
CodeWarrior™
Development Studio
IDE 5.7 User’s Guide

 Revised: 20 February 2007

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2004–2007 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

7700 West Parmer Lane

Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

I Introduction

1 IDE User’s Guide Overview 17
Release Notes . 17

Licensing. 17

Documentation Structure . 18

Documentation Formats . 18

Documentation Types . 19

Manual Conventions . 19

Figure Conventions . 19

Keyboard Conventions . 20

Special note for Solaris and Linux users. 20

2 CodeWarrior IDE Overview 21
Development Cycle. 21

CodeWarrior IDE Advantages . 23

IDE Tools Overview . 24

II Projects

3 Working with Projects 29
About Projects. 29

Project Manager . 29

Build Targets . 31

Managing Projects . 32

Advanced Projects . 38

Custom Project Stationery. 38

Subprojects . 39

Strategies . 40
3IDE 5.7 User’s Guide

Table of Contents
4 Project Window 41
About the Project Window .41

Project Window Pages. .43

Files Page. .43

Link Order Page. .47

Targets Page. .47

File, Group, Layout, and Target Management .48

Build-Target Management. .53

5 Working with Files 57
Managing Files .57

6 Dockable Windows 63
About Dockable Windows .63

Working with Dockable Windows .66

Dock Bars .70

7 Workspaces 73
About Workspaces. .73

Using Workspaces .73

8 Creating Console Applications 77
About Console Applications .77

Creating Console Applications .77

III Editor

9 CodeWarrior Editor 83
Editor Window .83

Editor Toolbar .86

Interfaces Menu .86

Functions Menu .86
4 IDE 5.7 User’s Guide

Table of Contents
Markers Menu . 86

Document Settings Menu . 87

Version Control System Menu . 87

Other Editor Window Components. 88

Path Caption . 88

File Modification Icon. 88

Breakpoints Column . 88

Text Editing Area . 88

Line and Column Indicator . 89

Pane Splitter Controls . 89

10 Editing Source Code 91
Text Manipulation . 91

Symbol Editing Shortcuts . 94

Punctuation Balancing . 94

Code Completion . 96

Code Completion Configuration . 96

Code Completion Window . 98

11 Navigating Source Code 105
Finding Interface Files, Functions, Lines . 105

Finding Interface Files . 105

Locating Functions . 106

Going Back and Forward . 107

Using Markers. 108

Remove Markers Window. 108

Symbol Definitions . 110

Reference Templates (Macintosh) . 111

12 Finding and Replacing Text 113
Single-File Find . 113

Single-File Find and Replace . 115

Multiple-File Find and Replace . 118

In Folders. 120

In Projects . 122
5IDE 5.7 User’s Guide

Table of Contents
In Symbolics .124

In Files .126

Search Results Window. .128

Text-Selection Find .130

Regular-Expression Find .132

Using the Find String in the Replace String .134

Remembering Sub-expressions .135

Comparing Files and Folders .135

Comparison Setup .136

File Comparison .139

Folder Comparison .142

IV Browser

13 Using the Browser 147
Browser Database .147

Browser Data .147

Browser Symbols .150

Browser Contextual Menu .150

14 Using Class Browser Windows 153
Class Browser window .153

Classes Pane .159

Member Functions Pane .161

Data Members Pane. .162

Source Pane .163

Status Area .163

15 Using Other Browser Windows 165
Multiple-Class Hierarchy Window .165

Single-Class Hierarchy Window .168

Browser Contents window .169

Symbols Window .171
6 IDE 5.7 User’s Guide

Table of Contents
Symbols toolbar. 173

Symbols pane . 173

Source pane . 173

16 Using Browser Wizards 175
New Class Wizard. 175

The New Member Function Wizard . 180

The New Data Member Wizard . 183

V Debugger

17 Working with the Debugger 187
About the Debugger . 187

About Symbolics Files . 188

Thread Window. 188

Common Debugging Actions . 192

Symbol Hint . 195

Contextual Menus . 196

Multi-Core Debugging . 197

Data Viewer Plugins . 198

External Builds Support . 198

External Build Wizard. 200

18 Manipulating Program Execution 203
Breakpoints . 203

Breakpoints Window. 204

Working with Breakpoints. 207

Working with Breakpoint Templates. 212

Eventpoints . 214

Log Point . 216

Pause Point . 217

Script Point . 218

Skip Point . 219
7IDE 5.7 User’s Guide

Table of Contents
Sound Point (Windows OS). .220

Trace Collection Off .221

Trace Collection On. .221

Working with Eventpoints .222

Watchpoints .224

Special Breakpoints. .228

19 Working with Variables 229
Global Variables Window .229

Variable Window .231

Expressions Window .233

20 Working with Memory 237
Memory Window. .237

Array Window .242

Registers Window .244

General Registers. .245

FPU Registers .245

Host-specific Registers .245

Register Details Window (Windows OS) .247

Description File .250

Register Display. .251

Text View. .251

21 Working with Debugger Data 253
Symbolics Window .253

System Browser Window .256

Log Window .258

22 Working with Hardware Tools 261
Flash Programmer Window. .261

Target Configuration .263

Flash Configuration .265

Program / Verify .267

Erase / Blank Check. .270
8 IDE 5.7 User’s Guide

Table of Contents
Checksum . 272

Hardware Diagnostics Window . 274

Configuration. 275

Memory Read / Write . 276

Scope Loop . 278

Memory Tests . 280

Working with a Logic Analyzer . 285

Configuring the Project . 285

Using the Logic Analyzer . 288

Trace Window. 290

Cache Window . 290

Profile Window . 291

Command Window . 292

23 Profiler 295
Overview. 295

What Is a Profiler?. 295

Types of Profilers . 296

A Profiling Strategy. 297

Profiling Code . 298

Using the Profiler . 298

What It Does . 299

How It Works . 299

Profiling Made Easy . 300

Configuring . 303

Profiler Libraries and Interface Files. 303

Profiling Special Cases . 303

Viewing Results . 308

What It Does . 309

How It Works . 309

Finding Performance Problems. 313

Troubleshooting . 314

Profile Times Vary Between Runs . 314

Problems while Profiling Inline Functions . 315

Profiling Library Could not be Found. 315
9IDE 5.7 User’s Guide

Table of Contents
Reference. .316

Compiler Directives. .316

Memory Usage. .317

Time and Timebases .317

Profiler Function Reference. .318

ProfilerInit() .318

ProfilerTerm() .320

ProfilerSetStatus() .320

ProfilerGetStatus(). .320

ProfilerGetDataSizes(). .321

ProfilerDump() .321

ProfilerClear() .322

VI Compilers and Linkers

24 Compilers 325
Choosing a Compiler. .325

Compiling Projects .325

25 Linkers 329
Choosing Linkers .329

Linking Projects .330

VII Preferences and Target Settings

26 Customizing the IDE 333
Customizing IDE Commands .333

Commands Tab .335

Pre-Defined Variables in Command Definitions .338

Customize Toolbars. .342

Kinds of Toolbars .343
10 IDE 5.7 User’s Guide

Table of Contents
Toolbar Elements. 343

Modify a Toolbar. 344

Customize Key Bindings . 347

27 Working with IDE Preferences 353
IDE Preferences Window . 353

General Panels . 355

Build Settings . 355

Concurrent Compiles. 357

IDE Extras . 358

Help Preferences . 361

Plugin Settings. 361

Shielded Folders . 362

Source Trees . 364

Editor Panels . 367

Code Completion. 367

Code Formatting . 369

Editor Settings . 371

Font & Tabs . 373

Text Colors . 376

Debugger Panels . 379

Display Settings. 379

Window Settings . 381

Global Settings . 383

Remote Connections . 385

28 Working with Target Settings 389
Target Settings Window . 389

Target Panels . 391

Target Settings. 392

Access Paths . 393

Build Extras. 396

Runtime Settings . 398

File Mappings . 400

Source Trees . 402
11IDE 5.7 User’s Guide

Table of Contents
Code Generation Panels .402

Global Optimizations. .402

Editor Panels .405

Custom Keywords .406

Debugger Panels .407

Other Executables .407

Debugger Settings .410

Remote Debugging .411

29 Preference and Target Settings Options 415
A .415

B. .417

C. .419

D .421

E. .423

F .427

G-I .429

K-L. .431

M .433

O .435

P .435

R. .437

S .438

T. .446

U .447

V .450

W-Z .451

30 Register Details Window XML Specification 453
Register Details Window XML Specification. .453

REGISTER .455

BITFIELD .457

BFVALUE .460

Accessing the XML Files from CodeWarrior .461

A Sample XML File .462
12 IDE 5.7 User’s Guide

Table of Contents
Creating the New XML File . 462

Adding Multiple BITFIELD Attributes . 463

Adding BFVALUE Attributes . 465

Completing the New XML File. 467

References. 470

VIII Menus

31 IDE Menus 473
Windows Menu Layout. 473

File Menu . 473

Edit Menu . 475

View Menu . 477

Search Menu . 478

Project Menu . 479

Debug Menu . 482

Data Menu . 483

Window Menu . 485

Help Menu. 486

Macintosh Menu Layout . 486

Apple Menu. 486

CodeWarrior Menu . 487

File Menu . 487

Edit Menu . 489

Search Menu . 490

Project Menu . 492

Debug Menu . 495

Data Menu . 497

Window Menu . 498

VCS Menu. 500

Tools Menu . 500

Scripts Menu . 501

Help Menu. 501
13IDE 5.7 User’s Guide

Table of Contents
32 Menu Commands 503
A .503

B. .504

C. .506

D .511

E. .512

F .514

G .516

H .517

I .518

K-L. .518

M-N .519

O .521

P-Q. .521

R. .522

S .527

T-U. .531

V-Z .535

Index 539
14 IDE 5.7 User’s Guide

I

Introduction

This section consists of these chapters:

• IDE User’s Guide Overview

• CodeWarrior IDE Overview
15IDE 5.7 User’s Guide

16 IDE 5.7 User’s Guide

1
IDE User’s Guide Overview

This chapter of the CodeWarrior™ IDE User’s Guide is a high-level description of
documentation and training resources for learning to use the IDE.

• Documentation Structure—a guide to the various CodeWarrior manuals available.
This guide notes the location of generic and specific product documentation.

• Manual Conventions—some common typographical conventions used in this manual
and other CodeWarrior documentation.

Release Notes
Please read the release notes, which contain important last-minute additions to the
documentation. The Release Notes folder is located on the CodeWarrior CD.

Licensing
Web-based licensing is available. It is a server licensing solution that generates FlexLM
v8 or later based license keys automatically over the world wide web through a
registration/activation process. You can register and activate permanent, node-locked
license keys.

CodeWarrior products are shipped to customers with registration cards that contain a
unique registration number. Products that ship with a one year annual support certificate
will also have a unique registration number.

During product installation you will be instructed to register at http://
www.freescale.com/cwregister. You can also reach the registration website by
selecting the Help > Register Product menu command from the IDE’s main menu.
Registration from the website collects the registration code and verifies it against the
correct product and gathers contact information.

An email will be sent to you with the License Authorization Code and instructions. In the
IDE you can select Help > License Authorization... to display the License Authorization
dialog box. Figure 1.1 shows the License Authorization dialog box.
17IDE 5.7 User’s Guide

http://www.freescale.com/cwregister
http://www.freescale.com/cwregister

IDE User’s Guide Overview
Documentation Structure
Figure 1.1 License Authorization

Enter the License Authorization Code and select an ethernet address from the Node lock
ID for license list, if one exists. After entering the authorization code, the CodeWarrior
IDE will make an HTTP call to the CodeWarrior licensing server with the activation code
and generate the permanent license keys. The resulting license keys are automatically
updated into the license.dat text file of the CodeWarrior product executing the
authorization. You can also manually edit the license.dat file per instructions provided in
the License_Install.txt file in the root folder of your CodeWarrior installation path. If the
IDE evaluation period expires prior to activation, you will have to manually edit the
license.dat file.

Documentation Structure
CodeWarrior products include an extensive documentation library of user guides,
targeting manuals, and reference manuals. Take advantage of this library to learn how to
efficiently develop software using the CodeWarrior programming environment.

Documentation Formats
CodeWarrior documentation presents information in various formats:

• Print—Printed versions of CodeWarrior manuals, including the IDE User’s Guide,
MSL C Reference, C/C++ Reference, and product-focused
Targeting manuals.

• PDF (Portable Document Format)—Electronic versions of CodeWarrior manuals.
The CodeWarrior CD Documentation folder contains the electronic PDF manuals.
18 IDE 5.7 User’s Guide

IDE User’s Guide Overview
Manual Conventions
• HTML (Hypertext Markup Language)—HTML or Compressed HTML (.CHM)
versions of CodeWarrior manuals.

Documentation Types
Each CodeWarrior manual focuses on a particular information type:

• User guides—User guides provide basic information about the CodeWarrior user
interface. User guides include information that supports all host platforms on which
the software operates, but do not include in-depth platform-specific information.

• Targeting manuals—Targeting manuals provide specific information required to
create software that operates on a particular platform or microprocessor. Examples
include the Targeting Windows, Targeting Java, and Targeting DSP56800 manuals.

• Reference manuals—Reference manuals provide specialized information that
supports coding libraries, programming languages, and the IDE. Examples include
the C Compiler Reference, MSL C Reference, and Extending the CodeWarrior IDE
manuals.

• Core manuals—Core manuals explain the core technologies available in the
CodeWarrior IDE. Examples include:

– IDE User’s Guide

– C/C++ Compilers Reference

– MSL C Reference and MSL C++ Reference

– Extending the CodeWarrior IDE

– Command-Line Tools Reference

Manual Conventions
This section explains conventions in the IDE User’s Guide.

Figure Conventions
The CodeWarrior IDE employs a virtually identical user interface across multiple hosts.
For this reason, illustrations of common interface elements use images from any host.
However, some interface elements are unique to a particular host. In such cases, clearly
labelled images identify the specific host.
19IDE 5.7 User’s Guide

IDE User’s Guide Overview
Manual Conventions
Keyboard Conventions
The CodeWarrior IDE accepts keyboard shortcuts, or key bindings, for frequently used
operations. For each operation, this manual lists corresponding key bindings by platform.
Hyphens separate multiple keystrokes in each key binding.

Special note for Solaris and Linux users
The Solaris and Linux IDE use Macintosh symbols to represent modifier keys in key
bindings. Table 1.1 shows the relationship between the Macintosh symbols and the
equivalent modifier keys on Solaris and Linux computers. Solaris and Linux computers
can map a modifier key to any key on the keyboard. The preceding table reflects the
default modifier key configuration for these computers. Remember that custom mappings
supersede the default configuration noted in the table.

Table 1.1 Macintosh Modifier-Key Equivalents for Solaris and Linux

Symbol Macintosh
Name

Solaris
Equivalent

Linux Equivalent

Control Control Ctrl

Option Alt Alt

Command Meta Alt

Shift Shift Shift
20 IDE 5.7 User’s Guide

2
CodeWarrior IDE Overview

The CodeWarrior™ Integrated Development Environment (IDE) provides an efficient and
flexible software-development tool suite. This chapter explains the advantages of using
the CodeWarrior IDE and provides brief descriptions of the major tools that make up the
IDE.

This chapter consists of these sections:

• Development Cycle

• CodeWarrior IDE Advantages

• IDE Tools Overview

Development Cycle
A software developer follows a general development process:

• Begin with an idea for new software

• Implement new idea in source code

• Have the IDE compile source code into machine code

• Have the IDE link machine code and form an executable file

• Correct errors (debug)

• Compile, link, and release a final executable file.

The stages of the development cycle correspond to one or more chapters in this manual.

Figure 2.1 depicts the development cycle as a flowchart. Table 2.1 details the different
stages and their corresponding sections in this manual.
21IDE 5.7 User’s Guide

CodeWarrior IDE Overview
Development Cycle
Figure 2.1 Development Cycle Diagram

Start

Create

Edit

Compile
Compile
Errors?

Yes

Link Link Errors?

YesNo

Debug Debug Er-
rors?

YesNo

Release

No

End

Start or End of the
process

Legend

Development Cy-
cle stage

Decision stage

Process flow
22 IDE 5.7 User’s Guide

CodeWarrior IDE Overview
CodeWarrior IDE Advantages
CodeWarrior IDE Advantages
• Cross-platform development

Develop software to run on multiple operating systems, or use multiple hosts to
develop the same software project. The IDE runs on popular operating systems,
including Windows, Macintosh, Solaris, and Linux. The IDE uses virtually the same
graphical user interface (GUI) across all hosts.

• Multiple-language support

Choose from multiple programming languages when developing software. The IDE
supports high-level languages, such as C, C++, and Java, as well as in-line
assemblers for most processors.

• Consistent development environment

Table 2.1 Stage Descriptions, Related User’s Guide Sections

Stage Description Related Sections

Create Create the initial project, source
files, and build targets.

• Projects

• Preferences and Target
Settings

• Menus

Edit Transform your project into
working source code, organize
interface elements, and correct
errors.

• Editor

• Browser

Compile Compile the source code into
machine format that operates on
the target host.

Compilers and Linkers

Link Link the separate compiled
modules into a single binary
executable file.

Compilers and Linkers

Debug Find and resolve all coding and
logic errors that prevent the
program from operating as
designed.

Debugger

Release Release for public use. Beyond the scope of this manual.
23IDE 5.7 User’s Guide

CodeWarrior IDE Overview
IDE Tools Overview
Port software to new processors without having to learn new tools or lose an existing
code base. The IDE supports many common desktop and embedded processor
families, including x86, PowerPC, MIPS, and many others.

• plugin tool support

Extend the capabilities of the IDE by adding a plugin tool that supports new services.
The IDE currently supports plugins for compilers, linkers, pre-linkers, post-linkers,
preference panels, version controls, and other tools. plugins make it possible for the
CodeWarrior IDE to process different languages and support different processor
families.

IDE Tools Overview
The CodeWarrior IDE is a tool suite that provides sophisticated tools for software
development. This section explains the standard tools available in the IDE:

• a project manager

• an editor

• a search engine

• a source browser

• a build system

• a debugger

Table 2.2 explains the purpose of these tools and lists corresponding CodeWarrior IDE
features.
24 IDE 5.7 User’s Guide

CodeWarrior IDE Overview
IDE Tools Overview
Table 2.2 IDE Tools and Features

Tool Purpose CodeWarrior IDE Features

Project
Manager

Manipulate items
associated with
a project

• Handles top-level file management for the
software developer

• Organizes project items by major group,
such as files and targets

• Tracks state information (such as file-
modification dates)

• Determines build order and files to be
included in each build

• Coordinates with plugins to provide
version-control services

Editor Create and
modify source
code

• Uses color to differentiate programming-
language keywords

• Allows definition of custom keywords for
additional color schemes

• Automatically verifies parenthesis, brace,
and bracket balance

• Allows use of menus for navigation to any
function or into the header files used by the
program

Search
Engine

Find and
replace text

• Finds a specific text string

• Replaces found text with substitute text

• Allows use of regular expressions

• Provides file-comparison and differencing
functionality

Source
Browser

Manage and
view program
symbols

• Maintains a symbolics database for the
program. Sample symbols include names
and values of variables and functions.

• Uses the symbolics database to assist
code navigation

• Links every symbol to other locations in the
code related to that symbol

• Processes both object-oriented and
procedural languages
25IDE 5.7 User’s Guide

CodeWarrior IDE Overview
IDE Tools Overview
Build
System

Convert source
code into an
executable file

• Uses compiler to generate object code
from source code

• Uses linker to generate final executable file
from object code

Debugger Resolve errors • Uses symbolics database to provide
source-level debugging

• Supports symbol formats such as
CodeView, DWARF (Debug With Arbitrary
Records Format), and SYM (SYMbolic
information format)

Table 2.2 IDE Tools and Features (continued)

Tool Purpose CodeWarrior IDE Features
26 IDE 5.7 User’s Guide

II

Projects

This section consists of these chapters:

• Working with Projects

• Project Window

• Working with Files

• Dockable Windows

• Workspaces

• Creating Console Applications
27IDE 5.7 User’s Guide

28 IDE 5.7 User’s Guide

3
Working with Projects

This chapter explains how to work with projects in the CodeWarrior™ IDE. Projects
organize several file types associated with a computer program:

• Text files—files that contain any kind of text. Sample text files include Read Me
files and source files.

• Source files—files that contain source code only. Sample source files include C++
files and Java files.

• Library files—files that contain special code designed to work together with a
particular programming language or operating environment.

• Generated files—files created by the IDE while building or debugging the project.

This chapter consists of these sections:

• About Projects

• Managing Projects

• Advanced Projects

About Projects
The IDE uses build targets and a Project Manager to organize source code and support
files. This section explains both components.

Project Manager
The IDE gathers source, library, resource, and other files into a project. The Project
Manager manipulates the information stored in the project.

Figure 3.1 diagrams Project Manager interactions with IDE tools. Table 3.1 explains the
interactions.
29IDE 5.7 User’s Guide

Working with Projects
About Projects
Figure 3.1 Project Manager

Table 3.1 Project Manager Interactions

IDE Tool Project Manager Interactions

Editor • Coordinates internal data flow among editor windows, search
engine, and source browser

• Matches find-and-replace results between related header
files and source files

• Associates functions and variables with corresponding
source code

Compiler • Synchronizes a symbolics database of program functions,
variables, and values with source code

• Coordinates internal data flow between symbolics database
and source browser

• Determines files to include in build process

The build system generates sym-
bolics information for a program.
The debugger generates a database
from the symbolics information.

Build System

Search
Engine

Editor

Source
Browser

Compiler

Symbolics Infor-
mation

Linker Debugger

Main IDE tool

Support tool

Information that the
IDE generates

Development flow

Legend

IDE internal data flow

Additional information
30 IDE 5.7 User’s Guide

Working with Projects
About Projects
Build Targets
For any given build, the project manager tracks:

• files and libraries

• link order

• dependencies

• compiler, linker, and other settings

The IDE stores this information in a build target. As the project changes, the project
manager automatically updates the build target. The project manager also coordinates
program builds, using the build-target information to call the appropriate tools in the
correct order with the specified settings.

For example, the project manager directs the build system to compile only those source
files that rely on information in a modified file.

Note that all of this operation happens automatically. The software developer does not
need to remember makefile syntax or semantics, and never has to debug makefile syntax
errors. The IDE simplifies the process, making it easier to develop software.

The project manager also supports multiple build targets within the same project file. Each
build target can have its own unique settings, and even use different source and library
files. For example, it is common to have both debug and release build targets in a project.

Figure 3.2 shows a sample project with debug and release build targets.

Linker • Sends compiled object code to linker for conversion to
executable code

• Sets the link order for processing compiled object code

Debugger • Matches debugging data to source code

• Updates symbolics database to reflect changing values
during a debug session

Table 3.1 Project Manager Interactions (continued)

IDE Tool Project Manager Interactions
31IDE 5.7 User’s Guide

Working with Projects
Managing Projects
Figure 3.2 Project with Multiple Build Targets

Managing Projects
Use these tasks to manage projects:

• Create a new project

Project

Build Target - Debug

File #1 File #2

File #3 Object Code

Settings Browser Data

Build Target - Release

File #1 File #2

File #4 Object Code

Settings Browser Data

..
.

Note that both build targets share
File #1 and File #2.
32 IDE 5.7 User’s Guide

Working with Projects
Managing Projects
• Open existing project

• Save project

• Close project

• Inspect an open project

• Print an open project

Creating New Projects using Project Stationery

Use the project stationery provided with the IDE to quickly create new projects. The
stationery contains everything needed for a minimal, ready-to-run project. Use project
stationery as a foundation upon which to add features for each new project.

1. Choose File > New.

2. Click the Project tab and select a project type.

3. Enter a project name (include the .mcp extension) in the Project Name field and set
the Location for the new project.

4. Click OK in the New window.

5. Select the appropriate project stationery from the New Project window.

6. Click OK in the New Project window.

The IDE uses the selected stationery as a template to create a new project.

Creating New Projects from Makefiles

Use the Makefile Importer wizard to convert most Visual C nmake or GNU make files
into projects. The wizard performs these tasks:

• Parses the makefile to determine source files and build targets

• Creates a project

• Adds the source files and build targets determined during parsing

• Matches makefile information, such as output name, output directory, and access
paths, with the newly created build targets.

• Selects a project linker

1. Choose File > New.

2. Click the Project tab.

3. Select Makefile Importer Wizard.
33IDE 5.7 User’s Guide

Working with Projects
Managing Projects
4. Enter a project name (include the .mcp extension) in the Project Name field and set
the Location for the new project.

5. Click OK in the New window.

6. Enter the path to the makefile in the Makefile location field or click Browse to
navigate to the makefile.

7. Choose the tool set used for makefile conversion and linker selection.

• Tool Set Used In Makefile—Choose the tool set whose build rules form the basis
of the makefile.

• CodeWarrior Tool Set—Choose the linker tool set to use with the generated
project.

8. Select the desired diagnostic settings.

• Log Targets Bypassed—Select to log information about makefile build targets that
the IDE fails to convert to project build targets.

• Log Build Rules Discarded—Select to log information about makefile rules that
the IDE discards during conversion.

• Log All Statements Bypassed—Select to log targets bypassed, build rules
discarded, and other makefile items that the IDE fails to convert.

9. Click Finish, then Generate.

The Makefile Importer wizard performs the conversion process and displays additional
information.

Creating Empty Projects

Unlike project stationery, empty projects do not contain a pre-configured collection of
template source files, library files, or build targets. Empty projects allow advanced
software engineers to custom-build new projects from scratch.

NOTE Avoid creating empty projects. Instead, modify a project created with project
stationery. Project stationery pre-configures complicated settings to quickly get
started.

1. Choose File > New.

2. Click the Project tab and select Empty Project.

3. Enter a project name (include the .mcp extension) in the Project Name field and set
the Location for the new project.

4. Click OK in the New window.
34 IDE 5.7 User’s Guide

Working with Projects
Managing Projects
The IDE creates an empty project. Add files and libraries, create build targets, and choose
the appropriate target settings to complete the new project.

Opening Projects

Use the IDE to open previously saved projects. CodeWarrior projects normally end in the
extension of .mcp. Open projects to add, remove, or modify files to enhance the
capabilities of the final executable file.

1. Choose File > Open.

2. Find and select the project to open.

3. Click Open.

The IDE opens the project and displays its Project window.

NOTE The IDE prompts you for confirmation to update projects created in older
CodeWarrior versions.

Opening Projects Created on Other Hosts

CodeWarrior projects whose names end in .mcp are cross-platform. However, the object
code stored inside each project folder is not cross-platform. Use these procedures to
properly open the project on a different host computer.

1. If not present, add the .mcp filename extension to the project name.

2. Copy the project folder from the original host to the new host.

3. Delete the Data folder inside the newly copied project folder.

4. Open the newly copied project on the new host IDE.

5. Recompile the project to generate new object code.

Saving Projects

The IDE automatically saves projects and updates project information after performing
these actions:

• Closing the project

• Applying or saving a preference or target-setting option

• Adding, deleting, or compiling a file

• Editing group information
35IDE 5.7 User’s Guide

Working with Projects
Managing Projects
• Removing or compacting object code

• Quitting the IDE

Inspecting Project Files

Use the Project Inspector command to review and configure source-file attributes and
target information in the Project Inspector window.

1. Select a file in the Project window.

2. Open the Project Inspector window, as explained in Table 3.2.

3. Examine the source-file attributes and target settings.

• Click the Attributes tab to view the file attributes.

• Click the Targets tab to view the build targets that use the file.

Printing Projects

The Project Manager can print a complete listing of the Files, Designs, Link Order, or
Targets tab currently displayed in the Project window.

1. Select the Project window.

2. Click the Files, Designs, Link Order, or Targets tab.

3. Choose File > Print.

4. Set the print options in the print dialog.

5. Print the Project window contents.

The IDE prints the contents of the selected tab.

Table 3.2 Opening the Project Inspector Window

On this host… Do this…

Windows Select View > Project Inspector.

Macintosh Select Window > Project Inspector.

Solaris Select Window > Project Inspector.

Linux Select Window > Project Inspector.
36 IDE 5.7 User’s Guide

Working with Projects
Managing Projects
Choosing a Default Project

The IDE allows multiple open projects at the same time. However, a given source file can
belong to more than one open project, making it ambiguous as to which project a source-
file operation applies.

To resolve ambiguity, choose the default project to which the IDE applies operations.

1. If only one project is open, it automatically becomes the default project.

2. If more than one project is open, choose Project > Set Default Project to select the
desired default project.

In ambiguous situations, the IDE applies operations to the selected default project.

Exporting Projects to XML Files

The IDE can export a project to an Extensible Markup Language (XML) file. Use this
capability to store projects in text-oriented environments, such as a version control system.

1. Bring the project to export forward (in focus).

2. Choose File > Export Project.

3. Name the exported XML file and save it in the desired location.

The IDE converts the project to an XML file.

Importing Projects Saved as XML Files

The IDE can import a project previously saved in Extensible Markup Language (XML)
format. Use this capability to recreate projects stored in text-oriented environments, such
as a version control system.

1. Choose File > Import Project.

2. Create a new folder in which to save the converted project and all of its generated files.

3. Find the XML file that you want to import.

4. Save the XML file in the newly created folder.

The IDE converts the XML file to a project.
37IDE 5.7 User’s Guide

Working with Projects
Advanced Projects
Closing Projects

Use the Close command to close a CodeWarrior project file at the end of a programming
session. The IDE automatically saves changes to a closed project.

1. Select the Project window to close.

2. Close the project.

• Choose File > Close.

• Click the close box in the Project window.

Advanced Projects
Advanced projects deal with these topics:

• Custom project stationery—modified project stationery tailored to advanced
programming needs.

• Subprojects—projects within projects.

• Strategies—obtaining the maximum benefit from advanced projects.

Custom Project Stationery
Use custom project stationery to develop streamlined templates to meet advanced
programming needs.

• Pre-configure new project stationery to include often-used files, libraries, and source
code

• Configure build targets and options to any desired state

• Set up a reusable template to use for creating projects

NOTE Custom project stationery requires in-depth knowledge about project structure
and operation. Before creating custom stationery, be sure to fully understand
existing project stationery included with the CodeWarrior product.

Creating Custom Project Stationery

Use custom project stationery to develop a convenient template for creating new projects.
An efficient way to develop custom stationery is to modify existing project stationery and
save it under a new name in the Stationery or Project Stationery folder.
38 IDE 5.7 User’s Guide

Working with Projects
Advanced Projects
1. Follow the usual process for creating a project from project stationery.

See Creating New Projects using Project Stationery for more information.

2. Choose File > Save A Copy As.

3. Find the Project Stationery folder in the CodeWarrior installation.

4. Create a folder inside the Project Stationery folder to store the newly created project.

5. Save the project to its new folder. Use a descriptive project name with the .mcp
extension.

6. Customize the newly saved project so that it becomes a template for creating other
projects:

• Add source files to the project. Save these files in the same folder as the project
itself.

• Add build targets for building the project with frequently used settings.

• Configure other project preferences as desired.

7. Close the customized project to save it.

8. Open the customized project folder inside the Project Stationery folder.

9. Find and delete the _Data folder.

The IDE now treats the customized project as project stationery. The descriptive name
appears in the Project tab of the New window.

Subprojects
A subproject is a project nested inside a parent project. Subprojects organize source code
for the IDE to build prior to building the parent project. For example, the IDE builds
subprojects for an application’s plugins before building the parent project for the
application itself.

Adding Subprojects to a Project

Use a subproject to organize a separate set of source files and build targets inside a parent
project.

1. Open the parent project in which to add a subproject.

2. Click the Files tab in the Project window.

3. If the parent project has more than one build target, use the build-target list box in the
Project window toolbar to choose the desired build target.

4. Add a separate project to the Project window:

• Drag and drop the .mcp file of the separate project into the Project window, or
39IDE 5.7 User’s Guide

Working with Projects
Advanced Projects
• Choose Project > Add Files to add the .mcp file of the separate project.

The IDE treats the added project as a subproject. The subproject appears in the Files
view of the parent Project window.

Opening Subprojects

The IDE can open a subproject from the parent Project window. Use this feature to more
conveniently open the subproject.

1. Double-click the subproject in the Files view of the parent Project window.

2. The IDE opens the subproject in its own Project window.

Strategies
Projects can organize files into build targets or subprojects. Each of these structures has its
own advantages. Choose the structure best suited to the programming need.

Build Targets
Build targets organize collections of files inside a project. Build targets have these
advantages:

• Using multiple build targets inside a single project allows access to all source code
for that project.

• Build targets organize different collections of build settings for a single project.

• Each project accommodates up to 255 build targets.

Subprojects
Subprojects incorporate separate, standalone projects into parent projects. Subprojects
have these advantages:

• Subprojects separate distinct parts of a complex program, such as an application and
its various plugins.

• Using subprojects streamlines a complicated build. For example, create a project that
builds all plugins for an application. Add this project as a subproject of the main
application. The IDE then builds all plugins before building the main application.

• Use subprojects to break down a complicated project that approaches the 255 build-
target limit. Organize related build targets into different subprojects to improve build
speed.
40 IDE 5.7 User’s Guide

4
Project Window

This chapter explains how to work with the Project window in the CodeWarrior™ IDE.
The Project window provides these features:

• view and modify all files created for use with a computer program.

• manipulate files arranged by type.

• control the way the IDE handles files.

This chapter consists of these sections:

• About the Project Window

• Project Window Pages

• File, Group, Layout, and Target Management

• Build-Target Management

About the Project Window
The Project window organizes files in a computer program. Use this window to control
various aspects of each file. The window includes these items:

• Project window toolbar

• Tabs

• Columns

Figure 4.1 shows a sample Project window. Table 4.1 explains the items in the Project
window.

NOTE The number and names of the tabs in the Project window depend on the current
build target and on the installed IDE plugins.
41IDE 5.7 User’s Guide

Project Window
About the Project Window
Figure 4.1 Project Window

Table 4.1 Project Window Items

Item Icon Explanation

Current Target Use to specify the build target that you
want to modify.

Target
Settings

Click to view and edit the settings for the
current build target. You can also display
settings for a target selected in Targets
tab.

Synchronize
Modification
Dates

Click to check the modification dates of
each project file and mark those files that
need compilation.

Make Click to compile and link all modified and
manually selected (touched) project files.

Debug Click to debug the current build target.

Run Click to compile and link the current build
target, then run the program.
42 IDE 5.7 User’s Guide

Project Window
Project Window Pages
Project Window Pages
The Project window uses pages to organize items:

• Files

• Link Order

• Targets

• Frameworks (for projects supporting code frameworks - Mac OS only)

Files Page
The Files page shows information about individual files in a project. The Files page shows
information about these file types:

• Text files—files that contain any type of text. Sample text files include Read Me files
and source files.

• Source files—files that contain source code only. Sample source files include C++
files and Java files.

Project
Inspector

Click to view project information and edit
file-specific information.

Files Click to display the Files page. This page
shows a list of files in the project and their
associated properties.

Link Order Click to display the Link Order page. This
page shows the link order of files in the
current build target.

Frameworks
(Mac OS only)

Click to display the Frameworks page.
This page shows available programming
frameworks to link against. The
Frameworks tab appears only for projects
that support frameworks.

Targets Click to display the Targets page. This
page shows a list of all build targets, sub-
projects, and target-linking information.

Table 4.1 Project Window Items (continued)

Item Icon Explanation
43IDE 5.7 User’s Guide

Project Window
Project Window Pages
• Library files—files that contain special code designed to work together with a
particular programming language or operating environment.

Table 4.2 explains the items in the Files page.

Table 4.2 Files Page Items

Item Icon Explanation

Touch Indicates the touch status of each file. Click in this column to
toggle touching a file. Touching a file manually selects it for
compilation during the next build. Click the Touch icon to sort
files by touch status.

File Displays a hierarchical view of the file and group names used
by the project. Click the column title to sort files by name.
Double-click a file to open it. Use the hierarchical controls to
display and hide group contents.

Code Displays the size, in bytes or kilobytes, of the compiled
executable object code for files and groups. Click the column
title to sort files by code size.

Data Displays the size, in bytes or kilobytes, of non-executable data
in the object code for files in the project. Click the column title
to sort files by data size.

Target Indicates whether each file belongs to the current build target.
Click in this column to toggle inclusion status. A black dot
indicates that a file is included with current build target. Click
the Target icon to sort files by inclusion status. The Target
column appears only when the project has more than one build
target.

Debug Displays debugging status. Click in this column to toggle
generation of debugging information for a file or group. Click
the Debug icon to sort files by debugging status.

Checkou
t Status

Displays icons representing the current file status in a version-
control system. The Checkout Status column appears only
when the project uses a version-control system to manage
files.
44 IDE 5.7 User’s Guide

Project Window
Project Window Pages
Viewing a File Path

To distinguish between two files that have identical names but reside in different folders,
examine the file path.

To view the complete path of a file, perform the task explained in Table 4.3.

The File Path submenu shows the path to the file.

File Management
The project window lists all files found for all targets. If access paths are different for each
target and a file with the same name exists in each path, the project window will list the
occurrence of each file.

For example, if two header files named example.h are used with two targets (TargetA
and TargetB) and exist in separate locations for each target, you will see two entries of
example.h in the project window. If both targets use the same file in one location, then
a single entry will appear in the project window.

Interface
s

Click to display a list of files inside a group or a list of
#include files inside a source file. Choose a file to
open it.

Sort
Order

Click to toggle sorting between ascending and descending
order for the active column. The icon indicates the current sort
order.

Table 4.3 Viewing a File Path

On this host… Do this…

Windows Right-click the filename and select
Open in Windows Explorer

Macintosh Control-click the filename and select File Path.

Solaris Click and hold on the filename, then select File Path.

Linux Click and hold on the filename, then select File Path.

Table 4.2 Files Page Items (continued)

Item Icon Explanation
45IDE 5.7 User’s Guide

Project Window
Project Window Pages
Select a file in the Files tab of the project window and view the Project Inspector window
to reveal the path for the selected file, and which targets use the file. You can also select a
file and click the right mouse button to display a context menu. Select Open in Windows
Explorer (Windows) or File Path (Linux/Solaris/Mac) to display the path.

If a black dot is present in the target column for a listed file, then it is in the current target.
You can select this dot to toggle whether or not to include this file with the current target.
Double-click a source file to open it in the editor.

If you enable the Save project entries using relative paths option in the Target Settings
panel, file locations will be stored using a relative path from the access paths defined in
the Access Paths panel. If disabled, the IDE remembers project entries only by name. This
can cause unexpected results if two or more files share the same name. In this case, re-
searching for files by selecting the Project > Re-search for Files menu command could
cause the IDE to find the file in a different access path.

NOTE If you use source files with the same name in different locations, you should
enable the Save project entries using relative paths option.

Duplicate file names can also appear in the Files tab of the project window if a file is not
found on one of the access paths. This can happen if an access path has been removed
from the User Paths group in the Access Paths target settings panel. When the access path
is removed, a duplicate appears in the project window. The duplicate entry remains
displayed until the access path is restored.

If a project with several targets (for example Debug and Release target) uses the same file,
that file is shown as a single entry. If you remove the access path for that file, then a
duplicate entry will appear in the file list. This duplicate represents a missing file for the
current target. The second file entry is still available for the other target. Restore the access
path and choose Project > Re-search for Files to remove the duplicate entry in the list.

The Project > Re-search for Files command speeds up builds and other project
operations. The IDE caches the location of project files after finding them in the access
paths. Re-search for Files forces the IDE to forget the cached locations and re-search for
them in the access paths. This command is useful if you moved several files and you want
the IDE to find the files in their new locations.

If the Save project entries using relative paths option is enabled, the IDE does not reset
the relative-path information stored with each project entry, so re-searching for files looks
for source files in the same location. If the files are not there, the IDE only re-searches for
header files. To force the IDE to also re-search for source files, choose the Project >
Reset Project Entry Paths menu command. If the Save project entries using relative
paths option is disabled, the IDE re-searches for both header files and source files.

The Reset Project Entry Paths command resets the location information stored with each
project entry and forces the IDE to re-search for project entries in the access paths. This
command does nothing if the Save project entries using relative paths option is
disabled.
46 IDE 5.7 User’s Guide

Project Window
Project Window Pages
NOTE If the IDE is unable to locate or resolve the location of project files, a Rescued
items folder will appear. The IDE tries to locate the missing files and creates
new references. This can happen when project data information, access paths.
or other location settings in target settings panels are missing or have been
compromised, for example, if the location of a project and related data
directory have changed. One way this can happen is if a project has been
committed to a source repository by one person and checked out to a different
location by another person and a new project data folder is created.

Link Order Page
The Link Order page shows information about the order in which the IDE links
project files. Manipulate the files in this page to change the link order. For example,
if file B depends on file A in order to function, move file B below file A in the
Link Order page.

Table 4.4 explains the items in the Link Order page.

Targets Page
The Targets page presents information about the build targets in a project. Use this page to
create, manage, or remove build targets. Different build targets can store different IDE
settings. For example, two build targets can handle the same project. One build target
handles debugging the software, while the other build target handles building the software
for final release.

Table 4.5 explains items in the Targets page.

Table 4.4 Link Order Page Items

Item Explanation

Synchronize
Modification
Dates

To update the modification dates of files stored in a project, click the
checkmark icon.

Use the Synchronize Modification Dates command to update files
modified outside of the CodeWarrior IDE, perhaps by a third-party
editor that cannot notify the CodeWarrior IDE of changes.

Synchronize
Status

To update version-control status information, click the Pencil icon.
47IDE 5.7 User’s Guide

Project Window
File, Group, Layout, and Target Management
File, Group, Layout, and Target
Management

Use these tasks to manage files, groups, layouts, and targets:

• Create an item.

• Delete an item.

• Move an item.

• Rename an item.

• Touch an item.

• Manage items.

• Set default items.

• Configure item settings.

Removing Files/Groups/Layouts/Targets

The Remove command deletes files, groups, layouts, and build targets from the Project
window. Removing files from the Files tab removes them from the project itself and from
all build targets that use the files. Removing a file from the Link Order, Segments, or
Overlays tab only removes the file from the current build target.

Table 4.5 Targets Page Items

Item Explanation

Targets Displays all build targets and subprojects that the IDE processes to create a
binary file. These icons denote build-target status:

• active build target

• inactive build target

Link Indicates the dependencies between build targets
and subprojects.
48 IDE 5.7 User’s Guide

Project Window
File, Group, Layout, and Target Management
Removing files/groups/layouts/targets from a
project
1. Click the Files, Designs, or Targets tab in the Project window.

2. Select the item to remove.

3. Remove the selected item from the project, as Table 4.6 explains.

The IDE removes the selected item from the project. For deleted files, the IDE updates all
build targets that formerly used the file. For deleted build targets, the IDE deletes build-
target information and leaves files intact.

Removing files from a build target
1. Click the Link Order, Segments, or Overlays tab in the Project window.

2. Select the item to remove.

3. Remove the selected item from the active build target, as Table 4.7 explains.

The IDE removes the file from the build target, but leaves the file itself intact. The file can
be re-assigned to other build targets in the project.

Table 4.6 Removing Selected Item from a Project

On this host… Do this…

Windows Select Edit > Delete

Macintosh Select Edit > Clear

Solaris Select Edit > Remove

Linux Select Edit > Remove

Table 4.7 Removing Selected Item from Active Build Target

On this host… Do this…

Windows Select Edit > Delete

Macintosh Select Edit > Clear

Solaris Select Edit > Remove

Linux Select Edit > Remove
49IDE 5.7 User’s Guide

Project Window
File, Group, Layout, and Target Management
Moving Files/Groups/Layouts/Targets

Reposition files, groups, layouts, or build targets in the Files, Design, Link Order, or
Targets pages with the cursor.

1. Select one or more files, groups, layouts, or build targets to move with the pointer.

2. Drag the selected items to a new position in the current page, using the focus bar as a
guide.

3. Release the mouse button.

The IDE repositions the selected files, groups, layouts, or build targets to the new location.

NOTE In the Link Order page, repositioning files changes the link order that the
Make command uses to build the final executable file.

Renaming Files/Groups/Targets

The Rename command renames files, groups, or build targets in the project.

Rename files
1. Open the file to rename.

2. Choose File > Save As.

3. Type a new filename in the Name text box.

4. Click Save.

The IDE saves the file under the new name. The new filename appears in the Project
window. Subsequent modifications affect the renamed file, leaving the original file intact.

Rename one or more groups
1. Click the Files tab in the Project window.

2. Select the group(s) to rename.

3. Press the Enter key.

4. Type a new name into the Enter Group Name text box of the Rename Group
window.
50 IDE 5.7 User’s Guide

Project Window
File, Group, Layout, and Target Management
5. Click OK.

The IDE renames the group. For selections of more than one group, the Rename
Group window appears for each group.

Rename build targets
1. Click the Targets tab in the Project window.

2. Choose Edit > targetname Settings.

3. Select Target Settings in the Target Settings Panels list.

4. Type a new name in the Target Name text box.

5. Click Save.

The Project window displays the new build target name.

Touching Files and Groups

The Touch command manually selects source files or groups for compilation during the
next Bring Up To Date, Make, Run, or Debug operation. A red check mark in the Touch
column of the Project window indicates a touched file.

1. Click the Files tab in the Project window.

2. Touch a source file or group for compilation.

Click the Touch column next to the file or group name.

OR

Choose Touch from the Interface menu for the file or group.

A red check mark appears in the Touch column next to the file or group name.

Touch all project files for recompiling
1. Perform the task explained in Table 4.8.

Table 4.8 Touching All Project Files for Recompiling

On this host… Do this…

Windows Alt-click the Touch column.

Macintosh Option-click the Touch column.
51IDE 5.7 User’s Guide

Project Window
File, Group, Layout, and Target Management
2. Red check marks appear next to all files and groups.

Untouching Files and Groups

The Untouch command manually excludes source files or groups from compilation
during the next Bring Up To Date, Make, Run, or Debug operation.

1. Click the Files tab in the Project window.

2. Untouch a source file or group to remove it from the compilation list.

Click the red check mark in the Touch column next to the file or group name.

OR

Choose Untouch from the Interface menu for the file or group.

The red check mark disappears from the Touch column next to the file or group name.

Untouch all project files
1. Perform the task explained in Table 4.9.

2. The red checkmarks next to all files and groups disappear.

Solaris Alt-click the Touch column.

Linux Alt-click the Touch column.

Table 4.9 Untouching All Project Files

On this host… Do this…

Windows Alt-click a red checkmark in the Touch column.

Macintosh Option-click a red checkmark in the Touch column.

Solaris Alt-click a red checkmark in the Touch column.

Linux Alt-click a red checkmark in the Touch column.

Table 4.8 Touching All Project Files for Recompiling (continued)

On this host… Do this…
52 IDE 5.7 User’s Guide

Project Window
Build-Target Management
Build-Target Management
These tasks help you manage build targets:

• Create a build target.

• Remove a build target.

• Set the default build target.

• Rename a build target.

• Configure build-target settings.

Creating Build Targets

The Create Target command adds new build targets to a project.

1. Open the Project window.

2. Click the Targets tab in the Project window.

3. Choose Project > Create Target.

4. Type a name in the Name text box of the New Target window.

5. Select the Empty target or Clone Existing Target radio button as desired.

• Empty Target—create a new build target from scratch.

• Clone Existing Target—duplicate an existing build target in the New Target
window.

6. Click OK.

The IDE adds the new build target to the project.

Removing Build Targets from a Project

You can remove unneeded build targets from the Project window.

1. Click the Targets tab in the Project window.

2. Select the item to remove.

3. Remove the selected build target, as explained in Table 4.10.
53IDE 5.7 User’s Guide

Project Window
Build-Target Management
The IDE removes the build target.

Setting the Default Build Target

The CodeWarrior Project Manager can handle up to 255 build targets in a single project.
One build target must be defined as the default target when more than one project is open.
The default target is the target affected by project commands, such as Make and Run.

The Project menu
1. Choose Project > Set Default Target > buildtarget.

2. A checkmark indicates the default target.

Using the Project window toolbar
1. Enable the Project window.

2. Choose the build-target name from the Current Target pop-up menu.

The Targets page
1. Enable the Project window.

2. Click the Targets tab.

3. Click the desired build-target icon.

The icon changes to indicate that the build target is now the default.

Renaming Build Targets

The Rename command renames build targets in a project.

Table 4.10 Removing Selected Build Target

On this host… Do this…

Windows Select Edit > Delete

Macintosh Select Edit > Clear

Solaris Select Edit > Delete

Linux Select Edit > Delete
54 IDE 5.7 User’s Guide

Project Window
Build-Target Management
1. Click the Targets tab in the Project window.

2. Choose Edit > targetname Settings.

3. Select Target Settings in the Target Settings Panels list.

4. Type a new name in the Target Name text box.

5. Save the new name.

The new build-target name appears in the Project window.

Configuring Build Target Settings

The Target Settings panel options determine:

• The compiler used to process the project and produce object code

• The linker used to combine object code and produce a binary file

• The pre-linker and post-linker options that further process the object code

• The name assigned to a build target

Follow these steps to configure build-target settings.

1. Choose Edit > targetname Settings.

The targetname value changes to reflect the name of the active build target in the
project.

2. Select Target Settings from the Target Setting Panels list.

3. Specify target options as desired.

4. Save the new options

The panels available in the Target Settings Panels list update to reflect the choices in
the Target Settings panel.
55IDE 5.7 User’s Guide

Project Window
Build-Target Management
56 IDE 5.7 User’s Guide

5
Working with Files

This chapter explains how to work with files in the CodeWarrior™ IDE. Most computer
programs use these file types:

• Text files—files that contain any type of text. Example text files include Read Me
files and source files.

• Source files—files that contain source code only. Example source files include C++
files and Java files.

Managing Files
These tasks manage files:

• Create a new file.

• Open an existing file.

• Save a file.

• Close a file.

• Print a file.

• Revert a file to a previously saved state.

Creating Text Files (Windows)

The New command opens a window from which you create new text files. You can use
new text files as source files in a project or as plain-text files.

1. Select File > New.

The New window appears.

2. Click the File tab in the New window.

3. Select Text File in the list.

4. Type a filename in the File name text box.

5. Click Set to specify the location to save the new file.

6. Click OK.

The IDE creates the new text file and displays its contents in a new editor window.
57IDE 5.7 User’s Guide

Working with Files
Managing Files
TIP Use the Customize IDE Commands window to add the New Text File menu
command to the File menu. Adding this menu command reduces the process of
creating a new text file to one step: select File > New Text File. See Customizing
the IDE for more information about using the Customize IDE Commands window.

Creating Text Files (Macintosh, Solaris, Linux)

The New Text File command creates new text files. You can use new text files as source
files in a project or as plain-text files.

Select File > New Text File to create a new text file. The IDE creates the new text file and
displays its contents in a new editor window.

Opening Source Files

The Open command opens one or more editable source files. Each open file appears in its
own editor window.

NOTE The CodeWarrior editor cannot open files that prohibit editing. For example,
the editor cannot open library files.

From the File menu
1. Choose File > Open.

2. Windows: Use the Files of type pop-up menu to select All Files.

3. Select a file.

4. Click Open.

The IDE displays the file in an editor window.

From the Project window
1. Perform one of these:

• Double-click a filename in the Files tab of the Project window,

• Select a filename from the Group list box, or

• Select an interface filename from the Interface menu.

2. The IDE finds, opens, and displays the selected source file in an editor window.
58 IDE 5.7 User’s Guide

Working with Files
Managing Files
From an Editor Window
1. Select an interface filename from the Interface menu.

2. The IDE selects, opens, and displays the source file in an editor window.

NOTE The menu does not show files that do not contain source code or are not yet
compiled.

Using Find and Open Files
1. In an editor window, select the name of an interface file, for example stdio.h.

2. Choose File > Find and Open File.

The IDE finds, opens, and displays the source file in an editor window.

To open a recent file or project
1. Choose File > Open Recent > recentfilename | recentprojectname.

2. The IDE finds and opens the selected source file or project.

Saving Files

Use the Save command to save source files to ensure their continued existence between
development sessions.

1. Choose File > Save.

NOTE If the file has no title, a save dialog appears. Type a filename and specify a
location for the file, then click Save.

2. The IDE saves the file.

Saving All Modified Files

Use the Save All command to save the contents of all modified files. This command is
useful for saving all files at the same time, rather than saving each file individually.
59IDE 5.7 User’s Guide

Working with Files
Managing Files
1. Save all currently opened and modified files, as explained in Table 5.1.

2. The IDE saves the files.

Saving File Copies

Use the Save a Copy As command to save a back-up copy of a project or file before
modifying the original. Working on a copy of the original file provides a way to return to
the original copy should modifications fail.

1. Choose File > Save A Copy As.

2. Type a new filename in the Name text box.

3. Click Save.

The IDE creates a copy of the file under the new name, leaving the original file
unchanged.

Closing Files

The Close command closes open source files. Close editor windows to close a file.

1. Select an editor window to close.

2. Close the file window.

• Choose File > Close, or

• Click the close box.

NOTE The IDE displays an alert if the file is modified. The alert asks whether to save
changes to the file.

The IDE closes the file window.

Table 5.1 Saving All Currently Opened and Modified Files

On this host… Do this…

Windows Select File > Save All

Macintosh While pressing Option, select File > Save All

Solaris Select File > Save All

Linux Select File > Save All
60 IDE 5.7 User’s Guide

Working with Files
Managing Files
Closing All Files

The Close All command closes all currently open files. This command is useful for
closing all files at the same time, rather than closing each file individually.

1. Close all currently open files, as explained in Table 5.2.

2. The IDE closes the files.

Printing Source Files

The Print command prints the entire contents of a selected file window.

1. Activate the desired editor window to print.

2. Choose File > Print.

3. Set print options in the Print dialog.

4. Click OK or Print to print the file.

The IDE prints the selected file.

NOTE Use the same process to print the contents of a window, such as a Project
window.

Printing Source-File Selections

The Print command prints the currently selected contents in an editor window.

Table 5.2 Closing All Currently Open Files

On this host… Do this…

Windows Select Window > Close All or
Window > Close All Editor Windows.

Macintosh While pressing Option, select File > Close All.

Solaris Select File > Close All or File > Close All Editor Windows

Linux Select File > Close All or File > Close All Editor Windows
61IDE 5.7 User’s Guide

Working with Files
Managing Files
1. Activate the desired editor window to print.

2. Select the portion of text to print.

3. Choose File > Print.

4. Set print options in the Print dialog.

5. Click OK or Print

The IDE prints the selected text in the file.

Reverting Files

Use the Revert command to replace the current file with its previously saved version.

1. Choose File > Revert.

2. Click OK in the Revert changes to file dialog.
62 IDE 5.7 User’s Guide

6
Dockable Windows

This chapter explains how to work with dockable windows in the Windows-hosted
CodeWarrior™ IDE.

NOTE Dockable windows is not available on Linux and Solaris platforms.

Use dockable windows to do these tasks:

• Organize—attach, or dock, various windows to the edges of the screen for quick
access.

• Group—dock windows of the same type to create a single window with multiple
tabs, where each tab represents one of the original docked windows.

NOTE The dockable windows feature is available in Multiple Document Interface
(MDI) mode only. This feature is not available in Floating Document Interface
(FDI) mode. Toggle the Use Multiple Document Interface option in the IDE
Extras preference panel to change between these two modes.

This chapter consists of these sections:

• About Dockable Windows

• Working with Dockable Windows

• Dock Bars

About Dockable Windows
You can dock certain windows to the edges of the main frame window of the IDE. Table
6.1 explains possible states for dockable windows. Figure 6.1 shows the different window
states.

In MDI mode, the IDE occupies a main window frame, or client area. IDE windows
normally appear within this client area as you work. These windows are called child
windows of the IDE’s client area.
63IDE 5.7 User’s Guide

Dockable Windows
About Dockable Windows
Table 6.1 Window States

State Characteristics

Docked • Attached to the left, right, top, or bottom edge of the client area

• restricted to the client area

• resizable

• has a dock bar instead of a title bar

Floating • Rests above all docked windows and MDI child windows

• movable outside the client area, like a floating palette

• has a thin title bar

• does not have Minimize or Maximize buttons

MDI Child • Normal child window of the client area, when running in MDI
mode

• restricted to the client area
64 IDE 5.7 User’s Guide

Dockable Windows
About Dockable Windows
Figure 6.1 Window States

Table 6.2 explains the difference between dockable windows and non-dockable windows.
In this table, the term non-modal refers to a window that does not require your attention
before allowing the IDE to proceed with other operations.

Floating window

MDI child windowDocked window
65IDE 5.7 User’s Guide

Dockable Windows
Working with Dockable Windows
NOTE The default setting for project windows is to dock to an edge of the client area.
You can undock these windows.

Compound windows that have more than one pane dock as a group. You
cannot separately dock individual panes from these windows. For example,
you can dock the Thread Window, but you cannot dock the Stack Crawl pane
separately from the Thread Window.

