled) causes NMI, S/W (if enabled) not prescaled.
TBSCR	00C2	No interrupt level, reference match indications cleared, interrupts disabled, no freeze, time-base disabled.
RTCSC	00C2	Interrupt request level - 0, 32768 Hz source, second interrupt disabled, Alarm interrupt disabled, Real-time clock - FREEZE, Real-time clock enabled.
PISCR	0082	No level for interrupt request, Periodic interrupt disabled, clear status, interrupt disabled, FREEZE, periodic timer disabled.

3•4•1 Memory Controller Registers Programming

The memory controller on the MPC8XXFADS is initialized to 50 MHz operation. I.e., registers' programming is based on 50 MHZ timing calculation except for refresh timer which is initialized to 16.67Mhz, the lowest frequency at which the FADS may wake up. Since the FADS may be made to wake-up at 25MHz^A as well, the initializations are not efficient, since there are too many wait-states inserted. Therefore, additional set of initialization is provided to support efficient 25MHz operation.

The reason for initializing the FADS for 50Mhz is to allow proper (although not efficient) FADS operation through all available FADS clock frequencies.

A. The only parameter which is initialized to the start-up frequency, is the refresh rate, which would have been inadequate if initialized to 50Mhz while board is running at a lower frequency. Therefore, for best bus bandwidth availability, refresh rate should be adapted to the current system clock frequency.

Warning

Due to availability problems with few of the supported memory components, the below initializations were not tested with all parts. Therefore, the below initializations are liable to CHANGE, throughout the testing period.

TABLE 3-3. Memory Controller Initializations For 50Mhz

Register	Device Type	Init Value [hex]	Description
BR0	All Flash SIMMs supported.	02800001	Base at 2800000, 32 bit port size, no parity, GPCM
OR0	MCM29F020-90	FFE00D34	2MByte block size, all types access, CS early negate, 6 w.s., Timing relax
	MCM29F040-90 SM732A1000A-9	FFC00D34	4MByte block size, all types access, CS early negate, 6 w.s., Timing relax
	MCM29F080-90 SM732A2000-9	FF800D34	8MByte block size, all types access, CS early negate, 6 w.s., Timing relax
	MCM29F020-12	FFE00D44	2MByte block size, all types access, CS early negate, 8 w.s., Timing relax
	MCM29F040-12 SM732A1000A-12	FFC00D44	4MByte block size, all types access, CS early negate, 8 w.s., Timing relax
	MCM29F080-12 SM732A2000-12	FF800D44	8MByte block size, all types access, CS early negate, 8 w.s., Timing relax
BR1	BCSR	02100001	Base at 2100000, 32 bit port size, no parity, GPCM
OR1		FFFF8110	32 KByte block size, all types access, CS early negate, 1 w.s.
BR2	All Dram SIMMs Supported	00000081	Base at 0, 32 bit port size, no parity, UPMA
OR2	MCM36100/200-60/70	FFC00800	4MByte block size, all types access, initial address multiplexing according to AMA.
	MCM36400/800-60/70 MT8/16D432/832X-6/7	FF000800	16MByte block size, all types access, initial address multiplexing according to AMA.
BR3	MCM36200-60/70	00400081	Base at 400000, 32 bit port size, no parity, UPMA
	MCM36800-60/70 MT16D832X-6/7	01000081	Base at 1000000, 32 bit port size, no parity, UPMA
OR3	MCM36200-60/70	FFC00800	4MByte block size, all types access, initial address multiplexing according to AMA
	MCM36800-60/70 MT16D832X-6/7	FF000800	16MByte block size, all types access, initial address multiplexing according to AMA.
BR4	MB811171622A-100	030000C1	Base at 3000000, on UPM B
OR4		FFC00A00	4 MByte block size, all types access, initial address multiplexing according to AMB.

OPERATING INSTRUCTIONS TABLE 3-3. Memory Controller Initializations For 50Mhz

Register	Device Type	Init Value [hex]	Description	
MPTPR	All Dram SIMMs Supported	0400	Divide by 16 (decimal)	
MAMR	MB321BT08TASN60 40A21114 ^a 60A21114 ^b C0A21114 ^c		refresh clock divided by 40 ^a or 60 ^b or C0 ^c , periodic timer enabled, type 2 address multiplexing scheme, 1 cycle disable timer, GPL4 disabled for data sampling edge flexibility, 1 loop read, 1 loop write, 4 beats refresh burst.	
	MB322BT08TASN60	20A21114 ^a 30A21114 ^b 60A21114 ^c	refresh clock divided by 20 ^a or 30 ^b or 60 ^c , periodic timer enabled, type 2 address multiplexing scheme, 1 cycle disable timer, GPL4 disabled for data sampling edge flexibility, 1 loop read, 1 loop write, 4 beats refresh burst.	
	MB324CT00TBSN60	40B21114 ^a 60B21114 ^b C0B21114 ^c	refresh clock divided by 40 ^a or 60 ^b or C0 ^c , periodic timer enabled, type 3 address multiplexing scheme, 1 cycle disable timer, GPL4 disabled for data sampling edge flexibility, 1 loop read, 1 loop write, 4 beats refresh burst.	
	MB328CT00TBSN60	20B21114 ^a 30B21114 ^b 60B21114 ^c	refresh clock divided by 20 ^a or 30 ^b or 60 ^c , period timer enabled, type 3 address multiplexing scheme, 1 cycl disable timer, GPL4 disabled for data sampling edge flexibility, 1 loop read, 1 loop write, 4 beats refresh burst.	
MBMR	MB811171622A-100	D0802114 ^c 80802114 ^d	refresh clock divided by D0 or 80, periodic timer enabled, type 0 address multiplexing scheme, 1 cycle disable timer, GPL4enabled, 1 loop read, 1 loop write, 4 beats refresh burst.	

- a. Assuming 16.67 MHz BRGCLK.
- b. Assuming 25MHz BRGCLK
- c. For 50MHz BRGCLK
- d. Assuming 32MHz BRGCLK.

TABLE 3-4. UPMA Initializations for 60nsec DRAMs @ 50MHz

Cycle Type	Cycle Type		Burst Read	Single Write	Burst Write	Refresh	Exception
Offset in UPM		0	8	18	20	30	3C
Contents	0	8FFFEC24	8FFFEC24	8FAFCC24	8FAFCC24	C0FFCC84	33FFCC07
@ Offset +	1	0FFFEC04	0FFFEC04	0FAFCC04	0FAFCC04	00FFCC04	Х
	2	0CFFEC04	08FFEC04	0CAFCC00	0CAFCC00	07FFCC04	Х
	3	00FFEC04	00FFEC0C	11BFCC47	03AFCC4C	3FFFCC06	Х
	4	00FFEC00	03FFEC00	Х	0CAFCC00	FFFFCC85	
	5	37FFEC47	00FFEC44	Х	03AFCC4C	FFFFCC05	
	6	Х	00FFCC08	Х	0CAFCC00	Х	
	7	Х	0CFFCC44	Х	03AFCC4C	Х	
	8		00FFEC0C		0CAFCC00	Х	
	9		03FFEC00		33BFCC4F	Х	
	Α		00FFEC44		Х	Х	
	В		00FFCC00		Х	Х	
	С		3FFFC847		Х		
	D		Х		Х		
	Е		X		Х		
	F		Х		Х		

MPC8XXFADS - User's Manual

OPERATING INSTRUCTIONS

TABLE 3-5. UPMA Initializations for 60nsec EDO DRAMs @ 50MHz

Cycle Type		Single Read	Burst Read	Single Write	Burst Write	Refresh	Exception
Offset in UPM		0	8	18	20	30	3C
Contents	0	8FFBEC24	8FFFEC24	8FFFCC24	8FFFCC24	C0FFCC84	33FFCC07
@ Offset +	1	0FF3EC04	0FFBEC04	0FEFCC04	0FEFCC04	00FFCC04	Х
	2	0CF3EC04	0CF3EC04	0CAFCC00	0CAFCC00	07FFCC04	Х
	3	00F3EC04	00F3EC0C	11BFCC47	03AFCC4C	3FFFCC06	Х
	4	00F3EC00	0CF3EC00	Х	0CAFCC00	FFFFCC85	
	5	37F7EC47	00F3EC4C	Х	03AFCC4C	FFFFCC05	
	6	Х	0CF3EC00	Х	0CAFCC00	Х	
	7	Х	00F3EC4C	Х	03AFCC4C	Х	
	8		0CF3EC00		0CAFCC00	Х	
	9		00F3EC44		33BFCC4F	Х	
	Α		03F3EC00		Х	Х	
	В		3FF7EC47		Х	Х	
	С		Х		Х		
	D		Х		Х		
	Е		Х		Х		
	F		Х		Х		

TABLE 3-6. Memory Controller Initializations For 20Mhz

Register	Device Type		Device Type		Init Value [hex]	Description
BR0	All Flash supported.	SIMMs	02800001	Base at 2800000, 32 bit port size, no parity, GPCM		

| OPERATING INSTRUCTIONS TABLE 3-6. Memory Controller Initializations For 20Mhz

Register	Device Type	Init Value [hex]	Description
OR0	MCM29F020-90	FFE00D20	2MByte block size, all types access, CS early negate, 2 w.s.
	MCM29F040-90 SM732A1000A-9	FFC00D20	4MByte block size, all types access, CS early negate, 2 w.s.
	MCM29F080-90 SM732A2000-9	FF800920	8MByte block size, all types access, CS early negate, 2 w.s., Timing relax
	MCM29F020-12	FFE00D30	2MByte block size, all types access, CS early negate, 3 w.s.
	MCM29F040-12 SM732A1000A-12	FFC00D30	4MByte block size, all types access, CS early negate, 3 w.s.
	MCM29F080-12 SM732A2000-12	FF800930	8MByte block size, all types access, CS early negate, 3 w.s.
BR1	BCSR	02100001	Base at 2100000, 32 bit port size, no parity, GPCM
OR1		FFFF8110	32 KByte block size, all types access, CS early negate, 1 w.s.
BR2	All Dram SIMMs Supported	00000081	Base at 0, 32 bit port size, no parity, UPMA
OR2	MB321/2BT08TASN60	FFC00800	4MByte block size, all types access, initial address multiplexing according to AMA.
	MB324/8CT00TBSN60	FF000800	16MByte block size, all types access, initial address multiplexing according to AMA.
BR3 ^a	MB322BT08TASN60	00400081	Base at 400000, 32 bit port size, no parity, UPMA
	MB328CT00TBSN60	01000081	Base at 1000000, 32 bit port size, no parity, UPMA
OR3	MB322BT08TASN60	FFC00800	4MByte block size, all types access, initial address multiplexing according to AMA
	MB328CT00TBSN60	FF000800	16MByte block size, all types access, initial address multiplexing according to AMA.
BR4	MB811171622A-100	030000C1	Base at 3000000, on UPM B.
OR4	1	FFC00A00	4MByte block size, all types access, initial address multiplexing according to AMB
MPTPR	All Dram SIMMs Supported	0400	Divide by 16 (decimal)

OPERATING INSTRUCTIONS TABLE 3-6. Memory Controller Initializations For 20Mhz

Register	Device Type	Init Value [hex]	Description
MAMR	MB321BT08TASN60	60A21114	refresh clock divided by 60, periodic timer enabled, type 2 address multiplexing scheme, 1 cycle disable timer, GPL4 disabled for data sampling edge flexibility, 1 loop read, 1 loop write, 4 beats refresh burst.
	MB322BT08TASN60	30A21114	refresh clock divided by 30, periodic timer enabled, type 2 address multiplexing scheme, 1 cycle disable timer, GPL4 disabled for data sampling edge flexibility, 1 loop read, 1 loop write, 4 beats refresh burst.
	MB324CT00TBSN60	60B21114	refresh clock divided by 60, periodic timer enabled, type 3 address multiplexing scheme, 1 cycle disable timer, GPL4 disabled for data sampling edge flexibility, 1 loop read, 1 loop write, 4 beats refresh burst.
	MB328CT00TBSN60	30B21114	refresh clock divided by 30, periodic timer enabled, type 3 address multiplexing scheme, 1 cycle disable timer, GPL4 disabled for data sampling edge flexibility, 1 loop read, 1 loop write, 4 beats refresh burst.
MBMR	MB811171622A-100	42802114 ^b	refresh clock divided by 42, periodic timer enabled, type 0 address multiplexing scheme, 1 cycle disable timer, GPL4 enabled, 1 loop read, 1 loop write, 4 beats refresh burst.

a. BR3 is not initialized for MB321xx or MB324xx EDO DRAM SIMMs.

b. Assuming 16.67MHz BRGCLK

TABLE 3-7. UPMA Initializations for 60nsec EDO DRAMs @ 20MHz

Cycle Type		Single Read	Burst Read	Single Write	Burst Write	Refresh	Exception
Offset in UPM		0	8	18	20	30	3C
Contents	0	8FFFCC04	8FFFCC04	8FEFCC00	8FEFCC00	80FFCC84	33FFCC07
@ Offset +	1	08FFCC00	08FFCC08	39BFCC47	09AFCC48	17FFCC04	Х
	2	33FFCC47	08FFCC08	Х	09AFCC48	FFFFCC86	Х
	3	Х	08FFCC08	Х	09AFCC48	FFFFCC05	Х
	4	Х	08FFCC00	Х	39BFCC47	Х	
	5	Х	3FFFCC47	Х	Х	Х	
	6	Х	Х	Х	Х	Х	
	7	Х	Х	Х	Х	Х	
	8		Х		Х	Х	
	9		Х		Х	Х	
	Α		Х		Х	Х	
	В		Х		Х	Х	
	С		Х		Х		
	D		Х		Х		
	Е		Х		Х		
	F		Х		Х		

TABLE 3-8. UPMB Initializations for MB811171622A-100 upto 32MHz

Cycle Type		Single Read	Burst Read	Single Write	Burst Write	Refresh	Exception
Offset In UPM		0	8	18	20	30	3C
Contents	0	0126CC04	0026FC04	0E26BC04	0E26BC00	1FF5FC84	7FFFFC07
@ Offset +	1	0FB98C00	10ADFC00	01B93C00	10AD7C00	FFFFC04	Х
	2	1FF74C45	F0AFFC00	1FF77C45	F0AFFC00	FFFFC84	Х
	3	Х	F1AFFC00	Х	F0AFFC00	FFFFC05	Х
	4	Х	EFBBBC00	Х	E1BBBC04	Х	
	5	1FE77C34 ^a	1FF77C45	Х	1FF77C45	Х	
	6	EFAABC34	Х	Х	Х	Х	
	7	1FA57C35	Х	Х	Х	Х	
	8		Х		Х	Х	
	9		Х		Х	Х	
	Α		Х		Х	Х	
	В		Х		Х	Х	
	С		Х		Х		
	D		Х		Х		
	Е		Х		Х		
	F		Х		Х		

a. MRS initialization. Uses Free space.

TABLE 3-9. UPMB Initializations for MB811171622A-100, 32+MHz - 50MHz

Cycle Type		Single Read	Burst Read	Single Write	Burst Write	Refresh	Exception
Offset In UPM		0	8	18	20	30	3C
Contents	0	1F07FC04	1F07FC04	1F27FC04	1F07FC04	1FF5FC84	7FFFFC07
@ Offset +	1	EEAEFC04	EEAEFC04	EEAEBC00	EEAEBC00	FFFFC04	Х
	2	11ADFC04	10ADFC04	01B93C04	10AD7C00	FFFFC04	Х
	3	EFBBBC00	F0AFFC00	1FF77C47	F0AFFC00	FFFFC04	Х
	4	1FF77C47	F0AFFC00	Х	F0AFFC00	FFFFC84	
	5	1FF77C34 ^a	F1AFFC00	Х	E1BBBC04	FFFFC07	
	6	EFEABC34	EFBBBC00	Х	1FF77C47	Х	
	7	1FB57C35	1FF77C47	Х	Х	Х	
	8		Х		Х	Х	
	9		Х		Х	Х	
	Α		Х		Х	Х	
	В		Х		Х	Х	
	С		Х		Х		
	D		Х		Х		
	Е		Х		Х		
	F		Х		Х		

a. MRS initialization, Uses free space.

Functional Description

<u> 4 - Functional Description</u>

In this chapter the various modules combining the MPC8XXFADS are described to their design details.

4•1 Reset & Reset - Configuration

There are several reset sources on the FADS:

- 1) Keep Alive Power-On Reset^A
- 2) Regular Power On Reset
- 3) Manual Soft-Reset
- 4) Manual Hard-Reset
- 5) MPC Internal Sources. (See the appropriate Spec or U/M)

4•1•1 Keep Alive Power-On Reset

The Keep Alive Power - On Reset logic resides on the daughter board this since the Keep Alive power bus is on that board and it also allows the use of the daughter board connected directly to a user's application.

4•1•2 Regular Power - On Reset

The regular power on reset operates in the same manner as the keep alive power-on reset, using a similar device - the Seiko - S-8052ANY-NH-X with detection voltage of 2.595V to 2.805V. The reference voltage of this device is the MAIN VDDH bus of the MPC while the reset line asserted^B, is the HRESET* line.

When HRESET~ is asserted to the MPC, Hard-Reset configuration is made available to the MPC, via BCSR0. See 4•1•6•2 "Hard Reset Configuration" on page 37 and TABLE 4-9. "BCSR0 Description" on page 55.

4•1•3 Manual Soft Reset

To support application development not around the debug port and resident debuggers, a soft reset push-button is provided. (SW2) Depressing that button, asserts the SRESET* pin of the MPC, generating a SOFT RESET sequence.

When the SRESET~ line is asserted to the MPC, the Soft-Reset configuration is made available to the MPC, by the debug-port controller. See 4•1•6•3 "Soft Reset Configuration" on page 37.

4•1•4 Manual Hard Reset

To support application development not around the debug port, a Hard-Reset push-button is provided^C. When the Soft Reset push-button (SW2) is depressed in conjunction with the ABORT push-button (SW1), the HRESET* line is asserted, generating a HARD RESET sequence. The button sharing is for economy and board space saving and does not effect in any way, functionality.

4•1•5 MPC Internal Sources

Since the HRESET* and SRESET* lines of the MPC are open-drain and the on-board reset logic drives these lines with open-drain gates, the correct operation of the internal reset sources of the MPC is facilitated. As a rule, an internal reset source asserts HRESET* and / or SRESET* for a minimum time of 512 system clocks. It is beyond the scope of this document to describe these sources, however Debug-Port Soft / Hard Resets which are part of the development system^D, are regarded as such.

ı

A. In fact generated on the daughter board.

B. Again not directly.

C. It is not a dedicated button.

D. And therefore mentioned.

Functional Description

4•1•6 Reset Configuration

During reset the MPC device samples the state of some external pins to determine its operation modes and pin configuration. There are 3 kinds of reset levels to the MPC each level having its own configuration sampled:

- 1) Power On Reset configuration
- 2) Hard Reset configuration
- 3) Soft Reset Configuration.

4•1•6•1 Power - On Reset Configuration

Just before PORESET* is negated by the external logic, the power-on reset configuration which include the MODCK(1:2) pins is sampled. These pins determine the clock operation mode of the MPC. Two clock modes are supported on the MPC8XXFADS:

1) 1:5 PLL operation via on-board clock generator.

In this mode MODCK(1:2) are driven with '11' during^A power on reset.

2) 1:513 PLL operation via on-board clock generator.

In this mode MODCK(1:2) are driven with '00'. during power-on reset.

4•1•6•2 Hard Reset Configuration

During HARD reset sequence, when RSTCONF* pin is asserted, the MPC data bus state is sampled to acquire the MPC's hard reset configuration. The reset configuration word is driven by BCSR0 register, defaults of which are set during power-on reset. The BCSR0 drives half of the configuration word, i.e., data bits D(0:15) in which the reserved bits are designated RSRVxx. If the hard-reset configuration is to be changed^B, BCSR0 may be written with new values, which become valid after HARD reset is applied to the MPC.

On the FADS, the RSTCONF* line is always driven during HARD reset, i.e., no use is possible with the MPC's internal HARD reset configuration defaults.

The system parameters to which BCSR0 defaults during power-on reset and are driven at hard-reset, are listed below:

- 1) Arbitration: internal arbitration is selected.
- 2) Interrupt Prefix: The internal default is interrupt prefix at 0xFFF00000. It is overridden to provide interrupt prefix at address 0, which is located within the DRAM.
- 3) Boot Disable: Boot is enabled.
- 4) Boot Port Size: 32 bit boot port size is selected.
- 5) Initial Internal Space Base: Immediately after HARD reset, the internal space is located at \$FF00000.
- 6) Debug pins configuration: PCMCIA port B^C pins become PCMCIA port B pins.
- 7) Debug port pins configuration. Debug port pins are on the JTAG port.
- 8) External Bus Division Factor: 1:1 internal to external clocks' frequencies ratio is selected.

4•1•6•3 Soft Reset Configuration

The rising edge of SRESET* is used to configure the development port. Before the negation of SRESET*, DSCK^D is sampled to determine for debug-mode enable / disable. After SRESET* is negated, if debug

A. The MODCK lines are in fact driven longer - by HRESET~ line.

B. With respect the FADS's power-on defaults.

C. Where they exist.

Functional Description

mode was enabled, DSCK is sampled again for debug-mode entry / non-entry.

DSDI is used to determine the debug port clock mode and is sampled after the negation of SRESET*.

The Soft Reset configuration is provided by the debug-port controller via the ADI I/F. Option is given to enter debug mode directly or only after exception.

4•2 Local Interrupter

The only external interrupt which is applied to the MPC via its interrupt controller is the ABORT (NMI), which is generated by a push-button. When this button is depressed, the NMI input to the MPC is asserted. The purpose of this type of interrupt, is to support the use of resident debuggers if any is made available to the FADS. All other interrupts to the MPC, are generated internally by the MPC's peripherals and by the debug port.

To support external (off-board) generation of an NMI, the IRQ0* line which is routed as an NMI input, is driven by an open-drain gate. This allows for external h/w to also drive this line. If an external h/w indeed does so, it is compulsory that IRQ0* is driven by an open-drain (or open-collector) gate.

4•3 Clock Generator^A

There are 2 ways to clock the MPC on the MPC8XXFADS:

- 1) 3 5MHz Clock generator^B connected to CLK4IN input. 1:5 PLL mode.
- 2) 32.768 KHz crystal resonator^B via EXTAL-XTAL pair of the MPC, 1:513 initial PLL multiplication factor.

The selection between the above modes is done using Dip-switch (DS2 / 4) with dual functionality: it is responsible to the combination driven to the MODCK lines during power-on reset and to the connection of the appropriate capacitor between MPC's XFC and VDDSYN lines to match the PLL's multiplication factor. When 1:5 mode is selected, a capacitor of 5nF is connected, while when 1:513 mode is selected a $0.68\mu F$ capacitor is connected parallel to it via a TMOS gate. The capacitors' values are calculated to support a wider range of multiplication factors as possible.

When mode (2) above is selected, the output of the clock generator is gated from EXTCLK input and driven to '0' constantly so that a jitter-free system clock is generated.

On-board logic is clocked by the MPC's CLKOUT coming from the Daughter board. This clock is multiplexed with the debug port's clock generator, so that on-board logic is always clocked, even when the MPC is removed from its socket^C.

4•4 Buffering

As the FADS meant to serve also as a hardware development platform, it is necessary to buffer the MPC from the local bus, so the MPC's capacitive drive capability is not wasted internally and remains available for user's off-board applications via the expansion connectors.

Buffers are provided for address and strobe^D lines while transceivers are provided for data. Since the capacitive load over dram's address lines might^E exceed 200 pF, the dram address lines are separately buff-

D. DSCK is configured at hard-reset to reside on the JTAG port.

A. Although this module resides on the DAUGHTER boards, it is described here, as it is common to all MPC8XX supported.

B. Located On the Daughter Board.

C. When the FADS serves a debug station for target system.

D. If necessary.

E. Depended on dram SIMM's internal structure.

Functional Description

ered. Use is done with 74LCX buffers which are 3.3V operated and are 5V tolerant. This type of buffers reduces noise on board due to reduced transitions' amplitude.

To further reduce noise and reflections, series resistors are placed over dram's address and strobe lines.

The data transceivers open only if there is an access to a valid^{A B} board address or during Hard - Reset configuration^C. That way data conflicts are avoided in case an off-board memory is read, provided that it is not mapped to an address valid on board. It is the users' responsibility to avoid such errors.

4•5 Chip - Select Generator

The memory controller of the MPC is used as a chip-select generator to access on-board^D memories, saving board's area reducing cost, power consumption and increasing flexibility. To enhance off-board application development, memory modules (including the BCSRx) may be disabled via BCSR1^E in favor of an external memory connected via the expansion connectors. That way, a CS line may be used off-board via the expansion connectors, while its associated local memory is disabled.

When a CS region is disabled via BCSR1, the local data transceivers do not open during access to that region, avoiding possible contention over data lines.

The MPC's chip-selects assignment to the various memories / registers on the FADS are as shown in TABLE 4-1. "MPC8XXFADS Chip Selects' Assignment" below:

Chip Select:	Assignment
CS0*	Flash Memory
CS1*	BCSR
CS2*	DRAM Bank 1
CS3*	DRAM Bank 2 ^a
CS4*	SDRAM
CS(5-7)*	Unused, user available

TABLE 4-1. MPC8XXFADS Chip Selects' Assignment

4•6 DRAM

The MPC8XXFADS is provided with 4 MBytes of 60nsec delay EDO Dram SIMM. Support is given to any 5V powered FPM / EDO Dram SIMM configured as 1M X32 upto 2 X 4M X 32, with 60 nsec or 70nsec delay.

All dram configurations are supported via the Board Control & Status Register (BCSR), i.e., DRAM size (4M to 32M) and delay (60 / 70 nsec) are read from BCSR2 and the associated registers (including the

a. If exists.

A. An address which covered in a Chip-Select region.

B. Except for SDRAM, which is Unbuffered.

C. To allow a configuration word stored in Flash memory become active.

D. And off-board. See further.

E. After the BCSR is removed from the local memory map, there is no way to access it but to re-apply power to the FADS.

F. During read cycles.

I

I

MPC8XXFADS - User's Manual

Functional Description

UPM) are programmed accordingly.

Dram timing control is performed by UPMA of the MPC via CS2 (and CS3 for a dual-bank SIMM) region(s), i.e., RAS and CAS signals' generation, during normal^A access as well as during refresh cycles and the necessary address multiplexing^B are performed using UPMA. CS2* and CS3* signals are buffered from the DRAM and each is split to 2 to overcome the capacitive load over the Dram SIMM RAS lines.

The DRAM module may enabled / disabled at any time by writing the DRAMEN~ bit in BCSR1. See TABLE 4-10. "BCSR1 Description" on page 57.

4•6•1 DRAM 16 Bit Operation

To enhance evaluation capabilities, support is given to Dram with 16-bit and 32-bit data bus width. That way users can tailor dram configuration, to get best fit to their application requirements. When the DRAM is in 16 bit mode, half of it can not be used, i.e., the memory portion that is connected to data lines D(16:31).

To configure the DRAM for 16 bit data bus width operation, the following steps should be taken:

- Set the Dram_Half_Word bit in BCSR1 to Half-Word. See TABLE 4-10. "BCSR1 Description" on page 57
- 2) The Port Size bits of BR2~ (and of BR3~ for a 2-bank DRAM simm) should be set to 16 bits.
- The AM bits in OR2 register should be set to 1/2 of the nominal single-bank DRAM simm volume or to 1/4 of the nominal dual-bank DRAM simm volume.

If a Dual-Bank DRAM simm is being used:

- 4) The Base-Address bits in BR3 register should be set to DRAM_BASE + **1/4** Nominal_Volume, that is, if a contiguous block of DRAM is desired.
- 5) The AM bits of OR3 register, should be set to 1/4 Nominal Volume.

If the above is executed out of running code, than this code **should not reside on the DRAM** while executing, otherwise, erratic behavior is likely to be demonstrated, resulting in a system crash.

4•6•2 DRAM Performance Figures

The projected performance figures for the dram are shown in TABLE 4-2. "Regular DRAM Performance

A. Normal i.e.: Single Read, Single Write, Burst Read & Burst Write.

B. Taking into account support for narrower bus widths.

Figures" on page 41 and in TABLE 4-3. "EDO DRAM Performance Figures" on page 41.

TABLE 4-2. Regular DRAM Performance Figures

	Number of System Clock Cycles			
System Clock Frequency [MHz]	5	50	2	?5
DRAM Delay [nsec]	60	70	60	70
Single Read	6	6	3	4
Single Write	4	4	3	3
Burst Read	6,2,3,2	6,3,2,3	3,2,2,2	4,2,2,2
Burst Write	4,2,2,2	4,2,2,2	3,1,2,2	3,2,2,2
Refresh	21 ^{a b}	25 ^{a b}	13 ^{a b}	13 ^{a b}

a. Four-beat refresh burst.

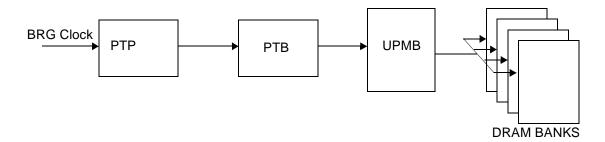
TABLE 4-3. EDO DRAM Performance Figures

	Number of System Clock Cycles			
System Clock Frequency [MHz]	5	50	2	25
DRAM Delay [nsec]	60	70	60	70
Single Read	6	6	3	4
Single Write	4	4	2	3
Burst Read	6,2,2,2	6,3,2,2	3,1,1,1	4,1,2,2
Burst Write	4,2,2,2	4,2,2,2	2,1,1,1	3,2,2,2
Refresh	21 ^{a b}	25 ^{a b}	13 ^{a b}	13 ^{a b}

a. Four-beat refresh burst.

4•6•3 Refresh Control

The refresh to the dram is a CAS before RAS refresh, which is controlled by UPMA as well. The refresh logic is clocked by the MPC's BRG clock which is not influenced by the MPC's low-power divider.


b. Not including arbitration overhead.

b. Not including arbitration overhead.

Functional Description

FIGURE 4-1 Refresh Scheme

As seen in FIGURE 4-1 "Refresh Scheme" above, the BRG clock is twice divided: once by the PTP (Periodic Timer Prescaler) and again by another prescaler - the PTA, dedicated for each UPM. If there are more than one dram banks, than refresh cycles are performed for consecutive banks, therefore, refresh should be made faster. The formula for calculation of the PTA is given below:

Where:

- PTA Periodic Timer A filed in MAMR. The value of the 2'nd divider.
- Refresh Period is the time (usually in msec) required to refresh a dram bank
- Number_Of_Beats_Per_Refresh_Cycle: using the UPM looping capability, it is possible to perform more than one refresh cycle per refresh burst (in fact upto 16).
- Number_Of_Rows_To_Refresh: the number of rows in a dram bank
- T_BRG: the cycle time of the BRG clock
- MPTPR: the value of the periodic timer prescaler (2 to 64)
- Number_Of_Banks: number of dram banks to refresh.

If we take for example a MCM36200 SIMM which has the following data:

- Refresh_Period == 16 msec
- Number_Of_Beats_Per_Refresh_Cycle: on the FADS it is 4.
- Number Of Rows To Refresh == 1024
- T_BRG == 20 nsec (system clock @ 50 Mhz)
- MPTPR arbitrarily chosen to be 16
- Number_Of_Banks == 2 for that SIMM

If we assign the figures to the PTA formula we get the value of PTA should be 97 decimal or 61 hex.

4•6•4 Variable Bus-Width Control

Since a port's width determines its address lines' connection scheme, i.e., the number of address lines required for byte-selection varies (1 for 16-bit port and 2 for 32-bit port) according to the port's width, it is necessary to change address connections to a memory port if its width is to be changed. E.g.: if a certain memory is initially configured as a 32-bit port, the list significant address line which is connected to that memory's A0 line should be the MPC's A29. Now, if that port is to be reconfigured as a 16-bit port, the LS address line becomes A30.

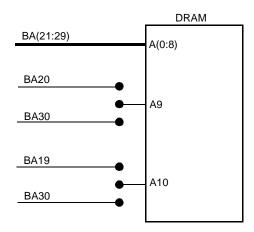
If a linear^A address scheme is to be maintained, all address lines connected to that memory are to be shifted one bit, this obviously involves extensive multiplexing (passive or active). If linear addressing

Functional Description

scheme is not a must, than only minimal multiplexing is required to support variable port width.

In TABLE 4-4. "DRAM ADDRESS CONNECTIONS" below, the FADS's dram address connection scheme is presented:

TABLE 4-4. DRAM ADDRESS CONNECTIONS

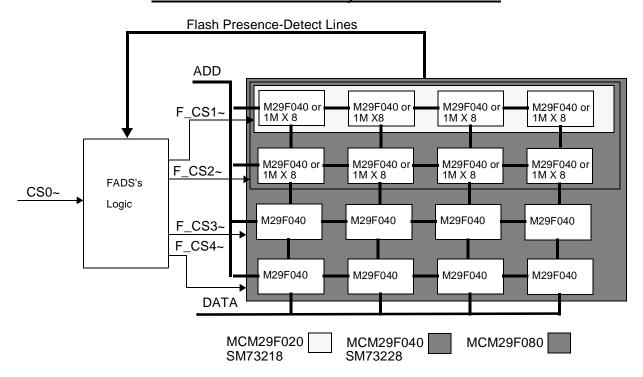

Width	32	32 - Bit		- Bit
	De	pth	De	pth
Dram ADD	4 M	1 M	4 M	1 M
A0	BA29	BA29	BA29	BA29
A1	BA28	BA28	BA28	BA28
A2	BA27	BA27	BA27	BA27
А3	BA26	BA26	BA26	BA26
A4	BA25	BA25	BA25	BA25
A5	BA24	BA24	BA24	BA24
A6	BA23	BA23	BA23	BA23
A7	BA22	BA22	BA22	BA22
A8	BA21	BA21	BA21	BA21
A9	BA20	BA20	BA20	BA30
A10	BA19		BA30	

As can seen from the table above, most of the address lines remain fixed while only 2 lines (the shaded cells) need switching. The switching scheme is shown in FIGURE 4-2 "DRAM Address Lines' Switching Scheme" on page 44. The switches on that figure are implemented by active multiplexers controlled by the BCSR1/Dram_Half_Word* bit.

A. Consequent addresses lead to adjacent memory cells

| Functional Description FIGURE 4-2 DRAM Address Lines' Switching Scheme

4•7 Flash Memory SIMM


The MPC8XXFADS is provided with 2Mbyte of 90 nsec flash memory SIMM - the MCM29020 by Motorola. Support is given also to 4MBytes MCM29F040, 8 MBytes MCM29F080, 4 MBytes SM73218 and to 8 MBytes SM73228 by Smart Technology. The Motorola SIMMs are internally composed of 1, 2 or 4 banks of 4 Am29F040 compatible devices, while the Smart SIMMs are arranged as 1 or 2 banks of four 28F008 devices by Intel. The flash SIMM resides on an 80 pin SIMM socket.

To minimize use of MPC's chip-select lines, only one chip-select line (CS0~) is used to select the flash as a whole, while distributing chip-select lines among the internal banks is done via on-board programmable

logic, according to the Presence-Detect lines of the Flash SIMM inserted to the FADS.

FIGURE 4-3 Flash Memory SIMM Architecture

The access time of the Flash memory provided with the FADS is 90 nsec, however, 120 nsec devices may be used as well. Reading the delay section of the Flash SIMM Presence-Detect lines, the debugger establishes (via OR0) the correct number of wait-states (considering 50MHz system clock frequency).

The Motorola SIMMs are built of AMD's Am29F0X0 devices which are 5V programmable, i.e., there is no need for external programming voltage and the flash may be written almost as a regular memory.

The SMART parts however, require $12V \pm 0.5\%$ programming voltage to be applied for programming. If on-boards programming of such device is required, a 12V supply needs to be connected to the FADS (P7). Otherwise, for normal Flash operation, 12V supply is not required.

The control over the flash is done using the GPCM and a dedicated CS0~ region, controlling the whole bank. During hard - reset initializations, the debugger reads the Flash Presence-Detect lines via BCSR2 and decides how to program BR0 & OR0 registers, within which the size and the delay of the region are determined.

The performance of the flash memory is shown in TABLE 4-5. "Flash Memory Performance Figures"

A. A manufacturer specific dedicated programming algorithm should be implemented during flash programming. B. I.e., Read-Only.

below:

TABLE 4-5. Flash Memory Performance Figures

	Number of System Clock Cycles			
System Clock Frequency [MHz]	50		2	25
Flash Delay [nsec]	90	120	90	120
Read / Write ^a Access [Clocks]	8	10	4	5

a. The figures in the table refer to the actual write access. The write operation continues internally and the device has to be polled for operation completion.

The Flash module may disabled / enabled at any time by writing '1' / '0' the FlashEn~ bit in BCSR1.

4•8 Synchronous Dram

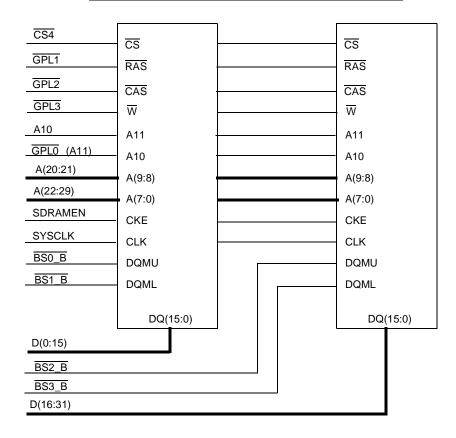
To enhance performance, especially in higher operation frequencies - 4 MBytes of SDRAM is provided on board. The SDRAM is unbuffered from the MPC bus and is configured as 2 X 512K X 32. Use is done with two MB811171622A-100 chips by Fujitsu or compatibles.

To enhance performance, the SDRAM is unbuffered from the MPC, saving the delay associated with address and data buffers. Since only 2 memory chips are involved, it does not adversely effect overall system performance. The SDRAM does not reside on a SIMM but is soldered directly to the FADS pcb. The SDRAM may be enabled / disabled at any time by writing 1 / 0 to the SDRAMEN bit in BCSR1. See TABLE 4-10. "BCSR1 Description" on page 57.

The SDRAM's timing is controlled by UPMB via its assigned CS (See TABLE 4-1. "MPC8XXFADS Chip Selects' Assignment" on page 39) line. Unlike a regular dram the synchronous dram has a CS input in addition to the RAS and CAS signals.

The sdram connection scheme is shown in FIGURE 4-4 "SDRAM Connection Scheme" on page 47.

The SDRAM's performance figures, are shown in TABLE 4-6. "Estimated SDRAM Performance Figures":


TABLE 4-6. Estimated SDRAM Performance Figures

	Number of Syste	em Clock Cycles
System Clock Frequency [MHz]	50	25 ^a
Single Read	5	3
Single Write	3+1 ^b	2 + 1 ^b
Burst Read	5,1,1,1	3,1,1,1
Burst Write	3,1,1,1 + 1 ^b	2,1,1,1 + 1 ^b
Refresh	21 ^c	13 ^b

- a. In fact upto 32MHz.
- b. One additional cycle for RAS precharge
- c. 4-beat Refresh Burst, not including arbitration overhead.

Functional Description FIGURE 4-4 SDRAM Connection Scheme

4•8•1 SDRAM Programming

After power-up, the sdram needs to be initialized by means of programming, to establish its mode of operation. The Sdram is programmed by issuing a Mode Register Set command. During that command, data is passed to the Mode Register through the Sdram's address lines. This command is fully supported by the UPM by means of a dedicated Memory Address Register and the UPM command run option.

Mode Register programming values are shown in TABLE 4-7. "SDRAM's Mode Register Programming"

below:

TABLE 4-7. SDRAM's Mode Register Programming

	Value @ I	Frequency
SDRAM Option	50MHz	25MHz
Burst Length	4	4
Burst Type	Sequential	Sequential
CAS Latency	2	1
Write Burst Length	Burst	Burst

4•8•1•1 SDRAM Initializing Procedure

After Power-up the SDRAM needs to be initialized in a certain manner, described below:

- UPMB should be programmed with values described in TABLE 3-8. "UPMB Initializations for MB811171622A-100 upto 32MHz" on page 34 or in TABLE 3-9. "UPMB Initializations for MB811171622A-100, 32+MHz - 50MHz" on page 35.
- 2) Memory controller's MPTPR, MBMR, OR4 and BR4 registers should be programmed according to TABLE 3-6. "Memory Controller Initializations For 20Mhz" on page 30 or TABLE 3-3. "Memory Controller Initializations For 50Mhz" on page 27.
- 3) MAR should be set with proper value (0x48 for upto 32MHz or 0x88 for 32 50 MHz)
- 4) MCR should be written with 0x80808105 to run the MRS command programmed in locations 5 8 of UPMB.
- 5) MBMR's TLFB field should be changed to 8, to constitute 8-beat refresh Bursts.
- 6) MCR should be written with 0x80808130 to run the refresh sequence (8 refresh cycles are performed now)
- 7) MBMR's TLFB field should be restored to 4, to provide 4-beat refresh Bursts for normal operation. The SDRAM is initialized and ready for operation.

4•8•2 SDRAM Refresh

The SDRAM is refreshed using its auto-refresh mode. I.e., using UMPB's periodic timer, a burst of four auto-refresh commands is issued to the SDRAM every 62.4 μ sec, so that all 2048 SDRAM rows are refreshed within specified 32.8 msec.

4•9 Communication Ports

Since the FADS platform is meant to serve all the MPC8XX family, it only contains modules that are common to all family members. The various communication ports for the present and future family members are shown in TABLE 4-8. "MPC8XX Family Comm. Ports" below:

TABLE 4-8. MPC8XX Family Comm. Ports

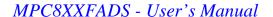
	Family Member - MPC					
Comm. Port	801	823	821	860	860SAR	860T
SCC1	Uart, IrDA	USB	3 +Enet	3 +Enet	3 +Enet	3 +Enet
SCC2	Uart, IrDA	3 +Enet, Fast IrDA	3 +IrDA	3 +Enet, IrDA	3 +Enet, IrDA	3 +Enet, IrDA
SCC3				3 +Enet	3 +Enet	3 +Enet
SCC4				3 +Enet	3 +Enet	3 +Enet
SMC1		3 Uart	3 Uart	3 Uart	3 Uart	3 Uart
SMC2		3 TDM Only	3 Uart	3 Uart	3 Uart	3 Uart
SPI ^a	3	3	3	3	3	3
I ² C ^a	3	3	3	3	3	3
Fast Enet						3
Utopia					3	

a. This is an interchip protocol and therefore will not be supported for evaluation.

As can be seen from the above table the Ethernet, I/R and Uart (RS232) support are common to all^A family members. Therefore, the FADS is equipped with 2 port of RS232, each with independent enable via BCSR and an IRDA transceiver, supporting Fast IRDA.

4•9•1 Ethernet Port

An Ethernet port with T.P. (10-Base-T) I/F is provided on the MPC8XXFADS. The comm. port over which this port resides, is determined according to the MPC type^B. Use is done with the MC68160 EEST 10-base-T transceiver, used also with the MPC8XXFADS.


To allow alternative use of the Ethernet's SCC pins, they appear at the expansion connectors over the daughter-board and over the Comm. Ports expansion connector (P8) of the this board, while the Ethernet transceiver may be Disabled / Enabled at any time by writing '1' / '0' to the EthEn~ bit in BCSR1.

4•9•2 Infra-Red Port

An infra-Red communication port is provided with the FADS - the Temic's TFDS 6000 integrated transceiver, which incorporates both the receiver and transmitter optical devices with the translating logic and supports Fast IrDA (upto 4 Mbps). The comm. port over which this port resides, is determined according

A. Except for the MPC801 which does not have Ethernet support.

B. I.e., routing is done on the daughter board.

to the MPC type^B.

To allow alternative use of the I/R's SCC or its pins, the infra-red transceiver may be disabled / enabled at any time, by writing '1' / '0' to the IrdEn~ bit in BCSR1, while all pins appear on the daughter-board expansion connector, as well as on P8 of this board.

4•9•2•1 Infra-Red Port Rate Range Selection

The TFDS6000 has 2 bit-rate ranges:

- 1) 9600 Bps to 1.2 MBps
- 2) 1.2 MBps to 4 MBps.

Selection between the 2 ranges is determined by the state of the transceiver's TX input on the falling edge of IrdEn~.

When TX input is LOW at least 200 nsec before the falling edge of IrdEn~, then, the LOWER range is selected. If TX is HIGH for that period of time, then, the HIGHER range is selected.