Working with Dockable Windows
You can dock windows in one of two ways:

• dragging a floating window to a docking position

• using a contextual menu to dock a window

You can resize docked windows and undock them to floating windows or MDI child
windows.

This section explains how to perform tasks with dockable windows.

Docking a Window by Using a Contextual Menu

Use a contextual menu to dock a floating window or MDI child window to one of the four
edges of the client area.

Table 6.2 Differences between Dockable, Non-Dockable Windows

Window Type Required Criteria Sample Windows

Dockable All of these:

• non-modal

• resizable

• maximizable

• Thread

• Project

• Component Catalog

Non-dockable Any of these:

• modal

• non-resizable

• non-maximizable

• IDE Preferences

• Find

• About Box
66 IDE 5.7 User’s Guide

Dockable Windows
Working with Dockable Windows
1. Right-click the window title bar.

A contextual menu appears.

2. Choose Docked from the contextual menu.

NOTE The Docked command appears in the contextual menu for dockable windows
only.

The window docks to an edge of the client area. You can resize the docked window or
move it to a different edge of the client area.

Docking a Window by Using Drag and Drop

You can drag a docked window or a floating window to one of the four edges of the client
area to dock it.

1. Drag the window to one edge of the client area.

Drag a floating window by its title bar. Drag a docked window by its dock bar.

2. A window outline appears near the client-area edge, showing the final position after
you release the window.

Use the outline as a visual cue that the IDE will dock the window. If an outline does
not appear, you cannot dock the window.

3. Release the window to dock it to the edge.

The window appears in the position indicated by the window outline.

Docking Windows of the Same Kind

You can dock two or more windows of the same kind inside a single docked window. In
this arrangement, tabs inside the single docked window represent each of the original
docked windows. You can undock each tab individually from the single docked window.

1. Dock the first of two or more windows of the same kind to an edge of the client area.

2. Dock the second window to the same edge as the first window.

Use the window outline that appears as a visual cue that the IDE will dock the second
window to the same edge as the first window.

3. Dock subsequent windows to the same edge as the first window.

Each additional docked window appears as a tab inside the first docked window. Click
a tab to view its contents. The frontmost tab appears in bold font.

Figure 6.2 shows two projects represented as tabs in a single docked window.
67IDE 5.7 User’s Guide

Dockable Windows
Working with Dockable Windows
Figure 6.2 Two Projects in a Single Docked Window

Undocking a Window

Use a contextual menu to undock a window from an edge of the client area to a floating
window or MDI child window.

1. Right-click the tab inside the docked window that represents the window you want to
undock.

A contextual menu appears.
68 IDE 5.7 User’s Guide

Dockable Windows
Working with Dockable Windows
Figure 6.3 Contextual Menu

2. Choose Floating or MDI Child from the contextual menu.

• Floating—undock the window so that it becomes a floating window

• MDI child—undock the window so that it becomes an MDI child window of the
client area

The window undocks and becomes the chosen window type.

Alternately, double-click the tab to undock the corresponding window to a floating
window.

Floating a Window

Use a contextual menu to float a docked window or MDI child window.

1. Right-click the tab in the docked window or the title bar of the MDI child window.

A contextual menu appears.

2. Choose Floating from the contextual menu.

NOTE The Floating command appears in the contextual menu for floatable windows
only.

The window becomes a floating window (that you can drag outside the client area).

Alternately, double-click the tab in a docked window to float its corresponding window.

Unfloating a Window

Use a contextual menu to dock a floating window or make it an MDI child window.

1. Right-click the title bar of the floating window.

A contextual menu appears.

2. Choose Docked or MDI Child from the contextual menu.

• Docked—dock the floating window
69IDE 5.7 User’s Guide

Dockable Windows
Dock Bars
• MDI child—unfloat the window so that it becomes an MDI child window

The window unfloats and becomes the chosen window type.

Alternately, drag the floating window to an edge of the client area to dock it.

Making a Window an MDI Child

Use a contextual menu to make a docked window or floating window an MDI child
window.

1. Right-click the tab in the docked window or the title bar of the floating window.

A contextual menu appears.

2. Choose MDI Child from the contextual menu.

The docked window or floating window becomes an MDI child window.

Suppressing Dockable Windows

Suppress dockable windows to drag a window to any location onscreen without docking it
to an edge of the client area.

1. Hold down the Ctrl key while dragging or floating an MDI child window.

The thin window outline that normally indicates docked-window placement becomes a
heavy window outline. Use this heavy outline as a visual cue that the IDE suppresses
dockable windows.

2. Release the window at its final position.

The window appears in the position indicated by the heavy window outline.

3. Release the Ctrl key.

Dock Bars
A docked window has a dock bar instead of a title bar. Use the dock bar to perform these
tasks:

• move the docked window to a different edge of the client area

• collapse or expand view of the docked window

• close the docked window

Figure 6.4 shows a dock bar.
70 IDE 5.7 User’s Guide

Dockable Windows
Dock Bars
Figure 6.4 Dock Bar

Collapsing a Docked Window

If two or more distinct docked windows occupy the same edge of the client area, you can
collapse one docked window to view contents of other docked windows.

1. Dock two or more windows to the same edge of the client area.

The windows’ contents must appear in separate docked windows, not as tabs in a
single docked window.

2. Click the collapse button on the dock bar of the docked window that you want

to collapse.

3. The docked window collapses to hide its contents.

Expanding a Docked Window

If you previously collapsed a docked window, you can expand it and view its contents.

1. Click the expand button on the dock bar:

2. The docked window expands to restore its original view.

Moving a Docked Window

Use the gripper in a docked window’s dock bar to move the docked window to a different
edge of the client area.

1. Drag the docked window by the gripper in its dock bar:

2. Release the docked window at its new position.

Closing a Docked Window

Close a docked window directly from its dock bar.
71IDE 5.7 User’s Guide

Dockable Windows
Dock Bars
1. Click the close button on the dock bar:

2. The docked window closes.

Re-opening the window restores its docked position.
72 IDE 5.7 User’s Guide

7
Workspaces

This chapter explains how to work with workspaces in the CodeWarrior™ IDE. Use
workspaces to do these tasks:

• Organize—save the state of all windows onscreen for later reuse

• Migrate across computers—transfer your workspace from one computer to another

This chapter consists of these sections:

• About Workspaces

• Using Workspaces

About Workspaces
A workspace stores information about the current state of the IDE. This information
consists of the size, location, and the docked state (Windows) of IDE windows. If you
save a workspace during an active debugging session, the workspace also stores
information about the state of debugging windows.

The IDE can use a default workspace, or it can use a workspace that you create. The IDE
works with one workspace at a time. You can save and re-apply a workspace from one
IDE session to the next.

Using Workspaces
Use menu commands to perform these workspace tasks:

• save a new workspace

• open an existing workspace

• close the current workspace

Using the Default Workspace

Use the default workspace to preserve IDE state from one session to the next. The IDE
saves and restores the default workspace automatically.
73IDE 5.7 User’s Guide

Workspaces
Using Workspaces
1. Choose Edit > Preferences.

The IDE Preferences window opens.

2. Select IDE Extras in the IDE Preference Panels list.

The IDE Extras preference panel appears.

3. Enable the Use default workspace option.

• Checked—the IDE saves its state at the time you quit, then restores that state the
next time you launch the IDE

• Unchecked—the IDE always launches with the same default state: no windows
visible

Saving a Workspace

Save a workspace to store information about the current state of onscreen windows, recent
items, and debugging.

1. Arrange your workspace.

Move windows to your favorite positions and start or finish a debugging session.

2. Choose File > Save Workspace.

A Save dialog box appears.

3. Enter a name for the current workspace

NOTE Add the extension .cww to the end of the workspace name, for example,
myworkspace.cww. This extension helps you readily identify the
workspace file. The Windows-hosted IDE requires this extension to recognize
the file as a CodeWarrior workspace.

4. Save the workspace to a location on your hard disk.

The IDE now uses your saved workspace. In subsequent programming sessions, you can
open the workspace.

Opening a Workspace

Open a workspace to apply its settings to the IDE.

1. Choose File > Open Workspace.

An Open dialog box appears.
74 IDE 5.7 User’s Guide

Workspaces
Using Workspaces
2. Open the workspace.

Use this dialog box to navigate your hard disk and select a workspace file. These files
end in the .cww extension.

The IDE opens the selected workspace and applies its settings.

Saving a Copy of a Workspace

Save a copy of a current workspace under a different name.

1. Open an existing workspace.

2. Choose File > Save Workspace As.

A Save As dialog box appears.

3. Enter a name for the copy of the current workspace

NOTE Add the extension .cww to the end of the workspace name, for example,
myworkspace.cww. This extension helps you readily identify the
workspace file. The Windows-hosted IDE requires this extension to recognize
the file as a CodeWarrior workspace.

4. Save the workspace to a location on your hard disk.

The IDE saves a copy of the current workspace under the name you specified.

Closing a Workspace

Close the current workspace after you finish working with it.

1. Choose File > Close Workspace.

2. The IDE closes the current workspace.

NOTE You cannot close the default workspace, however, the IDE Extras preference
panel contains an option that determines whether the IDE uses the default
workspace.

You can now open a different workspace or quit the IDE.
75IDE 5.7 User’s Guide

Workspaces
Using Workspaces
Opening a Recent Workspace

You can list recently used workspaces in the Open Recent submenu. The IDE Extras
preference panel contains an option that determines the number of recent workspaces
that the submenu will list.

1. Choose File > Open Recent.

A submenu appears. This submenu lists recently opened projects, files, and
workspaces. A checkmark appears next to the active workspace.

2. Choose a recent workspace from the Open Recent submenu.

The IDE applies the workspace that you select.
76 IDE 5.7 User’s Guide

8
Creating Console
Applications

This chapter explains how to work with console applications in the CodeWarrior™ IDE.
Console applications provide these benefits to novice programmers:

• Simplicity—console applications are computer programs that use a simple text-mode
interface. The simplicity of console-mode applications free novice programmers to
learn a programming language without having to learn graphical user interface
programming at the same time.

• Foundation—understanding console applications provides the basis for more
advanced computer programming. Advanced programmers readily understand
console applications.

Read this chapter to learn more about typical tasks for working with console applications.

This chapter consists of these sections:

• About Console Applications

• Creating Console Applications

About Console Applications
A console application is a simple, text-based computer program. Console applications do
not usually employ a graphical user interface (GUI). Instead, the applications rely on
plain-text input and output in a terminal window.

Console applications are ideal for novice programmers. The applications are easier to
program because they lack a GUI. If problems arise, the programmer can use text-based
feedback together with the debugger to correct problems.

Creating Console Applications
Create a console application to begin working with a text-based computer program. The
CodeWarrior IDE provides pre-configured project stationery for creating console
applications. Project stationery simplifies the project-creation process. This section
explains how to create a console application.
77IDE 5.7 User’s Guide

Creating Console Applications
Creating Console Applications
Creating a Console Application

Use the New command to create a new project. The project stores information about the
files in the console application.

1. Choose File > New.

The New window appears.

2. Click the Project tab.

3. Select a project stationery file.

4. Enter a project name in the Project name field and add the .mcp extension.

For example, name the project test.mcp.

5. Click Set.

Save the project in the desired location.

6. Click OK.

The New Project window appears.

7. Select a specific stationery file.

8. Click OK.

The IDE creates a console application from the selected stationery. The Project
window for the console application appears.

9. Expand the Sources group.

This group contains placeholder source files.

10. Remove placeholder source files.

For example, select main.c and choose Edit > Remove.

11. Create a new source file, as explained in Table 8.1.

Table 8.1 Creating a New Source File

On this host… Do this…

Windows Press Ctrl-N

Macintosh Press Command-N

Solaris Press Meta-N

Linux Press Meta-N (File > New Text File)
78 IDE 5.7 User’s Guide

Creating Console Applications
Creating Console Applications
12. Enter source code.

For example, enter the source code of Listing 8.1.

Listing 8.1 Sample Source Code

#include <stdio.h>
int main(void)
{

printf(“Hello World!”);
return 0;

}

13. Save the source file, as Table 8.2 explains.

Enter a name for the source code. For example, enter Hello.c. Then click Save.

14. Choose Project > Add Hello.c to Project...

The Add Files window appears.

15. Add the file to all build targets in the project.

Select all checkboxes to add the file to all build targets, then click OK.

16. Drag the source file inside the Sources group.

17. Choose Project > Run.

The IDE compiles, links, then runs the console application.

Table 8.2 Saving the Source File

On this host… Do this…

Windows Press Ctrl-S (File > Save)

Macintosh Press Command-S

Solaris Press Meta-S

Linux Press Meta-S (File > Save)
79IDE 5.7 User’s Guide

Creating Console Applications
Creating Console Applications
80 IDE 5.7 User’s Guide

III

Editor

This section contains these chapters:

• CodeWarrior Editor

• Editing Source Code

• Navigating Source Code

• Finding and Replacing Text
81IDE 5.7 User’s Guide

82 IDE 5.7 User’s Guide

9
CodeWarrior Editor

This chapter explains how to work with the editor in the CodeWarrior™ IDE. Use the
editor to perform these tasks:

• Manage text files—the editor includes common word-processing features for
creating and editing text files. Sample text files include Read Me files and release
notes.

• Manage source files—the editor includes additional features for creating and editing
source files. The IDE processes source files to produce a program.

This chapter consists of these sections:

• Editor Window

• Editor Toolbar

• Other Editor Window Components

Editor Window
Use the editor window to create and manage text files or source files. The window
contains these major parts:

• Editor toolbar

• Text-editing area

• Line and column indicator

• Pane splitter controls

Figure 9.1 shows the editor window. Table 9.1 explains the items in the editor window.
83IDE 5.7 User’s Guide

CodeWarrior Editor
Editor Window
Figure 9.1 Editor Window

Table 9.1 Editor Window Items

Item Icon Explanation

Interfaces Menu Displays a list of referenced interface
files or header files for the source file.

Functions Menu Displays a list of functions defined in the
source file.

Markers Menu Displays a list of markers defined in the
file.

Document
Settings Menu

Displays file-format options and a syntax-
coloring toggle.
84 IDE 5.7 User’s Guide

CodeWarrior Editor
Editor Window
Version Control
System Menu

Displays a list of available Version
Control System (VCS) commands.
Choose a command to apply to the
source file.

Path Caption Displays the complete path to the file.

File Modification
Icon

This icon indicates an unchanged file
since the last save.

This icon indicates a file with
modifications not yet saved.

Breakpoints
Column

Displays breakpoints for the file. Red dot
indicates a user-specified breakpoint.
Right-click on breakpoints column to
bring up context menu.

Text Editing
Area

Shows the text or source-code content of
the file.

Line and
Column
Indicator

Displays the current line and column
number of the text-insertion cursor

Pane Splitter
Controls

Drag to split the window into panes.

Table 9.1 Editor Window Items (continued)

Item Icon Explanation
85IDE 5.7 User’s Guide

CodeWarrior Editor
Editor Toolbar
Editor Toolbar
Use the editor toolbar to complete these tasks:

• Open interface and header files

• Find function definitions

• Set and clear markers

• Modify file formats

• Control syntax coloring

• Execute version-control operations

• Determine a file’s save state

This section explains how to expand and collapse the toolbar, and how to perform each
toolbar task.

Expanding and Collapsing the Editor Window Toolbar

To expand the editor window toolbar, click this icon in the right-hand top corner
of the editor window.

To collapse the Editor Window Toolbar, click this icon in the right-hand top
corner of the Editor window.

Interfaces Menu
The Interfaces menu lists the source files included in the current source file.

See Finding Interface Files for information on navigating source code with the Interfaces
menu.

Functions Menu
The Functions menu lists the functions (routines) defined in the current file.

See Locating Functions for information on navigating source code with the Functions pop-
up.

Markers Menu
The Marker menu lists markers placed in the current file. Use markers to scroll to specific
items in source code and find code segments by intuitive names.

See Using Markers for information on navigating source code with Markers.
86 IDE 5.7 User’s Guide

CodeWarrior Editor
Editor Toolbar
Document Settings Menu
The Document Settings menu shows whether the IDE applies syntax coloring to the
window text, as well as the format in which the IDE saves the file.

Using the Document Settings Menu

Use the Document Settings pop-up to toggle syntax coloring on or off for the current file,
and set the EOL (end-of-line) format for saving a text file.

The EOL formats are:

• Macintosh: <CR>

• DOS: <CR><LF>

• UNIX: <LF>

To toggle syntax coloring
• Choose Document Settings > Syntax Coloring.

The editor window updates to display the new syntax color setting.

To specify the EOL format for the file
• Choose the EOL format for the file.

The IDE applies the specified EOL format to the file the next time it gets saved.

Version Control System Menu
In editor windows, the version control pop-up menu lists options provided by a version
control system (VCS) compatible with the IDE. Use a VCS to manage multiple versions
of files. VCS packages are available separately for use with the IDE.

Using the Version Control System Menu

Use the Version Control System (VCS) pop-up menu to access version control
commands related to the editor window’s file. If a version control system is not enabled
for a project, the only item on the VCS menu is No Version Control Available.

• Choose VCS > VCScommand

The IDE executes the VCS command.
87IDE 5.7 User’s Guide

CodeWarrior Editor
Other Editor Window Components
Other Editor Window Components
Use other editor window components to perform these tasks:

• Determine the path to a file.

• Determine the modification status of a file.

• Set or clear breakpoints.

• Edit text or source code.

• Find the text-insertion point.

This section explains these additional editor window components.

Path Caption
The Path caption shows the path to the active file. The directory delimiters follow host
conventions. For example, slashes separate directories for a path on a Windows computer
and backslashes are used on Linux and Solaris.

File Modification Icon
The File Modification icon indicates the save status of the file:

• The icon indicates an unchanged file since the last Save.

• The icon indicates a file with modifications not yet saved.

Breakpoints Column
The Breakpoints column shows breakpoints defined in the current file. Each marker in the
column indicates the line of source code at which the debugger suspends program
execution.

Text Editing Area
The text editing area behaves the same way as it does in a word processor. Enter text or
source code, perform edits, and copy or paste selections.
88 IDE 5.7 User’s Guide

CodeWarrior Editor
Other Editor Window Components
Line and Column Indicator
The Line and Column indicator shows the current position of the text-insertion point.
Click the indicator to specify a line to scroll into view.

Pane Splitter Controls
Use the pane splitter controls to perform these tasks:

• Add panes to editor windows.

• Adjust pane size.

• Remove panes from editor windows.

This section explains how to perform each task.

Adding Panes to an Editor Window

Use the Pane Splitter controls to add additional view panes in an editor window and view
two or more sections of a source file at the same time.

1. Click and drag a Pane Splitter control to add a view pane.

2. The IDE adds a new view pane to the editor window.

Resizing Panes in an Editor Window

Use the Pane Resize controls to resize the panes in an editor window.

1. Click and drag a vertical or horizontal Pane Resize control.

2. The IDE resizes the selected view pane.

Removing Panes from an Editor Window

Use the Pane Resize controls to remove additional view panes from an editor window.

1. Remove an editor window pane.

• Double-click the Pane Resize control to remove the pane, or

• Click and drag the Pane Resize control to the left or top edge of the editor window.

2. The IDE removes the view pane from the editor window.
89IDE 5.7 User’s Guide

CodeWarrior Editor
Other Editor Window Components
90 IDE 5.7 User’s Guide

10
Editing Source Code

This chapter explains how to edit source code in the CodeWarrior™ IDE. The IDE
provides these features to help you edit source code:

• Select and indent text—the editor can select text by line, routine, or rectangular
selection. The editor also handles text indentation.

• Balance punctuation—the editor can find matching pairs of parentheses, brackets,
and braces. Most programming languages, such as C++, produce syntax errors for
punctuation that lacks a counterpart.

• Complete code—the IDE can suggest ways to complete the symbols you enter in a
source file

This chapter consists of these sections:

• Text Manipulation

• Punctuation Balancing

• Code Completion

Text Manipulation
Use these tasks to manipulate text files:

• Select text

• Overstrike text

• Use virtual space

• Indent text

This section explains how to perform each task.

Selecting Text in Editor Windows

The editor lets you select text in several ways while you edit source files.

NOTE Enable the Left margin click selects line option in the Editor Settings
preference panel to use the right-pointing arrow cursor.
91IDE 5.7 User’s Guide

Editing Source Code
Text Manipulation
Lines
Follow these steps to select a line of text:

• Triple-click anywhere on a line, or

• Click the right-pointing cursor in the left margin of the line.

Multiple lines
Follow these steps to select multiple lines of text:

• Drag the cursor over several lines of text and release, or

• Position the cursor at the beginning of a selection range, then Shift-click the end of
the selection range to select all text between the two points, or

• Drag the right-pointing cursor to select lines of text.

Rectangular text selections
Table 10.1 explains how to select rectangular portions of text.

Entire routines
Follow these steps to select an entire routine:

1. Hold down the Shift key.

2. Choose a function name from the Function list menu.

Overstriking Text (Windows OS)

Use the Overstrike command to toggle between text insertion and text overwriting mode
when entering text. Press the Ins key to toggle overstrike mode.

Table 10.1 Selecting a Rectangular Portion of Text

On this host... Do this...

Windows Alt-drag the cursor over the portion of text.

Macintosh Command-drag the cursor over the portion of text.

Solaris Alt-drag the cursor over the portion of text.

Linux Alt-drag the cursor over the portion of text.
92 IDE 5.7 User’s Guide

Editing Source Code
Text Manipulation
Using Virtual Space

Use the Virtual Space feature to place the cursor anywhere in the white space of a line of
source code and enter text at that position.

For example, consider the line of C++ code shown in Listing 10.1.

Listing 10.1 Sample C++ Source Code

void aFunction (const char * inMessage) virtualspace

Toggling virtual space changes the cursor behavior:

• enabled—clicking in the virtualspace places the cursor at the location that you
clicked. You can enter text at that location.

• disabled—clicking in the virtualspace places the cursor after the last character on the
line (in the example, after the closing parenthesis). To place the cursor beyond this
character, you must repeatedly press the space bar on your keyboard.

To use virtual space, follow these steps:

1. Select Edit > Preferences.

The IDE Preferences window opens.

2. Select Editor Settings in the IDE Preference Panels list.

The Editor Settings preference panel appears.

3. Select the Enable Virtual Space option:

4. Click Apply or Save to save your changes to the preference panel.

5. Close the IDE Preferences window.

Indenting and Unindenting Text Blocks

Use the Shift Left and Shift Right commands to shift a selected block of text to the left or
right. You can indent or unindent one or more lines using these commands. The Tab Size
option specifies the amount of indentation.

1. Select the text to be shifted.

2. Indent or unindent the selected text.

• To unindent text: Choose Edit > Shift-Left.

• To indent text: Choose Edit > Shift-Right.
93IDE 5.7 User’s Guide

Editing Source Code
Punctuation Balancing
Symbol Editing Shortcuts
You can use the browser contextual menu to enhance source-code editing in the IDE. Use
this menu to streamline text entry in editor windows. You can enter the first few letters of
a function name, then use the browser contextual menu to complete the entry.

The IDE also provides these keyboard shortcuts with the browser enabled:

• Find symbols with prefix—find symbols matching the selected prefix

• Find symbols with substring—find symbols matching the selected substring

• Get next symbol—obtain the next symbol from the browser database

• Get previous symbol—obtain the previous symbol from the browser database

See the IDE Quick Reference card for more information about these keyboard shortcuts.

Punctuation Balancing
Balance punctuation to ensure that each opening parenthesis, bracket, or brace has a
corresponding closing counterpart. This section explains how to balance punctuation.

Balancing Punctuation

Use the Balance option when editing source code to make sure that every parenthesis (()),
bracket ([]), and brace ({ }) has a mate.

1. Position the cursor between the suspect punctuation.

2. Check for the matching punctuation.

• Choose Edit > Balance

OR

• Double-click the parenthesis, bracket, or brace character to check for a matching
character.

From a text insertion point, the editor searches forward until it finds a parenthesis, bracket,
or brace, then it searches in the opposite direction until it finds the matching punctuation.
When double-clicking on a parenthesis, bracket, or brace, the editor searches in the
opposite direction until it finds the matching punctuation.

When it finds a match, it highlights the text between the matching characters. If the
insertion point is not enclosed or if the punctuation is unbalanced, the computer beeps.
94 IDE 5.7 User’s Guide

Editing Source Code
Punctuation Balancing
Toggling Automatic Punctuation Balancing

Figure 10.1 shows the Editor Settings. Use these settings to enable or disable the
punctuation balancing feature.

Figure 10.1 Editor Settings (Balance While Typing)

To toggle automatic punctuation balancing, follow these steps:

1. Select Edit > Preferences.

This opens the IDE Preferences window.

2. In the IDE Preference Panels list, select Editor Settings.

3. In the Other Settings area of Editor Settings, select or clear the Balance While
Typing checkbox.
95IDE 5.7 User’s Guide

Editing Source Code
Code Completion
Code Completion
Use code completion to have the IDE automatically suggest ways to complete the symbols
you enter in a source file. By using code completion, you avoid referring to other files to
remember available symbols.

C/C++ Code Completion will function more effectively when “Language Parser” is
selected for the “Generate Browser Data From” option in the Build Extras target settings
panel for a project. Java Code Completion is not affected by this setting.

Code Completion Configuration
You can activate, deactivate, and customize code-completion operation. These tasks are
associated with code completion:

• Activate automatic code completion

• Trigger code completion from the IDE menu bar

• Trigger code completion from the keyboard

• Deactivate automatic code completion

Activating Automatic Code Completion

Activate automatic code completion to have the IDE display a Code Completion window
that helps you complete the symbols you enter in source code. The Code Completion
preference panel configures the Code Completion window behavior.

1. Choose Edit > Preferences.

The IDE Preferences window appears.

2. Select the Code Completion preference panel in the IDE Preference Panels list.

3. Select the Automatic Invocation option.

Selecting this option configures the IDE to automatically open the Code Completion
window.

4. Enter a delay in the Code Completion Delay field.

This delay determines how long the IDE waits between the time you type a trigger
character and the time the Code Completion window appears. If you perform any
action during this delay time, the IDE cancels the Code Completion operation.

5. Save your preferences.

Click the Save or Apply button.
96 IDE 5.7 User’s Guide

Editing Source Code
Code Completion
The Code Completion window now appears automatically to help you complete code in
editor windows.

Triggering Code Completion from the IDE Menu

Trigger code completion from the main menu to open the Code Completion window.

1. Bring forward an editor window.

2. Begin typing or place insertion point at end of source code that you want to complete.

3. Choose Edit > Complete Code

The Code Completion window appears. Use it to complete the symbol at the insertion
point.

Triggering Code Completion from the Keyboard

To open code completion from the keyboard:

1. Bring forward an editor window.

2. Begin typing or place insertion point at end of source code to complete.

3. Press the appropriate code completion shortcut key combination.

Table 10.2 lists the default code completion key bindings for each IDE host. Use the
Customize IDE Commands panel to change these key bindings.

Deactivating Automatic Code Completion

Deactivate automatic code completion to prevent the IDE from displaying the Code
Completion window as you edit source code. The Code Completion preference panel
configures Code Completion window behavior.

Table 10.2 Code Completion Key Bindings

Host Get Next
Completion

Get Previous
Completion

Complete Code

Windows Alt-/ Alt-Shift-/ Alt-.

Macintosh Control-/ Control-Shift-/ Control-.

Linux/Solaris Control-/ Control-Shift-/ Control-.
97IDE 5.7 User’s Guide

Editing Source Code
Code Completion
You can still manually trigger code-completion functionality from the keyboard or from
the main menu.

NOTE To dismiss the Code Completion window after it automatically opens, press the
Esc key or click outside the active editor window.

1. Choose Edit > Preferences.

2. Select the Code Completion preference panel in the IDE Preference Panels list.

3. Disable the Automatic Invocation option.

Clearing this option prevents the IDE from automatically opening the Code
Completion window.

4. Save your preferences.

Click the Save or Apply button.

Code Completion Window
The Code Completion window displays possible symbols based on the context of the
insertion point. For example, in Java you can complete code for any Java class, method,
and variable from any package that has been imported or is being used elsewhere in the
project.

Figure 10.2 shows the Code Completion window. Table 10.3 explains the items in the
Code Completion window. Table 10.4 explains the icons that appear in the Code
Completion list.
98 IDE 5.7 User’s Guide

Editing Source Code
Code Completion
Figure 10.2 Code Completion Window

Table 10.3 Code Completion Window Items

Item Icon Explanation

Code
Completion list

Lists available variables and methods or
functions along with their corresponding return
types or parameters. This list changes based on
the context of the insertion point in the active
editor window. Icons help distinguish items in the
list.

Disclosure
Triangle

Click to toggle display of Documentation pane
for programming languages that support it.

Resize Bar Drag to resize the Code Completion list and the
Documentation pane.

Documentation
pane

Displays summary information or documentation
for the selected item in the Code Completion list.
This pane appears only for programming
languages that support summary information or
documentation.
99IDE 5.7 User’s Guide

Editing Source Code
Code Completion
Navigating the Code Completion Window

Navigate the Code Completion window by mouse or keyboard. You can perform these
tasks:

• Resize the window

• Navigate the window by keyboard

• Refine the Code Completion list by keyboard

1. Bring forward an editor window.

2. Place the insertion point at the end of the source code to complete.

3. Choose Edit > Complete Code or use keyboard shortcut.

The Code Completion window appears.

4. Use the mouse to resize the Code Completion window (Mac and Windows).

The new window size remains in effect until you refine the Code Completion list or
close the Code Completion window. You refine the Code Completion list by typing
additional characters in the active editor window.

5. Use the keyboard to navigate the Code Completion list.

Table 10.5 explains how to navigate the Code Completion list by keyboard.

Table 10.4 Code Completion Window Icons

Icon Code Type Icon Code Type

Class Method

Function Namespace

Global Variable None

Language Keyword Package

Local Variable Variable

Constant
100 IDE 5.7 User’s Guide

Editing Source Code
Code Completion
6. Use the keyboard to refine the Code Completion list.

The Code Completion list updates as you add or delete characters in the active editor
window. Continue adding characters to narrow the list, or delete existing characters to
broaden the list. Press the Backspace key to delete characters.

Selecting an Item in the Code Completion Window

Select an item in the Code Completion window to have the IDE enter that item in the
active editor window at the insertion point.

1. Bring forward an editor window.

2. Place the insertion point at the end of the source code to complete.

3. Choose Edit > Complete Code.

4. Select an item in the Code Completion list.

5. Enter the item into the active editor window.

Press the Return or Enter keys on the keyboard or double-click the item to have the
IDE insert that item into the editor window.

Completing Code for Data Members and Data Types

Complete code for data members for programming languages that support it. For a list of
data members type the period (.) character and activate the code completion window.
Figure 10.3 shows an example of helping you select the correct data type depending on
what code has been typed in the source file.

Table 10.5 Navigating Code Completion List by Keyboard

Key Action

Up Arrow Select the previous item

Down Arrow Select the next item

Page Up Scroll to the previous page

Page Down Scroll to the next page
101IDE 5.7 User’s Guide

Editing Source Code
Code Completion
Figure 10.3 Code Completion List of Data Types

Completing Code for Parameter Lists

Complete code for parameter lists for programming languages that support it. For
example, you can complete code for parameter lists by typing the open parenthesis (
character.

1. Bring forward an editor window.

2. Place the insertion point at the end of the function or method to complete.

3. Type an open parenthesis to trigger a parameter-list.

4. The Code Completion window appears.

The upper portion of this window lists different (overloaded) versions of the function
or method. The lower portion shows possible parameter lists for the selected function
or method in the top portion. Use this window to complete the parameter list for the
function or method.
102 IDE 5.7 User’s Guide

Editing Source Code
Code Completion
Figure 10.4 Code Completion for Parameter Lists

Completing Code for Pragmas

In the Mac or Windows hosted IDE you can display a list of pragmas in the code
completion window.

1. Bring forward an editor window.

2. In your source file, type #pragma followed by a space.

3. Activate the code completion window (cntrl . or Alt .).

The code completion window will display list of pragmas.

Figure 10.5 Code Completion for Pragmas
103IDE 5.7 User’s Guide

Editing Source Code
Code Completion
104 IDE 5.7 User’s Guide

11
Navigating Source Code

This chapter explains how to navigate source code in the CodeWarrior™ IDE. Navigate
source code to accomplish these tasks:

• Find specific items—the editor finds interface files, functions, and lines of source
code.

• Go to a specific line—the editor can scroll to a specific line of source code.

• Use markers—the editor allows labelling of specific items of text. These labels, or
markers, provide intuitive navigation of text.

Read this chapter to learn more about typical tasks for navigating source code.

This chapter consists of these sections:

• Finding Interface Files, Functions, Lines

• Going Back and Forward

• Using Markers

• Symbol Definitions

• Reference Templates (Macintosh)

Finding Interface Files, Functions, Lines
Find interface files, functions, and lines of source code to expedite programming. You can
find these types of items:

• interface files

• functions

• lines of source code

Finding Interface Files
Find interface (header) files referenced by the current source code. Some programming
languages, such as C++, use interface files in conjunction with source code. Interface files
typically define functions or objects used in the source code. Interface files also separate
function or object declarations from implementations. This section explains how to find
interface files.
105IDE 5.7 User’s Guide

Navigating Source Code
Finding Interface Files, Functions, Lines
Using the Interface Menu

Use the Interface menu in editor windows to open interface or header files referenced by
the current file. The project file must be open for the Interface menu to operate.

1. Click the Interface menu.

2. Select the filename of the interface file that you want to open.

If found, the file is opened in an editor window. If not found, an alert sounds.

NOTE Only source code interface files can be opened. Libraries and pre-compiled
header files can not be opened.

Locating Functions
Find functions to expedite source-code editing. Most source files contain several functions
that divide a complicated task into a series of simpler tasks. The editor allows scrolling to
individual functions within the current source file. This section explains how to find
functions.

Using the Functions Menu

Use the Functions menu in editor windows to quickly navigate to specific functions or
routines in the current source file.

1. Click the Functions menu.

2. Select the function name to view.

The editor scrolls to display the selected function.

Alphabetizing Functions Menu with the Mouse and Key-
board

The default behavior of the Functions menu is to list functions in order of appearance in
the source file. You can use the mouse and keyboard to list functions in alphabetical order.

Table 11.1 explains how to use the mouse and keyboard to alphabetize functions in the
Functions menu.
106 IDE 5.7 User’s Guide

Navigating Source Code
Going Back and Forward
Alphabetizing Functions Menu Order

The default behavior of the Functions menu is to list functions in order of appearance in
the source file. You can select the Sort function popup option in the Editor Settings
preference panel to list functions in alphabetical order.

1. Open the IDE Preferences window.

Choose Edit > Preferences.

2. Select the Editor Settings preference panel.

3. Select the Sort function popup option.

4. Save your modifications to the Editor Settings panel.

Going Back and Forward
Go back and forward in source files to edit existing code. Most source files contain more
than one screen of code. The editor always counts the number of lines in the source files.
Go to a particular line to scroll a particular item into view.

Going to a Line

Use the Goto Line command to navigate to a specific source line in an editor window if
you know its number. Lines are numbered consecutively, with the first line designated as
line 1. The Line Number control at the bottom of the editor window shows the line
number where the text insertion point is positioned.

1. Open the Line Number window.

• Click the Line and Column Indicator control in bottom left corner of editor
window, or

Table 11.1 Alphabetizing the Functions list

On this host... Do this...

Windows Ctrl-click the Functions menu.

Macintosh Option-click the Functions menu.

Solaris Alt-click the Functions menu.

Linux Alt-click the Functions menu.
107IDE 5.7 User’s Guide

Navigating Source Code
Using Markers
• Choose Search > Go To Line

2. Type a line number in the Line Number text box.

3. Click OK.

NOTE If a line number does not exist, the insertion point jumps to the last line of the
source file.

Using Markers
Markers behave like labels in the editor, identifying specific parts of source code. Use
these tasks to work with markers:

• Add markers to a source file

• Navigate to a marker

• Remove some or all markers from a source file

Remove Markers Window
Use the Remove Markers window to manage the use of destination markers in source
files. Figure 11.1 shows the Remove Markers window. Table 11.2 explains the items in
the window.

Figure 11.1 Remove Marker Window
108 IDE 5.7 User’s Guide

Navigating Source Code
Using Markers
Adding Markers to a Source File

Use the Add Marker command to add a marker to a file to identify specific line locations
by name.

1. Position the cursor on a line.

2. Click on Marker icon and select Add Marker.

3. Type a name for the new marker.

4. Click Add.

The IDE adds the marker to the file.

Navigating to a Marker

Once you add a marker, you can use the Marker menu to return to it later.

1. Select the marker name from the Marker menu.

2. The editor window scrolls to display the selected marker.

Removing a Marker from a Source File

Use the Remove Marker command to remove one or more markers from a source file.

1. Click Marker icon and select Remove Markers

2. Select the marker name to remove from the list.

3. Click Remove.

The IDE removes the selected marker.

Table 11.2 Remove Markers Window Items

Item Explanation

Markers list Displays a list of all markers in the current source file.

Remove button Click to remove all selected markers.

Cancel button Click to close the Remove Markers window without applying
changes.

Done button Click to close the Remove Markers window and apply changes.
109IDE 5.7 User’s Guide

Navigating Source Code
Symbol Definitions
Removing All Markers from a Source File

Use the Remove Marker command to remove one or more markers from a source file.

1. Click Marker icon and select Remove Markers

2. Select all markers in the Markers list, as explained in Table 11.3.

3. Click Remove.

The IDE removes all markers.

Symbol Definitions
You can find a symbol definition in your project’s source code. For the Mac OS, you can
also look up a symbol definition using the online documentation viewer in the IDE Extras
selection in the IDE Preferences panel.

Supported online reference viewers include HTMLHelp (Windows) and QuickHelp (Mac
OS), as well as older online help systems such as QuickView (Mac OS) and THINK
Reference (Mac OS).

TIP You can also use the browser to look up symbol definitions.

Figure 11.2 Find Definition

Table 11.3 Selecting All Markers in Markers List

On this host… Do this…

Windows Shift-click each marker name in the list.

Macintosh Select Edit > Select All.

Solaris Select Edit > Select All.

Linux Select Edit > Select All.
110 IDE 5.7 User’s Guide

Navigating Source Code
Reference Templates (Macintosh)
Looking Up Symbol Definitions

To look up the definition of a selected symbol, follow these steps:

1. Choose Search > Find Definition

2. Enter the symbol definition.

3. Click OK.

CodeWarrior searches all files in your project for the symbol definition.

If CodeWarrior finds a definition, it opens an editor window and highlights the
definition for you to examine.

TIP To return to your original location after viewing a symbol definition, press Shift-
Ctrl B (Windows) or Shift-Command B (Mac OS) or Meta-Shift B (Linux/
Solaris). This key binding is equivalent to the Go Back menu command.

Mac OS, Solaris, and Linux You can also use the Find Reference and Find Definition
& Reference commands to look up symbol definitions. After you select a symbol and
choose the Find Reference command, CodeWarrior searches the online documentation for
the symbol definition. After you select a symbol and choose the Find Definition &
Reference command, the IDE searches both the project files and the online documentation
for the symbol definition. If CodeWarrior does not find a definition or reference, it notifies
you with a beep.

Reference Templates (Macintosh)
If you look up a routine (such as an operating system call) in the QuickView or THINK
Reference online viewers, you can paste the template for the call into the editor window at
the text-insertion point. If you know the name of the call that you want to add, but are not
familiar with the call parameters, this technique is useful.

Listing 11.1 shows a sample routine template.

Listing 11.1 Sample Routine Template

SetRect (r, left, top, right, bottom);

Inserting a Reference Template

To insert a reference template into your code, follow these steps:
111IDE 5.7 User’s Guide

Navigating Source Code
Reference Templates (Macintosh)
1. From the online viewer window, type the routine name that you want to insert.

2. Select the name you just typed.

3. Choose Insert Reference Template from the Edit menu.

The IDE searches for the routine in either QuickView (Mac OS) or THINK Reference
(Mac OS), starting the required application if it is not already running. If the IDE finds
the routine, the IDE copies the template to the active editor window and replaces the
text you selected with the template.
112 IDE 5.7 User’s Guide

12
Finding and Replacing Text

This chapter explains how to work with the find-and-replace features in the
CodeWarrior™ IDE.

This chapter consists of these sections:

• Single-File Find

• Single-File Find and Replace

• Multiple-File Find and Replace

• Search Results Window

• Text-Selection Find

• Regular-Expression Find

• Comparing Files and Folders

Single-File Find
Use the Find window to search for text within a single file:

• The Find operation returns a single instance of matching text.

• The Find All operation returns all instances of matching text.

Figure 12.1 shows the Find window. Table 12.1 explains the items in the Find window.

Figure 12.1 Find Window
113IDE 5.7 User’s Guide

Finding and Replacing Text
Single-File Find
Table 12.1 Find Window Items

Item Explanation

Find text/list box Enter a search string. Click the arrow symbol to select a
search string that you entered previously.

Find button Click to start a search operation using the string in the Find
text/list box.

Find All button Click to search for all matches in the active editor window.

Cancel button Click to close the Find window without performing a search.

Match whole word
checkbox

Check to search for whole-word matches only, ignoring
matches within words.

Clear to search for all matches of the search string, including
matches within words.

Case sensitive
checkbox

Check to consider text case during the search. The search
operation distinguishes between a capital letter and the same
letter in lower case.

Clear to disregard text case during the search. The search
operation does not distinguish between a capital letter and the
same letter in lower case.

Regular expression
checkbox

Check to treat the search string as a regular expression.

Clear to treat the search string as plain text.

Stop at end of file
checkbox

Check to stop a search at the end of a file and not wrap around
to the beginning of the file.

Clear to wrap around to the beginning of the file and continue a
search. The search stops at the first match or at the current
cursor position.

Search up
checkbox

Check to perform a search operation back from the
current selection.

Clear to perform a search operation forward of the
current selection

Search selection only
checkbox

Check to search only the currently selected text and not the
entire file.

Clear to search the entire file.

All text
option button

Select to search all text in the file.
114 IDE 5.7 User’s Guide

Finding and Replacing Text
Single-File Find and Replace
Searching Text in a Single File

Use the Find command to search for text in the active editor window.

1. Click Search > Find.

The Find window appears.

NOTE (Mac OS, Solaris, and Linux) Use the Customize IDE Commands window to
activate the Find menu command.

2. Enter search text into Find text/list box.

3. Set search options.

4. Click the Find or Find All button to start the search.

The IDE searches the current file until it finds a match or reaches the end of the search. A
single match appears highlighted in the editor window, or multiple matches appear in a
Search Results window. The IDE beeps if it does not find any matching text.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match in the file.

Single-File Find and Replace
Use the Find and Replace window to perform these tasks:

• Search a single file.

• Replace found text in a single file.

Figure 12.2 shows the Find and Replace window. Table 12.2 explains the items in the Find
and Replace window.

Code only
option button

Select to search only source code in the file.

Comments only
option button

Select to search only comments in the file.

Table 12.1 Find Window Items (continued)

Item Explanation
115IDE 5.7 User’s Guide

Finding and Replacing Text
Single-File Find and Replace
Figure 12.2 Find and Replace Window

Table 12.2 Find and Replace Window Items

Item Explanation

Find text/list box Enter a search string. Click the arrow symbol to select a search
string that you entered previously.

Replace with
text/list box

Enter the replacement string. Click the arrow symbol to select
a replacement string that you entered previously.

Find button Click to start a search operation using the string in the Find
text/list box.

Replace button Click to replace the current match with the replacement string.

Replace All button Click to replace all matches with the replacement string.

Cancel button Click to close the Find and Replace window without performing
a search.

Match whole word
checkbox

Check to search for whole-word matches only, ignoring
matches
within words.

Clear to search for all matches of the search string, including
matches within words.

Case sensitive
checkbox

Check to consider text case during the search. The search
operation distinguishes between a capital letter and the same
letter in lower case.

Clear to disregard text case during the search. The search
operation does not distinguish between a capital letter and the
same letter in lower case.
116 IDE 5.7 User’s Guide

Finding and Replacing Text
Single-File Find and Replace
Replacing Text in a Single File

Use the Replace command to replace matching text.

1. Click Search > Replace or Search > Find and Replace.

The Find window appears.

2. Enter search text into the Find text/list box.

3. Enter replacement text into the Replace with text/list box.

4. Set search options.

5. Find and replace text:

Regular expression
checkbox

Check to treat the search string as a regular expression.

Clear to treat the search string as plain text.

Stop at end of file
checkbox

Check to stop a search at the end of a file and not wrap around
to the beginning of the file.

Clear to wrap around to the beginning of the file and continue a
search. The search stops at the first match or at the current
cursor position.

Search up
checkbox

Check to perform a search operation back from the
current selection.

Clear to perform a search operation forward of the
current selection

Search selection only
checkbox

Check to search only the currently selected text and not the
entire file.

Clear to search the entire file.

All text
option button

Select to search all text in the file.

Code only
option button

Select to search only source code in the file.

Comments only
option button

Select to search only comments in the file.

Table 12.2 Find and Replace Window Items (continued)

Item Explanation
117IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
a. Click the Find button to search for matching text.

The IDE searches the current file until it finds a match or reaches the end of the
search. A single match appears highlighted in the editor window. The IDE beeps if
it does not find any matching text.

b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace button
repeatedly to replace subsequent matches. Click the Replace All button to replace
all matching text in the file.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace non-
consecutive matches, click the Find button to find a match, then click the Replace button
as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match in the file.

Multiple-File Find and Replace
Use the Find in Files window to perform these tasks:

• Search several files.

• Replace found text in multiple files, folders, symbolics files, or projects.

• Replace found text in files within a specific build target.

Figure 12.3 shows the Find in Files window. Table 12.3 explains the items in
the window.
118 IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Figure 12.3 Find in Files Window

Table 12.3 Find in Files Window Items

Item Explanation

Find text/list box Enter a search string. Click the arrow symbol to select a search
string that you entered previously.

Replace with
text/list box

Enter the replacement string. Click the arrow symbol to select a
replacement string that you entered previously.

Find button Click to start a search operation using the string in the Find text/list
box.

Find All button Click to search for all matches in the selected items.

Replace button Click to replace the current match with the replacement string.

Replace All button Click to replace all matches with the replacement string.

Stop button Click to stop the current operation.
119IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
In Folders
Use the In Folders page to search folder contents for matching text. Figure 12.4 shows the
In Folders page. Table 12.4 explains the items in the page.

Match whole word
checkbox

Check to search for whole-word matches only, ignoring matches
within words.

Clear to search for all matches of the search string, including
matches within words.

Case sensitive
checkbox

Check to consider text case during the search. The search
operation distinguishes between a capital letter and the same letter
in lower case.

Clear to disregard text case during the search. The search
operation does not distinguish between a capital letter and the
same letter in lower case.

Regular
expression
checkbox

Check to treat the search string as a regular expression.

Clear to treat the search string as plain text.

All text
option button

Select to search all text in the selected items.

Code only
option button

Select to search only source code in selected items.

Comments only
option button

Select to search only comments in selected items.

In Folders tab Click to bring forward the In Folders page. Use this page to search
specific folders in the host file system.

In Projects tab Click to bring forward the In Projects page. Use this page to search
active projects and build targets.

In Symbolics tab Click to bring forward the In Symbolics page. Use this page to
search files containing symbolics (debugging and browsing)
information generated by the IDE.

In Files tab Click to bring forward the In Files page. Use this page to search
files contained in custom file sets.

Table 12.3 Find in Files Window Items (continued)

Item Explanation
120 IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Figure 12.4 Find in Files Window, In Folders Page

Searching for Text Across Multiple Folders

Use the In Folders page to search for text in folder contents.

1. Click Search > Find in Files.

The Find in Files window appears.

2. Enter search text into the Find text/list box.

3. Enter replacement text into the Replace with text/list box.

4. Set general search options.

Table 12.4 Find in Files Window, In Folders Items

Item Explanation

Search in
text/list box

Enter the path to the folder that you want to search. Click the
arrow symbol to select a path that you entered previously.

Browse button Click to open a dialog box that lets you pick the folder that you
want to search.

Search sub-folders
checkbox

Check to search sub-folders of the selected folder.

Clear to search the selected folder only, ignoring any sub-
folders it may contain.

By type
text/list box

Enter the filename extensions of the files that you want to
search. Click the arrow symbol to select a set of filename
extensions.
The search ignores files whose filename extensions do not
appear in this text/list box.
121IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
5. Set the In Folders page search options:

a. Enter a folder path into the Search in text/list box, or click the Browse button to
select a folder.

b. Check or clear the Search sub-folders checkbox.

c. Enter filename extensions into the By type text/list box.

6. Find and replace text:

a. Click the Find or Find All button to search for matching text.

The IDE searches the specified folder contents until it finds a match or reaches the
end of the search. A single match appears highlighted in an editor window, or
multiple matches appear in a Search Results window. The IDE beeps if it does not
find any matching text.

b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace button
repeatedly to replace subsequent matches. Click the Replace All button to replace
all matching text.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace non-
consecutive matches, click the Find button to find a match, then click the Replace button
as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match.

In Projects
Use the In Projects page to search active projects and build targets for matching text.
Figure 12.5 shows the In Projects page. Table 12.5 explains the items in the page.
122 IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Figure 12.5 Find in Files Window, In Projects Page

Searching for Text across Multiple Projects

Use the In Projects page to search for text in active projects and build targets.

Table 12.5 Find in Files Window, In Projects Items

Item Explanation

Project list box Specify the projects that you want to search.

Target list box Specify the build targets that you want to search.

Project sources
checkbox

Check to search the source-code files of selected projects.

Clear to ignore source-code files of selected projects.

Project headers
checkbox

Check to search the header files of selected projects.

Clear to ignore header files of selected projects.

System headers
checkbox

Check to search system header files.

Clear to ignore system header files.

Search cached sub-
targets checkbox

Check to search sub-targets that the IDE cached for the
selected build targets.

Clear to ignore the sub-targets that the IDE cached for the
selected build targets.

File list This list shows files that the IDE will search. To remove a file
from this list, select it and press Backspace or Delete. To open
a file in this list, double-click its name.
123IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
1. Click Project > Make.

The IDE updates the project data to correctly list source-code files, header files, and
build targets in the In Projects page of the Find in Files window.

2. Click Search > Find in Files.

The Find in Files window appears.

3. Enter search text into the Find text/list box.

4. Enter replacement text into the Replace with text/list box.

5. Set general search options.

6. Set the In Projects page search options:

a. Use the Project list box to specify the projects that you want to search.

b. Use the Target list box to specify the build targets that you want to search.

c. Check or clear the checkboxes to refine your search criteria.

d. Remove files from the File list as needed.

7. Find and replace text:

a. Click the Find or Find All button to search for matching text.

The IDE searches the specified projects and build targets until it finds a match or
reaches the end of the search. A single match appears highlighted in an editor
window, or multiple matches appear in a Search Results window. The IDE beeps if
it does not find any matching text.

b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace button
repeatedly to replace subsequent matches. Click the Replace All button to replace
all matching text.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace non-
consecutive matches, click the Find button to find a match, then click the Replace button
as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match.

In Symbolics
Use the In Symbolics page to search files containing symbolics information for matching
text. Figure 12.6 shows the In Symbolics page. Table 12.6 explains the items in the page.
124 IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Figure 12.6 Find in Files Window, In Symbolics Page

Searching for Text across Multiple Symbolics Files

Use the In Symbolics page to search for text in symbolics files. You must generate
browser data in order to search symbolics files.

1. Enable browser data for the build targets that you want to search.

Use the Build Extras target settings panel to Generate Browser Data From a
compiler or language parser, then Apply or Save your changes. Configuring this
option enables browser data.

2. Click Project > Debug.

Starting a debugging session causes the IDE to generate browser data for
the project.

NOTE The IDE does not generate browser data for some files, such
as libraries.

3. Click Debug > Kill.

The debugging session ends.

Table 12.6 Find in Files Window, In Symbolics Items

Item Explanation

Symbolics list
box

Specify the symbolics files that you want to search.

Symbolics list This list shows the symbolics files that the IDE will search. To
remove a file from this list, select it and press Backspace or Delete.
To open a file in this list, double-click its name.
125IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
4. Click Search > Find in Files.

The Find in Files window appears.

5. Enter search text into the Find text/list box.

6. Enter replacement text into the Replace with text/list box.

7. Set general search options.

8. Set the In Symbolics page search options:

a. Use the Symbolics list box to specify the symbolics files that you want
to search.

b. Remove symbolics files from the Symbolics list as needed.

9. Find and replace text:

a. Click the Find or Find All button to search for matching text.

The IDE searches the specified symbolics files until it finds a match or reaches the
end of the search. A single match appears highlighted in an editor window, or
multiple matches appear in a Search Results window. The IDE beeps if it does not
find any matching text.

b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace button
repeatedly to replace subsequent matches. Click the Replace All button to replace
all matching text.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace non-
consecutive matches, click the Find button to find a match, then click the Replace button
as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match.

In Files
Use the In Files page to search file sets for matching text. Figure 12.7 shows the In Files
page. Table 12.7 explains the items in the page.
126 IDE 5.7 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Figure 12.7 Find in Files Window, In Files Page

Searching for Text across Multiple Files

Use the In Files page to search for text in file sets.

Table 12.7 Find in Files Window, In Files Items

Item Explanation

File Set list box Specify the file set that you want to search. Select New File Set to
create a new set.

File Set list This list shows the files that the IDE will search. To remove a file from
this list, select it and press Backspace or Delete. To add files to this
list, click the Add Files button, or drag and drop files and folders into
the list. To open a file in this list, double-click its name.

Add Files
button

Click to open a dialog box that lets you add files to the current file set.
To enable this button, select from the File Set list box an existing file
set or the New File Set option.

Clear List
button

Click to clear the current File Set list. To enable this button, select from
the File Set list box a file set that has at least one file.

Save This Set
button

Click to save the current file set under a specific name. The file set
must have at least one file. The name appears in the File Set list box.
To enable this button, modify the current file set or select an existing
file set from the File Set list box.

Remove a Set
button

Click to open a dialog box that lets you remove file sets that you
created previously. The removed file sets no longer appear in the File
Set list box. To enable this button, select from the File Set list box an
existing file set or the New File Set option.
127IDE 5.7 User’s Guide

Finding and Replacing Text
Search Results Window
1. Click Search > Find in Files.

The Find in Files window appears.

2. Enter search text into the Find text/list box.

3. Enter replacement text into the Replace with text/list box.

4. Set general search options.

5. Set the In Files page search options:

a. Use the File Set list box to specify the file set that you want to search.

b. Use the buttons to manage the File Set list as needed.

c. Remove files from the File Set list as needed.

6. Find and replace text:

a. Click the Find or Find All button to search for matching text.

The IDE searches the specified files until it finds a match or reaches the end of the
search. A single match appears highlighted in an editor window, or multiple
matches appear in a Search Results window. The IDE beeps if it does not find any
matching text.

b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace button
repeatedly to replace subsequent matches. Click the Replace All button to replace
all matching text.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace non-
consecutive matches, click the Find button to find a match, then click the Replace button
as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match in the file.

Search Results Window
Use the Search Results window to explore multiple matches that the IDE finds. The IDE
opens this window automatically after it finds multiple matches. Also use this window to
stop searches in progress.

Figure 12.8 shows the Search Results window. Table 12.8 explains the items in the
window.
128 IDE 5.7 User’s Guide

Finding and Replacing Text
Search Results Window
Figure 12.8 Search Results Window

Table 12.8 Search Results Window Items

Item Icon Explanation

Result Count text
box

Shows the total number of search
results.

Search Criteria
text box

Shows the search criteria.

Warnings button Click to display complier and linker
warnings in the Results pane. The
text box to the right of this button
shows the total number of warnings.

Stop button Click to stop the search in progress.
129IDE 5.7 User’s Guide

Finding and Replacing Text
Text-Selection Find
Text-Selection Find
After you use the Find, Find and Replace, or Find in Files windows to perform a
successful search, you can use menu commands to apply the same search criteria to
additional searches. This way, you do not have to open the windows again to use the same
search criteria. You select text in the active editor window to define the
search string.

Using the Find Next Command

When searching for text, you can use the Find Next command to have the IDE find the
next match:

Previous Result
button

Click to select the previous search
result.

Next Result
button

Click to select the next search result.

Results pane Lists individual search results.

Source Code
pane
disclosure
triangle

Click to show or hide the Source
Code pane.

Pane resize bar Drag to resize the Results and
Source Code panes.

Source Code
pane

Shows the source code
corresponding to the selected item in
the Results pane. This pane
operates the same as an editor
window without pane-splitter
controls.

Table 12.8 Search Results Window Items (continued)

Item Icon Explanation
130 IDE 5.7 User’s Guide

Finding and Replacing Text
Text-Selection Find
1. Start a search with the Find, Find and Replace, or Find in Files windows.

2. After the IDE finds a match, click Search > Find Next to find a
subsequent match.

NOTE Find Next always searches forward and ignores the Search up checkbox.

Using the Find Previous Command

When searching for text, you can use the Find Previous command to have the IDE find
the previous match. You must enable the Find Previous command in the Customize IDE
Commands window.

1. Click Edit > Commands & Key Bindings.

The Customize IDE Commands window opens.

2. Click the Commands tab in the Customize IDE Commands window.

3. Expand the Search item in the Commands pane tree structure.

4. Select the Find Previous item in the expanded list.

Scroll as needed in order to see the Find Previous item. After you select the Find
Previous item, its settings appear in Details pane.

5. Check the Appears in Menus checkbox.

The Find Previous command will appear in the Search menu in the main IDE menu
bar.

6. Click Save to confirm your changes.

7. Close the Customize IDE Commands window.

You can now select the Find Previous command in the Search menu. You can also use
the key binding associated with the command.

NOTE (Macintosh) Hold down the Shift key in order to click
Search > Find Previous.

Changing the Find String

Use the Enter Find String command to change the current find string.
131IDE 5.7 User’s Guide

Finding and Replacing Text
Regular-Expression Find
1. Select the text that you want to use as the new find string.

2. Click Search > Enter Find String.

The selected text replaces the find string that you specified in the Find, Find and
Replace, or Find in Files windows.

You can now use the new find string to perform find and replace operations.

Searching with a Text Selection

Use the Find Selection command to search the active editor window for selected text.

1. Select the text that you want to use as the search string.

2. Click Search > Find Selection.

The IDE searches the active editor window until it finds a match or reaches the end of the
search. A single match appears highlighted in the editor window. The IDE beeps if it does
not find any matching text.

You can also use the Find Next and Find Previous commands to search for additional
matching text.

Regular-Expression Find
Use regular expressions to search text according to sophisticated text-matching rules. A
regular expression is a text string used as a mask for matching text in a file. To use regular
expressions, select Regular expression in the Find, Find and Replace, or Find in Files
windows. Certain characters are operators with special meanings in a regular expression.

TIP For an in-depth description of regular expressions, refer to Mastering Regular
Expressions by Jeffrey E.F. Friedl, published by O’Reilly & Associates, Inc. On a
UNIX system, also refer to the man pages for regexp.

Table 12.9 explains the regular-expression operators that the IDE recognizes.

Table 12.9 Recognized Regular-Expression Operators

Operator Name Explanation

. match any Matches any single printing or non-printing character
except newline and null.

* match zero
or more

Replaces the smallest/preceding regular expression with
a sub-expression.
132 IDE 5.7 User’s Guide

Finding and Replacing Text
Regular-Expression Find
Table 12.10 shows various examples of using regular expressions to match particular text
in a text sample.

+ match one
or more

Repeats the preceding regular expression at least
once and then as many times as necessary to match
the pattern.

? match zero
or one

Repeats the preceding regular expression once or
not at all.

\n back
reference

Refers to a specified group (a unit expression enclosed
in parentheses) in the find string. The digit n identifies
the nth group, from left to right, with a number from 1 to
9.

| alternation Matches one of a choice of regular expressions. If this
operator appears between two regular expressions, the
IDE matches the largest union of strings.

^ match
beginning of
line

Matches items from the beginning of a string or following
a newline character. This operator also represents a
NOT operator when enclosed within brackets.

$ match end
of line

Matches items from the end of a string or preceding a
newline character.

[...] list Defines a set of items to use as a match. The IDE does
not allow empty lists.

(...) group Defines an expression to be treated as a single unit
elsewhere in the regular expression.

- range Specifies a range. The range starts with the character
preceding the operator and ends with the character
following the operator.

Table 12.10 Regular Expression Examples

Example
Type

This regular
expression...

...matches this
text...

...in this text
sample:

Matching simple
expressions

ex ex sample text

[(][.]stack[)] (.stack) ADDR(.stack)

Table 12.9 Recognized Regular-Expression Operators (continued)

Operator Name Explanation
133IDE 5.7 User’s Guide

Finding and Replacing Text
Regular-Expression Find
Using the Find String in the Replace String
Use the & operator to incorporate matching text into a replacement string. The IDE
substitutes the matching text for the & operator. Use \& to indicate a literal ampersand in
the replacement string.

Matching any
character

var. var1

var2

cout << var1;

cout << var2;

c.t cut

cot

cin >> cutF;

cin >> cotG;

Repeating
expressions

s*ion ion

ssion

information

the session

s+ion sion

ssion

confusion

the session

Grouping
expressions

ris ris surprise

r(i)s r is theVar is

Choosing one
character from
many

[bls]ag sag bag lag sagging bag
lagged

[[aeiou][0-9] [2 u9 cout << a[2] <<
u9;

[^bls]ag rag sagging rag
lagged

[-ab]V aV -V aVal-Val;

Matching line
beginnings and
endings

^([\t]*cout) cout

 cout

cout << "no
tab";

 cout <<
"tab";

(l*;)$ l;

;

a-ct; a =
battLvl;

b-ct;

Table 12.10 Regular Expression Examples (continued)

Example
Type

This regular
expression...

...matches this
text...

...in this text
sample:
134 IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Table 12.11 shows examples of using the find string in the replace string of regular
expressions.

.

Remembering Sub-expressions
Use the \n construct to recall sub-expressions from the find string in the replacement
string. The digit n ranges from 1 to 9 and represents the nth sub-expression in the find
string, counting from left to right. Enclose each sub-expression in parentheses.

Consider these sample definitions:

• Find string: \#define[\t]+(.+)[\t]+([0-9]+);

• Replace string: const int \1 = \2;

• Sub-expression \1: (.+)

• Sub-expression \2: ([0-9]+)

These definitions show a replacement operation that recalls two sub-expressions. Table
12.12 shows the result of applying these sample definitions to some text.

Comparing Files and Folders
The IDE can compare files or folder contents and graphically show you the differences
between them. You can perform these tasks:

• Compare two files.

• Compare the contents of two folders.

Table 12.11 Find String, Replace String Examples

Find string Replace string Matching text After replacement

var[0-9] my_& var1 my_var1

tgt \&target tgt &target

Table 12.12 Remembering Sub-Expressions

Before
replacement

\1
matches
this text

\2
matches
this text

After replacement

#define var1 10; var1 10 const int var1 = 10;

#define a 100; a 100 const int a = 100;
135IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
You perform the comparison by specifying a source item and a destination item. You can
apply or unapply the changes in the source item to the destination item.

Comparison Setup
You use the Compare Files Setup window to enter information about the files or folders
that you want to compare. Figure 12.9 shows the Compare Files Setup window. Table
12.13 explains items in the window.

Figure 12.9 Compare Files Setup Window

Table 12.13 Compare Files Setup Window Items

Item Explanation

Source box Click the Choose button to specify the source file or folder for the
comparison, or drag and drop a file or folder into the box. Click the
selector to the left of the Choose button to specify a file in an open editor
window.

Destination
box

Click the Choose button to specify the destination file or folder for the
comparison, or drag and drop a file or folder into the box. Click the
selector to the left of the Choose button to specify a file in an open editor
window.

Case
sensitive
checkbox

Check to consider text case during the compare operation.
The comparison distinguishes between a capital letter and the same
letter in lower case.

Clear to disregard text case during the compare operation.
The comparison does not distinguish between a capital letter and the
same letter in lower case.
136 IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Choosing Files to Compare

Use the Compare Files command to specify two files that you want to compare.

1. Click Search > Compare Files.

The Compare Files Setup window appears.

2. Specify a source file for the comparison.

Click the Choose button in the Source box or drag and drop the file into the Source
box. To specify a file in an open editor window, click the selector in
the Source box.

3. Specify a destination file for the comparison.

Click the Choose button in the Destination box or drag and drop the file into the
Destination box. To specify a file in an open editor window, click the selector in the
Destination box.

Ignore extra
space
checkbox

Check to consider extra spaces and tabs during the compare operation.
The comparison distinguishes differences in the number of spaces and
tabs in the compared files.

Clear to disregard extra spaces and tabs during the compare operation.
The comparison does not distinguish differences in the number of spaces
and tabs in the compared files.

Only show
different
files
checkbox

Check to have the Folder Compare Results window show only the
differences between the compared folders. The Files in Both Folders
pane stays blank.

Clear to have the Folder Compare Results window show all files from
the compared folders as well as the differences between those folders.
The Files in Both Folders pane shows the common files between the
compared folders.

Compare
text file
contents
checkbox

Check to identify differences in terms of a byte-by-byte comparison of the
files.

Clear to identify differences in terms of only the sizes and modification
dates of the files.

Compare
button

Click to compare the specified files or folders.

Table 12.13 Compare Files Setup Window Items (continued)

Item Explanation
137IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
4. Configure the checkboxes in the Text Compare Options group.

Check the Case sensitive checkbox to distinguish between a capital letter and the same
letter in lower case. Check the Ignore extra space checkbox to disregard extra spaces
or tabs in the files.

5. Click the Compare button.

The IDE performs the file comparison. The File Compare Results
window appears.

Choosing Folders to Compare

Follow these steps to specify two folders that you want to compare:

1. Click Search > Compare Files.

The Compare Files Setup window appears.

2. Specify a source folder for the comparison.

Click the Choose button in the Source box or drag and drop the folder into the Source
box.

3. Specify a destination folder for the comparison.

Click the Choose button in the Destination box or drag and drop the folder into the
Destination box.

4. Configure the checkboxes in the Text Compare Options group.

These options apply to the files inside the compared folders. Check the
Case sensitive checkbox to distinguish between a capital letter and the same letter in
lower case. Check the Ignore extra space checkbox to disregard extra spaces or tabs
in the files.

5. Configure the checkboxes in the Folder Compare Options group.

These options apply to the contents of the compared folders. Check the
Only show different files checkbox to have the Folder Compare Results window
show only the files that differ between the source folder and destination folder. Check
this option to have the Files in Both Folders pane of the Folder Compare Results
window stay blank.

Check the Compare text file contents checkbox to have the IDE perform a content-
based comparison of the text files in the compared folders. Check this option to have
the Folder Compare Results window show differences in terms of file content instead
of file sizes and modification dates.

6. Click the Compare button.

The IDE performs the folder comparison. The Folder Compare Results
window appears.
138 IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
CAUTION The compare operation ignores folders matching the criteria that you
specify in the Shielded Folders preference panel.

File Comparison
The IDE file-comparison feature identifies additions, changes, and deletions between two
text files. In addition, this feature allows you to apply the differences in the source file to
the destination file.

You can also use this feature to merge changes between two versions of the same text file.
Specify one version of the text file as the source file and the other version of the text file as
the destination file. Then you can apply changes from the source file to the destination file.
The destination file becomes the merged file.

After you use the Compare Files Setup window to specify two files for comparison, click
the Compare button. The File Compare Results window appears. This window shows
the differences between the source file and destination file. You can apply or unapply
those differences to the destination file.

The File Compare Results window shows file differences in the form of highlighted
portions of text. The highlighting tracks with the text as you scroll through the compared
files.

Figure 12.10 shows the File Compare Results window. Table 12.14 explains the items in
the window.
139IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Figure 12.10 File Compare Results Window

Table 12.14 File Compare Results Window Items

Item Icon Explanation

Source pane N/A Shows the contents of the source file.
You cannot edit the contents of this pane.

Destination pane N/A Shows the contents of the destination file.
You can edit the contents of this pane.

Pane resize bar Drag to resize the Source and
Destination panes.

Apply button Click to apply the selected Differences pane
items to the destination file.

Unapply button Click to unapply the selected Differences
pane items from the destination file.
140 IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Applying File Differences

Use the Apply Difference command to apply the selected items in the Differences pane to
the destination file.

NOTE You cannot alter the source file. You can change the destination file by
applying differences from the source file or by editing the contents of the
Destination pane.

1. Select the items in the Differences pane that you want to apply to the
destination file.

2. Click Search > Apply Difference or click the Apply button in the File Compare
Results window.

The Destination pane updates to reflect the differences that you applied to the
destination file. The applied items in the Differences pane change to an
italicized font.

TIP Use the Customize IDE Commands window to assign a key binding to the Apply
Difference command. This way, you can use the keyboard to apply differences.

Unapplying File Differences

Use the Unapply Difference command to unapply the selected items in the Differences
pane from the destination file.

Undo button Click to undo your last text edit in the
Destination pane.

Redo button Click to redo your last text edit in the
Destination pane.

Differences
pane

N/A Shows the differences between the Source
pane and the Destination pane. Select an
item to highlight it in the Source and
Destination panes. Applied items appear in
an italicized font

Table 12.14 File Compare Results Window Items (continued)

Item Icon Explanation
141IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
NOTE You cannot alter the source file. You can change the destination file by
unapplying differences from the source file or by editing the contents of the
Destination pane.

1. Select the items in the Differences pane that you want to unapply from the
destination file.

Items that you can unapply appear in an italicized font.

2. Click Search > Unapply Difference or click the Unapply button in the File Compare
Results window.

The Destination pane updates to reflect the differences that you unapplied from the
destination file. The unapplied items in the Differences pane no longer appear in an
italicized font.

TIP Use the Customize IDE Commands window to assign a key binding to the
Unapply Difference command. This way, you can use the keyboard to unapply
differences.

Folder Comparison
The IDE folder-comparison feature identifies the differences between the contents of two
folders. It reports the files in both folders, the files only in the source folder, and the files
only in the destination folder.

You can also use this feature to analyze the differences between two different releases of a
folder of software. Specify one release of the software folder as the source folder and the
other release of the software folder as the destination folder. Then you can analyze the
differences between the source and destination folders.

After you use the Compare Files Setup window to specify two folders for comparison,
click the Compare button. The Folder Compare Results window appears and shows the
differences between the source folder and destination folder.

The Folder Compare Results window shows folder differences in the form of
three panes. Italicized items in these panes indicate non-text files.

Figure 12.11 shows the Folder Compare Results window. Table 12.15 explains the items
in the window.
142 IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Figure 12.11 Folder Compare Results Window

Table 12.15 Folder Compare Results Window Items

Item Icon Explanation

Pane Expand
box

Click to enlarge the pane to fill the window.

Pane
Collapse box

Click to reduce an expanded pane to its original
size.

Pane resize
bar

Drag to resize the panes on either side of the
bar.

Files in Both
Folders pane

N/A Shows the items that are in both the source
folder and the destination folder. A bullet next to
an item indicates that the item content differs
between the two folders.
143IDE 5.7 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Examining Items in the Folder Compare Results Window

You can use the Folder Compare Results window to open text files and compare
file differences.

Double-click a text file to view and change its contents in an editor window.

A file whose contents differ between the source and destination folders has a bullet next to
its name. Double click the file to open a File Comparison Results window. Use this
window to examine the differences between the file contents.

Files Only in
Source
pane

N/A Shows the items that are in the source
folder only.

Files Only in
Destination
pane

N/A Shows the items that are in the destination folder
only.

Selected
item
group

N/A Shows file and difference information for the
selected item in the window panes.

Table 12.15 Folder Compare Results Window Items (continued)

Item Icon Explanation
144 IDE 5.7 User’s Guide

IV

Browser

This section contains these chapters:

• Using the Browser

• Using Class Browser Windows

• Using Other Browser Windows

• Using Browser Wizards
145IDE 5.7 User’s Guide

146 IDE 5.7 User’s Guide

13
Using the Browser

This chapter explains how to work with the browser in the CodeWarrior™ IDE. Use the
browser to perform these tasks:

• Generate a browser database—the browser stores collected symbol information in a
browser database for the project. You can generate browser data from the compiler
or the language parser.

• Collect symbol information—symbols include functions, variables, and objects.
Enable the browser to collect information about the symbols in a project.

Read this chapter to learn more about typical tasks for working with the browser.

This chapter consists of these sections:

• Browser Database

• Browser Symbols

Browser Database
The browser database contains information about symbols in a program, which include
(depending on program language) global variables, functions, classes, and type
declarations, among others.

Some IDE windows require that the project contain a browser database. For example, the
Class Hierarchy window only displays information for a project that contains a browser
database. This section explains how to configure a project to generate its browser
database.

NOTE Generating a browser database increases the project’s size. To minimize the
project’s size, generate the browser database only for targets you frequently
use.

Browser Data
Browser data contains symbolic and relationship information about the project code. The
browser uses this data to access the code information.
147IDE 5.7 User’s Guide

Using the Browser
Browser Database
Use the Generate Browser Data From menu (Figure 13.1) in the Build Extras target
settings panel to enable and disable browser data generation. This drop-down menu
provides these options, which determine how the IDE generates browser data:

• None—The IDE does not generate browser data. Use None to disable browser data.
Select None to generate faster compiles (with no browser features).

• Compiler—The Compiler generates the browser data. While it compiles more
slowly, the compiler generates the most accurate browser data.

• Language Parser—The Code Completion plugin associated with the project’s
programming language generates the browser data.

Figure 13.1 Generate Browser Data From Menu

Generating Browser Data

You can select an option in the Generate Browser Data From drop-down menu to
establish what the IDE uses to generate browser data for a project file.

To generate browser data, follow these steps:

1. Choose Edit > Target Settings.

2. From the Target Settings Panels list, select Build Extras.

3. Choose Compiler or Language Parser from the Generate Browser Data From
menu.

NOTE Some compilers do not generate browser data.

a. Compiler—The compiler generates browser data and the following associated
item appears.

If you enable Dump internal browse information after compile, the generated
browser data appears in a log window after you compile a file.
148 IDE 5.7 User’s Guide

Using the Browser
Browser Database
b. Language Parser—The Code Completion plugin associated with the project’s
programming language generates the browser data. Browser data and the #include
pop-up window update as you edit.

NOTE Choose Language Parser for C/C++ code completion.

The Prefix and Macro files (Figure 13.2) are applicable to C/C++ Code
Completion.

Figure 13.2 Generate Browser Data From Language Parser

• Prefix file—Similar to that used in the C/C++ Language Settings panel, the
Prefix file contains header files that help the C/C++ Code Completion plugin
parse code. The Prefix file should only include text files (not pre-compiled
header files).

• Macro file—Contains C/C++ macro files that help the Code Completion plugin
resolve any #ifdefs found in the source code or in the header files.

4. If you selected Compiler, choose Project > Bring Up To Date or Make.

The IDE generates browser data for the project.

If you selected Language Parser, the IDE generates browser data in the background.

Disabling Browser Data

Select None to disable browser data and stop the IDE from generating browser
information for the project.

1. Choose Edit > Target Settings.

2. Select Build Extras from the Target Settings Panels list.

3. In the Generate Browser Data From drop-down menu, select None.

4. Click Save.

5. Choose Project > Make.

The IDE stops generating browser information.
149IDE 5.7 User’s Guide

Using the Browser
Browser Symbols
Browser Symbols
Navigate browser symbols to open browser views, find symbol definitions, and examine
inheritance.

You can navigate browser symbols in these ways:

• Use the Browser contextual menu to open various browser windows for a selected
symbol.

• Double-click a symbol name in the Class Browser window to open the file that
contains the declaration of that symbol.

• Use the class hierarchy windows to determine the ancestors or descendants of a
selected symbol.

Browser Contextual Menu
Use the IDE’s browser contextual menu to enhance source-code editing in the IDE. Use
this menu to streamline text entry in editor windows. You can enter the first few letters of
a function name, then use the browser contextual menu to complete the entry.

Using the Browser Contextual Menu

1. Open the browser contextual menu, as explained in Table 13.1.

2. Select a command from the contextual menu.

Table 13.1 Opening Browser Contextual Menu

On this host... Do this...

Windows Right-click a symbol name.

Macintosh Click and hold on a symbol name.

Solaris Click and hold on a symbol name.

Linux Click and hold on a symbol name.
150 IDE 5.7 User’s Guide

Using the Browser
Browser Symbols
Identifying Symbols in Browser Database

As a shortcut, you can use browser coloring to help recognize if a symbol resides in the
browser database. When you activate a browser, you can see browser-database symbols
because they appear in the editor and browser windows according to the colors you select.

TIP The default color setting is identical for all eight types of browser-database
symbols. You can choose a different color for each symbol type.

To change the browser symbol colors the editor uses, follow these steps:

1. Choose Edit > Preferences.

2. Select the Text Colors panel from the IDE Preference Panels list.

3. Select the Activate Syntax Coloring option.

4. Select the Activate Browser Coloring option.

5. Click the color swatch next to the symbol name to set that symbol's color.

6. Click Save.
151IDE 5.7 User’s Guide

Using the Browser
Browser Symbols
152 IDE 5.7 User’s Guide

14
Using Class Browser
Windows

This chapter explains how to work with the Class Browser windows in the CodeWarrior™
IDE. Use the Class Browser to perform these tasks:

• View browser data—the class browser collects information about the elements of a
computer program. Such elements include functions, variables, and classes. The
class browser displays these elements in organized lists.

• Show data relationships—the class browser shows the relationships between classes,
data members, and methods. The class browser also updates the display to reflect
changes in class scope.

Read this chapter to learn more about typical tasks for working with Class Browser
windows.

This chapter consists of these sections:

• Class Browser window

• Classes Pane

• Member Functions Pane

• Data Members Pane

• Source Pane

• Status Area

Class Browser window
Use the Class Browser window to view information about the elements of a computer
program. This section explains how to use the Class Browser window to view browser
data.

Figure 14.1 shows the Class Browser window. Table 14.1 explains the items in the
window. Table 14.2 explains the options in the Browser Access Filters list box.
153IDE 5.7 User’s Guide

Using Class Browser Windows
Class Browser window
Figure 14.1 Class Browser Window

Table 14.1 Class Browser Window Items

Item Icon Explanation

Go Back button Click to return to the preceding browser
view.

Go Forward
button

Click to move to the succeeding
browser view.

Browser
Contents
button

Click to open the Browser Contents
window.

Class
Hierarchy
button

Click to open the Multi-class Hierarchy
window.

Single Class
Hierarchy
Window button

Click to open the Single-class Hierarchy
window for the selected class.
154 IDE 5.7 User’s Guide

Using Class Browser Windows
Class Browser window
Browser
Access Filters
list box

Select filters for displaying items in
class-browser panes.

Show Inherited Select to show inherited items in the
Member Functions Pane and Data
Members Pane. Clear to hide inherited
items from these panes.

Classes Pane Lists all classes in the project browser
database.

Member
Functions Pane

Lists all member functions defined in
the currently selected class.

Data Members
Pane

Lists all data members defined in the
selected class.

Source Pane Displays source code for the currently
selected item.

Status Area Displays various status messages and
other information.

Display toggle
buttons

Alphabetical

Hierarchical

Toggles the Classes display between
alphabetical and hierarchical listings.

New Item
button

Opens wizards to create new items
(e.g., classes, data members, member
functions).

Pane Expand
box

Expands the pane to the width of the
full window.

Pane Collapse
Box

Collapses the pane to its original size.

Classes Pane
button

Lists all classes in the project browser
database.

Class
Declaration
button

Opens a window that shows
declarations for all classes in the
project.

Table 14.1 Class Browser Window Items (continued)

Item Icon Explanation
155IDE 5.7 User’s Guide

Using Class Browser Windows
Class Browser window
Viewing Class Data from Browser Contents Window

To view class data for a project in the Browser Contents window, follow these steps:

Open File
button

Opens the current source file in a new
editor window.

VCS list pop-up With a version control system enabled,
choose the version-control command to
execute on the displayed source file.

Table 14.2 BrowserAccess Filters

Filter Icon Show items with this access:

Public Private Protected

View as implementor • • •

View as subclass • •

View as user •

Show public •

Show protected •

Show private •

Table 14.1 Class Browser Window Items (continued)

Item Icon Explanation
156 IDE 5.7 User’s Guide

Using Class Browser Windows
Class Browser window
1. Open the Browser Contents window, as explained in Table 14.3.

2. Select a class in the Browser Contents window.

3. Open a contextual menu for the selected class, as explained in Table 14.4.

A contextual menu like the one shown in Figure 14.2 appears.

Table 14.3 Opening Browser Contents Window

On this host… Do this…

Windows Select View > Browser Contents.

Macintosh Select Window > Browser Contents.

Solaris Select Window > Browser Contents.

Linux Select Window > Browser Contents.

Table 14.4 Opening Contextual Menu for Selected Class

On this host… Do this…

Windows Right-click the selected class.

Macintosh Control-click the selected class.

Solaris Click and hold on the selected class.

Linux Click and hold on the selected class.
157IDE 5.7 User’s Guide

Using Class Browser Windows
Class Browser window
Figure 14.2 Browser Contents Window, Contextual Menu

4. Select Open browser for class classname from the contextual menu.

The classname is the name of the class that you selected.

A Class Browser window appears.

Viewing Class Data from Hierarchy Windows

To view class data from a hierarchy window, follow these steps:

1. Open a Single-Hierarchy or Multi-Class Hierarchy window:

a. Click the Single Class Hierarchy Window button in the browser toolbar,

or

b. Click the Class Hierarchy button in the browser toolbar.

2. In the Single- or Multi-Class Hierarchy window, double-click a class name.

A Class Browser window appears.

Expanding Browser Panes

Click the Pane Expand box (just above the scroll bar in the upper right-hand corner of the
pane) to expand the Classes, Function Members, Data Members, or Source panes in a
Browser window.
158 IDE 5.7 User’s Guide

Using Class Browser Windows
Classes Pane
1. Click the Pane Expand box to expand a pane.

This pane expands to fill the Browser window.

2. Use the enlarged pane to view data.

Alternately, you can use the resize bar between the panes to enlarge each pane.

1. Rest the cursor over the resize bar.

The cursor icon changes to this:

2. Hold down the mouse button.

3. Drag the resize bar to enlarge or shrink the pane.

Collapsing Browser Panes

Click the Pane Collapse box (just above the scroll bar in the upper right-hand corner of
the pane) to collapse the Classes, Function Members, Data Members, or Source panes in a
Browser window.

1. Click the Pane Collapse box to collapse a pane.

The chosen pane collapses to its original size.

2. You can now view other panes in a Browser window.

Alternately, you can use the resize bar between the panes to collapse each pane.

1. Rest the cursor over the resize bar.

The cursor icon changes to this:

2. Hold down the mouse button.

3. Drag the resize bar to collapse the pane.

Classes Pane
Use the Classes pane to perform these tasks:

• Create a new class

• Toggle viewing of classes

• Sort classes

Figure 14.1 shows the Classes pane. Table 14.5 explains the items in
the pane.
159IDE 5.7 User’s Guide

Using Class Browser Windows
Classes Pane
Creating a New Class

Use the New Class wizard to specify the name, declaration, and location for a new class.
Click Finish in any screen to apply default values to any remaining parameters and
complete the process. The New Class wizard creates the files that define the class.

1. From the Classes pane, click the New Item button .

2. Enter the Name and Location in the New Class window.

3. To create a more complex class, click Next (optional).

Follow the on-screen directions to further define the class.

4. Click Finish to complete the New Class process.

Showing the Classes Pane

Use the Show Classes button to expand the Classes pane.

1. Click the Show Classes button:

2. The Classes pane appears in the Class Browser window.

Hiding the Classes Pane

Use the Hide Classes button to collapse the Classes pane.

Table 14.5 Classes Pane Items

Item Icon Explanation

New Item Click to create a new class using the New Class Wizard.

Sort
Alphabetical

Click to sort the Classes list in alphabetical order.

Sort
Hierarchical

Click to sort the Classes list in hierarchical order.
160 IDE 5.7 User’s Guide

Using Class Browser Windows
Member Functions Pane
1. Click the Hide Classes button:

2. The Classes pane disappears from the Class Browser window.

Sorting the Classes List

Use the Sort Alphabetical and Sort Hierarchical commands to specify the sort order of
classes in the Classes pane. The displayed icon always represents the alternate sort order.
For example, when the Classes list appears in alphabetical order, the Sort Hierarchical
icon is visible.

• Click the Sort Alphabetical icon .

The IDE sorts the Classes list in alphabetical order.

• Click the Sort Hierarchical icon .

The IDE sorts the Classes list in hierarchical order.

Member Functions Pane
Use the Member Functions pane to perform these tasks:

• Create a new member function

• Determine the inheritance type of a member function

Table 14.6 Member Function, Data Member Identifier Icons

Meaning Icon The member is…

static a static member

virtual a virtual function that can be overridden, or an override of
an inherited function

pure virtual
or abstract

a member function that must be overridden in a subclass
to create instances of that subclass
161IDE 5.7 User’s Guide

Using Class Browser Windows
Data Members Pane
Creating a New Member Function

Use the New Member Function wizard to specify the name, return type, and parameters
for a new member function. Click Finish in any screen to apply default values to any
remaining parameters and complete the process.

1. Click the New Item button in the Member Functions pane.

2. Enter the Member Function Declarations in the New Member Function window.

3. Click Next.

4. Enter Member function file locations and Include Files information.

5. Click Finish.

6. Review the settings summary, then click Generate.

The IDE adds the new member function to the class declaration.

Data Members Pane
Use the Data Members pane to create a new data member. This section explains how to
create the data member.

Click the New Item button in the Data Members pane to open the New Data Member
wizard. See Table 14.6 for a complete list of identifier icons that appear in the Data
Members pane.

Creating a New Data Member

Use the New Data Member wizard to specify the name, type, and initializer for the new
data member. Specify other options to further refine the data member. Click Finish in any
screen to apply default values to any remaining parameters and complete the process.

1. From the Data Members pane, click the New Item button:

2. Enter the Data Member Declarations in the New Data Member window.

3. Click Next.

4. Enter Data Member file locations and #include files information.

5. Click Finish.

6. Review the settings summary, then click Generate.

The IDE adds the new data member to the class declaration.
162 IDE 5.7 User’s Guide

Using Class Browser Windows
Source Pane
Source Pane
Use the Source pane to view the source code that corresponds to the selected class,
member function, or data member. This section explains the items in the
Source pane.

Figure 14.1 shows the Source pane. Table 14.7 explains the items in
the pane.

For information on editing source code, see Editing Source Code.

Status Area
Use the status area to perform these tasks:

• Toggle viewing of the Classes pane

• View class declarations

• View classes according to public, private, or protected access

Figure 14.1 shows the status area. Table 14.8 explains items in the status area.

Table 14.7 Source Pane Items

Item Icon Explanation

Open File Click to open the current source file in a new editor window.

VCS menu Enable a version-control system in order to activate this
menu. Use this menu to select and execute a version-control
command on the source file.

Table 14.8 Status Area Items

Item Icon Explanation

Show Classes Pane Click to display the Classes pane in the Class
Browser window.

Hide Classes Pane Click to hide the Classes pane in the Class
Browser window.
163IDE 5.7 User’s Guide

Using Class Browser Windows
Status Area
Class Declaration Click to show the declaration of the
current class.

Access Filter Display Displays the access state of the current class.

Table 14.8 Status Area Items (continued)

Item Icon Explanation
164 IDE 5.7 User’s Guide

15
Using Other Browser
Windows

This chapter explains how to work with the Class Hierarchy windows in the
CodeWarrior™ IDE. Use Class Hierarchy windows to perform these tasks:

• View hierarchical browser data—the class hierarchy window shows a graphical
representation of hierarchical structure. Object-oriented languages, such as C++ and
Java, allow hierarchical relationships between classes.

• Analyze inheritance structure—the class hierarchy window shows the inheritance
structure of classes. This structure reveals the data-handling capabilities of a
particular class.

Read this chapter to learn more about typical tasks for working with Class Hierarchy
windows.

This chapter consists of these sections:

• Multiple-Class Hierarchy Window

• Single-Class Hierarchy Window

• Browser Contents window

• Symbols Window

Multiple-Class Hierarchy Window
Use the Multi-Class Hierarchy window to visually examine the structure of every class in
the browser database. Each class name appears in a box, and lines connect boxes to
indicate related classes. The left-most box is the base class, and subclasses appear to the
right.

Figure 15.1 shows the Multi-Class Hierarchy window. Table 15.1 explains the items in the
window.
165IDE 5.7 User’s Guide

Using Other Browser Windows
Multiple-Class Hierarchy Window
Figure 15.1 Multi-Class Hierarchy Window

Viewing Browser Data by Inheritance

Use a Hierarchy window to view data in graphical form and better understand class
relationships. Use the expand and collapse arrows to enlarge or shrink the class views.

Table 15.1 Multi-Class Hierarchy Window Items

Item Icon Explanation

Hierarchy Control Click to expand or collapse the subclasses displayed
for a specific class.

Ancestor menu Click and hold on class or subclass box to display a
menu. Select a class from menu to display that class.

Line button Click to toggle the lines that connect classes between
diagonal and straight lines.
166 IDE 5.7 User’s Guide

Using Other Browser Windows
Multiple-Class Hierarchy Window
1. Activate the browser.

2. Update the browser database by using the Bring Up To Date, Make, Run, or Debug
command.

3. Open a graphical Hierarchy window, as explained in Table 15.2.

Printing Class Hierarchies

To print the contents of a Class Hierarchy window, save an image of the window
contents, then print the image file from a graphics-processing application.

The IDE saves the image in a graphics-file format based on the host platform, as shown in
Table 15.3.

1. Open the Class Hierarchy window.

2. Choose File > Save a Copy As.

3. Save the image to a file.

4. Open the image file in an graphics-processing application.

5. Print the image file.

Table 15.2 Opening Hierarchy Window

On this host… Do this…

Windows Select View > Class Hierarchy

Macintosh Select Window > Class Hierarchy

Solaris Select Window > Class Hierarchy

Linux Select Window > Class Hierarchy Window

Table 15.3 Host Platform Graphics-File Formats

Host Graphics-File Format

Windows EMF (Enhanced Metafile)

Macintosh PICT (Picture)

Solaris PICT (Picture)

Linux PICT (Picture)
167IDE 5.7 User’s Guide

Using Other Browser Windows
Single-Class Hierarchy Window
The graphics-processing application prints the image of the class hierarchy.

Changing Line Views in a Hierarchical Window

Use the Diagonal Line and Straight Line commands to change the appearance of the
connecting lines between classes and subclasses in a hierarchical window display.

• Click the Diagonal Line icon .

The Hierarchical window display updates to use diagonal lines.

• Click the Straight Line icon .

The Hierarchical window display updates to use straight lines.

Single-Class Hierarchy Window
Use the Single-Class Hierarchy window to examine the structure of a single class in the
browser database. The Single-Class Hierarchy window operates identically to the Multi-
Class Hierarchy window, but restricts the display to a single class.

The Single-Class Hierarchy window contains the same components as the Multi-Class
Hierarchy window.
168 IDE 5.7 User’s Guide

Using Other Browser Windows
Browser Contents window
Figure 15.2 Single-Class Hierarchy Window

Opening a Single-Class Hierarchical window

Use one of these methods to open a Single-Class Hierarchical window:

• Click the Show Single-Class Hierarchy icon in a Browser toolbar.

• Use the Browser Contextual menu in one of these windows:

– New Class Browser window

– Browser Contents window

– Multi-Class Hierarchical window

A Single-Class Hierarchical window appears

Browser Contents window
Use the Browser Contents window to view browser data sorted by category into an
alphabetical list. This section explains how to use the Browser Contents window to view
browser data.

Figure 15.3 shows the Browser Contents window. Table 15.4 explains the items in the
window.
169IDE 5.7 User’s Guide

Using Other Browser Windows
Browser Contents window
Figure 15.3 Browser Contents Window

Viewing Browser Data by Contents

Use the Browser Contents window to display symbol information stored in the browser
database, listed in alphabetical order. You can choose from these categories:

• classes

• constants

• enumerations

• functions

• global variables

• macros

• function templates

Table 15.4 Browser Contents Window Items

Item Icon Explanation

Symbols list box Select the type of symbol to display in
the Symbols list.

Symbols list Double-click a symbol name to display
the source file in a new editor window
that defines the symbol.
170 IDE 5.7 User’s Guide

Using Other Browser Windows
Symbols Window
• type definitions

1. Activate the browser.

2. Use the Bring Up To Date, Make, Run, or Debug command to update the browser
database.

3. Open the Browser Contents window, as explained in Table 15.5.

4. Select a category from the Category list pop-up.

The symbol information for the selected category appears in alphabetical order in the
Symbols list.

Symbols Window
The Symbols window displays information from project browser databases. With the
browser enabled, the IDE generates a browser database for a project during the build
process.

The Symbols window displays symbols that have multiple definitions in the browser
database. For example, the window displays information about multiple versions of
overridden functions in object-oriented code.

Figure 15.4 shows the Symbols window. Table 15.5 explains the items in the window.

Table 15.5 Opening Browser Contents Window

On this host… Do this…

Windows Select View > Browser Contents

Macintosh Select Window > Browser Contents

Solaris Select Window > Browser Contents

Linux Select Window > Browser Contents
171IDE 5.7 User’s Guide

Using Other Browser Windows
Symbols Window
Figure 15.4 Symbols Window

Opening the Symbols Window

Use the Symbols window to list all implementations, whether overridden or not, of any
symbol that has multiple definitions. You can access the Symbols window by using a
contextual menu.

Table 15.6 Symbols Window Items

Item Explanation

Symbols toolbar Provides one-click access to common browser commands and
class-filtering commands.

Symbols pane Displays a list of all symbols with multiple declarations.

Source pane Displays the source code for the currently selected item.
172 IDE 5.7 User’s Guide

Using Other Browser Windows
Symbols Window
1. Open a contextual menu, as explained in Table 15.7.

2. Select Find all implementations of from the contextual menu that appears.

3. The Symbols window opens.

Symbols toolbar
Most of the Symbol toolbar items are identical to those in the Class Browser Window.

Symbols pane
The Symbols pane lists symbols with multiple definitions in the browser database. Select
a symbol from the list to view its definition in the Source pane.

Source pane
The Source pane used in the Symbols window is identical to the one used by the Class
Browser Window. See Source pane for more details.

Table 15.7 Opening Symbols Window

On this host… Do this…

Windows Right-click the symbol name.

Macintosh Control-click the symbol name.

Solaris Click and hold on the symbol name.

Linux Click and hold on the symbol name.
173IDE 5.7 User’s Guide

Using Other Browser Windows
Symbols Window
174 IDE 5.7 User’s Guide

16
Using Browser Wizards

When you create a new class, member function, or data member in the IDE, you use
browser wizards. These wizards provide the steps to help you complete the process.

This chapter provides information on these wizards:

• New Class Wizard

• The New Member Function Wizard

• The New Data Member Wizard

NOTE Most wizard pages contain default settings. To accept all current settings in the
wizard, click Finish in any screen. The wizard displays a summary of all
current settings for the new project. Click Generate to accept the current
settings and create the new item, or click Cancel to return to the wizard to
modify settings.

New Class Wizard
Figure 16.1 shows the New Class wizard Name and Location page. Use this page to
specify the name, declaration, and location for a new class. Click Finish in any screen to
apply default values to remaining parameters to complete the process. The New Class
wizard creates the files that define the class.
175IDE 5.7 User’s Guide

Using Browser Wizards
New Class Wizard
Figure 16.1 New Class Wizard Name, Location

Using the New Class Wizard

To use the New Class Wizard, follow these steps:

1. Open the Class Browser window, as Table 16.1 explains.

2. Select Browser > New Class.

Table 16.1 Opening Class Browser Window

On this host... Do this...

Windows Select View > Class Browser

Macintosh Select Window > Class Browser

Solaris Select Window > New Class Browser

Linux Select Window > New Class Browser
176 IDE 5.7 User’s Guide

Using Browser Wizards
New Class Wizard
NOTE You can also click the New Item icon in the Class Browser window to
create a new class.

3. In the New C++ Class wizard, enter Name and Location information:

a. Class Name—Enter a name for the class in this field.

b. Declaration File—This menu lets you specify whether the file is a New File,
which is a new declaration file, or Relative to class, which is a declaration that
depends on an existing file in the project.

If you choose the New File option, type in the path where you want to save the file.
Alternatively, click Set next to the field to choose the path in which to save the file.

If you choose the Relative to class option, select Before or After to establish the
order of the new class in relation to existing classes. In the field next to the Before
and After drop-down selection, type the name of the class you want to relate to the
new class. Alternatively, click Set next to this field, type the name of a class in the
window that opens, and then click Select.

NOTE If you want to use a separate file to define the members of the new class, type
the path to the separate file in the field below the Use separate file for
member definitions checkbox. Alternatively, choose Existing to use a
standard dialog box to select the file. To create a new, separate file, choose
New and save the new file to a location on your hard disk.

4. Click Next. The Base Classes and Methods page (Figure 16.2) appears.
177IDE 5.7 User’s Guide

Using Browser Wizards
New Class Wizard
Figure 16.2 New Class Wizard Base Class, Methods

5. Enter Base Classes and Methods information.

Enter a list of base classes for the new class:

a. Access—From this drop-down menu, choose an access type, Public, Protected, or
Private, for the constructor and destructor.

b. Constructor parameters—Enter a list of parameters for the constructor.

c. Virtual destructor—Click this checkbox to create a virtual destructor for the new
class.

d. As an option, you can enter the required namespaces for the base classes and the
constructor parameters in the field labeled Namespaces required for the base
classes and constructor parameters.

Or,

If needed, you can specify the base classes and constructor parameters.

6. Click Next. The Include Files page (Figure 16.3) appears.
178 IDE 5.7 User’s Guide

Using Browser Wizards
New Class Wizard
Figure 16.3 New Class Wizard Include Files

7. Enter Include Files information.

Specify additional header #include files for the new class:

a. Include files that will automatically be added for base classes—This field
shows you a list of #include files that the IDE automatically adds to find the base
classes.

b. Additional header include files—Enter a list of other include files for the new
class in addition to those in the previous field. Separate each file in the list with a
comma.

8. Click Next. The Targets page (Figure 16.4) appears.
179IDE 5.7 User’s Guide

Using Browser Wizards
The New Member Function Wizard
Figure 16.4 New Class Wizard Targets

9. Enter Targets information:

Select the checkbox next to the build target’s name in the list to add the class files to a
specific build target.

10. Click Finish.

Review the settings summary.

11. Click Generate.

The New Member Function Wizard
Figure 16.5 shows the New Member Function wizard Member Function Declaration
page. Use this page to specify the name, return type, and parameters for a new member
function. Enter additional information in the wizard fields to refine the function definition.
180 IDE 5.7 User’s Guide

Using Browser Wizards
The New Member Function Wizard
Figure 16.5 New Member Function Wizard

Using the New Member Function Wizard

To use the New Member Function wizard, follow these steps:

1. Open the Class Browser window, as Table 16.2 explains.

2. Select Browser > New Member Function.

Table 16.2 Opening Class Browser Window

On this host... Do this...

Windows Select View > Class Browser

Macintosh Select Window > Class Browser

Solaris Select Window > New Class Browser

Linux Select Window > New Class Browser
181IDE 5.7 User’s Guide

Using Browser Wizards
The New Member Function Wizard
3. In the New C++ Member Function window, enter the Member Function
Declaration.

a. Name—Type a name for the member function.

b. Return Type—Enter an appropriate function return type.

c. Parameters—Type a list of function parameters.

d. Namespaces required for parameters (optional)—Type a list of namespaces
required for parameters.

4. Click Next. The File Locations page (Figure 16.6) appears.

Figure 16.6 New Member Function Wizard File Locations

5. Enter Member Function File Locations and Include Files information.

6. Click Finish.

7. Review settings summary, then click Generate.
182 IDE 5.7 User’s Guide

Using Browser Wizards
The New Data Member Wizard
The New Data Member Wizard
Figure 16.7 shows the New Data Member wizard Declaration page. Use this page to
define the new data-member declaration, and to specify new data member file locations.
The wizard offers additional options to further define the function.

Figure 16.7 New Data Member wizard

Using the New Data Member Wizard

To use the New Data Member wizard, follow these steps:

1. Open the Class Browser window, as Table 16.3 explains.

Table 16.3 Opening Class Browser Window

On this host... Do this...

Windows Select View > Class Browser

Macintosh Select Window > Class Browser
183IDE 5.7 User’s Guide

Using Browser Wizards
The New Data Member Wizard
2. Select Browser > New Data Member.

3. In the New C++ Data Member window, enter the Name, Type, Namespaces
required for type (optional), Initializer, and Modifiers.

a. Name—Type a name for the data member in this field.

b. Type—Enter an appropriate data-member type in this field.

c. Namespaces required for type (optional)—(Optional) Enter a list of namespaces
required for the type in the Type field. A sample namespace
is std.

d. Initializer—(Optional) Enter an initial value for the data member in this field.
Sample initializers are 100 and inConstructorParameterName.

e. Modifiers—Select the access level and type for the new data member.

4. Click Next. The File Locations page appears.

5. Specify Data Member File Locations.

This section lets you specify file locations associated with the new member functions,
including these fields: Declaration, Definition, Include file automatically added for
member type, and Additional header include files.

a. Declaration—This field shows you the data member’s declaration file location.

b. Definition—This field is not available in this wizard.

c. Include file automatically added for member type—This field indicates whether
an include file will be automatically added for the data-member type.

d. Additional header include files—Enter in this field a list of other include files for
the new data member, in addition to the file listed in the previous field. Example
files are <string> and YourHeader.h.

6. Click Finish.

7. Review settings summary, then click Generate.

Solaris Select Window > New Class Browser

Linux Select Window > New Class Browser

Table 16.3 Opening Class Browser Window (continued)

On this host... Do this...
184 IDE 5.7 User’s Guide

V

Debugger

This section contains these chapters:

• Working with the Debugger

• Manipulating Program Execution

• Working with Variables

• Working with Memory

• Working with Debugger Data

• Working with Hardware Tools

• Profiler
185IDE 5.7 User’s Guide

186 IDE 5.7 User’s Guide

17
Working with the Debugger

This chapter explains how to work with the debugger in the CodeWarrior™ IDE to control
program execution. The main component of the debugger is the Thread window, which
shows these items:

• Common debugging controls—step, kill, start, and stop program execution

• Variable information—see the variables in the executing code, their values, and their
addresses

• Source code—see the source code under debugger control

This chapter consists of these sections:

• About the Debugger

• About Symbolics Files

• Thread Window

• Common Debugging Actions

• Symbol Hint

• Contextual Menus

• Multi-Core Debugging

• External Builds Support

About the Debugger
A debugger controls program execution and shows the internal operation of a computer
program. Use the debugger to find problems while the program executes. Also use the
debugger to observe how a program uses memory to complete tasks.

The CodeWarrior debugger provides these levels of control over a computer program:

• Execution of one statement at a time

• Suspension of execution after reaching a specific point in the program

• Suspension of execution after changing a specified memory value

After the debugger suspends program execution, use various windows to perform these
tasks:

• View the function-call chain
187IDE 5.7 User’s Guide

Working with the Debugger
About Symbolics Files
• Manipulate variable values

• View register values in the computer processor

About Symbolics Files
A symbolics file contains debugging information that the IDE generates for a computer
program. The debugger uses this information to control program execution. For example,
the debugger uses the symbolics file to find the source code that corresponds to the
executing object code of the computer program.

Symbolics files contain this information:

• Routine names

• Variables names

• Variable locations in source code

• Variable locations in object code

The IDE supports several types of symbolics files. Some programs generate separate
symbolic files, while others do not. For example, when you use CodeView on Windows,
the IDE places the symbolics file inside the generated binary file.

Thread Window
The debugger suspends execution of processes in a computer program. The Thread
window displays information about a suspended process during a debug session.

Use the Thread window to perform these tasks:

• View the call chain for a routine

• View routine variables, both local and global

• View a routine in terms of its source code, assembly code, or a mix of both types of
code

Figure 17.1 shows the Thread window. Table 17.1 explains the items in the window.
188 IDE 5.7 User’s Guide

Working with the Debugger
Thread Window
Figure 17.1 Thread Window
189IDE 5.7 User’s Guide

Working with the Debugger
Thread Window
Table 17.1 Thread Window Items

Item Icon Explanation

Debug / Run
/ Resume
button

Click to perform these tasks:

• Continue execution up to the next
breakpoint, watchpoint, or
eventpoint

• Run the program until it exits

• Continue execution of a currently
stopped program

Stop button Click to stop (pause) program execution.

Kill button Click to terminate program execution and
close the Thread window.

Step Over
button

Click to execute the current line, including
any routines, and proceed to the next
statement.

Step Into
button

Click to execute the current line, following
execution inside a routine.

Step Out
button

Click to continue execution to the end of the
current routine, then follow execution to the
routine’s caller.

Breakpoints
button

Click to open the Breakpoints window.

Expressions
button

Click to open the Expressions window.

Symbolics
button

Click to open the Symbolics window.

Pane
Expand box

Click to enlarge the pane to fill
the window.

Pane
Collapse box

Click to reduce an expanded pane to its
original size.
190 IDE 5.7 User’s Guide

Working with the Debugger
Thread Window
Pane resize
bar

Drag to resize the panes on either side of
the bar.

Stack pane Shows the current routine calling chain, with
the most current routine name at the bottom

Variables
pane

Shows local and global variables that the
current routine uses.

Variables
Pane Listing
button

Click this icon to switch among these
display states:

• All—show all local and global
variables in the code

• Auto—show only the local
variables of the routine pointed to
by the current-statement
arrow

• None—show no variables. Use
this display state to improve
stepping performance for slow
remote connections

Source pane
disclosure
triangle

Click to show or hide the Source pane.

Source pane Shows the executing source code. This
pane operates the same way as an editor
window, however, you cannot edit the
contents of the pane or use pane-splitter
controls.

Source File
button

Click to edit the contents of the Source pane
in an editor window.

Current-
statement
arrow

Points to statement that debugger will
execute next.

Dash Appears to left of each line at which you can
set a breakpoint or eventpoint. Click the
dash to set a breakpoint on that line.

Table 17.1 Thread Window Items (continued)

Item Icon Explanation
191IDE 5.7 User’s Guide

Working with the Debugger
Common Debugging Actions
Common Debugging Actions
This section explains how to perform common debugging actions that correct source-code
errors, control program execution, and observe memory behavior:

• Start the debugger

• Step into, out of, or over routines

• Stop, resume, or kill program execution

• Run the program

• Restart the debugger

Starting the Debugger

Use the Debug command to begin a debugging session. The debugger takes control of
program execution, starting at the main entry point of the program.

Select Project > Debug or click the Debug button (shown at left) to
start the debugger.

After you start the debugging session, the IDE opens a new Thread window.

Functions list
box

Click to show a list of functions declared in
the file. Select a function to highlight it in the
Source pane.

Line and
Column
button

Shows the current line and column number
of the text-insertion cursor. Click to specify
a line to show in the Source pane.

Source list
box

Click to specify how to display source code
in the Source pane:

• Source—programming-language
statements appear exclusively in
the pane

• Assembler—assembly-language
instructions appear exclusively in
the pane

• Mixed—each programming-
language statement shows its
corresponding assembly-
language instructions

Table 17.1 Thread Window Items (continued)

Item Icon Explanation
192 IDE 5.7 User’s Guide

Working with the Debugger
Common Debugging Actions
NOTE Some projects require additional configuration before the debugging session
can begin. The IDE might prompt you for permission to perform this
configuration automatically.

Stepping Into a Routine

Use the Step Into command to execute one source-code statement at a time and follow
execution into a routine call.

Select Debug > Step Into or click the Step Into button
to step into a routine.

After the debugger executes the source-code statement, the current-statement arrow
moves to the next statement determined by these rules:

• If the executed statement did not call a routine, the current-statement arrow moves to
the next statement in the source code.

• If the executed statement called a routine, the current-statement arrow moves to the
first statement in the called routine.

• If the executed statement is the last statement in a called routine, the current-
statement arrow moves to the statement that follows the calling routine.

Stepping Out of a Routine

Use the Step Out command to execute the rest of the current routine and stop program
execution after the routine returns to its caller. This command causes execution to return
up the calling chain.

Select Debug > Step Out or click the Step Out button
to step out of a routine.

The current routine executes and returns to its caller, then program execution
stops.

Stepping Over a Routine

Use the Step Over command to execute the current statement and advance to the next
statement in the source code. If the current statement is a routine call, program execution
continues until reaching one of these points:

• the end of the called routine

• a breakpoint
193IDE 5.7 User’s Guide

Working with the Debugger
Common Debugging Actions
• a watchpoint

• an eventpoint that stops execution

Select Debug > Step Over or click the Step Over button to
step over a routine.

The current statement or routine executes, then program execution stops.

Stopping Program Execution

Use the Break or Stop command to suspend program execution during a
debugging session.

Select Debug > Break, Debug > Stop, or click the Stop button to
stop program execution.

The operating system surrenders control to the debugger, which stops
program execution.

Resuming Program Execution

Use the Resume command to continue executing a suspended debugging session. If the
debugging session is already active, use this command to switch view from the Thread
window to the executing program.

Select Project > Resume or click the Debug button to
resume program execution.

The suspended session resumes, or the view changes to the running program.

NOTE The Resume command appears only for those platforms that
support it. If your platform does not support this command, you
must stop the current debugging session and start a new session.

Killing Program Execution

Use the Kill command to completely terminate program execution and end the debugging
session. This behavior differs from stopping a program, as stopping temporarily suspends
execution.

Select Debug > Kill or click the Kill button to
kill program execution.

The debugger terminates program execution and ends the debugging session.
194 IDE 5.7 User’s Guide

Working with the Debugger
Symbol Hint
Running a Program

Use the Run command to execute a program normally, without debugger control.

Select Project > Run or click the Run button to
begin program execution.

The debugger does not control program execution as the program runs.

Restarting the Debugger

Use the Restart command after stopping program execution. The debugger goes back to
the beginning of the program and begins execution again. This behavior is equivalent to
killing execution, then starting a new debugging session.

Select Debug > Restart to restart the debugger.

Symbol Hint
The symbol hint shows information about variable values. This information appears
automatically while the debugger is active. Figure 17.2 shows such a symbol hint.

Select the Show variable values in source code option in the Display Settings preference
panel to use the symbol hint.

Figure 17.2 Symbol Hint

Toggling the Symbol Hint

Turn on the symbol hint to view information about program variables in source views.

1. Click Edit > Preferences.

The IDE Preferences window appears.

The symbol hint shows the current variable
195IDE 5.7 User’s Guide

Working with the Debugger
Contextual Menus
2. Select Display Settings in the IDE Preference Panels list.

3. Check or clear the Show variable values in source code checkbox.

Check the checkbox to use the symbol hint. Clear the checkbox to stop using the
symbol hint.

4. Click Apply or Save to confirm your changes to the preference panel.

5. Close the IDE Preferences window.

Using the Symbol Hint

During a debugging session, use the symbol hint to view information about
program variables.

To use the symbol hint, rest the cursor over a variable in a source view. After a brief
pause, the symbol hint appears and shows the current variable value.

Contextual Menus
Contextual menus provide shortcuts to frequently used menu commands. The available
menu commands change, based on the context of the selected item.

Sample uses of contextual menus for debugging include:

• changing the format of variables displayed in variable panes

• manipulating breakpoints and the program counter in source panes

• viewing memory in separate windows

TIP Experiment using the contextual menu in various IDE windows to discover
additional features.

Figure 17.3 shows a sample contextual menu in a source view.
196 IDE 5.7 User’s Guide

Working with the Debugger
Multi-Core Debugging
Figure 17.3 Contextual menus

Using Contextual Menus

Use contextual menus to apply context-specific commands to selected items. Right-click,
Control-click, or click and hold on an item to open a contextual menu for that item. The
contextual menu appears, displaying menu commands applicable to the selected item.

Multi-Core Debugging
The IDE allows simultaneous debugging of multiple projects. This feature provides multi-
core debugging capability for some embedded processors. By configuring each project to
operate on a single core, the IDE can debug multiple cores by debugging multiple projects.

Configuring multi-core debugging involves these tasks:

• configuring specific target settings for each project

• for some cores, specifying a configuration file for initializing multi-core debugging

For more information, see the Targeting documentation.
197IDE 5.7 User’s Guide

Working with the Debugger
Data Viewer Plugins
Data Viewer Plugins
Data Viewers are plugins that include an user interface to show a custom view of data.
These plugins are often platform specific. Data editors are data viewers that also let you
modify and write data.

The IDE will keep a registry of plugins that can view particular types. The plugins will
register themselves with the IDE and indicate which formats and platforms they support.
When a variable or memory address is selected, you can choose the plugin from the Data
menu.

A Data Viewer plugin may also designed without a custom user interface. This type of
viewer would override the built in debugger methods of showing a variable value as text
and parsing an edited value back into variable data.

External Builds Support
The IDE performs these tasks on external makefiles:

• Build

• Debug

• File Management in Project Manager window

• Source Browsing

• Error Lookup

The IDE can build an external makefile and debug its output. A linker plugin will enable
the IDE to manage a command line and targets associated with a makefile. The command
line is executed when a build step is initiated. The linker plugin will also supply the
executable to use for debugging.