4•9•3 RS232 Ports

To assist user's applications and to provided convenient communication channels with both a terminal and a host computer, two identical RS232 ports are provided on the FADS. The MPC's communication ports to which these RS232 ports is routed, is established according to the type of MPC residing on the daughter board. Use is done with MC145707 transceivers which generates RS232 levels internally using a single 5V supply and are equipped with OE and shutdown mode. When the RS232EN1 or RS232EN2 bits in BCSR1 are asserted (low), the associated transceiver is enabled. When negated, the associated transceiver enters standby mode, in which the receiver outputs are tri-stated, enabling use of the associated port's pins, off-board via the expansion connectors.

Use is done with 9 pins, female D-Type stacked connector, configured to be directly (via a flat cable) connected to a standard IBM-PC like RS232 connector.

FIGURE 4-5 RS232 Serial Ports' Connector

4•9•3•1 RS-232 Ports' Signal Description

In the list below, the directions 'I', 'O', and 'I/O' are relative to the FADS board. (I.e. 'I' means input to the FADS)

- CD (O) Data Carrier Detect. This line is always asserted by the FADS.
- TX (O) Transmit Data.
- RX (I) Receive Data.
- DTR (I) Data Terminal Ready. This signal may be used by the software on the FADS to detect if a terminal is connected to the FADS board.
- DSR^A (O) Data Set Ready. This line is always asserted by the FADS.
- RTS (1) Request To Send. This line is not connected in the FADS.
- CTS (O) Clear To Send. This line is always asserted by the FADS.

A. Since there are only 3 RS232 transmitters in the device, DSR is connected to CD.

Solution Release 0.1

Functional Description

4•10 PCMCIA Port^A

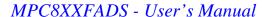
To enhance PCMCIA i/f development, a dedicated PCMCIA port is provided on the FADS. Support is given to 5V only PC-Cards, PCMCIA standard 2.1+ compliant. All the necessary control signals are generated by the MPC itself. To protect MPC signals from external hazards, and to provide sufficient drive capability, a set of buffers and latches is provided over PC-Card's address, data & strobe lines.

To conform with the design spirit of the FADS, i.e., making as much as possible MPC resources available for external application development, input buffers are provided for input control signals, controlled by the PCC_EN~ bit in BCSR1, so the PCMCIA port may be Disabled / Enabled at any time, by writing '1' / '0' to that bit. When the PCMCIA channel is disabled, its associated pins are available for off-board use via the expansion connectors.

A loudspeaker is provided on board and connected to SPKROUT line of the MPC. The speaker is buffered from the MPC and low-pass filtered. When the PCC_EN~ bit in BCSR1 is negated (high) the speaker buffer is tri-stated so the SPKROUT signal of the MPC may be used for alternate function.

Since it is not desirable^B to apply control signals to unpowered PC-Card, the strobe / data signal buffers / transceivers are tri-stated and may be driven only when the PC-Card is powered.


The block diagram of the PCMCIA port is shown in FIGURE 4-6 "PCMCIA Port Configuration" on page 52.


A. As the MPC801 does not have a PCMCIA port, this port is not operational with an MPC801 daughter board.

B. This since the PC-Card might have protection diodes on its inputs, which will force down input signals regardless of their driven level.

Functional Description FIGURE 4-6 PCMCIA Port Configuration

4•10•1 PCMCIA Power Control

To support hot-insertion^A the socket's power is controlled via a dedicated PCMCIA power controller the LTC1315 made by LINEAR TECHNOLOGY. This device, controlled by BCSR1, switches 12V VPP for card programming and controls gates of external MOSFET transistors, through which the PC Card VCC is switched.

When a card is inserted while the channel is enabled via BCSR1, i.e., both of the CD(1:2)* (Card Detect) lines are asserted (low), the status of the voltage select lines VS(1:2)* should be read to determine the PC Card's operation voltage level according to which, PCCVCC(0:1) bits in BCSR1 should be set, to drive the correct VCC (5V) to the PC-Card.

When a card is being removed from the socket while the channel is enabled via BCSR1, the negation of CD1~ and CD2~ may be sensed by the MPC and power supply to the card may be cut.

WARNNING

Any application S/W handling the PCMCIA channel must check the Voltage-Sense lines before Power is applied to the PC-Card. Otherwise, if 5V power is applied to a 3.3V-Only card, permanent damage will be inflicted to the PC-Card.

4•11 Board Control & Status Register - BCSR

Most of the hardware options on the MPC8XXFADS are controlled or monitored by the BCSR, which is a 32^B bit wide read / write register file. The BCSR is accessed via the MPC's CS1 region and in fact includes 5 registers: BCSR0 to BCSR4. Since the minimum block size for a CS region is 32KBytes, BCSR0 - BCSR4 are multiply duplicated within that region. See also TABLE 3-1. "MPC8XXADS Main Memory Map" on page 25.

The following functions are controlled / monitored by the BCSR:

- 1) MPC's Hard Reset Configuration.
- 2) Flash Module Enable / Disable
- 3) Dram Module Enable / Disable
- 4) Dram port width 32 bit / 16 bit.
- 5) SDRAM Module Enable / Disable.
- 6) Ethernet port Enable / Disable.
- 7) Infra-Red port Enable / Disable.
- 8) RS232 port 1 Enable / Disable.
- 9) RS232 port 2 Enable / Disable.
- 10) BCSR Enable / Disable.
- 11) Hard Reset Configuration Source BCSR0 / Flash^C Memory
- 12) PCMCIA control which include:
 - Channel Enable / Disable.

A. I.e., card insertion when the FADS is powered

B. In fact only the upper 16 bits - D(0:15) are used, but the BCSR is mapped as a 32 bit wide register and should be accessed as such.

C. Provided that support is provided also within the MPC.

Functional Description

- PC Card VCC appliance.
- PC Card VPP appliance.
- 13) USB^A Port Enable or Utopia^B Port Enable or 100-Base-T^C Port Enable
- 14) USB Power Control.
- 15) Video Port Enable
- 16) Video Port Clock Select
- 17) Ethernet Port Control.
- 18) Dram Type / Size and Delay Identification.
- 19) Flash Size / Delay Identification.
- 20) External (off-board) tools identification or S/W option selection switch DS1 status.
- 21) Daughter Board ID.
- 22) Mother Board Revision code
- 23) Daughter Board Revision code

Since all of the FADS's modules are controlled by the BCSR and since they may be disabled in favor of external hardware, the enable signals for these modules are presented at both the daughter board connector and at the expansion connector over the daughter board, so that off- board hardware may be mutually exclusive enabled with on-board modules.

4•11•1 BCSR Disable Protection Logic

The BCSR itself may be disabled in favor of off-board logic. To avoid accidental disable of the BCSR, an event from which only power re-appliance recovers, protection logic is provided:

The BCSR_EN~ bit resides on BCSR1. This bit wakes-up active (low) during power-up and may not be changed^D unless BCSR_EN_PROTECT~ bit in BCSR3 is written with '1' previously.

After the BCSR_EN_PROTECT~ is written with '1' to unprotect the BCSR_EN~ bit there is only one shot at disabling the BCSR, since, immediately after any write to BCSR1, BCSR_EN_PROTECT~ is re-activated and BCSR_EN~ is re-protected and the disabling procedure has to be repeated if desired.

4•11•2 BCSR0 - Hard Reset Configuration Register

BCSR0 is located at offset 0 on BCSR space. It may be read or written at any time^E. BCSR0 gets its defaults upon MAIN^F Power-On reset. During Hard-Reset data contained in BCSR0 is driven on the data bus to provide the Hard-Reset configuration for the MPC, this, if the Flash_Configuration_Enable~ bit in BCSR1 is not active. BCSR0 may be written at any time to change the Hard-Reset configuration of the MPC. The new values become valid when the next Hard-Reset is issued to the MPC regardless of the Hard-Reset source. The description of BCSR0 bits is shown in TABLE 4-9. "BCSR0 Description" on page

S4 Release 0.1

A. For the MPC823 daughter board

B. For the MPC860SAR daughter board

C. For the MPC860T daughter board

D. It may be written but will not be influenced.

E. Provided that BCSR is not disabled.

F. I.e., when VDDH to the MPC is powered.

55.

TABLE 4-9. BCSR0 Description

BIT	MNEMONIC	FUNCTION	PON DEF.	ATT
0	ERB	External Arbitration. When '0' during Hard-Reset, Arbitration is performed internally. When '1' during Hard-Reset, Arbitration is performed externally.	0	R,W
1	IP	Interrupt Prefix. When '0' during Hard-Reset, Interrupt prefix set to 0xFFF00000, if '1' Interrupt Prefix set to 0.	0	R,W
2	Reserved	Implemented ^a	0	R,W
3	BDIS	Boot Disable. When '0' during Hard-Reset, CS0~ region is enabled for boot. When '1', CS0~ region is disabled for boot.	0	R,W
4 - 5	BPS(0:1)	Boot Port Size. Determines the port size for CS0~ at boot. '00' - 32 bit, '01' - 8 bit, '10' - 16 bit, '11' - reserved.	'00'	R,W
6	Reserved	Implemented ^a	0	R,W
7 - 8	ISB(0:1)	Initial Space Base. Value during Hard-Reset determines the initial base address of the internal MPC memory map. When '00' - initial space at 0, when '01' - initial space at 0x00F00000, when '10' - initial space at 0xFF000000, when '11' - initial space at 0xFF000000.	'10'	R,W
9 - 10	DBGC(0:1)	Debug Pins Configuration. Value during Hard-Reset determines the function of the PCMCIA channel II pins. When '00' - these pins function as PCMCIA channel II pins, when '01' - they serve as Watch-Points,'10' - Reserved, when '11' - they become show-cycle attribute pins, e.g., VFLS, VF		R,W
11-12	DBPC(0:1)	Debug Port Pins Configuration. Value during Hard-Reset determines the location of the debug port pins. When '00' - debug port pins are on the JTAG port, when '01' - debug port non-existent, '10' - Reserved, when '11' debug port is on PCMCIA channel II pins.	'00'	R,W
13 - 14	EBDF(0:1) ^b	External Bus Division Factor. Value during Hard Reset determines the factor upon which the CLKOUT of the MPC external bus, is divided with respect to its internal MPC clock. When '00' - CLKOUT is GCLK2 divided by 1, when '01', CLKOUT is GCLK2 divided by 2.	'00'	R,W
15	Reserved	Implemented ^a .	'0'	R,W
16 - 31	Reserved	Un-Implemented	-	-

a. May be read and written as any other fields and are presented at their associated data pins during Hard-Reset.

4•11•3 BCSR1 - Board Control Register 1

The BCSR1 serves as a control register on the FADS. It is accessed at offset 4 from BCSR base address. It may be read or written at any time^A. BCSR1 gets its defaults upon Power-On reset. Most of BCSR1 pins are available at the daughter board connectors and on the expansion connectors residing over the

S5 Release 0.1

b. Applicable for MPC's revision A or above. Otherwise have no influence.

A. Provided that BCSR is not disabled.

Functional Description

daughter boards, providing visibility towards daughter boards' and external logic. BCSR1 fields are de-

scribed in TABLE 4-10. "BCSR1 Description" on page 57.

TABLE 4-10. BCSR1 Description^a

BIT	MNEMONIC	Function	PON DEF	ATT.
0	FLASH_EN	Flash Enable . When this bit is active (low), the Flash memory module is enabled on the local memory map. When in-active, the Flash memory is removed from the local memory map and CSO~, to which the Flash memory is connected may be used off-board via the expansion connectors.	0	R,W
1	DRAM_EN	Dram Enable . When this bit is active (low), the DRAM module is enabled on the local memory map. When in-active, the DRAM is removed from the local memory map and CS2~ and CS3~ ^b , to which the DRAM is connected may be used off-board via the expansion connectors.	0	R,W
2	ETHEN	Ethernet Port Enable. When asserted (low) the EEST connected to SCC1 is enabled. When negated (high) that EEST is in standby mode, while all its system i/f signals are tri-stated.	1	R,W
3	IRDEN	Infra-Red Port Enable. When asserted (low), the Infra-Red transceiver, connected to SCC2 is enabled. When negated, the Infra-Red transceiver is put in shutdown mode. And SCC2 pins are available for off-board use via the expansion connectors.		R,W
4	FLASH_CFG_EN	Flash Configuration Enable . When this bit is asserted (low): (A) - the Hard-Reset configuration held in BCSR0 is NOT driven on the data bus during Hard-Reset and (B) - configuration data held at the 1'st word of the flash memory is driven to the data bus during Hard-Reset. ^c		R,W
5	CNT_REG_EN_P ROTECT	Control Register Enable Protect. When this bit is active (low) the BCSR_EN bit in that register can not be written. When in-active, BCSR_EN may be written to remove the BCSR from the memory map. After any write to BCSR1 this bit becomes active again. This bit is a read-only ^d bit on that register.		R
6	BCSR_EN	BCSR Enable. When this bit is active (low) the Board Control & Status Register is enabled on the local memory map. When inactive, the BCSR may not be read or written and its associated CS1~ is available for off-board use via the expansion connectors. This bit may be written with '1' only if CNT_REG_EN_PROTECT bit is negated (1). When the BCSR is disabled it still continues to configure the board according the last data held in it even during Hard-Reset.		R,W
7	RS232EN_1	RS232 port 1 Enable . When asserted (low) the RS232 transceiver for port 1, is enabled. When negated, the RS232 transceiver for port 1, is in standby mode and the relevant MPC communication port pins are available for off-board use via the expansion connectors.		R,W
8	PCCEN	PC Card Enable . When asserted (low), the on-board PCMCIA channel is enabled, i.e., address and strobe buffers are enabled to / from the card. When negated, all buffers to / from the PCMCIA channel are disabled allowing off-board use of its associated lines.	1	R,W

Functional Description

TABLE 4-10. BCSR1 Description^a

	BIT	MNEMONIC	Function	PON DEF	АТТ.
	9	PCCVCC0	Pc Card VCC Select 0 . These signal in conjunction with PCCVCC1 determine the voltage applied to the PCMCIA card's VCC. Possible values are 0 / 3.3 / 5 V. For the encoding of these lines and their associated voltages see TABLE 4-11. "PCCVCC(0:1) Encoding" on page 59.	0	R,W
I	10 - 11	PCCVPP(0:1)	PC Card VPP. These signals determine the voltage applied to the PCMCIA card's VPP. Possible values are 0 / 5 / 12 V. For the encoding of these lines and their associated voltages see TABLE 4-12. "PCCVPP(0:1) Encoding" on page 59.	'11'	R,W
	12	Dram_Half_Word	Dram Half Word . When this bit is active (low) and the steps listed in 4•6•1 "DRAM 16 Bit Operation" on page 40, are taken, the DRAM becomes 16 bit wide. When inactive the DRAM is 32 bit wide.	1	R,W
	13	RS232EN_2	RS232 port 2 Enable . When asserted (low) the RS232 transceiver for port 2, is enabled. When negated, the RS232 transceiver for port 2, is in standby mode and the relevant MPC communication port pins are available for off-board use via the expansion connectors.	1	R,W
	14	SDRAMEN	SDRAM Enable . When this bit is active (high), the SDRAM module is enabled on the local memory map. When in-active, the DRAM is place in low-power mode, in fact removed from the local memory map, allowing its associated CS line, to be used off-board via the expansion connectors.	1	R,W
	15	PCCVCC1	Pc Card VCC Select 1 . These signal in conjunction with PCCVCC0 determine the voltage applied to the PCMCIA card's VCC. Possible values are 0 / 3.3 / 5 V. For the encoding of these lines and their associated voltages see TABLE 4-11. "PCCVCC(0:1) Encoding" on page 59.	0	R,W
	16 - 31	Reserved	Un-implemented	-	-

- a. Shaded areas are additions with respect to the MPC8XXFADS.
- b. In case a Single Bank DRAM SIMM is used CS3~ is free as well.
- c. Provided that this option is supported by the MPC by driving address lines low and asserting CS0~ during Hard-Reset.
- d. It is written in BCSR3.

TABLE 4-11. PCCVCC(0:1) Encoding

PCCVCC(0:1)	PC-Card VCC [V]
00	0
01	5
10	3.3
11	0

TABLE 4-12. PCCVPP(0:1) Encoding

PCCVPP(0:1)	PC Card VPP [V]
00	0
01	5
10	12 ^a
11	Hi-Z

a. Provided that a 12V power supply is applied.

4-11-4 BCSR2 - Board Control / Status Register - 2

BCSR2 is a status register which is accessed at offset 8 from the BCSR base address. Its a read only register which may be read at any time A. BCSR2's various fields are described in TABLE 4-13. "BCSR2"

Selease 0.1

A. Provided that BCSR is not disabled.

Description" on page 60.

TABLE 4-13. BCSR2 Description^a

	BIT	MNEMONIC	Function	PON DEF	ATT.
1	0 - 3	FLASH_PD(4:1)	Flash Presence Detect(4:1). These lines are connected to the Flash SIMM presence detect lines which encode the type of Flash SIMM mounted on the Flash SIMM socket. There are additional 3 presence detect lines which encode the SIMM's delay but appear in BCSR3. For the encoding of FLASH_PD(4:1) see TABLE 4-14. "Flash Presence Detect (4:1) Encoding" on page 60.	-	R
	4	Reserved	Un-implemented	-	-
	5 - 8	DRAM_PD(4:1)	Dram Presence Detect. These lines are connected to the DRAM SIMM presence detect lines which encode the size and the delay of the DRAM SIMM mounted on the DRAM SIMM socket. For the encoding of DRAM_PD(4:1) see TABLE 4-15. "DRAM Presence Detect (2:1) Encoding" on page 61 and TABLE 4-16. "DRAM Presence Detect (4:3) Encoding" on page 61.	-	R
1	9 - 12	EXTTOLI(0:3)	External Tools Identification . These lines, which are available at the expansion connectors over the daughter board, are intended to serve as tools' identifier or as S/W option selection. On board s/w may check these lines to detect The presence of various tools (h/w expansions) at the expansion connectors or the state of a dedicated 4 switches dip-switch which resides over the same lines or a combination of both. Half of the available combinations is reserved while the other half is available to users' applications. For the external tools' codes and their associated combinations see TABLE 4-17. "EXTOOLI(0:3) Assignment" on page 61.	-	R
1	13 - 15	DBREVN(0:2)	Daughter Board Revision Number (0:2). This field represents the revision code, hard-assigned to each daughter board. This is a production revision which may be identical for different types of daughter boards. See TABLE 4-18. "MPC8XXFADS Daughter Boards' Revision Encoding" on page 62, for revisions' encoding.	-	R
	13 - 31	Reserved	Un-implemented.	-	-

a. Shaded areas are additions with respect to the MPC812/860ADS.

TABLE 4-14. Flash Presence Detect (4:1) Encoding

FLASH_PD(4:1)	FLASH TYPE / SIZE	
0 - 3	Reserved	
4	SM732A2000 / SM73228 - 8 Mbyte SIMM, by SMART Modular Technologies.	
5	SM732A1000A / SM73218 - 4 Mbyte SIMM, by SMART Modular Technologies.	
6	MCM29080 - 8 MByte SIMM, by Motorola	

| Functional Description TABLE 4-14. Flash Presence Detect (4:1) Encoding

FLASH_PD(4:1)	FLASH TYPE / SIZE	
7	MCM29040 - 4 MByte SIMM, by Motorola	
8	MCM29020 - 2 MByte SIMM, by Motorola	
9 - F	Reserved	

TABLE 4-15. DRAM Presence Detect (2:1) Encoding

DRAM_PD(2:1)	DRAM TYPE / SIZE
00	MCM36100 by Motorola or MT8D132X by Micron- 4 MByte SIMM
01	MCM36800 by Motorola or MT16D832X by Micron - 32 MByte SIMM
10	MCM36400 by Motorola or MT8D432X by Micron - 16 MByte SIMM
11	MCM36200 by Motorola or MT16D832X by Micron - 8 MByte SIMM

TABLE 4-16. DRAM Presence Detect (4:3) Encoding

DRAM_PD(4:3)	DRAM DELAY
00	Reserved
01	Reserved
10	70 nsec
11	60 nsec

TABLE 4-17. EXTOOLI(0:3) Assignment

EXTTOOLI(0:3)	External Tool
0000-0111	Reserved
1000-1110	User Available
1111	Non Existent

Functional Description

WARNING

Since EXTOLI(0:3) lines may be DRIVEN LOW ('0') by the dip-switch, OFF-BOARD tools should NEVER DRIVE them HIGH. Failure in doing so, might result in PERMANENT DAMAGE to the FADS and / or to OFF-BOARD log-ic.

TABLE 4-18. MPC8XXFADS Daughter Boards' Revision Encoding

Revision Number (0:3) [Hex]	MPC8XXFADS Daughter Board Revision
0	ENG (Engineering)
1	PILOT
2 - 7	Reserved

4•11•5 BCSR3 - Board Control / Status Register 3

BCSR3 is an additional control / status register which may be accessed at offset 0xC from BCSR base address. BCSR3 gets its defaults during Power-On reset and may be read or written at any time. The de-

scription of BCSR3 is shown in TABLE 4-19. "BCSR3 Description" on page 63.

TABLE 4-19. BCSR3 Description

	BIT	MNEMONIC	Function	PON DEF	ATT.
•	0 - 1	Reserved	Implemented	'00'	R
	2 - 7	DBID(0:5)	Daughter Board ID. This field holds a code for the daughter board ID. Each Daughter board carries a unique ID code. For the specific daughter boards' codes see TABLE 4-20. "Daughter Boards' ID Codes" on page 63.	-	R
	5 ^a	CNT_REG_EN_P ROTECT	Control Register Enable Protect. When this bit is active (low) the BCSR_EN bit in that register can not be written. When in-active, BCSR_EN may be written to remove the BCSR from the memory map. After any write to BCSR1 this bit becomes active again. This bit is a write-only bit on that register.	0	W
	6 - 7	Reserved	Un-Implemented	-	-
	8	BREVN0	Board Revision Number 0. This is the MS bit of the Board Revision Number. See TABLE 4-18. "MPC8XXFADS Daughter Boards' Revision Encoding" on page 62, for the interpretation of the Board Revision Number.	-	R
I	9 - 11	FLASH_PD(7:5)	Flash Presence Detect(7:5). These lines are connected to the Flash SIMM presence detect lines which encode the Delay of Flash SIMM mounted on the Flash SIMM socket - U15. There are additional 4 presence detect lines which encode the SIMM's Type but appear in BCSR2. For the encoding of FLASH_PD(7:5) see TABLE 4-22. "FLASH Presence Detect (7:5) Encoding" on page 64.	-	
	12	BREVN1	Board Revision Number 1 . Second bit of the Board Revision Number. See TABLE 4-18. "MPC8XXFADS Daughter Boards' Revision Encoding" on page 62, for the interpretation of the Board Revision Number.	-	R
-	13	Reserved	Implemented	'0'	R
	14 - 15	BREVN(2:3)	Board Revision Number (2:3). The LS bits of the Board Revision Number. See TABLE 4-18. "MPC8XXFADS Daughter Boards' Revision Encoding" on page 62, for the interpretation of the Board Revision Number.	-	R

a. This is a WRITE ONLY bit so it does not conflict with the DBID filed which is READ ONLY.

TABLE 4-20. Daughter Boards' ID Codes

DBID(0:5)	MPC8XX On
[HEX}	D/B
0	Reserved ^a .

Functional Description TABLE 4-20. Daughter Boards' ID Codes

DBID(0:5) [HEX}	MPC8XX On D/B
1 - 2	Reserved
3	MPC823
4 - 1F	Reserved
20	MPC801
21	MPC850
22	MPC821, MPC860/ 860SAR/860T
23	MPC860SAR
24	MPC860T
23 - 3F	Reserved

a. For MPC821/860ADS

TABLE 4-21. MPC8XXFADS Revision Number Conversion Table

Revision Number (0:3) [Hex]	MPC8XXFADS Revision
0	Reserved
1	ENG (Engineering)
1	PILOT ^a
2 - F	Reserved

a. There is no electrical difference between revision PILOT to Revision ENG of the MPC8XXFADS mother board.

TABLE 4-22. FLASH Presence Detect (7:5) Encoding

FLASH_PD(7:5)	Flash Delay [nsec]
000	Not Supported
001	150
010	120
011	90
100 - 111	Not Supported

4•11•6 BCSR4 - Board Control / Status Register 4

The BCSR4 serves as a control register on the FADS. It is accessed at offset 10H from BCSR base address. It may be read or written at any time^A. BCSR4 gets its defaults upon Power-On reset. Most of BCSR4 pins are available at the daughter board connectors and on the expansion connectors residing over the daughter boards, providing visibility towards daughter boards' and external logic. BCSR4 fields are described in TABLE 4-23. "BCSR4 Description" on page 65.

TABLE 4-23. BCSR4 Description^a

BIT	MNEMONIC	Function	PON DEF	ATT.
0	ETHLOOP	Ethernet port Diagnostic Loop-Back. When active (high), the MC68160 EEST is configured into diagnostic Loop-Back mode, where the transmit output is internally fed back into the receive section.		R,W
1	TFPLDL~	Twisted Pair Full-Duplex . When active (low), the MC68160 EEST is put into full-duplex mode, where, simultaneous receive and transmit are enabled.		R,W
2	TPSQEL~	Twisted Pair Signal Quality Error Test Enable . When active (low), a simulated collision state is generated within the EEST, so the collision detection circuitry within the EEST may be tested.	1	R,W
3	SIGNAL_LAMP	Signal Lamp. When this signal is active (low), a dedicated LED illuminates. When in-active, this led is darkened. This led is used for S/W signalling to user.	1	R,W
4	USB_EN ^b / FETH_EN ^c	USB port Enable or Fast Ethernet Port Enable. When this signal is active (low) it enables the USB port transceiver in case an MPC823 daughter board is attached to the FADS or it enables the Fast Ethernet Transceiver (LXT970) if a MPC860T chip resides on the MPC821/860/860SAR/860T daughter board attached to the FADS. This signal has no function with the MPC801 daughter board neither with MPC821/860/860SAR chips residing on a MPC821/860/860SAR/860T daughter boards.	1	R,W
5	USB_SPEED / FETHCFG0	USB Port Speed or Fast Ethernet Txcvr Config. 0. When a MPC823 daughter board is attached to the MPC8XXFADS, this signal controls the speed of the USB transceiver. When this signal is active (high) the USB transceiver is in full-speed mode. When inactive, the USB transceiver is in low-speed mode. When a MPC821/860/860SAR/860T daughter board is attached to the FADS and a MPC860T resides on it, this signal controls the autonegotiation mode of the LXT970 Fast Ethernet transceiver. When the LXT970 is in auto negotiation mode, a low to high transition of this signal causes an auto negotiate to re-start. When auto negotiation is disabled, this input selects operating speed bit 0.13: When this signal is high, 100Mbps is selected (0.13 = 1), when low -10Mbps is selected (0.13 = 0). This signal has no function with any daughter boards.	1	R,W

A. Provided that BCSR is not disabled.

Functional Description

TABLE 4-23. BCSR4 Description^a

BIT	MNEMONIC	Function	PON DEF	ATT.
6	USB_VCC0/ FETHFDE	USB Port VCC EN / Fast Ethernet Full-Duplex EN. When a MPC823 or a MPC850 daughter board is attached to the FADS, this signal controls the power applied to the USB bus (Master Mode support). When this signal is active (Iow), 5V power is applied to the USB Bus. When inactive, power to the USB port is disconnected. When a MPC821/860/860SAR/860T daughter board is attached to the FADS and a MPC860T resides on it, this signal controls the Full-Duplex mode of the Fast Ethernet Transceiver LXT970. When auto negotiation is enabled, this signal determines the full duplex advertisement capability of the LXT970, in conjunction with MF4 and CFG1. See the LXT970 documentation. When auto negotiation is disabled, this signal effects full duplex mode directly by setting the value of bit 0.8 (Duplex Mode): When this signal is high Full Duplex in Enabled. (0.8 = 1). When this pin is low, Full Duplex is Disabled (0.8 = 0). This signal has no function with any daughter board.	1	R,W
7	Reserved.	Implemented.	0	R,W
8	VIDEO_ON	<i>Video Port Enable</i> . When this signal is active (low), the Video-On Led on the MPC823FADSDB is lit. When inactive, the led is darkened. This is merely an indication that should be set by application S/W to indicate activity of the Video Port, after it has been enabled via the l ² C port. This signal has no function with any daughter board other the MPC823 daughter board.	1	R,W
9	VDO_EXT_CLK_ EN / FETHCFG1	Video Port Clock Enable / Fast Ethernet Txcvr Config. 0. When a MPC823 daughter board is attached to the FADS and, this signal enables the on-board Video Clock Generator. When this signal is active (high), it enables an on-board 27MHz clock generator as a source for both the video encoder and the video port controller of the MPC823. The system programmer should avoid asserting this signal, until it is assured that the MPC823 is set to accept external video clock. Failure in doing so might result in permanent damage to the MPC823 and / or the on-board 27 MHz clock generator. When a MPC821/860/860SAR/860T daughter board is attached to the FADS and a MPC860T resides on it, this signal controls the CFG1 input of the LXT970. When the LXT970 is in auto negotiation mode, this pin determines operating speed advertisement capability in conjunction with MF4. See the LXT970 documentation. When auto negotiation is disabled, this signal enables 10Mbps link test function and directly effects bit 19.8. When this pin is high, 10Mbps link test is disabled (19.8 = 1). When this pin is low, 10Mbps link test is enabled (19.8 = 0). This signal has no function with any daughter board.	1	R,W
10	VIDEO_RST / FETHRST	Video Port Reset / Fast Ethernet Txcvr Reset. When a MPC823 daughter board is attached to the FADS, this signal resets the Video Encoder. When this active (low) signal is being dasserted, the Video Encoder, located on the MPC823FADSDB, is being reset. For further informations see 4-4 "VIDEO Support" on page 13 of the MPC823FADSDB User's Manual. When a MPC821/860/860SAR/860T daughter board is attached to the FADS and a MPC860T resides on it, this signal resets the LXT970 Fast Ethernet transceiver. When active (low), the LXT970 transceiver is reset. This signal has no function with any other daughter board.	1	R,W

Functional Description

TABLE 4-23. BCSR4 Description^a

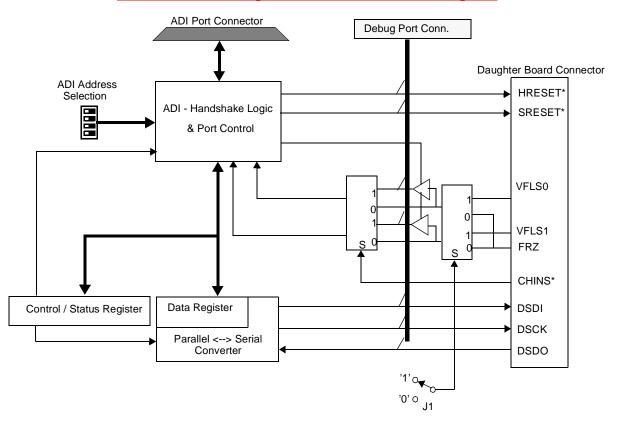
BIT	MNEMONIC	Function	PON DEF	ATT.
11	MODEM_EN	Modem Enable for MPC823 . When this signal is active (low) while an MPC823FADSDB is connected to the FADS, it is possible to operate the MPC821 Modem Tool. This signal has no function with any other daughter board.		R,W
12	DATA_VOICE	Modem Tool Function Select . Effective only with MPC823AFDSDB. When This signal is high , the DATA function of the modem tool is selected. When low , the VOICE function of the modem tool is selected.		R,W
13 - 31	Reserved	Un-implemented	-	-

- a. Shaded areas are additions with respect to the MPC8XXFADS.
- b. MPC823 Daughter Board function.
- c. MPC860T Daughter Board function.
- d. I.e., on the negative edge.

4•12 Debug Port Controller

The debug port of the MPC8XXFADS is implemented on-board, connected to the MPC via the JTAG^A port. Since the location^B of the debug port is determined via the Hard-Reset configuration, It is important that the relevant configuration bits (see 4•1•6 "Reset Configuration" on page 37) are not changed, if working with the local debug port is desired.

The debug port controller is interfaced to host computer via Motorola's ADI port, which is an 8-bit wide parallel port. Since the debug port is serial, conversion is done by hardware between the parallel and serial protocols.


The MPC's debug port is configured at SOFT-Reset to "Asynchronous Clock Mode" i.e., the debug port generates the debug clock - DSCK, which is asynchronous with the MPC system clock.

The debug port controller block diagram is shown in FIGURE 4-7 "Debug Port Controller Block Diagram" on page 68.

A. The debug port location is determined by the HARD - Reset configuration.

B. In terms of MPC pins.

| Functional Description FIGURE 4-7 Debug Port Controller Block Diagram

To allow for an external debug port controller to be incorporated with the FADS and to allow target system debug by the FADS, a standard 10 pin, debug port connector is provided and the local debug port controller may be disabled^A by removing the ADI bundle from the its connector.

When the ADI's 37 lead cable is disconnected from either the ADI connector or from the FADS's 37 pin connector, the debug port controller is disabled allowing either the connection of an external debug port controller, or independent s/w run, i.e., the MPC boots from the flash memory to run user's application without debug port controller intervention. This feature becomes especially handy regarding demo's.

In this state, VFLS(0:1) or FRZ^B signals are routed to the debug port connector, so that, the external debug port controller has run mode status information.

The ADI I/F supports upto 8 boards connected on the same bundle. Address selection is done by DS2 / 1,2,3. See 2•3•1 "ADI Port Address Selection" on page 15.

The debug port I/F has two registers: a control / status register and a data register. The control / status register hold I/F related control / status functions, while the data register serves as the parallel side of the Transmit / Receive shift register.

The control / status register is accessed when D_C~ bit is low while the data register is accessed when D_C~ is driven high by the host via the ADI port.

4•12•1 MPC8XXFADS As Debug Port Controller For Target System

The FADS may be used as a debug port controller for a target system, provided that the target system has

A. I.e., debug port controller outputs are tri-stated, allowing debug port to be driven by an external debug-tool.

B. Depended on H/W settings.

I

MPC8XXFADS - User's Manual

Functional Description

a 10 pin header connector matching the one on the FADS.

In this mode of operation, the on-board debug port controller, is connected to the target system's debugport connector (see 4•12•1•1 "Debug Port Connection - Target System Requirements" below). Since DSDO signal is driven by the MPC, it is a must, to remove the local MPC from its socket, to avoid contention over this line.

When either the local MPC is removed from its socket or the daughter board is removed from the FADS, all FADS's modules are inaccessible, except for the debug-port controller. All module-enable indications are darkened, regardless of their associated enable bits in the BCSR. Pull-up resistors are connected to Chip-Select lines, so they do not float when the MPC is removed from its socket, avoiding possible contention over data-bus lines.

4-12-1-1 Debug Port Connection - Target System Requirements

In order for a target system may be connected to the FADS, as a debug port controller, few measures need to be taken on the target system:

- 1) A 10-pin header connector should be made available, with electrical connections matching FIG-URE 4-8 "Standard Debug Port Connector" on page 71.
- 2) Pull-down resistors, of app. $1K\Omega$ should be connected over DSDI^A and DSCK^A signals. These resistors are to provide normal^B operation, when a debug-port controller, is not connected to the target system
- 3) The debug-port should be enabled and routed to the desired pins. See the DBGC and DBPC fields within the HARD-RESET configuration word.

4•12•2 Debug Port Control / Status Register

The control / status register is an 8 bit register (bit 7 stands for MSB). For the description of the ADI control

A. Remember that the location of DSDI and DSCK is determined by the HARD-Reset configuration.

B. Normal - i.e., boot via CS0~.

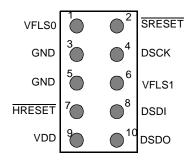
status register see TABLE 4-24. "Debug Port Control / Status Register" on page 70.

TABLE 4-24. Debug Port Control / Status Register

BIT	MNEMONIC	Function	I/F Res et DEF	ATT.
7	MpcRst	Mpc Reset . When this status only bit indicates when active (high) that either a SOFT or a HARD reset is driven by the MPC.	-	R
6	TxError	Transmit Error . When this status only bit is active (high) it indicates that the last transmission towards the MPC, was cut by an internal MPC8XX reset source. This bit is updated for each byte sent.		R
5	InDebug	<i>In Debug Mode</i> . When this status only bit is active (high) it indicates that the MPC is in debug mode ^a .	-	R
4 - 3	DebugClockFreq	Debug Clock Frequency Select . This field controls a frequency divider which divides DSCK. For the division factors and associated DSCK frequencies see TABLE 4-25. "DSCK Frequency Select" below.	'00'	R/W
2	StatusRequest	Status Request. When the host writes this bit active (low), the I/F will issue a status read request to the host by asserting ADS_REQ line to the host. When the host writes the control register with this bit negated, no status read request is issued. Upon I/F reset this bit wakes-up active.	0	R/W
1	DiagLoopBack	Diagnostic Loopback Mode. When this control bit is active (low) the I/F is placed in Diagnostic Loopback Mode. I.e., DSDI is connected internally to DSDO, DSDI is tri-stated, and each data byte sent to the I/F data register, is sampled back into the receive shift register. This mode allows for complete ADI I/F test, upto transmit and receive shift registers. Upon I/F reset this bit wakes-up active.	0	R/W
0	DebugEntry	Debug Mode Entry. When this bit is active (low), the MPC will enter debug mode instantly after SOFT reset. When inactive, the MPC will start executing normally and will enter debug mode only after exception. Upon I/F reset this bit wakes-up active.	0	R/W

a. Provided that the PCMCIA channel II pins are configured as debug pins - i.e, VFLS(0:1) signals are available. If not, the debug port can not be operated correctly.

TABLE 4-25. DSCK Frequency Select


DebugClockFreq	DSCK Frequency [MHz]
00	10
01	5
10	2.5

Functional Description TABLE 4-25. DSCK Frequency Select

DebugClockFreq	DSCK Frequency [MHz]
11	1.25

FIGURE 4-8 Standard Debug Port Connector

4•12•3 Standard MPCXXX Debug Port Connector Pin Description

The pins on the standard debug port connector are the maximal group needed to support debug port controllers for both the MPC5XX and MPC8XX families. Some of the pins are redundant for the MPC8XX family but are necessary for the MPC5XX family.

4•12•3•1 VFLS(0:1)

These pins indicate to the debug port controller whether or not the MPC is in debug mode. When both VFLS(0:1) are at '1', the MPC is in debug mode. These lines may serve alternate functions with the MPC, in which case FRZ needs to selected, on either the FADS or target system^A.

4-12-3-2 HRESET*

This is the Hard-Reset bidirectional signal of the MPC. When this signal is asserted (low) the MPC enters hard reset sequence which include hard reset configuration. This signal is made redundant with the MPC8XX debug port controller since there is a hard-reset command integrated within the debug port protocol. However, the local debug port controller uses this signal for compatibility with MPC5XX existing boards and s/w.

4-12-3-3 SRESET*

This is the Soft-Reset bidirectional signal of the MPC8XX. On the MPC5XX it is an output. The debug port configuration is sampled and determined on the rising-edge^B of SRESET* (for both processor families). On the MPC8XX it is a bidirectional signal which may be driven externally to generate soft reset sequence. This signal is in fact redundant regarding the MPC8XX debug port controller since there is a soft-reset command integrated within the debug port protocol. However, the local debug port controller uses this signal for compatibility with MPC5XX existing boards and s/w.

4•12•3•4 DSDI - Debug-port Serial Data In

Via the DSDI signal, the debug port controller sends its data to the MPC. The DSDI serves also a role

A. If a target system needs to use VFLS(0:1) alternate function, then, FRZ line should be connected to both VFLS(0:1) pins on the debug port connector.

B. In fact that configuration is divided into 2 parts, the first is sampled 3 system clock cycles prior to the rising edge of SRESET* and the second is sampled 8 clocks after that edge.

Functional Description

during soft-reset configuration. (See 4•1•6•3 "Soft Reset Configuration" on page 37).

4-12-3-5 DSCK - Debug-port Serial Clock

During asynchronous clock mode, the serial data is clocked into the MPC according^A to the DSCK clock. The DSCK serves also a role during soft-reset configuration. (See 4•1•6•3 "Soft Reset Configuration" on page 37).

4-12-3-6 DSDO - Debug-port Serial Data Out

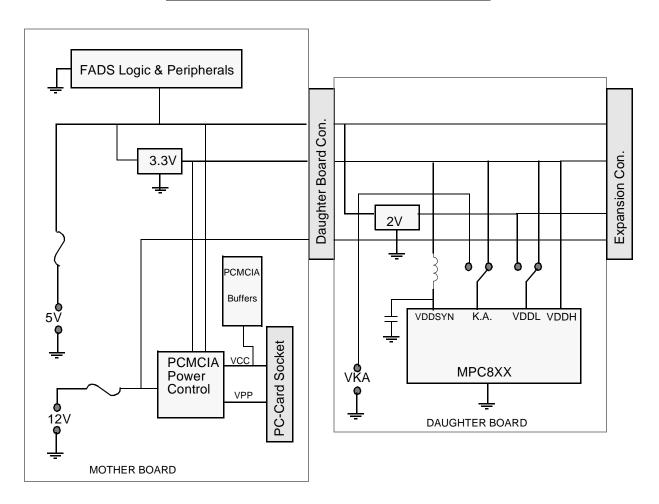
DSDO is clocked out by the MPC according to the debug port clock, in parallel^B with the DSDI being clocked in. The DSDO serves also as "READY" signal for the debug port controller to indicate that the debug port is ready to receive controller's command (or data).

4•13 Power

There are 4 power buses with the MPC8XXs:

- 1) I/O
- 2) Internal Logic
- 3) Keep Alive
- 4) PLL

and there are 3 power buses on the MPC8XXFADS:


- 1) 5V bus
- 2) 3.3V bus
- 3) 12V bus

A. I.e., DSDI must meat setup / hold time to / from rising edge of the DSCK.

B. I.e., full-duplex communication.

| Functional Description FIGURE 4-1 MPC8XXFADS Power Scheme

To support off-board application development, the power buses are connected to the expansion connectors, so that external logic may be powered directly from the board. The maximum current allowed to be drawn from the board on each bus is shown in TABLE 4-26. "Off-board Application Maximum Current Consumption" below.

TABLE 4-26. Off-board Application Maximum Current Consumption

Power BUS	Current
5V	2A
3.3V	2A
2V	0.5A
12V	100 mA.

To protect on board devices against supply spikes, decoupling capacitors (typically $0.1\mu F$) are provided between the devices' power leads and GND, located as close as possible to the power leads.

Functional Description

4•13•1 5V Bus

Some of the FADS peripherals reside on the 5V bus. Since the MPC is 5V friendly, it may operate with 5V levels on its lines with no damage. The 5V bus is connected to an external power connector via a fuse (5A).

To protect against reverse-voltage or over-voltage being applied to the 5V inputs a set of high-current diodes and zener diode is connected between the 5V bus GND. When either over or reverse voltage is applied to the FADS, the protection logic will blow the fuse, while limiting the momentary effects on board.

4•13•2 3.3V Bus

The MPC itself as well as the SDRAM, the address and data buffers are powered by the 3.3^A bus, which is produced from the 5V bus using a special low-voltage drop, linear voltage regulator made by Micrel, the MIC29500-3.3BT which is capable of driving upto 5A, facilitating operation of external logic as well.

4•13•3 12V Bus

The sole purpose of the 12V bus is to supply VPP (programming voltage) for the PCMCIA card and for the Flash SIMM^B. It is connected to a dedicated input connector via a fuse (1A) and protected from over / reverse voltage application.

If the 12V supply is not required for either the PC-Card and for the flash SIMM, the 12V input to the FADS may be omitted.

A. At full speed. When lower performance is needed the internal logic may be powered from the 2V bus.

B. If necessary.

5 - Support Information

In this chapter all information needed for support, maintenance and connectivity to the MPC8XXFADS is provided.