The linker plugin will provide a preference panel named External Build that is used to
configure a target. The preference panel provides text fields for you to configure the
command line for the target (which will enable building), specify the working directory
and the output file used to launch a debugging session, and the debug platform.

The linker plugin is generic so that it can be used regardless of the target CPU and OS.
The list of available debugger preference panels will be updated by the IDE when you
select the debug platform.

Figure 17.4 shows the External Build Target preference panel.
198 IDE 5.7 User’s Guide

Working with the Debugger
External Builds Support
Figure 17.4 External Build Target Panel

Use this panel to enter the following information:

• Build command line to be executed in the build step

The command line will be sent to the OS shell and will contain all parameters and/or
switches that are necessary for proper building of the make file.

• Build directory in which command line will be executed.

• Output file name—Executable to be launched in the debug step. The file will be
relative to the output directory specified in the Target Settings preference panel.

• Debug platform—The debugger platform represents the combination of OS and CPU
that your build is targeting. “Unspecified/Remote debugging” is the default, which
indicates you have not specified a debug platform. In most cases, not specifying a
platform will result in not being able to debug. However, some platforms may allow
debugging if no additional debugger preference panel is used. If only one platform
entry exists with the “Unspecified” option, then it will become the default entry.

After the IDE converts the makefile into a CodeWarrior project, source files can be added
in the project manager window. Files that appear in the project manager will be parsed by
the language parser and will supply Source Browsing information, such as code
completion.

When a build step is initiated, the linker plugin will gather output after the command line
begins executing. Output is directed to the IDE and displayed in a read-only Build Output
199IDE 5.7 User’s Guide

Working with the Debugger
External Builds Support
Window. A build output window, such as Figure 17.5, is displayed for each target. The
build output window can be displayed manually by selecting the menu command View >
Build Output (Windows) or Window > Build Output (Linux/Solaris/Mac). This
command is enabled for targets that use the external build linker.

Figure 17.5 Build Output Window

If multiple build steps are performed on the same target, the output from each build step
will be appended to the build output window. Each block of output will be separated by “-
---Build started----” and “----Done----” tags.

The build output window will allow users to navigate directly to the location of a
compilation error. Double-click a line that contains an error message or press Enter when
the cursor is in the line. If the IDE determines that a valid error message exists on the
selected line, the source file is opened to the line on which the error occurred.

Click the right mouse button in the build output window to display a context menu.

• The Copy command will copy selected text to the clipboard. If no text is selected
then the line that contains the cursor will be copied.

• The Clear All command will clear contents of output window.

• The Go To Error command will navigate to the error location. This is identical to
double-clicking.

External Build Wizard
Figure 17.6 and Figure 17.7 show the two pages of the External Build wizard. This wizard
prompts you for project-creation information based on external make files. The wizard
collects data about the make file and creates a CodeWarrior project with a single target.
The target is then configured to build the user-specified make file.
200 IDE 5.7 User’s Guide

Working with the Debugger
External Builds Support
The wizard can be launched by selecting File > New... and selecting External Build
Wizard. The New... dialog will collect the name and location of the project before
launching the wizard.

Figure 17.6 External Build Wizard Page 1
201IDE 5.7 User’s Guide

Working with the Debugger
External Builds Support
Figure 17.7 External Build Wizard Page 2

If the Output filename entry is blank, you can still finish the wizard, but no debugging can
be done until you enter an output file in the External Build target panel. You can also
finish the wizard if the Debug platform choice is set to “Unspecified”. Although, no
debugging can be performed until you specify a debug platform in the External Build
target panel.

Completing the wizard will generate a new CodeWarrior IDE project and configure it for
use with the external make file. The wizard will automate these tasks:

• Create project with single target named “External makefile”

• Set Linker to external make file linker

• Define settings in External Build target panel based on data collected from wizard
202 IDE 5.7 User’s Guide

18
Manipulating Program
Execution

This chapter explains how to use breakpoints, watchpoints, and eventpoints to manipulate
execution of your program in the CodeWarrior™ IDE:

• Breakpoints—halt program execution on a line of source code that you specify. You
can set a breakpoint that always halts program execution, or you can set a breakpoint
that halts program execution if a condition that you specify is true.

• Eventpoints—perform a task during program execution on a line of source code that
you specify. Eventpoints can play sounds, run scripts, log data, and perform other
operations.

• Watchpoints—halt program execution after a location in memory is accessed

• Special breakpoints—these internal breakpoints halt program execution in special
cases, such as halting program execution at the main() function or for a C++
exception.

After you set these items in your source code, you start a debugging session to use them.
As program execution arrives at each of these items, the debugger can halt execution,
perform a task, or update data.

This chapter consists of these sections:

• Breakpoints

• Eventpoints

• Watchpoints

• Special Breakpoints

Breakpoints
You use breakpoints to halt program execution on a specific line of source code. After you
set a breakpoint at a key point in the program, you can halt its execution, examine its
current state, and check register and variable values. You can also change values and alter
the flow of normal program execution. Setting breakpoints helps you debug your program
and verify its efficiency.

You can use these types of breakpoints:
203IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
• regular breakpoints—halt program execution

• conditional breakpoints—halt program execution after meeting a condition that you
specify

• temporary breakpoints—halt program execution and then remove the breakpoint that
caused the halt

You can also create breakpoint templates to simplify the process of setting complex
breakpoints. A breakpoint template has all the properties of a breakpoint, except for its
location in source code. After you define a breakpoint template, you can have the
debugger use the template as the basis for each breakpoint you set in your source code.

Breakpoints have enabled and disabled states. Table 18.1 explains these states.

Breakpoints Window
Use the Breakpoints window to set breakpoints. Figure 18.1 shows this window. Table
18.2 explains items in the window.

You can change the sort order of items in the Breakpoints window by clicking the column
titles. Click the sort order button next to the rightmost column title to toggle between
ascending and descending sort order.

Table 18.1 Breakpoint States

State Icon Explanation

Enabled Indicates that the breakpoint is currently enabled. The
debugger halts program execution at an enabled
breakpoint. Click the icon to disable the breakpoint.

Disabled Indicates that the breakpoint is currently disabled. The
debugger does not halt program execution at a
disabled breakpoint. Click the icon to enable the
breakpoint.
204 IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
Figure 18.1 Breakpoints Window

Table 18.2 Breakpoints Window Items

Item Icon Explanation

Create
Breakpoint
Template

Click to create a new breakpoint template
in the Templates page.

You can create complex breakpoints
based on properties you define in the
breakpoint template.

Create
Breakpoint
Group

Click to create a new group in the Groups
page of the Breakpoints window.

Clicking this button is equivalent to
clicking Breakpoints > Create
Breakpoint Group.

Click an icon in this column to
disable or enable the Condition
associated with the item. Shows projects that the item

affects (when it affects more
than one project).

Click an icon in this column
to disable or enable a group
205IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
Set Default
Breakpoint
Template

Click to designate the selected item in the
Templates page as the default breakpoint
template. The debugger uses this
template as the basis for creating new
breakpoints.

Clicking this button is equivalent to
clicking Breakpoints > Set Default
Breakpoint Template with the
Breakpoints window frontmost.

Rename
Breakpoint

Click to rename the selected item in the
Breakpoints window.

Clicking this button is equivalent to
clicking Breakpoints > Rename
Breakpoint with the Breakpoints window
frontmost.

Breakpoint
Properties

Click to view more information about the
selected breakpoint, such as name,
associated condition, and number of hits
during execution.

Clicking this button is equivalent to
clicking Breakpoints > Breakpoint
Properties with the Breakpoints window
frontmost.

Groups tab Click to display the Groups page. This
page lets you work with breakpoints,
eventpoints, watchpoints, and internal
breakpoints.

Instances tab Click to display the Instances page. This
page lets you set breakpoints,
eventpoints, and watchpoints on a per-
thread or per-process basis.

Templates tab Click to display the Templates page. This
page lets you define breakpoint templates
and specify a default breakpoint template.

Table 18.2 Breakpoints Window Items (continued)

Item Icon Explanation
206 IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
Opening the Breakpoints Window

Use the Breakpoints window to view a list of breakpoints currently set in
your projects.

To open the Breakpoints window, click View > Breakpoints or Window > Breakpoints
Window.

NOTE Double-click a breakpoint in the Breakpoints window to display its associated
source-code line in an editor window.

Saving the Contents of the Breakpoints Window

You can save the contents of the Breakpoints window. This feature is useful for saving
sets of breakpoint data, then later re-opening those sets.

To save contents of the Breakpoints window, click File > Save or File > Save As.
Clicking File > Save As lets you specify the name and path to save the file that stores the
contents.

Working with Breakpoints
This section explains how to work with breakpoints in your source code and in the
Breakpoints window.

Setting a Breakpoint

Use the Set Breakpoint command to set a breakpoint. A regular breakpoint suspends
program execution. The debugger does not execute the line of source code that contains
the regular breakpoint.

Active These items affect program execution.
Click the icon to make inactive.

Inactive These items do not affect program
execution. Click the icon to make active.

Table 18.2 Breakpoints Window Items (continued)

Item Icon Explanation
207IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
The default breakpoint template in the Templates page of the Breakpoints window
determines the type of breakpoint that the debugger sets. The Auto Breakpoint default
breakpoint template defines a breakpoint that halts program execution at a line of source
code. You can change the default breakpoint template to a breakpoint template that you
specify.

Figure 18.2 shows some source code and the Breakpoints column to the left of the source
code. Breakpoint icons appear in this column.

Figure 18.2 Setting Breakpoints

To set a breakpoint at a line of source code, click the Breakpoints column next to that line.
The active breakpoint icon appears in the column. After you debug the project, the
debugger halts program execution at the line that has the active breakpoint icon.

TIP You can also set a breakpoint for selected results in the Search Results window
and for selected items in the Symbolics window.

If you debug your project first, dash icons appear in the Breakpoints column next to
source-code lines at which you can set breakpoints. Click a dash icon to set a breakpoint at
that line. The dash changes to an active breakpoint icon.

NOTE Setting a breakpoint in a file affects execution of all build targets that include
that file.

Viewing Breakpoint Properties

After you set a breakpoint, you can view and modify its properties. Table 18.3 explains
breakpoint properties.

To view properties for a breakpoint, select its name in the Breakpoints window and click
Breakpoints > Breakpoint Properties.

This icon indicates an active
breakpoint.
This icon indicates an active
breakpoint.

Click the dash icon to set an
active breakpoint at this
line.

Breakpoints column
208 IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
Table 18.3 Breakpoint properties

Property Explanation

Breakpoint Type The type of item, such as Auto Breakpoint.

Serial number The non-persistent serial number that uniquely identifies the item in
the IDE. Use this number to identify the item in scripting languages.
This number is not the same number that the debugger plugins use
to identify the item.

Condition The conditional expression associated with the item. This
conditional expression must evaluate to true in order for the item to
perform its specified action.

Hit Count Displays the number of times that program execution arrived at the
breakpoint before the program stopped.

File-Info The path to the file that contains the item.

Name The name of the item, which appears in the Breakpoints window.
The IDE creates a default name based on the item properties, but
you can change this name to a more meaningful one. Use this name
to identify the item in scripting languages.

Original Process The persistent identifier for the active process at the time you set the
item. If information about the active process was not available at the
time you set the item, this identifier shows the process at the time
the item affected program execution.

Original-Target The path to the build target that contains the item.

Times Hit The number of times that this item affected program execution.

Times Left The number of times remaining for this item to affect
program execution.

Thread The thread in which the item takes effect.

Hardware The hardware on which to use the item. For example, set this
property to Prefer Hardware to specify that the breakpoint is a
hardware breakpoint.
209IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
Disabling a Breakpoint

Disable a breakpoint to prevent it from affecting program execution. The disabled
breakpoint remains at the source-code line at which you set it, so that you can enable it
later. Disabling the breakpoint is easier than clearing it and re-creating it from scratch.

To disable a breakpoint, select its name in the Breakpoints window, or click the cursor on
the source-code line that contains the breakpoint, and click Debug >
Disable Breakpoint.

The enabled breakpoint icon changes to a disabled breakpoint icon (shown at left).
The disabled breakpoint icon indicates that the breakpoint does not halt program
execution.

Enabling a Breakpoint

Enable a breakpoint to have it halt program execution. Enabling a breakpoint that you
previously disabled is easier than clearing it and re-creating it from scratch.

To enable a breakpoint, select its name in the Breakpoints window, or click the cursor on
the source-code line that contains the breakpoint, and click Debug >
Enable Breakpoint.

The disabled breakpoint icon changes to an enabled breakpoint icon (shown at left).
The enabled breakpoint icon indicates that the breakpoint halts
program execution.

Clearing a Breakpoint

Use the Clear Breakpoint command to clear a breakpoint.

To clear a breakpoint in source code, click the cursor on the source-code line that contains
the breakpoint and click Debug > Clear Breakpoint. You can also click the active
breakpoint icon in the Breakpoints column to clear the breakpoint.

To clear a breakpoint in the Breakpoints window, select its name from the list in the
Groups, Instances, or Templates pages and press Delete.

Clearing All Breakpoints

Use the Clear All Breakpoints command to clear all breakpoints from your projects.
210 IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
To clear all breakpoints, click Debug > Clear All Breakpoints. The Breakpoints
window reflects your changes.

Setting a Temporary Breakpoint

Use the Temporary Breakpoint command to set temporary breakpoints. Unlike a regular
breakpoint that halts execution each time you debug a project, a temporary breakpoint
halts execution only once. The debugger removes the temporary breakpoint after halting
program execution. Setting a temporary breakpoint is equivalent to using the Run To
Cursor command.

To set a temporary breakpoint at a line of source code, Alt-click or Option-click the dash
icon next to that line. The dash icon changes to an active breakpoint icon. After you debug
the project, the debugger halts program execution at the line that has the active breakpoint
icon. After execution halts, the active breakpoint icon reverts to a dash icon.

Setting a Conditional Breakpoint

Use the Condition column of the Breakpoints window to set a conditional breakpoint. A
conditional breakpoint has an associated conditional expression.
The debugger evaluates the expression to determine whether to halt program execution at
that breakpoint.

A conditional breakpoint behaves in two different ways:

• If the expression evaluates to true (a non-zero value), the debugger halts
program execution.

• If the expression evaluates to false (a zero value), program execution continues
without stopping.

Follow these steps to set a conditional breakpoint:

1. Set a breakpoint that you want to associate with a conditional expression.

2. Depending upon operating system, click View > Breakpoints or Window >
Breakpoints Window.

3. In the Groups or Instances pages of the Breakpoints window, find the breakpoint that
you want to associate with a conditional expression.

4. In the Condition column adjacent to a specific breakpoint, double-click to display a
text box in the blank area.

5. Enter an expression in the text box.

During subsequent debugging sessions, the debugger evaluates the expression to
determine whether to halt program execution at the conditional breakpoint.
211IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
NOTE Alternatively, drag-and-drop an expression from a source view or from the
Expression window into the Breakpoints window.

To signal a breakpoint to happen after the nth execution of the instruction, you can enter
the keywords “Hit Count” in the condition text box. For example, enter Hit Count > 5 for
the breakpoint action to occur after the instruction has executed five times.

Setting a Thread-Specific Conditional Breakpoint

The CodeWarrior debugger supports thread-specific breakpoints. Depending on what the
protocol supports, there are several different ways it's supported. You can setup a special
condition on a breakpoint. Enter mwThreadID == threadID, where mwThreadID is
a keyword recognized by the core debugger and threadID is the number that represents the
ID of the thread that you want to stop.

Working with Breakpoint Templates
This section explains how to define breakpoint templates, specify a default template, and
delete templates.

A breakpoint template defines all properties of a breakpoint except for its location in
source code. For example, you can define a breakpoint template that stops execution only
10 times, and only if an associated conditional expression evaluates to false.

The default breakpoint template is the breakpoint template that the debugger uses as the
basis for new breakpoints that you set. For example, if you define a breakpoint template
named Thread Break, you can specify it as the default breakpoint template. After you do
this, the Thread Break template properties apply to all new breakpoints that you set in
your source code.

The initial default breakpoint template is Auto Breakpoint, which defines the regular
breakpoint that halts program execution at a line of source code. You can change the
default breakpoint template from Auto Breakpoint to any of your breakpoint templates.
You can also change the default breakpoint template back to
Auto Breakpoint.

Creating a Breakpoint Template

Use the Templates page of the Breakpoints window to define breakpoint templates. You
define a breakpoint template by using an existing breakpoint as a starting point.

To define a breakpoint template, follow these steps:
212 IDE 5.7 User’s Guide

Manipulating Program Execution
Breakpoints
1. Set a breakpoint in your source code.

2. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

3. Click the Groups tab.

4. Select the name of the breakpoint that you just set.

The debugger gives the breakpoint a default name that includes the name of the file in
which you set the breakpoint and the line at which you set the breakpoint.

5. Click the Create Breakpoint Template button in the toolbar of the
Breakpoints window.

6. Click the Templates tab of the Breakpoints window.

The new breakpoint template appears in this page with the name New Template.

You can rename the breakpoint template by selecting it and clicking Breakpoints >
Rename Breakpoint, or clicking the Rename Breakpoint button in the Breakpoints
window toolbar.

NOTE You cannot rename the Auto Breakpoint template.

Deleting a Breakpoint Template

Use the Templates page of the Breakpoints window to delete breakpoint templates that
you no longer need.

To delete a breakpoint template, follow these steps:

1. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

2. Click the Templates tab of the Breakpoints window.

3. Select the breakpoint template that you want to delete.

4. Click Edit > Delete or Edit > Clear.

NOTE You cannot delete the Auto Breakpoint template, because it defines the
regular breakpoint.
213IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
Specifying the Default Breakpoint Template

Use the Templates page of the Breakpoints window to specify the default breakpoint
template. The debugger uses this template as the basis for creating new breakpoints in
your source code.

The initial default breakpoint template is Auto Breakpoint, which defines the regular
breakpoint. You can specify any one of your breakpoint templates, or Auto Breakpoint,
as the default breakpoint template.

To specify the default breakpoint template, follow these steps:

1. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

2. Click the Templates tab of the Breakpoints window.

3. Select the breakpoint template that you want to specify as the default
breakpoint template.

4. Click Breakpoints > Set Default Breakpoint Template or click the Set Default
Breakpoint Template icon in the Breakpoints window toolbar.

The debugger now uses the breakpoint template that you specified as the basis for creating
new breakpoints in your source code.

Eventpoints
You use eventpoints to perform a task when program execution arrives at a specific line of
source code or when an associated conditional expression evaluates to true. You can set an
eventpoint that performs a task such as running a script, playing a sound, or collecting
trace data. An eventpoint is equivalent to a breakpoint that performs a task other than
halting program execution.

You can use several kinds of eventpoints. The Breakpoints column represents these
eventpoints with various icons. You can set more than one eventpoint on the same line of
source code. The Breakpoints column shows all eventpoints that you set for each line.
Table 18.4 explains the eventpoints and shows their corresponding icons.
214 IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
You can also create breakpoint templates to simplify the process of setting complex
eventpoints. Creating a breakpoint template for an eventpoint is nearly identical to
creating a breakpoint template for a breakpoint. The difference is using an eventpoint
instead of a breakpoint as the starting point for creating the breakpoint template.

Eventpoints have enabled and disabled states. Table 18.5 explains these states.

Table 18.4 Eventpoints

Eventpoint Icon Explanation

Log Point Logs or speaks a string or expression and records
messages to the Log window

Pause Point Pauses execution long enough to refresh
debugger data

Script Point Runs a script, application, or other item

Skip Point Skips execution of a line of source code

Sound Point
(Windows OS)

Plays a sound

Trace Collection Off Stops collecting trace data for the Trace window

Trace Collection On Starts collecting trace data for the Trace window

Table 18.5 Eventpoint States

State Icon Explanation

Enabled See

Table
18.4

Indicates that the eventpoint is currently enabled. The
debugger performs the specified task at an enabled
eventpoint. Click the icon to disable the eventpoint.

Disabled Indicates that the eventpoint is currently disabled. The
debugger does not perform the specified task at a
disabled eventpoint. Click the icon to enable the
eventpoint.
215IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
TIP You can set an eventpoint in the Thread window and for selected variables in the
Symbolics window.

Log Point
A Log Point logs or speaks a string or expression. A Log Point can also record messages
to the Log window. You can configure the message that appears in the log window.

Setting a Log Point

To set a Log Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the Log Point.

2. Click Debug > Set Eventpoint > Set Log Point.

The Log Point Settings window (Figure 18.3) appears.

Figure 18.3 Log Point Settings Window

3. Enter the text of your log message in the Message text box.

4. Check at least one of these checkboxes:

• Log Message—check to have the IDE display your message in a Message window
when program execution reaches the Log Point

• Speak Message (Windows OS)—check to have the IDE use the sound capabilities
of the host operating system to speak the message that you enter in the Message text
box.
216 IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
NOTE (Windows) Install the Speech software development kit (SDK) in order to have
the Speak Message feature work correctly.

• Treat as Expression—check to have the IDE evaluate the text you enter in the
Message text box as an expression. For example, if you enter the name of a variable
in the Message text, the debugger writes the value of that variable in the console
output window.

• Stop in Debugger—check to stop program execution in the debugger

5. Click the OK button to confirm your settings.

Example use: If you want to display the value of a variable each time some code is
executed, set a log point, check the Log Message and Treat as expression boxes and enter
the variable name in the edit box, then click OK.

Clearing a Log Point

To clear a Log Point, follow these steps:

1. Select the Log Point that you want to clear.

Click the cursor on the line of source code that has the Log Point, or select the Log
Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Log Point.

Pause Point
A Pause Point suspends program execution long enough to refresh debugger data. For
example, without setting a pause point, you must wait for the debugger to halt program
execution before it can refresh data. Setting a Pause Point, however, lets you pause the
debugging session to give the debugger time to refresh the data.

Setting a Pause Point

To set a Pause Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Pause Point.

2. Click Debug > Set Eventpoint > Set Pause Point.
217IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
Clearing a Pause Point

To clear a Pause Point, follow these steps:

1. Select the Pause Point that you want to clear.

Click the cursor on the line of source code that has the Pause Point, or select the Pause
Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Pause Point.

Script Point
A Script Point runs a script, application, or other item. After you set a Script Point at a line
of source code, its associated action occurs when program execution arrives at that line.
For example, you can set a Script Point that performs these actions:

• (Windows) execute a file as if you had used a Windows command line

• (Mac OS) launch an AppleScript or application

Setting a Script Point

To set a Script Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Script Point.

2. Click Debug > Set Eventpoint > Set Script Point.

The Script Point Settings window(Figure 18.4) appears.

Figure 18.4 Script Point Settings Window
218 IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
3. Use the list box to specify Commands or Script File.

Specify Commands (Windows) if you intend to enter a command line that executes a
file. Specify Script File if you intend to enter a path to a script file.

4. Enter the text of your Script Point in the text box.

Enter a command line or a path to a script file.

5. Check Stop in Debugger if you want to stop program execution in the debugger.

6. Click the OK button to confirm your settings.

Clearing a Script Point

To clear a Script Point, follow these steps:

1. Select the Script Point that you want to clear.

Click the cursor on the line of source code that has the Script Point, or select the Script
Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Script Point.

Skip Point
A Skip Point prevents the debugger from executing a line of source code. This eventpoint
is useful when you are aware of a line that you need to fix, but would like to go ahead and
debug the rest of the program. You can set a Skip Point at that line and have the debugger
execute the rest of the project without executing that particular line.

NOTE Skip Points do not work with the Java programming language.

Setting a Skip Point

To set a Skip Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the Skip Point.

2. Click Debug > Set Eventpoint > Set Skip Point.

Clearing a Skip Point

To clear a Skip Point, follow these steps:
219IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
1. Select the Skip Point that you want to clear.

Click the cursor on the line of source code that has the Skip Point, or select the Skip
Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Skip Point.

Sound Point (Windows OS)
A Sound Point is an audible alert. You can set a Sound Point so that when you step or run
through code, the IDE plays a sound when program execution arrives at the line that has a
Sound Point. Unlike a Log Point set to Speak Message, which speaks the message you
specify, the Sound Point plays a simple notification sound.

Setting a Sound Point

To set a Sound Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Sound Point.

2. Click Debug > Set Eventpoint > Set Sound Point.

The Sound Point Settings window (Figure 18.5) appears.

Figure 18.5 Sound Point Settings Window

3. Use the Sound to Play list box to specify the notification sound that you want the IDE
to play when program execution arrives at the Sound Point.

4. Check Stop in Debugger if you want to stop program execution in the debugger.

5. Click the OK button to confirm your settings.
220 IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
Clearing a Sound Point

To clear a Sound Point, follow these steps:

1. Select the Sound Point that you want to clear.

Click the cursor on the line of source code that has the Sound Point, or select the
Sound Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Sound Point.

Trace Collection Off
A Trace Collection Off eventpoint stops the collection of trace data. This eventpoint is
useful when you want trace collection to stop when program execution reaches a line of
source code that you specify.

Setting a Trace Collection Off Eventpoint

To set a Trace Collection Off eventpoint, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Trace Collection Off eventpoint.

2. Click Debug > Set Eventpoint > Set Trace Collection Off.

Clearing a Trace Collection Off Eventpoint

To clear a Trace Collection Off eventpoint, follow these steps:

1. Select the Trace Collection Off eventpoint that you want to clear.

Click the cursor on the line of source code that has the Trace Collection Off
eventpoint, or select the Trace Collection Off eventpoint by name in the Breakpoints
window.

2. Click Debug > Clear Eventpoint > Clear Trace Collection Off.

Trace Collection On
A Trace Collection On eventpoint starts the collection of trace data. This eventpoint is
useful when you want trace collection to start when program execution reaches a line of
source code that you specify.
221IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
Setting a Trace Collection On Eventpoint

To set a Trace Collection On eventpoint, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Trace Collection On eventpoint.

2. Click Debug > Set Eventpoint > Set Trace Collection On.

Clearing a Trace Collection On Eventpoint

To clear a Trace Collection On eventpoint, follow these steps:

1. Select the Trace Collection On eventpoint that you want to clear.

Click the cursor on the line of source code that has the Trace Collection On eventpoint,
or select the Trace Collection On eventpoint by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Trace Collection On.

Working with Eventpoints
This section explains how to work with eventpoints in your source code and in the
Breakpoints window.

Viewing Eventpoint Properties

After you set an eventpoint, you can view and modify its properties.

To view properties for an eventpoint, select its name in the Breakpoints window and click
Breakpoints > Breakpoint Properties.

Disabling an Eventpoint

Disable an eventpoint to prevent it from performing its specified action. The disabled
eventpoint remains at the source-code line at which you set it, so that you can enable it
later. Disabling the eventpoint is easier than clearing it and re-creating it from scratch.

To disable an eventpoint, follow these steps:

1. Select the eventpoint that you want to disable.

Select the eventpoint by name in the Breakpoints window, or click the cursor on the
source-code line that contains the eventpoint.
222 IDE 5.7 User’s Guide

Manipulating Program Execution
Eventpoints
2. Click Debug > Disable Eventpoint.

The Disable Eventpoint menu appears.

3. From the menu, click the Disable Eventpoint command, where Eventpoint is the type
of eventpoint that you want to disable.

The enabled eventpoint icon changes to a disabled eventpoint icon (shown at left).
The disabled eventpoint icon indicates that the eventpoint does not perform its
specified action.

Enabling an Eventpoint

Enable an eventpoint to have it perform its specified action during program execution.
Enabling an eventpoint that you previously disabled is easier than clearing it and re-
creating it from scratch.

To enable an eventpoint, follow these steps:

1. Select the eventpoint that you want to enable.

Select the eventpoint by name in the Breakpoints window, or click the cursor on the
source-code line that contains the eventpoint.

2. Click Debug > Enable Eventpoint.

The Enable Eventpoint menu appears.

3. From the menu, click the Enable Eventpoint command, where Eventpoint is the type
of eventpoint that you want to enable.

The disabled eventpoint icon changes to its original eventpoint icon (Table 18.4). The
enabled eventpoint icon indicates that the eventpoint will perform its specified action.

Setting a Conditional Eventpoint

Use the Condition column of the Breakpoints window to set a conditional eventpoint. A
conditional eventpoint has an associated conditional expression.
The debugger evaluates the expression to determine whether the eventpoint performs its
specified action.

A conditional eventpoint behaves in two different ways:

• If the expression evaluates to true (a non-zero value), the eventpoint performs its
specified action.

• If the expression evaluates to false (a zero value), the eventpoint does not perform its
specified action.

Follow these steps to set a conditional eventpoint:
223IDE 5.7 User’s Guide

Manipulating Program Execution
Watchpoints
1. Set an eventpoint that you want to associate with a conditional expression.

2. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

3. In the Groups or Instances pages of the Breakpoints window, find the eventpoint that
you want to associate with a conditional expression.

4. Double-click the Condition column in align with the eventpoint.

5. Enter an expression in the Condition text box.

During subsequent debugging sessions, the debugger evaluates the expression to
determine whether the eventpoint performs its specified action.

NOTE Alternatively, drag-and-drop an expression from a source view or from the
Expression window into the Breakpoints window.

Watchpoints
You use watchpoints (sometimes referred to as access breakpoints or memory
breakpoints) to halt program execution when your program reads or writes to a specific
memory location. You can then examine the call chain, check register and variable values,
and step through your code. You can also change values and alter the flow of normal
program execution.

NOTE You cannot set watchpoint on local variable, because the debugger cannot
detect watchpoints for variables stored on the stack or in registers.

You can create breakpoint templates to simplify the process of setting complex
watchpoints. Creating a breakpoint template for a watchpoint is nearly identical to
creating a breakpoint template for a breakpoint. The difference is using a watchpoint
instead of a breakpoint as the starting point for creating the breakpoint template.

Watchpoints have enabled and disabled states. Table 18.6 explains these states.
224 IDE 5.7 User’s Guide

Manipulating Program Execution
Watchpoints
NOTE For most hardware debug targets, you may set a maximum of one watchpoint
at any time. However, different hardware targets may let you set two or more.
Consult your targeting manual for watchpoint information specific to your
target.

Setting a Watchpoint

Use the Set Watchpoint command to set a watchpoint. A watchpoint suspends program
execution when the memory location that you specify changes value.
The debugger does not execute the line of source code that contains the watchpoint.

NOTE The watchpoint implementation differs between CodeWarrior products, and
the steps below may not completely describe your watchpoint setting process.
For example, some products let you specify additional watchpoint parameters
such as whether you are setting a read or a write watchpoint.

To set a watchpoint on a memory range, follow these steps:

1. Click Project > Debug.

A debugging session starts.

2. Click Data > View Memory.

A Memory window appears.

3. Select a range of bytes in the Memory window.

Do not double-click the range of bytes.

Table 18.6 Watchpoint States

State Icon Explanation

Enabled Indicates that the watchpoint is currently enabled. The
debugger halts program execution at an enabled
watchpoint. Click the icon to disable the watchpoint.

Disabled Icon disappears, indicating that the watchpoint is
currently disabled. The debugger does not halt program
execution at a disabled watchpoint. Click the icon to
enable the watchpoint.
225IDE 5.7 User’s Guide

Manipulating Program Execution
Watchpoints
4. Click Debug > Set Watchpoint.

An underline appears beneath the selected range of bytes, indicating that you set a
watchpoint in that range.

TIP You can change the color of the watchpoint underline in the Display Settings
panel of the IDE Preferences window

To set a watchpoint on a variable in the thread window or variable window, follow these
steps:

1. Make the thread window or variable window active.

2. Right-click the variable in the variables pane.

A drop-down menu appears

3. Select Set Watchpoint.

Viewing Watchpoint Properties

After you set a watchpoint, you can view and modify its properties.

To view properties for a watchpoint, select its name in the Breakpoints window and click
Breakpoints > Breakpoint Properties.

Disabling a Watchpoint

Disable a watchpoint to prevent it from affecting program execution. The disabled
watchpoint remains at the memory location at which you set it, so that you can enable it
later.

To disable a watchpoint, select its name in the Breakpoints window, or select the range of
bytes in the Memory window at which you set the watchpoint, and click Debug > Disable
Watchpoint.

The enabled watchpoint icon disappears, which indicates a disabled watchpoint.

Enabling a Watchpoint

Enable a watchpoint to have it halt program execution when its associated memory
location changes value. Enabling a watchpoint that you previously disabled is easier than
clearing it and re-creating it from scratch.
226 IDE 5.7 User’s Guide

Manipulating Program Execution
Watchpoints
To enable a watchpoint, select its name in the Breakpoints window, or select the range of
bytes in the Memory window at which you set the watchpoint, and click Debug > Enable
Watchpoint.

The enabled watchpoint icon appears (shown at left), which indicates an
enabled watchpoint.

Clearing a Watchpoint

Use the Clear Watchpoint command to clear a watchpoint.

To clear a watchpoint in the Memory window, select range of bytes at which you set the
watchpoint and click Debug > Clear Watchpoint.

To clear a watchpoint in the Breakpoints window, select its name from the list in the
Groups or Instances pages and press Delete.

Clearing All Watchpoints

Use the Clear All Watchpoints command to clear all watchpoints from your projects.

To clear all watchpoints, click Debug > Clear All Watchpoints. The Breakpoints
window reflects your changes.

Setting a Conditional Watchpoint

Use the Condition column of the Breakpoints window to set a conditional watchpoint. A
conditional watchpoint has an associated conditional expression.
The debugger evaluates the expression to determine whether to halt program execution at
that watchpoint.

A conditional watchpoint behaves in two different ways:

• If the expression evaluates to true (a non-zero value), the debugger halts
program execution when the memory location associated with the watchpoint
changes value.

• If the expression evaluates to false (a zero value), program execution continues
without stopping.

Follow these steps to set a conditional watchpoint:

1. Set a watchpoint that you want to associate with a conditional expression.

2. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.
227IDE 5.7 User’s Guide

Manipulating Program Execution
Special Breakpoints
3. In the Groups or Instances pages of the Breakpoints window, find the watchpoint that
you want to associate with a conditional expression.

4. Double-click the Condition column adjacent to the watchpoint.

5. Enter an expression in the Condition text box.

During subsequent debugging sessions, the debugger evaluates the expression to
determine whether to halt program execution at the conditional watchpoint.

NOTE Alternatively, drag-and-drop an expression from a source view or from the
Expression window into the Breakpoints window.

Special Breakpoints
Special breakpoints halt program execution for very specific reasons:

• program execution arrives at the beginning of the function main()

• a C++ or Java exception occurs

• an event occurs that the debugger plugin defines as a break event

You cannot change or delete special breakpoints, but you can enable and disable them.

Disabling Special Breakpoints

Disable special breakpoints to prevent them from affecting program execution.

To disable special breakpoints, click the Active icon to the left of the Special group
in the Groups page of the Breakpoints window.

The active icon changes to an inactive icon, which indicates that the special
breakpoints are disabled.

Enabling Special Breakpoints

Enable special breakpoints to have them halt program execution.

To enable special breakpoints, click the Inactive icon (shown at left) to the left of
the Special group in the Groups page of the Breakpoints window.

The inactive icon changes to an active icon, which indicates that the special
breakpoints are enabled.
228 IDE 5.7 User’s Guide

19
Working with Variables

This chapter explains how to work with variables in a CodeWarrior™ IDE debugging
session. The following windows show various types of information about variables.

• Global Variables window—shows information about global and static variables in
your project

• Variable window—shows information for an individual variable in your project

• Expressions window—shows variable values and lets you form calculation
expressions based on those values

This chapter consists of these sections:

• Global Variables Window

• Variable Window

• Expressions Window

Global Variables Window
The Global Variables window shows all global and static variables for each process that
you debug. You can open separate Global Variables windows for each process in the same
build target. Use the window to observe changes in variable values as the program
executes.

Figure 19.1 shows the Global Variables window. Table 19.1 explains the items in the
window.
229IDE 5.7 User’s Guide

Working with Variables
Global Variables Window
Figure 19.1 Global Variables Window

Opening the Global Variables Window

Use the Global Variables window to display global variables declared in a program or
static variables declared in source files that comprise the program.

To open the Global Variables window, select View > Global Variables or Window >
Global Variables Window.

Viewing Global Variables for Different Processes

You can open a separate Global Variables window for each process that the same parent
application creates.

To open the Global Variables window for a particular process, follow these steps:

1. Click Project > Debug.

A debugging session starts.

Table 19.1 Global Variables Window Items

Item Explanation

File Lists source files that declare global or static variables. Click a
source file to view its static variables. Click Global Variables to
view all global variables declared in the program.

Variables Lists variables according to the file selected in the File pane.
Double-click a variable to display it in a separate
Variable window.
230 IDE 5.7 User’s Guide

Working with Variables
Variable Window
2. In the Thread window toolbar, use the Process list box to specify the process that has
the global variables that you want to examine.

3. Click View > Global Variables or Window > Global Variables Window.

Repeat these steps for each process that has global variables that you want to examine.

Variable Window
A Variable window allows manipulation of a single variable or variable hierarchy used in
source code. For a local variable, the window closes after program execution exits the
routine that defines the variable.

Figure 19.2 shows the Variable window.

Figure 19.2 Variable Window

Opening a Variable Window

1. Select a variable in any window pane that lists variables.

2. Open a Variable window:

• Select Data > View Variable, or

• Double-click the variable.

A Variable window appears. Double-click a value to change it.

TIP Use Variable windows to monitor individual variables independently of other
windows. For example, use a Variable window to continue monitoring a variable
that leaves the current scope of program execution in the Thread window.

Alternatively, use a contextual menu to open a variable window, as Table 19.2 explains.
231IDE 5.7 User’s Guide

Working with Variables
Variable Window
Manipulating Variable Formats

You can change the way the Variables window displays data. For example, you can add
labels to variable data so that those labels appear in the Variables window and clarify the
displayed data.

For example, suppose you have the structure that Listing 19.1 defines.

Listing 19.1 Sample Structure Definition

struct Rect {
short top;
short left;
short bottom;
short right;

};

The Variables window might show an instance of the Rect structure like this:

myRect 0x000DCEA8

You can create an XML file that defines a new way to display the structure, as Listing 19.2
shows.

Listing 19.2 Sample Variable Format Definition

<variableformats>
<variableformat>

<osname>osWin32</osname>
<runtimename>runtimeWin32</runtimename>
<typename>Rect</typename>
<expression>

"{T: " + ^var.top +
" L: " + ^var.left +

Table 19.2 Opening a Variable Window by Using a Contextual Menu

On this host… Do this…

Windows Right-click the variable and select View Variable.

Macintosh Control-click the variable and select View Variable.

Solaris Click and hold on the variable, then select View Variable.

Linux Click and hold on the variable, then select View Variable.
232 IDE 5.7 User’s Guide

Working with Variables
Expressions Window
" B: " + ^var.bottom +
" R: " + ^var.right +
"}{H: " + (^var.bottom - ^var.top) +
" W: " + (^var.right - ^var.left) + "}"

</expression>
</variableformat>

</variableformats>

Given this new variable format definition, the Variables window now shows the same
myRect instance like this:

myRect {T: 30 L: 30 B: 120 R: 120}{H: 90 W: 90}

To manipulate variable formats, you place an XML file that defines the new format inside
the VariableFormats directory at

CodeWarrior/Bin/Plugins/Support/VariableFormats/

where CodeWarrior is the path to your CodeWarrior installation.

The IDE reads the XML files in this directory to determine how to display variable data.
Table 19.3 explains the main XML tags that the IDE recognizes.

Expressions Window
The Expressions window (Figure 19.3) helps you monitor and manipulate these kinds of
items:

• global and local variables

• structure members

Table 19.3 Variable Format XML Tags

Tag Explanation

variableformats A group of variable format records.

variableformat An individual variable format record.

osname The operating system that defines the scope of this record.

runtimename The runtime that defines the scope of this record.

typename The name of the Type that this record will format.

expression The expression that reformats the variable display. The IDE
evaluates this expression to determine the format that it applies to
the variable. The IDE replaces all occurrences of the ^var
placeholder with the name of the variable.
233IDE 5.7 User’s Guide

Working with Variables
Expressions Window
• array elements

Table 19.4 explains items of this window.

Figure 19.3 Expressions Window

Opening the Expressions Window

Use the Expressions window to inspect frequently used variables as their values change
during a debugging session.

To open the Expressions window, select View > Expressions or Window > Expressions
Window.

Alternatively, click the Expressions button in the Thread window toolbar to open
the Expressions window.

Adding Expressions

The Expressions window handles various ways of adding expressions for inspection.

To add an expression to the Expressions window, do this:

• Select the desired expression and choose Data > Copy to Expression, or

Table 19.4 Expressions Window Items

Item Explanation

Expression
column

Lists expressions and expression hierarchies. Click the hierarchical
controls to expand or collapse the expression view.

Value
column

Shows the current value of each corresponding expression. Double-click
a value to change it.
234 IDE 5.7 User’s Guide

Working with Variables
Expressions Window
• Use the contextual menu with a selected expression, or

• Drag and drop an expression from another window into the Expressions window.

The Expressions window reflects the added expression. Drag expressions within the
window to reorder them.

Adding a Constant Value to a Variable

You can enter an expression in the Expressions window that adds a constant value to a
variable. Suppose x is a short integer type in the variable context of some function scope
in C++ code. You can enter the expression x+1 and the IDE computes the resulting value
just as you would compute it on a calculator.

1. Select the variable to which you want to add a constant value.

For example, select x.

2. Enter an expression that adds a constant value to the variable.

For example, append +1 to x so that the resulting expression is x+1.

The IDE adds the constant value to the variable and displays the result in the Expressions
window.

Making a Summation of Two Variables

You can enter an expression in the Expressions window that computes the sum of two
variables. Suppose x is a short integer type in the variable context of some function scope
in C++ code. You can enter the expression x+y and the IDE computes the resulting value
just as you would compute it on a calculator.

1. Select the variable to which you want to add another variable.

For example, select x.

2. Enter an expression that adds a second variable to the first variable.

For example, append +y to x so that the resulting expression is x+y.

The IDE computes the sum of the two variables and displays the result in the Expressions
window.

Removing Expressions

The Expressions window handles various ways of removing expressions that no longer
require inspection.

To remove an expression from the Expressions window:
235IDE 5.7 User’s Guide

Working with Variables
Expressions Window
• Select the expression and choose Edit > Delete or Edit > Clear, or

• Select the expression and press the Backspace or Delete key.

The Expressions window updates to reflect the removed expression.

NOTE Unlike the Variable window, the Expressions window does not remove a local
variable after program execution exits the routine that defines the variable.
236 IDE 5.7 User’s Guide

20
Working with Memory

This chapter explains how to work with memory in a CodeWarrior™ IDE debugging
session. The following windows show various types of information about memory:

• Memory window—shows the memory that your project manipulates as
it executes

• Array window—shows the contents of arrays that your project manipulates as
it executes

• Registers window—shows the register contents of a processor

• Register Details window—shows a graphical representation of processor registers
and explains register contents

• Cache window—shows processor or instructor cache data

• Trace window—shows collected trace information

This chapter consists of these sections:

• Memory Window

• Array Window

• Registers Window

• Register Details Window (Windows OS)

Memory Window
The Memory window manipulates program memory content in various data types. Use
this resizable window to perform these tasks:

• View memory

• Change individual memory bytes

• Set watchpoints

NOTE Arbitrarily changing memory contents could degrade the stability of the IDE,
another program, or the operating system itself. Understand the consequences
of manipulating memory.

Figure 20.1 shows the Memory window. Table 20.1 explains the items in the window.
237IDE 5.7 User’s Guide

Working with Memory
Memory Window
Figure 20.1 Memory Window

Table 20.1 Memory Window Items

Item Icon Explanation

Display Enter a symbol representing the
starting address of memory to
display. Valid symbols include
addresses and non-evaluating
expressions, such as main or x.

View Select the data format in which to
view memory contents.

Memory Space
(for processors
that support
multiple memory
spaces)

Choose the memory space in which
to view selected variables or
source code.

Previous Memory
Block

Click to view the preceding block
of memory.

Next Memory
Block

Click to view the succeeding block of
memory.

Address Displays a contiguous range of
memory addresses, beginning with
the address entered in the Display
field.
238 IDE 5.7 User’s Guide

Working with Memory
Memory Window
Viewing and Changing Raw Memory

Use the View Memory command to view and change the raw contents of memory.

1. Select an item or expression that resides at the memory address to be examined.

2. Choose Data > View Memory.

A new Memory window appears.

3. Select Raw data from the View list pop-up.

The contents of memory at the selected location appears in both hexadecimal and
ASCII.

Scroll through memory by selecting the Address, Hex, or ASCII pane of the Memory
window and then use the up and down arrow keys. Display a different memory
location by changing the expression in the Display field.

Change the word size displayed in the Memory window by using the Word Size list
pop-up. The choices are 8, 16, and 32 bits.

Change the contents of a particular memory location by double-clicking on that
location in either the hexadecimal or ASCII pane of the Memory window. Replace the
current value by entering a hexadecimal value in the Hex pane or a string of ASCII
characters in the ASCII pane.

Hex Displays a hexadecimal
representation of the memory
addresses shown in the Address
pane.

Ascii Displays an ASCII representation of
the memory addresses shown in the
Address pane.

Word Size Select the bit size of displayed words.

Page
(for processors
that support
multiple pages)

Select the memory-space page in
which to view source code.

Table 20.1 Memory Window Items (continued)

Item Icon Explanation
239IDE 5.7 User’s Guide

Working with Memory
Memory Window
Alternatively, use a contextual menu to view and change memory, as explained in Table
20.2.

Viewing Memory Referenced by a Pointer

Use the View Memory command to inspect memory referenced by a pointer; including an
address stored in a register.

1. Select a pointer in a source window.

2. Choose Data > View Memory.

A new Memory window appears.

3. Select Raw data from the View list pop-up.

The contents of memory referenced by the pointer appears in both hexadecimal and
ASCII.

Viewing Different Memory Spaces

Use the Page list pop-up to view a particular memory space.

NOTE This feature is available only for processors that support multiple memory
spaces.

1. Select the name of a variable or function in a source window.

2. Choose Data > View Memory.

A Memory window appears.

3. Select a memory space from the Page list pop-up.

Table 20.2 Opening a Memory Window by Using a Contextual Menu

On this host… Do this…

Windows Right-click the item and select View Memory.

Macintosh Control-click the item and select View Memory.

Solaris Click and hold on the item, then select View Memory.

Linux Click and hold on the item, then select View Memory.
240 IDE 5.7 User’s Guide

Working with Memory
Memory Window
4. Select Raw data from the View list pop-up if inspecting a variable. Select
Disassembly, Source, or Mixed from the View list pop-up if inspecting source code.

The Memory window displays the selected memory-space page.

Setting a Watchpoint in the Memory Window

To set a Watchpoint using the Memory window, follow these steps:

1. Run/Debug your program.

2. Choose Data > View Memory.

This opens the Memory window.

3. Select a range of bytes in the Memory window.

Do not double-click the range of bytes.

4. Choose Debug > Set Watchpoint.

NOTE A red line appears under the selected variable in the Variable window,
indicating that you have set a Watchpoint. You can change the color of this line
in the Display Settings panel of the IDE Preferences window (Edit > IDE
Preferences).

Clearing Watchpoints from the Memory window

To clear a Watchpoint from the Memory window, follow these steps:

1. Select a range of bytes in the Memory window.

2. Choose Debug > Clear Watchpoint.

To clear all Watchpoints from the Memory window:

1. Open the Memory window.

You do not have to select a range of bytes.

2. Choose Debug > Clear All Watchpoints.

NOTE All Watchpoints clear automatically when the target program terminates or the
debugger terminates the program. Watchpoints will reset next time the
program runs.
241IDE 5.7 User’s Guide

Working with Memory
Array Window
Array Window
An Array window allows manipulation of a contiguous block of memory, displayed as an
array of elements. The window lists array contents sequentially, starting at
element 0.

The Array window title shows the base address bound to the array. The base address can
bind to an address, a variable, or a register. An array bound to a local variable closes after
the routine that defines the variable returns to the calling routine.

For array elements cast as structured types, a hierarchical control appears to the left of
each element. Use these hierarchical controls to expand or collapse the display of each
element’s contents.

Figure 20.2 shows an Array window. Table 20.3 explains the items in the window.

Figure 20.2 Array window

Table 20.3 Array Window Items

Item Icon Explanation

Hierarchical
control

Click to collapse the view of the
information pane.

Bind To Select the base address of the
array: Address, Variable, or
Register.
242 IDE 5.7 User’s Guide

Working with Memory
Array Window
Opening an Array Window

Use the View Array command to manipulate a memory block in an Array window.

1. Select the array that you want to view.

2. Select Data > View Array.

A new Array window appears.

TIP Drag and drop a register or variable name into an Array window to set the base
address. Use the View Memory As command to interpret memory displayed in an
Array window as a different type.

Alternatively, use a contextual menu to open an Array window, as Table 20.4 explains.

Array size Enter the number of elements to
display in the Array window.

Struct
Member

Select a specific member to
show in each element, or show
all members.

Element Shows the array elements in a
hierarchical list.

Value Shows the value of each array
element.

Location Shows the address in memory of
each array element.

Table 20.4 Opening an Array Window by Using a Contextual Menu

On this host… Do this…

Windows Right-click the array and select View Array.

Macintosh Control-click the array and select View Array.

Table 20.3 Array Window Items (continued)

Item Icon Explanation
243IDE 5.7 User’s Guide

Working with Memory
Registers Window
Registers Window
The Registers window reveals a hierarchical view of these register types:

• general registers—contents of the central processing unit (CPU) of the host computer

• floating-point unit (FPU) registers—contents of the FPU registers

• registers specific to the host computer

You can use the Register window to perform these tasks:

• expand the hierarchical items in the window and view their contents

• select and modify register values

• view documentation for individual registers (depending on the register)

Figure 20.3 shows a sample Registers window.

Figure 20.3 Registers Window

Solaris Click and hold on the array, then select View Array.

Linux Click and hold on the array, then select View Array.

Table 20.4 Opening an Array Window by Using a Contextual Menu (continued)

On this host… Do this…
244 IDE 5.7 User’s Guide

Working with Memory
Registers Window
General Registers
The General Registers are the register contents of the central processing unit (CPU) of
the host computer. The exact listing of these registers depends on the host CPU and
current build target. See the Targeting documentation for additional information.

FPU Registers
The FPU Registers are the register contents of the floating-point unit (FPU) of the host
computer. The exact listing of these registers depends on the host FPU and current build
target. See the Targeting documentation for additional information.

Host-specific Registers
The Registers window also lists additional register contents for registers specific to the
host. The exact listing of these registers depends on the host computer and current build
target. See the Targeting documentation for additional information.

Opening the Registers Window

Open the Registers window to inspect and modify various register contents.

Table 20.5 explains how to open the Registers window.

Viewing Registers

View registers to inspect and modify their contents.

Table 20.5 Opening the Registers Window

On this host… Do this…

Windows Select View > Registers

Macintosh Select Window > Registers Window

Solaris Select Window > Registers Window

Linux Select Window > Registers Window
245IDE 5.7 User’s Guide

Working with Memory
Registers Window
1. Open the Registers window.

2. Expand the hierarchical list to view register groups.

Expanding the list shows the register groups that you can view or change.

3. Expand a register group.

Expanding a group shows its contents, by register name and corresponding value.

Changing Register Values

Change register values during program execution in order to examine program behavior.

1. Open the Registers window.

2. Expand the hierarchical list to view the names and corresponding values of the register
that you want to modify.

3. Double-click the register value that you want to change.

The value highlights.

4. Enter a new register value.

5. Press Enter or Return.

The register value changes.

Changing Register Data Views

Change register data views to see register contents in a different format. For example, you
can change the view of a register from binary to hexadecimal format.

1. Open the Registers window.

2. Expand the hierarchical list to view the names and corresponding values of the
register.

3. Select the register value that you want to view in a different format.

The value highlights.

4. Select Data > View as format, where format is the data format in which you want to
view the register value. The register value changes format.

Available formats depend on the selected register value.

5. Select Data > View as Default to restore the original data format.

Alternatively, you can use a contextual menu to change the data format, as Table 20.6
explains.
246 IDE 5.7 User’s Guide

Working with Memory
Register Details Window (Windows OS)
Opening Registers in a Separate Registers Window

Open registers in a separate Register Window to narrow the scope of registers that appear
in a single window.

1. Open the Registers window.

2. Expand the hierarchical list to view the register or register group that you want to view
in a separate Registers window.

3. Double-click the register or register group.

4. A new Registers window opens.

The new Registers window lists the name and value of the register that you double-
clicked, or the names and values of the register group that you double-clicked.

Register Details Window (Windows OS)
The Register Details window lets you view detailed information about individual bits of
registers from 2 bits to 32 bits in size. This window shows information for both system
registers and memory-mapped registers. To open the Register Details window, click View
> Register Details or Window > Register Details Window.

The Register Details window has fields that describe the register, its bitfields, and the
values of those bitfields. XML files in the Registers folder of your CodeWarrior
installation provide the information that appears in the window. The Registers folder is
inside the Support folder. The Support folder is inside the Plugins folder of your
CodeWarrior installation.

Figure 20.4 shows the Register Details window. Table 20.7 explains items in the window.

Table 20.6 Changing Data Format by Using a Contextual Menu

On this host… Do this…

Windows Right-click the register value and select View as format.

Macintosh Control-click the register value and select View as format.

Solaris Click and hold on the register value and select
View as format.

Linux Click and hold on the register value and select
View as format.
247IDE 5.7 User’s Guide

Working with Memory
Register Details Window (Windows OS)
Figure 20.4 Register Details Window

Table 20.7 Register Details Window Items

Item Icon Explanation

Description
File text
box

Enter the name or full path to the XML file for
the register you want to view, or click the
Browse button to open a dialog box that you
can use to specify the file.

Register
Name

Shows the name of the register depicted in
the window.

Address
text box

Enter the starting address of the register
values that you want to see in the Register
Display.

An error message appears if you enter an
invalid starting address.

Format list
box

Specify the data format for bit values in the
Register Display:

• Binary

• Character

• Decimal

• Unsigned Decimal

• Hexadecimal

• Default—have the IDE determine
the best format
248 IDE 5.7 User’s Guide

Working with Memory
Register Details Window (Windows OS)
Register
Display

Shows a depiction of the register that you
specify in the Description File text box,
including individual register bits and their
values.

Bitfield
Name list
box

Specify a bitfield to highlight in the Register
Display. The Description portion of the
window reflects available information for the
bitfield.

Select None to have the Description portion
of the window reflect information for the
entire register and not a bitfield in that
register.

Bit Value
text box

Shows the current value of the bits in the
Bitfield Name list box, according to the
format that you specify in the Format list
box.

Click the spin buttons to increment or
decrement the current value, or enter a new
value in the text box.

Changing the value changes only the
Register Display. You must click the Write
button to write the new value to the register
itself.

Bit Value
Modifier list
box

Specify a new value for the selected bitfield,
or view a brief explanation of specific bitfield
values.

Changing the value changes only the
Register Display. You must click the Write
button to write the new value to the register.

Description Shows a description of the register or a
selected bitfield in the register.

Use the Description File text box to specify
the register.

Use the Text View list box to view specific
register information, such as register
descriptions, bitfield descriptions, and
register details.

Table 20.7 Register Details Window Items (continued)

Item Icon Explanation
249IDE 5.7 User’s Guide

Working with Memory
Register Details Window (Windows OS)
Description File
Enter in this text box the name of the register that you want to see in the Register Display
of the Register Details window. Alternatively, enter the full path to the register
description file on your computer, or click the Browse button to open a dialog box that lets
you specify the register description file. The text box is not case sensitive.

After you enter a name or path, the debugger searches for a matching register description
file in the Registers folder of your CodeWarrior installation and the project access paths.
If the debugger finds a matching file, the Register Display updates the information in the
Register Details window. If the debugger does not find a matching name, an error message
appears.

For example, to view the contents of the Opcode register, you can:

• type Opcode in the Description File text box and press Enter or Return, or

• type the full path to the opcode.xml file in the Registers folder and press
Enter or Return.

Revert
button

Click to change a modified value in the
Register Display to its original value.

If you clicked the Write button to write a new
value to the register, you cannot revert that
value.

Read
button

Click to have the Register Display reflect
current bit values from the register itself.

Write
button

Click to write the bit values in the Register
Display to the register.

After you write new values to the register,
you cannot revert them.

Reset
Value
button

Click to restore the default value for the
selected bitfield.

The IDE disables this button if the selected
bitfield does not have a
default value.

Text View
list box

Use to specify information that appears in
the Description portion of the window.

Table 20.7 Register Details Window Items (continued)

Item Icon Explanation
250 IDE 5.7 User’s Guide

Working with Memory
Register Details Window (Windows OS)
The debugger matches your entry with the opcode.xml file in the Registers folder. The
Register Display in the Register Details window updates its information to show Opcode
register details.