5•1 Interconnect Signals

The MPC8XXFADS interconnects with external devices via the following set of connectors:

- 1) P1 ADI Port connector
- 2) PA2 RS232 port 1
- 3) PB2 RS232 port 2
- 4) P3 Ethernet port
- 5) P4 PCMCIA port
- 6) P5 External Debug port controller input / output
- 7) P6 5V Power In
- 8) P7 12V Power In
- 9) P8 Serial Ports' Expansion connector
- 10) PD1, PD2, PD3 & PD4 Daughter-Board Connectors

5•1•1 P1 ADI - Port Connector

The ADI port connector - P1, is a 37-pin, Male, 90°, D-Type connector, signals of which are described in TABLE 5-1 "P1 - ADI Port Interconnect Signals" below:

TABLE 5-1 P1 - ADI Port Interconnect Signals

Pin No.	Signal Name	Description
1		Not connected with this application
2	D_C~	Data / Control selection. When '1', the debug port controller's data register is accessed, when '0' the debug port controller's control register is accessed.
3	HST_ACK	Host Acknowledge input signal from the host.
4	ADS_SRESET	When asserted ('1') and the FADS is selected by the host, generates Soft Reset to the MPC.
5	ADS_HRESET	When asserted ('1') and the FADS is selected by the host, generates Hard Reset to the MPC.
6	ADS_SEL2	ADI I/F address line 2 (MSB).
7	ADS_SEL1	ADI I/F address line 1.
8	ADS_SEL0	ADI I/F address line 0 (LSB).
9	HOST_REQ	HOST Request input signal from the host
10	ADS_REQ	ADS Request output signal from the MPC8XXFADS to the host
11	ADS_ACK	ADS Acknowledge output signal from the MPC8XXFADS to the host
12		Not connected with this application
13		Not connected with this application
14		Not connected with this application
15		Not connected with this application
16	PD1	Bit 1 of the ADI port data bus
17	PD3	Bit 3 of the ADI port data bus

| Support Information TABLE 5-1 P1 - ADI Port Interconnect Signals

Pin No.	Signal Name	Description
18	PD5	Bit 5 of the ADI port data bus
19	PD7	Bit 7 of the ADI port data bus
20 - 25	GND	Ground.
26		Not connected with this application
27 - 29	HOST_VCC	HOST VCC input from the host. Used to qualify FADS selection by the host. When host is off, the debug port controller is disabled.
30	HOST_ENABLE~	HOST Enable input signal from the host. (Active low). Indicates that the host computer is connected to FADS. Used, in conjunction with HOST_VCC and ADS_SEL(2:0) to qualify FADS selection by the host.
31 - 33	GND	Ground.
34	PD0	Bit 0 of the ADI port data bus
35	PD2	Bit 2 of the ADI port data bus
36	PD4	Bit 4 of the ADI port data bus
37	PD6	Bit 6 of the ADI port data bus

5•1•2 PA2, PB2 - RS232 Ports' Connectors

The RS232 ports' connectors - PA2 and PB2 are 9 pin, 90°, female D-Type Stacked connectors, signals of which are presented in TABLE 5-2. "PA2, PB2 Interconnect Signals" below

TABLE 5-2. PA2, PB2 Interconnect Signals

Pin No.	Signal Name	Description
1	CD	Carrier Detect output from the MPC8XXFADS.
2	TX	Transmit Data output from the MPC8XXFADS.
3	RX	Receive Data input to the MPC8XXFADS.
4	DTR	Data Terminal Ready input to the MPC8XXFADS.
5	GND	Ground signal of the MPC8XXFADS.
6	DSR	Data Set Ready output from the MPC8XXFADS.
7	RTS (N.C.)	Request To Send. This line is not connected in the MPC8XXFADS.
8	CTS	Clear To Send output from the MPC8XXFADS.
9	-	Not connected

5•1•3 P3 - Ethernet Port Connector

The Ethernet connector on the MPC8XXFADS - P3, is a Twisted-Pair (10-Base-T) compatible connector. Use is done with 90°, 8-pin, RJ45 connector, signals of which are described in TABLE 5-3. "P3 - Ethernet

Port Interconnect Signals" below.

TABLE 5-3. P3 - Ethernet Port Interconnect Signals

Pin No.	Signal Name	Description
1	TPTX	Twisted-Pair Transmit Data positive output from the MPC8XXFADS.
2	TPTX~	Twisted-Pair Transmit Data negative output from the MPC8XXFADS.
3	TPRX	Twisted-Pair Receive Data positive input to the MPC8XXFADS.
4	-	Not connected
5	-	Not connected
6	TPRX~	Twisted-Pair Receive Data negative input to the MPC8XXFADS.
7	-	Not connected
8	-	Not connected

5•1•4 PCMCIA Port Connector

The PCMCIA port connector - P4, is a 68 - pin, Male, 90°, PC Card type, signals of which are presented in TABLE 5-4. "P4 - PCMCIA Connector Interconnect Signals" below

TABLE 5-4. P4 - PCMCIA Connector Interconnect Signals

Pin No.	Signal Name	Attribute	Description
1	GND		Ground.
2	PCCD3	I/O	PCMCIA Data line 3.
3	PCCD4	I/O	PCMCIA Data line 4.
4	PCCD5	I/O	PCMCIA Data line 5.
5	PCCD6	I/O	PCMCIA Data line 6.
6	PCCD7	I/O	PCMCIA Data line 7.
7	BCE1A~	0	PCMCIA Chip Enable 1. Active-low. Enables EVEN numbered address bytes.
8	PCCA10	0	PCMCIA Address line 10.
9	OE~	0	PCMCIA Output Enable signal. Active-low. Enables data outputs from PC-Card during memory read cycles.
10	PCCA11	0	PCMCIA Address line 11.
11	PCCA9	0	PCMCIA Address line 9.
12	PCCA8	0	PCMCIA Address line 8.
13	PCCA13	0	PCMCIA Address line 13.
14	PCCA14	0	PCMCIA Address line 14.

| Support Information TABLE 5-4. P4 - PCMCIA Connector Interconnect Signals

Pin No.	Signal Name	Attribute	Description
15	WE~/PGM~	0	PCMCIA Memory Write Strobe. Active-low. Strobes data to PC-Card during memory write cycles.
16	RDY	I	+Ready/-Busy signal from PC-Card. Allows PC-Card to stall access from the host, in case a previous access's processing is not completed.
17	PCCVCC	0	5V VCC for the PC-Card. Switched by the MPC8XXFADS, via BCSR1.
18	PCCVPP	0	12V/5V VPP for the PC-Card programming. 12V available only if12V is applied to P8. Controlled by the MPC8XXFADS, via BCSR1.
19	PCCA16	0	PCMCIA Address line 16.
20	PCCA15	0	PCMCIA Address line 15.
21	PCCA12	0	PCMCIA Address line 12.
22	PCCA7	0	PCMCIA Address line 7.
23	PCCA6	0	PCMCIA Address line 6.
24	PCCA5	0	PCMCIA Address line 5.
25	PCCA4	0	PCMCIA Address line 4.
26	PCCA3	0	PCMCIA Address line 3.
27	PCCA2	0	PCMCIA Address line 2.
28	PCCA1	0	PCMCIA Address line 1.
29	PCCA0	0	PCMCIA Address line 0.
30	PCCD0	I/O	PCMCIA Data line 0.
31	PCCD1	I/O	PCMCIA Data line 1.
32	PCCD2	I/O	PCMCIA Data line 2.
33	WP	I	Write Protect indication from the PC-Card.
34	GND		Ground
35	GND		Ground
36	CD1~	I	Card Detect 1~. Active-low. Indicates in conjunction with CD2~ that a PC-Card is placed correctly in socket.
37	PCCD11	I/O	PCMCIA Data line 11.
38	PCCD12	I/O	PCMCIA Data line 12.
39	PCCD13	I/O	PCMCIA Data line 13.
40	PCCD14	I/O	PCMCIA Data line 14.
41	PCCD15	I/O	PCMCIA Data line 15.

| Support Information TABLE 5-4. P4 - PCMCIA Connector Interconnect Signals

Pin No.	Signal Name	Attribute	Description
42	BCE2A~	0	PCMCIA Chip Enable 2. Active-low. Enables ODD numbered address bytes.
43	VS1	I	Voltage Sense 1 from PC-Card. Indicates in conjunction with VS2 the operation voltage for the PC-Card.
44	IORD~	0	I/O Read. Active-low. Drives data bus during I/O-Cards' read cycles.
45	IOWR~	0	I/O Write. Active-low. Strobes data to the PC-Card during I/O-Card write cycles.
46	PCCA17	0	PCMCIA Address line 17.
47	PCCA18	0	PCMCIA Address line 18.
48	PCCA19	0	PCMCIA Address line 19.
49	PCCA20	0	PCMCIA Address line 20.
50	PCCA21	0	PCMCIA Address line 21.
51	PCCVCC	0	5V VCC for the PC-Card. Switched by the MPC8XXFADS, via BCSR1.
52	PCCVPP	0	12V/5V VPP for the PC-Card programming. 12V available only if12V is applied to P8. Controlled by the MPC8XXFADS, via BCSR1.
53	PCCA22	0	PCMCIA Address line 22.
54	PCCA23	0	PCMCIA Address line 23.
55	PCCA24	0	PCMCIA Address line 24.
56	PCCA25	0	PCMCIA Address line 25.
57	VS2	I	Voltage Sense 2 from PC-Card. Indicates in conjunction with VS1 the operation voltage for the PC-Card.
58	RESET	0	Reset signal for PC-Card.
59	WAITA~	I	Cycle Wait from PC-Card. Active-low.
60	INPACK~	I	Input Port Acknowledge. Active-low. Indicates that the Pc-Card can respond to I/O access for a certain address.
61	PCREG~	0	Attribute Memory or I/O Space - Select. Active-low. Used to select either attribute (card-configuration) memory or I/O space.
62	BVD2	I	Battery Voltage Detect 2. Used in conjunction with BVD1 to indicate the condition of the PC-Card's battery.
63	BVD1	I	Battery Voltage Detect 1. Used in conjunction with BVD2 to indicate the condition of the PC-Card's battery.
64	PCCD8	I/O	PCMCIA Data line 8.
65	PCCD9	I/O	PCMCIA Data line 9.
66	PCCD10	I/O	PCMCIA Data line 10.
_		•	

| Support Information TABLE 5-4. P4 - PCMCIA Connector Interconnect Signals

Pin No.	Signal Name	Attribute	Description
67	CD2~	I	Card Detect 2~. Active-low. Indicates in conjunction with CD1~ that a PC-Card is placed correctly in socket.
68	GND		Ground.

5•1•5 P5 - External Debug Port Controller Input Interconnect.

The debug port connector - P5, is a 10 pin, Male, header connector, signals of which are described in TABLE 5-5. "P5 - Interconnect Signals" below

TABLE 5-5. P5 - Interconnect Signals

	T		
Pin No.	Signal Name	Attribute	Description
1	VFLS0	0	Visible history FLushes Status 0. Indicates in conjunction with VFLS1, the number of instructions flushed from the core's history buffer. Indicates also whether the MPC is in debug mode. If not using the debug port, may be configured for alternate function. When the FADS is disconnected from the ADI bundle, it may be FRZ signal, depended on J1's position.
2	SRESET~	I/O	Soft Reset line of the MPC. Active-low, Open-Drain.
3	GND		Ground.
4	DSCK	I/O	Debug Serial Clock. Over the rising edge of which serial date is sampled by the MPC from DSDI signal. Over the falling edge of which DSDI is driven towards the MPC and DSDO is driven by the MPC. Configured on the MPC's JTAG port. When the debug-port controller is on the local MPC or when the FADS is a debug-port controller for a target system - OUTPUT, when the FADI bundle is disconnected from the FADS - INPUT.
5	GND		Ground
6	VFLS1	0	See VFLS0. When the FADS is disconnected from the ADI bundle, it may be FRZ signal, depended on J1's position.
7	HRESET~	I/O	Hard Reset line of the MPC. Active-low, Open-Drain
8	DSDI	I/O	Debug Serial Data In of the debug port. Configured on the MPC's JTAG port. When the debug-port controller is on the local MPC or when the FADS is a debug-port controller for a target system - OUTPUT, when the ADI bundle is disconnected from the FADS - INPUT.
9	V3.3	0	3.3V Power indication. This line is merely for indication. No significant power may be drawn from this line.
10	DSDO	I/O	Debug Serial Data Output from the MPC. Configured on the MPC's JTAG port. When the debug-port controller is on the local MPC or when the ADI bundle is disconnected from the FADS - OUTPUT, when the FADS is a debug-port controller for a target system - INPUT.

5•1•6 P6 - 5V Power Connector

The 5V power connector - P6, is a 3-lead, two-part terminal block. The male part is soldered to the pcb, while the receptacle is connected to the power supply. That way fast connection / disconnection of power is facilitated and physical efforts are avoided on the solders, which therefore maintain solid connection over time.

TABLE 5-6. P6 - Interconnect Signals

Pin Number	Signal Name	Description
1	5V	5V input from external power supply.
2	GND	GND line from external power supply.
3	GND	GND line from external power supply.

5•1•7 P7 - 12V Power Connector

The 12V power connector - P7, is a two-lead, 2 part, terminal block connector, identical in type to the 5V connector. P7 supplies, when necessary, programming voltage to the Flash SIMM and / or to the PCMCIA

TABLE 5-7. P7 - Interconnect Signals

Pin Number	Signal Name	Description	
1	12V	12V input from external power supply.	
2	GND	GND line from external power supply.	

slot.

5•1•8 P8 - Serial Ports' Expansion Connector

P8 is the serial ports expansion connector. Its is compatible A with the QUADS board and with the MPC821/860ADS.

P8 is a 96 pin, Female, DIN 41612 connector.

Since the pinout of P8 is specific to the Daughter-Board connected to the FADS, it is described in each Daughter-Board User's manual.

5•1•9 PD1 - PD4 - Daughter Boards' Connectors Interconnect Signals

PD1 to PD4 are 140 pin receptacle inter-board connectors, which interconnect between this board and the daughter board. All MPC pins appear in these connectors plus few auxiliary control pins. These connectors are arranged in a quadratic assembly around the MPC to provide short PCB routs. The interconnect signals of the connectors are described in TABLE 5-8. "PD1 Interconnect Signals" on page 82, in TABLE 5-9. "PD2 Interconnect Signals" on page 88, in TABLE 5-10. "PD3 Interconnect Signals" on page 95 and in TABLE

A. True for the MPC860, but true upto an extent for other derivatives.

5-11. "PD4 Interconnect Signals" on page 102

TABLE 5-8. PD1 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
1	BB~	I/O, L	MPC's Bus Busy signal. Pulled - up on the FADS.
2	VCC	-	
3	DRM_W~	I,L	MPC's GPL0~ lines used as R/W~ signal for the DRAM simm or as A10 line for the SDRAM.
4	VCC	-	5V Bus.
5	TEA~	I/O, L, O.D.	Transfer Error Acknowledge. Pulled-up, not driven on board.
6	VCC		
7	BR~	I/O,L	MPC's Bus Request signal. Pulled - up on the FADS, but otherwise unused.
8	VCC		
9	BURST~	I/O, L	MPC's Burst indication. Pulled - up on the FADS, but otherwise unused.
10	VCC		
11	GPL4A~	X,L	UPMA general purpose line 4. Not used on the FADS.
12	VCC		
13	TA~	I/O, L	MPC's transfer Acknowledge signal. Indicates end of bus cycle, used with FADS logic.
14	VCC		
15	TS~	I/O, L	MPC's Transfer Start indication. Pulled - up, but otherwise unused on the FADS.
16	VCC		
17	GPL5B~	O, L	General Purpose Line 5 of UPMB. Not used on the FADS.
18	VCC		
19	BG~	I/O, L	MPC's Bus grant signal. Pulled - up on the FADS, but otherwise unused.
20	VCC		
21	GPL4B~	O, L	General Purpose Line 4 of UPMB. Not used on the FADS.
22	VCC		
23	R_W~	I/O, L	MPC's Read/Write~ indication. Pulled - up on the FADS and used by FADS logic.
24	VCC		

Support Information TABLE 5-8. PD1 Interconnect Signals

	1		_
Pin No.	Signal Name	Attribute	Description
25	BCSRCS~	I/O, L	In fact CS1~ of the MPC. Used as chip-select for the BCSRs. Pulled - up. When BCSR is removed from the local map, may be used off-board via the daughter-board's expansion connectors.
26	VCC	0	5V Bus.
27	GPL5A~	X,L	UPMA general purpose line 5. Not used on the FADS.
28	VCC	0	5V Bus.
29	BI~	I/O,L	MPC's Burst Inhibit input. Pulled - up, but otherwise unused on the FADS.
30	N.C.	-	Not Connected. Reserved.
31	CS7~		
32	GND	-	FADS Ground plane.
33	CS5~	-	MPC's Chip Select line 5. Unused on the FADS.
34	GND		
35	CE1A~	I, L	PC-Card Enable 1 for PCMCIA slot A. Enables the EVEN address bytes. Used by on-board PCMCIA port.
36	GND		
37	F_CS~	I/O, L	In fact MPC's chip-select line 0. Used as chip-select for the Flash Simm. Pulled - up. When the Flash is disabled via BCSR, may be used off-board via the daughter-board's expansion connectors.
38	GND		
39	CS6~	-	MPC's Chip Select line 6. Unused on the FADS.
40	GND		
41	CE2A~	I, L	PC-Card Enable 2 for PCMCIA slot A. Enables the ODD address bytes. Used by on-board PCMCIA port.
42	GND		
43	DRMCS2~	I/O, L	In fact MPC's chip-select line 3. Used as chip-select line for the 2'nd bank of the Dram Simm. Pulled - up. When the Dram is disabled via BCSR or when a single-bank Dram Simm is being used - may be used off-board via the daughter board's expansion connectors.
44	GND		
45	DRMCS1~	I/O, L	In fact MPC's chip-select line 2. Used as chip-select line for the 1'st bank of the Dram Simm. Pulled - up. When the Dram is disabled via BCSR - may be used off-board via the daughter board's expansion connectors.
46	GND		
L	1		·

Support Information TABLE 5-8. PD1 Interconnect Signals

Din Ma	Cianal Name	A 44 mile 4 -	Description
Pin No.	Signal Name	Attribute	Description
47	SDRMCS~	I/O, L	In fact MPC's chip-select line 4. Used as chip-select for the Synchronous Dram. Pulled - up. When the SDRAM is disabled via BCSR, may be used off-board via the daughter board
48	GND		
49	GPL3~	I/O, L	UPMA or UPMB general purpose line 3. Used as WR~ signal for the SDRAM.
50	GND		
51	GPL2~	I, L	General Purpose Line 2 for UPMA or UPMB. Used with the SDRAM, as a CAS~ signal.
52	GND		
53	WE3~	I, L	GPCM Write Enable 3 or PCMCIA WE~. Selects the LSB within a word for the Flash Simm or qualifies Writes for the PC-Card.
54	GND		
55	WE2~	I, L	GPCM Write Enable 2 or PCMCIA OE~. Selects the offset 2 Byte within a word for the Flash Simm or open data buffers for read from PC-Card.
56	GND		
57	WE1~	I, L	GPCM Write Enable1 or PCMCIA I/O Write. Used to qualify write cycles to the Flash memory and as I/O Write for the PCMCIA channel.
58	GND		
59	BS2A~	I, L	Byte Select 2 for UPMA. Selects offset 2 bytes within Word. Used for Dram access.
60	GND		
61	WE0~	I, L	GPCM Write Enable 0 or PCMCIA I/O Read. Used to qualify write cycles to the Flash memory and as I/O Reads from PC-Card.
62	GND		
63	SPARE1	I,O, L	MPC spare line 1. Pulled - up but otherwise unused on the FADS.
64	GND		
65	EDOOE~	I,L	In fact UPMA or UPMB General Purpose Line 1. Used for Output Enable with EDO Dram simms, which have this input (most of them don't). Used also as RAS signal for the SDRAM.
66	GND		
67	BS0A~	I, L	Byte Select 0 from UPMA. Selects offset 0 Bytes within a word. Used as one of the CAS~ lines for Dram access.
68	GND		
69	BS3A~	I, L	Byte Select 3 from UPMA. Selects offset 3 Bytes within a word. Used as one of the CAS~ lines for Dram access.

Support Information TABLE 5-8. PD1 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
70	GND		
71	A31	I, T.S.	MPC's Address line 31.
72	GND		
73	BS1A~	I, L	Byte Select 1 from UPMA. Selects offset 1 Bytes within a word. Used as one of the CAS~ lines for Dram access.
74	GND		
75	TSIZ1	x, T.S.	Transfer Size 1. Used in conjunction with TSIZ0 to indicate the number of bytes remaining in an operand transfer. Not used on the FADS.
76	GND		
77	REG_A~	I, T.S., L	In fact TSIZ0/REG~. Transfer Size 0 or PCMCIA slot A REG~. Used with the PCMCIA port as Attribute memory select or I/O space select.
78	GND		
79	A30	I, T.S.	MPC's Address line 30.
80	GND		
81	A21	I, T.S.	MPC's Address line 21.
82	GND		
83	A20	I, T.S.	MPC's Address line 20.
84	GND		
85	A7	I, T.S.	MPC's Address line 7.
86	GND		
87	A15	I, T.S.	MPC's Address line 15.
88	GND		
89	A14	I, T.S.	MPC's Address line 14.
90	GND		
91	A13	I, T.S.	MPC's Address line 13.
92	GND		
93	A6	I, T.S.	MPC's Address line 6.
94	GND		
95	A12	I, T.S.	MPC's Address line 12.
96	GND		
97	A11	I, T.S.	MPC's Address line 11.
98	GND		

Support Information TABLE 5-8. PD1 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
99	A19	I, T.S.	MPC's Address line 19.
100	GND		
101	A9	I, T.S.	MPC's Address line 9.
102	GND		
103	A18	I, T.S.	MPC's Address line 18.
104	GND		
105	A10	I, T.S.	MPC's Address line 10.
106	GND		
107	A17	I, T.S.	MPC's Address line 17.
108	GND		
109	A16	I, T.S.	MPC's Address line 16.
110	GND		
111	A8	I, T.S.	MPC's Address line 8.
112	GND		
113	A29	I, T.S.	MPC's Address line 29.
114	GND		
115	A27	I, T.S.	MPC's Address line 27.
116	GND		
117	A28	I, T.S.	MPC's Address line 28.
118	GND		
119	A26	I, T.S.	MPC's Address line 26.
120	GND		
121	A25	I, T.S.	MPC's Address line 25.
122	GND		
123	A24	I, T.S.	MPC's Address line 24.
124	GND		
125	A22	I, T.S.	MPC's Address line 22.
126	GND		
127	A3	I, T.S.	MPC's Address line 3. Not used on the FADS.
128	GND		
129	A23	I, T.S.	MPC's Address line 23.

Support Information TABLE 5-8. PD1 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
130	GND		
131	A4	I, T.S.	MPC's Address line 4. Not used on the FADS.
132	GND		
133	A2	I, T.S.	MPC's Address line 2. Not used on the FADS.
134	GND		
135	A5	I, T.S.	MPC's Address line 5. Not used on the FADS.
136	GND		
137	A1	I, T.S.	MPC's Address line 1. Not used on the FADS.
138	GND		
139	A0	I, T.S.	MPC's Address line 0. Not used on the FADS.
140	GND		

TABLE 5-9. PD2 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
1	V12	0	10V output from voltage doubler. Used to switch TMOS gates on
2			both mother and daughter boards. Should not be used for any other purpose.
3			
4			
5	N.C.		
6			
7	DSDI	I/O	DSDI/TDI. Debug Port Serial Data Input or JTAG port serial Data Input. Used on the FADS as debug port serial data, driven by the debug-port controller. If the ADI bundle is not connected to the FADS, may be driven by external debug / JTAG ^a port controller.
8	GND		
9			
10	DSCK	I/O	DSCK/TCK. Debug Port Serial Clock input or JTAG port serial clock input. Used on the FADS as debug port serial clock, driven by the debug-port controller. If the ADI bundle is not connected to the FADS, may be driven by an external debug / JTAG ^a port controller.
11	DSDO	I	DSDO/TDO. Debug Port Serial Data Output or JTAG port Data Output. Used on the FADS as debug port serial data. If the ADI bundle is not connected to the FADS, may be used by an external debug / JTAG ^a port controllers.
12	GND		
13			
14	AT2	I/O	IP_B2/IOIS16~/AT2. PCMCIA slot B Input Port 2 or PCMCIA 16 bit I/O capability indication or Address Type 2. For MPC823 or MPC850 daughter boards - configured as IP_B2/IOIS16~. For all other daughter boards, configured as AT2, but may be configured to alternate function as no use is done with AT2 on the FADS.
15	GND		
16	VF2	I/O	IP_B3/IWP2/VF2. PCMCIA slot B Input Port 3 or Instruction Watch-Point 2 or Visible Instruction Queue Flushes Status 2. For MPC823 or MPC850 daughter boards - configured as IP_B3. For all other daughter boards, configured as VF2, but may be configured to alternate function as no use is done with VF2 on the FADS.
17	GND		

Support Information TABLE 5-9. PD2 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
	-		·
18	VF0	I/O	IP_B4/LWP0/VF0. PCMCIA slot B Input Port 4 or Data Watch-Point 0 or Visible Instruction Queue Flushes Status 0. For MPC823 or MPC850 daughter boards - configured as IP_B4. For all other daughter boards, configured as VF0, but may be configured to alternate function as no use is done with VF0 on the FADS.
19	GND		
20			
21			
22	IRQ3~	I/O, L	IRQ3~/CR~. MPC's interrupt request 3 or Cancel Reservation. Pulled - up but otherwise not used on the FADS.
23	GND		
24	FRZ	I, X	Freeze / IRQ6~. MPC debug state indication or Interrupt request line 6. Used by the debug port controller as debug state indication. May be configured to alternate function provided that VFLS(0:1) function as VFLS and J1 is moved to position 1-2.
25	GND		
26	IRQ2~	I/O, L	RSV~/IRQ2~. Reservation or Interrupt Request 2. Pulled - up but otherwise unused on the FADS.
27	GND		
28			
29			
30	AT3	I/O	IP_B7/PTR/AT3. PCMCIA slot B Input Port 7 or Program Trace (instruction fetch indication or Address Type 3. For MPC823 or MPC850 daughter boards - configured as IP_B7. For all other daughter boards, configured as AT3, but may be configured to alternate function as no use is done with AT3 on the FADS.
31	GND		
32	SPARE4	I/O	MPC's spare line 4. Pulled - up but otherwise unused on the FADS.
33	GND		
34	VFLS0	I/O	IP_B0/IWP0/VFLS0. PCMCIA slot B Input Port 0 or Instruction Watchpoint 0 or Visible history Flushes Status 0. For the MPC823 or MPC850 daughter boards, configured as IP_B0. For all other daughter boards - configured as VFLS0. May be configured to any alternate function. Indicates in conjunction with VFLS1, the number of instructions flushed from the core's history buffer. Indicates also whether the MPC is in debug mode. If not using the debug port, may be configured for alternate function.
35	GND		

Support Information TABLE 5-9. PD2 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
36	SPKROUT	I, X	KR~/IRQ4~/SPKROUT. Kill Reservation input or Interrupt Request 4 input or PCMCIA Speaker Output. Configured on the FADS as SPKROUT. May be configured to alternate function.
37	GND		
38	VFLS1	I/O	IP_B1/IWP1/VFLS1. PCMCIA slot B Input Port 1 or Instruction Watchpoint 1 or Visible history Flushes Status 1. For the MPC823 or MPC850 daughter boards, configured as IP_B1. For all other daughter boards - configured as VFLS0. May be configured. Indicates in conjunction with VFLS1, the number of instructions flushed from the core's history buffer. Indicates also whether the MPC is in debug mode. If not using the debug port, may be configured for alternate function.
39	GND		
40			
41			
42	VF1	-	IP_B5/LWP1/VF1. PCMCIA slot B Input Port 5 or Load/Store Watch-Point 1 or Visible Instruction Queue Flushes Status 1. For MPC823 or MPC850 configured as IP_B5, for all other daughter boards configured as VF1. May be configured to any alternate function as no use is done with it on the FADS.
43	GND		
44	AT1	-	ALE_B/DSCK/AT1. Address Latch Enable for PCMCIA slot B or Debug Serial Clock or Address Type 1. For MPC823 or MPC850 daughter boards configured as ALE_B for all other daughter boards configured as AT1. Not used on the FADS. May be configured to any alternate function.
45	GND		
46	AT0	I	IP_B6/DSDI/AT0. Input Port B 6 or Debug Serial Data Input or Address Type 0. Configured on the as AT0. May be used for alternate function.
47	GND		
48	POE_A~	I, L	In fact OP1 of the PCMCIA I/F. Enables address buffers towards the PC-Card.
49	GND		
50			
51			
52	BADDR30	I/O,X	Burst Address Line 30. Dedicated for external master support. Used to generate Burst address during external master burst cycles. Pulled - up but otherwise unused on the FADS.
53	GND		

Support Information TABLE 5-9. PD2 Interconnect Signals

	<u> </u>		_
Pin No.	Signal Name	Attribute	Description
54	ALE_A	I, H	Address Latch Enable for PCMCIA slot A. Latches address in external latches at the beginning of access to a PC-Card.
55	GND		
56	BADDR29	I/O,X	Burst Address Line 29. Dedicated for external master support. Used to generate Burst address during external master burst cycles. Pulled - up but otherwise unused on the FADS.
57	GND		
58	AS~	I/O, L	Asynchronous external master Address Strobe signal. When asserted (L) by the external master, the MPC recognizes an asynchronous cycle in progress. Pulled - up but otherwise unused on the FADS.
59	GND		
60	MODCK1	I/O	OP2/MODCK1/STS~. PCMCIA Output Port 2 or Mode Clock 1 input or Special Transfer Start output. Used at Power-On reset as MODCK1. For MPC823 or MPC850 daughter boards configured afterwards as a OP2 for all other daughter boards configured afterwards as STS~.
61	GND		
62	RESETA	I,H	PC-Card reset signal.
63	GND		
64			
65			
66	BADDR28	I/O,X	Burst Address Line 28. Dedicated for external master support. Used to generate Burst address during external master burst cycles. Pulled - up but otherwise unused on the FADS.
67	GND		
68	TEXP	X,X	MPC Timer Expired. Not used on the FADS.
69	GND		
70	WAIT_B~	I/O, L	This signal is PCMCIA slot B wait signal. Pulled-up but otherwise not used on the FADS.
71	GND		
72	MODCK2	I/O	OP3/MODCK2/DSDO. PCMCIA Output Port 3 or Mode Clock 2 input or Special Transfer Start output. Used at Power-On reset as MODCK2 and configured afterwards as a OP3. May be used with alternate function.
73	GND		
74			
75			

Support Information TABLE 5-9. PD2 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
	N.C.	7 Illinoute	Description
76			
77	GND		
78	-		
79			
80	SRESET~	I/O, L, O.D.	MPC Soft Reset. Driven by on-board logic and may be driven by off-board logic with Open-Drain gate only.
81	GND		
82	PORST~	X, L	Power On reset for the MPC. Not used on the FADS, generated on the daughter boards
83	GND		
84	HRESET~	I/O, L, O.D.	MPC Hard Reset. Driven by on-board logic and may be driven by off-board logic with Open-Drain gate only.
85	GND		
86	RSTCNF~	O, L	Hard Reset Configuration output. Driven during Hard Reset to the daughter board to signal the MPC that it should sample Hard Reset configuration from the data bus.
87	GND		
88	R_PORI~	O, L	Main battery power-on reset. Generated as a result of main 3.3V bus going through power up or power-down. Drives on-board logic as well either HARD-RESET or Power-On reset to the MPC.
89	GND		
90			
91			
92	BWAITA~	O, L	Buffered PCMCIA slot A WAIT signal. Used to prolong cycles to slow PC-Cards. In case of MPC823 or MPC850 daughter boards, connected to WAIT_B~ signal of the MPC.
93	GND		
94	BWP	O, H	Buffered PCMCIA slot A Write Protect. In fact IP_A2/IOIS16A~. Used as PC-card write protect indication or as 16 bit I/O capability indication for PCMCIA slot A. In case of MPC823 or MPC850 daughter boards, connected to IP_B2 signal of the MPC.
95	GND		
96	BVS1	O,X	Buffered PCMCIA slot A Voltage Sense 1. In fact IP_A0. Used in conjunction with BVS2 to determine the operation voltage of a PCMCIA card. In case of MPC823 or MPC850 daughter boards, connected to IP_B0 signal of the MPC.
97	GND		
	I.		1

Support Information

TABLE 5-9. PD2 Interconnect Signals

BRDY D, H Buffered PCMCIA slot A Ready signal. In fact IP_A1, Used as PCMCIA port A Card Ready indication. In case of MPC823 or MPC850 daughter boards, connected to IP_B7 signal of the MPC. PP3	Din Ma	Cianal Name	A stails t s	Description
PCMCIA port A Card Ready, indication. In case of MPC823 or MPC850 daughter boards, connected to IP_B7 signal of the MPC. 99 GND 100 101 102 DP3 I/O, X DP3/IRQ6 Data Parity line 3 or Interrupt Request 6. May generate and receive parity data for D(24:31) bits connected to the DRAM SIMM. May also be configured as IRQ6- input for the MPC. 103 GND 104 BVS2 O, X Buffered PCMCIA slot A Voltage Sense 2. In fact IP_A1. Used in conjunction with BVS1 to determine the operation voltage of a PCMCIA card. In case of MPC823 or MPC850 daughter boards, connected to IP_B1 signal of the MPC. 105 GND 106 BCD1- O, L Buffered PCMCIA slot A Card Detect 1. In fact IP_A4 Input Port 4 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD2 In case of MPC823 or MPC850 daughter boards, connected to IP_B4 signal of the MPC. 107 GND 108 MODIN O, X This signal selects between clock generator and the 32768 Hz crystal as clock sources for the MPC. Its is driven by DS2/4. See 2×3×2 "Clock Source Selection" on page 15. 109 GND 110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BCD2 to determine the battery status of a PC-Card. In case of MPC830 of MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2- O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect 1. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect 1. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect 1. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect 1. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect 1. In fact IP_A5. Used in conjunction with BCD1 In case of MPC830 of MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BCD1-1 in case of MPC850 daughter boards, connected to IP_B3 signal of the MPC.	Pin No.	Signal Name	Attribute	Description
100 101 102 108 109 109 109 100 100 100 100 100 100 100	98	BRDY	O, H	PCMCIA port A Card Ready indication. In case of MPC823 or
101 102 108 1093 1093 1093 1093 1093 1093 1093 1093	99	GND		
102 DP3 I/O, X DP3/IRQ6 Data Parity line 3 or Interrupt Request 6. May generate and receive parity data for D(24:31) bits connected to the DRAM SIMM. May also be configured as IRQ6- input for the MPC. 103 GND 104 BVS2 O, X Buffered PCMCIA slot A Voltage Sense 2. In fact IP_A1. Used in conjunction with BVS1 to determine the operation voltage of a PCMCIA card. In case of MPC830 or MPC850 daughter boards, connected to IP_B1 signal of the MPC. 105 GND 106 BCD1- O, L Buffered PCMCIA slot A Card Detect 1. In fact IP_A4. Input Port 4 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD2 In case of MPC823 or MPC850 daughter boards, connected to IP_B4 signal of the MPC. 107 GND 108 MODIN O, X This signal selects between clock generator and the 32768 Hz crystal as clock sources for the MPC. Its is driven by DS2/4. See 2*3*2 "Clock Source Selection" on page 15. 109 GND 110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2- O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1 In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC.	100			
generate and receive parity data for D(24:31) bits connected to the DRAM SIMM. May also be configured as IRQ6- input for the MPC. 103 GND 104 BVS2 O, X Buffered PCMCIA slot A Voltage Sense 2. In fact IP_A1. Used in conjunction with BVS1 to determine the operation voltage of a PCMCIA card. In case of MPC823 or MPC850 daughter boards, connected to IP_B1 signal of the MPC. 105 GND 106 BCD1- O, L Buffered PCMCIA slot A Card Detect 1. In fact IP_A4. Input Port 4 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD2 In case of MPC823 or MPC850 daughter boards, connected to IP_B4 signal of the MPC. 107 GND 108 MODIN O, X This signal selects between clock generator and the 32768 Hz crystal as clock sources for the MPC. Its is driven by DS2/4. See 2*3*2 "Clock Source Selection" on page 15. 109 GND 110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A5. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2- O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1 In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BCD1 In case of MPC820 or MPC850 daughter boards, connected to IP_B3 signal of the MPC.	101			
BVS2 O, X Buffered PCMCIA slot A Voltage Sense 2. In fact IP_A1. Used in conjunction with BVS1 to determine the operation voltage of a PCMCIA card. In case of MPC823 or MPC850 daughter boards, connected to IP_B1 signal of the MPC. O, L BCD1- O, L Buffered PCMCIA slot A Card Detect 1. In fact IP_A4. Input Port 4 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD2 In case of MPC823 or MPC850 daughter boards, connected to IP_B4 signal of the MPC. MODIN O, X This signal selects between clock generator and the 32768 Hz crystal as clock sources for the MPC. Its is driven by DS2/4. See 2*3*2 "Clock Source Selection" on page 15. BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. BCD2- O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1 In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. BBVD2 O, X Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1 In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC.	102	DP3	I/O, X	generate and receive parity data for D(24:31) bits connected to the DRAM SIMM. May also be configured as IRQ6~ input for the
conjunction with BVS1 to determine the operation voltage of a PCMCIA card. In case of MPC823 or MPC850 daughter boards, connected to IP_B1 signal of the MPC. 105 GND 106 BCD1~ O, L Buffered PCMCIA slot A Card Detect 1. In fact IP_A4. Input Port 4 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD2~. In case of MPC823 or MPC850 daughter boards, connected to IP_B4 signal of the MPC. 107 GND 108 MODIN O, X This signal selects between clock generator and the 32768 Hz crystal as clock sources for the MPC. Its is driven by DS2/4. See 2*3*2 "Clock Source Selection" on page 15. 109 GND 110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2~ O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC820 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC.	103	GND		
106 BCD1~ O, L Buffered PCMCIA slot A Card Detect 1. In fact IP_A4. Input Port 4 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD2~. In case of MPC823 or MPC850 daughter boards, connected to IP_B4 signal of the MPC. 107 GND 108 MODIN O, X This signal selects between clock generator and the 32768 Hz crystal as clock sources for the MPC. Its is driven by DS2/4. See 2*3*2 "Clock Source Selection" on page 15. 109 GND 110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2~ O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC.	104	BVS2	O, X	conjunction with BVS1 to determine the operation voltage of a PCMCIA card. In case of MPC823 or MPC850 daughter boards,
of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD2 In case of MPC823 or MPC850 daughter boards, connected to IP_B4 signal of the MPC. 107 GND 108 MODIN O, X This signal selects between clock generator and the 32768 Hz crystal as clock sources for the MPC. Its is driven by DS2/4. See 2*3*2 "Clock Source Selection" on page 15. 109 GND 110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2- O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1 In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC.	105	GND		
108 MODIN O, X This signal selects between clock generator and the 32768 Hz crystal as clock sources for the MPC. Its is driven by DS2/4. See 2*3*2 "Clock Source Selection" on page 15. 109 GND 110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2~ O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC.	106	BCD1~	O, L	of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD2~. In case of MPC823 or MPC850 daughter boards,
crystal as clock sources for the MPC. Its is driven by DS2/4. See 2*3*2 "Clock Source Selection" on page 15. 109 GND 110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2- O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC.	107	GND		
110 BBVD1 O, X Buffered PCMCIA slot A Battery Voltage Detect 1. In fact IP_A6. Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2~ O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC.	108	MODIN	O, X	crystal as clock sources for the MPC. Its is driven by DS2/4. See
Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B6 signal of the MPC. 111 GND 112 BCD2~ O, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC. 115 GND	109	GND		
D, L Buffered PCMCIA slot A Card Detect 2. In fact IP_A3. Input Port 3 of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC. 115 GND	110	BBVD1	O, X	Used in conjunction with BBVD2 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards,
of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC823 or MPC850 daughter boards, connected to IP_B3 signal of the MPC. 113 GND 114 BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC. 115 GND	111	GND		
BBVD2 O, X Buffered PCMCIA slot A Battery Voltage Detect 2. In fact IP_A5. Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC. GND GND	112	BCD2~	O, L	of PCMCIA slot A. Used as Card Detect indication in conjunction with BCD1~. In case of MPC823 or MPC850 daughter boards,
Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards, connected to IP_B5 signal of the MPC. 115 GND	113	GND		
	114	BBVD2	O, X	Used in conjunction with BBVD1 to determine the battery status of a PC-Card. In case of MPC823 or MPC850 daughter boards,
116	115	GND		
	116			

Support Information TABLE 5-9. PD2 Interconnect Signals

	_		
Pin No.	Signal Name	Attribute	Description
117	N.C.		
118	DP0	I/O	DP0/IRQ3~. Data Parity line 0 or Interrupt Request 3. May generate and receive parity data for D(0:7) bits connected to the DRAM SIMM. May not be configured as IRQ3~.
119	V3.3		
120	DP2	I/O	DP2/IRQ5~. Data Parity line 2 or Interrupt Request 5. May generate and receive parity data for D(16:23) bits connected to the DRAM SIMM. May not be configured as IRQ5~.
121	V3.3		
122	DP1	I/O	DP1/IRQ4~. Data Parity line1 or Interrupt Request 4. May generate and receive parity data for D(8:15) bits connected to the DRAM SIMM. May not be configured as IRQ4~.
123	V3.3		
124	N.C.		
125	V3.3		
126	IRQ1~	I/O, L	Interrupt Request 1.Pulled-up but otherwise not used on the FADS.
127	V3.3		
128	SPARE3	I/O, X	MPC's spare line 3. Pulled - up but otherwise unused on the FADS.
129	V3.3		
130	IRQ7~	I/O, L	Interrupt Request 7. The lowest priority interrupt request line. Pulled - up but otherwise not used on the FADS.
131	V3.3		
132	N.C.		
133	V3.3		
134	NMI~	I/O, L	Non-Makable Interrupt. In fact IRQ0~ of the MPC. Driven by onboard logic by O.D. gate. Pulled - up. May be driven off-board by O.D. gate only.
135	V3.3		
136	N.C.		
137	V3.3		
138	N.C.		
139	V3.3		
140	N.C.		

a. Be aware that TRST~ is connected to GND with a zero ohm resistor.

TABLE 5-10. PD3 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
1	ETHRX	O, X	Ethernet port Receive Data. When the ethernet port is disabled via BCSR1 - tri-stated. Appears also at P8.
2	GND		
3			
4	UUFEN~	O, L	Usb Port Enable or Utopia Port enable or Fast Ethernet port Enable. Generated by BCSR4. See TABLE 4-23. "BCSR4 Description" on page 65.
5	ETHTX	I, X	Ethernet Port Transmit Data. Appears also at P8.
6	GND		
7			
8	PC9	X, X	MPC's PI/O C 9 pin. Appears also at P8 but otherwise unused on the FADS.
9	IRDRXD	O, X	InfraRed Port Receive Data. When the I/R port is disabled via BCSR1 - tri-stated. Appears also at P8.
10	GND		
11	IRDTXD	I, X	InfraRed Port Transmit Data. Appears also at P8.
12	GND		
13			
14	PC8	I/O, X	MPC PI/O port C 8. Appears also at P8 but otherwise unused.
15	PA11	I/O, X	MPC PI/O port A 11. Appears also at P8 but otherwise unused.
16	GND		
17	PA10	I/O, X	MPC PI/O port A 10. Appears also at P8 but otherwise unused.
18	GND		
19			
20	PC7	I/O, X	MPC PI/O port C 7. Appears also at P8 but otherwise unused.
21	PA9	I/O, X	MPC PI/O port A 9. Appears also at P8 but otherwise unused.
22	GND		
23	PA8	I/O, X	MPC PI/O port A 9. Appears also at P8 but otherwise unused.
24	GND		
25			
26	PC13	I/O, X	MPC PI/O port C 13. Appears also at P8 but otherwise unused.