The debugger also updates the Register Display to show the current values in the register.
If the debugger fails to update the display, an error message appears.

Register Display
This display shows the current contents of 32 bits of register data, starting at the address
that you specify in the Address text box. The data appears according to the format that
you specify in the Format list box.

The Register Display groups the 32 bits of data into register bitfields. Clicking one of the
bits selects its associated bitfield. Additional information about the bitfield, such as its
name and permissions, appears in the Description portion of the Register Details window.

Text View
Use this list box to change the information that appears in the Description portion of the
Register Details window:

• Auto—select to have the IDE determine which information to display in
the window

• Register Description—select to show information about the entire register, such as
the name of the register itself and the meaning of its contents

• Bitfield Description—select to show information about the selected bitfield in the
Register Display, such as the name of the bitfield and its access permissions

• Register Details—select to show in-depth information about the current register,
such as its name, its bit values, and bit-value explanations
251IDE 5.7 User’s Guide

Working with Memory
Register Details Window (Windows OS)
252 IDE 5.7 User’s Guide

21
Working with Debugger
Data

This chapter explains how to work with data that the CodeWarrior™ IDE debugger
generates. The following windows show various types of debugger data.

• Symbolics window—shows information that the debugger generates for
a program

• Processes window—shows individual processes and tasks that the debugger
can control

• Log window—shows messages generated during the debugging session

This chapter contains these sections:

• Symbolics Window

• System Browser Window

• Log Window

Symbolics Window
The Symbolics window displays information that the debugger generates for the active
file. Symbolics information includes data about program variables, functions, data
structures, and source files.

Select whether you want browser data generated by the compiler or the language parser,
by choosing Edit > targetname Settings... and selecting the Build Extras target settings
panel. Select the option from the Generate Browser Data From list. Symbolics information
will be generated during the next build or debugging session.

To view the Symbolics window, start a CodeWarrior debug session (Project > Debug
from CodeWarior menu bar), then select View > Symbolics.

Figure 21.1 shows the Symbolics window. Table 21.1 explains items in the window.
253IDE 5.7 User’s Guide

Working with Debugger Data
Symbolics Window
Figure 21.1 Symbolics Window

Table 21.1 Symbolics Window Items

Item Icon Explanation

Debugger
toolbar

Contains buttons that represent
common debugging commands,
such as stepping through code.

Executables
pane

Lists recently used executable files
that contain symbolics information.

Files pane Lists source files in build target
being debugged, for selected
executable file.

Functions pane Lists functions declared in the file
selected in the Files pane.

Source pane Displays source code in the file
selected in the Files pane.
254 IDE 5.7 User’s Guide

Working with Debugger Data
Symbolics Window
Opening the Symbolics Window

The Symbolics window displays information generated by the IDE for a file.

To open the Symbolics window, do one of these tasks:

• Select View > Symbolics or Window > Symbolics window.

• Open a symbolics file. The IDE typically appends .xSYM or .iSYM, to the names of
these files.

• Open an executable file for which the IDE previously generated symbolics
information. The IDE typically appends .exe or .app to these files.

Alternatively, click the Symbolics button in the Thread window toolbar to open
the Symbolics window.

Using the Executables Pane

The Executables pane lists recently opened executable files for which the IDE generated
symbolics information.

To use the pane, select an executable file in the list. The Files pane updates to display
information for the selected executable file.

Using the Files Pane

For the selected executable file, the Files pane lists the source files in the build target
being debugged.

To use the pane, select a file in the list. The Functions pane and Source pane update to
display information for the selected file.

Using the Functions Pane

The Functions pane lists functions declared in the selected file in the Files pane.

To use the pane, select a function in the list. The Source pane updates to display source
code for the selected function.
255IDE 5.7 User’s Guide

Working with Debugger Data
System Browser Window
Using the Source Pane

The Source pane displays source code for the selected function in the Functions pane,
using the fonts and colors specified in the IDE Preferences window.

To use the pane, select a function in the Functions pane. The corresponding source code
appears in the Source pane.

If the selected function does not contain source code, the Source pane displays the
message Source text or disassembly not available.

NOTE Use the Source pane in the Symbolics window to view source code, copy
source code, and set breakpoints. Use an editor window to modify the source
code. Use a Thread window to view the currently executing statement.

System Browser Window
The System Browser window shows system level information about processes executing
on various machines, like the host computer or the hardware under debugger control. The
window shows this information:

• running processes

• tasks for selected processes

• some hidden processes

Click on the expand icon for a process to view all tasks assigned to the selected process.
Processes under debugger control appear in bold. Double-click a task to open it in a new
Thread window, or choose the task name and click the Stack Crawl Window button.

Figure 21.2 shows the System Browser window. Table 21.2 explains items in the window.

NOTE If the System Browser window does not show processes for a specific machine,
you must start a debugging session for that machine. For example, you might
need to debug a project that runs on external hardware in order to see executing
processes for that hardware.
256 IDE 5.7 User’s Guide

Working with Debugger Data
System Browser Window
Figure 21.2 System Browser Window

Opening the System Browser Window

Use the System Windows or System menu command to view and manipulate active
processes on a selected machine. If multiple machines are available, select each machine
from the System Windows submenu to display multiple System Browser windows. If you
choose a machine that is already open, the existing window will be brought to the front.

Table 21.2 System Browser Window Items

Item Icon Explanation

Attach to
Process

Click to have the debugger control the selected
process.

Stack
Crawl
window

Click to open a Thread window for the selected
process.

Refresh This icon indicates that information for selected
item is periodically updated. Click this icon to toggle
between refresh and no refresh.

No
Refresh

This icon indicates that information is not updated
for the selected item.

Expand Click to expand a process and list related tasks.
257IDE 5.7 User’s Guide

Working with Debugger Data
Log Window
NOTE The System Browser window appears on platforms that support it.

Table 21.3 explains how to open the System Browser window.

Attaching Debugger to a Process

Click the Attach to Process button to assign a selected process to a new debugging
session. This assignment allows the debugger to control processes that it does not
otherwise recognize. For example, you can click the Attach to Process button to assign
dynamic link libraries or shared libraries to the debugger.

1. Select a process to attach to the debugger.

2. Click Attach to Process

3. Select an executable to attach to the process.

4. Click OK to display the Stack Crawl (Thread) window for the process.

The debugger assumes control of the selected process. Processes under debugger control
appear in bold.

Log Window
The Log window displays messages during program execution. Select the Log System
Messages option in the Debugger Settings panel to activate the Log window.

The IDE allows you to save Log window contents to a .txt (text) file and copy text from
the Log window to the system clipboard.

Windows-hosted Log window messages include:

• Dynamic Link Library (DLL) loading and unloading

• debugging printf() messages

Macintosh-hosted Log window messages include:

Table 21.3 Opening the System Browser Window

Menu Bar Layout Do this…

Windows Select View > System

Macintosh (also applies to
Linux/Solaris)

Select Window > System Windows
258 IDE 5.7 User’s Guide

Working with Debugger Data
Log Window
• PowerPC™ code fragments

• DebugStr() messages

Figure 21.3 shows a Windows-hosted Log window.

Figure 21.3 Log Window

Opening the Log Window

Use the Debugger Settings preference panel to enable the message logging option. The
Log window records these types of messages for a program during a debugging session:

• the start of new tasks

• routine entry and exit

• Windows: DLL loading and unloading, and debug printf() messages

• Macintosh: PowerPC code-fragment loading and DebugStr() messages

1. Select the Log System Messages option in the Debugger Settings target settings
preference panel.

2. Select Project > Debug.

The Log window appears. It allows you to select, copy, and save logged text to a file
for later analysis. See the Targeting documentation for additional information.
259IDE 5.7 User’s Guide

Working with Debugger Data
Log Window
260 IDE 5.7 User’s Guide

22
Working with Hardware
Tools

This chapter explains the CodeWarrior™ IDE hardware tools. Use these tools for board
bring-up, test, and analysis.

NOTE Not all products support all the IDE features this chapter describes, such as the
Flash programmer window, hardware diagnostic window, and logic analyzer.
Some screen captures in this chapter were taken on a Windows PC; their actual
appearance varies slightly on other host platforms.

This chapter consists of these sections:

• Flash Programmer Window

• Hardware Diagnostics Window

• Working with a Logic Analyzer

• Trace Window

• Cache Window

• Profile Window

• Command Window

Flash Programmer Window
The Flash Programmer window lists global options for the flash programmer hardware
tool. These preferences apply to every open project file.

Figure 22.1 shows the Flash Programmer window. Table 22.1 explains the items in the
window.

To open the Flash Programmer window, click Tools > Flash Programmer.

The Flash Programmer window contains these panels:

• Target Configuration

• Flash Configuration

• Program / Verify
261IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
• Erase / Blank Check

• Checksum

Figure 22.1 Flash Programmer Window

Table 22.1 Flash Programmer Window Items

Item Explanation

Flash
Programmer
pane

Shows a list of panel names. Click a panel name to display that panel.

Show Log Click to display a text file that logs flash programmer actions. Check
the Enable Logging checkbox in the Options group to enable this
button.

Load Settings Click to restore previously saved settings for the current panel.

Save Settings Click to save settings for the current panel to a file.
262 IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Target Configuration
The Target Configuration panel configures general flash programmer settings. Figure
22.2 shows the Target Configuration panel. Table 22.2 explains items in the panel.

Figure 22.2 Target Configuration Panel

OK Click to save changes to all panels and close the window.

Cancel Click to discard changes to all panels and close
the window.

Table 22.1 Flash Programmer Window Items (continued)

Item Explanation
263IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Table 22.2 Target Configuration Panel Items

Item Explanation

Default Project Shows the current default project in the IDE.

Default Target Shows the default build target. Clear the Use Custom Settings
checkbox to have the IDE use connection settings from the build
target for connecting to the hardware.

Use Custom
Settings checkbox.

Check to specify the connection information that you want to use
for connecting to the hardware. In this case, the IDE can connect
to the hardware without using settings from a project.

Clear to use the connection information stored in the default
project for connecting to the hardware. You cannot clear the
checkbox if you do not have an active default project or
default target.

Connection information includes the information that you specify
in the Target Processor list box, the Connection list box, and
the Use Target Initialization text box.

Target Processor
text/list box

Use to specify the hardware processor.

Connection list box Use to specify the method that the IDE uses to connect to
the hardware.

Use Target
Initialization
checkbox and text
box

Check to specify an initialization file for the hardware connection.
Enter the initialization file path in the text box, or click the Browse
button to open a dialog box that you can use to specify the
initialization file path.

Clear if you do not want to use an initialization file for the
hardware connection.

Target Memory
Buffer Address text
box

Specify the starting address of an area in RAM that the flash
programmer can use as a scratch area. The flash programmer
must be able to access this starting address through the remote
connection (after the hardware initializes).

The flash programmer should not modify any memory location
other than the target memory buffer and flash memory.

For example, the flash programmer uses the target memory
buffer to download and execute the flash device driver.
264 IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Flash Configuration
The Flash Configuration panel configures settings for the flash device on the hardware
device. Figure 22.3 shows the Flash Configuration panel. Table 22.3 explains the items in
the panel.

Target Memory
Buffer Size text box

Specify the size of an area in RAM that the flash programmer can
use as a scratch area, starting at the address you specify in the
Target Memory Buffer Address text box.

The flash programmer should not modify any memory location
other than the target memory buffer and flash memory.

Enable Logging
checkbox

Check to have the IDE generate detailed status information
during flash operations. Checking this checkbox enables the
Show Log button.

Clear to disable logging of detailed status information
during flash operations. Clearing this checkbox disables the
Show Log button.

Click the Show Log button to view the status information.

Verify Target
Memory Writes
checkbox

Check to have the IDE verify all write operations to the hardware
RAM by reading the result of each write operation.

Clear to have the IDE perform write operations without verifying
them.

Table 22.2 Target Configuration Panel Items (continued)

Item Explanation
265IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Figure 22.3 Flash Configuration Panel

Table 22.3 Flash Configuration Panel Items

Item Explanation

Flash Memory
Base Address text
box

Enter the base address of the beginning of flash memory
on the hardware device. Enter the address based on the
perspective of the hardware device.

Device pane Shows an alphabetical list of supported flash device types. Select
a device type from this pane. Your selection determines the
contents of the Organization and Sector Address Map panes.
266 IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Program / Verify
The Program / Verify panel lets you program an image into flash memory and verify the
programming operation. Figure 22.4 shows the Program / Verify panel. Table 22.4
explains the items in the panel.

Organization pane Shows a list of supported layouts of flash memory in the hardware
design, based on your selection in the Device pane. Each list item
is of the form
ChipCapacityxDataBusWidthxNumberOfChipsInLayout. Select an
organization from this pane. Your selection determines the
contents of the Sector Address Map pane.

For example, 2048Kx8x2 indicates a chip capacity of 2048
kilobytes, a byte-wide interface to the data bus, and a 2-chip
hardware layout.

For hardware layouts of 2 or more chips, assume an interleaved
organization. For example, for a 2048Kx16x2 organization, there
are 2 chips on a 32-bit bus, and each chip provides 16 bits of data.

Sector Address
Map pane

Shows a map of sector addresses that reflects your selections in
the Device and Organization panes and your entry in the Flash
Memory Base Address text box. This map is for informational
purposes only.

Table 22.3 Flash Configuration Panel Items (continued)

Item Explanation
267IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Figure 22.4 Program / Verify Panel

Table 22.4 Program / Verify Panel Items

Item Explanation

Use Selected
File

Check to specify a file to program into flash memory. Enter the file
path in the text box, or click the Browse button to locate the file
path.

Clear to have the IDE program flash memory with the file that the
default build target determines.

The file determines the address to which the IDE programs flash
memory. If you specify a file that does not contain address
information, such as a binary file, the IDE programs flash memory at
address zero. Check the Apply Address Offset checkbox to
specify an address offset from zero.

File Type Select the file type. Options are: Auto Detect, Binary/Raw Format,
Elf Format, or Motorola S-Record Format.
268 IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Restrict Address
Range

Check to use the Start and End text boxes to specify the address
range in which you want the IDE to program flash data. If you use a
binary file to program flash data, the flash programmer ignores data
outside the address range that
you specify.

Clear to have the IDE determine the address range in which to
program flash data.

Start text box Enter the starting address of the range that you want the flash
programmer to use for programming flash data.

Check the Restrict Address Range checkbox to enable this text
box.

End text box Enter the ending address of the range that you want the flash
programmer to use for programming flash data.

Check the Restrict Address Range checkbox to enable this text
box.

Apply Address
Offset checkbox

Check to specify an offset at which to program flash data. The IDE
adds this offset to the starting address that the file specifies. The
flash programmer begins programming flash data at the starting
address plus the offset.

Clear to have the flash programmer begin programming flash data
at the starting address that the file specifies. In this case, the IDE
does not add an offset to the starting address.

Offset text box Enter the offset to add to the starting address that the file specifies.
The flash programmer begins programming flash data at the
resulting address.

Check the Apply Address Offset checkbox to enable this
text box.

Flash Base
Address

Shows the base address of the beginning of flash memory
on the hardware device. This address is the same address that you
specify in the Flash Memory Base Address text box of the Flash
Configuration panel.

Flash Base +
Offset

Shows the resulting address of adding the offset value that you
specify in the Offset text box to the Flash Base Address value.
The flash programmer begins programming flash data at this
resulting address.

Table 22.4 Program / Verify Panel Items (continued)

Item Explanation
269IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Erase / Blank Check
The Erase / Blank Check panel lets you erase an image from flash memory and check for
blank memory. Figure 22.5 shows the Erase / Blank Check panel. Table 22.5 explains
items in the panel.

Status Shows flash programmer progress information. Click the Details
button to show more thorough progress information.

Program button Click to have the flash programmer program flash data into the
hardware device. The Status reflects flash programmer progress.

The flash programmer does not check for blank flash memory
before it begins programming the flash data.

Verify button Click to have the IDE verify the data that the flash programmer
programmed into the hardware device. The verify operation reads
the flash data from the hardware device and compares that data
against the image file on disk. The Status reflects flash
programmer progress.

Table 22.4 Program / Verify Panel Items (continued)

Item Explanation
270 IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Figure 22.5 Erase / Blank Check Panel

Table 22.5 Erase / Blank Check Panel Items

Item Explanation

All Sectors

checkbox and
list

Check to apply the erase or blank check operation to the entire flash
memory.

Clear to specify sectors that you want to erase or check
for blanks. Select sectors in the list below the checkbox.

Erase Sectors
Individually
checkbox

Check to have the flash programmer ignore chip erase commands
and erase each individual sector instead.

Clear to have the flash programmer obey chip erase commands and
erase all sectors at once.

Check the All Sectors checkbox to enable this checkbox.

Status Shows flash programmer progress information. Click the Details
button to show more thorough progress information.
271IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Checksum
The Checksum panel lets you calculate checksum values. Figure 22.6 shows the
Checksum panel. Table 22.6 explains items in the panel.

Figure 22.6 Checksum Panel

Erase button Click to have the flash programmer erase the sectors that you
specified. The Status reflects flash programmer progress.

Blank Check
button

Click to have the flash programmer perform these tasks:

• upload the sectors that you specified to the
hardware device

• compare the uploaded sectors against 0xff

• report the values that do not match 0xff.

The Status reflects flash programmer progress.

Table 22.5 Erase / Blank Check Panel Items (continued)

Item Explanation
272 IDE 5.7 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Table 22.6 Checksum Panel Items

Item Explanation

File on Target Select to have the flash programmer read the file that you specified in
the Use Selected File text box of the Program / Verify panel. The
flash programmer reads this file to determine the required memory
regions of the flash device for the checksum operation.

The Restrict Address Range and Apply Address Offset information
that you specify in the Program / Verify panel also apply to this option
button.

File on Host Select to have the flash programmer read the file on the host
computer. The flash programmer reads this file to determine the
required memory regions of the flash device for the checksum
operation.

The Restrict Address Range and Apply Address Offset information
that you specify in the Program / Verify panel also apply to this option
button.

Memory
Range on
Target

Select to have the flash programmer read the range that you specify in
the Start and Size values in the Address Range group. The flash
programmer uses this memory range for the checksum operation.

Entire Flash Select to have the flash programmer read the entire contents of flash
memory. The flash programmer uses this data for the checksum
operation.

Start text box Enter the starting address of the range that you want the flash
programmer to use for the checksum operation.

Select Memory Range on Target option to enable this text box.

Size text box Enter the size of the address range that you want the flash
programmer to use for the checksum operation. This size is relative to
the starting address that you specify in the Start
text box.

Select Memory Range on Target option to enable this text box.

Status Shows flash programmer progress information. Click the Details
button to show more thorough progress information.

Calculate
Checksum

Click to have the flash programmer calculate the checksum according
to your specifications. At the end of the checksum operation, the
Status shows the calculated checksum.
273IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Hardware Diagnostics Window
The Hardware Diagnostics window lists global options for the hardware diagnostic tools.
These preferences apply to every open project file.

Figure 22.7 shows the Hardware Diagnostics window. Table 22.7 explains items in the
window.

To open the Hardware Diagnostics window, click Tools > Hardware Diagnostics.

The Hardware Diagnostics window has these panels:

• Configuration

• Memory Read / Write

• Scope Loop

• Memory Tests

Figure 22.7 Hardware Diagnostics window
274 IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Configuration
The Configuration panel configures general flash programmer settings. Figure 22.8
shows the Configuration panel. Table 22.8 explains items in the panel.

Figure 22.8 Configuration Panel

Table 22.7 Hardware Diagnostics Window Items

Item Explanation

Hardware
Diagnostics pane

Shows a list of panel names. Click a panel name to display that
panel in the Hardware Diagnostics window.

Load Settings Click to restore previously saved settings for the current panel.

Save Settings Click to save settings for the current panel to a file.

OK button Click to save changes to all panels and close the window.

Cancel button Click to discard changes to all panels and close
the window.
275IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Memory Read / Write
The Memory Read / Write panel configures diagnostic tests for performing memory
reads and writes over the remote connection interface. Figure 22.9 shows the Memory
Read / Write panel. Table 22.9 explains items in
the panel.

Table 22.8 Configuration Panel Items

Item Explanation

Default Project Shows the current default project in the IDE.

Default Target Shows the default build target in the IDE. Clear the Use Custom
Settings checkbox to have the IDE use the connection settings from
the build target for diagnosing
the hardware.

Use Custom
Settings
checkbox.

Check to specify the connection information that you want to use for
diagnosing the hardware. In this case, the IDE can connect to the
hardware without using settings from a project.

Clear to use the connection information stored in the default project
for connecting to the hardware. You cannot clear the checkbox if you
do not have an active default project or
default target.

Connection information includes information that you specify in the
Target Processor list box, the Connection list box, and the Use
Target Initialization text box.

Target
Processor
text/list box

Use to specify the hardware processor.

Connection list
box

Use to specify the method that the IDE uses to connect to
the hardware.

Use Target
Initialization
checkbox and
text box

Check to specify an initialization file for the hardware connection.
Enter the initialization file path in the text box, or click the Browse
button to locate the initialization file path.

Clear if you do not want to use an initialization file for the hardware
connection.
276 IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Figure 22.9 Memory Read / Write Panel

Table 22.9 Memory Read / Write Panel Items

Item Explanation

Read Select to have the hardware diagnostic tools perform
read tests.

Write Select to have the hardware diagnostic tools perform
write tests.

Byte Select to have the hardware diagnostic tools perform byte-
size operations.

Word Select to have the hardware diagnostic tools perform word-size
operations.

Long Word Select to have the hardware diagnostic tools perform long-word-size
operations.

Target Address Specify the address of an area in RAM that the hardware diagnostic
tools should analyze. The tools must be able to access this starting
address through the remote connection (after the hardware
initializes).
277IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Scope Loop
The Scope Loop panel configures diagnostic tests for performing repeated memory reads
and writes over the remote connection interface. The tests repeat until you stop them. By
performing repeated read and write operations, you can use a scope analyzer or logic
analyzer to debug the hardware device.

Figure 22.10 shows the Scope Loop panel. Table 22.10 explains items in the panel.

After the first 1000 operations, the Status shows the estimated time
between operations.

NOTE For all values of Speed, the time between operations depends heavily on the
processing speed of the host computer.

For Read operations, the Scope Loop test has an additional feature. During the first read
operation, the hardware diagnostic tools store the value read from the hardware. For all
successive read operations, the hardware diagnostic tools compare the read value to the
stored value from the first read operation. If the Scope Loop test determines that the value
read from the hardware is not stable, the diagnostic tools report the number of times that
the read value differs from the first read value.

Value to Write Specify the value that the hardware diagnostic tools write during
testing.

Select the Write option to enable this text box.

Status Shows hardware diagnostic progress information. Click the Details
button to show more progress information.

Access Target
button

Click to have the hardware diagnostic tools perform specified tests.
The Status shows test results.

Table 22.9 Memory Read / Write Panel Items (continued)

Item Explanation
278 IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Figure 22.10 Scope Loop Panel

Table 22.10 Scope Loop Panel Items

Item Explanation

Read Select to have the hardware diagnostic tools perform
read tests.

Write Select to perform write tests.

Byte Select to have the hardware diagnostic tools perform byte-
size operations.

Word Select to perform word-size operations.

Long Word Select to perform long-word-size operations.

Target
Address

Specify the address of an area in RAM that the hardware diagnostic
tools should analyze. The tools must be able to access this starting
address through the remote connection (after the hardware initializes).

Value to Write Specify the value that the hardware diagnostic tools write during
testing.

Select the Write option to enable this text box.
279IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Memory Tests
The Memory Tests panel lets you perform three different tests on the hardware:

• Walking Ones

• Address

• Bus Noise

Figure 22.11 shows the Memory Tests panel. Table 22.11 explains items in the panel.

You can specify any combination of tests and number of passes to perform. For each pass,
the hardware diagnostic tools perform the tests in turn, until all passes are complete. The
tools tally memory test failures and display them in a log window after all passes are
complete. Errors resulting from memory test failures do not stop the testing process,
however, fatal errors immediately stop the testing process.

Speed slider Move to adjust the speed at which the hardware diagnostic tools
repeat successive read and write operations. Lower speeds increase
the delay between successive operations. Higher speeds decrease the
delay between
successive operations.

Status Shows hardware diagnostic progress information. Click the Details
button to show more thorough progress information.

Begin Scope
Loop button

Click to have the hardware diagnostic tools perform your specified
tests. The Status shows test results.

Table 22.10 Scope Loop Panel Items (continued)

Item Explanation
280 IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Figure 22.11 Memory Tests Panel

Table 22.11 Memory Tests Panel Items

Item Explanation

Walking 1’s Check to have the hardware diagnostic tools perform the Walking
Ones test.

Clear to have the diagnostic tools skip the Walking Ones test.

Address Check to have the hardware diagnostic tools perform the Address test.

Clear to have the diagnostic tools skip the Address test.

Bus Noise Check to have the hardware diagnostic tools perform the Bus Noise
test.

Clear to have the diagnostic tools skip the Bus Noise test.

Start: Enter the starting address of the range that you want to test.

End: Enter the ending address of the range that you want to test.

Byte Select to have the hardware diagnostic tools perform byte-
size operations.
281IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Walking Ones
This test detects these memory faults:

• Address Line—The board or chip address lines are shorting or stuck at 0 or 1. Either
condition could result in errors when the hardware reads and writes to the memory

Word Select to have the hardware diagnostic tools perform word-size
operations.

Long Word Select to have the hardware diagnostic tools perform long-word-size
operations.

Passes Enter the number of times that you want to repeat the
specified tests.

Show Log Click to display a text file that logs memory test actions.

Use Target
CPU

Check to have the hardware diagnostic tools download the test code
to the hardware device. Enter in the Target Scratch Memory Start
and Target Scratch Memory End text boxes the memory range that
you want to use on the hardware device. The CPU on the hardware
device executes the test code in this memory range.

Clear to have the hardware diagnostic tools execute the test code
through the remote connection interface.

Execution performance improves greatly if you execute the test code
on the hardware CPU, but requires that the hardware has enough
stability and robustness to execute the test code.

Target
Scratch
Memory Start

Specify the starting address of an area in RAM that the hardware
diagnostic tools can use as a scratch area. The tools must be able to
access this starting address through the remote connection (after the
hardware initializes).

Target
Scratch
Memory End

Specify the ending address of an area in RAM that the hardware
diagnostic tools can use as a scratch area. The tools must be able to
access this address through the remote connection (after the
hardware initializes).

Status Shows memory test progress information. Click the Details button to
show more thorough progress information.

Begin Test Click to have the hardware diagnostic tools perform the memory tests
that you specified. The Status reflects memory test progress.

Table 22.11 Memory Tests Panel Items (continued)

Item Explanation
282 IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
location. Because this error occurs on an address line, the data may end up in the
wrong location on a write operation, or the hardware may access the wrong data on a
read operation.

• Data Line—The board or chip data lines are shorting or stuck at 0 or 1. Either
condition could result in corrupted values as the hardware transfers data to or from
memory.

• Retention—The contents of a memory location change over time. The effect is that
the memory fails to retain its contents over time.

The Walking Ones test includes four subtests:

• Walking Ones—This subtest first initializes memory to all zeros. Then the subtest
writes, reads, and verifies bits, with each bit successively set from the least
significant bit (LSB) to the most significant bit (MSB). The subtest configures bits
such that by the time it sets the MSB, all bits set to a value of 1. This pattern repeats
for each location within the memory range that you specify. For example, the values
for a byte-based Walking Ones subtest occur in this order:

0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF

• Ones Retention—This subtest immediately follows the Walking Ones subtest. The
Walking Ones subtest should leave each memory location with all bits set
to 1. The Ones Retention subtest verifies that each location has all bits set to 1.

• Walking Zeros—This subtest first initializes memory to all ones. Then the subtest
writes, reads, and verifies bits, with each bit successively set from the LSB to the
MSB. The subtest configures bits such that by the time it sets the MSB, all bits are set
to a value of 0. This pattern repeats for each location within the memory range that
you specify. For example, the values for a byte-based Walking Zeros subtest occur in
this order:

0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80, 0x00

• Zeros Retention—This subtest immediately follows the Walking Zeros subtest. The
Walking Zeros subtest should leave each memory location with all bits set to 0. The
Zeros Retention subtest verifies that each location has all bits set to 0.

Address
This test detects memory aliasing. Memory aliasing exists when a physical memory block
repeats one or more times in a logical memory space. Without knowing about this
condition, you might conclude that there is much more physical memory than what
actually exists.

The address test uses a simplistic technique to detect memory aliasing. The test writes
sequentially increasing data values (starting at one and increasing by one) to each
successive memory location. The maximum data value is a prime number and its specific
value depends on the addressing mode so as to not overflow the memory location.
283IDE 5.7 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
The test uses a prime number of elements to avoid coinciding with binary math
boundaries:

• For byte mode, the maximum prime number is 28-5 or 251.

• For word mode, the maximum prime number is 216-15 or 65521.

• For long word mode, the maximum prime number is 232-5 or 4294967291.

If the test reaches the maximum value, the value rolls over to 1 and starts incrementing
again. This sequential pattern repeats throughout the memory under test. Then the test
reads back the resulting memory and verifies it against the written patterns. Any deviation
from the written order could indicate a memory aliasing condition.

Bus Noise
This test stresses the memory system by causing many bits to flip from one memory
access to the next (both addresses and data values). Bus noise occurs when many bits
change consecutively from one memory access to another. This condition can occur on
both address and data lines.

Address lines
To force bit flips in address lines, the test uses three approaches:

• Sequential—This approach works sequentially through all of the memory under test,
from lowest address to highest address. This sequential approach results in an
average number of bit flips from one access to the next.

• Full Range Converging—This approach works from the fringes of the memory range
toward the middle of the memory range. Memory access proceeds in this pattern,
where + number and - number refer to the next item location (the specific increment
or decrement depends on byte, word, or long word address mode):

– the lowest address

– the highest address

– (the lowest address) + 1

– (the highest address) - 1

– (the lowest address) + 2

– (the highest address) - 2

• Maximum Invert Convergence—This approach uses calculated end point addresses
to maximize the number of bits flipping from one access to the next. This approach
involves identifying address end points such that the values have the maximum
inverted bits relative to one another. Specifically, the test identifies the lowest
address with all 0x5 values in the least significant nibbles and the highest address
with all 0xA values in the least significant nibbles. After the test identifies these end
284 IDE 5.7 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
points, memory access alternates between low address and high address, working
towards the center of the memory under test. Accessing memory in this manner, the
test achieves the maximum number of bits flips from one access to the next.

Data lines
To force bit flips in data lines, the test uses two sets of static data, a pseudo-random set and
a fixed-pattern set. Each set contains 31 elements—a prime number. The test uses a prime
number of elements to avoid coinciding with binary math boundaries. The sets are unique
to each addressing mode so as to occupy the full range of bits.

• The test uses the pseudo-random data set to stress the data lines in a repeatable but
pattern-less fashion.

• The test uses the fixed-pattern set to force significant numbers of data bits to flip
from one access to the next.

The subtests execute similarly in that each subtest iterates through static data, writing
values to memory. The test combines the three address line approaches with the two data
sets to produce six unique subtests:

• Sequential with Random Data

• Sequential with Fixed Pattern Data

• Full Range Converging with Random Data

• Full Range Converging with Fixed Pattern Data

• Maximum Invert Convergence with Random Data

• Maximum Invert Convergence with Fixed Pattern Data

Working with a Logic Analyzer
(Windows OS) This section explains how to set up your project to connect to a logic
analyzer and how to use the IDE to issue commands to the logic analyzer. For more
information about setting up the logic analyzer to transmit information to the IDE, refer to
the Targeting documentation.

Configuring the Project
Use the Analyzer Connections target settings panel (Figure 22.12) to configure your
project to connect to a logic analyzer.
285IDE 5.7 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
Figure 22.12 Analyzer Connections Settings Panel

Use the Connection list box to specify the logic analyzer connection that you want to use.
Click the Edit Connection button to configure the parameters of the connection. Figure
22.13 shows the window that appears when you click the Edit Connection button. Table
22.12 explains options in this window.

NOTE Each build target supports only one connection to a logic analyzer. If you want
your project to have more logic analyzer connections, create a build target for
each additional connection.
286 IDE 5.7 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
Figure 22.13 Editing a Logic Analyzer Connection

Table 22.12 Logic Analyzer Connection Options

Option Explanation

Name Enter the name that you want to assign to this collection
of options.

Debugger Use to specify the debugger to use with the logic analyzer.

Connection Type Use to specify the connection method to the logic analyzer.

Analyzer Type Use to specify the type of logic analyzer.

Host Name Enter the Internet Protocol (IP) address of the logic analyzer.

Analyzer
Configuration File

Enter the name of the configuration file that the logic
analyzer requires.

Analyzer Slot Enter the slot name that identifies the logic analyzer location.
287IDE 5.7 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
Using the Logic Analyzer
The IDE can work with a logic analyzer in these ways:

• Connect—establish a connection to the logic analyzer

• Arm—enable the logic analyzer to collect trace data

• Disarm—disable the logic analyzer from collecting trace data

• Update Data—retrieve the latest data from the logic analyzer

• Disconnect—close connection to the logic analyzer

Before you can use the IDE to work with a logic analyzer, you must use the Analyzer
Settings target settings panel to configure a connection to the logic analyzer.
The IDE requires this information in order to correlate collected trace data with currently
running source code.

Connect
This command uses the connection options that you specified in the Analyzer Settings
target settings panel to perform these tasks:

1. Establish a connection to the logic analyzer.

2. Load the configuration file that you specified in the Analyzer Configuration File text
box (the load process might take several minutes).

3. Requests additional information from you as required (for example, for an Agilent
connection, the IDE asks you to select the machine that you want to use).

4. Retrieves all data that will appear in the Trace window.

Trace Support
File

Enter the name of the file that the logic analyzer requires to
support the collection of trace data.

Analyzer Can
Cause Target
Breakpoint

Check to allow the logic analyzer to cause a
hardware breakpoint.

Clear to prevent the logic analyzer from causing a
hardware breakpoint.

Target Breakpoint
Can Cause
Analyzer Trigger

Check to allow a hardware breakpoint to trigger the
logic analyzer.

Clear to prevent a hardware breakpoint from triggering the logic
analyzer.

Table 22.12 Logic Analyzer Connection Options (continued)

Option Explanation
288 IDE 5.7 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
Click Tools > Logic Analyzer > Connect to use this command. You cannot use this
command if you are already connected to a logic analyzer.

Arm
This command instructs the logic analyzer to perform a Run All operation. This operation
prepares the logic analyzer to collect trace data. Click Tools > Logic Analyzer > Arm to
use this command. You cannot use this command if the IDE has not established a
connection to the logic analyzer, or if you already armed the logic analyzer.

Disarm
This command instructs the logic analyzer to perform a Stop All operation, if it is still
running. This operation stops the logic analyzer from collecting trace data. Click Tools >
Logic Analyzer > Disarm to use this command. You cannot use this command if the IDE
has not established a connection to the logic analyzer.

NOTE You must use the Disarm command in order to update trace data in the IDE.

Update Data
This command retrieves the most recent trace data from the logic analyzer in order to
display that data in the Trace window of the IDE. Click Tools > Logic Analyzer >
Update Data to use this command. The Trace window flushes its previous data and
updates its display with the newly retrieved trace data. You cannot use this command until
you first Disarm the logic analyzer.

NOTE The Update Data command does not update the column labels in the Trace
window. If you change the labels in the logic analyzer, you must disconnect
from it in the IDE and then reconnect to it. After you disconnect and reconnect,
the Trace window reflects your changes to the column labels.

Disconnect
This command disconnects the IDE from the logic analyzer, it the connection still exists.
Click Tools > Logic Analyzer > Disconnect to use this command. After you disconnect
the IDE from the logic analyzer, the Trace window flushes its data. You cannot use this
command if you are not currently connected to a logic analyzer.
289IDE 5.7 User’s Guide

Working with Hardware Tools
Trace Window
Trace Window
After you configure your project to use a logic analyzer and collect trace data, you use the
Trace window (Figure 22.14) to view the collected data. The trace window shows up to
100,000 states or trace frames, beginning with the most recent frame.

The IDE determines the column labels that appear in the Trace window at the time it
connects to the logic analyzer. If you update these labels in the logic analyzer, your
changes do not appear in the Trace window if you update data. In the IDE, you must
disconnect from the logic analyzer and reconnect to it in order to update the column labels
in the Trace window.

After you use a logic analyzer to collect trace data, open the Trace window by clicking
Data > View Trace.

Figure 22.14 Trace Window

Cache Window
Use the Cache window (Figure 22.15) to view cache information for the target processor.
Click Data > View Cache to open the Cache window.

NOTE The View Cache menu might have additional supported commands, depending
on the target processor. For example, you might be able to click Data > View
290 IDE 5.7 User’s Guide

Working with Hardware Tools
Profile Window
Cache > Instruction Cache or Data > View Cache > Data Cache to view
these two types of cache concurrently.

Figure 22.15 Cache Window

Profile Window
Use the Profile window (Figure 22.16) to examine profile data that you collect from
executing code. Examining this data helps you improve the performance of your project.
You use profiler Application Programming Interface (API) calls or #pragma directives
in your source code to turn on the profiler, collect profiling data, and turn off the profiler.
For more information, refer to Profiler.

NOTE The Profiler is only available if the target supports it. This feature is dependent
upon support by the target-specific compiler and a profiling library.

To open the Profile window, add the appropriate API calls or #pragma directives to your
source code, then debug your project. The Profile window opens automatically.
291IDE 5.7 User’s Guide

Working with Hardware Tools
Command Window
Figure 22.16 Profile Window

Command Window
The IDE supports a command-line interface to some of its features. You can use the
command-line interface together with the TCL scripting engine. You can also issue a
command line that saves a log file of command-line activity.

The Command window in the IDE shows the standard output and standard error streams
of command-line activity. Figure 22.17 shows the Command window.

Figure 22.17 Command Window

Opening the Command Window

Use the Command window to view the standard output and standard error streams of
command-line activity.
292 IDE 5.7 User’s Guide

Working with Hardware Tools
Command Window
To open the Command window, click View > Command Window.

Issuing Command Lines

Use the Command window to issue command lines to the IDE. For example, enter
debug to start a debugging session.

To issue a command line, bring forward the Command window, type the command line,
and press Enter or Return. The IDE executes the command line that you entered.

If you work with hardware as part of your project, you can use the Command window to
issue command lines to the IDE while the hardware is running.

NOTE Enter help to see a list of available commands and a brief explanation of each
command. Enter help command to see a detailed explanation of the
command. Detailed information is provided in the IDE Automation Guide.
293IDE 5.7 User’s Guide

Working with Hardware Tools
Command Window
294 IDE 5.7 User’s Guide

23
Profiler

The CodeWarrior active profiler lets you analyze how processor time is distributed during
your program’s execution. With this information, you can determine where to concentrate
your efforts to optimize your code most effectively.

This chapter consists of these sections:

• Overview

• Using the Profiler

• Configuring

• Viewing Results

• Troubleshooting

• Reference

Overview
This section provides you with general information about what a profiler is, different
kinds of profilers, and a typical strategy you would follow to measure program
performance.

Topics discussed are:

• What Is a Profiler?—a brief description of profilers and what they do

• Types of Profilers—different kinds of profilers, their strengths and weaknesses

• A Profiling Strategy—an outline you should follow when profiling your own code

• Profiling Code—three steps to follow when profiling code

What Is a Profiler?
Speed and performance are important issues in most software projects. In most cases, code
that does not work quickly does not work well.

Programmers have regularly observed that 10% of their code does 90% of the work.
Reworking code to make it more efficient is not a trivial task. You should concentrate on
improving that core 10% of your code first, and improve the infrequently-used code later,
if at all.
295IDE 5.7 User’s Guide

Profiler
Overview
How would you like to know precisely where your code spent its time? That is what a
profiler does for you—it gives you clues. More than clues, the CodeWarrior profiler gives
you hard and reliable data.

A good profiler analyzes the amount of time your code spends performing various tasks.
Armed with this information, you can apply your efforts to improving the efficiency of
core routines.

A profiler can also help you detect bottlenecks—routines your data passes through to get
to other places—and routines that are just inordinately slow. Identifying these problems is
the first step to solving them.

Types of Profilers
The simplest profilers count how many times a routine is called. They do not report any
information about which routines are called by other routines, or the amount of time spent
inside the various routines being profiled.

Clearly a good profile of the runtime performance of code requires more information than
a raw count. More advanced profilers perform statistical sampling of the runtime
environment. These profilers are called passive or sampling profilers.

A passive profiler divides the program being profiled into evenly-sized “buckets” in
memory. It then samples the processor’s program counter at regular intervals to determine
which bucket the counter is in.

The main advantage of a passive profiler is that it requires no modification to the program
under observation. You just run the profiler and tell it what program to observe. Also,
passive profilers distribute the overhead that they incur evenly over time, allowing the
post-processing steps to ignore it. On the other hand, they cannot sample too frequently or
the sampling interrupt will overwhelm the program being sampled.

Passive profilers have a significant disadvantage. Although useful, bucket boundaries do
not line up with routine boundaries in the program. This makes it difficult if not
impossible to determine which routines are heavily used. As a result, passive profilers
generate a relatively low-resolution image of what is happening in the program while it
runs.

In addition, because they rely on a statistical sampling technique, the program must run for
a long enough period to collect a valid sample. As a result, they do not have good
repeatability—that is, the results you get from different runs may vary unless the sampling
period is long.

The most advanced and accurate profilers are called active profilers. The CodeWarrior
profiler is an active profiler.

An active profiler tracks the precise amount of time a program spends in each individual
routine, measured directly from the system clock.
296 IDE 5.7 User’s Guide

Profiler
Overview
To perform this magic, an active profiler requires that you modify the code of the program
to be observed. An active profiler gains control at every routine entry and exit. There must
be a call to the profiler at the beginning of each profiled routine. The profiler can then
track how much time is spent in the routine.

This approach has significant advantages over a passive profiler. An active profiler can
report high-resolution results about exactly what your program is doing. An active profiler
also tracks the dynamic call tree of a program. This information can be very useful for
determining the true cost of calling a routine. The true cost of a routine call is not only the
time spent in the routine, it is also the time spent in its children—the subsidiary routines it
calls, the routines they call, and so on to whatever depth is necessary.

Because it uses measurements and not statistical sampling, an active profiler is much more
accurate and repeatable than a passive profiler.

The requirement that you must modify the actual source code might seem like a significant
disadvantage. With the CodeWarrior profiler, this disadvantage is minimal. Activating the
profiler for an entire program—or for a range of routines within a program—is simple.
The compiler does most of the work, inserting the necessary calls to the profiler itself. You
do have to recompile the project when you turn on profiling.

Finally, active profilers generate a large amount of raw information. This can lead to
confusion and difficulty interpreting the results. The Profiler window that is part of the
CodeWarrior profiler system handles these difficulties with aplomb. You can view and
sort the data in whatever way best suits your needs.

A Profiling Strategy
You use a profiler to measure the runtime performance of your code. What is usually
important is how your code’s performance measures up to some standard. When
approaching the problem of measuring performance, you might want to take these three
steps:

1. Establish your standards.

For example, you might decide that you want the program to load in less than ten
seconds, or check the spelling of a five-page document that contains no misspellings in
15 seconds. Also decide on the platform you will use for testing, since processor
speeds vary.

2. Determine how to measure time.

Your measurement device may be no more complicated than a stopwatch, or you may
need to add some simple code to count ticks. At this phase you want to test the code in
as close to its finished form as possible, so measure time in a way that is accurate
enough to suit your needs, and that has the lowest impact on your code’s natural
performance. You do not want to run a full-blown profile here, because profiling can
add significant overhead, thus slowing down your code’s raw performance.
297IDE 5.7 User’s Guide

Profiler
Using the Profiler
3. Run the tests and measure results.

If you meet your performance goals, your job is done. If your code does not meet your
goals, then it is time to profile your code.

Profiling Code
To profile your code, you do three things:

1. Run a profiler on the area of the code you want tested.

This might be a single routine, a group of routines that perform a task, or even the
entire application. What you profile depends upon what you are testing.

2. Analyze the data collected by the profiler and improve your code.

You study the results of your profiling and look for problems and room for
improvement.

The profiling process is iterative. You repeat these two steps until you achieve the
performance gain you need to meet your goals.

The rest of this manual discusses how to perform these two steps—profile your code
and analyze the results—using the CodeWarrior profiler system.

3. Retest your code to verify results

When you are satisfied that you have reached your goals, you have one more step to
perform. You should run your original tests—without the profiler of course—to verify
that your code in its natural state meets your performance goals.

The CodeWarrior profiler will help you meet those goals quickly and easily.

Using the Profiler
The CodeWarrior profiler lets you analyze how processor time is distributed during your
program’s execution. With this information, you can determine where to concentrate your
efforts to optimize your code most effectively.

This section discusses the following principal topics:

• What It Does—an overview of the principle features of the profiler

• How It Works—basic information on the elements of the profiler and about how to
use the profiler in your own code

• Profiling Made Easy—a step-by-step guide to using the profiler
298 IDE 5.7 User’s Guide

Profiler
Using the Profiler
What It Does
The CodeWarrior profiler is a state-of-the-art, user-friendly, analytical tool that can profile
C or C++ code.

For every project, from the simplest to the most complex, the profiler offers many useful
features that help you analyze your code. You can:

• turn the profiler on and off at compile time

• profile any routine, group of routines, or an entire project

• track time spent in any routine

• track time spent in a routine and the routines it calls—its children

• track execution paths and times in a dynamic call tree

• collect detailed or summary data in a profile

• use precision time resolutions for accurate profiling

• track the stack space used by each routine

How It Works
The CodeWarrior profiler is an active profiler. The profiling system consists of three main
profiler components:

• a statically-linked code library of compiled code containing the profiler

• an Application Programming Interface (API) to control the profiler

• the Profiler window to view and analyze the profile results

Details of the API are discussed in Profiler Function Reference The Profiler window is
discussed in Viewing Results

The rest of this section will discuss the general profiling process. Subsequent sections
describe how to carry out the profiling process for your particular target.

To use the profiler, you do these things:

• Include the correct profiler library and files in your CodeWarrior project

• Modify your source code to make use of the profiler API

• Use the API to initialize the profiler, to dump the results into a file, and to exit the
profiler

• Use the Profiler window to view the results

You can profile an entire program if you wish or, adding compiler directives to your code,
you can profile any individual section of your program.
299IDE 5.7 User’s Guide

Profiler
Using the Profiler
You modify the original source code slightly to initialize the profiler, dump results, and
exit the profiler when through. You may modify the source code more extensively if you
wish to profile individual portions of your code.

Then the compiler and linker—using a profiler library—generate a new version of your
program, ready for profiling. While it runs, the profiler generates data. Your program will
run a little more slowly because of the profiler overhead (sometimes a lot more slowly),
but that is taken into account in the final results. When complete, you use the Profiler
window to analyze the data and determine what changes are appropriate to improve
performance. You can repeat the process as often as desired until you have turned your
code into a fast, efficient, well-oiled machine.

See also

Profiler Function Reference and Viewing Results

Profiling Made Easy
This section takes you step by step through the general process of profiling an application.

To profile an application, you:

• Add a profiler library to the project

• Turn on profiling

• Include the profiler API interface

• Initialize the profiler

• Dump the profile results

• Exit the profiler

In the steps that follow, we detail precisely what to do in both C and C++. These steps may
seem a little complicated. Do not be alarmed. Using the CodeWarrior profiler is actually
easier than reading about how to do it.

1. Add a profiler library to the project

The code that performs the profiler magic has been compiled into libraries. The precise
library that you add to your code depends on the target for which you are profiling
code and on the kind of code you are developing.

2. Turn on profiling

You can use the following methods to turn profiling on or off:

a. Project-Level Profiling

To turn on profiling for an entire project, use the project settings. In the Project
Settings dialog, choose the processor you are generating code for under the Code
Generation option. Check the Profiler Information checkbox, as shown in Figure
300 IDE 5.7 User’s Guide

Profiler
Using the Profiler
23.1. With profiling on, the compiler generates all the code necessary so that every
routine calls the profiler.

Figure 23.1 Processor Preferences Options for PowerPC

b. Routine-Level Profiling

To profile certain routines (rather than the entire project), use the appropriate
profiler API calls for your target to initialize the profiler, set up profiling, and
immediately turn profiling off. You can then manually turn profiling on and off by
placing profiler calls around the routine or routines you want to profile. For
example, you could modify your code to look like Listing 23.1.

Listing 23.1 Profiling a Routine

void main()
{

...
err = ProfilerInit(...);

if (err == noErr)
{

ProfilerSetStatus(FALSE); // turn off profiling until needed.
// more code....

// now you reach routine you want to profile
ProfilerSetStatus(TRUE); // turn on profiling
foobar(); // this routine is profiled and shows up in viewer
ProfilerSetStatus(FALSE); // turn profiling off again

// more code....
ProfilerTerm();

}

301IDE 5.7 User’s Guide

Profiler
Using the Profiler
}

Assuming that profiling is on for an entire project, you can turn off profiling at any
time. First, use an appropriate call to turn off profiling. Then use another call to
turn it on. Turn it on just before calling the routine or routines you are interested in.
Turn it off when those routines return. It is really that easy.

Alternatively, you can use #pragma statements in C/C++. These are not as useful
as using profiler API calls. For example, suppose you have two routines—foo()
and bar()—that each call a third utility routine, barsoom(). If you use
compiler directives to turn on profiling for foo() and barsoom(), the result
you get will include the time for barsoom() when called from bar() as well.

3. Include the profiler API interface

To use the profiler, you add at least three profiler-related calls to your code. These
calls are detailed in the next three steps. The process varies slightly for the different
languages and targets.

Source files that make calls to the profiler API must include the appropriate header file
for your target. For example, to profile an entire application, you would add this line of
code to the source file that includes your main() function:

#include <profiler.h>

TIP You do not have to include the header file in every file that contains a profiled
function, only in those that actually make direct profiler API calls.

4. Initialize the profiler

At the beginning of your code, you call the appropriate function for your target. See
Profiler Function Reference to find out the precise function name that you need for
your specific target.

5. Dump the profile results

Obviously, if you profile code you want to see the results. The profiler dumps the
results to a data file. The data is in a proprietary format understood by the profiler.

6. Exit the profiler

When you are all through with the profiler, before exiting the program you should
terminate the profiler by calling the correct profiler API function. On most platforms,
302 IDE 5.7 User’s Guide

Profiler
Configuring
if you initialize the profiler and then exit the program without terminating the profiler,
timers may be left running that could crash the machine.

The call to terminate the profiler stops the profiler and deallocates memory. It does not
dump any information. Any collected data that has not been dumped is lost when you
call the function to terminate the profiler.

Having performed these quick steps, you simply compile your program and run it. The
IDE automatically opens this file in the Profiler window when the dump is complete.
You can later re-open the file in the IDE to view the info again.

In summary, the process of using the CodeWarrior profiler is quite easy. You add the
requisite library, turn on profiling, include the header file, initialize the profiler, dump the
results, and exit. It is a remarkably painless and simple process that quickly gets you all
the data you need to perform a professional-level analysis of your application’s runtime
behavior.

Configuring
This reference section discusses how to use the profiler libraries, APIs, and compiler
options.

The sections in this section are:

• Profiler Libraries and Interface Files—the libraries and interface files that you add to
your code in order to use the profiler

• Profiling Special Cases—special cases to consider when profiling code

Profiler Libraries and Interface Files
You can find all of the profiler libraries and interface files in the Profiler folder. The
profiling code that actually keeps track of the time spent in a routine exists in a series of
libraries. Depending upon the nature of your project and the platform for which you are
writing code, you link in one or another of these libraries as appropriate. The libraries you
use must match your settings in the Target settings panel.

The profiler.h file is the header file for the profiler API for C and C++. Include this
file to make calls to control the profiler

Profiling Special Cases
The profiler handles recursive and mutually recursive calls transparently. The profiler also
warns you when profiling information was lost because of insufficient memory. (The
profiler uses memory buffers to store profiling data.)
303IDE 5.7 User’s Guide

Profiler
Configuring
For leading-edge programmers, the profiler transparently handles and reliably reports the
times for abnormally terminated routines exited through the C++ exception handling
model (try, throw, catch) or the ANSI C library setjmp() and longjmp() routines.

This section describes special cases you may encounter while profiling your code:

• Profiling Code with #pragma Statements

• Initializing Profiler with ProfilerInit()

• Terminating Profiler with ProfilerDump()

• Profiling Abnormally Terminated Functions

• Debugging Profiled Code

Profiling Code with #pragma Statements
You can substitute #pragma statements for profiler API function calls to profile your C/
C++ code on the function level. However, this is not as useful as the profiler calls. See
Routine-Level Profiling for more information.

Setting the “Generate Profiler Calls” Processor preference option sets a preprocessor
variable named __profile__ to 1. If profiling is off, the value is zero. You can use this
value at compile time to test whether profiling is on.

Instead of, or in addition to, setting the option in the Processor preferences, you can turn
on profiling at compile time. The C/C++ compiler supports three preprocessor directives
that you can use to turn compiling on and off at will.

You can use these directives to turn profiling on for any functions you want to profile,
regardless of the settings in the Processor preferences. You can also turn off profiling for
any function you do not want to profile.

Initializing Profiler with ProfilerInit()
At the beginning of your code, you call ProfilerInit() to initialize the profiler.
Table 23.1 shows the prototypes for ProfilerInit() for C/C++.

#pragma profile on enables calls to the profiler in functions that are
declared following the pragma

#pragma profile off disables calls to the profiler in functions that are
declared following the pragma

#pragma profile reset sets the profile setting to the value selected in the
preferences panel
304 IDE 5.7 User’s Guide

Profiler
Configuring
The parameters tell the profiler how this collection run is going to operate, and how much
memory the profiler should allocate for its data buffers. Each parameter and its purpose is
given in Table 23.2.

The collection method may be either collectDetailed or collectSummary. If
you collect detailed data, you get information for the calling tree—the time in each routine
and each of its children in the calling hierarchy. Summary data collects data for the time
spent in each routine without regard to the calling chain. Collecting detailed data requires
more memory.

The timeBase may be one of the following values:

• ticksTimeBase

• microsecondsTimeBase

• timeMgrTimeBase

• PPCTimeBase

• win32TimeBase

• bestTimeBase

The bestTimeBase option automatically selects the most precise timing mechanism
available on the computer running the profiled software. Not all of these values are

Table 23.1 ProfilerInit() Prototypes

C/C++ long ProfilerInit(

 ProfilerCollectionMethod method,

 ProfilerTimeBase timeBase,

 short numFunctions, short

 stackDepth);

Table 23.2 ProfilerInit() Parameters

Parameter Purpose

method collect detailed or summary data

timeBase time scale to use in measurements

numFunctions maximum number of routines to profile

stackDepth approximate maximum depth of deepest calling tree
305IDE 5.7 User’s Guide

Profiler
Configuring
supported on all target platforms. Refer to the Targeting Manual for your product to
determine which time bases are available for use.

The numFunctions parameter is the approximate number of routines to be profiled.
The stackDepth parameter is the approximate maximum depth of your calling chain.
You do not need to know the precise values ahead of time. If the profiler runs out of
memory to hold data in its buffers, the profiler loses some data but notifies you of this in
the results. You can then modify the parameters in the call to ProfilerInit() to
increase the buffers and preserve all your data.

The profiler allocates buffers in the profiled application’s heap based on the method of
collection, the number of routines, and the depth of the calling tree. On platforms where it
is possible, the profiler will allocate memory outside of the application’s heap, which
helps reduce the profiler’s effect on the application.

The call to ProfilerInit() returns a non-zero error value if the call fails for any
reason. Use the return value to ensure that memory was allocated successfully before
continuing with the profiler. Typically you would add this call as conditionally compiled
code so that it compiles and runs only if profiling is on and the call to
ProfilerInit() was successful.

You call ProfilerInit() before any profiling occurs. Typically you make the call at
the beginning of your code.

See also Time and Timebases and Memory Usage

Calling ProfilerInit() in C/C++
In C/C++, the call would be at the beginning of your main() function.

The call might look like this:

if (!ProfilerInit(collectDetailed, bestTimeBase, 20, 5))
{
// your profiled code
}

Of course, your parameters may vary depending upon how many routines you have and
the depth of your calling chains.

Terminating Profiler with ProfilerDump()
The profiler dumps its data to a file when you call ProfilerDump(). The file appears
in the current default directory, usually the project directory.

You provide a file name when you call ProfilerDump(). You may dump results as
often as you like. You can provide a different file name for intermediate results (if you
have multiple calls to ProfilerDump()), or use the same name. If the specified file
306 IDE 5.7 User’s Guide

Profiler
Configuring
already exists, a new file is created with an incrementing number appended to the file
name for each new file. This allows the dump to be called inside a loop with a constant file
name. This can be useful for dumping intermediate results on a long task.

ProfilerDump() does not clear accumulating results. If you want to clear results you
can call ProfilerClear().

A typical call to ProfilerDump() would be placed just before you exit your program,
or at the end of the code you are profiling. The prototypes for ProfilerDump() are
listed in Table 23.3.

Calling ProfilerDump()
There is only one parameter: char*. The parameter points to a C-style string for
filename. The IDE automatically adds a .cwp extension to the file name.

Profiling Abnormally Terminated Functions
The profiler correctly reports data for abnormally terminated functions that exited through
the C++ exception handling model (try, throw, catch) or the ANSI C library setjmp()
and longjmp() routines. You do not have to do anything to get this feature, it is
automatic and part of the profiler’s design.

However, there is a possibility of some errors in the reported results for an abnormally
terminated function.

First, the profiler does not detect the abnormal termination until the next profiling call
after the abnormal termination. Therefore, some additional time will be reported as
belonging to the terminated function.

Second, if the next profiler event is a profiler entry, and the new stack frame for that
function is larger than the frames that were abnormally exited, the profiler will not
immediately detect that the original function was abnormally terminated. In that case the
profiler will treat the function just entered as a child of the function abnormally
terminated. The profiler will correct itself on the next profiling event without this
property—that is, when the stack returns to a point smaller than it was when the
abnormally terminated function exited.

Finally, remember that the profiler is not closed properly and the output file is not dumped
when exit() is called. If you need to call exit() in the middle of your program and
want the profiler output, call ProfilerDump().

If you are using the profiler, you should always call ProfilerTerm() before exit().

Table 23.3 ProfilerDump() Prototypes

C/C++ long ProfilerDump(

 unsigned char *filename);
307IDE 5.7 User’s Guide

Profiler
Viewing Results
CAUTION If a program exits after calling ProfilerInit() without calling
ProfilerTerm(), timers may be left running that could crash the
machine.

Debugging Profiled Code
It is possible to debug code that has calls to the profiler in it. However, the profiler does
interfere with stepping through code. You may find it simpler to debug non-profiled code,
and profile separately. In this section, we describe what happens when you step into and
out of a profiled routine. In addition, we describe the effects that stopping in the debugger
has on the profile results.

Stepping into a Profiled Routine
If you step into a profiled routine you may see assembly code instead of source code. The
compiler has added calls to __PROFILE_ENTRY at the start of the routine. This is how
the profiler knows when to start counting time for the routine.

If you step through the assembly code far enough to get to the code derived from the
original source code, then switch the view from source to assembly and back again, you
can see the original source code.

Stepping out of a Profiled Routine
If you single-step out of a routine being profiled, you may end up in the
__PROFILE_EXIT assembly code from the profiler library. This is how the profiler
knows when to stop counting time for the routine.

Effect of Stopping on Profile Results
If you stop in a profiled routine, the profiler counts all the time you spend in the debugger
as time that routine was running. This skews the results.

CAUTION If you debug profiled code, you should not to kill the code from the
debugger. If you have called ProfilerInit() you should call
ProfilerTerm() on exit. If you do not do so, you may crash your
system.

Viewing Results
This section explains the ways you may view profile data. You will look at:

• What It Does—the principle features of the profiler
308 IDE 5.7 User’s Guide

Profiler
Viewing Results
• How It Works—the profiler interface and how you can view data

• Finding Performance Problems—use the profiler to locate problems

What It Does
The Profiler window displays profiler output for you to analyze the results of your
program’s execution. The profiler reads the dump files created by the calls in your code
and displays the data in a form that you can use. Using the data display you can:

• sort data by any of several relevant criteria such as name, time in routine, percent of
time in routine, and so forth

• open multiple profiles simultaneously to compare different versions of the profiled
code

• identify trouble spots in the code

• view summary, detailed, or object-based data

How It Works
You open profile data files exactly as you open files in any application. You can use the
Open command from the File menu or drop the data file’s icon on the CodeWarrior IDE.
Whatever approach you take, when you open a file a window appears.

Profiler Window
The Profiler window allows you to view several elements of the profile data
simultaneously, as shown in Figure 23.2.

Figure 23.2 Profiler Window
309IDE 5.7 User’s Guide

Profiler
Viewing Results
Profiler Window Data Columns
The profiler window contains a series of columns containing data from the profile. All
times are displayed according to the resolution of the timer that you use to profile data.
The results in the window are only as precise as the timer used.

The times shown in the data columns are relative. Each time datum is reported to three
decimal places. However, some timebases (most notably ticksTimeBase) are less
precise. See Time and Timebases

Table 23.4 lists each of the columns in the profiler window (from left to right) and the
information that column contains.

Sorting Data
You can view the data sorted by the value in any column. To change the sort order, click
the column title. The heading becomes highlighted and data is sorted by the value in that
column. Use the arrow control to change the direction of the sort (ascending/descending).

Multiple Windows
You can open any number of different profile windows simultaneously. This allows you to
compare the results of different runs easily.

Table 23.4 Profile Window Data Columns

Column Contents

Function name Routine name. (The profiler unmangles C++ function names.)

Count Number of times this routine was called.

Time Time spent in this routine, not counting time in routines that this
routine calls.

% Percent of total time for the Time column.

+Children Time spent in this routine and all the routines it calls.

% Percent of total time for the +Children column.

Average Average time for each routine invocation: Time divided by the
number of times the routine was called.

Maximum Longest time for an invocation of the routine.

Minimum Shortest time for an invocation of the routine.
310 IDE 5.7 User’s Guide

Profiler
Viewing Results
Window Views
In the tabs, you may choose to view the data in one of three ways: flat, detail, or class. Not
all possibilities are available for all profiles.

Flat View
The flat view displays a complete, non-hierarchical, flat list of each routine profiled. No
matter what calling path was used to reach a routine, the profiler combines all the data for
the same routine and displays it on a single line. Figure 23.3 shows a flat view.

Figure 23.3 Flat View

The flat view is particularly useful for comparing routines to see which take the longest
time to execute. The flat view is also useful for finding a performance problem with a
small routine that is called from many different places in the program. This view helps you
look for the routines that make heavy demands in time or raw number of calls.

A flat view window can be displayed for any profile.

Detail View
The detail view displays routines according to the dynamic call tree, as Figure 23.4 shows.

Figure 23.4 Detail View
311IDE 5.7 User’s Guide

Profiler
Viewing Results
Routines that are called by a given routine are shown indented under that routine. This
means that a routine may appear more than once in the profile if it called from different
routines. This makes it difficult to tell how much total time was spent in a routine.
However, you can use the flat view for that purpose.

The detail view is useful for detecting design problems in code; it lets you see what
routines are called how often from what other routines. Armed with knowledge of your
code’s underlying design, you may discover flow-control problems.

For example, you can use detailed view to discover routines that are called from only one
place in your code. You might decide to fold that routine’s code into the caller, thereby
eliminating the routine call overhead entirely. If it turns out that the little routine is called
thousands of times, you can gain a significant performance boost.

In detail view, sorting is limited to routines at the same level in the hierarchy. For
example, if you sort by routine name, the routines at the top of the hierarchy will be sorted
alphabetically. For each of those first-level routines, its second-level routines will be
sorted alphabetically underneath it, and so on.

The detail view requires that collectDetailed be passed to ProfilerInit()
when collecting the profile. If collectSummary is used, you cannot display the data in
detailed view.

Class View
The class view displays summary information sorted by class. Beneath each class the
methods are listed. This is a two-level hierarchy. You can open and close a class to show
or hide its methods, just like you can in the detail view.

When sorting in class view, functions stay with their class, just like subsidiary functions in
detail view stay in their hierarchical position. Figure 23.5 shows the methods sorted by
count.

Class view allows you to study the performance impact of substituting one
implementation of a class for another. You can run profiles on the two implementations,
and view the behavior of the different objects side by side. You can do the same with the
flat view on a routine-by-routine basis, but the class view gives you a more natural way of
accessing object-based data. It also allows you to gather all the object methods together
and view them simultaneously, revealing the effect of interactions between the object’s
methods.
312 IDE 5.7 User’s Guide

Profiler
Viewing Results
Figure 23.5 Class View

Object view displays N/A (Not Available) in the +Children column for classes in a
collectSummary profile. This is because the detail information is missing from the
file.

The class view requires that the profile contain at least one mangled C++ name. If there is
none, you cannot use object view.

Finding Performance Problems
As you work with the profiler, you will see that the information provided quickly guides
you to problem areas.

To look for time hogs, sort the view by either the Time column or the +Children column.
Then examine routines that appear near the top of the list. These are the routines that
swallow the greatest percentage of your code’s time. Any improvement in these routines
will be greatly magnified in your code’s final performance.

You may also want to sort based on the number of times a routine is called. The time you
save in a heavily-used routine is saved each time it is called.

If stack size is a concern in your code, you can sort based on the Stack Space column. This
lets you see the largest size the stack reached during the profile.
313IDE 5.7 User’s Guide

Profiler
Troubleshooting
Troubleshooting
This section answers common questions about the profiler. So if you have a problem with
the profiler, consult this section first. Other users may have encountered similar
difficulties, and there may be a simple solution.

Profile Times Vary Between Runs

“I’m getting different results (within 10%) in the profiler every time I run my
program.”

Background

There are two potential reasons that this may be happening. Both are time-related
problems. The first problem that can occur is inadequate time in the function
relative to the profiler resolution. The second problem is clock resonance.

Inadequate Time in the Function

If the function time that you are trying to measure is only 10 times greater than the
resolution of the timebase, you will encounter this problem.

Solution

To solve this problem, increase the number of times your function is called, then
the average the profiler computes will be more accurate.

Sometimes it is helpful to pull a routine out of a program, and into a special test
program which calls it many times in a loop for performance tuning purposes.
However, this technique is susceptible to cache differences between the test and
real program.

Clock Resonance

If the operations you are performing in your profiled code coincide with the
incrementing of the profiler clock, the results can be distorted, and could show wild
variations.

Solution

Avoid this problem by increasing the number of times your function is called.
314 IDE 5.7 User’s Guide

Profiler
Troubleshooting
Problems while Profiling Inline Functions

“My inline functions are not getting inlined when I’m profiling my code. What’s
happening?”

Background

When the compiler switch for profiling is turned on, the default setting for “don’t
inline functions” is changed to true. This is so that these functions will have
profiling information collected for them.

Solution

Place a #pragma dont_inline off in your source file to turn on function
inlining again. You will not collect profile information for inline functions. In
effect, a function can be inlined or profiled, but not both. The profiler cannot
profile an inlined function.

TIP If you use the #pragma dont_inline off in your code, you may see profile
results for some inline functions.
When you declare an inline function, the compiler is allowed, but not required to
inline the function. It is perfectly legal for the compiler to inline some functions,
but not others. Data is collected only for the calls that were not inlined. The calls
that were inlined have their time added into the time of the calling function.

Profiling Library Could not be Found

“While trying to profile my dynamically linked library (shared library), I get an
error message saying that the profiling library could not be found.”

Background

This problem occurs when trying to use the profiling library to profile your
dynamically linked library and the profiling library is not in the search path.

Solution

Add the profiling library to the search path. If you are using the CodeWarrior IDE,
see the CodeWarrior IDE User’s Guide for information on search paths.
315IDE 5.7 User’s Guide

Profiler
Reference
Reference
This section contains the detailed technical reference information you may need when
using the profiler.

The topics discussed include:

• Compiler Directives—handling compiler directives

• Memory Usage—understanding memory usage

• Time and Timebases—the available time resolutions

• Profiler Function Reference—a reference for all of the profiler API functions

Compiler Directives
You can control routine-level profiling using compiler directives.

The C/C++ compiler supports three preprocessor directives that you can use to turn
compiling on and off at will.

You can use these directives to turn profiling on for any functions you want to profile,
regardless of the settings in the Processor preferences. You can also turn off profiling for
any function you do not want to profile.

As there are compiler directives to turn the profiler on and off, there are also directives to
test if the profiler is on. You can use these tests in your code so that you can run your
program with or without the profiler and not have to modify your code each time.

In C/C++, use the #if-#endif clause. For example:

void main()
{
#if __profile__ // is the profiler on?

if (!ProfilerInit(collectDetailed, bestTimeBase, 20, 5))
{

#endif
test(15);

#if __profile__

#pragma profile on Enables calls to the profiler in functions that are
declared following the pragma.

#pragma profile off Disables calls to the profiler in functions that are
declared following the pragma.

#pragma profile reset Sets the profile setting to the value selected in the
preferences panel.
316 IDE 5.7 User’s Guide

Profiler
Reference
ProfilerDump("Example.prof");
ProfilerTerm();

}
#endif
}

See also Routine-Level Profiling

Memory Usage
The profiler allocates two buffers in your program’s heap to hold data as it collects
information about your code: one based on the number of routines, and one based on the
stack depth. You pass these parameters in your call to ProfilerInit().

When possible, the profiler will allocate its memory outside of your program’s heap to
reduce the impact of the profiler on your program. If this is not possible, the profiler’s
memory buffers will be allocated in your program’s default heap. You must ensure that
the heap is large enough to hold both your program’s dynamically allocated data and the
profiler’s buffers.

In summary collection mode, the profiler allocates 64 bytes * numFunctions and 40
bytes * stackDepth.

In detailed collection mode, the profiler allocates 12 * 64 * numFunctions bytes and 40
* stackDepth bytes.

As an example, assume numFunctions is set to 100, and stackDepth to 10. In
summary mode the profiler allocates buffers of 6,400 bytes and 400 bytes. In detailed
mode it allocates buffers of 76,800 bytes and 400 bytes.

ProfilerGetDataSizes() lets you query the profiler for the current size of the data
collected in the function and stack tables. This information can be used to tune the
parameters passed to ProfilerInit().

Time and Timebases
The timeBase may be one of the following values:

• ticksTimeBase

• microsecondsTimeBase

• timeMgrTimeBase

• PPCTimeBase

• win32TimeBase

• bestTimeBase
317IDE 5.7 User’s Guide

Profiler
Reference
The bestTimeBase option automatically selects the most precise timing mechanism
available on the computer running the profiled software. Not all of these values are
supported on all target platforms. Refer to the Targeting Manual for your product to
determine which timebases are available for use.

When you call ProfilerInit(), the constant bestTimeBase tells the profiler to
figure out the most precise timebase available on your platform and to use it.

Profiler Function Reference
This is a reference for all profiler functions mentioned in the text of this manual. The
functions described in this section are:

• ProfilerInit()

• ProfilerTerm()

• ProfilerSetStatus()

• ProfilerGetStatus()

• ProfilerGetDataSizes()

• ProfilerDump()

• ProfilerClear()

The discussion of each function includes the following attributes:

• Description: A high-level description of the function

• Prototypes: The entire C/C++ prototypes for the function

• Remarks: Implementational or other notes about the function

ProfilerInit()

ProfilerInit() prepares the profiler for use and turns the profiler on. The
parameters tell the profiler how this collection run is going to operate, and how much
memory to allocate. ProfilerInit() must be the first profiler call before you can call
any other routine in the profiler API.
318 IDE 5.7 User’s Guide

Profiler
Reference
Prototypes

typedef enum {

 collectDetailed,

 collectSummary

} ProfilerCollectionMethod;

typedef enum {

 bestTimeBase

} ProfilerTimeBase;

long ProfilerInit(

 ProfilerCollectionMethod method,

 ProfilerTimeBase bestTimeBase,

 long numFunctions,short stackDepth);

Remarks

ProfilerInit() will allocate its memory outside of your program’s heap to
reduce the impact of the profiler on your program. If this is not possible, the
profiler’s memory buffers will be allocated in your program’s default heap. You
must ensure that the heap is large enough to hold both your program’s dynamically
allocated date and the profiler’s buffers.

ProfilerInit() returns an error status that indicates whether or not the
profiler was able to allocate its memory buffers. If the return value is 0, then
memory allocation was successful. If a non-zero value is returned, then the
allocation was not successful.

The method and timeBase parameters select the appropriate profiler options.
The numFunctions parameter indicates the number of routines in the program
for which the profiler should allocate buffer storage. If the profiler is operating in
detailed mode, this number is internally increased (exponentially), because of the
branching factors involved. The stackDepth parameter indicates how many
routines deep the stack can get.

A call to ProfilerInit() must be followed by a matching call to
ProfilerTerm().
319IDE 5.7 User’s Guide

Profiler
Reference
ProfilerTerm()

ProfilerTerm() stops the profiler and deallocates the profiler’s buffers. It calls
ProfilerDump() to dump out any information that has not been dumped.
ProfilerTerm() must be called at the end of a profile session.

void ProfilerTerm(void);

Remarks

If a program exits after calling ProfilerInit() you should call
ProfilerTerm(). Failing to do so may lead to a crash on some platforms.

ProfilerSetStatus()

ProfilerSetStatus() lets you turn profiler recording on and off in the program.
This makes it possible to profile specific sections of your code such as screen redraw or a
calculation engine. The profiler output makes more sense if the profiler is turned on and
off in the same routine, rather than in different routines.

void ProfilerSetStatus(short on);

Remarks

This routine and ProfilerGetStatus() are the only profiler routines that
may be called at interrupt time.

Pass 1 to turn recording on and 0 to turn recording off.

ProfilerGetStatus()

ProfilerGetStatus() lets you query the profiler to determine if it is collecting
profile information.

short ProfilerGetStatus(void);

Remarks

This routine and ProfilerSetStatus() are the only profiler routines that
may be called at interrupt time.

ProfilerGetStatus() returns a 1 if the profiler is currently recording, 0 if it
is not.
320 IDE 5.7 User’s Guide

Profiler
Reference
ProfilerGetDataSizes()

ProfilerGetDataSizes() lets you query the profiler for the current size of the data
collected in the function and stack tables. This information can be used to tune the
parameters passed to ProfilerInit().

Prototypes

void ProfilerGetDataSizes(

 long *functionSize,

 long *stackSize);

Remarks

If you have passed collectDetailed to ProfilerInit(),
ProfilerGetDataSizes() returns the number of actual routines in the table,
which may be larger than the value passed to ProfilerInit() in
numFunctions. This is because the profiler multiplies numFunctions by 12
when it allocates the table. The multiplication is done so that you can easily switch
between collectDetailed and collectSummary methods without
changing the parameters.

ProfilerDump()

ProfilerDump() dumps the current profile information without clearing it.

long ProfilerDump(char* filename);

Remarks

This can be useful for dumping intermediate results on a long task. If the specified
file already exists, a new file is created with an incrementing number appended to
the filename. This allows the dump to be called inside a loop with a constant
filename.

A non-zero value from ProfilerDump() indicates that an error has occurred.
321IDE 5.7 User’s Guide

Profiler
Reference
ProfilerClear()

ProfilerClear() clears any profile information from the buffers.

void ProfilerClear(void);

Remarks

ProfilerClear() retains the settings of collectionMethod and
timeBase that were set by ProfilerInit(). It does not deallocate the
buffers.
322 IDE 5.7 User’s Guide

VI

Compilers and Linkers

This section contains these chapters:

• Compilers

• Linkers
323IDE 5.7 User’s Guide

324 IDE 5.7 User’s Guide

24
Compilers

This chapter explains how to work with compilers in the CodeWarrior™ IDE. The IDE
uses compilers to complete these tasks:

• Generate object code—the compiler translates source code into object code. Sample
source code includes C++ files and Java files. Object code represents the same
source instructions in a language that the computer directly understands.

• Flag syntax errors—the compiler highlights source code that generates syntax errors.
Syntax errors result from failing to follow valid structure in a programming
language. In C++, a common syntax error is forgetting to end a statement with a
semicolon.

Read this chapter to learn more about typical tasks for working with compilers.

This chapter consists of these sections:

• Choosing a Compiler

• Compiling Projects

Choosing a Compiler
Choose a compiler to determine how the IDE interprets source code. The IDE uses a
plugin compiler architecture. This architecture provides these features:

• Modularity—the IDE associates a specific compiler plugin with a particular
programming language or environment. For example, a compiler plugin exists for
C++ source code, and another compiler plugin exists for Java source code.

• Flexibility—as new programming languages develop, the IDE can use new compiler
plugins.

The IDE associates common filename extensions with various plugin compilers. For
example, most Java files have the filename extension .java. The IDE associates these
files with the Java compiler. The File Mappings panel provides control over such
associations.

Compiling Projects
Compile projects to process the source files that comprise a program and generate object
code. The compiler flags syntax errors in the source files.
325IDE 5.7 User’s Guide

Compilers
Compiling Projects
Use these tasks to compile projects:

• Compile source files.

• Set the build order or link order.

• Update a project or its files.

• Create an executable file from a project.

• Run an application created from the project.

• Remove object code.

This section explains how to perform each task.

Compiling Source Files

Use the Compile commands to compile source files into binary files. The IDE can
compile a single file, multiple files, or all files in an open project.

1. Enable the Project window that contains the desired files to be compiled.

2. Select one or more files.

3. Choose Project > Compile.

The IDE compiles the selected files.

NOTE The Project menu contains most commands for compiling and linking
projects. However, depending on the project type, some commands might be
disabled or renamed.

Setting the Build and Link Order of Files

Use the Link Order view in the Project window to specify the order in which the
compiler and linker process files. Establishing the proper link order prevents link errors
caused by file dependencies. The Link Order view is sometimes called the Segments
view or Overlays view, depending on the target.

1. Click the Link Order tab in a Project window.

2. Click and drag files into the desired link order.

The IDE changes the link order. The build begins at the top of the link order, processes
each file, and concludes at the bottom of the link order.

NOTE The IDE uses the new link order during subsequent Update, Make, Run, and
Debug operations.
326 IDE 5.7 User’s Guide

Compilers
Compiling Projects
Updating Projects

Use the Bring Up To Date command to compile, but not link, the newly added, modified,
and touched files in a project. Unlike the Make and Run commands, the Bring Up To
Date command does not produce a binary file.

1. Select the project to update.

2. Choose Project > Bring Up To Date.

The IDE compiles all uncompiled project files.

Making Executable Files

Use the Make command to compile the newly-added, modified, and touched files in a
project, then link them into a binary file. Unlike the Run command, the Make command
does not execute the binary file. The Make command is useful for creating dynamic link
libraries (DLLs), shared libraries, code resources, or tools.

1. Select the project to make.

2. Choose Project > Make.

The IDE processes the project and creates a binary file.

Running Application Projects

Use the Run command to perform these tasks:

• Compile and link a project (if necessary).

• Create a standalone application.

• Change project settings (if required).

• Save the application.

• Run the application.

Note, the Run command is not available if the project creates a non-executable file like a
dynamic linked library (DLL), shared library, library, code resource, or tool.

1. Select the project to run.

2. Choose Project > Run.
327IDE 5.7 User’s Guide

Compilers
Compiling Projects
Synchronizing File Modification Dates

Use the Synchronize Modification Dates command to update the modification dates of
all files stored in a project. This command is useful for handling files from a third-party
editor that does not share file-status information with the IDE.

1. Select the project window.

2. Choose Project > Synchronize Modification Dates.

The IDE checks the file-modification dates and marks modified files for re-
compilation.

Removing Object Code

Use the Remove Object Code command to remove binary object code stored in the
project file and reduce project size.

1. Open the desired project.

2. Choose Project > Remove Object Code.

3. Set compaction options as desired.

• Select Recurse subprojects to remove object code from all subprojects in the
project file.

• Select Compact targets to remove these items:

Target data files with the .tdt extension.

Browser data.

Dependency information.

Additional data cached by the IDE.

4. Select the method by which the IDE removes the object code.

• Click All Targets to remove object code from all build targets.

• Click Current Target to remove object code only from the active build target.

The IDE removes the specified object code from the project.
328 IDE 5.7 User’s Guide

25
Linkers

This chapter explains how to work with linkers in the CodeWarrior™ IDE. The IDE uses
linkers to complete these tasks:

• Combine code—the linker combines source-file object code with object code from
library files and other related files. The combined code represents a complete
computer program.

• Create a binary file—the linker processes the complete program and generates a
binary file. Sample binary files include applications and shared libraries.

Read this chapter to learn more about typical tasks for working with linkers.

This chapter consists of these sections:

• Choosing Linkers

• Linking Projects

Choosing Linkers
Choose a linker to determine the binary file type produced by the IDE. This list describes
common binary files:

• Applications—applications, or executable files, represent a wide body of computer
programs. Common applications include word processors, web browsers, and
multimedia players.

• Libraries—libraries contain code for use in developing new computer programs.
Libraries simplify programming tasks and enhance re-usability.

• Specialized files—files designed for highly efficient operation in a specific context.
Such files usually support a particular combination of hardware and software to
perform tasks.

The IDE provides various linkers for software development. The Target Settings panel
contains an option for selecting a linker. The IDE maps to each linker a group of
recognized filename extensions. These mappings determine how the IDE interprets each
file.
329IDE 5.7 User’s Guide

Linkers
Linking Projects
Linking Projects
Link projects to process object code and generate a binary file. Refer to the CodeWarrior
Targeting documentation for more information about linkers for specific computer
systems. This section explains general-purpose linker tasks.

Generating Project Link Maps

Use the Generate Link Map command to create a link-map file that contains function and
cross-section information about the generated object code. The link map reveals the files,
libraries, and functions ignored by the IDE while producing the binary output.

The IDE stores the link-map file in the project folder. The file uses the same name as the
build target, with a .MAP or .xMAP extension.

1. Select the project window.

2. Choose Edit > targetname Settings...

3. Select the linker panel in the Target Settings Panels list.

4. Select the Generate Link Map option.

5. Click Save.

6. Choose Project > Make.

The IDE generates the link-map file.
330 IDE 5.7 User’s Guide

VII

Preferences and Target
Settings

This section contains these chapters:

• Customizing the IDE

• Working with IDE Preferences

• Working with Target Settings

• Preference and Target Settings Options

• Register Details Window XML Specification
331IDE 5.7 User’s Guide

332 IDE 5.7 User’s Guide

26
Customizing the IDE

The CodeWarrior™ IDE enables you to customize menus, toolbars, and key bindings to
suit your programming preferences. Use the Customize IDE Commands window—
which consists of the Commands, Toolbar Items, and Key Bindings tabs—to build your
customizations.

This chapter consists of these sections:

• Customizing IDE Commands

• Customize Toolbars

• Customize Key Bindings

Customizing IDE Commands
You can customize the menu commands in the IDE’s menu bar, as well as control the
appearance of specific menu commands, create new command groups to distinguish menu
commands, and associate a command line (Windows, Solaris, and Linux) or a script or
application (Mac OS) with a new menu command. The customized menu commands you
create have access to IDE information, such as the current editor selection, the frontmost
window, and the current project and its output file.

Select Edit > Commands & Key Bindings to access the Customize IDE Commands
window. Figure 26.1 shows the Customize IDE Commands window. Table 26.1 explains
each button in the window. See the tasks in this chapter for more detailed information.
333IDE 5.7 User’s Guide

Customizing the IDE
Customizing IDE Commands
Figure 26.1 Customize IDE Commands Window

Table 26.1 Customize IDE Commands Window Buttons

Button Explanation

New Group Click to add a new command group to the Commands list.

New Command Click to add a new command setting within a group.

Factory Settings Click to restore default options for the current Customize IDE
Commands (Commands and Toolbar Items) lists.

Revert Click to restore the most recently saved options for the current
Customize IDE Commands (Commands and Toolbar Items)
lists.

Export Click to save a file that contains commands and key bindings
to use later in the Customize IDE Commands lists.
334 IDE 5.7 User’s Guide

Customizing the IDE
Customizing IDE Commands
Commands Tab
Click the Commands tab at the top of the Customize IDE Commands window to display
the commands view. Use this view to modify existing menu commands, and to create and
remove command groups and menu commands.

Modifying Existing Commands

You can use the Commands tab of the Customize IDE Commands window to examine
and modify existing command groups and menu commands. This view includes a
Commands list. This hierarchical list organizes individual menu commands into command
groups. Click the hierarchical control next to a command group to expand that group and
view its contents.

To examine a particular item, select it in the Commands list. Information for the selected
item appears on the right-hand side of the Customize IDE Commands window. This
window provides this information for each selected item:

• Name—This field shows the name of the selected item. If the IDE does not permit
you to change the name of the selected items, this field is grayed out.

• Appears in Menus—Enable this checkbox to display the selected item in the
specified position in the CodeWarrior menu bar. For example, enabling this
checkbox for a menu command allows that menu command to appear under the
related command group in the menu bar. Disabling the checkbox prevents the menu
command from appearing in the menu bar under the command group.

• Action—This section shows information about the action the selected item performs.
For default menu commands, this section shows the command type, such as
Command or Hierarchical Menu. For customized menu commands that you create,
this section lets you specify a command line (Windows, Solaris, and Linux) or a
script (Mac OS) that runs after you choose the customized menu command.

• Key Bindings—This area consists of the Key Bindings list, the New Binding button,
and the Auto Repeat checkbox.

Import Click to open a file that contains commands and key bindings
to use in the current Customize IDE Commands lists.

Save Click to save customizations to the Customize IDE Commands
list.

Table 26.1 Customize IDE Commands Window Buttons (continued)

Button Explanation
335IDE 5.7 User’s Guide

Customizing the IDE
Customizing IDE Commands
Creating a New Command Group

To create a new command group for menu commands, follow these steps:

1. Click the New Group button.

The IDE creates a new command group called New Group, adds it to the Commands
list, and displays its information in the Customize IDE Commands window.

2. Rename the new command group in the Name field.

3. Use the Appears in Menus checkbox to toggle the availability of the new command
group in the IDE menu bar.

Select the Appears in Menus checkbox to display the new command group in the menu
bar. Clear the checkbox if you do not want the command group to appear in the menu
bar.

4. Click Save.

The IDE saves your new command group. If you selected the Appears in Menus
checkbox, your new command group appears in the menu bar.

Creating a New Menu Command

To create a new menu command, follow these steps:

1. Select the command group you want to contain the new menu command.

You must select an existing command group in the Commands list.

2. Click the New Command button.

The IDE creates a new menu command named New Command and places it within
the selected command group. The information for the new menu command appears in
the Customize IDE Commands window.

3. Enter a name for the new menu command.

You can change the default name of New Command, as Figure 26.2 shows. Enter a
new name in the Name field of the Customize IDE Commands window.

4. Use the Appears in Menus checkbox to toggle the availability of the new command
within its command group.

5. Define the desired Action for the new menu command.

6. Click Save.

The IDE saves your new menu command. If you enabled the Appears in Menus
checkbox, the new menu command appears within the selected command group.
336 IDE 5.7 User’s Guide

Customizing the IDE
Customizing IDE Commands
Defining Command Actions (Windows)

Figure 26.2 shows Command Action fields, which let you associate an action with the new
menu command:

Figure 26.2 Command Action Fields

• Execute—Enter in this field a command to run an application. Alternatively, click
the ellipsis button next to the field to select the application using a standard dialog
box.

• Arguments—Enter the arguments that the IDE must pass to the application specified
in the Execute field. Alternatively, choose the desired arguments from the pop-up
menu next to the field.

• Directory—Enter the working directory the IDE should use when it executes the
application specified in the Execute field. Alternatively, choose the desired directory
from the pop-up menu next to the field.
337IDE 5.7 User’s Guide

Customizing the IDE
Customizing IDE Commands
Pre-Defined Variables in Command
Definitions
The IDE provides pre-defined variables for Windows, Solaris, and Linux (not Mac OS) to
associate actions with commands. When you create a new command, you can use these
pre-defined variables in command definitions to provide additional arguments that the
IDE passes to the application (which is specified in the Execute field).

NOTE You can use variables that end with Dir as both argument and directory
names.

Figure 26.3 shows a list of pre-defined argument variables; Figure 26.4 shows a list of pre-
defined directory variables.

Figure 26.3 Pre-Defined Argument Variables
338 IDE 5.7 User’s Guide

Customizing the IDE
Customizing IDE Commands
Figure 26.4 Pre-Defined Directory Variables

Table 26.2 explains pre-defined variables for command-line arguments.

Table 26.2 Pre-Defined Variables in Command Definitions

Variable Command-line output

%sourceFilePath sourceFilePath is the frontmost editor window's full path.

%sourceFileDir sourceFileDir is the frontmost editor window's directory.

%sourceFileName sourceFileName is the frontmost editor window's filename.

%sourceLineNumber sourceLineNumber is the line number of the insertion point in
the front window.

%sourceSelection sourceSelection is the path to a temporary file containing the
currently selected text.

%sourceSelUpdate sourceSelUpdate is like sourceSelection, except the IDE
waits for the command to finish and updates the selected text
with the contents of the file.
339IDE 5.7 User’s Guide

Customizing the IDE
Customizing IDE Commands
Using a Pre-defined Variable

To use a pre-defined variable, follow these steps:

1. Create a new menu command.

The IDE creates a new menu command named New Command and places it within
your selected command group. The information for the new menu command appears
in the Customize IDE Commands window.

2. Enter a name for the new menu command.

3. Use the Appears in Menus checkbox to toggle the availability of the new command
within its command group.

%projectFilePath projectFilePath is the full path of the front project window.

%projectFileDir projectFileDir is the directory of the front project window.

%projectFileName projectFileName is the filename of the front project window.

%projectSelectedFiles projectSelectedFiles passes the selected filenames in the
project window.

%targetFilePath targetFilePath is the full path of the output file of the front
project.

%targetFileDir targetFileDir is the directory of the output file of the front
project.

%targetFileName targetFileName is the filename of the output file of the front
project.

%currentTargetName currentTargetName passes the name of the current target of
the frontmost window.

%symFilePath symFilePath is the full path to the symbolics file of the front
project (can be the same as targetFile, such as CodeView).

%symFileDir symFileDir is the full directory to the symbolics file of the front
project (can be the same as targetFile, such as CodeView)

%symFileName symFileName is the full filename to the symbolics file of the
front project (can be the same as targetFile, such as
CodeView)

Table 26.2 Pre-Defined Variables in Command Definitions (continued)

Variable Command-line output
340 IDE 5.7 User’s Guide

Customizing the IDE
Customizing IDE Commands
4. Define the Action for the new menu command.

a. Enter in the Execute field a command line to run an application.

b. Next to the Arguments field, click on the arrow icon and select an argument listed
in the pop-up menu.

c. Next to the Directory field, click on the arrow icon and select a directory listed in
the pop-up menu.

5. Click Save.

The IDE saves your new menu command with the pre-defined variables. If you enabled
the Appears in Menus checkbox, the new menu command appears within the selected
command group.

Defining Command Actions (Mac OS)

After you create a new menu command, the Customize IDE Commands window shows
the Run App/Script field. This field appears in the Action section of the window.

1. Click the Choose button next to the field to display a standard Open dialog box.

2. Use the dialog box to select an application or script.

The IDE launches this application or script each time you choose the menu command.
The path to the selected application or script appears in the Run App/Script field.

Deleting Command Groups and Menu Commands

You can delete the command groups and menu commands that you create for the IDE.
Once removed, the command groups no longer appear in the IDE’s menu bar, and the
menu commands no longer activate their associated command lines (Windows),
applications or scripts (Mac OS).

NOTE If you need to temporarily remove your customized command groups and
menu commands, consider exporting your settings. If you export your settings,
you do not need to reconstruct them if you want them in the future.

To delete a command group or menu command, follow these steps:

1. Select the command group or menu command you wish to delete.

If necessary, click the hierarchical control next to a group to expand and view its
contents.
341IDE 5.7 User’s Guide

Customizing the IDE
Customize Toolbars
2. Click Delete.

After clicking the Delete button, the selected command group or menu command
disappears from the Commands list.

3. Click Save.

Clicking the Save button confirms the deletion. The IDE removes deleted command
groups from its menu bar. Deleted menu commands disappear from their respective
command groups.

Customize Toolbars
You can use the Toolbar Items page of the Customize IDE Commands window to put the
commands you use often into your IDE toolbars. Figure 26.5 shows this page.

The IDE toolbars contain a series of elements, each of which typically represents a menu
command. After you click the element, the IDE executes the associated menu command.
The toolbar can also contain elements that execute actions other than menu commands.

Figure 26.5 Toolbar Items Page

This section explains these topics:
342 IDE 5.7 User’s Guide

Customizing the IDE
Customize Toolbars
• Kinds of Toolbars

• Toolbar Elements

• Modify a Toolbar

Kinds of Toolbars
The CodeWarrior IDE uses two toolbar types:

• Main toolbar (Windows OS)—This toolbar (Figure 26.6), also known as the floating
toolbar, is always available.

• Window toolbars—These toolbars appear in particular windows, such as the Project
window toolbar (Figure 26.7) and the Browser window toolbar.

This distinction is important because you show, hide, clear, and reset the different toolbar
types by using different sets of menu commands. These commands distinguish between
the floating toolbar and the other window toolbars.

When you change one of these toolbar types, that change applies to every instance of that
toolbar type you subsequently create. For example, if you modify the toolbar in an editor
window, your changes appear in all editor windows opened thereafter.

Figure 26.6 Main Toolbar (Windows OS)

Figure 26.7 Project Window Toolbar

Toolbar Elements
A toolbar can contain these elements:

• Commands—buttons that you click to execute IDE menu commands

• Controls—menus, such as Document Settings, Functions, Header Files, Markers,
Version Control, and Current Target

• Miscellaneous—other elements, such as the File Dirty Indicator and File Path field

• Scripts (Mac OS)—buttons that you click to execute one of the scripts available
through the Scripts menu
343IDE 5.7 User’s Guide

Customizing the IDE
Customize Toolbars
Click the Toolbar Items tab at the top of the Customize IDE Commands window to
display the Toolbar view. Use this view to add new elements to a toolbar.

Modify a Toolbar
You can modify a toolbar in these ways:

• Add a toolbar element

• Remove a toolbar element

• Clear all elements on a toolbar

• Reset a toolbar

In certain circumstances there are restrictions on which elements you can add or remove
from a toolbar. For example, you cannot add a second instance of an element to the
toolbar.

After you modify a toolbar, the changes apply to every instance of that toolbar. For
example, if you customize the Project window toolbar, those changes will affect every
Project window that you open, not just the toolbar in the active Project window. Your
changes do not affect windows that are already open.

TIP To display a ToolTip that names a toolbar element, rest the cursor over the
element. On the Mac OS 9-hosted IDE, activate Balloon Help and rest the cursor
over the element.

Adding a Toolbar Element

You add an element to a toolbar by dragging and dropping it from the Toolbar Items list
onto a toolbar. This list is in the Toolbar Items view in the Customize IDE Commands
window.

To add an element to a toolbar, follow these steps:

1. From the Toolbar Items list, select the icon next to the element that you want to add to
a toolbar.

Make sure that the destination toolbar is visible.

2. Drag the element’s icon from the Toolbar Items list to the destination toolbar.

On the Windows-hosted IDE, if the destination toolbar accepts the element, a framing
bracket appears in the toolbar. This framing bracket shows you where the new element
will appear after you release the cursor. If the destination toolbar does not accept the
element, the framing bracket does not appear.
344 IDE 5.7 User’s Guide

Customizing the IDE
Customize Toolbars
3. Release the element at the desired position.

After you release the element, the IDE inserts the element into the
destination toolbar.

The toolbar might not accept an element for these reasons:

• The toolbar is full.

• The element already exists in the toolbar.

• The window does not support that element.

• The following elements can only be added to the editor window toolbar: Document
Settings, Functions, Header Files, Markers, Version Control menus, File Dirty
Indicator, and File Path field.

• The Current Target menu element can only be added to the Project window toolbar.

Removing a Toolbar element

To remove an element from a toolbar, follow these steps:

1. Display a contextual menu for the button that you want to remove, as Table 26.3
explains.

2. Select the Remove Toolbar Item command from the contextual menu.

The IDE removes the button from the toolbar.

Clearing All Buttons on Toolbars

You can clear all elements from a toolbar and build your own toolbar from scratch. Table
26.4 explains how to clear the main (floating) toolbar and window toolbars.

Table 26.3 Displaying Contextual Menu for a Toolbar Button

On this host... Do this...

Windows Right-click the button.

Macintosh Control-click the button.

Solaris Control-click the button.

Linux Ctrl-click the button.
345IDE 5.7 User’s Guide

Customizing the IDE
Customize Toolbars
Reset Toolbars

Reset a toolbar to restore its default button set. Table 26.5 explains how to reset the main
(floating) toolbar and window toolbar by using menu commands.

Alternatively, you can use a contextual menu to reset the main toolbar or a window
toolbar. Once you reset the toolbar, the IDE restores the default toolbar button set. Table
26.6 explains how to reset the main (floating) toolbar and window toolbar by using a
contextual menu.

Table 26.4 Clearing Toolbars

On this
host…

Do this to clear the
main toolbar…

Do this to clear the
window toolbar…

Windows Select View > Toolbars >
Clear Main Toolbar.

Select View > Toolbars >
Clear Window Toolbar.

Macintosh Select Window > Toolbar >
Clear Floating Toolbar.

Select Window > Toolbar >
Clear Window Toolbar.

Solaris Select Window > Toolbar >
Clear Floating Toolbar.

Select Window > Toolbar >
Clear Window Toolbar.

Linux Select Window > Toolbar >
Clear Floating Toolbar.

Select Window > Toolbar >
Clear Window Toolbar.

Table 26.5 Resetting a Toolbar by Using Menu Commands

On this host… Do this to reset the
main toolbar…

Do this to reset the
window toolbar…

Windows Select View > Toolbars >
Reset Main Toolbar.

Select View > Toolbars >
Reset Window Toolbar.

Macintosh Select Window > Toolbar >
Reset Floating Toolbar.

Select Window > Toolbar >
Reset Window Toolbar.

Solaris Select Window > Toolbar >
Reset Floating Toolbar.

Select Window > Toolbar >
Reset Window Toolbar.

Linux Select Window > Toolbar >
Reset Floating Toolbar.

Select Window > Toolbar >
Reset Window Toolbar.
346 IDE 5.7 User’s Guide

Customizing the IDE
Customize Key Bindings
Customize Key Bindings
As Figure 26.8 shows, you can customize the keyboard shortcuts, known as key bindings,
for various commands in the CodeWarrior IDE. You can bind a set of keystrokes to
virtually any command. To activate the command, type its associated key binding. Use the
Customize IDE Commands window to change IDE key bindings.

You can also use the Customize IDE Commands window to look up default key bindings
for specific commands, as well as change existing key bindings to better suit your needs.

Click the Commands tab at the top of the Customize IDE Commands window to display
the Commands view. Use this view to configure key bindings for menu commands, editor
actions, and other actions. You can also specify prefix keys.

This section has these topics:

• Modifying key bindings

• Adding key bindings

• Deleting key bindings

• Setting Auto Repeat for key bindings

• Exporting commands and key bindings

• Importing commands and key bindings

• Quote key prefix

Table 26.6 Resetting a Toolbar by Using a Contextual Menu

On this
host…

Do this to reset the
main toolbar…

Do this to reset the
window toolbar…

Windows Right-click the toolbar and
select Reset Toolbar.

Right-click the toolbar and select
Reset Toolbar.

Macintosh Control-click the toolbar and
select Reset Toolbar.

Control-click the toolbar and select
Reset Toolbar.

Solaris Click and hold on the toolbar,
then select Reset Toolbar.

Click and hold on the toolbar, then
select Reset Toolbar.

Linux Click and hold on the toolbar,
then select Reset Toolbar.

Click and hold on the toolbar, then
select Reset Toolbar.
347IDE 5.7 User’s Guide

Customizing the IDE
Customize Key Bindings
Figure 26.8 Customize IDE Commands—Key Bindings

Adding Key Bindings

Use the Customize IDE Commands window to specify additional key bindings for a
particular command.

To add a key binding, follow these steps:

1. From the Commands list, select the command to which you want to add a new key
binding.

Click the hierarchical controls next to the command categories to expand them as
necessary so that you can see individual commands. Select the individual command
you wish to modify.

NOTE If you want to use your keyboard’s numeric keypad as part of the new key
binding, enable the Numeric Keypad Bindings checkbox in the Customize
IDE Commands window.

2. Click New Binding. The Edit Key Binding dialog box (Figure 26.9) appears.
348 IDE 5.7 User’s Guide

Customizing the IDE
Customize Key Bindings
Figure 26.9 Edit Key Binding Dialog Box

3. Create the key combination you would like to use for the selected command.

For example, to add the key combination Ctrl-8, hold down the Ctrl key and press the
8 key, then release both keys at the same time.

If you decide against the key combination that you just entered, or if you make a
mistake, click Cancel in the Edit Key Binding dialog box. The IDE discards changes
and returns you to the Customize IDE Commands window.

4. Click OK in the Edit Key Binding dialog box.

The new key binding appears in the Key Bindings list in the Customize IDE
Commands window.

5. Click Save in the Customize IDE Commands window to save your changes.

The new key binding is now available for use in the IDE.

Exporting Commands and Key Bindings

You can export to a file the custom commands and key bindings that you use with the
IDE. You can then import the file into another IDE running on a different computer in
order to transfer all of your custom commands and key bindings. This process simplifies
your setup on the other computer because you do not have to recreate your custom
commands and key bindings manually.

NOTE After you import your custom commands and key bindings into another
computer, the IDE running on that computer first sets all its commands and key
bindings to their default values, then imports your custom commands and key
bindings.

To export your custom commands and key bindings, follow these steps:

1. Click Export in the Customize IDE Commands window.

After you click this button, a standard Save dialog box appears.

2. Select a location in which to save the Commands&KeyBindings.mkb file.

This file contains information about your custom commands and key bindings.
349IDE 5.7 User’s Guide

Customizing the IDE
Customize Key Bindings
3. Click Save.

The IDE saves the Commands&KeyBindings.mkb file at the selected location.

TIP You can rename the Commands&KeyBindings.mkb file, but remember to
preserve the .mkb extension. Furthermore, the Windows-hosted version of the
CodeWarrior IDE uses this extension to properly recognize the commands and key
bindings file.

Importing Commands and Key Bindings

You can import custom commands and key bindings from a previously exported file.
Commands&KeyBindings.mkb is the default name of an exported file for custom
commands and key bindings.

NOTE After you import your custom commands and key bindings into another
computer, the IDE running on that computer first sets all its commands and key
bindings to their default values, then imports your custom commands and key
bindings.

To import commands and key bindings, follow these steps:

1. Click Import in the Customize IDE Commands window.

After you click this button, a standard Open dialog box appears.

2. Use the dialog box to find and open the Commands&KeyBindings.mkb file that
you want to import.

The IDE adds the custom commands and key bindings to the Customize IDE
Commands window.

Quote Key prefix

The Quote Key is a special prefix key that lets you use any character (such as a-z) as a
command key without a modifier key, and still retain the ability to use that character
normally, as in editor windows.

In typical use, a key equivalent involves two keys: a modifier key (such as the Ctrl key)
combined with a printing key. However, the IDE does not require a modifier key.

For example, you can assign the 2 key (with no modifier) to a command. If you make this
assignment, you can no longer type a 2 into your source code in the editor. This conflict
occurs because the IDE now interprets the 2 as a command key instead of a printing key.
The Quote Key prefix provides the solution to such conflicts.
350 IDE 5.7 User’s Guide

Customizing the IDE
Customize Key Bindings
You can configure the IDE to recognize any key as the Quote Key prefix. Despite its
name, the Quote Key prefix does not have to be the key that creates the quote character
(").

After typing an assigned Quote Key prefix, the IDE interprets the next keypress as a
keystroke, not as a command.

Returning to the earlier example, assume that you assign the 2 key to a command and the
tilde key (~) to be your Quote Key prefix. To execute the command, you would type the 2
key. To enter the character 2 into source code, you would type the tilde key first, then the
2 key. To enter the tilde character into source code, you would press the tilde key twice.

WARNING! The Quote Key only affects the next key or key combination that you
type. You must use the Quote Key once for each bound key or key
combination for which you want to type.

Assigning the Quote Key prefix

To assign the Quote Key prefix:

1. Click the expand control next to the Miscellaneous command group.

Miscellaneous is part of the Commands list in the Customize IDE Commands
window.

2. Select the Quote Key item.

NOTE If you want to use the numeric keypad as part of the new key binding, enable
the Numeric Keypad Bindings checkbox in the Customize IDE Commands
window.

3. Click New Binding to display the Edit Key Bindings dialog box.

4. Type the desired Quote Key prefix.

The keys you type appear in the dialog box. If you make a mistake or decide against
the keys you typed, click Cancel to return to the Customize IDE Commands window.

5. Click OK in the Edit Key Binding dialog box.

The new Quote Key prefix appears in the Key Bindings list.
351IDE 5.7 User’s Guide

Customizing the IDE
Customize Key Bindings
352 IDE 5.7 User’s Guide

27
Working with IDE
Preferences

This chapter explains core CodeWarrior™ IDE preference panels and provides basic
information on global- and project-level preference options. Consult the Targeting
documentation for information on platform-specific preference panels.

This chapter consists of these sections:

• IDE Preferences Window

• General Panels

• Editor Panels

• Debugger Panels

IDE Preferences Window
The IDE Preferences window (Figure 27.1) lists global IDE options. Table 27.1 explains
the items of this window. These preferences, unless superseded by a Target Settings
option, apply to every open project file. Select Edit > Preferences to open the IDE
Preferences window.

The IDE Preferences window lists preferences by group:

• General—configures overall IDE preferences, such as project builds, recent items,
and third-party tools

• Editor—configures editor preferences, such as fonts, tabs, and syntax coloring

• Debugger—configures debugger preferences, such as window hiding during
debugging sessions, low-level interactions, and variable highlighting
353IDE 5.7 User’s Guide

Working with IDE Preferences
IDE Preferences Window
Figure 27.1 IDE Preferences Window

Table 27.1 IDE Preferences Window Items

Item Explanation

IDE Preference
Panels list

Lists preference panels, organized by group. Click the hierarchical
control next to a group name to show or hide individual
preference panels.

Preference panel Shows options for the selected item in the IDE Preference Panels
list.

Factory Settings Click to restore the default options for the current preference panel.

Revert Panel Click to restore the most recently saved options for the current
preference panel.

Export Panel Click to save an XML file that contains options for the current
preference panel.

Import Panel Click to open an XML file that contains options for the current
preference panel.
354 IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
General Panels
The General section of the IDE Preference Panels defines basic options assigned to a new
project.

The General preference panels available on most IDE hosts include:

• Build Settings

• Concurrent Compiles

• IDE Extras

• Help Preferences

• Plugin Settings

• Shielded Folders

• Source Trees

Build Settings
The Build Settings preference panel (Figure 27.2) provides options for customizing
various aspects of project builds, including:

• file actions during project builds

• memory usage to accelerate builds

• local data storage of projects stored on read-only volumes

Table 27.2 explains the items of this panel.

OK (Windows) Click to save modifications to all preference panels and close
the window.

Cancel
(Windows)

Click to discard modifications to all preference panels and close
the window.

Apply (Windows) Click to confirm modifications to all preference panels.

Save (Macintosh,
Solaris, and
Linux)

Click to save modifications to all preference panels.

Table 27.1 IDE Preferences Window Items (continued)

Item Explanation
355IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
Figure 27.2 Build Settings Preference Panel

Table 27.2 Build Settings Preference Panel Items

Item Explanation

Play sound after ‘Bring Up
To Date’ & ‘Make’
(Macintosh, Solaris, and
Linux)

Select to have the IDE play an alert sound after
completing a Bring Up To Date or Make command.

Success (Macintosh,
Solaris, and Linux)

Choose the sound the IDE plays after successfully
completing a Bring Up To Date or Make command.

Failure (Macintosh, Solaris,
and Linux)

Choose the sound the IDE plays after failing to complete
a Bring Up To Date or Make command.

Build before running Choose to always build the project before running it,
never build the project before running it, or ask for the
desired action.

Save open files before build Select to automatically save the contents of all editor
windows before starting a build.

Show message after
building up-to-date project

Select to have the IDE display a message after
successfully building a project.

Include file cache
(Macintosh)

Enter the kilobytes of memory to allocate to the file cache
used for #include files during a project build.
356 IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
Concurrent Compiles
The Concurrent Compiles preference panel (Figure 27.3) controls execution of
simultaneous IDE compilation processes. The IDE lists this panel in the IDE Preference
Panels list when the active compiler supports concurrency. Table 27.3 explains the items
of this panel.

The IDE uses concurrent compiles to compile code more efficiently. The IDE improves its
use of available processor capacity by spawning multiple compile processes, which allow
the operating system to perform these tasks as needed:

• optimize resource use

• use overlapped input/output

For those compilers that support concurrency, concurrent compiles improve compile time
on both single- and multiple-processor systems.

Figure 27.3 Concurrent Compiles Preference Panel

Compiler thread stack
(Windows and Macintosh)

Enter the kilobytes of memory to allocate to the stack for
execution of the IDE compiler thread. Increase the size
when compiling heavily optimized code.

Use Local Project Data
Storage

Select to specify a location to save project data if the
project is on a read-only volume. Click Choose to select
the location.

Table 27.3 Concurrent Compiles Preference Panel Items

Item Explanation

Use Concurrent Compiles Select to have the IDE run multiple compilation processes
simultaneously.

Table 27.2 Build Settings Preference Panel Items (continued)

Item Explanation
357IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
IDE Extras
The IDE Extras preference panel (Figure 27.4) provides options for customizing various
aspects of the IDE, including:

• menu-bar layout

• the number of recent projects, document files, and symbolics files to remember

• use of a third-party editor

Table 27.4 explains the items of this panel.

Figure 27.4 IDE Extras Preference Panel

Recommended Select to allow the number of concurrent compiles
suggested by the IDE.

User Specified Select to stipulate the number of concurrent compiles.

Table 27.3 Concurrent Compiles Preference Panel Items (continued)

Item Explanation
358 IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
Table 27.4 IDE Extras Preference Panel Items

Item Explanation

Menu bar layout Choose a layout that organizes IDE menus into a
typical host-platform menu bar. Restart the IDE in
order for menu-bar layout changes to take effect.

Projects Enter the number of recently opened projects for
the IDE to display in the Open Recent submenu.
Enter zero to disable this feature.

Documents Enter the number of recently opened documents
for the IDE to display in the Open Recent
submenu. Enter zero to disable
this feature.

Symbolics Enter the number of recently opened symbolics
files for the IDE to display in the Open Recent
submenu. Enter zero to disable
this feature.

Workspaces Enter the number of recently opened workspaces
for the IDE to display in the Open Recent
submenu. Enter zero to disable this feature.

Context popup delay (Macintosh,
Solaris, and Linux)

Enter the number of ticks to wait before displaying
contextual menus. A tick is 1/60 of a second.

Use Third Party Editor (Windows) Select to use a third-party text editor to edit
source files.

Launch Editor (Windows) Enter a command-line expression that runs the
desired third-party text editor.

Launch Editor w/ Line # (Windows) Enter a command-line expression that runs the
desired third-party text editor and passes to that
editor an initial line of text to display.

Use Multiple Document Interface
(Windows)

Select to have the IDE use the Multiple Document
Interface (MDI). Clear to have the IDE use the
Floating Document Interface (FDI). Restart the
IDE in order for interface changes to take effect.

Zoom windows to full screen
(Macintosh, Solaris, and Linux)

Select to have zoomed windows fill the entire
screen. Clear to have zoomed windows in a
default size.
359IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
Using an External Editor on the Macintosh

To use an external editor on the Macintosh, the IDE sends AppleEvents to an alias file that
points to the editor application. Manually configure the IDE to use an external editor.

1. Choose Edit > Preferences.

The IDE Preferences window appears.

2. Select the IDE Extras panel from the IDE Preference Panels list.

3. Select the Use External Editor option.

4. Click Save.

The IDE is now prepared to use an external editor application. To specify the external
editor to use:

Use Script menu (Macintosh,
Solaris, and Linux)

Select to display the Scripts menu in the menu
bar. Clear to remove the Scripts menu from the
menu bar.

Use External Editor (Macintosh,
Solaris, and Linux)

Select to use a third-party text editor to edit text
files in the current project. Clear to use the editor
included with the IDE.

Use ToolServer menu
(Classic Macintosh)

Select to display the ToolServer menu in the
menu bar. Clear to remove the ToolServer menu
from the menu bar.

Enable automatic Toolbar help
(Classic Macintosh)

Select to display Balloon Help after resting the
cursor over a toolbar icon. Clear to prevent
Balloon Help from appearing.

Use default workspace Select this option to have the IDE use the default
workspace to save and restore state information.
Clear this option to have the IDE always start in
the same state.

Find Reference using (Macintosh) Choose an online browser application to view
reference information and definitions.

Show Code and Data Sizes
(Windows)

Displays or hides Code and Data columns in
project manager.

Table 27.4 IDE Extras Preference Panel Items (continued)

Item Explanation
360 IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
1. Find and open the CodeWarrior folder.