Support Information TABLE 5-10. PD3 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
27	ETHTCK	O, X	Ethernet port Transmit Clock. When the ethernet port is disabled via BCSR1 - tri-stated. Appears also at P8.
28	GND		
29	ETHRCK	O, X	Ethernet port Receive Clock. When the ethernet port is disabled via BCSR1 - tri-stated. Appears also at P8.
30	GND		
31			
32	USPSPD	O, X	Usb port Speed control. Applicable for MPC823 or MPC850 daughter boards only. Controls the speed of the USB transceiver, while changing pull-up resistors between USB D+ and D- lines. No use with any other daughter board. See also TABLE 4-23. "BCSR4 Description" on page 65.
33	PB31	I/O, X	MPC PI/O port B 31. Appears also at P8 but otherwise unused.
34	BINPAK~	I/O	PCMCIA port Input Port Acknowledge. In fact PC15/DREQ1~/RTS1~/L1ST1. When the PCMCIA port is disabled via BCSR1, may be used off-board for any alternate function.
35	PB30	I/O, X	MPC PI/O port B 30. Appears also at P8 but otherwise unused.
36	GND		
37	PB29	I/O, X	MPC PI/O port B 29. Appears also at P8 but otherwise unused.
38	RSTXD1	I, X	RS232 Port 1 Transmit Data. When RS232 port 1 is disabled via BCSR1, may be used for any alternate function. Appears also at P8.
39	RSRXD1	O, X	RS232 Port 1 Receive Data. When RS232 port 1 is disabled via BCSR1 - tri-stated and may be used for any alternate function. Appears also at P8.
40	RSDTR1~	O, L	RS232 port 1 DTR~ signal. When RS232 port 1 is disabled via BCSR1 - tri-stated and may be used for any alternate function. Appears also at P8.
41	GND		
42	RSTXD2	I, X	RS232 Port 2 Transmit Data. When RS232 port 2 is disabled via BCSR1, may be used for any alternate function. Appears also at P8.
43	RSRXD2	O, X	RS232 Port 2 Receive Data. When RS232 port 2 is disabled via BCSR1 - tri-stated and may be used for any alternate function. Appears also at P8.
44	RSDTR2~	O, L	RS232 port 2 DTR~ signal. When RS232 port 2 is disabled via BCSR1 - tri-stated and may be used for any alternate function. Appears also at P8.
45	PC14	I/O, X	MPC PI/O port C 14. Appears also at P8 but otherwise unused.
46	GND		

I

MPC8XXFADS - User's Manual

Support Information TABLE 5-10. PD3 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
47	N.C.		
48	GND		
49			
50	PB27	I/O, X	MPC PI/O port B 27. Appears also at P8 but otherwise unused.
51	PB28	I/O, X	MPC PI/O port B 28. Appears also at P8 but otherwise unused.
52	GND		
53	PC12	I/O, X	MPC PI/O port C 12. Appears also at P8 but otherwise unused.
54	PB26	I/O, X	MPC PI/O port C 26. Appears also at P8 but otherwise unused.
55	GND		
56			
57	PA5	I/O, X	MPC PI/O port A 5. Appears also at P8 but otherwise unused.
58	GND		
59			
60	PA4	I/O, X	MPC PI/O port A 4. Appears also at P8 but otherwise unused.
61	E_CLSN	I/O, H	Ethernet Port Collision indication signal. Connected to the SCC's CTS~ signal. When the ethernet port is disabled via BCSR1, may be used off-board for any alternate function.
62	E_RENA	I/O, H	Ethernet Receive Enable. Connected to the SCC's CD~ signal. Active when there is network activity. When the ethernet port is disabled via BCSR1, may be used off-board for any alternate function.
63	SPARE2	I/O, X	MPC spare line 2. Pulled - up but otherwise unused on the FADS.
64	VDOEN~	O, L	Applies only for MPC823 daughter board. Video Encoder Enable Indication. Generated by BCSR4. See TABLE 4-23. "BCSR4 Description" on page 65.
65	GND		
66]		
67	SYSCLK	I, X	System Clock. In fact the CLKOUT of the MPC.
68	GND		
69			
70			
71	PA3	I/O, X	MPC PI/O port A 3. Appears also at P8 but otherwise unused.
72	GND		
73			

I

I

MPC8XXFADS - User's Manual

Support Information TABLE 5-10. PD3 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
74	PA2	I/O, X	MPC PI/O port A 2. Appears also at P8 but otherwise unused.
75	PB17	I/O, X	MPC PI/O port B 17. Appears also at P8 but otherwise unused.
76	PB18	I/O, X	MPC PI/O port B 18. Appears also at P8 but otherwise unused.
77	E_TENA	I/O, H	Ethernet port Transmit Enable. Connected to the SCC's RTS~ signal. When active, transmit is enabled via the MC68160 EEST. When the ethernet port is disabled via BCSR1, may be used off-board for any alternate function.
78	GND		
79	N.C.		
80			
81			
82	ETHEN~	O, L	Ethernet Port Enable. Connected to BCSR1. See TABLE 4-10. "BCSR1 Description" on page 57.
83	N.C.		
84	IRD_EN~	O, L	Infra-Red Enable. Connected to BCSR1. See TABLE 4-10. "BCSR1 Description" on page 57.
85	PA1	I/O, X	MPC PI/O port A 1. Appears also at P8 but otherwise unused.
86	GND		
87			
88	N.C.		
89	PA0	I/O, X	MPC PI/O port A 0. Appears also at P8 but otherwise unused.
90	GND		
91			
92	TMS	I/O, X	JTAG port Test Mode Select input. Used to select test through the JTAG port. Pulled-up but otherwise not used on the FADS.
93	PB16	I/O, X	MPC PI/O port B 16. Appears also at P8 but otherwise unused.
94	TRST~	O, L	JTAG port Reset. Pulled down with a zero ohm resistor, so that the JTAG logic is constantly reset. Otherwise unused on the FADS.
95	PB15	I/O, X	MPC PI/O port B 15. Appears also at P8 but otherwise unused.
96	RS_EN1~	O, L	RS232 port 1 Enable. Connected to BCSR1. See TABLE 4-10. "BCSR1 Description" on page 57.
97	PB14	I/O, X	MPC PI/O port B 14. Appears also at P8 but otherwise unused.
98	PC4	I/O, X	MPC PI/O port C 4. Appears also at P8 but otherwise unused.
99	PC5	I/O, X	MPC PI/O port C 5. Appears also at P8 but otherwise unused.

Support Information TABLE 5-10. PD3 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
100	PC6	I/O, X	MPC PI/O port C 6. Appears also at P8 but otherwise unused.
101	GND		
102	RS_EN2~	O, L	RS232 port 1 Enable. Connected to BCSR1. See TABLE 4-10. "BCSR1 Description" on page 57.
103	SHIFT_C	I/O, X	MPC821's or MPC823's PD3/SHIFT/CLK or MPC860s' PD3/RRJECT4~. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as Video Clock input.
104	GND		
105			
106	HSYNC	I/O, X	MPC821's or MPC823's PD4/LOAD/HSYNC or MPC860s' PD4/RRJECT3~. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as HSYNC for the video encoder.
107	VSYNC	I/O, X	MPC821's or MPC823's PD5/FRAME/VSYNC or MPC860s' PD5/RRJECT2~. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as FIELD signal for the video encoder.
108	GND		
109			
110	LOE	I/O, X	MPC821's or MPC823's PD6/LCD_AC/LOE or MPC860s' PD6/RTS4~. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On the MPC823 daughter board used also as BLANK~ signal for the video encoder.
111	VDORST~	O, L	Applies only for MPC823 daughter board. Video Encoder Reset. This signal resets on its trailing edge, the ADV7176 video encoder. See TABLE 4-23. "BCSR4 Description" on page 65.
112	VDOEXTCK	О, Н	Applies only for MPC823 daughter board.
113	LD0	I/O, X	MPC821's or MPC823's PD7/LD0 or MPC860s' PD7/RTS3~. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as video data 7.
114	LD1		MPC821's or MPC PD8/LD1 or MPC860s' PD8/TXD4. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as video data 6.

I

MPC8XXFADS - User's Manual

Support Information TABLE 5-10. PD3 Interconnect Signals

_		l <u>.</u>	<u>-</u>
Pin No.	Signal Name	Attribute	Description
115	LD2	I/O, X	MPC821's or MPC823's PD9/LD2 or MPC860s' PD9/RXD4. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as video data 5.
116	LD3	I/O, X	MPC821's or MPC823's PD10/LD3 or MPC860s' PD10/TXD3. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as video data 4.
117	LD4	I/O, X	MPC821's or MPC823's PD11/LD4 or MPC860s' PD11/RXD3. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as video data 3.
118	LD5	I/O	MPC821's or MPC823's PD12/LD5 or MPC860s' PD12/L1RSYNCB. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as video data 2.
119	LD6	I/O, X	MPC821's or MPC823's PD13/LD6 or MPC860s' PD13/L1TSYNCB. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as video data 1.
120	LD7	I/O, X	MPC821's or MPC823's PD14/LD7 or MPC860s' PD14/L1RSYNCA. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector. On MPC823 daughter board used as video data 0.
121	LD8	I/O, X	MPC821's or MPC823's PD15/LD8 or MPC860s' PD15/L1TSYNCA. Not used on the FADS. Appears also at P8. On MPC823 or MPC821 daughter boards appears also at a dedicated LCD connector.
122	GND		
123			
124	ETHLOOP	O, H	Ethernet Transceiver Diagnostic Loop-Back Control. Generated by BCSR4. See TABLE 4-23. "BCSR4 Description" on page 65.
125	TPFLDL~	O, L	Twisted Pair Full Duplex. Allows for full-duplex operation over the Ethernet Twisted-Pair channel. See TABLE 4-23. "BCSR4 Description" on page 65.
126	TPSQEL~	O, L	Twisted Pair Signal Quality Error Test Enable. See TABLE 4-23. "BCSR4 Description" on page 65.
127	MDM_AUD~	O, L	Applies only for MPC823 daughter board. Selects between the Data / Voice paths of the MPC821 Modem Tool. See TABLE 4-23. "BCSR4 Description" on page 65.

I

MPC8XXFADS - User's Manual

Support Information TABLE 5-10. PD3 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
128	MODEMEN~	O, L	Applies only for MPC823 daughter board. Enables the MPC821 Modem Tool as well as a multiplexer for data / voice signals on the MPC823 daughter board. See TABLE 4-23. "BCSR4 Description" on page 65.
129	N.C.		
130	GND		
131	N.C.		
132			
133	VCC		
134			
135			
136			
137			
138			
139			
140			

TABLE 5-11. PD4 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
1	GND		
2	D31	I/O, X	MPC's Data line 31.
3	GND		
4	D30	I/O, X	MPC's Data line 30.
5	GND		
6	D29	I/O, X	MPC's Data line 29.
7	GND		
8	D28	I/O, X	MPC's Data line28.
9	GND		
10			
11			
12	D27	I/O, X	MPC's Data line 27.
13	GND		
14	D26	I/O, X	MPC's Data line 26.
15	GND		
16	D25	I/O, X	MPC's Data line 25.
17	GND		
18	D24	I/O, X	MPC's Data line 24.
19	GND		
20			
21			
22	D23	I/O, X	MPC's Data line 23.
23	GND		
24	D22	I/O, X	MPC's Data line 22.
25	GND		
26	D21	I/O, X	MPC's Data line 21.
27	GND		
28	D20	I/O, X	MPC's Data line 20.

Support Information TABLE 5-11. PD4 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
29	GND		
30			
31			
32	D19	I/O, X	MPC's Data line 191.
33	GND		
34	D18	I/O, X	MPC's Data line 18.
35	GND		
36	D17	I/O, X	MPC's Data line 17.
37	GND		
38	D16	I/O, X	MPC's Data line 16.
39	GND		
40			
41			
42	D15	I/O, X	MPC's Data line 15.
43	GND		
44	D14	I/O, X	MPC's Data line 14.
45	GND		
46	D13	I/O, X	MPC's Data line 13.
47	GND		
48	D12	I/O, X	MPC's Data line 12.
49	GND		
50			
51			
52	D11	I/O, X	MPC's Data line 11.
53	GND		
54	D10	I/O, X	MPC's Data line 10.
55	GND		
56	D9	I/O, X	MPC's Data line 9.
57	GND		
58	D8	I/O, X	MPC's Data line 8.

I

MPC8XXFADS - User's Manual

Support Information TABLE 5-11. PD4 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
59	GND		
60			
61			
62	D7	I/O, X	MPC's Data line 7.
63	GND		
64	D6	I/O, X	MPC's Data line 6.
65	GND		
66	D5	I/O, X	MPC's Data line 5.
67	GND		
68	D4	I/O, X	MPC's Data line 4.
69	GND		
70			
71			
72	D3	I/O, X	MPC's Data line 3.
73	GND		
74	D2	I/O, X	MPC's Data line 2.
75	GND		
76	D1	I/O, X	MPC's Data line 1.
77	GND		
78	D0	I/O, X	MPC's Data line 0.
79	GND		
80			
81	DRMH_W~	O, L	Dram Half Word. Sets the Dram to 16 bit data bus width. See TABLE 4-10. "BCSR1 Description" on page 57.
82	DRAMEN~	O, L	Dram Enable. Enables Dram to the FADS memory map. See TABLE 4-10. "BCSR1 Description" on page 57.
83	FCFGEN~	O, L	Flash Configuration Enable. Allows for Hard Reset Configuration to be obtained from the Flash memory provided that this option is supported by the MPC. See TABLE 4-10. "BCSR1 Description" on page 57.
84	F_EN~	O, L	Flash Enable. Enables the Flash memory to the FADS memory map. See TABLE 4-10. "BCSR1 Description" on page 57
85	SDRAMEN	O, H	Sdram Enable. Enables the Synchronous Dram to the FADS memory map. See TABLE 4-10. "BCSR1 Description" on page 57.

Support Information TABLE 5-11. PD4 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
86	BCSREN~	O, L	BCSR Enable. Enables the BCSR to the FADS memory map. See TABLE 4-10. "BCSR1 Description" on page 57.
87	USBVCC0	O, X	Applies only for MPC823DB. USB Power. Drives VCC on the USB bus when the MPC823 functions as USB host. See TABLE 4-23. "BCSR4 Description" on page 65.
88	PCCEN~	O, L	PC- Card Enable. Enables the PC-Card to be accessed by the FADS.
89	EXTOLI0	I/O, X	External Tool Identification 0. Connected to BCSR2. See 4•11•4 "BCSR2 - Board Control / Status Register - 2" on page 59.
90	SGLAMP~	O, L	Signaling Lamp. Used for misc. s/w signaling purpose. Set TABLE 4-23. "BCSR4 Description" on page 65.
91	EXTOLI2	I/O, X	External Tool Identification 2. Connected to BCSR2. See 4•11•4 "BCSR2 - Board Control / Status Register - 2" on page 59.
92	USBVCC1	O, X	Applies only for MPC823DB. Reserved Signal for USB Power See TABLE 4-23. "BCSR4 Description" on page 65.
93	DBREV0	I, X	Daughter Board Revision Code Signal 0. The MSB of the D/f revision Code. See TABLE 4-13. "BCSR2 Description" of page 60.
94	EXTOLI1	I/O, X	External Tool Identification 1. Connected to BCSR2. See 4•11• "BCSR2 - Board Control / Status Register - 2" on page 59.
95	DBREV2	I, X	Daughter Board Revision Code Signal 2. The LMSB of the D/I revision Code. See TABLE 4-13. "BCSR2 Description" of page 60.
96	EXTOLI3	I/O, X	External Tool Identification 3. Connected to BCSR2. See 4•11• "BCSR2 - Board Control / Status Register - 2" on page 59
97	BCSR3R1	I/O, X	Reserved signal 1 in BCSR3. See TABLE 4-19. "BCSR Description" on page 63
98	DBREV1	I/O, X	Daughter Board Revision Code Signal 1. See TABLE 4-13 "BCSR2 Description" on page 60.
99	DBID1	I/O, X	Daughter Board ID Code 1. Part of the field which designates th type of daughter board connected. See TABLE 4-19. "BCSR Description" on page 63
100	BCSR3R0	I/O, X	Reserved signal 0 in BCSR3. See TABLE 4-19. "BCSR Description" on page 63
101	DBID3	I/O, X	Daughter Board ID Code 3. Part of the field which designates th type of daughter board connected. See TABLE 4-19. "BCSR Description" on page 63
102	DBID0	I/O, X	Daughter Board ID Code 0. Part of the field which designates the type of daughter board connected. See TABLE 4-19. "BCSR Description" on page 63

ı

MPC8XXFADS - User's Manual

Support Information

TABLE 5-11. PD4 Interconnect Signals

Pin No.	Signal Name	Attribute	Description		
103	DBID5	I/O, X	Daughter Board ID Code 5. Part of the field which designates the type of daughter board connected. See TABLE 4-19. "BCSR3 Description" on page 63		
104	DBID2	I/O, X	Daughter Board ID Code 2. Part of the field which designates the type of daughter board connected. See TABLE 4-19. "BCSR3 Description" on page 63		
105	BCSR3R13	I/O, X	Reserved signal 13 in BCSR3. See TABLE 4-19. "BCSR3 Description" on page 63		
106	DBID4	I/O, X	Daughter Board ID Code 4. Part of the field which designates the type of daughter board connected. See TABLE 4-19. "BCSR3 Description" on page 63		
107	CHINS~	I/O, L	Chip In Socket. When this signal is active (low), FADS logic is noticed that the evaluated MPC8XX resides in its socket. If inactive, either the MPC is out of socket or a daughter board is not connected, in which case the FADS becomes a debug station.		
108	GND				
109					
110	N.C.				
111					
112	GND				
113]				
114	N.C.				
115]				
116	GND				
117]				
118	N.C.				
119					
120	GND				
121	<u> </u>				
122	N.C.				
123					
124	GND				
125	1				
126	N.C.				
127					

Support Information TABLE 5-11. PD4 Interconnect Signals

Pin No.	Signal Name	Attribute	Description
128	GND		
129			
130	N.C.		
131			
132	GND		
133			
134	N.C.		
135			
136	GND		
137			
138	N.C.		
139			
140	GND		

5•2 MPC8XXFADS Part List

In this section the MPC8XXFADS's bill of material is listed according to their reference designation.

TABLE 5-12. MPC8XXFADS Part List

Reference Designation	Part Description	Manufacturer	Part #
C1 C2 C3 C5 C9 C10 C12 C14 C17 C20 C21 C22 C24 C26 C27 C28 C32 C33 C34 C36 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C68 C69 C70 C71 C72 C73 C74 C76 C77 C78 C79 C82 C83 C84 C86 C88 C90 C91	Capacitor 0.1μF,16V, 10%, SMD 0603, Ceramic	AVX	0603YC104KAT20
C4 C11 C13 C18 C19 C23 C25 C29 C30 C75 C87	Capacitor 10μF, 20V, 10%, SMD Size C, Tantalum	SIEMENS	B45196-H4475-K20
C7	Capacitor 4.7μF, 20V, 10%, SMD SIze B, Tantalum	SIEMENS	B45196-H4106-K30
C8 C50	Capacitor 1μF, 25V, 10%, SMD Size A, Tantalum	SIEMENS	B45196-H5105-K10
C15 C16	Capacitor 68pF, 50V, 5%, SMD 1206, Ceramic	SIEMENS	B37871-K5680J
C31	Capacitor 3900pF, 50V, 5%, COG, SMD 1210 Ceramic	SIEMENS	B37949-K5392J
C35	Capacitor 0.039μF, 50V, 5%, SMD 1206, Ceramic	SIEMENS	B37872-K5393J
C49	Capacitor 68μF, 16V, 10%, SMD, Size D, Tantalum	AVX	TAJD686K016R
C80	Capacitor 100pF, 50V, 10%, SMD 1206, Ceramic	SIEMENS	B37871-K5101K
C81	Capacitor 10nF, 50V, 10%, NPO, SMD 1210, Ceramic	VITRAMNON	VJ1210A103KXAT
C85 C89	Capacitor 100μF, 10V, 10%, SMD Size D, Tantalum	SIEMENS	B45196-H2107-K10
D1	Zener Diode, 12V SMD	Motorola	1SMC12AT3
D2 D4	Diode Pair, common cathode	Motorola	MBRD620CT
D3	Zener Diode, 5V SMD	Motorola	1SMC5.0AT3
D5 D6 D7	Diode SMD	Motorola	LL4004G
DS1 DS2	Dip-Switch, 4 X SPST, SMD	GRAYHILL	90HBW04S
F1	Fuse, 1A/250V Miniature 5 X 20mm, Fast-blow		

Support Information TABLE 5-12. MPC8XXFADS Part List

Reference Designation	Part Description	Manufacturer	Part #
F2	Fuse, 5A/250V Miniature 5 X 20mm, Fast-blow		
H1 H2 H3	Gnd Bridge, Gold Plated	PRECIDIP	999-11-112-10
J1	Jumper Header, 3 Pole with Fabricated Jumper		
LD1 LD2 LD3 LD4 LD10 LD14 LD15 LD16 LD17	Led Yellow SMD	SIEMENS	LY T670-HK
LD5 LD6 LD11 LD12 LD13	Led Green SMD	SIEMENS	LG T670-HK
LD7 LD8 LD9	Led Red SMD	SIEMENS	LS T670-HK
P1	Connector 37 pin, Male DType, 90°	ксс	DN-37-P-RCZ
PA2, PB2	Connector 2 X 9 pin Stacked, Female, DType, 90°	EDA Inc.	8LE 009 009 D 3 06H
P3	Connector 8 pin, RJ45 Receptacle, 90°	KCC	90015-8P8C
P4	Connector 68 pin, Male, SMD, PCMCIA.	MOLEX	53380-6810
P5	Connector header, 10 pin, dual in- line, SMD	SAMTEC	TSM-105-03-S-DV
P6 (Male Part)	Connector 3 pin, Power, Straight, with false insertion protection.	WB	8113S-253303353
P6 (Female Part)	Connector 3 pin, Power Plug	WB	8113B-253200353
P7 (Male Part)	Connector 2 pin, Power, Straight, with false insertion protection.	WB	8113S-253303253
P7 (Female Part)	Connector 2 pin, Power Plug	WB	8113B-253200253
P8	Connector 96 pin, Female, DIN 41612, 90°	ELCO	268477096002025
P8 Counterpart	Connector 96 pin, Male, DIN 41612, 90°, WW	ELCO	168457096004025
PD1 PD2 PD3 PD4	Connector Board to Board 140 pin, receptacle, SMD	MOLEX	52760-1409
R1	Resistor 10 Ω , 1%, SMD 1206, 1/8W	RODERSTEIN	D25 10R FCS
R2 R15 R44 R48 R50 R51 R57	Resistor 1 KΩ, 5%, SMD 1206, 1/ 8W	AVX	CR32 102F T
R4 R80	Resistor 2 kΩ, 1%, SMD 1206, 1/ 8W	BOURNS	CR1206 FX 2001E
R5 R21 R31	Resistor 100 Ω, 1%, SMD 1206, 1/ 8W	RODERSTEIN	D25 100R FCS

Support Information TABLE 5-12. MPC8XXFADS Part List

Reference Designation	Part Description	Manufacturer	Part #
R6 R53 R54 R63 R64 R70 R71 R72 R73	Resistor 75 Ω , 5%, SMD 1206, 1/8W	DRALORIC	CR1206 100 75RJ
R7 R8 R9 R18 R24 R25 R26 R27 R28 R29 R35 R36 R37 R38 R41 R42 R47 R58 R59 R60 R61 R66 R67 R74 R81 R84 R85 R87 R88 R89 R90 R91 R98 R99	Resistor 10 KΩ, 1%, SMD 1206, 1/8W	RODERSTEIN	D25 010K FC5
R10 R11 R12 R14 R19	Resistor 330 Ω, 5%, SMD 1206, 1/8W	RODERSTEIN	D25 332R FC5
R13	Resistor 243 Ω, 1%, SMD 1206, 1/8W	RODERSTEIN	D25 243R FCS
R16 R17 R20	Resistor 22 Ω , 5%, SMD 1206, 1/8W	RODERSTEIN	D25 24R FCS
R22 ^a R23 ^a R39 ^a R40 ^a	Resistor 124 KΩ, 5%, SMD 1206, 1/8W	RODERSTEIN	D25 124K FCS
R30	Resistor 294 Ω, 1%, SMD 1206, 1/8W	ТҮОНМ	RMC 1206 294E 1%
R32 R33	Resistor 39.1 Ω, 1%, SMD 1206, 1/8W	ТҮОНМ	RMC 12061/8W 39E
R34 ^a , R65 R75 R76 R77 R83 ^a R92 R93 R94 R95, C6 ^b	Resistor 0 Ω, SMD 1206, 1/8W	ТҮОНМ	RMC 1206 0E 1%
R43	Resistor 510 Ω, 1%, SMD 1206, 1/8W	BOURNS	CR1206 JW 472E
R49 R52 R55 R56 R62 R82 R96 R97 R100 R101	Resistor 150 Ω, 5% SMD 1206, 1/8W	BOURNS	CR1206 JW 151 E
R79	Resistor 5.1 KΩ, 1%, SMD 1206, 1/8W	RODERSTEIN	D25 5K1 FCS
R86	Resistor 47 K Ω , 1%, SMD 1206, 1/8W	KYOCERA	CR32 473JT
RN1 RN2 RN4 RN5 RN8 RN9 RN10	Resistor Network 10 KΩ, 5%, 13 resistors, 14 pin	DALE	SOMC 14 01 103J
RN3	Resistor Network 22 Ω , 5%, 8 resistors, 16 pin.	DALE	SOMC 16 03 220J
RN6 RN7	Resistor Network 75 Ω , 5%, 8 resistors, 16 pin.	BOURNS	4816P 001 750J
SK1	Speaker piazo, Sealed	SOUNDTECH	SEP-1162
SW1	SPDT, push button, BLACK, Sealed	C & K	KS12R23-CQE
SW2	SPDT, push button, RED, Sealed	C & K	KS12R22-CQE
T1 T2 T3	Transistor TMOS, Dual, 3A	Motorola	MMDF3N03HD

Support Information TABLE 5-12. MPC8XXFADS Part List

Reference Designation	Part Description	Manufacturer	Part #	
U1	Infra-Red Transceiver	Telefunken	TFDS3000	
U2 U11 U22	MACH220-10 - programmable logic device	AMD	MACH220-10JC	
U3	10 Base-T Filter network	Pulse Engineering	PE-68026	
U4	Enhanced Ethernet Serial Transceiver.	Motorola	MC68160FB	
U5 U6	RS232 Transceiver (3 X 3)	Motorola	MC145707DW	
U7	4 MByte EDO DRAM SIMM organized as 1 M X 4. 60 nsec delay	Motorola	MB321BT08TASN60	
U8	2 MByte Flash SIMM, 90 nsec delay	Motorola	MCM29020S90	
U9 U16 U17 U36	Octal CMOS Latch.	Motorola	74ACT373D	
U10 U12 U13 U14 U15 U21 U31 U35 U37 U38 U41 U42	Octal CMOS Buffer.	Motorola	74LCX541D	
U18	3.3V Linear Voltage regulator. 5A output.	Micrel	MIC29500-3.3BT	
U19 U20 U24 U44	Octal CMOS Bus Transceiver	Motorola	74LCX245D	
U23 U43	SDRAM, 2 X 2 X 512K X 16	Fujitsu	MB811171622A-100	
U25	Schmitt-Trigger Hex Inverter.	Motorola	74ACT14D	
U26	Voltage level detector. Range 2.595V to 2.805V. O.D. output.	Seiko	S-8052ANY-NH-X	
U27	Octal Tri-State Buffer.	Motorola	74ACT541D	
U28	Quad CMOS buffer with individual Output Enable.	Motorola	74LCX125D	
U29	Buffer Schmitt-Trigger	Motorola	MC74LS244D	
U30	Dual Channel PCMCIA Power Controller	Linear Technology	LTC1315cG	
U32 U34	Octal CMOS Bus Transceiver	Motorola	74ACT245D	
U33	Clock generator 20MHz, ±100ppM, 5V, HCMOS output, SMD	Jauch	VX-3A	
U39	Dual CMOS 4 -> 1 MUX	Motorola	74ACT157D	

Support Information

TABLE 5-12. MPC8XXFADS Part List

Reference Designation	Part Description	Manufacturer	Part #
Y1	Crystal resonator, 20 MHz, Fundamental Oscillation mode, Frequency tolerance ± 50 ppm, Drive-level - 1mW ± 0.2 mW, Shunt capacitance - 7pF Max., Load capacitance - 32pF, Equivalent Series Resistance - 50Ω Max. Insulation Resistance - 500 M Ω at 100 VDC.	MEC - Modern Enterprise Corporation	HC-49/U-SM-3
	3 X Socket 68 Pin PLCC.	AMP	822279-1
	72 pin SIMM Socket	AMP	822032-4
	80 pin SIMM Socket	AMP	822032-5

a. Not Assembled.

5•3 Programmable Logic Equations

The MPC8XXFADS has 3 programmable logic devices on it. Use is done with MACH220-10 by AMD. These device support the following function on the FADS:

- 1) U7 Debug Port Controller
- 2) U10 auxiliary board control functions, e.g., buffers control, local interrupter, reset logic, etc'.
- 3) U11 the BCSR.

b. C6 is bypassed by 0 Ω resistor.

5•3•1 U2 - Debug Port Controller

****************************** ********************************** "* MPC8XX FADS Debug Port Controller. "* Mach controller for an interface between Sun ADI port at one side, to "* debug port at the other. "* In this file (8): "* - Added support for VFLS / FRZ switching, for both normal operation and "* external debug station connected to the FADS. "* Support includes: "* - separating vfls between MPC and debug port. "* - Selection between frz / vfls (default) is done by VflsFrz~ input pin. "* - Selection between on-board / off-board vfls/frz is done by ChinS~ coming "* from the expansion connectors. "* - VFLS(0:1) are driven towards the debug-port connector when board is not selected, i.e., either ADI is disconnected or addresses don't match. ******************************** "* In this file (7): "* - BundleDelay field in the control register is changed to debug port "* clock frquency select according to the following values: "* 0 - divide by 8 (1.25 Mhz) "* 1 - divide by 4 (2.5 Mhz) "* 2 - divide by 2 (5 Mhz) "* 3 - divide by 1 (10 Mhz) default. "* - Added clock divider for 2, 4, 8 output of which is routed externaly "* to the i/f clock input. ************************************ "* In this file (6): "* - RUN siganl polarity was changed to active-high, this, to support "* other changes for revision PILOT of the fads. ************************************** "* In this file (5) added: "* - protection against spikes on the reset lines, so that the interface "* will not be reset by an accidental spike. "* - D_C~ signal was synchronized to avoid accidental write to control "* during data write. "* - DSDI is given value (H) prior to negation of SRESET* to comply with 5XX

HstReq

PIN 20;

MPC8XXFADS - User's Manual

Support Information

* In this file (4) the polarity of address selection lines is reversed so
"* that ON the switch represent address line at high and vice-versa

"* In this file (3) the IClk is not reseted at all so it can be used to
"* sync MPC8XX reset signals inside.
* Added consideration for reset generated by the MPC8XX:
* - when MPC8XX is reset (i.e., its hard soft reset signals are asserted,
* it is not allowed for the host to initiate data trnasfer towards the MPC8XX.
* It can however, access the control / status register to either change
* parameters and / or check for status.
* - The status of reset signals is added to the status register, so it can
** be polled by the host.

module dbg_prt8
title 'MPC8XXFADS Debug Port Controller'

"* Device declaration. *

U02 device 'mach220a';

"* ####### *
"*# # ##### ##### ##### # ## # #### *
"*# ## # # # ## # # # *
"* ##### ## # ##### # # # # # # ### *
"*# ## # # ##### # # ###### # *
"*# ## # # # ### # # # *
"* ####### # # ###### # # # # # ######

"* Pins declaration. *

"ADI Port pins.

114 Release 0.1

"Host to ADS, write pulse. (IN)

Support Information

AdsAck PIN 31 ISTYPE 'reg, buffer'; "ADS to host, write ack.

"(OUT,3s)

AdsReq PIN 2 ISTYPE 'reg, buffer'; "ADS to host, write

"signal. (OUT,3s)

HstAck PIN 54; "Host to ADS, write ack. (IN)

AdsHardReset PIN 50; "Host to ADS, Hard reset. (IN)

AdsSoftReset PIN 17; "Host to ADS, Soft reset. (IN)

HstEn~ PIN 3; "Host connected to ADS. (IN)

HostVcc PIN 49; "Host to ADS, host is on. (IN)

D_C~ PIN 51; "Host to ADS, select data

"or control access. (IN)

AdsSel0 PIN 22;

AdsSel1 PIN 21;

AdsSel2 PIN 9; "Host to ADS, card addr. (IN)

AdsAddr0 PIN 7; AdsAddr1 PIN 6;

AdsAddr2 PIN 5; "ADS board address switch. (IN)

AdsSelect~ NODE ISTYPE 'com, buffer'; "ADS selection indicator. (OUT)

"* MPC pins. Including debug port.

PdaHardReset~ PIN 40; "Pda's hard reset input. (I/O. o.d.)
PdaSoftReset~ PIN 65; "Pda's soft reset output. (I/O. o.d.)

VFLS0 PIN 10;

VFLS1 PIN 11; "Debug/Trap mode, report. (IN)

Freeze PIN 24; "Alternative debug mode report (IN)

DSCK PIN 48 istype 'com'; "Pda's debug port clock. (Out)

Support Information

DSDI PIN 47 istype 'com'; "Pda's debug serial data in (Out)
DSDO PIN 4; "MPC8XX's debug serial data output (In)

"* Dedicated Debug Port pins.

VflsP0 PIN 38 istype 'com';
VflsP1 PIN 37 istype 'com';
VflsFrz~ PIN 13; "selectes between VFLS/FRZ from MPC

* Mach to ADI data bus.

PD7,
PD6,
PD5,
PD4,
PD3,
PD2,
PD1,
PD0 PIN 66,60,67,59,58,57,56,55; "ADI data bus.(I/O)

"* Clock gen pins.

DbgClk PIN 16; "Debug Clock input source. (IN)
DbgClkOut PIN 33 istype 'com'; " to be connected to IClk. (out)
Clk2 PIN 14 istype 'reg, buffer'; "IClk divided by 2 (Out)
" (Out for testing, may be node)
IClk PIN 15; "Connected to Clkout externally (In)

"* Misc.

Run PIN 23 istype 'com'; "external indication
ChinS~ PIN 12; "active (L) when chips is In socket

Support Information

"* ### *				
"* # # ##### ##### #### # # ## # #### *				
"* # ## # # # # # # # # *				
"* # ### # ##### # # # # # # # # *				
"* # # # # # # ##### # # *				
"* # # ## # # # # # # # # *				
"* ### # # # ##### # # # # # ##### *				
"*************************************				

"* Clock genrator Internals:				

DbgClkDivBy2 NODE istype 'reg, buffer';				
DbgClkDivBy4 NODE istype 'reg, buffer';				
DbgClkDivBy8 NODE istype 'reg, buffer'; " counter (divider) signals.				
Cstr0 NODE istype 'reg, buffer';				
Cstr1 NODE istype 'reg, buffer'; " Clock Safe Transition Register				
"*************************************				
"* Reset active. (Active when at least one of the reset sources is active) *				
"*************************************				
PrimReset NODE istype 'com'; " Primary Reset. Host initiated				
D_PrimReset NODE istype 'com'; " delayed Reset				
DD_PrimReset NODE istype 'com'; " double delayed primary reset.				
_				
Reset NODE istype 'com'; " Interface reset.				
PdaRst NODE istype 'reg, buffer'; " MPC8XX continued / initiated.				
" part of the status register.				

"* ADS_ACK, ADS_REQ auxiliary internal control signals *				

S_HstReqNODE istype 'reg'; "sync. host req.				
DS_HstReqNODE istype 'reg'; " double sync. host req.				
S_D_C~NODE istype 'reg, buffer'; " synchronized data/ control selection				
S_HstAckNODE istype 'reg, buffer'; " sync host ack				

Support Information

DS_HstAckNODE istype 'reg, buffer'; " double sync host ack

BundleDelay1,
BundleDelay0NODE istype 'reg, buffer'; "delay counter for bundle
" delay compensation
BndTmrExpNODE istype 'com';" terminal count for bundle
" delay timer.
PDOeNODE istype 'com'; "Mach to ADI data OE.
PdaHardResetEnNODE istype 'com'; " enables hard reset buffer.
PdaSoftResetEnNODE istype 'com'; " enables soft reset buffer.

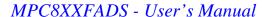
"* Tx Shift Register *
"*************************************
TxReg7,
TxReg6,
TxReg5,
TxReg4,
TxReg3,
TxReg2,
TxReg1,
TxReg0NODE istype 'reg, buffer'; " Transmit latch and
" shift register

"* Tx Control Logic *

TxWordLen3,
TxWordLen2,
TxWordLen1,
TxWordLen0NODE istype 'reg, buffer'; " Counter, counts (on fast clock,
" to gain 1/2 clock resolution)
" transmission length
TxWordEndNODE istype 'com'; " Terminal count, sets transmission
" length.
TxEn NODE istype 'reg, buffer'; " Transmit Enable.
TxClkSnsNODE istype 'reg, buffer'; " transmit clock polarity

Support Information

* Rx Shift Register					
"*******	*********	**********			
RxReg0NODE istyp	pe 'reg, buffer'; " receive shif	t register			
" and latch	h				
"*******	*********	**********			
"* Rx Control Logic		*			
"********	*********	**********			
DsdiEnNODE istype	e 'reg'; " enables dsdi towar	rds			
"*******	*********	**********			
"* ADI control & sta	atus register bits.	*			
"*******	*********	**********			
StatusRequest~ N	NODE istype 'reg, buffer'; '	"Status request			
DebugEntry~ N	NODE istype 'reg, buffer'; '	'Debug enable after reset (L)			
DiagLoopBack~	NODE istype 'reg, buffer';	"diagnostic loopback mode (L)			
DbgClkDivSel0	NODE istype 'reg, buffer';				
DbgClkDivSel1	NODE istype 'reg, buffer';	" DbgClk division select			
InDebugMode	NODE istype 'reg, buffer';	" sync. VFLSs, became pin			
TxError NO	DE istype 'reg, buffer'; " tx	interrupted by MPC8XX			
	" internal reset.				


Support Information

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* * * * * * * * * * * * * * * * * * *
"* #####	*
"*# # #### # #### #### ## #	# ##### *
"*# # ### # # # # # # # # #	# *
"*# # #### #### # #### # # # # # #	# *
"*# # # # # # # # # # ##### # ##	# *
"*# ##############	# *
"* #### #### # # #### # # # # #	# # *
"*	*
"* #####	*
"* # ###### #### # ## #####	*
"*# ## ## ## ## ##	*
"*# # ##### # # # # # # #####	*
"* # # # # # ###########	*
"*# ## ## ########	*
"* ##### ##### #### ##### # # # #	*
"*	*
"* ## ##### # #### # #	*
"* # # # # # ## #	*
"* # # # # # # # #	*
"* ###### # # # # # # #	*
"* # # # # # ###	*
"* # # # # #### # #	*
***************	************
H, L, X, Z = 1, 0, .X., .Z.;	
C, D, U = .C., .D., .U.;	
*************	**********
"* Since all state machines operate at interface cl	ock (IClk) there is no
"* need to have DbgClk driven during simulation	ı (it will double the number
"* of vectors required). Therefore, an alternative	clock generator was built
"* with which the 1/2 clock is the 1'st in the chair	n.
"* This alternative clock is compiled in if the SIM	MULATION variable is defined.
"* If not the original clock generator design is co	mpiled, however simulation
"* will not pass then.	
*************	*********
"* SIMULATION = 1;	
"***********	***********



### **Support Information**

```
"* Signal groups
***********************************
AdsSel
          = [AdsSel2,AdsSel1,AdsSel0];
AdsAddr
           = [!AdsAddr2,!AdsAddr1,!AdsAddr0];
AdsRst
          = [AdsHardReset, AdsSoftReset];
Rst
        = [PdaHardReset~, PdaSoftReset~];
ClkOut
          = [Clk2];
DbgClkDiv
            = [DbgClkDivBy8, DbgClkDivBy4, DbgClkDivBy2];
DbgClkDivSel = [DbgClkDivSel1, DbgClkDivSel0];
        = [Cstr1, Cstr0];
Cstr
PD
         = [PD7,PD6,PD5,PD4,PD3,PD2,PD1,PD0];
VFLS
         = [VFLS0, VFLS1];
VflsP
         = [VflsP0, VflsP1];
          = [BundleDelay1, BundleDelay0]; "bundle delay
BndDly
                 "compensation timer
TxReg
          = [TxReg7..TxReg0];
          = [TxReg6, TxReg5, TxReg4, TxReg3, TxReg2, TxReg1, TxReg0, RxReg0]; \\
RxReg
AdiCtrlReg
           = [DbgClkDivSel1, DbgClkDivSel0, StatusRequest~,
         DiagLoopBack~,DebugEntry~];
AdiStatReg
           = [PdaRst, TxError, InDebugMode, DbgClkDivSel1, DbgClkDivSel0,
       StatusRequest~, DiagLoopBack~, DebugEntry~];
TxWordLen
            = [TxWordLen3, TxWordLen2, TxWordLen1, TxWordLen0];
PortEn
          = [AdsSel2,AdsSel1,AdsSel0,!AdsAddr2,!AdsAddr1,!AdsAddr0,
                            HostVcc.HstEn~1:
******************************
"* Select Logic definitions
******************************
HOST_VCC_ACTIVE = 1;
HOST\_EN\sim\_ACTIVE=0;
HOST_IS_ON = ((HstEn~==HOST_EN~_ACTIVE) & (HostVcc==HOST_VCC_ACTIVE));
HOST_IS_OFF = !HOST_IS_ON;
BOARD_IS_SELECTED = 0;
ADS_IS_SELECTED = (AdsSelect~.fb==BOARD_IS_SELECTED);
"Data_Cntrl~ line levels.
```





```
DATA = 1;
CONTROL = !DATA;
***********************************
"* Reset Logic definitions
********************************
ADS_HARD_RESET_ACTIVE = 1;
ADS_SOFT_RESET_ACTIVE = 1;
*************************************
"* Clock Logic definitions
*************************
SELECT_CHANGE_ALLOWED = (DbgClkDiv.fb == 0);
DEBUG_CLOCK_DIV_BY_1 = (Cstr.fb == 0);
DEBUG_CLOCK_DIV_BY_2 = (Cstr.fb == 1);
DEBUG_CLOCK_DIV_BY_4 = (Cstr.fb == 2);
DEBUG_CLOCK_DIV_BY_8 = (Cstr.fb == 3);
********************************
"* AdsAck Logic definitions
***********************************
BUNDLE_DELAY = 2;
HOST_REQ_ACTIVE = 1;
ADS\_ACK\_ACTIVE = 1;
                    "The other state is - !ADS_ACK_ACTIVE
HOST\_ACK\_ACTIVE = 1;
HOST_WRITE_ADI
                  = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
            (DS_HstReq.fb ==HOST_REQ_ACTIVE) &
            (AdsAck==!ADS_ACK_ACTIVE) &
            (HstAck==!HOST_ACK_ACTIVE) );
HOST_WRITE_ADI_CONTROL = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
            (DS_HstReq.fb ==HOST_REQ_ACTIVE) &
            (AdsAck==!ADS_ACK_ACTIVE) &
            (D_C~==CONTROL) &
            (S_D_C \sim .fb == CONTROL) &
            (HstAck==!HOST_ACK_ACTIVE) );
```



```
HOST_WRITE_ADI_DATA
                      = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
             (DS_HstReq.fb==HOST_REQ_ACTIVE) &
             (AdsAck==!ADS_ACK_ACTIVE) &
             (D_C\sim==DATA) &
             (S_D_C\sim.fb ==DATA) \&
             (HstAck==!HOST_ACK_ACTIVE) );
HOST_WRITE_COMPLETE
                       = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
             (DS_HstReq.fb==!HOST_REQ_ACTIVE) &
             (AdsAck==!ADS_ACK_ACTIVE));
************************************
"* Control & Status register definitions
************************
STATUS_REQUEST= 0;
DEBUG_ENTRY=0;
DIAG_LOOP_BACK= 0;
IN_DEBUG_MODE = 1;
TX_DONE_OK = 0;
TX_INTERRUPTED = !TX_DONE_OK;
FRZ\_SELECTED = 0;
IS_STATUS_REQUEST = (StatusRequest~.fb == STATUS_REQUEST);
DEBUG_MODE_ENTRY = (DebugEntry~.fb == DEBUG_ENTRY);
IN_DIAG_LOOP_BACK = (DiagLoopBack~.fb == DIAG_LOOP_BACK);
IS_IN_DEBUG_MODE = (InDebugMode.fb == IN_DEBUG_MODE);
FRZ_IS_SELECTED = (VflsFrz~ == FRZ_SELECTED);
***********************************
"* DSDI_ENABLE Logic definitions
********************************
DSDI_ENABLED = 1;
DSDI_DISABLED = 0;
STATE_DSDI_ENABLED = (DsdiEn.fb == DSDI_ENABLED);
```



```
***********************************
"* Tx enable state machine
*******************************
TX_ENABLED = 1;
TX_DISABLED = 0;
STATE_TX_ENABLED = (TxEn.fb == TX_ENABLED);
STATE_TX_DISABLED = (TxEn.fb == TX_DISABLED);
TX_WORD_LENGTH = 14; " In 1/2 IClk clocks
***********************
"* TxClkSns state machine
************************
TX_ON_RISING = 0;
TX_ON_FALLING = 1;
STATE_TX_ON_RISING = (TxClkSns.fb == TX_ON_RISING);
STATE_TX_ON_FALLING = (TxClkSns.fb == TX_ON_FALLING);
********************************
"* AdsReq machine definitions.
**********************************
ADS_REQ_ACTIVE = 1; "The other state is - !ADS_REQ_ACTIVE
HOST READ ADI
                  = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
            (DS_HstAck.fb==HOST_ACK_ACTIVE) &
            (AdsReq==ADS_REQ_ACTIVE) &
            (HstReq==!HOST_REQ_ACTIVE));
HOST_READ_ADI_DATA
                     = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
            (DS_HstAck.fb==HOST_ACK_ACTIVE) &
            (HstReq==!HOST_REQ_ACTIVE) &
            (AdsReq==ADS_REQ_ACTIVE) &
            (D_C\sim=DATA));
HOST_READ_ADI_CONTROL
                      = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
            (DS_HstAck.fb==HOST_ACK_ACTIVE) &
            (HstReq==!HOST_REQ_ACTIVE) &
            (AdsReq==ADS_REQ_ACTIVE) &
            (D_C = CONTROL));
```



### Support Information

```
ADS_SEND_STATUS
                  = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
           (DS_HstReq.fb == !HOST_REQ_ACTIVE) &
           (D_C\sim==CONTROL) &
           (AdsAck==ADS_ACK_ACTIVE) &
            IS_STATUS_REQUEST );
********************************
"* ADI Data Bus definitions
********************************
DATA_BUFFERS_ENABLE
                     = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
           (HstAck==HOST_ACK_ACTIVE) &
           (HstReq==!HOST_REQ_ACTIVE));
STATUS_WORD_ON_ADI_BUS = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
           (HstAck==HOST_ACK_ACTIVE) &
           (HstReq==!HOST_REQ_ACTIVE) &
           (D_C = CONTROL));
READ_DATA_WORD_ON_ADI_BUS = ( (AdsSelect~.fb==BOARD_IS_SELECTED) &
           (HstAck==HOST_ACK_ACTIVE) &
           (HstReq==!HOST_REQ_ACTIVE) &
           (D_C = DATA));
**************************************
"* Vfls / Frz select definitions
********************************
CHIP IN SOCKET = 0;
CHIP_IS_IN_SOCKET = (ChinS~ == CHIP_IN_SOCKET);
*********************************
"* Equations, state diagrams.
*************************
"* #######
                 #####
                         #### # # ####
"* #
     # # # # # ###### #
     # # # # # # #
"* ###### ### # ### # # #
                           #### #
                                 # ####
**************************************
```



### Support Information

```
"* AdsSelect.
"* ADS selection indicator. At low state, when host accesses the ADS.
********************************
equations
 !AdsSelect~ = HOST_IS_ON & (AdsSel==AdsAddr); "AdsAddr is already inverted
************************************
"* Internal Logic Reset.
*************************
equations
 PrimReset = HOST_IS_OFF # "internal logic reset
     ((AdsHardReset == ADS_HARD_RESET_ACTIVE) &
     (AdsSoftReset == ADS_SOFT_RESET_ACTIVE) &
      ADS_IS_SELECTED );
 D_PrimReset = PrimReset.fb;
 DD_PrimReset = D_PrimReset.fb;
 Reset = PrimReset.fb & D_PrimReset.fb & DD_PrimReset.fb;" spike filter
*****************************
"* Reset MPC8XX. (Connected to MPC8XX hard and reset inputs) Asynchronous. *
*********************************
equations
 !PdaHardReset~ = H;
 PdaHardReset~.oe = PdaHardResetEn; "open-drain
 PdaHardResetEn = ADS_IS_SELECTED &
     (AdsHardReset==ADS_HARD_RESET_ACTIVE);
 !PdaSoftReset~ = H;
 PdaSoftReset~.oe = PdaSoftResetEn; "needs to be open-drain
PdaSoftResetEn = ADS_IS_SELECTED &
     (AdsSoftReset==ADS_SOFT_RESET_ACTIVE);
 *****************************
```



### **Support Information**

```
******************************
"* Clock generator.
"* All i/f logic works on IClk, which is driven externally by the output
"* of DbgClk divider.
"* The debug clock divider is a 3 bit free-running counter, outputs of which
"* control a 4:1 mux, output of which drives IClk (externally).
"* Since mux control may change on the fly, a protection logic by means of
"* 2 bit register is provided, so that mux control is allowed to change
"* only when all divider outputs are high which assures a falling edge prior
"* to a rising edge.
"* Clk2 is infact the source for DSCK and is available outside for debug
equations
DbgClkDiv.clk = DbgClk;
DbgClkDiv := DbgClkDiv.fb + 1; " free running counter.
********************************
"* Clock Safe Transition Register. (CSTR)
"* The goal of this register is to provide safe clock transitions, i.e., that
"* a trasition will not cause races over the clockout. E.g., in a transition
"* between divide by 1 and divide by any bigger order, a possible race may
"* occur since the divided outputs are delayed with respect to DbgClk.
"* Therefore, a safe transition may be performed only when all clocks are LOW.
****************************
equations
Cstr.clk = DbgClk;
"* Cstr.ar = Reset;
when (SELECT_CHANGE_ALLOWED) then
 Cstr := DbgClkDivSel.fb;
else
 Cstr := Cstr.fb:
```



# **Support Information**

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"* Clock selector.
"* Controlled by the CSTR.
"***************************
equations
DbgClkOut.oe = 1;
when (DEBUG_CLOCK_DIV_BY_1) then
DbgClkOut = DbgClk;
else when (DEBUG_CLOCK_DIV_BY_2) then
DbgClkOut = DbgClkDivBy2.fb;
else when (DEBUG_CLOCK_DIV_BY_4) then
DbgClkOut = DbgClkDivBy4.fb;
else when (DEBUG_CLOCK_DIV_BY_8) then
DbgClkOut = DbgClkDivBy8.fb;

"* Clk2.
"* IClk divided by 2 .

equations
Clk2.clk = IClk;
ClkOut.oe = 3;
ClkOut.ar = Reset;
Clk2 := !Clk2 & HOST_IS_ON; "divide by 2

"* Bundle delay timer. This timer ensures data validity in the following casses:
"* 1) Host write to adi. In that case AdsAck is ASSERTED only after that timer
"* expired.
"* 2) Host read from adi. In that case AdsReq is NEGATED after that timer
"* expired, ensuring enough time for data propgation over the bundle.
"* The timer is async reset when both soft and hard reset is applied to the i/f.
"* The timer is sync. reset a clock after it expires.
"* Count starts when either HstReq or HstAck are detected asserted
"* (after proper synchronization)
"* The value upon which the terminal count is assereted, is in the control
"* register. When the interface is reset by the host, this value defaults
"* to its upper bound. Using the diagnostic loop-back mode this value
"* may be re-established for optimal performance. (by means of test & error)

```
equations
 BndDly.ar = Reset;
 BndDly.clk = IClk;
 when ( ( (HOST_WRITE_ADI_CONTROL # HOST_READ_ADI_CONTROL ) #
   (HOST_WRITE_ADI_DATA # HOST_READ_ADI_DATA) & !PdaRst.fb)
        & !BndTmrExp.fb) then
  BndDly := BndDly.fb + 1;
 else
 BndDly := 0;
 BndTmrExp = (BndDly.fb == BUNDLE_DELAY) & !AdsAck; "delay field
         "active low.
       ************************
"* AdsAck.
"* Host write to ads ack. This state machine generates an automatic ADS_ACK,
"* during a host to ADS write.
"* When the host access the ADS data / control register, an automatic
"* acknowledge is generated, after data has been latched into either the
"* tx shift register or the control register.
"* Acknowledge is released when the host removes its write control line.
"* (HstReq)
"* The machine steps through these states:
"* 0 - !ADS_ACK_ACTIVE
"* 1 - ADS_ACK_ACTIVE
*************************
equations
 AdsAck.clk = IClk;
 AdsAck.ar = Reset;
 AdsAck.oe = ADS_IS_SELECTED;
 S_HstReq.clk = IClk;
 DS_HstReq.clk = IClk;
 S_HstReq := HstReq;
 DS_HstReq := S_HstReq.fb & HstReq;"double synced
 S_D_C\sim.clk = IClk; synchronizing D_C\sim.clk = IClk;
```



```
S_D_C := D_C := D_C
state_diagram AdsAck
 state !ADS_ACK_ACTIVE:
   if ( (HOST_WRITE_ADI_CONTROL #
      (HOST_WRITE_ADI_DATA & !PdaRst.fb) ) & BndTmrExp.fb) then
     ADS_ACK_ACTIVE
   else
    !ADS_ACK_ACTIVE;
 state ADS_ACK_ACTIVE:
   if ( DS_HstReq.fb == !HOST_REQ_ACTIVE ) then
    !ADS_ACK_ACTIVE
   else
    ADS_ACK_ACTIVE;
************************
"* Transmit Enable logic.
"* Enables transmit of serial data over DSDI and generation of serial
"* clock over DSCK.
"* Transmission begins immediately after data written by the host is latched
"* into the transmit shift register and ends after 7 shifts were made to the
"* tx shift register.
"* Termination is done using a 4 bit counter TxWordLength which has a terminal
"* count (and reset) TxWordEnd.
********************************
equations
 TxEn.ar = Reset;
 TxEn.clk = IClk;" to provide 1/2 clock resolution
state_diagram TxEn
  state TX_DISABLED:
     if(HOST\_WRITE\_ADI\_DATA~\&~BndTmrExp.fb~\&~!PdaRst.fb)~then
        TX_ENABLED
     else
        TX_DISABLED;
 state TX_ENABLED:
     if(TxWordEnd # PdaRst.fb) then
        TX_DISABLED
     else
        TX_ENABLED;
```


Support Information

```
***********************************
"* Transmit Length Counter. This counter determines the length of transmission
"* towards the MPC. The fast clock is used here to allow 1/2 clock resolution
"* with the negation of TxEn, which enables DSCK outside.
**********************************
equations
TxWordLen.ar = Reset;
TxWordLen.clk = IClk;
TxWordEnd = (TxWordLen.fb == TX_WORD_LENGTH);
when (STATE_TX_ENABLED & !TxWordEnd & !PdaRst.fb) then
 TxWordLen.d = TxWordLen.fb + 1;
else
 TxWordLen.d = 0;
"* TxClkSns - Transmit Clock Sense.
"* Since Host req is synced acc to IClk and may be detected active when Clk2 is
"* either '1' or '0', DSCK and the clock according to which DSDI is sent and
"* DSDO is sampled should be changed.
"* When TxClkSns is '0' - DSCK will be !Clk2 while transmit will be done
        according to Clk2 and recieve by !Clk2.
"* When TxClkSns is '1' - DSCK will be Clk2 while transmit will be done
        according to !Clk2~ and recieve by Clk2.
************************
equations
 TxClkSns.clk = IClk;
 TxClkSns.ar = Reset:
state_diagram TxClkSns
  state TX_ON_RISING:
    if (HOST_WRITE_ADI_DATA & BndTmrExp.fb & Clk2) then
       TX_ON_FALLING
    else
       TX_ON_RISING;
  state TX_ON_FALLING:
     if (HOST_WRITE_ADI_DATA & BndTmrExp.fb & !Clk2) then
```


Support Information

TX_ON_RISING

```
else
        TX_ON_FALLING;
        **********************************
"* Tx shift Register.
"* 8 bits shift register which either shifts data out (MSB first) or holds
"* its data. The edge (in Clk2 terms) upon which the above actions are taken,
"* is determined by TxClkSns. The Tx shift register operates according to IClk.
"* The Tx shift register is 1'st written by the host (data cycle) and along
"* with write being acknowledged to the host data is shifted out via DSDI.
"* In order of saving logic, the Tx shift register is shared with the Receive
"* shift register, this, due to the fact that when a bit is shifted out a FF
"* becomes available. Since the Tx shift register is shifted MSB first, its
"* LSB FFs are grdualy becoming available for received data.
"* To provide a 1/2 DSCK hold time for DSDI, a single FF receive SR is used
"* which is the source for the Tx shift register. (if 0 hold is required
"* for DSDI this FF may be ommited)
equations
 TxReg.clk = IClk;
 TxReg.ar = Reset;
 when ( HOST_WRITE_ADI_DATA & BndTmrExp.fb & !STATE_TX_ENABLED) then
    [TxReg7..TxReg1] := [PD7..PD1].pin; "latching ADI data
 else when (STATE_TX_ENABLED & STATE_TX_ON_RISING & !Clk2 #
       STATE_TX_ENABLED & STATE_TX_ON_FALLING & Clk2) then
    [TxReg7..TxReg1] := [TxReg6..TxReg0].fb; \ " \ shifting \ out \ MSB \ 1'st.
 else
    [TxReg7..TxReg1] := [TxReg7..TxReg1].fb; "Holding value.
 when ( HOST\_WRITE\_ADI\_DATA & BndTmrExp.fb & !STATE\_TX\_ENABLED) then
    TxReg0 := PD0.pin;
 else when (STATE_TX_ENABLED & STATE_TX_ON_RISING & !Clk2 #
       STATE_TX_ENABLED & STATE_TX_ON_FALLING & Clk2) then
    TxReg0 := RxReg0.fb;
 else
   TxReg0 := TxReg0.fb;
```


Support Information

```
**********************************
"* Receive Shift Register.
"* A single stage shift register used as a source for the Tx shift register.
"* In normal mode the input for the Rx shift register is the MPC8XX's DSDO, while
"* in diagnostic loopback mode, data is taken directly from the Tx shift
"* serial output.
"*
"* The output of the Rx shift register is fed to the input of the Tx shift
"* register. When transmission (and reception) is done the received data
"* word is compossed of the Rx shift register (LSB) concatenated with the
"* 7 LSBs of the Tx shift register.
"* The edge (in Clk2 terms) upon which data is shifted in is determined by
"* TxClkSns as with the Tx shift register but on opposite edges, i.e.,
"* data is shifted Out from the Tx shift register on the Falling edge of
"* DSCK while is shifted In to the Rx shift register on the Rising edge
"* DSCK. (DSCK terms are constant in that regard).
************************************
equations
 RxReg0.clk = IClk;
 RxReg0.ar = Reset;
 when ( STATE_TX_ENABLED & STATE_TX_ON_RISING & Clk2 #
     STATE_TX_ENABLED & STATE_TX_ON_FALLING & !Clk2) & (!IN_DIAG_LOOP_BACK) then
   RxReg0.d = DSDO; "shift in ext data
 else when ( STATE_TX_ENABLED & STATE_TX_ON_RISING & Clk2 #
        STATE_TX_ENABLED & STATE_TX_ON_FALLING & !Clk2) & IN_DIAG_LOOP_BACK then
    RxReg0.d = TxReg7.fb;" shift in from transmit reg
 else
   RxReg0.d = RxReg0.fb;" hold value
"* AdsReg.
"* Host from ads, read acknowledge. This state machine generates an automatic
"* ADS read request from the host when either a byte of data is received in the
"* Rx shift register or the status request bit in the control register is
```



```
"* active during a previous host write to the control register.
"* When the host detectes AdsReq asserted, it assertes HstAck in return. HstAck
"* double synchronized from the ADI port and delayed using the bundle delay
"* compensation timer to negate AdsReq. When the host detects AdsReq negated
"* it knows that data is valid to be read. After the host reads the data it
"* negates HstAck.
"* The machine steps through these states:
"* 0 - !ADS_REQ_ACTIVE
"* 1 - ADS_REQ_ACTIVE
**************************************
equations
 AdsReq.clk = IClk;
 AdsReq.ar = Reset;
 AdsReq.oe = ADS_IS_SELECTED;
 S HstAck.clk = IClk;
 DS_HstAck.clk = IClk;
 S_HstAck := HstAck;
 DS_HstAck := HstAck & S_HstAck;"double synced
state_diagram AdsReq
 state !ADS_REQ_ACTIVE:
  if (TxEn.fb & TxWordEnd #" end of data shift to MPC8XX
     ADS_SEND_STATUS) then" end of control write and status required
    ADS_REQ_ACTIVE
  else
    !ADS_REQ_ACTIVE;
 state ADS_REQ_ACTIVE:
  if ( HOST\_READ\_ADI & BndTmrExp.fb ) then
      !ADS_REQ_ACTIVE
  else
    ADS_REQ_ACTIVE;
************************
"* ADI control register.
"* The ADI control register is written upon host to ADI write with a
"* D_C~ line is in control mode. It also may be read when StatusRequest~ bit
"* is active.
```



```
"* Control register bits description:
"* DebugEntry~: (Bit 0). When this bit is active (L), the MPC8XX will enter debug
"*
      mode immediately after reset, i.e., DSCK will be held high
"*
      after the rising edge of SRESET*. When negated, DSCK will be
"*
      held low after the rising edge of SRESET so the MPC8XX will start
"*
     running instantly.
"* DiagLoopBack~: (Bit 1). When active (L), the interface is in Diagnostic
"*
      Loopback mode. I.e., the source for the Rx shift register is
"*
      the output of the Tx shift register. During that mode, DSCK
"*
     and DSDI are tri-stated, so no arbitrary data is sent to the
"*
      debug port. When inactive, the interface is in normal mode,
"*
     i.e., DSCK and DSDI are driven and the source of the Rx shift
     register is DSDO.
"* StatusRequest~: (Bit 2). When active (L) any write to the control register
      will be followed by a status read cycle initiated by the
      debug port controller, i.e., AdsReq will be asserted after
      the write cycle ends. When inactive, a write to the control
      register will not be followed by a read from status register.
"* DbgClkDivSel(1:0): (Bits 4,3). This field selects the division of the
"*
          DbgClk input. Division factors are set as follows:
"*
     0 - by 1
     1 - by 2
     2 - by 4
     3 - by 8
"*
"* Important!!! All bits wake up active (L) after reset.
**************************************
equations
 AdiCtrlReg.clk = IClk;
 AdiCtrlReg.ar = Reset;"All active low.
 when ( HOST_WRITE_ADI_CONTROL & BndTmrExp.fb) then
   AdiCtrlReg.d = [PD4.pin, PD3.pin, PD2.pin, PD1.pin, PD0.pin];
 else
   AdiCtrlReg.d = AdiCtrlReg.fb;
```


Support Information

```
"* ADI Data Bus.
"* The Adi data bus is driven towards the host when the host reads the i/f.
"* When D_C~ line is high (data) the Rx shift register contents is driven. If
"* D_C~ is low (control) the status register contents is driven.
"* The status register contains all control register's bits (4:0) with the
"* addition of the following:
"*
"* InDebugMode: (Bit 5). When this bit is active (H), the mpc is in debug mode,
"* i.e., either Freeze or VFLS(0:1) lines are driven high.
          When mpc is not in socket, VflsP(0:1) coming from the debug port
          are selected.
"* TxError: (Bit 6). When this bit is active (H), it signals that the MPC8XX was
"* reset (internally) during data transmission. (i.e., data received
"* during that trnasmission is corrupted). This bit is reset (L) when
"* either happens: (1) - The interface is reset by the host (both
"*AdsHardReset and AdsSoftReset are asserted (H) by the host
"* while the board is selected). (2) - The host writes the interface with
"* D_C~ signal low (control) and with data bit 6 high. (3) - a new data
"* word is written to the Tx shift register. (I.e., error is not kept
"*indefinitely).
"* PdaRst: (Bit 7). When this bit is active (H), it means that either SRESET*
"*or HRESET* or both are driven by the MPC8XX. The host have to wait until
"* this bit negates so that data may be wrriten to the debug port.
*****************************
equations
   PDOe = DATA_BUFFERS_ENABLE;
   PD.oe = PDOe:
   when ( READ\_DATA\_WORD\_ON\_ADI\_BUS) then
       PD = RxReg.fb;
   elsewhen ( STATUS_WORD_ON_ADI_BUS ) then
           PD = [PdaRst.fb, TxError.fb, InDebugMode.fb, DbgClkDivSel1.fb, DbgClkDivSel0.fb, D
                   StatusRequest~.fb, DiagLoopBack~.fb, DebugEntry~.fb ];
**********************************
"* Reset Status
*********************************
   PdaRst.clk = IClk;
```



```
PdaRst := (!PdaHardReset~ # !PdaSoftReset~) &
      (AdsSelect~.fb==BOARD_IS_SELECTED); "synchronized inside.
*********************************
"* In debug Mode
*****************************
 InDebugMode.clk = IClk;
 when (FRZ_IS_SELECTED & CHIP_IS_IN_SOCKET) then
  InDebugMode := Freeze;
 else when (!FRZ_IS_SELECTED & CHIP_IS_IN_SOCKET) then
  InDebugMode := (VFLS0 & VFLS1);
 else when (!CHIP_IN_SOCKET) then
  InDebugMode := (VflsP0.pin & VflsP1.pin);
"* TxError.
"* This bit of the status register is set ('1') when the MPC8XX internally resets
"* during data transmission over the debug port.
"* When this bit is writen '1' by the adi port (control) the status bit is
"* cleared. Writing '0' has no influence on that bit.
*********************************
equations
TxError.clk = IClk;
TxError.ar = Reset:
state_diagram TxError
 state TX_DONE_OK:
    if(STATE_TX_ENABLED & PdaRst.fb) then
       TX_INTERRUPTED
    else
       TX_DONE_OK;
 state TX_INTERRUPTED:
    if (HOST_WRITE_ADI_CONTROL & BndTmrExp.fb & PD6.pin
      # HOST_WRITE_ADI_DATA & BndTmrExp.fb & !PdaRst.fb) then
```



```
TX_DONE_OK
    else
       TX_INTERRUPTED;
************************************
"* DSCK.
"* MPC8XX debug port, gated serial clock.
***********************************
equations
 DSCK.oe = ADS_IS_SELECTED;
 when ( ADS_IS_SELECTED & !PdaSoftReset~ ) then
  DSCK = H;"debug mode enable
 else when ( ADS_IS_SELECTED & !TxEn.fb & PdaSoftReset~ ) then
  DSCK = !DebugEntry~.fb;"debug mode direct entry
 else when (ADS_IS_SELECTED & TxEn.fb & STATE_TX_ON_RISING) then
  DSCK = !Clk2;"debug port clock
 else when (ADS_IS_SELECTED & TxEn.fb & STATE_TX_ON_FALLING) then
  DSCK = Clk2; "debug port inverted clock
 else when (!ADS_IS_SELECTED) then
  DSCK = H;"default value, infact X
************************************
"* DSDI.
"* Debug Port Serial Data in. (from MPC8XX).
"* To provide better hold time for DSDI from the last rising edge of DSCK,
"* a dedicated enable for DSDI is provided - DSDI_ENABLE.
equations
 DsdiEn.ar = Reset;
 DsdiEn.clk = IClk;
state_diagram DsdiEn
 state DSDI_DISABLED:
    if(HOST_WRITE_ADI_DATA & BndTmrExp.fb & !PdaRst.fb) then
       DSDI_ENABLED
    else
       DSDI_DISABLED;
 state DSDI_ENABLED:
```

138 *Release 0.1*

if(STATE_TX_DISABLED # PdaRst.fb) then

Support Information

DSDI_DISABLED

else

DSDI_ENABLED;

equations

DSDI.oe = ADS_IS_SELECTED & !IN_DIAG_LOOP_BACK; "avoid junk driven on DSDI input "during diagnostic loop back mode.

when (ADS_IS_SELECTED & !PdaSoftReset~) then

DSDI = H;

else when (ADS_IS_SELECTED & !STATE_DSDI_ENABLED & PdaSoftReset~) then

DSDI = L;

else when (ADS_IS_SELECTED & STATE_DSDI_ENABLED) then

DSDI = TxReg7.fb;

else

DSDI = L;

"* Debug Port VFLS pins.

equations

VflsP.oe = !ADS_IS_SELECTED;

when (!FRZ_IS_SELECTED) then

VflsP = [VFLS0, VFLS1];

else when (FRZ_IS_SELECTED) then

VflsP = [Freeze,Freeze];

"* Run Led

Run.oe = H;

!Run = IS_IN_DEBUG_MODE;"when 1 lits a led.

end dbg_prt7

5•3•2 U11 - Board Control & Status Register

****************************** "* In this file (6): "* - Added board revision # at BCSR3: 0 ENG 1 - PILOT. "* - Flash Presence detect lines - added FlashPD(7:5). "* - Changed polarity of Power-On Reset (now active high) "* - DramEn becomes active-low to enhance debug-station support changes. ********************************** "* In this file (7): "* - Board revisiob code @ BCSR3 is changed to 2 - Rev A. *************************** "* In this file (8): "* - Board revisiob code @ BCSR3 is changed to 3 - Rev B. "* - Added RS232En2~ for 2'nd RS232 port. ************************************ "* In this file (9): "* - All status bits (except CntRegEnProtect~) are removed for external buffers. "* - Added address line A27 "* - Added BCSR2CS~ and BCSR3CS~ for external status registers. "* - Added controls on bcsr1: "* - SdramEn~ "* - PccVcc1~ "* - Added BCSR4 with following controls: "* - UsbFethEn~ (bit 0) enables Usb or Fast Ethernet ports "* - UsbSpeed (bit 1) Usb speed control ('1'- full speed) "* - UsbVcc0(bit 2) enables VCC for Usb channel "* - UsbVcc1 (bit 3) reserved for possible 3.3V usb power "* - VideoOn~(bit 4) enables video transceiver "* - VideoExtClkEn (bit 5) enables ext 27Mhz clock for video encoder "* - VideoRst~(bit 6) resets the video encoder. "* - SignaLamp(bit 7) used for s/w signaling to user. ********************************* "* In this file (10): "* - Added ethernet transceiver control signals to BCSR4: "* - EthLoop (bit 8) sets the transceiver to internal loopback (H) "* - TPFFLDL~ (bit 9) sets the trans. to full-duplex mode. (L) "* - TPSQEL~ (bit 10) allows for testing the colission ciruitry of the 68160. "* - ModemEne~ (bit 11) enables the modem tool with the MPC823FADSDB

Support Information

"* - Modem_Au	dio~ (bit 12) selects bety	ween modem / audio function for	
"*	modem tool with MPC	823 daughter board.	
"*****	*******	*********	*******
"* In this file (11)):		
"* - Corrected bu	g with UsbVcc0 and UsbVc	cc1 - they were writen according to)
"* PccVcc0 and	PccVcc1 data bits, instead	of UsbVcc0 and UsbVcc1 data bits	s.
"* For Eng 823I	OB it has no influence since	the USB power is not operational	
"* there, but for	rev Pilot and up 823DB it i	s important.	
"*********	********	***********	********
module bcsr11			
	ADS Board Control and Sta	itus Register'	
"*****	*******	**********	******
"* Device declara	ation.	*	
"*****	*******	**********	******
U11 device 'mach	n220a':		
	,		
"******	********	**********	******
"* ###### *			
"*# # ##	#### ###### ##### # ;	# ## # #### *	
	# # # # ## # # # #	# # *	
		 # # # #### *	
	# # ##### # # # ###		
"*# ##		# # # *	
"* ####### # #	·	# # ##### #### *	
		**********	******
"*********	*******	**********	******
		*	
"* Pins declaratio		**********	*****
"* System i/f pins		****	> * * * * * * * * * * * * * * * * * * *
		~~~~~~~~~~~~~~~ <del>*</del> ***	· · · · · · · · · · · · · · · · · · ·
SYSCLKPIN 15	,		
"*************************************	;	*********	***********
ResetConf~PIN	45;		





```
BrdContRegCs~PIN 49;
TA~ PIN 16;
R_W~PIN 50;
A27 PIN 17;
A28 PIN 20;
A29 PIN 51;
D0
    PIN 10;
D1
    PIN 11;
D2
    PIN 12;
    PIN 13;
D3
D4
    PIN 33;
    PIN 14;
D5
D6
    PIN 25;
    PIN 24;
D7
    PIN 23;
D8
    PIN 22;
D9
D10 PIN 21;
D11 PIN 29;
D12 PIN 30;
D13 PIN 31;
D14 PIN 32;
D15 PIN 9;
"* Board Control Pins. Read/Write.
******************************
FlashEn~PIN 62 istype 'reg,buffer'; " flash enable.
DramEn~PIN 7 istype 'reg,buffer'; " dram enable
EthEn~PIN 6 istype 'reg,buffer'; " ethernet port enable
InfRedEn~PIN 41 istype 'reg,buffer'; " infra-red port enable
FlashCfgEn~PIN 37 istype 'reg,buffer'; " flash configuration enable
CntRegEn~PIN 36 istype 'reg,buffer'; " control register access enable
RS232En1~PIN 63 istype 'reg,buffer'; "RS232 port 1 enable
PccEn~PIN 40 istype 'reg,buffer'; " PCMCIA port enable
PccVcc0PIN 65 istype 'reg,buffer'; " PCMCIA operation voltage select 0
PccVpp0PIN 59 istype 'reg,buffer'; " PCMCIA programming voltage select
PccVpp1PIN 66 istype 'reg,buffer'; " PCMCIA programming voltage select
HalfWord~PIN 58 istype 'reg,buffer'; " 32/16 bit dram operation select
```



#### **Support Information**

RS232En2~PIN 64 istype 'reg,buffer'; "RS232 port 2 enable

SdramEn~PIN 56 istype 'reg,buffer'; " sdram enable PccVcc1PIN 57 istype 'reg,buffer'; "PCMCIA operation voltage select 1 EthLoop PIN 60 istype 'reg, buffer'; " 68160 internal loop back TPFLDL~ PIN 43 istype 'reg,buffer'; " 68160 full-duplex TPSQEL~ PIN 44 istype 'reg, buffer'; " 68160 colission circuitry test. SignaLamp~PIN 4 istype 'reg,buffer'; " status lamp for misc s/w visual signaling UsbFethEn~ PIN 67 istype 'reg,buffer'; " Usb or Fast ethernet port enable UsbSpeedPIN 46 istype 'reg,buffer'; " Usb speed control UsbVcc0PIN 3 istype 'reg,buffer'; " Usb VCC select 0 line UsbVcc1PIN 2 istype 'reg,buffer'; " Usb VCC select 1 line VideoOn~PIN 39 istype 'reg,buffer'; "Video encoder enable VideoExtClkEn PIN 38 istype 'reg, buffer'; "Enable external clock gen for video encoder VideoRst~PIN 5 istype 'reg,buffer'; "Video Encoder reset ModemEn~ PIN 28 istype 'reg,buffer'; " modem tool enable for MPC823FADSDB Modem_Audio~ PIN 55 istype 'reg,buffer'; " Modem / Audio functions select " for modem tool with MPC823 d/b. ***************************** "* Board Status Pins. Read only. ********************************* "* removed to external buffers ******************************** "* Board Status Registers Chip-Selects ****************************** Bcsr2Cs~PIN 47 istype 'com'; Bcsr3Cs~PIN 48 istype 'com'; ************************ "* Auxiliary Pins. ********************************** ### # # ##### ##### ##### # #### ##### # # # # # #



I

# MPC8XXFADS - User's Manual

# **Support Information**

*****************************
"* System Hard Reset Configuration.
********************************
ERBNODE istype 'reg,buffer'; "External Arbitration
IP~NODE istype 'reg,buffer'; " Interrupt Prefix in MSR
BDISNODE istype 'reg,buffer'; " Boot Disable
RSV2NODE istype 'reg,buffer'; " reserved config bit 2
BPS0,
BPS1NODE istype 'reg,buffer'; " Boot Port Size
RSV6NODE istype 'reg,buffer'; " reserved config bit 6
ISB0,
ISB1NODE istype 'reg,buffer'; " Internal Space Base
DBGC0,
DBGC1NODE istype 'reg,buffer'; " Debug pins Config.
DBPC0,
DBPC1NODE istype 'reg,buffer'; " Debug Port pins Config
RSV13 NODE istype 'reg,buffer'; " reserved config bit 13
RSV14 NODE istype 'reg,buffer'; " reserved config bit 14
RSV15 NODE istype 'reg,buffer'; " reserved config bit 15
DataOeNODE istype 'com';" data bus output enable on read.
"*************************************
"* Control Register Enable Protection.
"*************************************
C. P. F. D NODE:
CntRegEnProtect~NODE istype 'reg,buffer';
***************************************
"* Control Register Write (space saving) Mach 10 required for 52Mhz
"*************************************
Bcsr0Write~ NODE istype 'com';
Bcsr1Write~ NODE istype 'com';
Bcsr4Write~ NODE istype 'com';



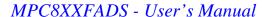
```
**************************
"* #####
"* # # #### # # ####
                     ## # # #####
       # # # # ####
"* ##### #### #
            # ####
"*
"* ######
   # ###### #### #
                    #####
               # # #
        # ##
   # ##### #
               # # # # #####
              ###### #####
              # # # #
   ##
        # ##
"* ##### ##### #### ##### # # # #
"*
     #####
             #### # #
"* # #
             # ## #
         # #### # #
********************************
H, L, X, Z = 1, 0, .X., .Z.;
C, D, U = .C., .D., .U.;
*************************
"* SIMULATION = 1;
"* SLOW_PLL_LOCK = 1;
"* DRAM_8_BIT_OPERATION = 1;
************************
**********************************
Add = [A27, A29];
Data = [D0..D15];
```



```
ConfigReg = [ERB,IP\sim,RSV2,BDIS,
       BPS0,BPS1,RSV6,ISB0,
       ISB1,DBGC0,DBGC1,DBPC0,
        DBPC1,RSV13,RSV14,RSV15];
BPS = [BPS0,BPS1];" boot port size
ISB = [ISB0,ISB1];" Initial Internal Space Base
DBGC = [DBGC0,DBGC1];" Debug Pins Configuration
DBPC = [DBPC0,DBPC1];" Debug port location
ContReg = [FlashEn \sim,
      DramEn~,EthEn~,InfRedEn~,FlashCfgEn~,
      CntRegEnProtect~,CntRegEn~,RS232En1~,PccEn~,
      PccVcc0,PccVpp0,PccVpp1,HalfWord~,
      RS232En2~,SdramEn~,PccVcc1,EthLoop,
      TPFLDL {\sim}, TPSQEL {\sim}, SignaLamp {\sim}, UsbFethEn {\sim},
      UsbSpeed,UsbVcc0,UsbVcc1,VideoOn~,
      VideoExtClkEn, VideoRst~, ModemEn~, Modem_Audio~];
ReadBcsr1 = [FlashEn\sim, DramEn\sim, EthEn\sim, InfRedEn\sim,
        FlashCfgEn~,CntRegEnProtect~.fb,CntRegEn~,RS232En1~,
        PccEn~,PccVcc0,PccVpp0,PccVpp1,
        HalfWord~,RS232En2~,SdramEn~,PccVcc1];
ReadBcsr4 = [EthLoop,
       TPFLDL~,TPSQEL~,SignaLamp~,UsbFethEn~,
       UsbSpeed,UsbVcc0, UsbVcc1,VideoOn~,
       VideoExtClkEn,VideoRst~,ModemEn~,Modem_Audio~];
DrivenContReg = [FlashEn \sim , DramEn \sim , EthEn \sim , InfRedEn \sim ,
          FlashCfgEn~,CntRegEn~,RS232En1~,PccEn~,
        PccVcc0, PccVpp0, PccVpp1, HalfWord{\sim},\\
          RS232En2~,SdramEn~,PccVcc1,EthLoop,
          TPFLDL~,TPSQEL~,SignaLamp~,UsbFethEn~,
          UsbSpeed,UsbVcc0,UsbVcc1,VideoOn~,
          VideoExtClkEn, VideoRst~, ModemEn~, Modem_Audio~];
PccVcc = [PccVcc0, PccVcc1];
PccVpp = [PccVpp0, PccVpp1];
```



```
WideContReg = [FlashEn \sim,
      DramEn~,EthEn~,InfRedEn~,FlashCfgEn~,
       CntRegEnProtect~,CntRegEn~,RS232En1~,PccEn~,
       PccVcc0,PccVpp0,PccVpp1,HalfWord~,
    RS232En2~,SdramEn~,PccVcc1,EthLoop,
    TPFLDL~,TPSQEL~,SignaLamp~,UsbFethEn~,
    UsbSpeed,UsbVcc0,UsbVcc1,VideoOn~,
    VideoExtClkEn,VideoRst~,ModemEn~,Modem_Audio~];
Bcsr2\_3Cs \sim = [Bcsr2Cs \sim, Bcsr3Cs \sim];
*************************
"* Power On Reset definitions
************************
FLASH\_CFG\_ENABLE = 0;
K_A_PON_RESET_ACTIVE = 1;
RESET_CONFIG_ACTIVE = 0;
"*** changed due to long lock delay of the pda *** 17,7,95 *************
@ifndef SLOW_PLL_LOCK {
 KA_PON_RESET = (RGPORIn == K_A_PON_RESET_ACTIVE);
}
@ifdef SLOW_PLL_LOCK {
 PON_DEFAULT_ACTIVE = 0;
 KA_PON_RESET = (PonDefault~ == PON_DEFAULT_ACTIVE);
}
"****** end of change *********
RESET_CONFIG_DRIVEN = ((ResetConf~ == RESET_CONFIG_ACTIVE) &
       (FlashCfgEn~ != FLASH_CFG_ENABLE));
*****************************
```

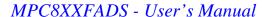



### **Support Information**

```
"* Register Access definitions
***********************************
CONFIG_REG_ADD = 0;
CONTROL_REG_1\_ADD = 1;
STATUS_REG2_ADD = 2;
STATUS_REG3_ADD = 3;
CONTROL_REG_4\_ADD = 4;
" MPC_WRITE_BCSR_0 = (!BrdContRegCs~ & !TA~ & !R_W~ & !A27 & !A28 & !A29 & !CntRegEn~);
" MPC_WRITE_BCSR_1 = (!BrdContRegCs~ & !TA~ & !R_W~ & !A27 & !A28 & A29 & !CntRegEn~);
MPC_WRITE_BCSR_3 = (!BrdContRegCs~ & !TA~ & !R_W~ & !A27 & A28 & A29 & !CntRegEn~);
"MPC_WRITE_BCSR_4 = (!BrdContRegCs~ & !TA~ & !R_W~ & A27 & !A28 & !A29 & !CntRegEn~);
BCSR_WRITE_ACTIVE = 0;
MPC_WRITE_BCSR_0 = (Bcsr0Write~.fb == BCSR_WRITE_ACTIVE);
MPC_WRITE_BCSR_1 = (Bcsr1Write~.fb == BCSR_WRITE_ACTIVE);
MPC_WRITE_BCSR_4 = (Bcsr4Write~.fb == BCSR_WRITE_ACTIVE);
MPC\_READ = (!BrdContRegCs \sim \& R\_W \sim \& !CntRegEn \sim);
MPC_READ_BCSR_0 = (!BrdContRegCs~ & R_W~ & !A27 & !A28 & !A29 & !CntRegEn~);
MPC_READ_BCSR_1 = (!BrdContRegCs~ & R_W~ & !A27 & !A28 & A29 & !CntRegEn~);
MPC_READ_BCSR_2 = (!BrdContRegCs~ & R_W~ & !A27 & A28 & !A29 & !CntRegEn~);
MPC_READ_BCSR_3 = (!BrdContRegCs~ & R_W~ & !A27 & A28 & A29 & !CntRegEn~);
MPC_READ_BCSR_4 = (!BrdContRegCs~ & R_W~ & A27 & !A28 & !A29 & !CntRegEn~);
*************************************
***********************************
"* BCSR 0 definitions
*************************************
***********************************
INTERNAL\_ARBITRATION = 0;
EXTERNAL_ARBITRATION = !INTERNAL_ARBITRATION;
IP\_AT\_0xFFF00000 = 0;"active low
IP_AT_0x000000000 = !IP_AT_0xFFF00000;
```



```
RSV2\_ACTIVE = 1;
BOOT_DISABLE = 1;
BOOT_ENABLE = !BOOT_DISABLE;
BOOT_PORT_32 = 0;
BOOT_PORT_8 = 1;
BOOT_PORT_16 = 2;
BOOT_PORT_RESERVED = 3;
RSV6\_ACTIVE = 1;
INT\_SPACE\_BASE\_0x000000000 = 0;
INT\_SPACE\_BASE\_0x00F00000 = 1;
INT_SPACE_BASE_0xFF000000 = 2;
INT\_SPACE\_BASE\_0xFFF00000 = 3;
DEBUG_PINS_PCMCIA_2 = 0;
DEBUG_PINS_WATCH_POINTS = 1;
DEBUG_PINS_RESREVED = 2;
DEBUG_PINS_FOR_SHOW = 3;
DEBUG_PORT_ON_JTAG = 0;
DEBUG_PORT_NON_EXISTANT = 1;
DEBUG_PORT_RESERVED = 2;
DEBUG_PORT_ON_DEBUG_PINS = 3;
RSV13\_ACTIVE = 1;
RSV14\_ACTIVE = 1;
RSV15\_ACTIVE = 1;
**********************************
"***** Power On Defaults Assignments *******
"**************
ERB_PON_DEFAULT = INTERNAL_ARBITRATION;
RSV2_PON_DEFAULT = !RSV2_ACTIVE;
BDIS_PON_DEFAULT = BOOT_ENABLE;
BPS_PON_DEFAULT = BOOT_PORT_32;
RSV6_PON_DEFAULT = !RSV6_ACTIVE;
ISB_PON_DEFAULT = INT_SPACE_BASE_0xFF000000;
```






```
DBGC_PON_DEFAULT = DEBUG_PINS_PCMCIA_2;
DBPC_PON_DEFAULT = DEBUG_PORT_ON_JTAG;
RSV13_PON_DEFAULT = !RSV13_ACTIVE;
RSV14_PON_DEFAULT = !RSV14_ACTIVE;
RSV15_PON_DEFAULT = !RSV15_ACTIVE;
"**************
"***** Data Bits Assignments *******
"**************
ERB_DATA_BIT = [D0];
IP \sim DATA_BIT = [D1];
RSV2\_DATA\_BIT = [D2];
BDIS_DATA_BIT = [D3];
BPS_DATA_BIT = [D4,D5];
RSV6_DATA_BIT = [D6];
ISB_DATA_BIT = [D7,D8];
DBGC_DATA_BIT = [D9,D10];
DBPC_DATA_BIT = [D11,D12];
RSV13_DATA_BIT = [D13];
RSV14_DATA_BIT = [D14];
RSV15_DATA_BIT = [D15];
***********************************
**********************************
"* BCSR 1 definitions.
*************************************
*************************************
HALF_WORD = 0;
ETH\_ENABLED = 0;
DRAM\_ENABLED = 0;
CONT_REG_ENABLE = 0;
RS232\_1\_ENABLE = 0;
RS232\_2\_ENABLE = 0;
PCC\_ENABLE = 0;
PCC_VCC_CONT_0 = 0;
PCC_VCC_CONT_1 = 1;
PCC_VPP0 = 1;
PCC_VPP1 = 1;
FLASH\_ENABLED = 0;
```



```
INF_RED_ENABLE = 0;
"* FLASH_CFG_ENABLE = 0; needed to be defined ealier
DRAM_5V = 0;
DRAM_3V = !DRAM_5V;
CNT_REG_EN_PROTECT = 0; " inadvertant write protect
SDRAM\_ENABLED = 1;
"****************
"***** Power On Defaults Assignments *******
"**************
FLASH_ENABLE_PON_DEFAULT = FLASH_ENABLED;
FLASH_CFG_ENABLE_PON_DEFAULT = !FLASH_CFG_ENABLE;
DRAM_ENABLE_PON_DEFAULT = DRAM_ENABLED;
ETH_ENABLE_PON_DEFAULT = !ETH_ENABLED;
CONT_REG_ENABLE_PON_DEFAULT = CONT_REG_ENABLE;
RS232_1_ENABLE_PON_DEFAULT = !RS232_1_ENABLE;
RS232_2_ENABLE_PON_DEFAULT = !RS232_2_ENABLE;
PCC_ENABLE_PON_DEFAULT = !PCC_ENABLE;
PCC_VCC_0_PON_DEFAULT = PCC_VCC_CONT_0;
PCC_VCC_1_PON_DEFAULT = PCC_VCC_CONT_0;
PCC_VPP0_PON_DEFAULT = PCC_VPP0;
PCC_VPP1_PON_DEFAULT = PCC_VPP1; " T.S. as default
INF_RED_ENABLE_PON_DEFAULT = !INF_RED_ENABLE;
HALF_WORD_PON_DEFAULT = !HALF_WORD;
SDRAM_ENABLE_PON_DEFAULT = SDRAM_ENABLED;
CNT REG EN PROTECT PON DEFAULT = CNT REG EN PROTECT;
*****************
"****** Data Bits Assignments ********
****************
FLASH_ENABLE_DATA_BIT = [D0];
DRAM_ENABLE_DATA_BIT = [D1];
ETH_ENABLE_DATA_BIT = [D2];
INF_RED_ENABLE_DATA_BIT = [D3];
FLASH_CFG_ENABLE_DATA_BIT = [D4];
CNT_REG_EN_PROTECT_DATA_BIT = [D5];
CONT_REG_ENABLE_DATA_BIT = [D6];
RS232_1_ENABLE_DATA_BIT = [D7];
PCC_ENABLE_DATA_BIT = [D8];
PCC_VCC_0_DATA_BIT = [D9];
PCC_VPP0_DATA_BIT = [D10];
PCC_VPP1_DATA_BIT = [D11];
```