2. Create a folder named (Helper Apps) inside the CodeWarrior folder (if it does
not already exist).

3. Make an alias of the desired editor application.

4. Place the alias file inside the (Helper Apps) folder.

5. Rename the alias file External Editor.

6. Restart the IDE in order for changes to take effect.

The IDE now uses the aliased external editor.

Help Preferences
The Help Preferences panel (Figure 27.5), available on the Solaris and Linux IDE hosts,
specifies the browser used for viewing IDE online help. Table 27.5 explains the items of
this panel.

Figure 27.5 Help Preferences Panel

Plugin Settings
The Plugin Settings preference panel (Figure 27.6) contains options for troubleshooting
third-party IDE plugins. Table 27.6 explains the items of this panel.

Table 27.5 Help Preferences Panel Items

Item Explanation

Browser Path Enter a path to the browser to use for viewing IDE online help.
Alternatively, use the Choose... button.

Choose... Click to select the path to the browser to use for viewing IDE
online help.
361IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
Figure 27.6 Plugin Settings Preference Panel

Shielded Folders
The Shielded Folder preference panel (Figure 27.7) enables the IDE to ignore specified
folders during project operations and find-and-compare operations. The IDE ignores
folders based on matching names with regular expressions defined in the preference panel.
Table 27.7 explains the items of this panel; Table 27.8 explains the default regular
expressions in this panel.

NOTE If the Access Paths settings panel in the Target Settings window contains a
path to a shielded folder, the IDE overrides the shielding and includes the
folder in project operations and find-and-compare operations.

Table 27.6 Plugin Settings Preference Panel Items

Item Explanation

Level Choose the plugin diagnostics level the IDE
generates the next time it loads plugins. Restart the
IDE in order for diagnostic-level changes to take
effect. Options are None, Errors Only, and All Info.

Disable third party COM plugins Select to prevent the IDE from loading third-party
Common Object Model (COM) plugins.
362 IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
Figure 27.7 Shielded Folders Preference Panel

Table 27.7 Shielded Folders Preference Panel Items

Item Icon Explanation

Shielded folder list Lists folders that match the specified
regular expression. The IDE skips these
folders during project operations, find-
and-compare operations, or both.

Regular Expression Enter the regular expression used to
shield folders from selected operations.

Project operations Select to have the IDE skip folders
during project operations. A bullet
appears in the corresponding column of
the shielded folder list.

Find and compare operations Select to have the IDE skip folders
during find-and-compare operations. A
bullet appears in the corresponding
column of the shielded folder list.

Add Click to add the current Regular
Expression field entry to the shielded
folder list.
363IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
2

Source Trees
Use the Source Trees panel (Figure 27.8) to add, modify, and remove source trees (root
paths) used in projects. Use source trees to define common access paths and build-target
outputs to promote sharing of projects across different hosts. Source trees have these
scopes:

• Global source trees, defined in the IDE Preferences window, apply to all projects.

• Project source trees, defined in the Target Settings window for a particular project,
apply only to files in that project. Project source trees always take precedence over
global source trees.

Except for the difference in scope, global and project source trees operate identically.

Table 27.9 explains the items of this panel.

Change Click to replace the selected regular
expression in the shielded folder list with
the current Regular Expression field
entry.

Remove Click to delete the selected regular
expression from the shielded folder list.

Table 27.8 Default Regular Expressions in Shielded Folders Preference Panel

Regular Expression Explanation

\(.*\) Matches folders with names that begin and end with
parentheses, such as the
(Project Stationery) folder.

CVS Matches folders named CVS. With this regular
expression, the IDE skips Concurrent Versions
System (CVS) data files.

.*[_]Data Matches the names of folders generated by the IDE
that store target data information, such as a folder
named MyProject_Data.

Table 27.7 Shielded Folders Preference Panel Items (continued)

Item Icon Explanation
364 IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
Figure 27.8 Source Trees Panel

Table 27.9 Source Trees Panel Items

Item Explanation

Source Tree list Contains the Name and Path of currently defined source trees.

Name Enter a name for a new source tree or modify the name of a
selected source tree.

Type Choose the source-tree path type.

Choose Click to select or modify a source-tree path.

Add Click to add a new source-tree path to the Source Tree list.

Change Click to modify the selected source-tree name or path.

Remove Click to delete the selected source tree from the Source Tree
list.
365IDE 5.7 User’s Guide

Working with IDE Preferences
General Panels
Adding Source Trees

Add source trees that define root paths for access paths and build-target output.

1. Choose Edit > Preferences.

The IDE Preferences window appears.

2. Select the Source Trees panel from the IDE Preference Panels list.

3. Enter in the Name field a name for the new source tree.

4. Choose the source tree Type:

• Absolute Path—defines a path from the root level of the hard drive to a desired
folder, including all intermediate folders

• Environment Variable—(Windows, Solaris, and Linux) defines an environment
variable in the operating environment

• Registry Key—(Windows) defines a key entry in the operating-environment
registry

5. Enter the source-tree definition:

• For Absolute Path—Click Choose to display a subordinate dialog box. Use the
dialog box to select the desired folder. The absolute path to the selected folder
appears in the Source Trees preference panel.

• For Environment Variable—Enter the path to the desired environment variable.

• For Registry Key—Enter the path to the desired key entry in the registry.

6. Click Add.

The IDE adds the new source tree to the Source Trees list.

7. Click OK, Apply, or Save.

The IDE saves the source-tree changes.

Changing Source Trees

Change a source tree to update path information for a project. The IDE must be able to
resolve source trees before building the project.

1. Choose Edit > Preferences.

2. Select the Source Trees panel from the IDE Preference Panels list.

3. Select the desired source tree in the Source Trees list.

4. If needed, enter a new name for the selected source tree.

5. If needed, choose a new path type for the selected source tree.
366 IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
6. Click Change.

The IDE updates the source tree and displays changes in the Source Trees list. A
reminder message to update source-tree references in the project appears.

7. Click OK, Apply, or Save.

The IDE saves the source-tree changes.

Removing Source Trees

Remove source trees that the project no longer uses. The IDE must be able to find the
remaining source trees before building the project.

1. Choose Edit > Preferences.

2. Select the Source Trees panel from the IDE Preference Panels list.

3. Select the source tree from the Source Trees list.

4. Click Remove.

The IDE updates the Source Trees list. A reminder message to update source-tree
references in the project appears.

5. Click OK, Apply, or Save.

The IDE saves the source-tree changes.

Editor Panels
The Editor section of the IDE Preference Panels list defines the editor settings assigned to
a new project.

The Editor preference panels available on most IDE hosts include:

• Code Completion

• Code Formatting

• Editor Settings

• Font & Tabs

• Text Colors

Code Completion
The Code Completion preference panel (Figure 27.9) provides options for customizing
the IDE code-completion behavior, including:

• automatic invocation and indexing
367IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
• window positioning and appearance delay

• case sensitivity

Table 27.10 explains the items of this panel.

Figure 27.9 Code Completion Preference Panel

Table 27.10 Code Completion Preference Panel Items

Item Explanation

Automatic Invocation Select to automatically open the Code Completion
window to complete programming-language
symbols. Clear to manually open the window.

Window follows insertion point Select to have the Code Completion window follow
the insertion point as you edit text. Clear to leave
the window in place.

Display deprecated items Select to have the Code Completion window display
obsolete items in gray text. Clear to have the
window hide obsolete items.

Case sensitive Select to have the IDE consider case when
completing code. Clear to have the IDE ignore
case.

Code Completion Delay (ticks) Enter the number of ticks to wait before opening the
Code Completion window. A tick is 1/60 of a
second.
368 IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Code Formatting
The Code Formatting preference panel (Figure 27.10) provides options for customizing
editor code-formatting behavior, including:

• indenting

• syntax placement

• brace handling

Table 27.11 explains the items of this panel.

Figure 27.10 Code Formatting Preference Panel

Table 27.11 Code Formatting Preference Panel Items

Item Explanation

Use Automatic Code
Formatting

Check to have the editor automatically format your source
code according to settings in this panel.

Clear to prevent the editor from automatically formatting
your code.

Language Settings Use to specify the language type that you want to format.
Your selection changes the other options in this panel to
their default states for the selected language.
369IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Format braces Check to have the editor automatically insert a closing
brace when you type an opening brace. The editor places
the cursor between the opening brace that you typed and
the closing brace that it inserts.

Clear to prevent the editor from automatically inserting a
closing brace when you type an opening brace.

Place opening brace on
separate line

Check to have the editor place on the next line an opening
brace that you type.

Clear to prevent the editor from placing on the next line an
opening brace that you type.

Indent braces Check to have the editor indent braces by one tab stop
from the previous line.

Clear to prevent the editor from indenting braces by one
tab stop from the previous line.

Place “else” on same line
as closing brace

Check to have the editor place else and else if text
on the same line as the closing brace of the if or else
if statement.

Clear to prevent the editor from placing else and else
if text on the same line as the closing brace of the if or
else if statement.

Indent code within braces Check to have the editor indent code by one tab stop from
the braces.

Clear to prevent the editor from indenting code by one tab
stop from the braces.

Table 27.11 Code Formatting Preference Panel Items (continued)

Item Explanation
370 IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Editor Settings
The Editor Settings preference panel (Figure 27.11) provides options for customizing the
editor, including:

• fonts, window locations, and insertion-point positions

• contextual menus

• additional editor-window features

Table 27.12 explains the items of this panel.

Indent “case” within
“switch” statement

Check to have the editor indent case statements by one
tab stop inside a switch statement.

Clear to prevent the editor from indenting case
statements by one tab stop inside a switch statement.

Close braces, brackets,
and parentheses

Check to have the editor automatically insert the
corresponding closing character when you type an opening
brace, bracket, or parenthesis. The editor places the
cursor between the opening character and the closing
character.

Clear to prevent the editor from automatically inserting the
corresponding closing character when you type an opening
brace, bracket, or parenthesis.

Table 27.11 Code Formatting Preference Panel Items (continued)

Item Explanation
371IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Figure 27.11 Editor Settings Preference Panel

Table 27.12 Editor Settings Preference Panel Items

Item Explanation

Font preferences Select to retain font settings for each source file. Clear
to apply default font settings each time the IDE displays
the source file.

Selection position Select to retain the text-insertion position in each source
file.

Window position and size Select to retain the location and dimensions of each
editor window.

Edit Commands Select to add Edit menu commands to contextual
menus.

Browser Commands Select to add Browser menu commands to contextual
menus. Also select in order to use the Insert Template
Commands option.

Insert Template Commands

(Macintosh)

Select to add the Insert Template submenu to
contextual menus. The submenu displays source-
defined function templates.
372 IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Font & Tabs
The Font & Tabs preference panel (Figure 27.12) provides options for customizing
settings used by the editor, including:

• font and font size used in editor windows

• auto indentation and tab size

Project Commands Select to add Project menu commands to contextual
menus.

VCS Commands Select to add VCS (Version Control System) menu
commands to contextual menus.

Debugger Commands Select to add Debug menu commands to contextual
menus.

Balance while typing Select to flash the matching (, [, or { after typing),],
or } in an editor window.

Use multiple undo Select to allow multiple undo and redo operations while
editing text.

Relaxed C popup parsing Select to allow the C parser to recognize some non-
standard function formats and avoid skipping or
misinterpreting some definition styles.

Drag and drop editing Select to allow drag-and-drop text editing.

Left margin click selects line Select to allow selection of an entire line of text by
clicking in the left margin of the editor window.

Sort function popup Select to sort function names by alphabetical order in
menus. Clear to sort function names by order of
appearance in the source file.

Enable Virtual Space
(Windows and Macintosh)

Select to allow moving the text-insertion point beyond
the end of a source-code line. Entering new text
automatically inserts spaces between the former end of
the line and the newly entered text.

Balance Flash Delay Enter the number of ticks to flash a balancing
punctuation character. A tick is1/60 of a second.

Default file format Choose the default end-of-line format used to save files.

Table 27.12 Editor Settings Preference Panel Items (continued)

Item Explanation
373IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
• tabs on selections and replacing tabs with spaces

Table 27.13 explains the items of this panel.

Figure 27.12 Font & Tabs Preference Panel

Table 27.13 Font & Tabs Preference Panel Items

Item Explanation

Font Choose the typeface displayed in editor windows.

Size Choose the font size displayed in editor windows.

Script (Windows) Choose the IDE script system. The script system maps
keyboard keys to characters of an alphabet.

Tab indents selection Select to indent each line of selected text after pressing Tab.
Clear to replace selected text with a tab character after
pressing Tab.

Tab Size Enter the number of spaces to substitute in place of a tab
character. This number applies to the Tab Inserts Spaces
option.
374 IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Setting the Text Font

To set the text font, follow these steps:

1. Choose Edit > Preferences.

2. Select the Font & Tabs panel in the Editor group in the IDE Preference Panels list.

3. In the Font Settings area of the IDE Preferences window, select a font type in the
drop-down menu in the Font field.

4. Save your font in the IDE Preferences window.

• Windows: Click OK.

• Macintosh/Linux/Solaris: Click Save.

The foreground text changes to the new font.

Setting the Text Size

To set the text size, follow these steps:

1. Choose Edit > Preferences.

2. Select the Font & Tabs panel in the Editor group in the IDE Preference Panels list.

3. In the Font Settings area of the IDE Preferences window, select the Size drop-down
menu and choose a text point size (from 2 to 24 points).

4. Save your text size in the IDE Preferences window.

• Windows: Click OK.

• Macintosh/Linux/Solaris: Click Save.

The foreground text changes to the new size.

Auto Indent Select to automatically apply the indentation level from the
previous line of text to each new line created by pressing Enter
or Return.

Tab Inserts Spaces Select to insert spaces instead of a tab character after
pressing Tab. The Tab Size option determines the number of
inserted spaces.

Table 27.13 Font & Tabs Preference Panel Items (continued)

Item Explanation
375IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Text Colors
The Text Colors preference panel (Figure 27.13) customizes colors applied to elements of
source code displayed in editor windows, such as:

• default foreground and background in editor windows

• standard comments, keywords, and strings in source code

• custom-defined keywords

• browser symbols

Table 27.14 explains the items of this panel.

Default settings provide a simple scheme of at least four source-code colors. If four colors
do not provide sufficient detail, modify this preference panel to create more sophisticated
color schemes.

Figure 27.13 Text Colors Preference Panel
376 IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Table 27.14 Text Colors Preference Panel Items

Item Explanation

Foreground Click the color swatch to display a dialog box. Use the
dialog box to set the foreground color used in editor
windows for text.

Background Click the color swatch to set the background color used
in
editor windows.

Activate Syntax Coloring Select to apply custom colors to comments, keywords,
strings, and custom keywords in text. Clear to use the
Foreground color for all text.

Comments Click the color swatch to set the color used for source-
code comments.

Keywords Click the color swatch to set the color used for source-
code language keywords.

Strings Click the color swatch to set the color used for source-
code string literals.

Set 1, Set 2, Set 3, Set 4 Click a color swatch to set the color used for the
corresponding custom-keyword set.

Edit Click to add, modify, or remove keywords from the
corresponding custom-keyword set.

Activate Browser Coloring Select to apply custom colors to browser symbols in text.
Clear to use the Foreground color for all text.

Classes Click the color swatch to set the color used for source-
code classes.

Constants Click the color swatch to set the color used for source-
code constants.

Enums Click the color swatch to set the color used for source-
code enumerations.

Functions Click the color swatch to set the color used for source-
code functions.

Globals Click the color swatch to set the color used for source-
code global variables.
377IDE 5.7 User’s Guide

Working with IDE Preferences
Editor Panels
Setting the Foreground Text Color

Use the Foreground Color option to configure the foreground text color displayed in
editor windows.

1. Choose Edit > Preferences.

2. Select the Text Colors panel in the Editor group in the IDE Preference Panels list.

3. Click the Foreground color box to set the editor’s foreground color.

4. Pick color.

5. Click OK in the Color Picker window.

6. Click OK or Save

The foreground text color changes to the new color.

Setting the Background Text Color

Use the Background Color option to configure the background color displayed by all
editor windows.

1. Choose Edit > Preferences.

2. Select the Text Colors panel in the Editor group in the IDE Preference Panels list.

3. Click the Background color box to set the editor’s background color.

4. Pick color.

5. Click OK in the Color Picker window.

Macros Click the color swatch to set the color used for source-
code macros.

Templates Click the color swatch to set the color used for source-
code templates.

TypeDefs Click the color swatch to set the color used for source-
code type definitions.

Other Click the color swatch to set the color used for other
symbols not specified in the Activate Browser Coloring
section.

Table 27.14 Text Colors Preference Panel Items (continued)

Item Explanation
378 IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
6. Click OK or Save

The background text color changes to the new color.

Activate Syntax and Browser Coloring

Use the Activate Syntax Coloring and Activate Browser Coloring options to configure
the syntax and browser colors that all editor windows display.

1. Choose Edit > Preferences.

2. Select the Text Colors panel in the Editor group in the IDE Preference Panels list.

3. Select the checkbox next to the Activate Syntax Coloring or the Activate Browser
Coloring option.

4. Click on the colored box next to the option.

5. Pick color.

6. Click OK in the Color Picker window.

7. Click OK or Save

Debugger Panels
The Debugger section of the IDE Preference Panels defines the basic debugger settings
assigned to a new project.

The Debugger preference panels available on most IDE hosts include:

• Display Settings

• Window Settings

• Global Settings

• Remote Connections

Display Settings
The Display Settings preference panel (Figure 27.14) provides options for customizing
various aspects of the IDE Debugger, including:

• assignment of colors to changed variables and watchpoints

• viewing variable types

• displaying local variables

• using decimal values

• sorting functions
379IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
• using dynamic objects

Table 27.15 explains the items in this panel.

Figure 27.14 Display Settings Preference Panel

Table 27.15 Display Settings Preference Panel Items

Item Explanation

Variable values change Click the color swatch to set the color that indicates a
changed variable value.

Watchpoint indicator Click the color swatch to set the color that indicates a
changed watchpoint value.

Show variable types Select to always show the type associated with each
variable.

Show variable location Select to display the Location column in the
Variables pane of the Thread window.

Show all locals Select to show all local variables. Clear to have the
debugger show only variables near the program
counter.
380 IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
Window Settings
The Window Settings preference panel (Figure 27.15) provides options for customizing
how the debugger displays windows during debugging sessions, including non-debugging
and project windows. Table 27.16 explains the items of this panel.

Smart Variable Formatting Controls whether variables in variable windows,
panes and expression displays are formatted using
entries in XML files located in the VariableFormats
support folder; such as the Windows_Formats.xml
file.

Show hidden locals Select to show hidden local variables. A hidden local
variable is a variable that is in scope, but is hidden
by a variable of the same name in a deeper scope.

Show values as decimal Select to always show decimal values instead of
hexadecimal values.

Sort functions by method name
in symbolics window

Select to sort functions of the form
className::methodName in the Symbolics
window by methodName. Clear to sort
by className.

Attempt to show the dynamic
runtime type of objects

Select to attempt to display the runtime type of the
specified language objects. Clear to display the
static type.

Show variable values in source
code

Select to show variable values in contextual menus
in the source code.

Default size for unbounded
arrays

Enter the default number of unbounded array
elements to display in a View Array window.

Scientific Notation for (1-9) or
more 0s after “0.”

Maximum number of zeros after a decimal point in a
float value such as 0.034. For example, a value of 2
means 0.00045 will be displayed in scientific notation
as 4.5e-4; a value of 3 will be displayed as 0.00045.
Does not change value precision, only value display.

Table 27.15 Display Settings Preference Panel Items (continued)

Item Explanation
381IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
Figure 27.15 Window Settings Preference Panel

Table 27.16 Window Settings Preference Panel Items

Item Explanation

Do nothing Select to leave all windows in place when starting
a debugging session.

Minimize non-debugging windows
(Windows)

Select to minimize all non-debugging windows
when starting a debugging session.

Collapse non-debugging windows
(Macintosh, Solaris, and Linux)

Select to collapse all non-debugging windows
when starting a debugging session.

Hide non-debugging windows Select to hide, but not close, all non-debugging
windows when starting a debugging session.

Close non-debugging windows Select to close all non-debugging windows,
except for the active project window, when
starting a debugging session.

Do nothing to project windows Select to prevent the IDE from hiding project
windows when starting a debugging session.

Use Debugging Monitor (Classic
Macintosh)

Select to use a second monitor during debugging
sessions.

Monitor for debugging
(Classic Macintosh)

Choose the monitor to display debugging
windows. The coordinates in parentheses identify

the selected monitor in the QuickDraw®
coordinate space.
382 IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
Global Settings
The Global Settings preference panel (Figure 27.16) provides options for customizing
various global options for the debugger, including:

• file caching to accelerate debugger sessions

• automatic launch of applications and libraries

• confirmation of attempts to close or quit debugging sessions

Table 27.17 explains the items of this panel.

Move open windows to debugging
monitor when debugging starts
(Classic Macintosh)

Select to move all open windows to the selected
debugging monitor when a debugging session
starts.

Open windows on debugging
monitor during debugging (Classic
Macintosh)

Select to display on the debugging monitor any
window opened during a debugging session.

Show threads in separate windows Select to display threads in separate Thread
windows. Clear to show all threads in one
window. Restart active debugging sessions in
order for changes to take effect.

Show processes in separate
windows

Select to display processes in separate windows.
Clear to show all processes in one window.

Table 27.16 Window Settings Preference Panel Items (continued)

Item Explanation
383IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
Figure 27.16 Global Settings Preference Panel

Table 27.17 Global Settings Preference Panel Items

Item Explanation

Cache Edited Files Between
Debug Sessions

Select to maintain a cache of modified files
between debugging sessions. Use this option to
debug through the original source code for files
modified since the last build.

Maintain files in cache Enter the number of days that the IDE maintains
its file cache.

Purge Cache Click to delete the file cache maintained by the
IDE, freeing memory and disk space.

Confirm invalid file modification
dates when debugging

Select to have the IDE display a warning
message when debugging a project with mis-
matched file modification dates.

Automatically launch applications
when SYM file opens

Select to automatically launch the application
program associated with an open symbolics file.

Confirm “Kill Process” when
closing or quitting

Select to prompt for confirmation before killing
processes upon quitting a debugging session.

Select stack crawl window when
task is stopped

Select to bring forward the Stack Crawl window
(also known as the Thread window) after the
debugger stops tasks.
384 IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
Remote Connections
The Remote Connections preference panel (Figure 27.17) configures general network
settings for remote-debugging connections between the host computer and other
computers. Table 27.18 explains the items of this panel.

Use these general settings as the basis for defining more specific connections for
individual projects in conjunction with the Remote Debugging settings panel. The Target
Settings window contains the Remote Debugging settings panel.

Figure 27.17 Remote Connections Preference Panel

Don’t step into runtime support
code

Select to have the IDE not step into Main
Standard Library (MSL) runtime support code and
instead directly step into your own code.

Auto Target Libraries Select to have the IDE attempt to debug
dynamically linked libraries (DLLs) loaded by the
target application.

Table 27.17 Global Settings Preference Panel Items (continued)

Item Explanation
385IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
Adding Remote Connections

Add a remote connection that defines a general network connection between the host
computer and a remote computer.

1. Choose Edit > Preferences.

2. Select the Remote Connections panel from the IDE Preference Panels list.

3. Click Add.

The New Connection dialog box appears.

4. Enter the name for the general remote connection.

5. Choose from the Debugger pop-up menu the desired debugger for use with the remote
connection.

6. Configure the Browse in processes window option as desired:

• selected—the IDE filters the Processes window list and the list of available
debuggers for an opened symbolics file. The filter prevents an unavailable remote
connection from appearing in either list.

• cleared—the IDE does not filter the Processes window list or the list of available
debuggers for an opened symbolics file. Both available and unavailable remote
connections appear in the lists.

7. Choose from the Connection Type pop-up menu the desired network protocol for the
remote connection.

8. Enter the Internet Protocol address of the remote computer in the IP Address field.

Table 27.18 Remote Connections Preference Panel Items

Item Explanation

Remote Connection list Displays the name and connection type of all remote
connections currently defined.

Add Click to add a new remote connection to the Remote
Connection list.

Change Click to change the settings of the selected remote
connection.

Remove Click to remove the selected remote connection from the
Remote Connection list.
386 IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
9. Click OK.

The IDE adds the new remote connection to the Remote Connections list.

10. Click OK, Apply, or Save.

Changing Remote Connections

Change a remote connection to update network-connection information between the host
and remote computer.

1. Choose Edit > Preferences.

2. Select the Remote Connections panel from the IDE Preference Panels list.

3. Select from the Remote Connections list the remote connection that requires
modification.

4. Click Change.

A dialog box appears with the current network settings for the selected remote
connection.

5. If needed, enter a new name for the general remote connection.

6. If needed, choose from the Debugger pop-up menu a new debugger for use with the
remote connection.

7. If needed, toggle the Browse in processes window option.

8. If needed, choose from the Connection Type pop-up menu a new network protocol
for the remote connection.

9. If needed, enter a new Internet Protocol address for the remote computer.

10. Click OK.

The IDE updates the remote connection and displays changes in the Remote
Connections list.

11. Click OK, Apply, or Save.

Removing Remote Connections

Remove a remote connection that the project no longer uses.

1. Choose Edit > Preferences.

2. Select the Remote Connections panel from the IDE Preference Panels list.

3. Select from the Remote Connections list the obsolete remote connection.
387IDE 5.7 User’s Guide

Working with IDE Preferences
Debugger Panels
4. Click Remove.

The IDE updates the Remote Connections list.

5. Click OK, Apply, or Save.
388 IDE 5.7 User’s Guide

28
Working with Target
Settings

This chapter explains core CodeWarrior™ IDE target settings panels and provides basic
information on target settings options for the current project’s build targets. Consult the
Targeting documentation for information on platform-specific target settings panels.

This chapter consists of these sections:

• Target Settings Window

• Target Panels

• Code Generation Panels

• Editor Panels

• Debugger Panels

Target Settings Window
The Target Settings window (Figure 28.1) lists settings for the current project’s build
targets. These target settings supersede global preferences defined in the IDE Preferences
window. Table 28.1 explains the items of this window.

The Target Settings window lists settings by group:

• Target—configures overall build target settings, such as names, browser caching,
file mappings, and access paths

• Language Settings—configures programming language settings. Consult the
Targeting documentation for more information about these settings panels

• Code Generation (Windows)—configures processor, disassembler, and
optimization settings for generating code

• Linker—configure linker settings for transforming object code into a final
executable file. Consult the Targeting documentation for more information about
these settings panels.

• Editor—configure custom keyword sets and colors

• Debugger—configure settings for executable files, program suspension, and remote
debugging
389IDE 5.7 User’s Guide

Working with Target Settings
Target Settings Window
• Command-Line Extras (Linux/Solaris)—configure environmental variables for
user applications and define custom tool commands (if necessary)

Figure 28.1 Target Settings Window

Table 28.1 Target Settings Window Items

Item Explanation

Target Settings Panels list Lists settings panels, organized by group. Click
the hierarchical control next to a group name to
show or hide a list of individual settings panels.

Settings panel Shows options for the selected item in the
Target Settings Panels list.

Factory Settings Click to restore the default options for the
current settings panel.

Revert Panel Click to restore the most recently saved options
for the current settings panel.
390 IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Opening the Target Settings Window

Use the Target Settings window to modify build target options for the current project.

Choose Edit > targetname Settings to display the Target Settings window.

Target Panels
The Target group of the Target Settings Panels defines general target settings assigned to
a new project.

The panels available on most IDE hosts include:

• Target Settings

• Access Paths

• Build Extras

• Runtime Settings

• File Mappings

• Source Trees

Export Panel Click to save an XML file that contains set
options for the current panel.

Import Panel Click to open an XML file that contains settings
for the current panel.

OK (Windows) Click to save modifications to all settings panels
and close the window.

Cancel (Windows) Click to discard modifications to all settings
panels and close the window.

Apply (Windows) Click to confirm modifications to all settings
panels.

Save (Macintosh, Solaris, and Linux) Click to save modifications to all settings panels.

Table 28.1 Target Settings Window Items (continued)

Item Explanation
391IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Target Settings
The Target Settings panel (Figure 28.2) provides options for:

• setting the name of the current build target

• setting the linker, pre-linker, and post-linker for the build target

• specifying the project output directory for the final output file

Table 28.2 explains the items of this panel.

Figure 28.2 Target Settings Panel

Table 28.2 Target Settings Panel Items

Item Explanation

Target Name Enter a name (26 or fewer characters) for the
selected build target as it will appear in the
project window.

Linker Select the linker to use on the current build
target.

Pre-linker Select the pre-linker to use on the current
build target.

Post-linker Select the post- linker to use on the current
build target.
392 IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Access Paths
The Access Paths settings panel (Figure 28.3) defines the search paths for locating and
accessing a build target’s system files and header files. Table 28.3 explains the items of
this panel.

NOTE The Windows version of the Access Paths settings panel displays either User
Paths or System Paths, depending on the selected radio button. The Macintosh,
Solaris, and Linux versions of the Access Paths settings panel display both
User Paths and System Paths.

Output Directory Shows the location where the IDE creates
the output binary file. Click Choose to
change this location.

Choose Click to select the directory in which the IDE
saves the output binary file.

Clear Click to delete the current Output Directory
path.

Save project entries using relative paths Select to save project file entries using a
relative path from a defined access path.
This option is helpful if the project has
multiple files with the same name.

Table 28.2 Target Settings Panel Items (continued)

Item Explanation
393IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Figure 28.3 Access Paths Settings Panel

Table 28.3 Access Paths Settings Panel Items

Item Explanation

Always Search User Paths Select to treat #include <...> statements
the same as #include "..." statements.

Source relative includes Select to search for dependent files in the same
location as the source file. If the dependent file is
not found in this location, specified User and
System paths are searched. If this option is
enabled, the Always Search User Paths should
also be enabled.

User Paths The User Paths list shows currently defined user-
level access paths searched by #include
"..." statements.

System Paths The System Paths list shows currently defined
system-level access paths searched by
#include <...> statements.
394 IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
The User Paths and System Paths lists display columns with status icons for each access
path. There are different types of access paths. Table 28.4 explains these items.

Interpret DOS and Unix Paths

(Macintosh)

Select to treat / and \ as subfolder separator
characters. Clear to treat / and \ as ordinary
text.

Require Framework Style Includes
(Mac OS X)

Select to require #include statements of the
form LibraryName/HeaderFile.h. Clear
to allow statements of the form
HeaderFile.h.

Add Default Click to restore the default user- and system-level
access paths.

Host Flags list pop-up Choose the host platforms that can use the
selected access path.

Add Click to add a user- or system-level access path.

Change Click to modify the selected user- or system-level
access path.

Remove Click to remove the selected user- or system-level
access path.

Table 28.4 User Paths, System Paths List Columns

Name Icon Explanation

Search status A checkmark icon indicates an active access path that
the IDE searches.

No checkmark icon indicates an inactive access path
that the IDE does not search.

Recursive search A folder icon indicates that the IDE recursively
searches subdirectories of the access path.

No folder icon indicates that the IDE does not
recursively search the access path.

Table 28.3 Access Paths Settings Panel Items (continued)

Item Explanation
395IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Build Extras
The Build Extras settings panel (Figure 28.4) contains options that define how the
CodeWarrior IDE builds a project. Table 28.5 explains the items of this panel.

Framework
(Mac OS X
development)

An ƒ icon indicates that the access path points to a
framework. Framework paths are implicitly recursive.

No ƒ icon indicates that the access path does not
point to a framework.

Access path Shows the full access path to the selected directory.
Access paths have these types:

• Absolute—the complete path, from the root
level of the hard drive to the directory,
including all intermediate directories

• Project—the path from the project file
relative to the designated directory

• CodeWarrior—the path from the
CodeWarrior IDE relative to the designated
directory

• System—the path from the operating
system’s base directory relative to the
designated directory

• Source tree—the path from a user-defined
source tree relative to the designated
directory

Table 28.4 User Paths, System Paths List Columns (continued)

Name Icon Explanation
396 IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Figure 28.4 Build Extras Settings Panel

Table 28.5 Build Extras Settings Panel Items

Item Explanation

Use modification date caching Select to have the IDE cache modification date
information and use that information each time it
builds a target. Builds are faster if file modification
dates are cached.

Note that it is recommended to uncheck this option if
you are using an external editor or using mounted
directories.

For one-time changes to files (for example, those
updated by a VCS tool outside of the IDE or editing a
file with an external editor), you should check the
modification date by clicking the “Synchronize
Modification Dates” button in the project window
toolbar.

Cache Subprojects Select to improve multi-project updating and linking
speed.
397IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Runtime Settings
The Runtime Settings panel (Figure 28.5) specifies a debugging application for non-
executable files. Dynamic linked libraries (DLLs), shared libraries, and code resources are
sample non-executable files. Table 28.6 explains the items of this panel.

Generate Browser Data From Choose whether the IDE generates browser data for
the project, and the method by which the IDE
generates that data.

Dump internal browse
information after compile

Select to have the IDE dump raw browser information
for viewing. This option appears after selecting
Compiler from the Generate Browser Data From pop-
up menu.

Prefix file Enter the path to your project’s prefix file. This options
appears after selecting Language Parser from the
Generate Browser Data From pop-up menu.

Macro file Enter the path to your project’s macro file. This options
appears after selecting Language Parser from the
Generate Browser Data From pop-up menu.

Use External Debugger Select to use an external debugger instead of the
CodeWarrior debugger.

Application Click Browse to select the external debugger
application. Alternatively, enter the path to the external
debugger.

Arguments Enter any program arguments to pass to the external
debugger when the IDE transfers control.

Initial directory Click Browse to select an initial directory for the
external debugger. Alternatively, enter the path to the
initial directory.

Table 28.5 Build Extras Settings Panel Items (continued)

Item Explanation
398 IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Figure 28.5 Runtime Settings Panel

Table 28.6 Runtime Settings Panel Items

Item Explanation

Host Application for Libraries &
Code Resources

Click Choose to select the program for debugging
non-executable files. Alternatively, enter the path to
the application program. Click Clear to delete the
current field entry.

Working Directory Enter the path to a directory used for debugging the
non-executable files. Leave this field blank to use the
same directory that contains the non-executable files.

Arguments Enter a command line of program arguments to pass
to the host application when the IDE transfers control.

Environment Settings Lists the environment variables that have been added
to the build target.

Add Click to add the current Variable and Value pair to the
Environment Settings list.

Change Click to replace the selected entry in the Environment
Settings list with the current Variable and Value pair.
399IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
File Mappings
The File Mappings settings panel (Figure 28.6) associates filename extensions with a
CodeWarrior plugin compiler. These associations determine whether the IDE recognizes a
source file by its filename extension or file type. Use this settings panel to add, change,
and remove file mappings. Table 28.7 explains the items of this panel.

Figure 28.6 File Mappings Settings Panel

Remove Click to delete the selected environment variable from
the Environment Settings list.

Variable Enter a name for the environment variable. This name
pairs with the information in the Value field.

Value Enter a value for the environment variable. This value
pairs with the information in the Variable field.

Table 28.6 Runtime Settings Panel Items (continued)

Item Explanation
400 IDE 5.7 User’s Guide

Working with Target Settings
Target Panels
Table 28.7 File Mappings Settings Panel Items

Item Icon Explanation

File Mappings list Displays a list of currently defined mappings between
filename extensions and plugin compilers.

File Type Enter a file type (such as TEXT) for the file mapping.
Alternatively, click Choose to set the file type by
selecting an example file. This file type also appears
in the corresponding column of the File Mappings list.

Extension Enter the filename extension (such as .cpp) for the
file mapping. This filename extension also appears in
the corresponding column of the File Mappings list.

Resource File flag A bullet in this column denotes a resource file. The
IDE includes these resource files when building the
final output file. Use the Flags pop-up menu to toggle
this flag.

Launchable flag A bullet in this column denotes a launchable file. The
IDE opens launchable files with the application that
created them. Double-click launchable files from the
Project window. Use the Flags pop-up menu to
toggle this flag.

Precompiled File
flag

A bullet in this column denotes a precompiled file.
The IDE builds precompiled files before building other
files. Use the Flags pop-up menu to toggle this flag.

Ignored By Make
flag

A bullet in this column denotes a file ignored by the
compiler during builds. For example, use this option
to ignore text (.txt) files or document (.doc) files.
Use the Flags pop-up menu to toggle this flag.

Compiler Choose from this list the plugin compiler to associate
with the selected file mapping. This compiler
selection also appears in the corresponding column
of the File Mappings list.

Flags Choose from this pop-up menu the desired flags for
the selected file mapping. A checkmark indicates an
active flag. Bullets appear in the corresponding
columns of the File Mappings list to reflect flag states.
401IDE 5.7 User’s Guide

Working with Target Settings
Code Generation Panels
Source Trees
The Source Trees settings panel in the Target Settings window defines project-specific
root paths. These project-specific paths override the global root paths defined in the
Source Trees preference panel of the IDE Preferences window. Refer to Source Trees for
information on adding, changing, or removing paths.

Code Generation Panels
The Code Generation group of the Target Settings Panels provides a single core panel for
configuring optimization routines. Consult the Targeting documentation for more
information about platform-specific settings panels.

Global Optimizations
The Global Optimizations settings panel (Figure 28.7) configures how the compiler
optimizes object code. All optimization routines rearrange object code without affecting
its logical execution sequence. Table 28.8 explains the items of this panel

NOTE Always debug programs with optimization routines disabled. The IDE does not
provide source views of optimized code.

Edit Language Choose from this list the desired language to
associate with the selected file mapping. The IDE
applies the appropriate syntax coloring for the
selected language.

Add Click to add the current File Type, Extension, Flags,
Compiler, and Edit Language entries to the File
Mappings list.

Change Click to change the selected item in the File
Mappings list to reflect the current File Type,
Extension, Flags, Compiler, and Edit Language
entries.

Remove Click to remove the selected item in the File
Mappings list.

Table 28.7 File Mappings Settings Panel Items (continued)

Item Icon Explanation
402 IDE 5.7 User’s Guide

Working with Target Settings
Code Generation Panels
The Global Optimizations panel is specific to CodeWarrior compilers. This
panel is not appropriate for the Linux-hosted IDE, which uses gcc.

Figure 28.7 Global Optimizations Settings Panel

The Details field lists individual optimization routines applied at the selected optimization
level. Table 28.9 explains these optimizations and their availability at certain optimization
levels.

Table 28.8 Global Optimizations Settings Panel Items

Item Explanation

Faster Execution Speed Select to favor optimization routines that increase the
execution speed of the final object code, at the expense of
larger code size.

Smaller Code Size Select to favor optimization routines that reduce the size of
the final object code, at the expense of slower execution
speed.

Optimization Level slider Move to the desired optimization level. The IDE applies
more optimization routines at higher optimization levels. The
Details field lists the active optimization routines.
403IDE 5.7 User’s Guide

Working with Target Settings
Code Generation Panels
Table 28.9 Optimization Routines

Optimization Routine Explanation Optimization
Level

Global Register Allocation
or
Global Register Allocation
Only for Temporary Values

Stores working values of heavily
used variables in registers
instead of memory.

1, 2, 3, 4

Dead Code Elimination Removes statements never
logically executed or referred to
by other statements.

1, 2, 3, 4

Branch Optimizations Merges and restructures portions
of the intermediate code
translation in order to reduce
branch instructions.

1, 2, 3, 4

Arithmetic Operations Replaces intensive
computational instructions with
faster equivalent instructions that
produce the same result.

1, 2, 3, 4

Expression Simplification Replaces complex arithmetic
expressions with simplified
equivalent expressions.

1, 2, 3, 4

Common Subexpression
Elimination

Replaces redundant expressions
with a single expression.

2, 3, 4

Copy Propagation
or
Copy and Expression
Propagation

Replaces multiple occurrences
of one variable with a single
occurrence.

2, 3, 4

Peephole Optimization Applies local optimization
routines to small sections of
code.

2, 3, 4

Dead Store Elimination Removes assignments to a
variable that goes unused before
being reassigned again.

3, 4

Live Range Splitting Reduces variable lifetimes to
achieve optimal allocation.
Shorter variable lifetimes reduce
register spilling.

3, 4
404 IDE 5.7 User’s Guide

Working with Target Settings
Editor Panels
Editor Panels
The Editor group of the Target Settings Panels provides a single core panel for
configuring custom keywords within a project.

Loop-Invariant Code
Motion

Moves static computations
outside of a loop

3, 4

Strength Reduction Inside loops, replaces
multiplication instructions with
addition instructions.

3, 4

Loop Transformations Reorganizes loop object code in
order to reduce setup and
completion-test overhead.

3, 4

Loop Unrolling
or
Loop Unrolling (Opt for
Speed Only)

Duplicates code inside a loop in
order to spread branch and
completion-test overhead over
more operations.

3, 4

Vectorization For processors that support
vector optimizations, translates
computations with code-loop
arrays into equivalent vector
instructions.

3, 4

Lifetime Based Register
Allocation
or
Register Coloring

In a particular routine, uses the
same processor register to store
different variables, as long as no
statement uses those variables
simultaneously.

3, 4

Instruction Scheduling Rearranges the instruction
sequence to reduce conflicts
among registers and processor
resources.

3, 4

Repeated Iterates the optimization routines
listed between {* and *}.

4

Table 28.9 Optimization Routines (continued)

Optimization Routine Explanation Optimization
Level
405IDE 5.7 User’s Guide

Working with Target Settings
Editor Panels
Custom Keywords
The Custom Keywords settings panel (Figure 28.8) configures as many as four keyword
sets, each with a list of keywords and syntax coloring for a project. These project-specific
settings supersede the global settings defined in the Text Colors preference panel of the
IDE Preferences window. Table 28.10 explains the items of this panel.

Figure 28.8 Custom Keywords Settings Panel

Adding a Keyword to a Keyword Set

To add a keyword to a keyword set, follow these steps:

1. Click Edit next to the desired keyword set.

A dialog box appears. This dialog box lists the current collection of keywords in the
keyword set.

2. Enter the new keyword into the field at the top of the dialog box.

3. Click Add.

The new keyword appears in the keyword list.

4. Select Case Sensitive as desired.

When selected, the IDE treats the case of each keyword in the keyword set as
significant. When cleared, the IDE ignores the case of each keyword in the keyword
set.

Table 28.10 Custom Keywords Settings Panel Items

Item Explanation

Keyword set 1,
Keyword set 2,
Keyword set 3,
Keyword set 4

Click a color swatch to set the color used for the
corresponding custom-keyword set.

Edit Click to add, modify, or remove keywords from the
corresponding custom-keyword set.
406 IDE 5.7 User’s Guide

Working with Target Settings
Debugger Panels
5. Click Done.

The IDE saves the modified keyword set.

Removing a Keyword from a Keyword Set

To remove a keyword from a keyword set, follow these steps:

1. Click Edit next to the desired keyword set.

A dialog box appears. This dialog box lists the current collection of keywords in the
keyword set.

2. Select the obsolete keyword in the Custom Keywords list.

3. Press the delete key for your platform.

• Windows, Solaris, and Linux: Backspace

• Macintosh: Delete

4. Click Done.

The IDE saves the modified keyword set.

Debugger Panels
The Debugger group of the Target Settings Panels defines general debugger settings for
the project. Consult the Targeting documentation for more information about platform-
specific settings panels.

The Debugger panels available on most IDE hosts include:

• Other Executables

• Debugger Settings

• Remote Debugging

Other Executables
The Other Executables settings panel (Figure 28.9) configures additional executable files
for the IDE to debug together with the current build target. Table 28.11 explains the items
of this panel.
407IDE 5.7 User’s Guide

Working with Target Settings
Debugger Panels
Figure 28.9 Other Executables Settings Panel

Adding an Executable File to the File List

To add an executable file to the File list, follow these steps:

Table 28.11 Other Executables Settings Panel Items

Item Icon Explanation

File list Lists executable files that the IDE can debug together
with the current build target.

Debug column Click in this column to toggle debugging of the
corresponding executable file.

Add Click to select an executable file to add to the File list.

Change Click to change the selected entry in the File list.

Remove Click to remove the selected entry in the File list.
408 IDE 5.7 User’s Guide

Working with Target Settings
Debugger Panels
1. Click Add.

The Debug Additional Executable dialog box appears.

2. Enter in the File Location field the path to the executable file.

Alternatively, click Choose to display a dialog box. Use the dialog box to select the
executable file. The path to the selected executable file appears in the File Location
field.

3. Select Download file during remote debugging as desired.

When selected, the IDE downloads the executable file from a remote computer during
the debugging session. Enter the path to the remote file. Alternatively, click Choose to
select the file. Click Clear to delete the current entry.

4. Select Debug merged executable as desired.

When selected, the IDE debugs an executable file that merged with the project output.
Enter the path to the original executable file (prior to merging). Alternatively, click
Choose to select the file. Click Clear to delete the current entry.

5. Click Done.

The IDE adds the executable file to the File list.

Changing an Executable File in the File List

To change an executable file in the File list, follow these steps:

1. Select the desired path.

2. Click Change.

The Debug Additional Executable dialog box appears.

3. Modify the File Location field as desired.

4. Modify the Download file during remote debugging option as desired.

5. Modify the Debug merged executable option as desired.

6. Click Done.

The IDE modifies the executable file.

Removing an Executable File from the File List

To remove an executable file from the File list, follow these steps:

1. Select the obsolete path.

2. Click Remove.
409IDE 5.7 User’s Guide

Working with Target Settings
Debugger Panels
The IDE removes the executable file from the File list.

Debugger Settings
The Debugger Settings panel (Figure 28.10) configures activity logs, data-update
intervals, and other debugger-related options. Table 28.12 explains the items of this panel.

Figure 28.10 Debugger Settings Panel

Table 28.12 Debugger Settings Panel Items

Item Explanation

Location of Relocated Libraries
and Code Resources

Enter the path to code resources or relocated
libraries required for debugging the project.
Alternatively, click Choose to select the required
files.

Stop on application launch Select to halt program execution at the beginning of
a debugging session. Select the desired stop point:
Program entry point, Default language entry
point, or User specified.

Program entry point Select to halt program execution upon entering the
program.
410 IDE 5.7 User’s Guide

Working with Target Settings
Debugger Panels
Remote Debugging
The Remote Debugging settings panel (Figure 28.11) configures target-specific network
settings for remote-debugging connections between the host computer and other
computers. Use this target-specific panel to build on the general connections defined in the
Remote Connections panel of the IDE Preferences window. Table 28.13 explains the
items of this panel.

Default language entry point Select to halt program execution upon entering a
default point defined by the programming language.

User specified Select to halt program execution at a specified
function or address. Enter the desired function name
or address in the corresponding field. If you enter an
address, ensure that it is correct and within your
program.

Auto-target Libraries Select to debug dynamically linked libraries (DLLs)
loaded by the target application, at the expense of
slower performance.

Cache symbolics between runs Select to have the IDE cache the symbolics
information it generates for a project. Clear to have
the IDE discard the information after each
debugging session ends.

Log System Messages Select to log all system messages to a Log window.

Stop at Watchpoints Select to halt program execution at every
watchpoint. Clear to halt program execution at
watchpoints with changed values.

Update data every n seconds Enter the number of seconds n to wait before
updating the data displayed in debugging-session
windows.

Table 28.12 Debugger Settings Panel Items (continued)

Item Explanation
411IDE 5.7 User’s Guide

Working with Target Settings
Debugger Panels
Figure 28.11 Remote Debugging Settings Panel

Table 28.13 Remote Debugging Settings Panel Items

Item Explanation

Enable remote debugging Select to define (for the current build target) a
remote-debugging connection in terms of a general
connection. Choose from the Connection pop-up
menu the desired general connection.

Remote download path Enter the path to the directory in which to store
downloaded files.

Launch remote host application Select to launch an application on the remote
computer to serve as a host application. Enter the
path to the remote application.
412 IDE 5.7 User’s Guide

Working with Target Settings
Debugger Panels

I
 413DE 5.7 User’s Guide

Working with Target Settings
Debugger Panels
414 IDE 5.7 User’s Guide

29
Preference and Target
Settings Options

Use this chapter to look up CodeWarrior™ IDE preference panel or target setting options
and learn more about their capabilities. Option names are arranged in alphabetical order.

NOTE This chapter covers options for the core IDE preference or target setting panels
described in this manual.

A

Activate Browser Coloring
Select this option to activate coloring of browser symbols in editor windows. Clear the
option to apply the default text color to all symbols. Click the color swatch next to a
symbol to modify its color.

Activate Syntax Coloring
Select this option to activate coloring of Comments, Keywords, Strings, and Custom
Keyword Sets symbols in editor windows. Clear the option to apply the default text color
to all symbols. Click the color swatch next to a symbol to modify its color.

Add Default
Click this button to restore the default user path or system path to the Access Paths panel.

Always Search User Paths
This option controls the search criteria the IDE uses to find system and user files.

• selected—the IDE treats searching for system files (such as #include <...>) the
same as user files (#include "...").
415IDE 5.7 User’s Guide

Preference and Target Settings Options
• disabled—the IDE treats system paths differently from user paths.

Application
In this field enter the path to the external debugger that the IDE uses in place of the
CodeWarrior debugger. Alternatively, click Browse to open a dialog box. Use the dialog
box to select the external debugger.

Arguments
In this field enter command-line arguments to pass to the external debugger at the
beginning of a debugging session.

Attempt to show the dynamic runtime type of
objects
Select this option to display runtime types for C++, Object Pascal, and SOM objects. Clear
the option to display static types.

Auto Indent
Select this option to apply automatically the same indentation as the previous line for each
new line of text created by pressing Enter or Return. Clear the option to always return to
the left margin for each new line of text.

Auto Target Libraries
Select this option to have the IDE attempt to debug dynamically linked libraries (DLLs)
loaded by the target application. The IDE debugs the DLLs that have symbolics
information.

This option applies to non-project debugging sessions, such as debugging an attached
process.

NOTE Selecting this option may slow IDE performance. Clear the option to improve
speed.

Automatic Invocation
Select this option to have the Code Completion window automatically open after typing
specific programming-language characters in the active editor window. Clear the option to
manually open the Code Completion window.
416 IDE 5.7 User’s Guide

Preference and Target Settings Options
The specific characters that trigger opening of the Code Completion window depend on
the programming language that you use. For example, typing a period after a Java class
opens the Code Completion window, allowing you to complete the class invocation.

You can change the time it takes for the Code Completion window to appear after you
type a trigger character. If you perform any activity during this delay time, the Code
Completion window is canceled.

See also:

• Code Completion Delay

Automatically launch applications when SYM file
opens
Select this option to launch an application associated with an open symbolics file. The
IDE sets an implicit breakpoint at the main entry point of the application. Clear the option
to open the symbolics file without launching the associated application.

Table 29.1 explains how to skip launching the target program

B

Background
Click this color swatch to configure the background color of editor windows.

Balance Flash Delay
In this field enter the time, in ticks, to highlight a matching punctuation character during a
Balance while typing check. Each tick represents 1/60th of a second (16.67 milliseconds).

Table 29.1 Bypass Launching the Target Program

On this host… Do this…

Windows Press Alt while the IDE opens the symbolics file.

Macintosh Press Option while the IDE opens the symbolics file.

Solaris Press Alt while the IDE opens the symbolics file.

Linux Press Alt while the IDE opens the symbolics file.
417IDE 5.7 User’s Guide

Preference and Target Settings Options
Sample tick values include:

• 0 (zero)—disables balance flashing

• 30—the default flash value (1/2 of a second)

• 999—the maximum-flash delay value

Balance while typing
Select this option to have the editor check for balanced parentheses, brackets, and braces
in editor windows. For each closing parenthesis, bracket, or brace, the editor attempts to
find the opening counterpart.

The IDE behaves differently, depending on whether it finds the counterpart:

• Found—the editor window scrolls to display the matching character, then returns to
the insertion point. The Balance Flash Delay option determines how long the editor
displays the matching character.

• Not found—the IDE beeps.

Browser Commands
Select this option to add Browser menu commands to contextual menus. Clear the option
to remove commands from the contextual menus.

Browser Path
In this field enter a path to the browser to use for viewing IDE online help. The Netscape
Navigator® browser is the default application. The PATH environment variable specifies
the path to the browser.

To change the default setting, or if the IDE cannot find Netscape Navigator, in the
Browser Path field enter a path to an alternate browser. Alternatively, click Set to select
the path.

Build before running
Choose from this pop-up menu the way in which the IDE handles project builds before
running the compiled application:

• Always—always build projects before running them.

• Never—never build projects before running them.

• Ask—ask each time how to proceed.
418 IDE 5.7 User’s Guide

Preference and Target Settings Options
C

Cache Edited Files Between Debug Sessions
Select this option to maintain a cache of edited files between debugging sessions. Use this
option to debug through the original source code for files modified since the last build.

In the Maintain files in cache field enter the number of days to keep the cached files.
Click Purge Cache to delete the current cache.

See also:

• Maintain files in cache

• Purge Cache

Cache Subprojects
Use this option to improve multi-project updating and linking.

• selected—the IDE increases its memory requirements in order to generate symbolics
information for both the build targets and the subprojects within each build target.

• cleared—the IDE does not increase its memory requirements and does not generate
symbolics information.

Cache symbolics between runs
Select this option to have the IDE maintain a cache of symbolics information generated for
the project. The IDE refers to this cached symbolics information during subsequent
debugging sessions. The cache improves IDE performance. Clear the option to force the
IDE to discard the symbolics information at the end of each debugging session.

Case sensitive
Select this option to have the IDE consider case when completing code. Clear the option to
have the IDE ignore case.

The IDE can determine possible symbol matches according to case. For example, if you
clear the Case sensitive option and type str in the active editor window, the IDE
displays both string and String as possible matches. Selecting the option causes the
IDE to display only string as a possible match.
419IDE 5.7 User’s Guide

Preference and Target Settings Options
Close non-debugging windows
Select this option to close non-debugging windows, except for the active project window,
when starting a debugging session. At the end of the debugging session, the IDE
automatically re-opens the closed windows.

Code Completion Delay
In this field enter the number of ticks to have the IDE wait from the time you type a trigger
character to the time the Code Completion window opens. A tick is 1/60 of a second.

Performing any activity during this delay time cancels opening of the Code Completion
window.

See also:

• Automatic Invocation

Collapse non-debugging windows
Select this option to collapse non-debugging windows when starting a debugging session.
At the end of the debugging session, the IDE automatically restores the collapsed
windows.

Comments
Select the Activate Syntax Coloring option in order to configure this option. Use this
option to configure the color of C, C++, and Java comments displayed in editor windows.
The IDE then uses the chosen color for comments placed between /* and */ or from //
to the end of a line.

Click the color swatch next to Comments to set the color.

Compiler
Choose from this list pop-up the desired compiler for the selected File Type in the File
Mappings list. Select None to not associate the selected file type with any compiler.

Compiler thread stack
In this field enter the maximum kilobytes of stack size for the IDE to allocate to compiling
and linking thread support.

The IDE threads all build processes, with compiling and linking occurring on a thread
separate from the main application thread. This setting controls the compiler-thread stack
size.
420 IDE 5.7 User’s Guide

Preference and Target Settings Options
To avoid frequent compiler crashes, such as when building very large or complex projects,
increase the default compiler-thread-stack size.

Confirm invalid file modification dates when
debugging
Select this option to keep track of source-file modification dates in a project. The IDE
displays a warning message if the modification dates do not match. The message warns of
possible discrepancies between object code and source code. Clear the option to prevent
the IDE from displaying the warning message.

Confirm “Kill Process” when closing or quitting
Select the Confirm “Kill Process” when closing or quitting option to have the IDE
prompt for confirmation before killing processes upon closing the Thread window or
quitting the IDE. Clear the option to kill processes without prompting.

Context popup delay
In this field enter the minimum time, in ticks, to hold down the mouse button before IDE
contextual menus appear. Each tick represents 1/60 of a second (16.67 milliseconds).

Sample tick values include:

• 0 (zero)—disables appearance of contextual menus

• 40—default popup delay value (2/3 of a second)

• 240—maximum popup delay value

D

Debugger Commands
Select this option to add Debug menu commands to IDE contextual menus. Clear the
option to remove commands from the contextual menus.

Default file format
Choose from this list pop-up the default end-of-line (EOL) conventions used by the IDE to
save files:

• Macintosh: <CR>
421IDE 5.7 User’s Guide

Preference and Target Settings Options
• DOS: <LF><CR>

• UNIX: <LF>

Default language entry point
Select this option to halt program execution upon entering a default point defined by the
programming language. For example, C++ defines the main() function as the default
point.

Default size for unbounded arrays
Enter in this field the default number of elements to display in View Array windows for
unbounded arrays.

Disable third party COM plugins
Select this option to prevent the IDE from loading third-party Component Object Model
(COM) plugins. Clear the option to have the IDE load the plugins at start-up time.

Use this option to help troubleshoot problems with the IDE. If the problem goes away
after disabling the plugins, then a conflict exists between the third-party plugins and the
IDE plugins.