```
HALF_WORD_DATA_BIT = [D12];
RS232\_2\_ENABLE\_DATA\_BIT = [D13];
SDRAM_ENABLE_DATA_BIT = [D14];
PCC_VCC_1_DATA_BIT = [D15];
************************************
***********************************
*************************************
ETH_LOOP = 1;
ETH_FULL_DUP = 0;
ETH_CLSN_TEST = 0;
SIGNAL\_LAMP\_ON = 0;
USB\_FETH\_ENABLED = 0;
USB_FULL_SPEED = 1;
USB_VCC_CONT_0 = 0;
VIDEO\_ENABLED = 0;
VIDEO_EXT_CLK_ENABLED = 1;
VIDEO_RESET_ACTIVE = 0;
MODEM_ENABLED_FOR_823 = 0;
MODEM = 1;
"**************
"***** Power On Defaults Assignments *******
"**************
ETH_LOOP_PON_DEFAULT = !ETH_LOOP;
ETH_FULL_DUP_PON_DEFAULT = !ETH_FULL_DUP;
ETH_CLSN_TEST_PON_DEFAULT = !ETH_CLSN_TEST;
SIGNAL_LAMP_PON_DEFAULT = !SIGNAL_LAMP_ON;
USB_FETH_EN_PON_DEFAULT = !USB_FETH_ENABLED;
USB_SPEED_PON_DEFAULT = USB_FULL_SPEED;
USB_VCC_0_CONT_PON_DEFAULT = !USB_VCC_CONT_0;
USB_VCC_1_CONT_PON_DEFAULT = !USB_VCC_CONT_0;
VIDEO_ENABLE_PON_DEFAULT = !VIDEO_ENABLED;
VIDEO_EXT_CLK_EN_PON_DEFAULT = !VIDEO_EXT_CLK_ENABLED;
VIDEO_RESET_PON_DEFAULT = !VIDEO_RESET_ACTIVE;
MODEM_ENABLE_PON_DEFAULT = !MODEM_ENABLED_FOR_823;
MODEM_FUNC_SEL_PON_DEFAULT = MODEM;
"*************
"***** Data Bits Assignments *******
```



```
"**************
ETH_LOOP_DATA_BIT = [D0];
ETH_FULL_DUP_DATA_BIT = [D1];
ETH_CLSN_TEST_DATA_BIT = [D2];
SIGNAL_LAMP_DATA_BIT = [D3];
USB_FETH_EN_DATA_BIT = [D4];
USB_SPEED_DATA_BIT = [D5];
USB_VCC_0_DATA_BIT = [D6];
USB_VCC_1_DATA_BIT = [D7];
VIDEO_ENABLE_DATA_BIT = [D8];
VIDEO_EXT_CLK_EN_DATA_BIT = [D9];
VIDEO_RESET_DATA_BIT = [D10];
MODEM_ENABLE_DATA_BIT = [D11];
MODEM_FUNC_SEL_DATA_BIT = [D12];
************************
"* Equations, state diagrams.
******************************
"* #######
"*#
                    #####
                                       ####
                               ####
***********************************
"* Configuration Register.
"* Gets its default pon reset values which are driven to the data bus when
"* during hard reset configuration.
"* If other values are required, this register may be written with new values
"* to become active for the next hard reset.
"* The state machines are built in a way that its power on value is changed in
"* one place - the declarations area.
***********************************
equations
@ifdef SLOW_PLL_LOCK {
```



```
!PonDefault~ = !ResetConf~ #
       RGPORIn;
}
!Bcsr0Write~ = (!BrdContRegCs~ & !TA~ & !R_W~ & !A27 & !A28 & !A29 & !CntRegEn~);
!Bcsr1Write~ = (!BrdContRegCs~ & !TA~ & !R_W~ & !A27 & !A28 & A29 & !CntRegEn~);
!Bcsr4Write~ = (!BrdContRegCs~ & !TA~ & !R_W~ & A27 & !A28 & !A29 & !CntRegEn~);
ConfigReg.clk = SYSCLK;
state_diagram ERB
 state INTERNAL_ARBITRATION:
    if (MPC_WRITE_BCSR_0 &
       (ERB_DATA_BIT.pin == EXTERNAL_ARBITRATION) &
        (!KA_PON_RESET # (ERB_PON_DEFAULT != INTERNAL_ARBITRATION)) #
        (KA\_PON\_RESET \& (ERB\_PON\_DEFAULT == EXTERNAL\_ARBITRATION))) then
       EXTERNAL_ARBITRATION
    else
       INTERNAL_ARBITRATION;
 state EXTERNAL_ARBITRATION:
    if (MPC_WRITE_BCSR_0 &
       (ERB_DATA_BIT.pin == INTERNAL_ARBITRATION) &
        (!KA_PON_RESET # (ERB_PON_DEFAULT != EXTERNAL_ARBITRATION)) #
        (KA\_PON\_RESET \& (ERB\_PON\_DEFAULT == INTERNAL\_ARBITRATION))) then
       INTERNAL_ARBITRATION
    else
       EXTERNAL_ARBITRATION;
*************************
state_diagram IP~
 state IP_AT_0xFFF00000:
    if (MPC_WRITE_BCSR_0 &
       (IP \sim DATA_BIT.pin == IP_AT_0x000000000) &
        (!KA_PON_RESET # (IP~_PON_DEFAULT != IP_AT_0xFFF00000)) #
        (KA\_PON\_RESET \& (IP\sim\_PON\_DEFAULT == IP\_AT\_0x00000000))) then
       IP_AT_0x00000000
    else
       IP_AT_0xFFF00000;
 state IP_AT_0x00000000:
```



```
if (MPC_WRITE_BCSR_0 &
       (IP \sim DATA_BIT.pin == IP_AT_0xFFF00000) &
       (!KA_PON_RESET # (IP~_PON_DEFAULT != IP_AT_0x00000000)) #
       (KA\_PON\_RESET \& (IP\sim\_PON\_DEFAULT == IP\_AT\_0xFFF00000))) then
       IP_AT_0xFFF00000
    else
       IP_AT_0x00000000;
***********************************
state_diagram RSV2
 state !RSV2_ACTIVE:
    if (MPC_WRITE_BCSR_0 &
       (RSV2_DATA_BIT.pin == RSV2_ACTIVE) &
       (!KA_PON_RESET # (RSV2_PON_DEFAULT != !RSV2_ACTIVE)) #
       (KA\_PON\_RESET \& (RSV2\_PON\_DEFAULT == RSV2\_ACTIVE))) then
       RSV2_ACTIVE
    else
       !RSV2_ACTIVE;
 state RSV2_ACTIVE:
    if (MPC_WRITE_BCSR_0 &
       (RSV2_DATA_BIT.pin == !RSV2_ACTIVE) &
       (!KA_PON_RESET # (RSV2_PON_DEFAULT != RSV2_ACTIVE)) #
       (KA\_PON\_RESET \& (RSV2\_PON\_DEFAULT == !RSV2\_ACTIVE))) then
       !RSV2_ACTIVE
    else
       RSV2 ACTIVE;
state_diagram BDIS
 state BOOT ENABLE:
    if (MPC_WRITE_BCSR_0 &
       (BDIS_DATA_BIT.pin == BOOT_DISABLE) &
       (!KA_PON_RESET # (BDIS_PON_DEFAULT != BOOT_ENABLE)) #
       (KA\_PON\_RESET \& (BDIS\_PON\_DEFAULT == BOOT\_DISABLE))) then
       BOOT_DISABLE
    else
       BOOT_ENABLE;
 state BOOT_DISABLE:
    if (MPC_WRITE_BCSR_0 &
       (BDIS_DATA_BIT.pin == BOOT_ENABLE) &
       (!KA_PON_RESET # (BDIS_PON_DEFAULT != BOOT_DISABLE)) #
       (KA\_PON\_RESET \& (BDIS\_PON\_DEFAULT == BOOT\_ENABLE))) then
```



BOOT_ENABLE else BOOT_DISABLE; ********************************** state_diagram BPS state BOOT_PORT_32: if (MPC_WRITE_BCSR_0 & (BPS_DATA_BIT.pin == BOOT_PORT_8) & (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_32)) #  $(KA_PON_RESET \& (BPS_PON_DEFAULT == BOOT_PORT_8)) ) then$ BOOT_PORT_8 else if (MPC_WRITE_BCSR_0 & (BPS_DATA_BIT.pin == BOOT_PORT_16) & (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_32)) #  $(KA_PON_RESET \& (BPS_PON_DEFAULT == BOOT_PORT_16)))$  then BOOT_PORT_16 else if (MPC_WRITE_BCSR_0 & (BPS_DATA_BIT.pin == BOOT_PORT_RESERVED) & (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_32)) #  $(KA_PON_RESET & (BPS_PON_DEFAULT == BOOT_PORT_RESERVED)))$  then BOOT_PORT_RESERVED else BOOT_PORT_32; state BOOT_PORT_8: if (MPC_WRITE_BCSR_0 & (BPS_DATA_BIT.pin == BOOT_PORT_32) & (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_8)) # (KA_PON_RESET & (BPS_PON_DEFAULT == BOOT_PORT_32))) then BOOT_PORT_32 else if (MPC_WRITE_BCSR_0 & (BPS_DATA_BIT.pin == BOOT_PORT_16) & (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_8)) #  $(KA_PON_RESET \& (BPS_PON_DEFAULT == BOOT_PORT_16)))$  then BOOT_PORT_16 else if (MPC_WRITE_BCSR_0 & (BPS_DATA_BIT.pin == BOOT_PORT_RESERVED) & (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_8)) # (KA_PON_RESET & (BPS_PON_DEFAULT == BOOT_PORT_RESERVED)) ) then BOOT_PORT_RESERVED else



```
BOOT_PORT_8;
 state BOOT_PORT_16:
    if (MPC_WRITE_BCSR_0 &
       (BPS_DATA_BIT.pin == BOOT_PORT_32) &
       (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_16)) #
       (KA_PON_RESET & (BPS_PON_DEFAULT == BOOT_PORT_32))) then
       BOOT_PORT_32
    else if (MPC_WRITE_BCSR_0 &
       (BPS_DATA_BIT.pin == BOOT_PORT_8) &
       (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_16)) #
       (KA\_PON\_RESET \& (BPS\_PON\_DEFAULT == BOOT\_PORT\_8))) then
       BOOT_PORT_8
    else if (MPC_WRITE_BCSR_0 &
       (BPS_DATA_BIT.pin == BOOT_PORT_RESERVED) &
       (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_16)) #
       (KA_PON_RESET & (BPS_PON_DEFAULT == BOOT_PORT_RESERVED)) ) then
       BOOT_PORT_RESERVED
    else
       BOOT_PORT_16;
 state BOOT_PORT_RESERVED:
    if (MPC_WRITE_BCSR_0 &
       (BPS_DATA_BIT.pin == BOOT_PORT_32) &
       (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_RESERVED)) #
       (KA_PON_RESET & (BPS_PON_DEFAULT == BOOT_PORT_32)) ) then
       BOOT PORT 32
    else if (MPC_WRITE_BCSR_0 &
       (BPS_DATA_BIT.pin == BOOT_PORT_16) &
       (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_RESERVED)) #
       (KA\_PON\_RESET \& (BPS\_PON\_DEFAULT == BOOT\_PORT\_16))) then
       BOOT_PORT_16
    else if (MPC_WRITE_BCSR_0 &
       (BPS_DATA_BIT.pin == BOOT_PORT_8) &
       (!KA_PON_RESET # (BPS_PON_DEFAULT != BOOT_PORT_RESERVED)) #
       (KA\_PON\_RESET \& (BPS\_PON\_DEFAULT == BOOT\_PORT\_8))) then
       BOOT_PORT_8
    else
       BOOT_PORT_RESERVED;
*******************************
state_diagram RSV6
 state !RSV6_ACTIVE:
```



### **Support Information**

```
if (MPC_WRITE_BCSR_0 &
                  (RSV6_DATA_BIT.pin == RSV6_ACTIVE) &
                  (!KA_PON_RESET # (RSV6_PON_DEFAULT != !RSV6_ACTIVE)) #
                  (KA\_PON\_RESET \& (RSV6\_PON\_DEFAULT == RSV6\_ACTIVE))) then
                  RSV6_ACTIVE
           else
                  !RSV6_ACTIVE;
   state RSV2_ACTIVE:
          if (MPC_WRITE_BCSR_0 &
                  (RSV6_DATA_BIT.pin == !RSV6_ACTIVE) &
                  (!KA_PON_RESET # (RSV6_PON_DEFAULT != RSV6_ACTIVE)) #
                  (KA\_PON\_RESET \& (RSV6\_PON\_DEFAULT == !RSV6\_ACTIVE))) then
                  !RSV6_ACTIVE
          else
                  RSV6_ACTIVE;
**********************************
state_diagram ISB
    state INT_SPACE_BASE_0x00000000:
          if (MPC_WRITE_BCSR_0 &
                  (ISB_DATA_BIT.pin == INT_SPACE_BASE_0x00F00000) &
                  (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0x00000000)) #
                  (KA\_PON\_RESET \& (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0x00F00000))) then
                  INT_SPACE_BASE_0x00F00000
          else if (MPC_WRITE_BCSR_0 &
                  (ISB_DATA_BIT.pin == INT_SPACE_BASE_0xFF000000) &
                  (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0x00000000)) #
                  (KA_PON_RESET & (ISB_PON_DEFAULT == INT_SPACE_BASE_0xFF000000))) then
                  INT_SPACE_BASE_0xFF000000
          else if (MPC_WRITE_BCSR_0 &
                  (ISB_DATA_BIT.pin == INT_SPACE_BASE_0xFFF00000) &
                  (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0x00000000)) #
                  (KA\_PON\_RESET \ \& \ (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0xFFF00000)) \ ) \ then \ (KA\_PON\_RESET \ \& \ (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0xFFF000000)) \ ) \ then \ (KA\_PON\_RESET \ \& \ (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0xFFF000000)) \ ) \ denote the second of the sec
                  INT_SPACE_BASE_0xFFF00000
          else
                  INT_SPACE_BASE_0x000000000;
    state INT_SPACE_BASE_0x00F00000:
          if (MPC_WRITE_BCSR_0 &
                  (ISB_DATA_BIT.pin == INT_SPACE_BASE_0x000000000) &
                  (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0x00F00000)) #
```



### Support Information

```
(KA\_PON\_RESET \ \& \ (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0x00000000)) \ ) \ then
      INT_SPACE_BASE_0x00000000
   else if (MPC_WRITE_BCSR_0 &
      (ISB_DATA_BIT.pin == INT_SPACE_BASE_0xFF000000) &
      (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0x00F00000)) #
      (KA_PON_RESET & (ISB_PON_DEFAULT == INT_SPACE_BASE_0xFF000000))) then
      INT_SPACE_BASE_0xFF000000
  else if (MPC_WRITE_BCSR_0 &
      (ISB_DATA_BIT.pin == INT_SPACE_BASE_0xFFF00000) &
      (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0x00F00000)) #
      (KA\_PON\_RESET \& (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0xFFF00000))) then
      INT_SPACE_BASE_0xFFF00000
  else
      INT_SPACE_BASE_0x00F00000;
state INT_SPACE_BASE_0xFF000000:
  if (MPC_WRITE_BCSR_0 &
      (ISB_DATA_BIT.pin == INT_SPACE_BASE_0x000000000) &
      (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0xFF000000)) #
      (KA\_PON\_RESET \& (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0x00000000))) then
      INT_SPACE_BASE_0x00000000
   else if (MPC_WRITE_BCSR_0 &
      (ISB_DATA_BIT.pin == INT_SPACE_BASE_0x00F00000) &
      (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0xFF000000)) #
      (KA_PON_RESET & (ISB_PON_DEFAULT == INT_SPACE_BASE_0x00F00000))) then
      INT_SPACE_BASE_0x00F00000
  else if (MPC_WRITE_BCSR_0 &
      (ISB_DATA_BIT.pin == INT_SPACE_BASE_0xFFF00000) &
      (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0xFF000000)) #
      (KA\_PON\_RESET \& (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0xFFF00000))) then
      INT_SPACE_BASE_0xFFF00000
   else
      INT_SPACE_BASE_0xFF000000;
state INT_SPACE_BASE_0xFFF00000:
  if (MPC_WRITE_BCSR_0 &
      (ISB_DATA_BIT.pin == INT_SPACE_BASE_0x000000000) &
      (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0xFFF00000)) #
      (KA_PON_RESET & (ISB_PON_DEFAULT == INT_SPACE_BASE_0x000000000))) then
      INT_SPACE_BASE_0x00000000
```



### **Support Information**

```
else if (MPC_WRITE_BCSR_0 &
       (ISB_DATA_BIT.pin == INT_SPACE_BASE_0x00F00000) &
       (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0xFFF00000)) #
       (KA_PON_RESET & (ISB_PON_DEFAULT == INT_SPACE_BASE_0x00F00000))) then
       INT_SPACE_BASE_0x00F00000
    else if (MPC_WRITE_BCSR_0 &
       (ISB_DATA_BIT.pin == INT_SPACE_BASE_0xFF000000) &
       (!KA_PON_RESET # (ISB_PON_DEFAULT != INT_SPACE_BASE_0xFFF00000)) #
       (KA\_PON\_RESET \& (ISB\_PON\_DEFAULT == INT\_SPACE\_BASE\_0xFF000000))) then
       INT_SPACE_BASE_0xFF000000
    else
       INT_SPACE_BASE_0xFFF00000;
state_diagram DBGC
 state DEBUG_PINS_PCMCIA_2:
    if (MPC_WRITE_BCSR_0 &
       (DBGC_DATA_BIT.pin == DEBUG_PINS_WATCH_POINTS) &
       (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_PCMCIA_2)) #
       (KA_PON_RESET & (DBGC_PON_DEFAULT == DEBUG_PINS_WATCH_POINTS)) ) then
       DEBUG_PINS_WATCH_POINTS
    else if (MPC_WRITE_BCSR_0 &
       (DBGC_DATA_BIT.pin == DEBUG_PINS_RESREVED) &
       (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_PCMCIA_2)) #
       (KA_PON_RESET & (DBGC_PON_DEFAULT == DEBUG_PINS_RESREVED)) ) then
       DEBUG PINS RESREVED
    else if (MPC_WRITE_BCSR_0 &
       (DBGC_DATA_BIT.pin == DEBUG_PINS_FOR_SHOW) &
       (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_PCMCIA_2)) #
       (KA\_PON\_RESET \& (DBGC\_PON\_DEFAULT == DEBUG\_PINS\_FOR\_SHOW))) then
       DEBUG_PINS_FOR_SHOW
    else
       DEBUG_PINS_PCMCIA_2;
 state DEBUG_PINS_WATCH_POINTS:
    if (MPC_WRITE_BCSR_0 &
       (DBGC_DATA_BIT.pin == DEBUG_PINS_PCMCIA_2) &
       (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_WATCH_POINTS)) #
       (KA_PON_RESET & (DBGC_PON_DEFAULT == DEBUG_PINS_PCMCIA_2)) ) then
       DEBUG_PINS_PCMCIA_2
    else if (MPC_WRITE_BCSR_0 &
```



### Support Information

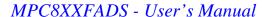
```
(DBGC_DATA_BIT.pin == DEBUG_PINS_RESREVED) &
      (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_WATCH_POINTS)) #
      (KA\_PON\_RESET \& (DBGC\_PON\_DEFAULT == DEBUG\_PINS\_RESREVED))) then
     DEBUG PINS RESREVED
  else if (MPC_WRITE_BCSR_0 &
     (DBGC_DATA_BIT.pin == DEBUG_PINS_FOR_SHOW) &
      (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_WATCH_POINTS)) #
      (KA\_PON\_RESET \& (DBGC\_PON\_DEFAULT == DEBUG\_PINS\_FOR\_SHOW))) then
     DEBUG_PINS_FOR_SHOW
  else
     DEBUG_PINS_WATCH_POINTS;
state DEBUG_PINS_RESREVED:
  if (MPC_WRITE_BCSR_0 &
     (DBGC_DATA_BIT.pin == DEBUG_PINS_PCMCIA_2) &
      (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_RESREVED)) #
      (KA_PON_RESET & (DBGC_PON_DEFAULT == DEBUG_PINS_PCMCIA_2)) ) then
     DEBUG_PINS_PCMCIA_2
  else if (MPC_WRITE_BCSR_0 &
     (DBGC_DATA_BIT.pin == DEBUG_PINS_WATCH_POINTS) &
      (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_RESREVED)) #
      (KA_PON_RESET & (DBGC_PON_DEFAULT == DEBUG_PINS_WATCH_POINTS)) ) then
     DEBUG_PINS_WATCH_POINTS
  else if (MPC_WRITE_BCSR_0 &
     (DBGC_DATA_BIT.pin == DEBUG_PINS_FOR_SHOW) &
      (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_RESREVED)) #
      (KA_PON_RESET & (DBGC_PON_DEFAULT == DEBUG_PINS_FOR_SHOW))) then
     DEBUG PINS FOR SHOW
  else
     DEBUG_PINS_RESREVED;
state DEBUG_PINS_FOR_SHOW:
  if (MPC_WRITE_BCSR_0 &
     (DBGC_DATA_BIT.pin == DEBUG_PINS_PCMCIA_2) &
      (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_FOR_SHOW)) #
      (KA\_PON\_RESET \& (DBGC\_PON\_DEFAULT == DEBUG\_PINS\_PCMCIA\_2))) then
     DEBUG_PINS_PCMCIA_2
  else if (MPC_WRITE_BCSR_0 &
     (DBGC_DATA_BIT.pin == DEBUG_PINS_WATCH_POINTS) &
      (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_FOR_SHOW)) #
      (KA_PON_RESET & (DBGC_PON_DEFAULT == DEBUG_PINS_WATCH_POINTS)) ) then
```



### **Support Information**

```
DEBUG_PINS_WATCH_POINTS
    else if (MPC_WRITE_BCSR_0 &
       (DBGC_DATA_BIT.pin == DEBUG_PINS_RESREVED) &
       (!KA_PON_RESET # (DBGC_PON_DEFAULT != DEBUG_PINS_FOR_SHOW)) #
       (KA_PON_RESET & (DBGC_PON_DEFAULT == DEBUG_PINS_RESREVED)) ) then
       DEBUG_PINS_RESREVED
    else
       DEBUG_PINS_FOR_SHOW;
********************************
state_diagram DBPC
 state DEBUG_PORT_ON_JTAG:
    if (MPC_WRITE_BCSR_0 &
       (DBPC_DATA_BIT.pin == DEBUG_PORT_NON_EXISTANT) &
       (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_ON_JTAG)) #
       (KA_PON_RESET & (DBPC_PON_DEFAULT == DEBUG_PORT_NON_EXISTANT)) ) then
       DEBUG_PORT_NON_EXISTANT
    else if (MPC_WRITE_BCSR_0 &
       (DBPC_DATA_BIT.pin == DEBUG_PORT_RESERVED) &
       (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_ON_JTAG)) #
       (KA\_PON\_RESET \& (DBPC\_PON\_DEFAULT == DEBUG\_PORT\_RESERVED))) then
       DEBUG_PORT_RESERVED
    else if (MPC_WRITE_BCSR_0 &
       (DBPC_DATA_BIT.pin == DEBUG_PORT_ON_DEBUG_PINS) &
       (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_ON_JTAG)) #
       (KA_PON_RESET & (DBPC_PON_DEFAULT == DEBUG_PORT_ON_DEBUG_PINS))) then
       DEBUG_PORT_ON_DEBUG_PINS
    else
       DEBUG_PORT_ON_JTAG;
 state DEBUG_PORT_NON_EXISTANT:
    if (MPC_WRITE_BCSR_0 &
       (DBPC_DATA_BIT.pin == DEBUG_PORT_ON_JTAG) &
       (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_NON_EXISTANT)) #
       (KA_PON_RESET & (DBPC_PON_DEFAULT == DEBUG_PORT_ON_JTAG))) then
       DEBUG_PORT_ON_JTAG
    else if (MPC_WRITE_BCSR_0 &
       (DBPC_DATA_BIT.pin == DEBUG_PORT_RESERVED) &
       (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_NON_EXISTANT)) #
       (KA_PON_RESET & (DBPC_PON_DEFAULT == DEBUG_PORT_RESERVED))) then
       DEBUG_PORT_RESERVED
```




#### Support Information

```
else if (MPC_WRITE_BCSR_0 &
     (DBPC_DATA_BIT.pin == DEBUG_PORT_ON_DEBUG_PINS) &
     (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_NON_EXISTANT)) #
     (KA_PON_RESET & (DBPC_PON_DEFAULT == DEBUG_PORT_ON_DEBUG_PINS))) then
     DEBUG_PORT_ON_DEBUG_PINS
  else
     DEBUG_PORT_NON_EXISTANT;
state DEBUG_PORT_RESERVED:
  if (MPC_WRITE_BCSR_0 &
     (DBPC_DATA_BIT.pin == DEBUG_PORT_ON_JTAG) &
     (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_RESERVED)) #
     (KA_PON_RESET & (DBPC_PON_DEFAULT == DEBUG_PORT_ON_JTAG)) ) then
     DEBUG_PORT_ON_JTAG
  else if (MPC_WRITE_BCSR_0 &
     (DBPC_DATA_BIT.pin == DEBUG_PORT_NON_EXISTANT) &
     (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_RESERVED)) #
     (KA_PON_RESET & (DBPC_PON_DEFAULT == DEBUG_PORT_NON_EXISTANT)) ) then
     DEBUG_PORT_NON_EXISTANT
  else if (MPC_WRITE_BCSR_0 &
     (DBPC_DATA_BIT.pin == DEBUG_PORT_ON_DEBUG_PINS) &
     (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_RESERVED)) #
      (KA PON RESET & (DBPC PON DEFAULT == DEBUG PORT ON DEBUG PINS)) ) then
     DEBUG_PORT_ON_DEBUG_PINS
  else
     DEBUG_PORT_RESERVED;
state DEBUG_PORT_ON_DEBUG_PINS:
  if (MPC_WRITE_BCSR_0 &
     (DBPC_DATA_BIT.pin == DEBUG_PORT_ON_JTAG) &
     (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_ON_DEBUG_PINS)) #
     (KA\_PON\_RESET \& (DBPC\_PON\_DEFAULT == DEBUG\_PORT\_ON\_JTAG))) then
     DEBUG_PORT_ON_JTAG
  else if (MPC_WRITE_BCSR_0 &
     (DBPC_DATA_BIT.pin == DEBUG_PORT_NON_EXISTANT) &
     (!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_ON_DEBUG_PINS)) #
     (KA_PON_RESET & (DBPC_PON_DEFAULT == DEBUG_PORT_NON_EXISTANT))) then
     DEBUG_PORT_NON_EXISTANT
  else if (MPC_WRITE_BCSR_0 &
     (DBPC_DATA_BIT.pin == DEBUG_PORT_RESERVED) &
```



### Support Information

```
(!KA_PON_RESET # (DBPC_PON_DEFAULT != DEBUG_PORT_ON_DEBUG_PINS)) #
       (KA\_PON\_RESET \& (DBPC\_PON\_DEFAULT == DEBUG\_PORT\_RESERVED))) then
       DEBUG_PORT_RESERVED
    else
       DEBUG_PORT_ON_DEBUG_PINS;
**********************************
state_diagram RSV13
 state !RSV13_ACTIVE:
    if (MPC_WRITE_BCSR_0 &
       (RSV13_DATA_BIT.pin == RSV13_ACTIVE) &
       (!KA_PON_RESET # (RSV13_PON_DEFAULT != !RSV13_ACTIVE)) #
       (KA\_PON\_RESET \& (RSV13\_PON\_DEFAULT == RSV13\_ACTIVE))) then
       RSV13_ACTIVE
    else
       !RSV13_ACTIVE;
 state RSV13_ACTIVE:
    if (MPC_WRITE_BCSR_0 &
       (RSV13_DATA_BIT.pin == !RSV13_ACTIVE) &
       (!KA_PON_RESET # (RSV13_PON_DEFAULT != RSV13_ACTIVE)) #
       (KA\_PON\_RESET \& (RSV13\_PON\_DEFAULT == !RSV13\_ACTIVE))) then
       !RSV13_ACTIVE
    else
       RSV13_ACTIVE;
**********************************
state_diagram RSV14
 state !RSV14_ACTIVE:
    if (MPC_WRITE_BCSR_0 &
       (RSV14_DATA_BIT.pin == RSV14_ACTIVE) &
       (!KA_PON_RESET # (RSV14_PON_DEFAULT != !RSV14_ACTIVE)) #
       (KA\_PON\_RESET \& (RSV14\_PON\_DEFAULT == RSV14\_ACTIVE))) then
       RSV14_ACTIVE
    else
       !RSV14_ACTIVE;
 state RSV14_ACTIVE:
    if (MPC_WRITE_BCSR_0 &
       (RSV14_DATA_BIT.pin == !RSV14_ACTIVE) &
       (!KA_PON_RESET # (RSV14_PON_DEFAULT != RSV14_ACTIVE)) #
       (KA_PON_RESET & (RSV14_PON_DEFAULT == !RSV14_ACTIVE)) ) then
       !RSV14_ACTIVE
```





```
else
      RSV14_ACTIVE;
state_diagram RSV15
 state !RSV15_ACTIVE:
   if (MPC_WRITE_BCSR_0 &
      (RSV15_DATA_BIT.pin == RSV15_ACTIVE) &
      (!KA_PON_RESET # (RSV15_PON_DEFAULT != !RSV15_ACTIVE)) #
      (KA\_PON\_RESET \& (RSV15\_PON\_DEFAULT == RSV15\_ACTIVE))) then
      RSV15_ACTIVE
   else
      !RSV15_ACTIVE;
 state RSV15_ACTIVE:
   if (MPC_WRITE_BCSR_0 &
      (RSV15_DATA_BIT.pin == !RSV15_ACTIVE) &
      (!KA_PON_RESET # (RSV15_PON_DEFAULT != RSV15_ACTIVE)) #
      (KA\_PON\_RESET \& (RSV15\_PON\_DEFAULT == !RSV15\_ACTIVE))) then
      !RSV15_ACTIVE
   else
      RSV15_ACTIVE;
**********************************
"* BCSR 1
*************************************
equations
WideContReg.clk = SYSCLK;
DrivenContReg.oe = ^hfffffff;
state_diagram FlashEn~
 state FLASH_ENABLED:
   if (MPC_WRITE_BCSR_1 &
      (FLASH_ENABLE_DATA_BIT.pin == !FLASH_ENABLED) &
      (!KA_PON_RESET # (FLASH_ENABLE_PON_DEFAULT != FLASH_ENABLED)) #
      (KA\_PON\_RESET \& (FLASH\_ENABLE\_PON\_DEFAULT == !FLASH\_ENABLED))) then
      !FLASH ENABLED
   else
      FLASH_ENABLED;
 state !FLASH_ENABLED:
```



# **Support Information**

```
if (MPC_WRITE_BCSR_1 &
      (FLASH_ENABLE_DATA_BIT.pin == FLASH_ENABLED) &
       (!KA_PON_RESET # (FLASH_ENABLE_PON_DEFAULT != !FLASH_ENABLED)) #
       (KA_PON_RESET & (FLASH_ENABLE_PON_DEFAULT == FLASH_ENABLED))) then
      FLASH_ENABLED
    else
      !FLASH_ENABLED;
***********************************
state_diagram DramEn~
 state DRAM_ENABLED:
    if (MPC_WRITE_BCSR_1 &
      (DRAM_ENABLE_DATA_BIT.pin == !DRAM_ENABLED) &
       (!KA_PON_RESET # (DRAM_ENABLE_PON_DEFAULT != DRAM_ENABLED)) #
       (KA\_PON\_RESET \& (DRAM\_ENABLE\_PON\_DEFAULT == !DRAM\_ENABLED))) then
      !DRAM_ENABLED
    else
      DRAM_ENABLED;
 state !DRAM_ENABLED:
    if (MPC_WRITE_BCSR_1 &
      (DRAM_ENABLE_DATA_BIT.pin == DRAM_ENABLED) &
       (!KA_PON_RESET # (DRAM_ENABLE_PON_DEFAULT != !DRAM_ENABLED)) #
       (KA_PON_RESET & (DRAM_ENABLE_PON_DEFAULT == DRAM_ENABLED)) ) then
      DRAM_ENABLED
    else
      !DRAM ENABLED;
state_diagram EthEn~
 state ETH_ENABLED:
    if (MPC_WRITE_BCSR_1 &
      (ETH_ENABLE_DATA_BIT.pin == !ETH_ENABLED) &
       (!KA_PON_RESET # (ETH_ENABLE_PON_DEFAULT != ETH_ENABLED)) #
       (KA\_PON\_RESET \& (ETH\_ENABLE\_PON\_DEFAULT == !ETH\_ENABLED))) then
      !ETH_ENABLED
    else
      ETH_ENABLED;
 state !ETH_ENABLED:
    if (MPC_WRITE_BCSR_1 &
      (ETH_ENABLE_DATA_BIT.pin == ETH_ENABLED) &
       (!KA_PON_RESET # (ETH_ENABLE_PON_DEFAULT != !ETH_ENABLED)) #
```

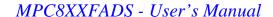


### Support Information

```
(KA\_PON\_RESET \ \& \ (ETH\_ENABLE\_PON\_DEFAULT == ETH\_ENABLED)) \ ) \ then
      ETH_ENABLED
    else
      !ETH ENABLED;
state_diagram InfRedEn~
 state INF_RED_ENABLE:
    if (MPC_WRITE_BCSR_1 &
      (INF_RED_ENABLE_DATA_BIT.pin == !INF_RED_ENABLE) &
       (!KA_PON_RESET # (INF_RED_ENABLE_PON_DEFAULT != INF_RED_ENABLE)) #
       (KA_PON_RESET & (INF_RED_ENABLE_PON_DEFAULT == !INF_RED_ENABLE))) then
      !INF_RED_ENABLE
    else
      INF_RED_ENABLE;
 state !INF_RED_ENABLE:
    if (MPC_WRITE_BCSR_1 &
      (INF_RED_ENABLE_DATA_BIT.pin == INF_RED_ENABLE) &
       (!KA_PON_RESET # (INF_RED_ENABLE_PON_DEFAULT != !INF_RED_ENABLE)) #
       (KA_PON_RESET & (INF_RED_ENABLE_PON_DEFAULT == INF_RED_ENABLE)) ) then
      INF_RED_ENABLE
    else
      !INF_RED_ENABLE;
state_diagram FlashCfgEn~
 state FLASH_CFG_ENABLE:
    if (MPC_WRITE_BCSR_1 &
      (FLASH_CFG_ENABLE_DATA_BIT.pin == !FLASH_CFG_ENABLE) &
       (!KA_PON_RESET # (FLASH_CFG_ENABLE_PON_DEFAULT != FLASH_CFG_ENABLE)) #
       (KA_PON_RESET & (FLASH_CFG_ENABLE_PON_DEFAULT == !FLASH_CFG_ENABLE)) )then
      !FLASH_CFG_ENABLE
    else
      FLASH_CFG_ENABLE;
 state !FLASH_CFG_ENABLE:
    if (MPC_WRITE_BCSR_1 &
      (FLASH_CFG_ENABLE_DATA_BIT.pin == FLASH_CFG_ENABLE) &
       (!KA_PON_RESET # (FLASH_CFG_ENABLE_PON_DEFAULT != !FLASH_CFG_ENABLE)) #
       (KA_PON_RESET & (FLASH_CFG_ENABLE_PON_DEFAULT == FLASH_CFG_ENABLE))) then
      FLASH_CFG_ENABLE
    else
      !FLASH_CFG_ENABLE;
```



### Support Information


*************************

```
"* To avoid in advertant write to the Control Register Enable bit, which might
"* result in a need to re-power the board - protection logic is provided.
"* In order of writing the Control Register Enable this bit in the status register
"* must be negated. After any write to the control register, this bit asserts
"* again (to protected mode)
*****************************
equations
CntRegEnProtect~.clk = SYSCLK;
state_diagram CntRegEnProtect~
 state CNT_REG_EN_PROTECT:
    if (MPC_WRITE_BCSR_3 &
       (CNT_REG_EN_PROTECT_DATA_BIT.pin == !CNT_REG_EN_PROTECT) &
       (!KA_PON_RESET # (CNT_REG_EN_PROTECT_PON_DEFAULT != CNT_REG_EN_PROTECT)) #
       (KA PON RESET & (CNT_REG_EN_PROTECT_PON_DEFAULT == !CNT_REG_EN_PROTECT)) then
       !CNT_REG_EN_PROTECT
    else
       CNT_REG_EN_PROTECT;
 state !CNT_REG_EN_PROTECT:
    if (MPC_WRITE_BCSR_3 &
       (CNT_REG_EN_PROTECT_DATA_BIT.pin == CNT_REG_EN_PROTECT) &
       (!KA_PON_RESET # (CNT_REG_EN_PROTECT_PON_DEFAULT != !CNT_REG_EN_PROTECT)) #
       (KA_PON_RESET & (CNT_REG_EN_PROTECT_PON_DEFAULT == CNT_REG_EN_PROTECT)) #
       MPC_WRITE_BCSR_1) then " any write to control reg 1
       CNT_REG_EN_PROTECT
    else
       !CNT_REG_EN_PROTECT;
************************
"* protected by CntRegEnProtect~ to prevent from inadvertant write
**********************************
state_diagram CntRegEn~
 state CONT_REG_ENABLE:
    if (MPC_WRITE_BCSR_1 & (CntRegEnProtect~.fb != CNT_REG_EN_PROTECT) &
       (CONT_REG_ENABLE_DATA_BIT.pin == !CONT_REG_ENABLE) &
       (!KA_PON_RESET # (CONT_REG_ENABLE_PON_DEFAULT != CONT_REG_ENABLE)) #
       (KA PON RESET & (CONT REG ENABLE PON DEFAULT == !CONT REG ENABLE)) ) then
       !CONT_REG_ENABLE
    else
```



# Support Information

```
CONT_REG_ENABLE;
 state !CONT_REG_ENABLE:" in fact not applicable
    if (MPC_WRITE_BCSR_1 &
       (CONT_REG_ENABLE_DATA_BIT.pin == CONT_REG_ENABLE) &
       (!KA_PON_RESET # (CONT_REG_ENABLE_PON_DEFAULT != !CONT_REG_ENABLE)) #
       (KA PON RESET & (CONT REG ENABLE PON DEFAULT == CONT REG ENABLE)) ) then
       CONT_REG_ENABLE
    else
       !CONT_REG_ENABLE;
**********************************
state_diagram RS232En1~
 state RS232_1_ENABLE:
    if (MPC_WRITE_BCSR_1 &
       (RS232_1_ENABLE_DATA_BIT.pin == !RS232_1_ENABLE) &
       (!KA_PON_RESET # (RS232_1_ENABLE_PON_DEFAULT != RS232_1_ENABLE)) #
       (KA_PON_RESET & (RS232_1_ENABLE_PON_DEFAULT == !RS232_1_ENABLE))) then
       !RS232_1_ENABLE
    else
       RS232_1_ENABLE;
 state !RS232_1_ENABLE:
    if (MPC_WRITE_BCSR_1 &
       (RS232_1_ENABLE_DATA_BIT.pin == RS232_1_ENABLE) &
       (!KA_PON_RESET # (RS232_1_ENABLE_PON_DEFAULT != !RS232_1_ENABLE)) #
       (KA_PON_RESET & (RS232_1_ENABLE_PON_DEFAULT == RS232_1_ENABLE))) then
       RS232 1 ENABLE
    else
       !RS232_1_ENABLE;
************************
state_diagram PccEn~
 state PCC_ENABLE:
    if (MPC_WRITE_BCSR_1 &
       (PCC_ENABLE_DATA_BIT.pin == !PCC_ENABLE) &
       (!KA_PON_RESET # (PCC_ENABLE_PON_DEFAULT != PCC_ENABLE)) #
       (KA\_PON\_RESET \& (PCC\_ENABLE\_PON\_DEFAULT == !PCC\_ENABLE)) \ ) \ then
       !PCC_ENABLE
    else
       PCC ENABLE;
 state !PCC_ENABLE:
    if (MPC_WRITE_BCSR_1 &
       (PCC_ENABLE_DATA_BIT.pin == PCC_ENABLE) &
```





```
(!KA_PON_RESET # (PCC_ENABLE_PON_DEFAULT != !PCC_ENABLE)) #
       (KA\_PON\_RESET \& (PCC\_ENABLE\_PON\_DEFAULT == PCC\_ENABLE))) then
       PCC_ENABLE
    else
       !PCC_ENABLE;
********************************
state_diagram PccVcc0
 state PCC_VCC_CONT_0:
    if (MPC_WRITE_BCSR_1 &
       (PCC_VCC_0_DATA_BIT.pin == !PCC_VCC_CONT_0) &
       (!KA_PON_RESET # (PCC_VCC_0_PON_DEFAULT != PCC_VCC_CONT_0)) #
       (KA\_PON\_RESET \& (PCC\_VCC\_0\_PON\_DEFAULT == !PCC\_VCC\_CONT\_0)) ) then
       !PCC_VCC_CONT_0
    else
       PCC_VCC_CONT_0;
 state !PCC_VCC_CONT_0:
    if (MPC_WRITE_BCSR_1 &
       (PCC_VCC_0_DATA_BIT.pin == PCC_VCC_CONT_0) &
       (!KA_PON_RESET # (PCC_VCC_0_PON_DEFAULT != !PCC_VCC_CONT_0)) #
       (KA\_PON\_RESET \& (PCC\_VCC\_0\_PON\_DEFAULT == PCC\_VCC\_CONT\_0)) ) then
       PCC_VCC_CONT_0
    else
       !PCC_VCC_CONT_0;
state_diagram PccVpp0
 state PCC_VPP0:
    if (MPC_WRITE_BCSR_1 &
       (PCC_VPP0_DATA_BIT.pin == !PCC_VPP0) &
       (!KA_PON_RESET # (PCC_VPP0_PON_DEFAULT != PCC_VPP0)) #
       (KA\_PON\_RESET \& (PCC\_VPP0\_PON\_DEFAULT == !PCC\_VPP0)) ) then
       !PCC_VPP0
    else
       PCC_VPP0;
 state !PCC_VPP0:
    if (MPC_WRITE_BCSR_1 &
       (PCC_VPP0_DATA_BIT.pin == PCC_VPP0) &
       (!KA_PON_RESET # (PCC_VPP0_PON_DEFAULT != !PCC_VPP0)) #
       (KA_PON_RESET & (PCC_VPP0_PON_DEFAULT == PCC_VPP0)) ) then
       PCC_VPP0
    else
```



!PCC_VPP0;

```
state_diagram PccVpp1
 state PCC_VPP1:
    if (MPC_WRITE_BCSR_1 &
      (PCC_VPP1_DATA_BIT.pin == !PCC_VPP1) &
       (!KA_PON_RESET # (PCC_VPP1_PON_DEFAULT != PCC_VPP1)) #
       (KA\_PON\_RESET \& (PCC\_VPP1\_PON\_DEFAULT == !PCC\_VPP1))) then
      !PCC_VPP1
    else
      PCC_VPP1;
 state !PCC_VPP1:
    if (MPC_WRITE_BCSR_1 &
      (PCC_VPP1_DATA_BIT.pin == PCC_VPP1) &
       (!KA_PON_RESET # (PCC_VPP1_PON_DEFAULT != !PCC_VPP1)) #
       (KA\_PON\_RESET \& (PCC\_VPP1\_PON\_DEFAULT == PCC\_VPP1))) then
      PCC_VPP1
    else
      !PCC_VPP1;
**********************************
state_diagram HalfWord~
 state HALF_WORD:
    if (MPC_WRITE_BCSR_1 &
      (HALF_WORD_DATA_BIT.pin == !HALF_WORD) &
       (!KA_PON_RESET # (HALF_WORD_PON_DEFAULT != HALF_WORD)) #
       (KA_PON_RESET & (HALF_WORD_PON_DEFAULT == !HALF_WORD)) ) then
      !HALF_WORD
    else
      HALF_WORD;
 state !HALF_WORD:
    if (MPC_WRITE_BCSR_1 &
      (HALF_WORD_DATA_BIT.pin == HALF_WORD) &
       (!KA_PON_RESET # (HALF_WORD_PON_DEFAULT != !HALF_WORD)) #
       (KA\_PON\_RESET \& (HALF\_WORD\_PON\_DEFAULT == HALF\_WORD))) then
      HALF_WORD
    else
      !HALF_WORD;
********************************
state_diagram RS232En2~
```



### **Support Information**

```
state RS232_2_ENABLE:
    if (MPC_WRITE_BCSR_1 &
       (RS232_2_ENABLE_DATA_BIT.pin == !RS232_2_ENABLE) &
       (!KA_PON_RESET # (RS232_2_ENABLE_PON_DEFAULT != RS232_2_ENABLE)) #
       (KA PON RESET & (RS232 2 ENABLE PON DEFAULT == !RS232 2 ENABLE))) then
       !RS232_2_ENABLE
    else
       RS232_2_ENABLE;
 state !RS232_2_ENABLE:
    if (MPC_WRITE_BCSR_1 &
       (RS232_2_ENABLE_DATA_BIT.pin == RS232_2_ENABLE) &
       (!KA_PON_RESET # (RS232_2_ENABLE_PON_DEFAULT != !RS232_2_ENABLE)) #
       (KA_PON_RESET & (RS232_2_ENABLE_PON_DEFAULT == RS232_2_ENABLE))) then
       RS232_2_ENABLE
    else
       !RS232 2 ENABLE;
*************************
state_diagram PccVcc1
 state PCC_VCC_CONT_0:
    if (MPC_WRITE_BCSR_1 &
       (PCC_VCC_1_DATA_BIT.pin == !PCC_VCC_CONT_0) &
       (!KA_PON_RESET # (PCC_VCC_1_PON_DEFAULT != PCC_VCC_CONT_0)) #
       (KA\_PON\_RESET \& (PCC\_VCC\_1\_PON\_DEFAULT == !PCC\_VCC\_CONT\_0)) ) then
       !PCC_VCC_CONT_0
    else
       PCC_VCC_CONT_0;
 state !PCC_VCC_CONT_0:
    if (MPC_WRITE_BCSR_1 &
       (PCC_VCC_1_DATA_BIT.pin == PCC_VCC_CONT_0) &
       (!KA_PON_RESET # (PCC_VCC_1_PON_DEFAULT != !PCC_VCC_CONT_0)) #
       (KA\_PON\_RESET \ \& \ (PCC\_VCC\_1\_PON\_DEFAULT == PCC\_VCC\_CONT\_0)) \ ) \ then
       PCC_VCC_CONT_0
    else
       !PCC_VCC_CONT_0;
***********************************
state_diagram SdramEn~
 state SDRAM_ENABLED:
    if (MPC_WRITE_BCSR_1 &
       (SDRAM_ENABLE_DATA_BIT.pin == !SDRAM_ENABLED) &
       (!KA_PON_RESET # (SDRAM_ENABLE_PON_DEFAULT != SDRAM_ENABLED)) #
```



### Support Information

```
(KA\_PON\_RESET \ \& \ (SDRAM\_ENABLE\_PON\_DEFAULT == \ !SDRAM\_ENABLED)) \ ) \ then
                   !SDRAM_ENABLED
           else
                   SDRAM_ENABLED;
    state !SDRAM_ENABLED:
           if (MPC_WRITE_BCSR_1 &
                   (SDRAM_ENABLE_DATA_BIT.pin == SDRAM_ENABLED) &
                    (!KA_PON_RESET # (SDRAM_ENABLE_PON_DEFAULT != !SDRAM_ENABLED)) #
                    (KA\_PON\_RESET \& (SDRAM\_ENABLE\_PON\_DEFAULT == SDRAM\_ENABLED))) then
                   SDRAM ENABLED
           else
                   !SDRAM_ENABLED;
"* BCSR4 State Machines
*********************************
state_diagram UsbFethEn~
    state USB_FETH_ENABLED:
           if (MPC_WRITE_BCSR_4 &
         (USB_FETH_EN_DATA_BIT.pin == !USB_FETH_ENABLED) &
         (!KA_PON_RESET # (USB_FETH_EN_PON_DEFAULT != USB_FETH_ENABLED)) #
         (KA_PON_RESET & (USB_FETH_EN_PON_DEFAULT == !USB_FETH_ENABLED)) ) then
                   !USB_FETH_ENABLED
           else
                   USB_FETH_ENABLED;
    state !USB_FETH_ENABLED:
           if (MPC_WRITE_BCSR_4 &
                   (USB_FETH_EN_DATA_BIT.pin == USB_FETH_ENABLED) &
                   (!KA_PON_RESET # (USB_FETH_EN_PON_DEFAULT != !USB_FETH_ENABLED)) #
               (KA\_PON\_RESET \ \& \ (USB\_FETH\_EN\_PON\_DEFAULT == \ USB\_FETH\_ENABLED)) \ ) then \ (VSB\_FETH\_ENABLED)) \ ) then \ (VSB\_FETM\_ENABLED)) \ ) then \ (VSB\_FETM\_ENABLED)) \ ) then \ (VSB\_FETM\_ENABLED)) \ ) then \ (VSB\_FETM\_E
               USB_FETH_ENABLED
           else
               !USB_FETH_ENABLED;
state_diagram UsbSpeed
```





```
state USB_FULL_SPEED:
    if (MPC_WRITE_BCSR_4 &
       (USB_SPEED_DATA_BIT.pin == !USB_FULL_SPEED) &
       (!KA_PON_RESET # (USB_SPEED_PON_DEFAULT != USB_FULL_SPEED)) #
       (KA_PON_RESET & (USB_SPEED_PON_DEFAULT == !USB_FULL_SPEED))) then
       !USB_FULL_SPEED
    else
       USB_FULL_SPEED;
 state !USB_FULL_SPEED:
    if (MPC_WRITE_BCSR_4 &
       (USB_SPEED_DATA_BIT.pin == USB_FULL_SPEED) &
       (!KA_PON_RESET # (USB_SPEED_PON_DEFAULT != !USB_FULL_SPEED)) #
       (KA\_PON\_RESET \& (USB\_SPEED\_PON\_DEFAULT == USB\_FULL\_SPEED))) then
       USB_FULL_SPEED
    else
       !USB_FULL_SPEED;
**********************************
state_diagram UsbVcc0
 state USB_VCC_CONT_0:
    if (MPC_WRITE_BCSR_4 &
       (USB_VCC_0_DATA_BIT.pin == !USB_VCC_CONT_0) &
       (!KA_PON_RESET # (USB_VCC_0_CONT_PON_DEFAULT != USB_VCC_CONT_0)) #
       (KA_PON_RESET & (USB_VCC_0_CONT_PON_DEFAULT == !USB_VCC_CONT_0)) ) then
       !USB_VCC_CONT_0
    else
       USB_VCC_CONT_0;
 state !USB_VCC_CONT_0:
    if (MPC_WRITE_BCSR_4 &
       (USB_VCC_0_DATA_BIT.pin == PCC_VCC_CONT_0) &
       (!KA_PON_RESET # (USB_VCC_0_CONT_PON_DEFAULT != !USB_VCC_CONT_0)) #
       (KA_PON_RESET & (USB_VCC_0_CONT_PON_DEFAULT == USB_VCC_CONT_0)) ) then
       USB_VCC_CONT_0
    else
       !USB_VCC_CONT_0;
**********************************
state_diagram UsbVcc1
 state USB_VCC_CONT_0:
    if (MPC_WRITE_BCSR_4 &
```



### Support Information

```
(USB_VCC_1_DATA_BIT.pin == !USB_VCC_CONT_0) &
       (!KA_PON_RESET # (USB_VCC_1_CONT_PON_DEFAULT != USB_VCC_CONT_0)) #
       (KA_PON_RESET & (USB_VCC_1_CONT_PON_DEFAULT == !USB_VCC_CONT_0)) ) then
      !USB_VCC_CONT_0
    else
      USB_VCC_CONT_0;
 state !USB_VCC_CONT_0:
    if (MPC_WRITE_BCSR_4 &
      (USB_VCC_1_DATA_BIT.pin == PCC_VCC_CONT_0) &
       (!KA_PON_RESET # (USB_VCC_1_CONT_PON_DEFAULT != !USB_VCC_CONT_0)) #
       (KA_PON_RESET & (USB_VCC_1_CONT_PON_DEFAULT == USB_VCC_CONT_0)) ) then
      USB_VCC_CONT_0
    else
      !USB_VCC_CONT_0;
**********************************
state_diagram VideoOn~
 state VIDEO_ENABLED:
    if (MPC_WRITE_BCSR_4 &
      (VIDEO_ENABLE_DATA_BIT.pin == !VIDEO_ENABLED) &
       (!KA_PON_RESET # (VIDEO_ENABLE_PON_DEFAULT != VIDEO_ENABLED)) #
       (KA_PON_RESET & (VIDEO_ENABLE_PON_DEFAULT == !VIDEO_ENABLED)) ) then
      !VIDEO_ENABLED
    else
      VIDEO ENABLED;
 state !VIDEO_ENABLED:
    if (MPC_WRITE_BCSR_4 &
      (VIDEO_ENABLE_DATA_BIT.pin == VIDEO_ENABLED) &
       (!KA_PON_RESET # (VIDEO_ENABLE_PON_DEFAULT != !VIDEO_ENABLED)) #
       (KA\_PON\_RESET \& (VIDEO\_ENABLE\_PON\_DEFAULT == VIDEO\_ENABLED))) then
      VIDEO_ENABLED
    else
      !VIDEO_ENABLED;
state_diagram VideoExtClkEn
 state VIDEO_EXT_CLK_ENABLED:
    if (MPC_WRITE_BCSR_4 &
      (VIDEO_EXT_CLK_EN_DATA_BIT.pin == !VIDEO_EXT_CLK_ENABLED) &
       (!KA_PON_RESET # (VIDEO_EXT_CLK_EN_PON_DEFAULT != VIDEO_EXT_CLK_ENABLED)#
```



### Support Information

```
(KA_PON_RESET & (VIDEO_EXT_CLK_EN_PON_DEFAULT ==!VIDEO_EXT_CLK_ENABLED)))then
       !VIDEO_EXT_CLK_ENABLED
    else
       VIDEO_EXT_CLK_ENABLED;
 state !VIDEO_EXT_CLK_ENABLED:
    if (MPC_WRITE_BCSR_4 &
       (VIDEO_EXT_CLK_EN_DATA_BIT.pin == VIDEO_EXT_CLK_ENABLED) &
       (!KA_PON_RESET # (VIDEO_EXT_CLK_EN_PON_DEFAULT != !VIDEO_EXT_CLK_ENABLED)) #
       (KA_PON_RESET & (VIDEO_EXT_CLK_EN_PON_DEFAULT == VIDEO_EXT_CLK_ENABLED))) then
       VIDEO_EXT_CLK_ENABLED
    else
       !VIDEO_EXT_CLK_ENABLED;
*************************************
state_diagram VideoRst~
 state VIDEO_RESET_ACTIVE:
    if (MPC_WRITE_BCSR_4 &
       (VIDEO_RESET_DATA_BIT.pin == !VIDEO_RESET_ACTIVE) &
       (!KA_PON_RESET # (VIDEO_RESET_PON_DEFAULT != VIDEO_RESET_ACTIVE)) #
       (KA\_PON\_RESET \ \& \ (VIDEO\_RESET\_PON\_DEFAULT == \ !VIDEO\_RESET\_ACTIVE)) \ ) \ then
       !VIDEO_RESET_ACTIVE
    else
       VIDEO_RESET_ACTIVE;
 state !VIDEO_RESET_ACTIVE:
    if (MPC_WRITE_BCSR_4 &
       (VIDEO_RESET_DATA_BIT.pin == VIDEO_RESET_ACTIVE) &
       (!KA_PON_RESET # (VIDEO_RESET_PON_DEFAULT != !VIDEO_RESET_ACTIVE)) #
       (KA_PON_RESET & (VIDEO_RESET_PON_DEFAULT == VIDEO_RESET_ACTIVE))) then
       VIDEO_RESET_ACTIVE
    else
       !VIDEO_RESET_ACTIVE;
**********************************
state_diagram SignaLamp~
 state SIGNAL_LAMP_ON:
    if (MPC_WRITE_BCSR_4 &
       (SIGNAL_LAMP_DATA_BIT.pin == !SIGNAL_LAMP_ON) &
       (!KA_PON_RESET # (SIGNAL_LAMP_PON_DEFAULT != SIGNAL_LAMP_ON)) #
       (KA_PON_RESET & (SIGNAL_LAMP_PON_DEFAULT == !SIGNAL_LAMP_ON)) ) then
       !SIGNAL_LAMP_ON
    else
       SIGNAL_LAMP_ON;
```





```
state !SIGNAL_LAMP_ON:
    if (MPC_WRITE_BCSR_4 &
       (SIGNAL_LAMP_DATA_BIT.pin == SIGNAL_LAMP_ON) &
       (!KA_PON_RESET # (SIGNAL_LAMP_PON_DEFAULT != !SIGNAL_LAMP_ON)) #
       (KA_PON_RESET & (SIGNAL_LAMP_PON_DEFAULT == SIGNAL_LAMP_ON)) ) then
       SIGNAL_LAMP_ON
    else
       !SIGNAL_LAMP_ON;
***********************************
state_diagram EthLoop
 state ETH_LOOP:
    if (MPC_WRITE_BCSR_4 &
       (ETH_LOOP_DATA_BIT.pin == !ETH_LOOP) &
       (!KA_PON_RESET # (ETH_LOOP_PON_DEFAULT != ETH_LOOP)) #
       (KA\_PON\_RESET \& (ETH\_LOOP\_PON\_DEFAULT == !ETH\_LOOP))) then
       !ETH LOOP
    else
       ETH_LOOP;
 state !ETH_LOOP:
    if (MPC_WRITE_BCSR_4 &
       (ETH_LOOP_DATA_BIT.pin == ETH_LOOP) &
       (!KA_PON_RESET # (ETH_LOOP_PON_DEFAULT != !ETH_LOOP)) #
       (KA\_PON\_RESET \& (ETH\_LOOP\_PON\_DEFAULT == ETH\_LOOP))) then
      ETH_LOOP
    else
       !ETH LOOP:
state_diagram TPFLDL~
 state ETH_FULL_DUP:
    if (MPC_WRITE_BCSR_4 &
       (ETH_FULL_DUP_DATA_BIT.pin == !ETH_FULL_DUP) &
       (!KA_PON_RESET # (ETH_FULL_DUP_PON_DEFAULT != ETH_FULL_DUP)) #
       (KA\_PON\_RESET \& (ETH\_FULL\_DUP\_PON\_DEFAULT == !ETH\_FULL\_DUP))) then
       !ETH_FULL_DUP
    else
      ETH_FULL_DUP;
 state !ETH_FULL_DUP:
    if (MPC_WRITE_BCSR_4 &
       (ETH_FULL_DUP_DATA_BIT.pin == ETH_FULL_DUP) &
       (!KA_PON_RESET # (ETH_FULL_DUP_PON_DEFAULT != !ETH_FULL_DUP)) #
```



### Support Information

```
(KA\_PON\_RESET \ \& \ (ETH\_FULL\_DUP\_PON\_DEFAULT == ETH\_FULL\_DUP)) \ ) \ then
       ETH_FULL_DUP
    else
       !ETH FULL DUP;
state_diagram TPSQEL~
 state ETH_CLSN_TEST:
    if (MPC_WRITE_BCSR_4 &
       (ETH_CLSN_TEST_DATA_BIT.pin == !ETH_CLSN_TEST) &
       (!KA_PON_RESET # (ETH_CLSN_TEST_PON_DEFAULT != ETH_CLSN_TEST)) #
       (KA\_PON\_RESET \& (ETH\_CLSN\_TEST\_PON\_DEFAULT == !ETH\_CLSN\_TEST))) then
       !ETH_CLSN_TEST
    else
      ETH_CLSN_TEST;
 state !ETH_CLSN_TEST:
    if (MPC_WRITE_BCSR_4 &
       (ETH_CLSN_TEST_DATA_BIT.pin == ETH_CLSN_TEST) &
       (!KA_PON_RESET # (ETH_CLSN_TEST_PON_DEFAULT != !ETH_CLSN_TEST)) #
       (KA\_PON\_RESET \ \& \ (ETH\_CLSN\_TEST\_PON\_DEFAULT == ETH\_CLSN\_TEST)) \ ) \ then
       ETH_CLSN_TEST
    else
       !ETH_CLSN_TEST;
*************************************
state_diagram ModemEn~
 state MODEM_ENABLED_FOR_823:
    if (MPC_WRITE_BCSR_4 &
       (MODEM_ENABLE_DATA_BIT.pin == !MODEM_ENABLED_FOR_823) &
       (!KA_PON_RESET # (MODEM_ENABLE_PON_DEFAULT != MODEM_ENABLED_FOR_823)) #
       (KA_PON_RESET & (MODEM_ENABLE_PON_DEFAULT == !MODEM_ENABLED_FOR_823)) ) then
       !MODEM_ENABLED_FOR_823
    else
       MODEM_ENABLED_FOR_823;
 state !MODEM_ENABLED_FOR_823:
    if (MPC_WRITE_BCSR_4 &
       (MODEM_ENABLE_DATA_BIT.pin == MODEM_ENABLED_FOR_823) &
       (!KA_PON_RESET # (MODEM_ENABLE_PON_DEFAULT != !MODEM_ENABLED_FOR_823)) #
       (KA_PON_RESET & (MODEM_ENABLE_PON_DEFAULT == MODEM_ENABLED_FOR_823))) then
       MODEM_ENABLED_FOR_823
    else
       !MODEM_ENABLED_FOR_823;
```



### Support Information

```
************************************
state_diagram Modem_Audio~
 state MODEM:
   if (MPC_WRITE_BCSR_4 &
     (MODEM_FUNC_SEL_DATA_BIT.pin == !MODEM) &
     (!KA_PON_RESET # (MODEM_FUNC_SEL_PON_DEFAULT != MODEM)) #
     (KA_PON_RESET & (MODEM_FUNC_SEL_PON_DEFAULT == !MODEM)) ) then
     !MODEM
   else
     MODEM;
 state !MODEM:
   if (MPC_WRITE_BCSR_4 &
     (MODEM_FUNC_SEL_DATA_BIT.pin == MODEM) &
     (!KA_PON_RESET # (MODEM_FUNC_SEL_PON_DEFAULT != !MODEM)) #
     (KA\_PON\_RESET \& (MODEM\_FUNC\_SEL\_PON\_DEFAULT == MODEM))) then
     MODEM
   else
     !MODEM;
**********************************
*********************************
" External Read Registers' Chip-Selects
*************************
equations
Bcsr2_3Cs \sim .oe = 3;
!Bcsr2Cs \sim = MPC_READ_BCSR_2;
!Bcsr3Cs \sim = MPC_READ_BCSR_3;
************************************
***********************************
"* Read Registers.
"* All registers have read capabilty.
**********************************
equations
 DataOe = MPC_READ_BCSR_0 #
    MPC_READ_BCSR_1#
    MPC_READ_BCSR_4#
```



### **Support Information**

RESET_CONFIG_DRIVEN; Data.oe = DataOe; " Data.oe = ^hffff; when (MPC_READ_BCSR_0 # RESET_CONFIG_DRIVEN) then Data = [ERB.fb,IP~.fb,RSV2.fb,BDIS.fb,BPS0.fb,BPS1.fb,RSV6.fb, ISB0.fb,ISB1.fb,DBGC0.fb,DBGC1.fb,DBPC0.fb,DBPC1.fb, RSV13.fb,RSV14.fb,RSV15.fb]; else when  $(MPC_READ_BCSR_1)$  then Data = ReadBcsr1; else when  $(MPC_READ_BCSR_4)$  then Data = [UsbFethEn~,UsbSpeed,UsbVcc0, UsbVcc1, VideoOn~,VideoExtClkEn,  $VideoRst{\sim}, SignaLamp{\sim}, EthLoop, TPFLDL{\sim}, TPSQEL{\sim}, Modem_Audio{\sim}, 0, 0, 0, 0];$  $Data = [EthLoop, TPFLDL \sim, TPSQEL \sim, SignaLamp \sim, UsbFethEn \sim, UsbFe$ Speed, UsbVcc0,  $UsbVcc1, VideoOn{\sim}, VideoExtClkEn, VideoRst{\sim}, ModemEn{\sim}, Modem_Audio{\sim}, 0, 0, 0];$ end bcsr11

********************************



## 5•3•3 U22 - Auxiliary Board Control

****************************** ************************************ "* In this file (5): "* 1) The use of BCLOSE~ is removed. This due to the assignment BCLOSE~ to GPL4A. In order of using of GPL4A bit in the upm to determine data sampling edge, GPL4A may not be used as a GPL. Therefore DramBankXCs~ must envelope the cycle so that data buffers remain open throughout the cycle. "* 2) Removed CS support for flash configuration. I.e., FlashCs1~ will not be asserted during hard reset. Flash configuration will be supported on silicon next revisions. data buffers will still open for flash configuration when hard reset asserted and flash configuration option bit, asserted. "* 3) Since Bclose~ is no longer available, the data buffers will open asynchronously. I.e., driven directly by the various chip-selects. to provide data hold (0) on write cycles to flash, CSNT bit in the OR should be programmed active, while ACS == 00. ************************ "* In This file (6), A12 and A11 are removed from the flash selection equation "* since they can select only a 1/2 Mbyte of flash rather then 2Mbyte selection "* needed. Therefore, only one bank of 2 Mbyte flash may be used (MCM29F020). "* The rest of the CS are driven high constantly. **************************** "* In this file (7): "* - Pon Reset Out is removed. Pon Reset is driven directly to MPC. "* - Modck0 becomes Modck2 "* - A9 and A10 replace A11 and A12 in flash bank selection "* - Optional BufClose~ is removed. "* - DramEn becomes active-low to support debug-station support changes. "* - Added F_PD(1:3) to support SMART Flash SIMMs. "* - Support for 32KHz crystal - renewed. "* In this file (8): "* - Added protection against data contention for write cycles after "* Flash read cycle. This is achieved using a state-machine which identifies end of flash read and a chain of internal gates serving as a delay line. "* This kind of solution guaranties a fixed delay over the data buffer enable signal, that is, only after a flash read cycle. 



## **Support Information**

"* In this file (9):
"* - The addressing scheme of the flash is changed so that the bank does
"* not occupy a space bigger than its real size. I.e. A9 and A10 use
"* is conditioned with the module type.
***********************
" In this file (10):
"* - A bug is fixed in Smart flash memories presence detect encoding:
"* for SM732A1000A - $F_PD == 5$ (was 2)
"* for SM732A2000 - $F_PD == 4$ (was 3)
***********************
"* In this file (11):
"* - KAPORIn (power-on reset input) line is removed. It was unused previously.
"* - Instead of the the above, F_PD4 input is added, so excact identification
"* may be given to any flash memory.
"* - Number of delay stages for flash turn-off time protection is decreased
"* This to avoid possible problem in write to 0-w.s. memories.
****************************
"* In This file (12):
"* - Added ATA support for PCMCIA. I.e., PccEvenEn~ and PccOddEn~ become
"* identical, enabled by logic OR of CE1~ and CE2~
************************
module brdctl12
title 'MPC821ADS Board Misc. Control Functions.
Originated for MPC821ADS, Yair Liebman - (MSIL) - April 10, 1995'
*******************************
"* Device declaration.
***********************
U22 device 'mach220a';
************************
"* <del>#######</del> *
"* # # ##### ##### ##### # ## # ### *
"*# ######### *
"* ##### ## # ##### # # # # # # # # *
"*# ## # # ##### # # # *
"*# ######## # *
"*######## # # ####### # # # # ###### *



## **Support Information**

······································
"*************************************
"* Pins declaration.
***************************************
********************************
"* clock generator
******************************
SYSCLKPIN 50;" pda clkout
************************
* Dram Associated Pins.
"*************************************
A9 PIN 55;
A10 PIN 39;
A19 PIN 38;
A20 PIN 2;
A30 PIN 36;" pda address lines inputs (IN)
R_W~PIN 23;
SizeDetect1PIN 26;
SizeDetect0PIN 20; " dram simm size detect lines (IN)
HalfWord~PIN 51; " dram port width selection from control register:
" '1' - 32 bit
" '0' - 16 bit
DramBank1Cs~PIN 45;" 1'st bank chip-select(IN, L)
DramBank2Cs~PIN 46;" 2'nd bank chip-select (IN, L)
DramEn~PIN 54;" Dram enable from control reg. (IN, H). Active
" high to support power control.
DramAdd10PIN 32 istype 'com';
DramAdd9PIN 33 istype 'com';" dram address lines
Ras1~PIN 28 istype 'com':



Ras1DD~PIN 30 istype 'com';

### MPC8XXFADS - User's Manual

#### **Support Information**

Ras2~PIN 29 istype 'com'; Ras2DD~PIN 31 istype 'com';" dram RAS lines. ************************************* "* Flash Associated Pins. ************************************ F_PD1PIN 7; F_PD2PIN 65; F_PD3PIN 41; F_PD4PIN 25; FlashCs~ PIN 49;" flash bank chip-select FlashEn~PIN 15;" flash enable from control reg. FlashCs1~PIN 12 istype 'com';" Flash bank1 chip-select FlashCs2~PIN 22 istype 'com';" Flash bank2 chip-select FlashCs3~PIN 57 istype 'com';" Flash bank3 chip-select FlashCs4~PIN 24 istype 'com';" Flash bank4 chip-select FlashOe~PIN 58 istype 'com';" Flash output enable. ********************************* "* Control Register pins *********************** ContRegCs~PIN 59;" control register cs from MPC8XX ContRegEn~PIN 56;" control register enable from control register. ************************************* "* Reset & Interrupt Logic Pins. *********************************** Rst0 PIN 13; " connected to N.C. of Reset P.B. Rst1 PIN 21; " connected to N.O. of Reset P.B. !RegPORIn~PIN 9; " Regular Power On Reset In. (H) HardReset~PIN 48 istype 'com'; " Actual hard reset output (O.D.) SoftReset~PIN 40 istype 'com'; " Actual soft reset output (O.D.)



#### Support Information

ResetConfig~PIN 67 istype 'com'; " Drives the RSTCONF* signal of the MPC8XX. DriveConfig~PIN 63 istype 'com';" Drives configuration data to the MPC8XX Abr0 PIN 10; "connected to N.C. of Abort P.B. Abr1 PIN 11: "connected to N.O. of Abort P.B. NMIEnNODE istype 'com'; " enables T.S. NMI pin NMI~PIN 44 istype 'com'; " Actual NMI pin (O.D.) "* Power On Reset Configuration Support ******************************** ModInPIN 64;" MODCK dip-switch Modck2PIN 60 istype 'com';" MODCK2 output Modck1PIN 66 istype 'com';" MODCK1 output ModckOeNODE istype 'com';" enables MODCKs towards MPC8XX during " Hard Reset. *********************************** "* Data Buffers Enables and Reset configuration support ********************************* TA~ PIN 6; "transfer Acknowledge TEA~PIN 47; "Transfer Error Acknowledge. FlashCfgEn~PIN 17; "flash configuration enable from control " register. PccEn~PIN 4; "PCMCIA channel enable from control reg. PccCE1~PIN 16; PccCE2~PIN 43; UpperHalfEn~PIN 3 istype 'com,invert'; " bits 0:15 data buffer enable LowerHalfEn~PIN 5 istype 'com,invert'; " bits 16:31 data buffer enable PccEvenEn~PIN 14 istype 'com,invert'; " pcc upper byte data buffer enable PccOddEn~PIN 37 istype 'com,invert'; "pcc lower byte data buffer enable



#### **Support Information**

PccR_W~PIN 62 istype 'com';" pcmcia data buffers direction *********************************** ### # ##### ##### ##### # #### ##### #### ************************************* "* Reset & Interrupt Logic Pins. ************************ RstDeb1NODE istype 'com'; " reset push button debouncer AbrDeb1NODE istype 'com'; " abort push button debouncer HardResetEnNODE istype 'com'; " enables T.S. hard reset pin SoftResetEnNODE istype 'com'; " enables T.S. soft reset pin ConfigHold2, ConfigHold1, ConfigHoldOnode istype 'reg,buffer';" supplies data hold time for " hard reset configuration ConfigHoldEndnode istype 'com'; *********************** "* data buffers enable. ****************************** SyncHardReset~NODE istype 'reg,buffer'; " synchronized hard reset DSyncHardReset~ NODE istype 'reg,buffer';" double synchronized hard reset SyncTEA~NODE istype 'reg,buffer'; " needed since TEA~ is O.D. HoldOffConsidered NODE istype 'reg,buffer';" data drive hold-off state " machine. D_FlashOe~NODE istype 'com'; " delayed flash output enable DD_FlashOe~NODE istype 'com';" double delayed flash output " enable



```
TD_FlashOe~NODE istype 'com';" triple delayed flash output
               " enable
" QD_FlashOe~NODE istype 'com'; quad delayed
" PD_FlashOe~NODE istype 'com'; penta delayed
KeepPinsConnected node istype 'com';
****************************
"* #####
            # ####
                               #####
                  #####
       #### #
               ####
"* ######
    # ###### #### #
                   ##
                      #####
                       # #####
                 # # #
                ###### #####
          ##
                # ##
"* ##### ##### #### #### #
              # # ##
            #### # #
***********************************
H, L, X, Z = 1, 0, .X., .Z.;
C, D, U = .C., .D., .U.;
***********************************
"* SLOW_32K_LOCK = 1;
*******************************
********************************
PdaAdd = [A9,A10,A19,A20,A30];
```



### **Support Information**

```
DramAdd = [DramAdd10,DramAdd9];
DramCS~ =[DramBank2Cs~,DramBank1Cs~];
RAS = [Ras1 \sim , Ras1DD \sim , Ras2 \sim , Ras2DD \sim ];
SD = [SizeDetect1,SizeDetect0];
FlashCsOut = [FlashCs4~,FlashCs3~,FlashCs2~,FlashCs1~];
Reset = [HardReset~,SoftReset~];
ResetEn = [HardResetEn,SoftResetEn];
Rst = [Rst1,Rst0];
Abr = [Abr1,Abr0];
Debounce = [RstDeb1,AbrDeb1];
DramCs = [DramBank2Cs~,DramBank1Cs~];
Cs = [ContRegCs~,FlashCs~,DramBank1Cs~,DramBank2Cs~];
PccCs = [PccCE1 \sim, PccCE2 \sim];
LocDataBufEn = [UpperHalfEn~,LowerHalfEn~];
PccDataBufEn = [PccEvenEn~,PccOddEn~];
ModuleEn = [DramEn~,FlashEn~,PccEn~,ContRegEn~];
SyncReset = [SyncHardReset~,DSyncHardReset~];
RstCause = [Rst1,Rst0,Abr1,Abr0,RegPORIn\sim];
Stp = [TA \sim];
Modck = [Modck2, Modck1];
ConfigHold =[ConfigHold2, ConfigHold1, ConfigHold0];
F_PD = [F_PD4, F_PD3, F_PD2, F_PD1];
*********************************
"* Dram Declarations.
****************************
DRAM\_ENABLE\_ACTIVE = 0;
DRAM_ENABLED = (DramEn~ == DRAM_ENABLE_ACTIVE);
SIMM36100 = (SD == 0);
SIMM36200 = (SD == 3);
SIMM36400 = (SD == 2);
SIMM36800 = (SD == 1);
IS_HALF_WORD = (HalfWord \sim == 0);
**********************************
"* Flash Declarations.
*********************************
FLASH_ENABLE_ACTIVE = 0;
```



```
FLASH_ENABLED = (FlashEn~ == FLASH_ENABLE_ACTIVE);
MCM29020 = (F_PD == 8);
MCM29040 = (F_PD == 7);
MCM29080 = (F_PD == 6);
SM732A1000A = (F_PD == 5);
SM732A2000 = (F_PD == 4);
FLASH_BANK1 = ( (MCM29020 # SM732A1000A) #
       (MCM29040 & !A10) #
       (MCM29080 & !A9 & !A10) #
       (SM732A2000 & !A9));
FLASH_BANK2 = ( (MCM29040 & A10) #
       (MCM29080 & !A9 & A10) #
       (SM732A2000 & A9));
FLASH_BANK3 = (A9 & !A10 & MCM29080);
FLASH_BANK4 = (A9 & A10 & MCM29080);
*************************************
"* Reset Declarations.
*******************************
KEEP_ALIVE_PON_RESET_ACTIVE = 0;
REGULAR_PON_RESET_ACTIVE = 0;
HARD_RESET_ACTIVE = 0;
SOFT_RESET_ACTIVE = 0;
HARD_CONFIG_HOLD_VALUE = 4;
DRIVE_MODCK_TO_PDA = (HardReset~ == HARD_RESET_ACTIVE);" have modck stable
       " during hard reset.
REGULAR_POWER_ON_RESET = (RegPORIn~ == REGULAR_PON_RESET_ACTIVE);
HARD_RESET_ASSERTED = (SyncHardReset~.fb == HARD_RESET_ACTIVE);
```



#### Support Information

```
HARD_RESET_NEGATES = ( (SyncHardReset~.fb != HARD_RESET_ACTIVE )
       & (DSyncHardReset~.fb == HARD_RESET_ACTIVE));
       " detecting hard reset negation
*************************************
"* data buffers enable.
*****************************
BUFFER_DISABLED = 1;
BUFFER_ENABLED = !BUFFER_DISABLED;
CONTROL_REG_ENABLE_ACTIVE = 0;
FLASH_CONFIG_ENABLED_ACTIVE = 0;
PCMCIA_ENABLE_ACTIVE = 0;
GPL\_ACTIVE = 0;
TEA_ASSERTS = (!TEA~ & SyncTEA~.fb);" first clock of TEA~ asserted
CONTROL_REG_ENABLED = (ContRegEn~ == CONTROL_REG_ENABLE_ACTIVE);
FLASH_CONFIGURATION_ENABLED = (FlashCfgEn~ == FLASH_CONFIG_ENABLED_ACTIVE);
PCC_ENABLED = (PccEn~ == PCMCIA_ENABLE_ACTIVE);
NO_HOLD_OFF = 0;
HOLD_OFF_CONSIDERED = 1;
STATE_HOLD_OFF_CONSIDERED = (HoldOffConsidered.fb == HOLD_OFF_CONSIDERED);
STATE\_NO\_HOLD\_OFF = (HoldOffConsidered.fb == NO\_HOLD\_OFF);
END_OF_FLASH_READ = !TA\sim \& !FlashCs\sim \& R_W\sim;" end of flash read cycle.
END_OF_OTHER_CYCLE = (!TA~ & FlashCs~ # " another access or
       !TA~ & !FlashCs~ & !R_W~); " flash write
"* HOLD_OFF_PERIOD = (!R_W~ & !PD_FlashOe~.fb);
HOLD\_OFF\_PERIOD = (!R\_W\sim \& !TD\_FlashOe\sim.fb);
```



## **Support Information**

***************************************
"* Equations, state diagrams.
******************************
"* *
"* ####### *
"*# #### # ## ##### # #### *
"*# # # # # # # # # # # *
"*##### # # # # # # # # # #### *
"*# ###################################
"*# ####### *
"*############ ##### # # # ##### # ##### *
"* *
"*****************************
"* Reset Logic
******************************
equations
Reset.oe = ResetEn;
Reset = 0;" open drain
RstDeb1 = !( Rst1 & (!( RstDeb1.fb & Rst0) ) ); "Reset push-button debouncer
AbrDeb1 = !( Abr1 & (!( AbrDeb1.fb & Abr0) ) ); " Abort push-button debouncer
HardResetEn = RstDeb1.fb & AbrDeb1.fb " both buttons are depressed;
# REGULAR_POWER_ON_RESET;
SoftResetEn = RstDeb1.fb & !AbrDeb1.fb;" only reset button depressed
****************************
* Power On reset configuration
*****************************
equations
Modck.oe = ModckOe;
ModckOe = DRIVE MODCK TO PDA:



```
Modck2 = L;
@ifndef SLOW_32K_LOCK {
 Modck2 = ModIn;" support for 1:513 (32KHz crystal) or
 Modck1 = ModIn;" 1:5 (5MHz clock gen.) via CLK4IN
@ifdef SLOW_32K_LOCK {
 Modck2 = !ModIn;" support for 1:1 or 1:5 from CLK4IN only
 Modck1 = H;" no support for 32K oscillator.
"* Hard reset configuration
************************
equations
ResetConfig~.oe = H;
DriveConfig~.oe = H;
"* Configuration hold counter. Since the rise time of the HARD RESET signal
"* is relatively slow, there is a need to provide a hold time for reset
"* configuration.
ConfigHold.clk = SYSCLK;
when (SyncHardReset~.fb & !ConfigHoldEnd.fb) then ConfigHold := ConfigHold.fb +1;
else when (SyncHardReset~.fb & ConfigHoldEnd.fb) then ConfigHold := ConfigHold.fb;
else when (!SyncHardReset~.fb) then ConfigHold := 0;
ConfigHoldEnd = (ConfigHold.fb == HARD_CONFIG_HOLD_VALUE); " terminal count
!ResetConfig~ = !HardReset~;" drives RSTCONF~ to MPC8XX
!DriveConfig~ = !ConfigHoldEnd.fb; " drives configuration data on the bus.
*********************************
"* NMI generation
*****************************
```



equations  $NMI \sim .oe = NMIEn;$  $NMI \sim 0; "O.D.$ NMIEn = !RstDeb1.fb & AbrDeb1.fb;" only abort button depressed ******************************** ***************************** equations SyncHardReset~.clk = SYSCLK; DSyncHardReset~.clk = SYSCLK; SyncHardReset~ := HardReset~; DSyncHardReset~ := SyncHardReset~.fb; SyncTEA $\sim$ .clk = SYSCLK; SyncTEA $\sim$  := TEA $\sim$ ; LocDataBufEn.oe = 3; !UpperHalfEn~ = (!DramBank1Cs~ & DRAM_ENABLED # !DramBank2Cs~ & (SIMM36200 # SIMM36800) & DRAM_ENABLED # !FlashCs~ & FLASH_ENABLED # !ContRegCs~ & CONTROL_REG_ENABLED # !PccCE1~ & PCC_ENABLED # !PccCE2~ & PCC_ENABLED # !ConfigHoldEnd.fb) & (STATE_HOLD_OFF_CONSIDERED & (!HOLD_OFF_PERIOD) # STATE_NO_HOLD_OFF); !LowerHalfEn~ = (!DramBank1Cs~ & DRAM_ENABLED & !IS_HALF_WORD # !DramBank2Cs~ & (SIMM36200 # SIMM36800) & !IS_HALF_WORD & DRAM_ENABLED # !FlashCs~ & FLASH_ENABLED # !ConfigHoldEnd.fb & FLASH_CONFIGURATION_ENABLED) & (STATE_HOLD_OFF_CONSIDERED & !HOLD_OFF_PERIOD # STATE_NO_HOLD_OFF);



#### Support Information

```
**********************************
"* local data buffers disable (data contention protection)
*******************************
equations
HoldOffConsidered.clk = SYSCLK;
D_FlashOe = FlashOe ;
DD_FlashOe \sim = D_FlashOe \sim .fb;
TD\_FlashOe \sim = DD\_FlashOe \sim .fb;
"* QD_FlashOe~ = TD_FlashOe~.fb;
"* PD_FlashOe~ = QD_FlashOe~.fb;
@ifdef DEBUG {
equations
HoldOffConsidered := HOLD_OFF_CONSIDERED;
}
@ifndef DEBUG {
state_diagram HoldOffConsidered
 state NO_HOLD_OFF:
    if (END_OF_FLASH_READ & DSyncHardReset~.fb) then
       HOLD_OFF_CONSIDERED
    else
       NO_HOLD_OFF;
 state HOLD_OFF_CONSIDERED:
    if (END_OF_OTHER_CYCLE \# !DSyncHardReset~.fb) then
       NO_HOLD_OFF
    else
       HOLD_OFF_CONSIDERED;
}
********************************
"* pcc data buffers enable
*****************************
```



equations

```
PccDataBufEn.oe = 3;
!PccEvenEn~ = (!PccCE1~#!PccCE2~) & PCC_ENABLED & !HARD_RESET_ASSERTED &
           (STATE_HOLD_OFF_CONSIDERED & HOLD_OFF_PERIOD #
         STATE_NO_HOLD_OFF);
!PccOddEn~ = (!PccCE1~ # !PccCE2~) & PCC_ENABLED & !HARD_RESET_ASSERTED &
           (STATE_HOLD_OFF_CONSIDERED & HOLD_OFF_PERIOD #
          STATE_NO_HOLD_OFF);
*************************************
"* pcc data buffers direction
***********************
equations
PccR_W\sim.oe = H;
PccR_W \sim = R_W \sim;
***********************************
"* Dram Address lines.
"* These lines are conencted to the dram high order address lines A9 and A10
"* (if available). These lines change value according to the dram size and
"* port size.
"* The dram size is encoded from the presence detect lines (see definitions
"* above) and the port size is determined by the control register.
****************************
equations
DramAdd.oe = 3;
when (!IS_HALF_WORD # IS_HALF_WORD & (SIMM36400 # SIMM36800)) then
 DramAdd9 = A20;
else
 DramAdd9 = A30;
when ((SIMM36400 # SIMM36800) & !IS_HALF_WORD) then
 DramAdd10 = A19;
else when ( (SIMM36400 # SIMM36800) & IS_HALF_WORD) then
```



## **Support Information**

DramAdd10 = A30;
else
DramAdd10 = 0;
"*************************************
"* RAS generation.
"* Since the dram simm requires RAS signals to be split due to high capacitive
"* load and to allow 16 bit operation. When working with 16 bit port size,
"* the double drive RAS signals are disabled.
"*************************************
equations
RAS.oe = ^hf;
!Ras1~ = !DramBank1Cs~ & DramBank2Cs~ & DRAM_ENABLED;
!Ras2~ = !DramBank2Cs~ & DramBank1Cs~ & DRAM_ENABLED & (SIMM36200 # SIMM36800);
!Ras1DD~ = !DramBank1Cs~ & DramBank2Cs~ & DRAM_ENABLED;
!Ras2DD~ = !DramBank2Cs~ & DramBank1Cs~ & DRAM_ENABLED & (SIMM36200 # SIMM36800);
********************************
"* Flash Chip Select
************************
equations
FlashCsOut.oe = ^hf;
!FlashCs1~ = FLASH_ENABLED & !FlashCs~ & FLASH_BANK1;
!FlashCs2~ = FLASH_ENABLED & !FlashCs~ & FLASH_BANK2;
!FlashCs3~ = FLASH_ENABLED & !FlashCs~ & FLASH_BANK3;
!FlashCs4~ = FLASH_ENABLED & !FlashCs~ & FLASH_BANK4;
FlashOe~.oe = H;
!FlashOe~ = FLASH_ENABLED & R_W~;
*************************
"* Auxiliary functions
************************
equations



## Support Information

eepPinsConnected = TA~;
d brdctl12
*************************



### APPENDIX A - ADI I/F

The ADI parallel port supplies parallel link from the MPC8XXFADS to various host computers. This port is connected via a 37 line cable to a special board called ADI (Application Development Interface) installed in the host computer. Four versions of the ADI board are available to support connection to IBM-PC/XT/AT, MAC II, VMEbus computers and SUN-4 SPARC stations. It is possible to connect the MPC281ADS board to these computers provided that the appropriate software drivers are installed on them.

Each MPC281ADS can have 8 possible slave addresses set for its ADI port, enabling up to 8 MPC281ADS boards to be connected to the same ADI board.

The ADI port connector is a 37 pin, male, D type connector. The connection between the MPC281ADS and the host computer is by a 37 line flat cable, supplied with the ADI board. FIGURE A-1 below shows the pin configuration of the connector.

#### FIGURE A-1 ADI Port Connector

Gnd Gnd Gnd Gnd Gnd Gnd Gnd (+ 12 v) N.C. HOST_VCC HOST_VCC HOST_VCC HOST_ENABLE~ Gnd Gnd Gnd Gnd PD0 PD2 PD4 PD6	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	N.C. D_C~ HST_ACK ADS_SRESET ADS_HRESET ADS_SEL2 ADS_SEL1 ADS_SEL0 HOST_REQ ADS_ACK N.C. N.C. N.C. N.C. PD1 PD3 PD5 PD7
-------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------

NOTE: Pin 26 on the ADI is connected to +12 v power supply, but it is not used in the MPC281ADS.

# A•1 ADI Port Signal Description

The ADI port on the MPC281ADS was slightly modified to generate either hard reset or soft reset. This feature was added to comply with the MPC's reset mechanism.

In the list below, the directions 'I', 'O', and 'I/O' are relative to the MPC8XXFADS board. (I.E. 'I' means input to the MPC8XXFADS)

#### NOTE:

Since the ADI was originated for the DSP56001ADS some of its signals throughout the boards it was used with, were designated with the prefix "ADS". This convention is kept with this design also.

• ADS_SEL(0:2) - 'I'



#### Support Information

These three input lines determine the slave address of the MPC8XXFADS being accessed by the host computer. Up to 8 boards can be addressed by one ADI board.

ADS_SRESET - 'I'

This input line is used to generate Soft Reset for the MPC. When an ads is selected and this line is asserted by the host computer, Soft Reset will be generated to the MPC along with the Soft Reset configuration applied during that sequence.

HOST_ENABLE~ - 'I'

This line is always driven low by the ADI board. When an ADI is connected to the MPC8XXFADS, this signals enabled the operation of the debug port controller. Otherwise the debug port controller is disabled and its outputs are tri-stated.

• ADS HRESET - 'I'

When a host is connected, this line is used in conjunction with the addressing lines to generate a Hard Reset to the MPC8XXFADS board. When this signal is driven in conjunction with the ADS_SRESET signal, the ADI I/F state machines and registers are reset.

HOST_REQ -'I'

This signal initiates a host to MPC8XXFADS write cycle.

ADS_ACK - 'O'

This signal is the MPC8XXFADS response to the HOST_REQ signal, indicating that the board has detected the assertion of HOST_REQ.

ADS_REQ - 'O'

This signal initiates an MPC8XXFADS to host write cycle.

HST ACK - 'I'

This signal serves as the host's response to the ADS REQ signal.

HOST_VCC - 'I' (three lines)

These lines are power lines from the host computer. In the MPC8XXFADS, these lines are used by the hardware to determine if the host computer is powered on.

PD(0:7) - 'I/O'

These eight I/O lines are the parallel data bus. This bus is used to transmit and receive data from the host computer.



### Support Information

## APPENDIX B - ADI Installation

#### **B•1** INTRODUCTION

This appendix describes the hardware installation of the ADI board into various host computers.

The installation instructions cover the following host computers:

- 1) IBM-PC/XT/AT
- 2) SUN 4 (SBus interface)

## **B•2** IBM-PC/XT/AT to MPC8XXFADS Interface

The ADI board should be installed in one of the IBM-PC/XT/AT motherboard system expansion slots. A single ADI can control up to eight MPC8XXFADS boards. The ADI address in the computer is configured to be at I/O memory addresses 100-102 (hex), but it may be reconfigured for an alternate address space.

#### **CAUTION**

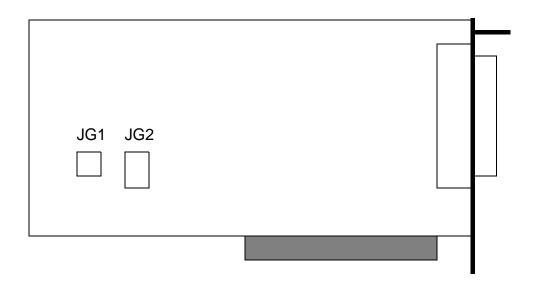
BEFORE REMOVING OR INSTALLING ANY EQUIPMENT IN THE IBM-PC/XT/AT COMPUTER, TURN THE POWER OFF AND REMOVE THE POWER CORD.

#### **B•2•1** ADI Installation in IBM-PC/XT/AT

Refer to the appropriate Installation and Setup manual of the IBM-PC/XT/AT computer for instructions on removing the computer cover.

The ADI board address block should be configured at a free I/O address space in the computer. The address must be unique and it must not fall within the address range of another card installed in the computer.

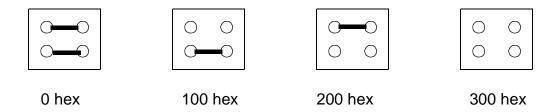
The ADI board address block can be configured to start at one of the three following addresses:


- \$100 This address is unassigned in the IBM-PC
- \$200 This address is usually used for the game port
- \$300 This address is defined as a prototype port

The ADI board is factory configured for address decoding at 100-102 hex in the IBM-PC/XT/AT I/O address map. These are undefined peripheral addresses.



#### Support Information


FIGURE B-1 Physical Location of jumper JG1 and JG2



NOTE: Jumper JG2 should be left unconnected.

The following figure shows the required jumper connection for each address configuration. Address 0 hex is not recommended, and its usage might cause problems.

FIGURE B-2 JG1 Configuration Options



To properly install the ADI board, position its front bottom corner in the plastic card guide channel at the front of the IBM-PC/XT/AT chassis. Keeping the top of the ADI board level and any ribbon cables out of the way, lower the board until its connectors are aligned with the computer expansion slot connectors. Using evenly distributed pressure, press the ADI board straight down until it seats in the expansion slot.

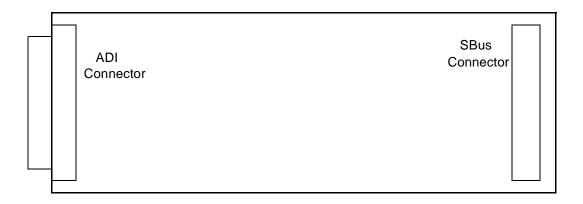
Secure the ADI board to the computer chassis using the bracket retaining screw. Refer to the computer Installation and Setup manual for instructions on reinstalling the computer cover.

## B•3 SUN-4 to MPC8XXFADS Interface

The ADI board should be installed in one of the SBus expansion slots in the Sun-4 SPARCstation computer. A single ADI can control up to eight MPC8XXFADS boards.



#### **CAUTION**


BEFORE REMOVING OR INSTALLING ANY EQUIPMENT IN THE SUN-4 COMPUTER, TURN THE POWER OFF AND REMOVE THE POWER CORD.

#### **B•3•1** ADI Installation in the SUN-4

There are no jumper options on the ADI board for the Sun-4 computer. The ADI board can be inserted into any available SBus expansion slot on the motherboard.

Refer to the appropriate Installation and Setup manual for the Sun-4 computer for instructions on removing the computer cover and installing the board in an expansion slot.

#### FIGURE B-3 ADI board for SBus



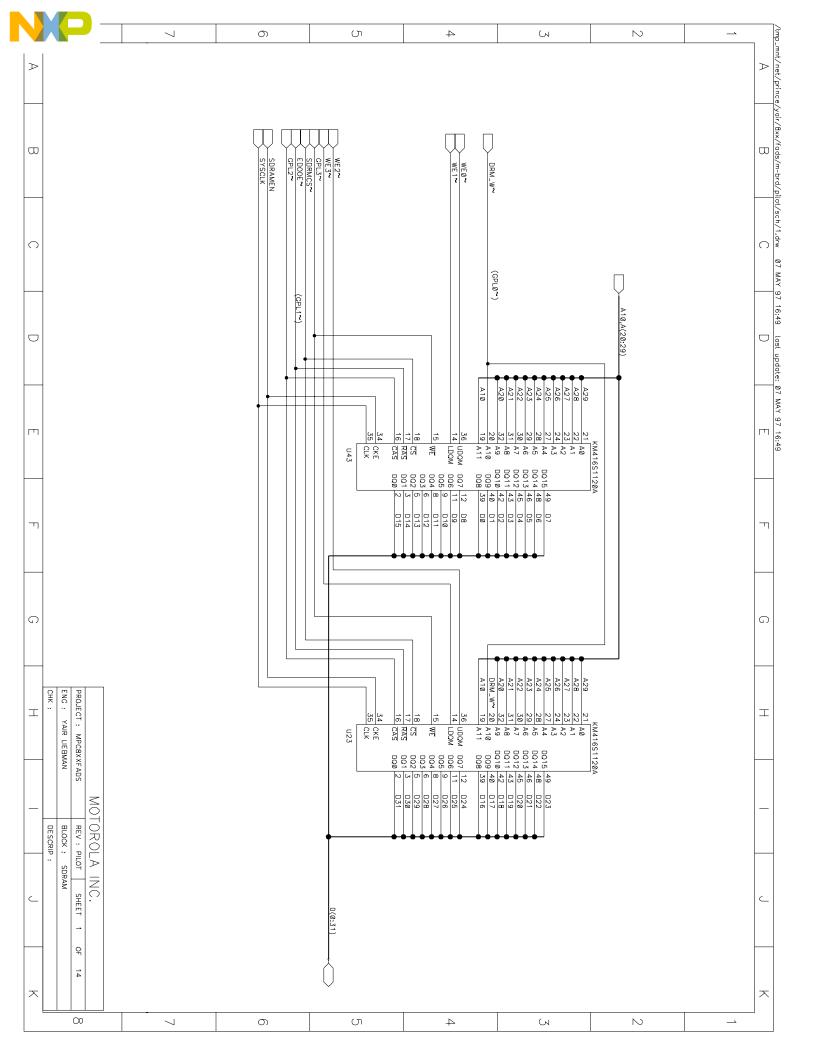
Following is a summary of the Instructions in the Sun manual:

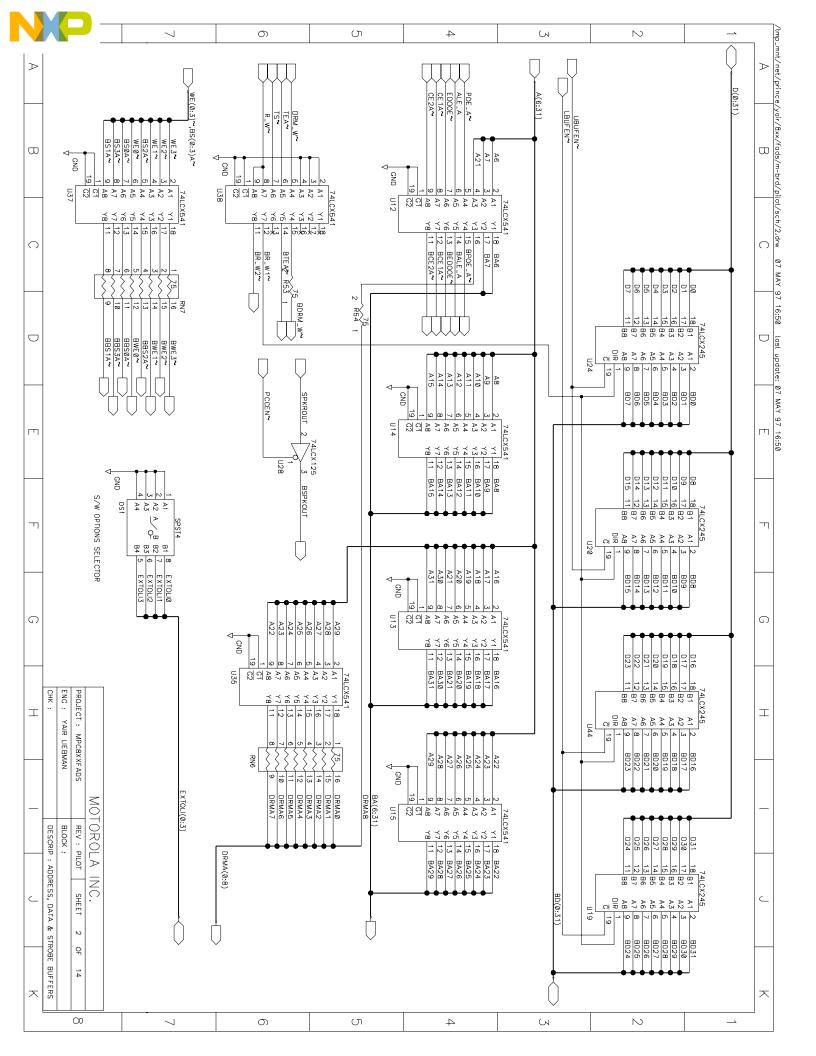
- 1. Turn off power to the system, but keep the power cord plugged in. Be sure to save all open files and then the following steps should shut down your system:
  - hostname% /bin/su
  - Password: mypasswd
  - hostname# /usr/etc/halt
  - wait for the following messages.

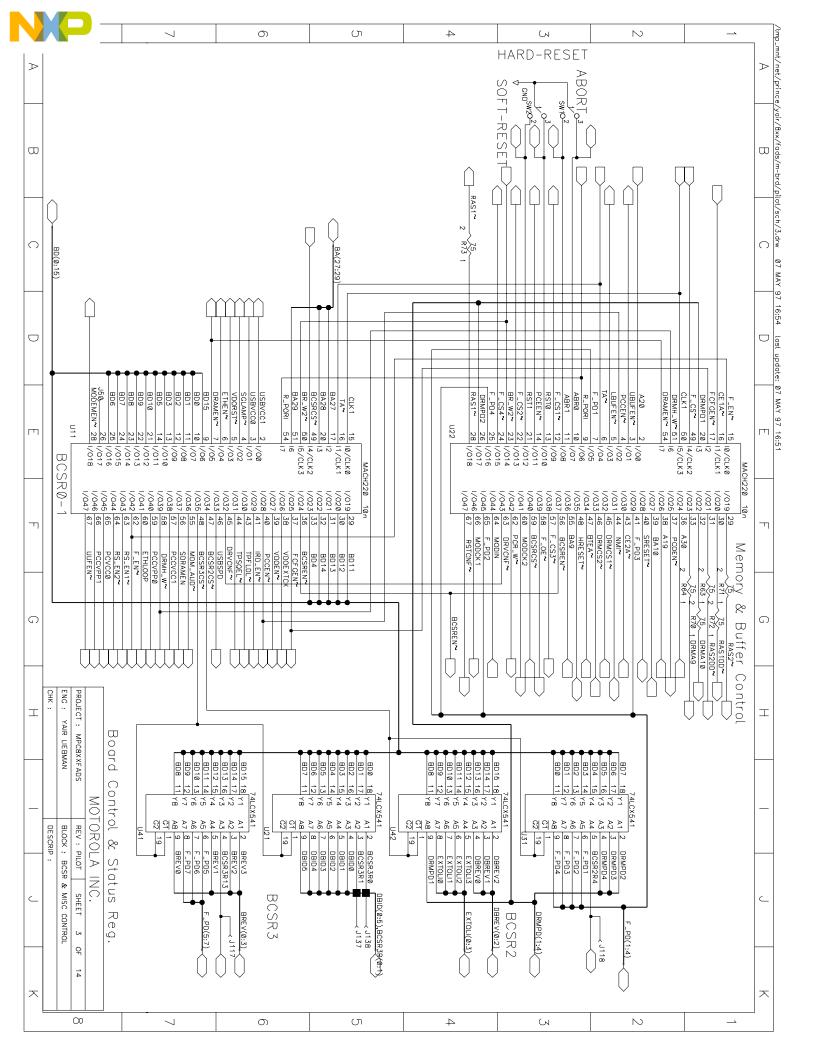
Syncing file systems... done

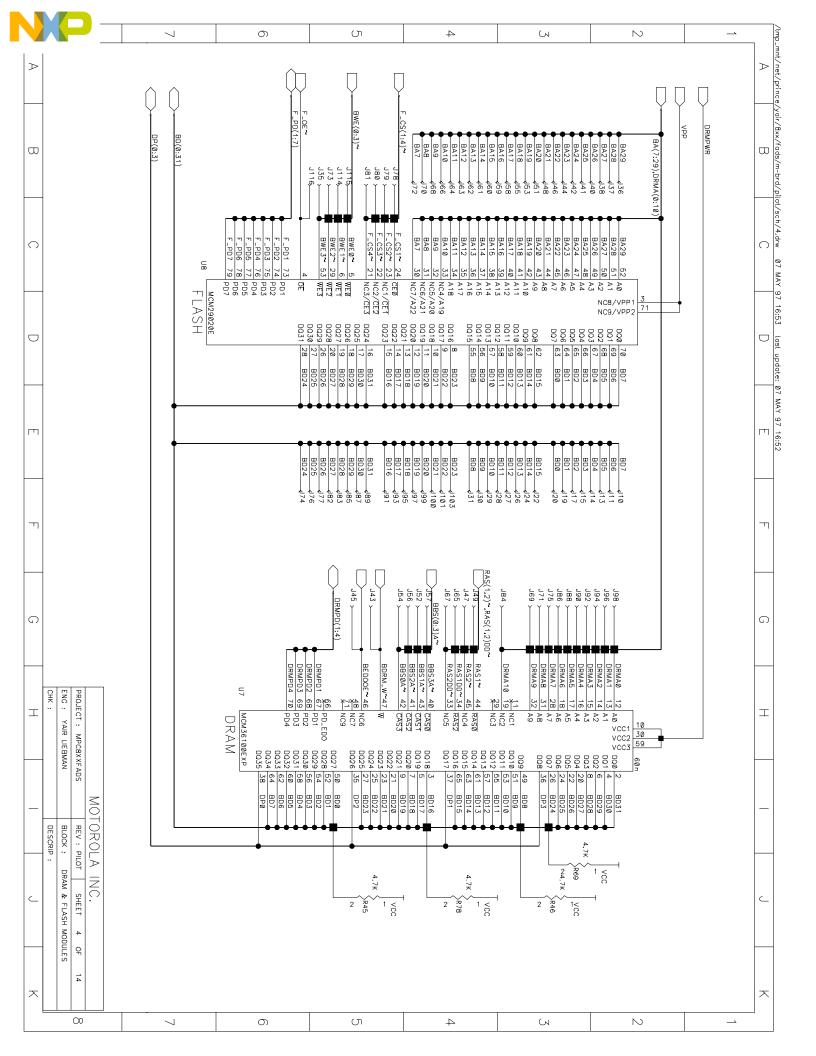
Halted

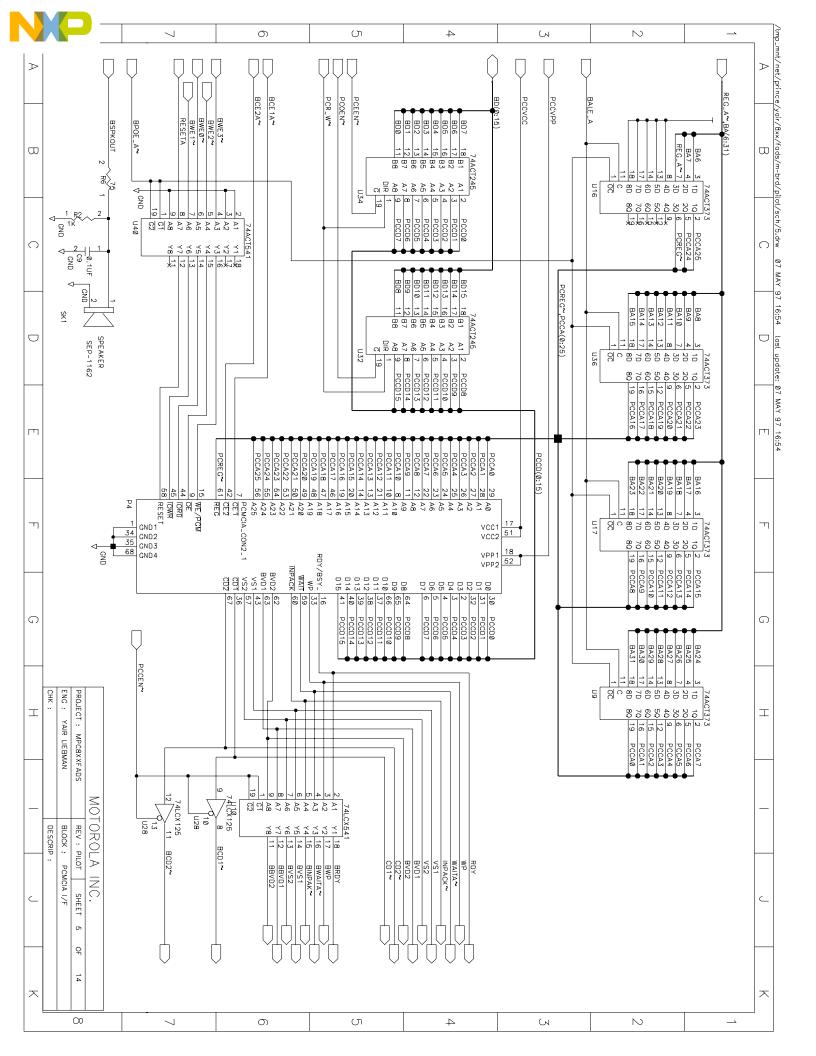
**Program Terminated** 

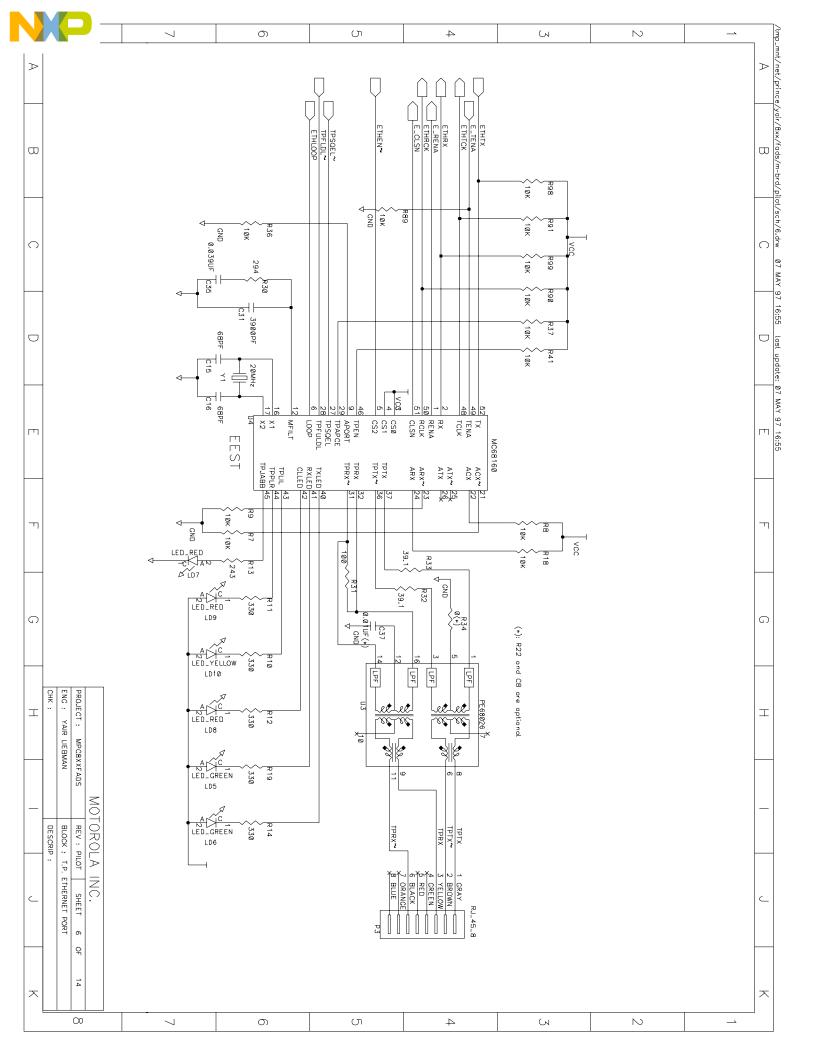

Type b(boot), c(continue), n(new command mode)

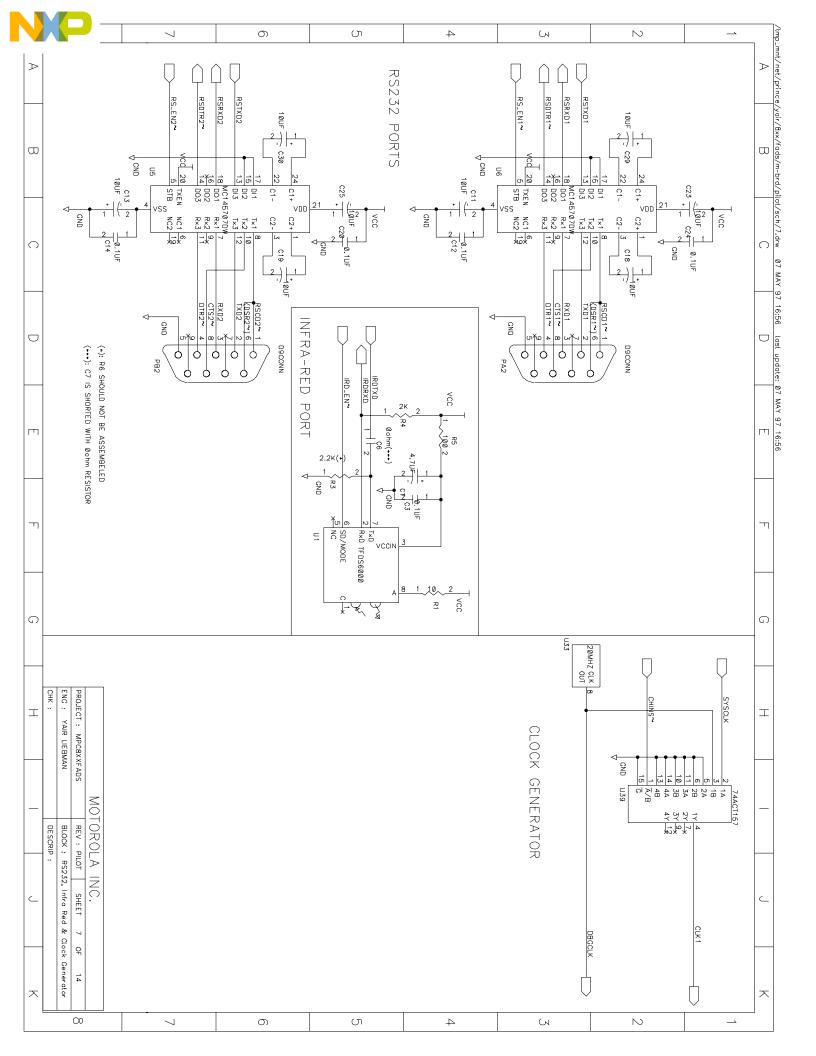

- When these messages appear, you can safely turn off the power to the system unit.
- 2. Open the system unit. Be sure to attach a grounding strap to your wrist and to the metal casing of the power supply. Follow the instructions supplied with your system to gain access to the SBus slots.
- 3. Remove the SBus slot filler panel for the desired slot from the inner surface of the back panel of the system unit. Note that the ADI board is a slave only board and thus will function in any available SBus slot.
- 4. Slide the ADI board at an angle into the back panel of the system unit. Make sure that the mounting plate on the ADI board hooks into the holes on the back panel of the system unit.

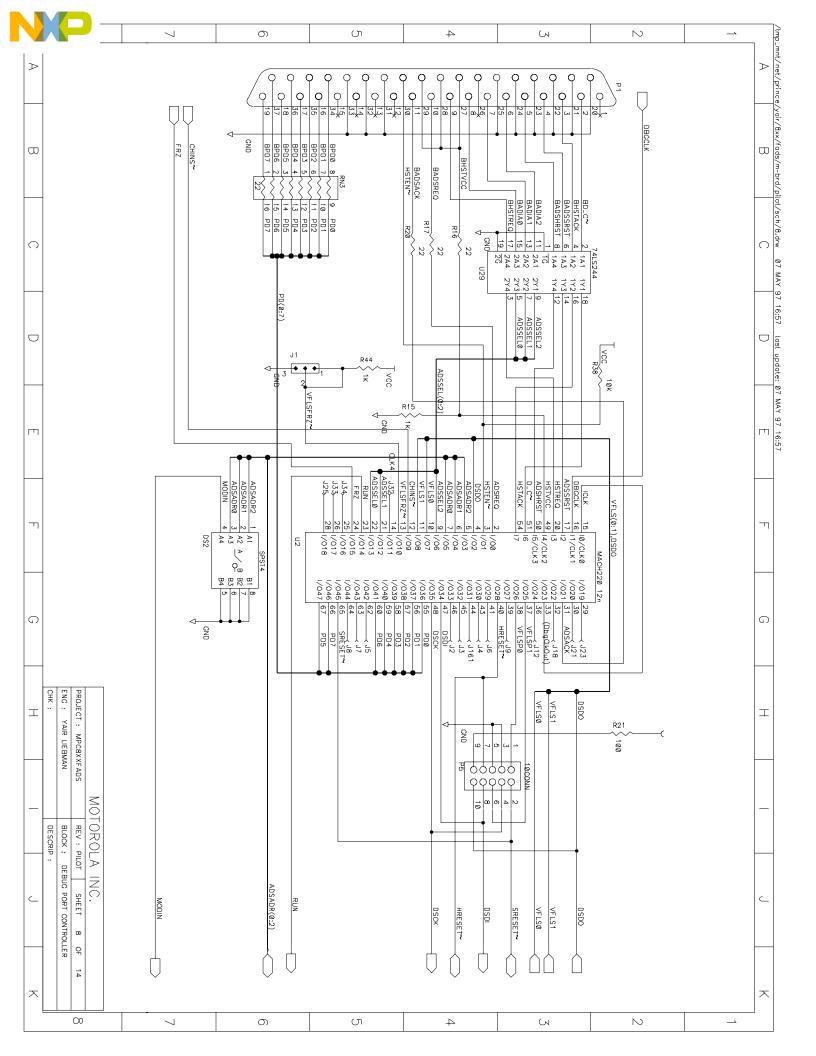


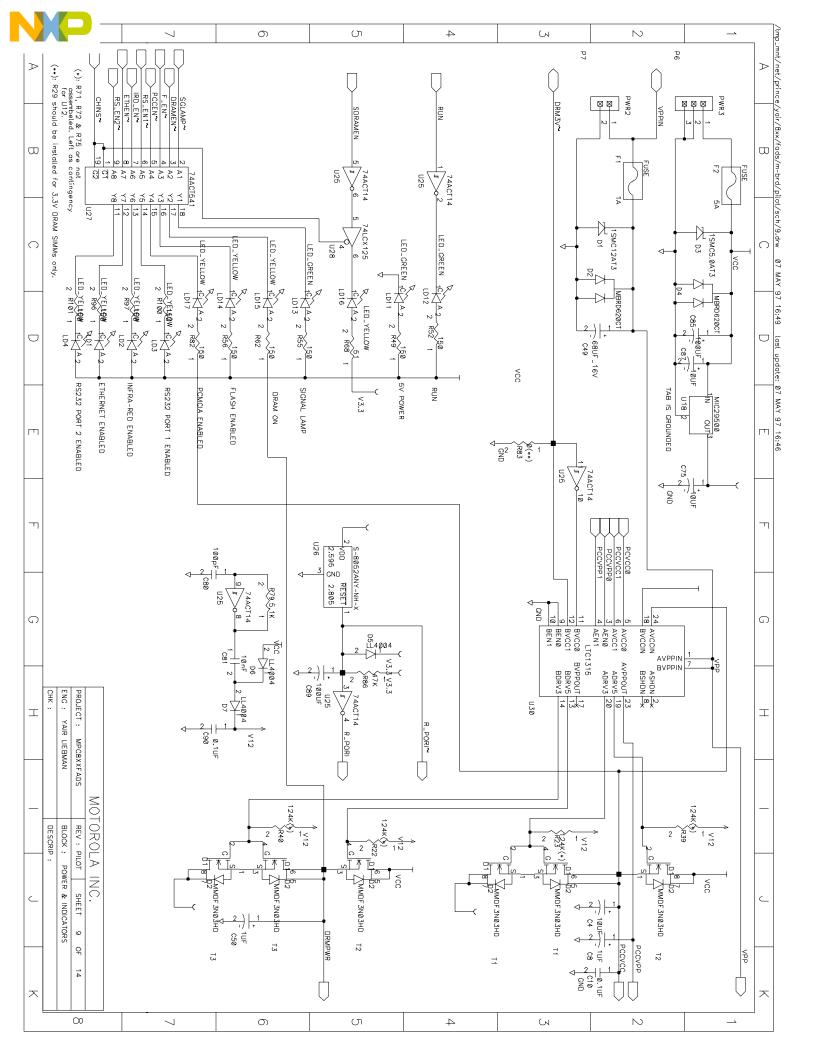


### Support Information

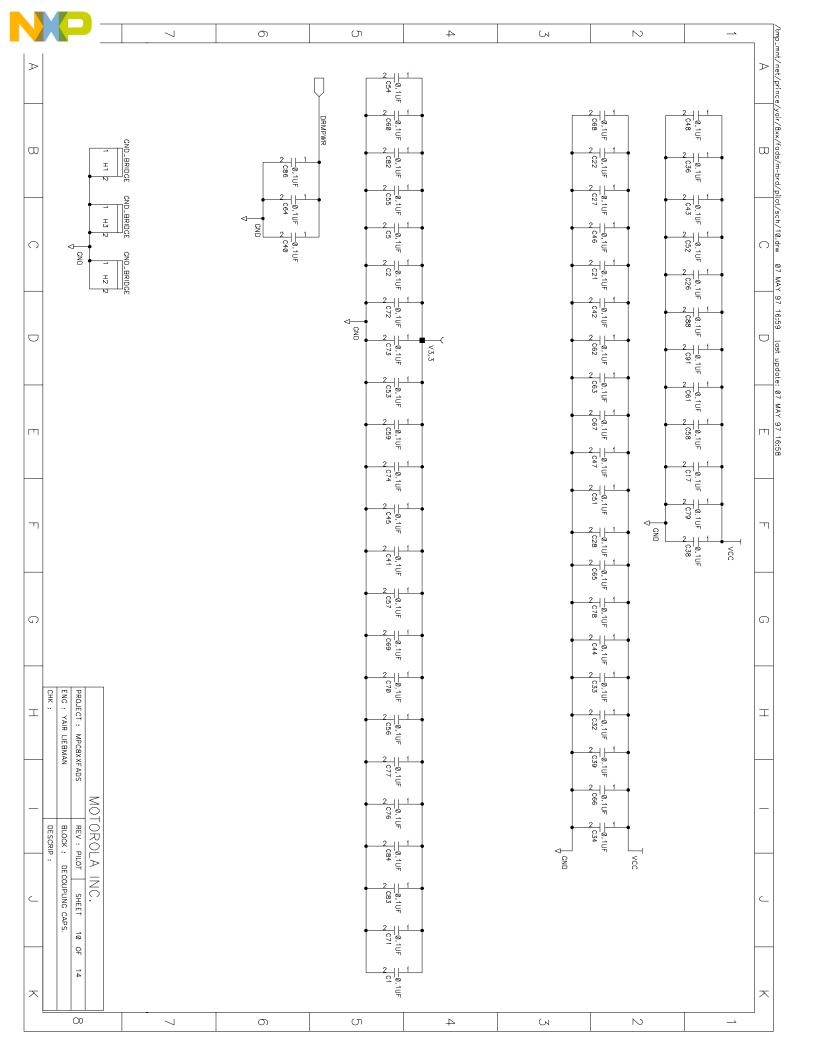

- 5. Push the ADI board against the back panel and align the connector with its mate and gently press the corners of the board to seat the connector firmly.
- 6. Close the system unit.
- 7. Connect the 37 pin interface flat cable to the ADI board and secure.
- 8. Turn power on to the system unit and check for proper operation.

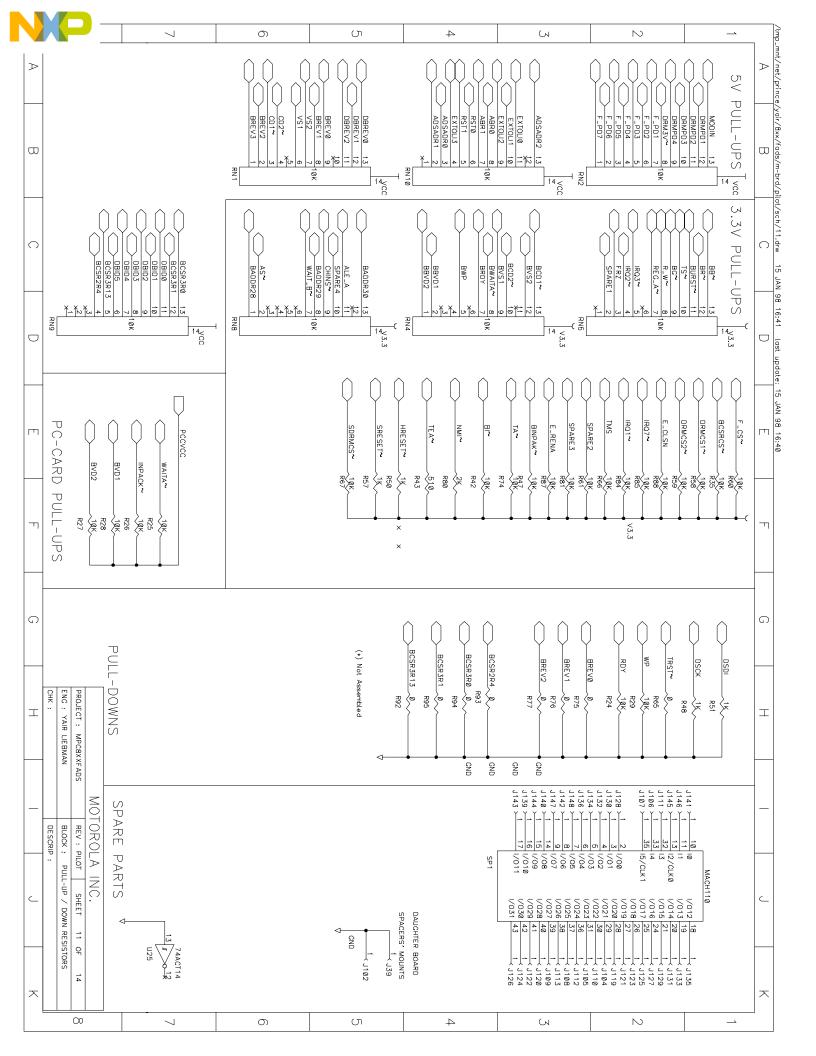


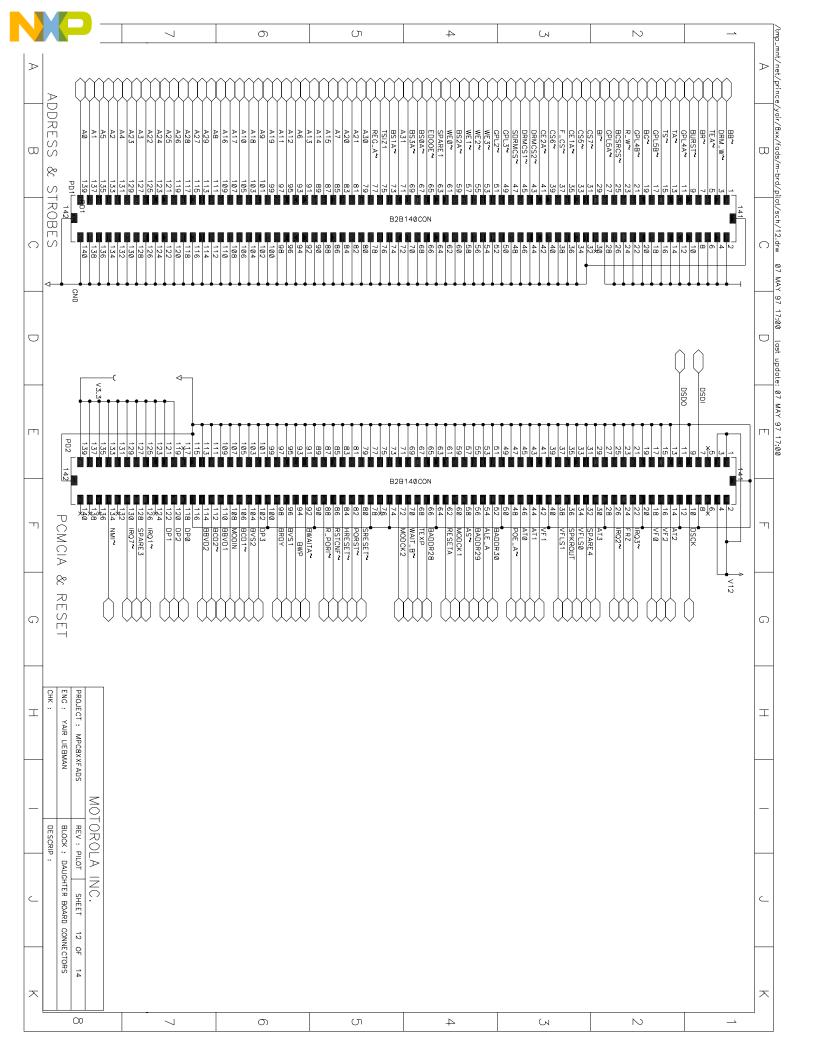



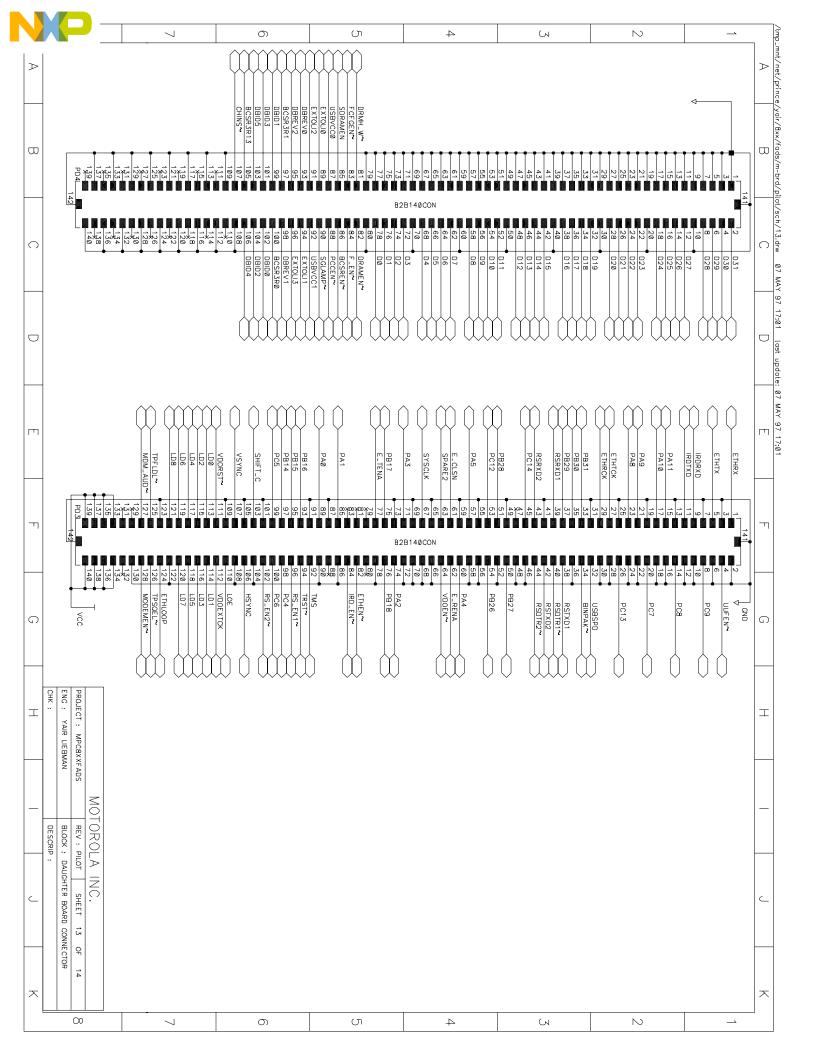



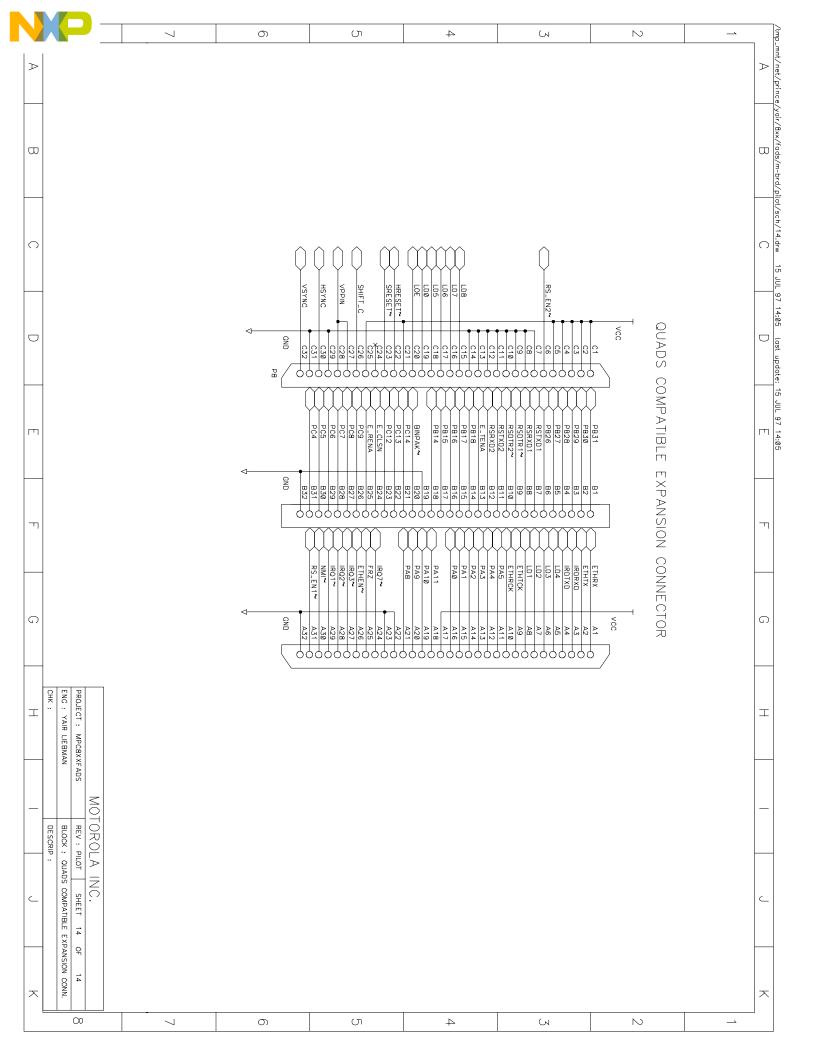
















#### **HOW TO REACH US:**

#### USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 480-768-2130

#### JAPAN:

Motorola Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-8573, Japan 81-3-3440-3569

#### ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd. Silicon Harbour Centre 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong 852-26668334

#### HOME PAGE:

http://motorola.com/semiconductors



Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 1998

MPC860FADSUM/D Rev. 0.1 1/1998