Display deprecated items
Select this option to have the Code Completion window display obsolete programming-
language items. Clear the option to have the window hide the obsolete items.

Deprecated items appear in gray text in the Code Completion window.

Do nothing
Select this option to leave all windows in place during a debugging session.

Do nothing to project windows
Select this option to prevent the IDE from manipulating project windows when starting a
debugging session. Use this option to help debug multiple build targets or multiple
projects.

Documents
In this field enter the number of recent documents to display in the Open Recent
submenu.
422 IDE 5.7 User’s Guide

Preference and Target Settings Options
Don’t step into runtime support code
Select this option to have the IDE bypass stepping into the Main Standard Library (MSL)
runtime support code and instead directly step into your own code. Clear the option to
have the IDE step into the MSL runtime setup code, then step into your own code.

Drag and drop editing
Select this option to allow dragging and dropping of text in editor windows. Clear the
option to disable drag-and-drop text editing.

Dump internal browse information after compile
Select this option to view the raw browser information that a plugin compiler or linker
provides for the IDE. Use this option to help develop plugins for use with the IDE.

NOTE After enabling the Dump internal browse information after compile option,
compile only single files or small files. Compiling an entire project can create
huge internal browser information for the IDE to display.

E

Edit Commands
Select this option to add Edit menu commands to IDE contextual menus. Clear the option
to remove the commands from the contextual menus.

Edit Language
Choose from this pop-up menu the programming language to associate with the selected
file mapping. The selected language determines the syntax-color scheme. For example,
choose C/C++ to apply the appropriate syntax-color scheme for C or C++ programming-
language components.

Enable automatic Toolbar help
Select this option to display Balloon Help after resting the cursor over a toolbar button.
Clear the option to prevent Balloon Help from appearing.
423IDE 5.7 User’s Guide

Preference and Target Settings Options
Enable remote debugging
Select this option to define a remote-debugging connection specific to the current build
target. Choose from the Connection pop-up menu the general connection to use as the
basis for the target-specific connection.

Enable Virtual Space
Use this option to configure the editor for handling spaces in different ways.

• selected—the editor allows moving the text-insertion point past the end of a line of
text, using either the arrow keys or the mouse. After moving to the desired position,
begin entering text. The editor automatically inserts spaces between the former end
of the line and the newly entered text.

• cleared—the editor requires manual insertion of spaces to move past the end of a line
of text.

Environment Settings
Use this section to specify environment variables to pass to your program as part of the
environment parameter in your program’s main() function, or as part of environment
calls. These environment variables are only available to the target program. When your
program terminates, the settings are no longer available.

NOTE The Environment Settings section appears only when you develop code for a
Windows build target. The section does not appear for any other build target.

Export Panel
Click this button to save to an Extensible Markup Language (XML) file the current state
of the active preference or settings panel.

Extension
In this field enter a filename extension, such as the .c or .h , for a selected File Type in
the File Mappings list. Table 29.2 lists default filename extensions.
424 IDE 5.7 User’s Guide

Preference and Target Settings Options
Table 29.2 Default Filename Extensions

Type Extension Explanation

Minimum CodeWarrior
Installation

.iSYM CodeWarrior Intel® Symbols

.mch CodeWarrior Precompiled Header

.mcp CodeWarrior Project File

.SYM CodeWarrior Mac OS 68K Debug
Symbols

.xSYM CodeWarrior Mac OS PPC Debug
Symbols

.dbg CodeWarrior Debug Preferences

.exp Exported Symbol File

.iMAP CodeWarrior Link Map

.MAP CodeWarrior Link Map

Assembly .a Assembly Source File (Windows and
Macintosh)

.asm Assembly Source File

.dump CodeWarrior Disassembled File

C and C++ .c++ C++ Source File

.cc C++ Source File

.hh C++ Header File

.hpp C++ Header File

.i C Inline Source File

.icc C++ Inline Source File

.m Object C Source File

.mm Object C++ Source File
425IDE 5.7 User’s Guide

Preference and Target Settings Options
Default C and C++ .c C Source File

.cp C++ Source File

.cpp C++ Source File

.h C and C++ Header File

Default Java .class Java Class File

.jar Java Archive File

.jav Java Source File

.java Java Source File

Java .JMAP Java Import
Mapping Dump

.jpob Java Constructor File

.mf Java Manifest File

Library .a (Static) Archive Library (Solaris and
Linux)

.lib Library File

.o Object File
(Windows and Macintosh)

.o Object (Relocatable) Library or Kernel
Module
(Solaris and Linux)

.obj Object File

.pch Precompiled Header Source File

.pch++ Precompiled Header Source File

.so Shared Library (Linux)

Script .sh Shell Script (Linux)

.psh Precompile Shell Script (Linux)

.pl Perl Script (Linux)

Table 29.2 Default Filename Extensions (continued)

Type Extension Explanation
426 IDE 5.7 User’s Guide

Preference and Target Settings Options
F

Factory Settings
Click this button to change all modified options to their default values in the current
preference or settings panel.

Failure
Choose from this pop-up menu a sound to play after a Bring Up To Date or Make
operation fails.

File Type
Enter in this field the four-character file type for the selected file mapping in the File
Mappings list.

Find and compare operations
A bullet in the Find and compare operations column, whose label appears at left,
indicates that the IDE ignores matching folders for find-and-compare operations.
Such operations include dragging a folder into fields in the Find window, or
comparing folder contents.

Find Reference using
Choose from the Find Reference using options, an online browser application to look up
references and definitions.

For example, use this option to look up documentation for language keywords:

Mac OS X .dylib Mach-O Dynamic Library

.a Mach-O Static Library

.o Mach-O Object File

.plist Property List

Table 29.2 Default Filename Extensions (continued)

Type Extension Explanation
427IDE 5.7 User’s Guide

Preference and Target Settings Options
1. Select an online browser application, such as THINK Reference, with the Find
Reference using option.

2. Select a language keyword, such as boolean, in the source code.

3. Choose the Find Reference menu command. The IDE looks up reference information
for the boolean keyword in the THINK Reference documentation.

Although they are not included with the CodeWarrior product, the IDE supports these
online browser formats:

• Apple Help Viewer (CW manuals)

• Apple Help Viewer (Mac OS X API Ref)

• PalmQuest Reference (Palm Pilot)

• QuickView–such as Macintosh Programmer’s Toolbox Assistant (MPTA)

• THINK Reference

Font
Choose from the Font options the typeface to use for displaying text in editor windows.
This setting behaves in two different ways, depending on the current IDE state:

• No editor windows open—the setting modifies the default font. All editor windows
take on the default font.

• Editor windows open—the setting modifies the font displayed in the frontmost editor
window only. Other editor windows remain unaffected. The default font remains
unchanged.

Font preferences
Select the Font preferences option to remember font settings for each file in a project.
Clear the option to use the default font settings every time the IDE opens each file. The
Font & Tabs preference panel defines the default settings.

Foreground
Use the Foreground option to configure the color of any text not affected by the Activate
Syntax Coloring or Activate Browser Coloring options.

Click the color swatch to change the current color.
428 IDE 5.7 User’s Guide

Preference and Target Settings Options
G-I

Generate Browser Data From
Choose from this pop-up menu whether the IDE generates browser data, and from what
source it generates that data.

Choose from these possibilities:

• None—Disable browser-data generation. Certain IDE features that use browser data
will be unable to work with the project, but the project’s size will be smaller.

• Compiler—Have the IDE use the compiler to generate browser data. If you choose
this option, you must Make the project in order to generate the browser data. The
IDE uses the compiler assigned to the project to generate browser data during the
build process.

• Language Parser—Have the IDE use the language parser to generate the browser
data. Certain IDE features, such as C/C++ Code Completion, function more
effectively if you choose this option. The IDE uses the language parser assigned to
the project to generate browser data.

NOTE If you choose the Language Parser option, you can also have the IDE take
into account your custom macro definitions. To do so, enter the path to your
prefix file in the Prefix file field and the path to your macro file in the Macro
file field.

Grid Size X
In the Grid Size X field enter the number of pixels to space between markings on the x-
axis of the Layout Editor grid.

Grid Size Y
In the Grid Size Y field enter the number of pixels to space between markings on the y-
axis of the Layout Editor grid.

Hide non-debugging windows
Select the Hide non-debugging windows option to hide, but not close, non-debugging
windows when starting a debugging session.

To reveal the hidden windows, do one of these tasks:
429IDE 5.7 User’s Guide

Preference and Target Settings Options
• Use the Window menu, or

• Double-click the names of the hidden files in the Project window, or

• Perform lookups for symbols within the hidden windows.

At the end of the debugging session, the IDE automatically reveals the hidden windows.

Host Application for Libraries & Code Resources
The Host Application for Libraries & Code Resources field lets you specify a host
application to use when debugging a non-executable file, such as a shared library,
dynamic link library (DLL), or code resource. The application that you specify in this field
is not the debugger application, but rather the application with which the non-executable
file interacts.

Host Flags
The Host Flags list pop-up defines the host platforms which can use the selected access
path. The settings include:

• None–no host can use this access path.

• All–all hosts can use this access path.

• Windows–only use this path for Windows build targets.

• Mac OS–only use this path for Mac OS build targets.

NOTE Multiple hosts can be selected.

Import Panel
Click Import Panel to load the contents of a previously saved Extensible Markup
Language (XML) file into the active preference or settings panel.

Include file cache
Use the Include file cache option to specify the upper limit of kilobytes of memory used
by the IDE for caching #include files and precompiled headers. The larger the value
entered, the more memory the IDE uses to accelerate builds.

Initial directory
In this field enter the initial directory for use with the external debugger. Alternatively,
click Browse to open a dialog box. Use the dialog box to select the initial directory.
430 IDE 5.7 User’s Guide

Preference and Target Settings Options
Insert Template Commands
Select the Insert Template Commands option to display the Insert Template submenu
in contextual menus. The submenu displays source-defined function templates. Clear to
remove the submenu from the contextual menus.

NOTE Select the Browser Commands option in order to select the Insert Template
Commands option. Otherwise, the Insert Template Commands state has no
effect.

Interpret DOS and Unix Paths
This option determines how the IDE treats filenames for interface files:

• Selected—the IDE treats the backslash (\) and the forward slash (/) characters as
subfolder separator characters. In the example

#include "sys/socks.h"

the IDE searches for a subfolder called sys that contains a socks.h file.

• Cleared—the IDE treats both the backslash and forward slash characters as part of
the filename. Using the same example, the IDE now searches for a sys/socks.h
filename.

K-L

Keywords
Use the Keywords option to configure the color of C, C++, and Java programming
language’s keywords displayed in editor windows when the Activate Syntax Coloring
option is enabled. Coloring does not include macros, types, variables defined by system
interface files, or variables defined in source code. Click the color swatch next to
Keywords to set the color.

Launch Editor
Enter in the Launch Editor field a command-line expression that specifies the third-party
text editor that the CodeWarrior IDE runs to edit text files.
431IDE 5.7 User’s Guide

Preference and Target Settings Options
The IDE expands the %file variable of the command-line expression into the full file
path. For example, to run the Emacs text editor to edit text files, enter this command-line
expression:

runemacs %file

Consult the documentation provided with the third-party text editor for more information
about using command lines.

Launch Editor w/ Line #
Enter in the Launch Editor w/ Line # field a command-line expression that specifies the
third-party text editor that the IDE runs to edit text files, and an initial line of text that the
third-party editor displays upon running.

The IDE expands the %line variable of the command-line expression into an initial line
of text for the third-party text editor to display. For example, to run the Emacs text editor
to edit a text file, and to have the Emacs editor display the line provided to it by the IDE,
enter this command-line expression:

emacs %file %line

Consult the documentation provided with the third-party text editor for more information
about using command lines.

Launch remote host application
Select this option to launch an application on the remote computer to serve as a host
application. Enter the path to the remote host application.

Left margin click selects line
Select the Left margin click selects line option to use a right-pointing cursor,
shown at left, to select entire lines of text from the left margin. Clear the option to
disable use of the right-pointing cursor.

With the right-pointing cursor active, click in the left margin to select the current
line, or click and drag along the left margin to select multiple lines.

Level
Choose from the Level options the amount of information reported for IDE plugins in
development. This information is useful for diagnosing plugin behavior or for viewing
information about the properties of installed plugins.

Choose one of these levels of plugin diagnostic information:

• None (default)—The IDE does not activate plugin diagnostics or produce output.
432 IDE 5.7 User’s Guide

Preference and Target Settings Options
• Errors Only—The IDE reports problems encountered while loading plugins. These
problems appear in a new text file after the IDE starts up

• All Info—The IDE reports information for each installed plugin, such as problems
with plugin loading, optional plugin information, and plugin properties. This
information appears in a new text file after the IDE starts up. The text file also
contains a complete list of installed plugins and their associated preference panels,
compilers, and linkers.

The IDE allows saving and printing the text file. Use the file as an error reference for
troubleshooting plugins. The text file also provides suggestions for correcting general
plugin errors.

Linker
Use the Linker option menu to select the linker to use with the project. The choices
available are always dependent on the plugin linkers that are available to the CodeWarrior
IDE.

To learn more about the linkers, see the appropriate Targeting manual.

Location of Relocated Libraries and Code
Resources
Enter in this field the path to the relocated libraries and code-resource files required for
debugging the project. Alternatively, click Choose to display a dialog box. Use the dialog
box to select the required files.

Log System Messages
Select this option to have the IDE maintain a log of all system messages generated during
the debugging session. The Log window displays this platform-specific information. Clear
the option to disable the log.

M

Maintain files in cache
Enter in the Maintain files in cache text box the number of days that the IDE maintains
files in the file cache.
433IDE 5.7 User’s Guide

Preference and Target Settings Options
Menu bar layout
Choose from the Menu bar layout options the desired configuration of menus listed in the
IDE:

• Windows—organizes the menu bar according to a typical Microsoft® Windows®
arrangement

• Macintosh—organizes the menu bar according to a typical Apple® Mac® OS
arrangement

Minimize non-debugging windows
Select the Minimize non-debugging windows option to minimize non-debugging
windows to a reduced size when a debugging session starts. At the end of the debugging
session, the IDE automatically restores the minimized windows.

NOTE The Minimize non-debugging windows option is only available in MDI
mode.

See also:

• Use Multiple Document Interface

Monitor for debugging
Choose from the Monitor for debugging options the specific monitor to use during
debugging sessions. The IDE displays debugging windows in the selected monitor. The
coordinates in parentheses identify the selected monitor in QuickDraw space.

Move open windows to debugging monitor when
debugging starts
Select the Move open windows to debugging monitor when debugging starts option to
move all open windows to the selected debugging monitor after a debugging session
starts. At the end of the debugging session, the IDE restores the moved windows to their
original positions.
434 IDE 5.7 User’s Guide

Preference and Target Settings Options
O

Open windows on debugging monitor during
debugging
Select the Open windows on debugging monitor during debugging option to display on
the debugging monitor any window that opens during the debugging session.

The IDE does not save the positions of windows closed on the debugging monitor during
the debugging session. This behavior prevents window positions from gravitating to the
debugging monitor.

Output Directory
Use the Output Directory caption to show the location the IDE places a final linked
output file. The default location is the directory that contains your project file. Select
Choose to specify the location path.

P

Play sound after ‘Bring Up To Date’ & ‘Make’
Select the Play sound after ‘Bring Up To Date’ & ‘Make’ option to play a sound after a
build operation completes. Choose different sounds for successful and unsuccessful builds
using the Success and Failure pop-up options, respectively.

See also:

• Failure

• Success

Post-linker
Use the Post-linker option to select a post-linker that performs additional work (such as
format conversion) on the final executable file.

For more information see the appropriate Targeting manual.
435IDE 5.7 User’s Guide

Preference and Target Settings Options
Pre-linker
Use the Pre-linker option to select a pre-linker that performs additional work on the
object code in a project. This work takes place before the IDE links the object code into
the final executable file.

For more information about the pre-linkers available, see the build targets Targeting
manual.

Program Arguments
Use the Program Arguments field to enter command-line arguments to pass to the
project at the beginning of a debugging session. Your program receives these arguments
after you choose Project > Run.

Program entry point
Select this option to halt program execution upon entering the program.

Projects
Enter the number of recent projects to display in the Open Recent submenu.

Project Commands
Select the Project Commands option to add Project menu commands to contextual
menus. Clear the option to remove the commands from the contextual menus.

Project operations
A bullet in the Project operations column, whose label appears at left, indicates
that the IDE ignores matching folders for project operations. Such operations
include dragging a folder into the Project window, building a project, or searching
access paths after choosing File > Open.

Purge Cache
Click Purge Cache to delete the contents of the current file cache.
436 IDE 5.7 User’s Guide

Preference and Target Settings Options
R

Recommended
Select the Recommended option to allow the number of concurrent compiles suggested
by the IDE. This suggestion takes into account the number of active Central Processing
Units (CPUs) on the host computer.

Regular Expression
Enter in the Regular Expression field a text pattern to match against folder names. The
IDE excludes matching folders and their contents from selected project operations or find-
and-compare operations.

Relaxed C popup parsing
Use the Relaxed C popup parsing option to control the strictness of C coding
conventions:

• Select the option to have the IDE recognize some non-standard functions that
interfere with Kernighan-and-Ritchie conventions. The IDE displays the non-
standard functions in the Routine list pop-up.

• Clear the option to have the IDE recognize only functions that conform to
Kernighan-and-Ritchie conventions. The IDE displays only the standard functions in
the Routine list pop-up.

For more information, refer to “Reference Manual,” of The C Programming Language,
Second Edition, by Kernighan and Ritchie, published by Prentice Hall.

NOTE Toggle the Relaxed C popup parsing option to maximize recognition of
functions, macros, and routine names in the source code.

Remote download path
Enter the path to the directory in which to store files downloaded from the remote host
application.

Require Framework Style Includes
This option determines the strictness with which the IDE treats #include statements for
frameworks:
437IDE 5.7 User’s Guide

Preference and Target Settings Options
• selected—the IDE requires the framework in addition to the referenced header file.
In the example

#include <Cocoa/CocoaHeaders.h>

the IDE requires the presence of Cocoa/ in order to find the CocoaHeaders.h
file.

• cleared—the IDE requires only the referenced header file. Using the same example,
Cocoa/ becomes optional.

Revert Panel
Click Revert Panel to revert all modified options in the current preference or settings
panel to the values present when the panel was originally opened.

S

Save open files before build
Select the Save open files before build option to automatically save files during project
operations:

• Preprocess

• Precompile

• Compile

• Disassemble

• Bring Up To Date

• Make

• Run

Save project entries using relative paths
Use the Save project entries using relative paths option to store the location of a file
using a relative path from one of the access paths. The settings include:

• enabled–the IDE stores extra location information to distinctly identify different
source files with the same name. The IDE remembers the location information even
if it needs to re-search for files in the access paths.

• disabled–the IDE remembers project entries only by name. This setting can cause
unexpected results if two or more files share the same name. In this case, re-
438 IDE 5.7 User’s Guide

Preference and Target Settings Options
searching for files could cause the IDE to find the project entry in a different access
path.

Script
Choose from the Scripts options the script system (language) used to display text in editor
windows. This setting behaves in two different ways, depending on the current IDE state:

• No editor windows open—the setting modifies the default script system. All editor
windows take on the default script system.

• Editor windows open—the setting modifies the script system displayed in the
frontmost editor window only. Other editor windows remain unaffected. The default
script system remains unchanged.

Select stack crawl window when task is stopped
Select the Select stack crawl window when task is stopped option to automatically bring
the Thread window to the foreground after the debugger stops a task. Clear the option to
leave the Thread window in its previous position.

This option is useful for watching variable values change in multiple Variable windows as
the debugger steps through code.

Selection position
Select the Selection position option to remember these items for each editor window:

• visible text

• insertion-point location

• selected text

Clear the option to open each editor window according to default settings and place the
insertion point at the first line of text.

NOTE The IDE must be able to write to the file in order to remember selection
position.

Show all locals
Select the Show all locals option to display all local variables in Variable windows. Clear
the option to show only variables near the program counter.

The Variables pane uses these display settings:

• Variables: All—shows all local variables in the code.
439IDE 5.7 User’s Guide

Preference and Target Settings Options
• Variables: Auto—only shows the local variables of the routine to which the current-
statement arrow currently points.

• Variables: None—does not show variables. Use this setting to improve stepping
performance for slow remote connections.

Show Code and Data Sizes
Enable this option in the IDE Extras panel of the IDE preferences panels to display the
Code and Data columns in the project manager window.

Show hidden locals
In previous versions of the CodeWarrior debugger, all local variables were displayed at all
times in the local variables view. This meant that if there were multiple sub-scopes within
a function that contained variables of the same name, all copies of these variables would
be shown at all times. This made it difficult at times to determine which copy of a variable
was the “current” one.

The CodeWarrior debugger now optionally filters out out-of-scope local variables in the
local variables view. It is now possible to make the CodeWarrior debugger only display
those variables that are actually “live” for the current location.

A new filter option (live) has been added to the existing options (all, auto, and none). The
new option will attempt to filter out variables that are not currently in scope.

A hidden local variable is a variable that is in scope, but is hidden by a variable of the
same name in a deeper scope. If the Show hidden locals option is checked, hidden locals
are shown dimmed (greyed out).

Consider the Listing 29.1 function:

Listing 29.1 Hidden Locals Example

int main(void)
{

char varA = 'a';
int varB = 111;

for (int loop1 = 0; loop1 < 10; loop1++)
{
/* loop-scoped variables that should hide all others */
char varA = 'b';
float varB = 2.22;
.
.
.

}

440 IDE 5.7 User’s Guide

Preference and Target Settings Options
.

.

.
}

When debugging this function, the earlier CodeWarrior debugger would show five
variables at all times:

loop1 : int

varA : char

varA : char

varB : int

varB : float

This could be confusing, since the different varA’s were not apparent in the local variables
pane. With the new “live” filter, only those variables that are actually active at a given
point in the function are displayed. Using the “live” filter, this display will look like this at
the beginning of the function:

varA : char

varB : int

and the display will look like this when inside the for loop:

loop1 : int

varA : char

varB : float

Note in the second case that the varA and varB variables declared at the beginning of the
function are still “live”, but they are hidden by the same-named variables declared within
the for loop. If you would like these hidden variables to be displayed, check the “Show
hidden locals” option; the variable list when inside the for loop looks like this:

loop1 : int

varA : char // displayed as dimmed

varA : char

varB : int // displayed as dimmed

varB : float

NOTE This feature ONLY works correctly if there is compiler and symbolics plugin
support for sub-scopes within functions. At present, there are very few
compilers that actually generate sub function-level scope information, so it is
entirely possible that you will see no difference between the “live” and “all”
441IDE 5.7 User’s Guide

Preference and Target Settings Options
settings -- you will continue to have the “classic” CodeWarrior variable display
with all variables shown.

Show message after building up-to-date project
Select the Show message after building up-to-date project option to have the IDE
display a message after building an up-to-date project.

Show threads in separate windows
Select the Show threads in separate windows option to open a separate Thread window
for each task. Clear the option to use one Thread window to display multiple tasks.

Show processes in separate windows
Select the Show processes in separate windows option to open a separate window for
each process. Clear the option to use one window to display multiple tasks processes.

Show the component palette when opening a
form
Select the Show the component palette when opening a form option to automatically
display the Component Palette after opening a form in the Layout Editor. Clear the option
to require manual opening of the Component Palette.

Show the object inspector when opening a form
Select the Show the object inspector when opening a form option to automatically open
an Object Inspector window when opening a layout in the Layout Editor. Clear the option
to require manual opening of the Object Inspector.

Show values as decimal
Select the Show values as decimal instead of hex option to display variable values in
decimal form. Clear the option to display the values in hexadecimal form.

Show variable location
Select the Show variable location option to display the Location column in the Variables
pane of the Thread window. Clear the option to hide the Location column.
442 IDE 5.7 User’s Guide

Preference and Target Settings Options
Show variable types
Select the Show variable types option to display the type associated with each variable in
Variable windows. Clear the option to hide the variable types.

Show variable values in source code
Select the Show variable values in source code option to show current values for
variable names displayed in contextual menus. Clear the option to show variable names
only.

Size
Choose from the Size options the font size used to display text in editor windows. This
setting behaves in two different ways, depending on the current IDE state:

• No editor windows open—the setting modifies the default font size. All editor
windows take on the default font size.

• Editor windows open—the setting modifies the font size displayed in the frontmost
editor window only. Other editor windows remain unaffected. The default font size
remains unchanged.

Sort functions by method name in symbolics
window
Select the Sort functions by method name in symbolics window option to alphabetically
sort functions by method name. Clear the option to alphabetically sort by class name. The
sorting affects functions of the form className::methodName that appear in the
Symbolics window.

Since most C++ and Java source files contain methods that belong to the same class, select
the option to simplify selection of functions by typing method names.

Stop at Watchpoints
Select this option to halt program execution at each watchpoint, regardless of whether the
watchpoint value changed. Clear the option to halt execution at watchpoints with changed
values.

Stop on application launch
Select this option to halt program execution at a specified point each time a debugging
session begins.
443IDE 5.7 User’s Guide

Preference and Target Settings Options
Strings
Use the Strings option to configure the color of anything that is not a comment, keyword,
or custom keyword and displayed in editor windows when the Activate Syntax Coloring
option is enabled. Sample strings include literal values, variable names, routine names,
and type names.

Click the color swatch next to Strings to set the color.

Smart Variable Formatting
The Variable Formatter is an IDE plugin that customizes the display of Variables based on
format data it reads from an XML format file. For specific types of variables, the Variable
Formatter will replace the text shown next to the variable name to the results of an
expression. For example, if you have a struct:

struct Rect {
short top;
short left;
short bottom;
short right;

};

then normally a variable of that type would look like this in the debugger:

myRect 0x000DCEA8

If the Variable Formatter is given a format that looks like this:

<variableformat>
<typename>Rect</typename>
<expression>
"{T: " + ^var.top +
" L: " + ^var.left +
" B: " + ^var.bottom +
" R: " + ^var.right +
"}{H: " + (^var.bottom - ^var.top) +
" W: " + (^var.right - ^var.left) + "}"
</expression>

</variableformat>

then the variable will be displayed with the result of the expression:

myRect {T: 30 L: 30 B: 120 R: 120}{H: 90 W: 90}

When the IDE starts, the variable formatter plugin looks in the plugin's support folder for a
“Variable Formats” folder. It scans this folder for XML files and reads the variable
formats for each one.
444 IDE 5.7 User’s Guide

Preference and Target Settings Options
Variable Format Tags:

variableformat - Identifies the start of a variable format record.

osName - Restricts format use to the indicated operating system. OS names are “osMac”
and “osWin32”.

runtimename - Restricts format use to the indicated runtime model. Runtime names are
“runtimePPCCFM”, “runtimePPCMacho” and “runtimeWin32”.

cpuname - Restricts format use to the indicated CPU model. CPU names are
“cpuPowerPCBig”, “cpuJava” and “cpux86”.

typename - Identifies the name of the Type this record will format.

condition - Specifies a condition that must be met for the format to be used. This can be
used to test for one element of data before attempting to format another element.

typenamematch - Specifies how to match type names to variable types. Possible values
are: “ExactMatch”, “BeginsWith”, “EndsWith”, and “Contains”.

expression - Specifies an expression string. The expression will be evaluated and the result
displayed next to the variable. Before evaluation, all instances of “^var” in the format
string will be replaced with the name of the variable.

expressionformat - Specifies the data format to use when formatting an expression. The
format names match the menu item names in the “Data” menu: “Pascal String”, “C
String”, “Character”, “Unicode” etc.

Sort function popup
Select the Sort function popup option to sort function names by alphabetical order in list
pop-ups. Clear the option to sort function names by order of appearance in the source file.

Source relative includes
Select to search for dependent files in the same location as the source file. If the dependent
file is not found in this location, specified User and System paths are searched. If this
option is enabled, the Always Search User Paths should also be enabled. For example, if
the compiler is currently scanning the main source file and discovers an include header file
statement, the header file is searched for in the same location as the main file. If not found,
the specified access paths will be searched. If the header file declared in the main file also
contains an include statement for another header file, it too will be searched for in the
same sequence.

Success
Choose from the Success options a sound to play after a Bring Up To Date or Make
operation succeeds.
445IDE 5.7 User’s Guide

Preference and Target Settings Options
Symbolics
Enter the number of recent symbolics files to display in the Open Recent submenu.

System Paths
Click the System Paths radio button to display the System Paths pane in the Access Paths
preference panel.

Supported hosts:

• Windows: available.

• Macintosh: not available.

T

Tab indents selection
Use the Tab indents selection option to control how the editor inserts tabs into the
currently selected lines of text:

• Select the option so that pressing Tab causes the editor to insert tab characters in
front of each selected line of text. The editor thereby indents the selected text.

• Clear the option so that pressing Tab causes the editor to replace selected text with a
tab character. The editor thereby overwrites the selected text.

Tab Inserts Spaces
Select the Tab Inserts Spaces option to have the editor insert spaces instead of tab
characters into text. Clear the option to have the editor use tab characters.

The Tab Size option determines the number of spaces inserted by the editor.

Tab Size
Enter in the Tab Size field the number of spaces to substitute in place of a tab character in
text. This number applies to the Tab Inserts Spaces option.
446 IDE 5.7 User’s Guide

Preference and Target Settings Options
Target Name
Use the Target Name text box to set or modify the name of the current build target. This
name appears in the Targets view in the Project window. This name is not the name
assigned to the final output file, that is set in the Linker panel for the build target.

Type
Choose from the Type options the desired source-tree path type:

• Absolute Path—This source-tree type is based on a file path.

• Environment Variable—This source-tree type is based on an existing environment-
variable definition. The Macintosh-hosted IDE cannot create or modify this source-
tree type.

• Registry Key—This source-tree type is based on an existing Windows registry key
entry.

U

Update data every n seconds
Select this option to update the information displayed in debugging-session windows after
a specified time interval. Enter the number of seconds n to elapse before the next update.
Clear this option to prevent data updates and keep the same window information
throughout the debugging session.

Use Concurrent Compiles
Select the Use Concurrent Compiles option to run more than one compiling process at a
time. Concurrent compiling makes better use of available processor capacity by allowing
the operating system to optimize resource utilization, such as taking advantage of over-
lapped input/output.

Both single- and multi-processor systems benefit from enabling concurrent compiles. On
multiprocessor systems, the speed-up is significant.

Use Debugging Monitor
Select the Use Debugging Monitor option to view debugging windows on a second
monitor after a debugging session starts. This option only appears when the second
monitor is connected to the computer.
447IDE 5.7 User’s Guide

Preference and Target Settings Options
Use default workspace
Select this option to have the IDE use the default workspace. The IDE uses the default
workspace to save and restore window and debugging states from one session to the next.

For example, if you select this option and close the IDE with a project window visible
onscreen, that project window reappears the next time you start the IDE.

Clear this option to have the IDE start with the same default state for each new session: no
windows visible onscreen.

For example, if you clear this option and close the IDE with a project window visible
onscreen, that project window does not appear the next time you start the IDE. Instead, the
IDE always starts without opening any windows.

Use External Debugger
Select this option to have the IDE use an external debugger application in place of the
CodeWarrior debugger.

Use External Editor
Select the Use External Editor option to use an external text editor to modify text files in
the current project. Clear the option to use the text editor included with the IDE.

Use Local Project Data Storage
Select the Use Local Project Data Storage option to store (on the host computer) data
associated with a project file on a read-only volume. Clear the option to store project data
inside the same folder as the project file itself.

After loading a project file, the IDE creates or updates an associated project data folder.
The IDE stores intermediate project data in this folder. When building or closing a project,
the IDE uses the information in the project data folder to update the project file.

By default, the IDE places the project data folder within the same folder as the project file.
However, the IDE cannot create or update a project data folder in a location that grants
read-only privileges.

If you are creating one project to be accessed by multiple users that are running
CodeWarrior on separate machines, then each user should select this option to create a
local data storage folder for the shared project. The folder containing the project file
should be set to read-only. This will cause the target information to be stored locally on
each user’s machine, instead of inside a folder next to the project file.
448 IDE 5.7 User’s Guide

Preference and Target Settings Options
Use modification date caching
Use the Use modification date caching option to determine whether the IDE checks the
modification date of each project file prior to making the project. The settings include:

• enabled–the IDE caches the modification dates of the files in a project. At
compilation time, the IDE refers to this cache to determine whether a specific file
should be recompiled. This can shorten compilation time significantly for large
projects.

• disabled–the IDE checks every file at each recompile of the project. Use this setting
if using third-party editors to ensure that the IDE checks every file at compilation
time.

Use Multiple Document Interface
Toggle this option to change the IDE interface:

• Selected—The IDE uses MDI (Multiple Document Interface). In this interface, the
IDE uses a main application window with a gray background. IDE windows appear
inside the main application window. The gray background obscures your view of the
desktop.

• Cleared—The IDE uses FDI (Floating Document Interface). In this interface, the
IDE does not use a main application window. You can see through the IDE user
interface to your desktop. IDE windows appear above the desktop.

Use multiple undo
Select the Use multiple undo option to remember several undo and redo operations in
editor windows. Clear the option to remember only the most recent undo or redo action.

The IDE stores undo and redo actions on a stack in first-in last-out (FILO) order, however,
the stack size and capability are limited. For example, assume there are five undo actions
on the stack (ABCDE). If the IDE redoes two actions (ABC), then performs a new action
(ABCF), the undo events (DE) are no longer available.

Use Script menu
Select the Use Script menu option to display the Scripts menu in the IDE menu bar.
Clear the option to remove the Scripts menu from the menu bar. The Scripts menu
provides convenient access to IDE scripts.

For more information about scripting the IDE, refer to the CodeWarrior Scripting
Reference.
449IDE 5.7 User’s Guide

Preference and Target Settings Options
Use Third Party Editor
Select the Use Third Party Editor option to use a third-party text editor to modify text
files. Clear the option to use the text editor included with the IDE.

Enter in the Launch Editor and Launch Editor w/ Line # fields command-line
expressions that specify information that the IDE passes to the third-party editor.

Consult the documentation provided with the third-party text editor for more information
about using command lines.

See also:

• Launch Editor

• Launch Editor w/ Line #

Use ToolServer menu
Select the Use ToolServer menu option to display the ToolServer menu in the IDE menu
bar. Clear the option to remove the ToolServer menu from the menu bar.

User Paths
Click this radio button to display the User Paths pane in the Access Paths preference
panel.

User Specified
Select the User Specified option to stipulate the number of concurrent compiles to allow
in the IDE. Enter the desired number in the text box beside the option.

NOTE The IDE accommodates a maximum of 1024 concurrent compiles. However,
there is a point where the host system becomes compute-bound, and allowing
more processes only adds overhead. For a single-processor system, the
practical limit is approximately 12 concurrent compiles.

V

Value
The Value text box defines the value of the variable defined in the Variable text box that
will be passed to a host application when control is transferred to it by the IDE.
450 IDE 5.7 User’s Guide

Preference and Target Settings Options
Variable
The Variable text box defines the name of a variable to be passed to a host application
when control is transferred to it by the IDE.

Variable values change
Use the Variable values change option to configure the color of changed variables that
appear in debugger windows. Click the color swatch to change the current color.

VCS Commands
Select the VCS Commands option to add VCS menu commands to contextual menus.
Clear the option to remove the commands from the contextual menus.

Refer to the documentation that came with the version control system to learn about using
it with the CodeWarrior IDE.

W-Z

Watchpoint indicator
Use the Watchpoint indicator option to configure the color of watchpoints that appear in
debugger windows. Click the color swatch to change the current color.

Window follows insertion point
Select this option to have the Code Completion window follow the insertion point as you
edit text in the active editor window. Clear the option to leave the Code Completion
window in place.

Window position and size
Select the Window position and size option to remember the location and dimensions of
each editor window. Clear the option to open each editor window according to default
settings.

NOTE The IDE must be able to write to the file in order to remember window position
and size.
451IDE 5.7 User’s Guide

Preference and Target Settings Options
Working Directory
Enter the path to the default directory to which the current project has access. Debugging
occurs in this location. If this field is blank, debugging occurs in the same directory as the
executable file.

Workspaces
Enter the number of recent workspace files to display in the Open Recent submenu.

Zoom windows to full screen
Use the Zoom windows to full screen option to configure the behavior of the zoom box in
the upper right-hand corner of all editor windows:

• Select the option to have the IDE resize a zoomed window to fill the entire screen.

• Clear the option to have the IDE resize a zoomed window to its default size.
452 IDE 5.7 User’s Guide

30
Register Details Window
XML Specification

The CodeWarrior Register Details window provides online documentation about
hardware registers up to 32 bits in length. This documentation helps programmers better
understand the register and its constituent parts. Furthermore, the Register Details window
can dynamically update its information to reflect changes in register state or changes in
bitfield values.

The Register Details window documentation can include bitfield descriptions, descriptions
that change based on certain conditions, and explanations of bitfield values. The same
window handles both system registers and memory-mapped registers.

CodeWarrior parses XML files with specific tags to display the appropriate information in
the window. This chapter describes the XML format understood by the Register Details
window.

• Register Details Window XML Specification

• Accessing the XML Files from CodeWarrior

• A Sample XML File

• References

Register Details Window XML Specification
XML consists of elements, which are similar to tags in Hypertext Markup Language
(HTML). Each element contains attributes that give detailed information about the
element structure. Some elements are required and some are optional.

As is the case with HTML, XML elements include tags that mark the beginning and end of
the element, such as <ELEM> and </ELEM>. An alternate construct allows <ELEM> and
</> to mark the beginning and end of the element, respectively.

Attributes can include numeric values, which you may enter in a variety of formats (Table
30.1). The table shows sample values for each format. The table also describes additional
requirements for valid values that the Register Details window can understand. For
example, valid character values must be enclosed in single-quote marks, like this: 'c'
453IDE 5.7 User’s Guide

Register Details Window XML Specification
Register Details Window XML Specification
Every XML file created for use with the Register Details window must conform to the
specification shown in Listing 30.1. The specification defines the following types of
elements:

• REGISTER

• BITFIELD

• BFVALUE

Descriptions of these elements follow the specification.

Listing 30.1 Register Details Window XML Specification

<!DOCTYPE REGISTER [
<!ELEMENT REGISTER (BITFIELD+)>
<!ATTLIST REGISTER

NAME CDATA #REQUIRED
BITRANGE CDATA #REQUIRED
RESETVALUE CDATA #IMPLIED
ADDRESS CDATA #IMPLIED
DESCRIPTION CDATA #IMPLIED>

<!ELEMENT BITFIELD (BFVALUE*)>
<!ATTLIST BITFIELD

NAME CDATA #REQUIRED
BITRANGE CDATA #REQUIRED
FORMAT

(binary|b|hex|h|decimal|d|unsigned|u|character|c
|value|v) "binary"

ACCESS (read|r|write|w|readwrite|rw|reserved)
"readwrite"

CONDITION CDATA #IMPLIED
DESCRIPTION CDATA #IMPLIED>

Table 30.1 Numeric Attribute Value Formats

Value Format Sample Values Requirements

Decimal 123 and -334

Hexadecimal 0x12 and 0X12 Preceded by 0x or 0X

Octal 012 Preceded by 0

Binary 0b11001 and 0B11 Preceded by 0b or 0B

Character 'c' and 'XYZ' Enclosed in ''
454 IDE 5.7 User’s Guide

Register Details Window XML Specification
Register Details Window XML Specification
<!ELEMENT BFVALUE EMPTY>
<!ATTLIST BFVALUE

VALUE CDATA #REQUIRED
DESCRIPTION CDATA #REQUIRED>

]>

REGISTER

The REGISTER element describes the name, bitrange, reset value, address, and general
description of the register. The italicized portions of the format are placeholders that
indicate where you must supply additional information. The remainder of this section
describes each REGISTER attribute.

Element Format

<REGISTER
NAME = "RegisterName"
BITRANGE = "MSB:LSB|BitNumber"
RESETVALUE = "0x11223344"
ADDRESS = "0x10000+4"
DESCRIPTION = "RegisterDescription">
</REGISTER>

Attributes

NAME

This attribute specifies the register name. If the element does not include an
ADDRESS attribute, CodeWarrior matches XML files based on the NAME attribute,
and the register is assumed to be registered with the IDE under the NAME attribute.
If the element includes an ADDRESS attribute, the register is assumed to be
memory mapped, and the debugger evaluates the ADDRESS attribute to find the
address of the register, using the information in the NAME attribute for display
purposes only.

This attribute is a required part of the REGISTER element.

You must enter a NAME attribute in the form

String

where String represents the name of the register.

BITRANGE

This attribute defines the register bitrange. If the bitrange is a single bit, enter the
bit number. If the bitrange is longer than a single bit, enter the range separated by a
455IDE 5.7 User’s Guide

Register Details Window XML Specification
Register Details Window XML Specification
colon. For example, enter 0:6 to specify a range from 0 to 6. The bit ordering can
be in any order, such as 0:31 or 31:0. This flexibility lets you accommodate
varying product documentation, where bit ordering is sometimes reversed.
However, after specifying a particular bit order, each subsequent bitrange attribute
in the BITFIELD element must follow the same order.

This attribute is a required part of the REGISTER element.

You must enter a BITRANGE attribute in the form

MSB:LSB

or

BitNumber

where MSB:LSB refers to the range between the most-significant bit and the least-
significant bit, and BitNumber refers to the single bit that represents the bitrange.

RESETVALUE

This attribute allows you to specify the register reset value.

This attribute is an optional part of the REGISTER element.

You must enter a RESETVALUE attribute in the form

Value

where Value represents the reset value of the register. Refer to Table 30.1 on
page 454 for more information about valid values.

ADDRESS

This attribute lets you specify that the register is a memory-mapped register. The
CodeWarrior expression evaluator determines the value of the attribute by
evaluating the following items:

• mathematical operations

• boolean operations such as AND, OR, NOT, and XOR

• the values of registers whose names begin with a dollar sign ($)

• variables included in the generated symbolics file for the project

This attribute is an optional part of the REGISTER element.

You must enter a RESETVALUE attribute in the form

String

where String represents the name of the register.

DESCRIPTION

This attribute lets you provide a description for the register. This description can be
of arbitrary length. The Description field in the Register Details window includes
scrollbars, allowing you to view the entire description within the window.
456 IDE 5.7 User’s Guide

Register Details Window XML Specification
Register Details Window XML Specification
This attribute is an optional part of the REGISTER element.

You must enter a DESCRIPTION attribute in the form

String

where String represents the description of the register.

BITFIELD

The BITFIELD element describes the name, bitrange, format, access, condition, and
general description of individual bitfields within the register. The italicized portions of the
format are placeholders that indicate where you must supply additional information. The
remainder of this section describes each BITFIELD attribute in detail.

NOTE If you choose not to describe the register bitfields, or if the register does not
have bitfields that require individual descriptions, you can leave the
BITFIELD element empty in the XML file.

Element Format

<BITFIELD
NAME = "BitfieldName"
BITRANGE = "(MSB:LSB|Number)"
FORMAT = "BitfieldFormat"
ACCESS = "AccessFormat"
CONDITION = "Expression"
DESCRIPTION = "BitfieldDescription">
</BITFIELD>

Attributes

NAME

This attribute specifies the bitfield name.

This attribute is a required part of the BITFIELD element.

You must enter a NAME attribute in the form

String

where String represents the name of the bitfield.

BITRANGE

This attribute defines the bitfield range. If the bitrange is a single bit, enter the bit
number. If the bitrange is longer than a single bit, enter the range separated by a
colon. For example, enter 0:6 to specify a range from 0 to 6. The bit ordering must
457IDE 5.7 User’s Guide

Register Details Window XML Specification
Register Details Window XML Specification
follow the order you specified in the BITRANGE attribute of the REGISTER
element. See BITRANGE for more information.

This attribute is a required part of the BITFIELD element.

You must enter a BITRANGE attribute in the form

MSB:LSB

or

BitNumber

where MSB:LSB refers to the range between the most-significant bit and the least-
significant bit, and BitNumber refers to the single bit that represents the bitrange.

FORMAT

This attribute determines the default format of the register values displayed in the
Register Details window. You can enter one of the following formats for this
attribute:

• binary or b

• hex or h

• decimal or d

• unsigned or u

• character or c

• value or v

If you omit this attribute, CodeWarrior assumes a default binary format. If you
choose the value format, the bitfield appears as the text description value, or
else appears in binary format when no description is provided for the specified
bitfield value.

This attribute is an optional part of the BITFIELD element.

You must enter a FORMAT attribute in the form

FullName

or

abbr

where FullName represents the full name of the format and abbr represents the
abbreviation of that format.

ACCESS

This attribute lets you specify the bitfield access permissions. You can enter one of
the following permissions for this attribute:

• read or r

• write or w
458 IDE 5.7 User’s Guide

Register Details Window XML Specification
Register Details Window XML Specification
• readwrite or rw

• reserved or ""

If you omit this attribute, CodeWarrior assumes a default readwrite access
permission.

This attribute is an optional part of the BITFIELD element.

You must enter an ACCESS attribute in the form

FullName

or

abbr

where FullName represents the full name of the format and abbr represents the
abbreviation of that format.

CONDITION

This attribute lets you provide a particular description for a bitfield, depending on
whether a condition you specify is met. You specify a conditional Expression
for the bitfield using the CONDITION attribute. CodeWarrior evaluates the
expression, and if the expression is true, assumes that the bitfield attribute is valid.

This capability is useful for providing different descriptions for the same bitfield,
based on the value of the Expression. For example, you can create two bitfield
entries for the same register bit. Each bitfield entry has a distinct CONDITION
attribute, allowing CodeWarrior to choose the appropriate BITFIELD element to
display in the Register Details window.

This attribute is an optional part of the BITFIELD element.

You must enter a CONDITION attribute in the form

Expression

where Expression represents the condition that CodeWarrior must evaluate
(Table 30.2). The expression can refer to other registers by adding a dollar sign ($)
to the beginning of each register name. The expression can also refer to the current
register value by entering two dollar signs ($$) in the Expression. The Register
Details window replaces these dollar signs with the current register value. The
CodeWarrior expression evaluator also accepts local and global variables in the
Expression.
459IDE 5.7 User’s Guide

Register Details Window XML Specification
Register Details Window XML Specification
DESCRIPTION

This attribute lets you provide a description for the bitfield. This description can be
of arbitrary length. The Description field in the Register Details window includes
scrollbars, allowing you to view the entire description within the window.

This attribute is an optional part of the BITFIELD element.

You must enter a DESCRIPTION attribute in the form

String

where String represents the bitfield description.

BFVALUE

The BFVALUE element lets you explain the individual values of a bitfield described by the
DESCRIPTION attribute in the BITFIELD element. The italicized portions of the format
are placeholders that indicate where you must supply additional information. The
remainder of this section describes each BFVALUE attribute.

NOTE If you choose not to describe individual bitfield values, or if the bitfields do not
require individual descriptions, you can leave the BFVALUE element empty in
the XML file.

Element Format

<BFVALUE
VALUE = "BitfieldValue"

Table 30.2 Sample Expressions for CONDITION Attribute

Expression Explanation

CONDITION = "$$&0x80" The current register value
ANDed with 0x80

CONDITION = "!($$&0x80)" The inversion of the current
register value ANDed with 0x80

CONDITION = "$MSR&0x8000" Another register value (the MSR
register) ANDed with 0x8000

CONDITION = "foo&0x10 >= 0" An expression using a variable
named foo
460 IDE 5.7 User’s Guide

Register Details Window XML Specification
Accessing the XML Files from CodeWarrior
DESCRIPTION = "BitfieldValueDescription">
</BFVALUE>

Attributes

VALUE

This attribute specifies the value of the bitfield to be described by the
DESCRIPTION attribute.

This attribute is a required part of the BFVALUE element.

You must enter a VALUE attribute in one of the following forms:

• decimal

• unsigned decimal

• hexadecimal (the value must begin with 0x or 0X)

• octal (the value must begin with 0)

• binary (the value must begin with 0b or 0B)

• character (enclosed in single quote marks, like this: 'c')

DESCRIPTION

This attribute lets you provide a description of the bitfield value specified by the
VALUE attribute.

This attribute is a required part of the BFVALUE element.

You must enter a DESCRIPTION attribute in the form

String

where String represents the bitfield value description.

Accessing the XML Files from CodeWarrior
The CodeWarrior Register Details window searches a specific folder for relevant files.
You must place XML Register Details window files within the Registers folder in
your CodeWarrior installation.

Windows

If necessary, create the Registers folder at the following location:

CodeWarrior\Bin\Plugins\Support\Registers

Mac OS

If necessary, create the Registers folder at the following location:
461IDE 5.7 User’s Guide

Register Details Window XML Specification
A Sample XML File
Metrowerks CodeWarrior:CodeWarrior Plugins:Support:Registers

IDE plugins can provide access paths to the IDE to better control the placement of XML
files within the Registers folder. For example, you can create sub-folders within the
Registers folder for specific processors or processor variations and use the plugin
access paths to search those sub-folders. These access paths are relative to the
Registers folder.

The IDE looks up system registers by name. Memory-mapped registers can have any
name, since that name is used for display purposes only.

A Sample XML File
This section provides examples of creating XML file for use with the Register Details
window.

• Creating the New XML File

• Adding Multiple BITFIELD Attributes

• Adding BFVALUE Attributes

• Completing the New XML File

Creating the New XML File
When you create a new file, you usually follow these high-level steps:

1. Locate a base XML file.

Instead of creating a completely new XML file, you can adapt an existing XML file for
use with the register you wish to document. For example, you can locate a simple,
generic XML file and modify it to describe more sophisticated registers.

Listing 30.2 shows a sample base XML file that you can easily adapt to explain
complex registers. Note that this generic base file lacks multiple bitfield attributes,
conditional expressions, or individual bitfield value attributes.

Listing 30.2 Sample Base XML File

<REGISTER NAME="BAR"

BITRANGE="0:31"
DESCRIPTION="Breakpoint Address Register">

<BITFIELD BITRANGE="0:31"
DESCRIPTION="The address of the load/store cycle that generates

the breakpoint.">
</BITFIELD>
462 IDE 5.7 User’s Guide

Register Details Window XML Specification
A Sample XML File
</REGISTER>

2. Save the base XML file under a new name.

Use CodeWarrior to save a copy of the base XML file under a new name, and work
with this newly named file for the remainder of the process. This step prevents you
from accidentally modifying the original XML file.

3. Modify the base XML file to suit your needs.

After opening your copy of the base XML file, you can adapt the file to accurately
document complicated register properties. For example, you can add multiple
BITFIELD attributes, BFVALUE attributes, and conditional expressions to the base
XML file. The resulting file accurately and thoroughly describes the register. Such a
file appears in Listing 30.5.

Adding Multiple BITFIELD Attributes
Multiple BITFIELD attributes divide the register into smaller ranges of bits, or
“bitfields.” Such bitfields can have various meanings depending on the register. For
example, one bitfield of a register could refer to condition flag information, while another
bitfield in the same register could refer to current state information.

Suppose you wish to document a “Memory Controller Base 2” register that contains
twelve bitfields. Each bitfield has its own name and description.

Using the sample base XML file of Listing 30.2, you could begin adapting the file to your
needs by adding eleven additional BITFIELD elements. Following the element formats
described in the Register Details Window XML Specification, your first revision of the
base file might appear as shown in Listing 30.3.

Listing 30.3 First Revision of Base XML File

<REGISTER NAME="BR2"

BITRANGE="0:31"
DESCRIPTION="Memory Controller Base Register 2.">

<BITFIELD BITRANGE="0:16"
NAME="BA"
DESCRIPTION="Place the BA bitfield description here.">
</BITFIELD>

<BITFIELD BITRANGE="17:19"
NAME="AT"
DESCRIPTION="Place the AT bitfield desciption here.">
</BITFIELD>
463IDE 5.7 User’s Guide

Register Details Window XML Specification
A Sample XML File
<BITFIELD BITRANGE="20:21"
NAME="PS"
DESCRIPTION="Place the PS bitfield desciption here.">

</BITFIELD>

<BITFIELD BITRANGE="22"
NAME="-"
DESCRIPTION="Make a note that this bitfield is reserved.">

</BITFIELD>

<BITFIELD BITRANGE="23"
NAME="WP"
DESCRIPTION="Place the AT bitfield desciption here.">

</BITFIELD>

<BITFIELD BITRANGE="24:25"
NAME="-"
DESCRIPTION="Make a note that this bitfield is reserved.">

</BITFIELD>

<BITFIELD BITRANGE="26"
NAME="WEBS"
DESCRIPTION="Place the WEBS bitfield desciption here.">

</BITFIELD>

<BITFIELD BITRANGE="27"
NAME="TBDIP"
DESCRIPTION="Place the TBDIP bitfield desciption here.">

</BITFIELD>

<BITFIELD BITRANGE="28"
NAME="LBDIP"
DESCRIPTION="Place the LBDIP bitfield desciption here.">

</BITFIELD>

<BITFIELD BITRANGE="29"
NAME="SETA"
DESCRIPTION="Place the SETA bitfield desciption here.">

</BITFIELD>

<BITFIELD BITRANGE="30"
NAME="BI"
DESCRIPTION="Place the BI bitfield desciption here.">

</BITFIELD>

< <BITFIELD BITRANGE="31"
NAME="V"
464 IDE 5.7 User’s Guide

Register Details Window XML Specification
A Sample XML File
DESCRIPTION="Place the V bitfield desciption here.">
</BITFIELD>

/REGISTER>

Adding BFVALUE Attributes
The values in an individual bitfield can describe different things about a register. For
example, a bitfield value of 00 might indicate that a certain process is used, while a bitfield
value of 01 might indicate that the same process is not used.

To cater your descriptions to accurately reflect such changes in behavior, you can use
multiple BFVALUE attributes within a BITFIELD element. Each BFVALUE provides a
specific description based on the bitfield value. CodeWarrior determines the applicable
description to display in the Register Details window.

Using the example discussed in previous sections, assume that six of the bitfields in the
“Memory Controller Base Register 2” could benefit from the use of BFVALUE attributes.

Following the element formats described in the Register Details Window XML
Specification, your second revision of the base file might resemble Listing 30.4.

Listing 30.4 Second Revision of XML Base File

<REGISTER NAME="BR2"

BITRANGE="0:31"
DESCRIPTION="Memory Controller Base Register 2.">

<BITFIELD BITRANGE="0:16"
NAME="BA"
DESCRIPTION="Place the BA bitfield description here.">
</BITFIELD>

<BITFIELD BITRANGE="17:19"
NAME="AT"
DESCRIPTION="Place the AT bitfield desciption here.">
</BITFIELD>

<BITFIELD BITRANGE="20:21"
NAME="PS"
DESCRIPTION="Place the PS bitfield desciption here.">

<BFVALUE VALUE="00" DESCRIPTION="Place the description of the
bitfield value of 00 here." />

<BFVALUE VALUE="01" DESCRIPTION="Place the description of the
bitfield value of 01 here." />
465IDE 5.7 User’s Guide

Register Details Window XML Specification
A Sample XML File
<BFVALUE VALUE="10" DESCRIPTION="Place the description of the
bitfield value of 10 here." />

<BFVALUE VALUE="11" DESCRIPTION="Place the description of the
bitfield value of 11 here." />

</BITFIELD>

<BITFIELD BITRANGE="22"
NAME="-"
DESCRIPTION="Make a note that this bitfield is reserved.">

</BITFIELD>

<BITFIELD BITRANGE="23"
NAME="WP"
DESCRIPTION="Place the AT bitfield desciption here.">

<BFVALUE VALUE="0" DESCRIPTION="Place the description of the
bitfield value of 0 here." />

<BFVALUE VALUE="1" DESCRIPTION="Place the description of the
bitfield value of 1 here." />

</BITFIELD>

<BITFIELD BITRANGE="24:25"
NAME="-"
DESCRIPTION="Make a note that this bitfield is reserved.">

</BITFIELD>

<BITFIELD BITRANGE="26"
NAME="WEBS"
DESCRIPTION="Place the WEBS bitfield desciption here.">

<BFVALUE VALUE="0" DESCRIPTION="Place the description of the
bitfield value of 0 here." />

<BFVALUE VALUE="1" DESCRIPTION="Place the description of the
bitfield value of 1 here." />

</BITFIELD>

<BITFIELD BITRANGE="27"
NAME="TBDIP"
DESCRIPTION="Place the TBDIP bitfield desciption here.">

</BITFIELD>

<BITFIELD BITRANGE="28"
NAME="LBDIP"
DESCRIPTION="Place the LBDIP bitfield desciption here.">

<BFVALUE VALUE="0" DESCRIPTION="Place the description of the
bitfield value of 0 here." />

<BFVALUE VALUE="1" DESCRIPTION="Place the description of the
bitfield value of 1 here." />

</BITFIELD>
466 IDE 5.7 User’s Guide

Register Details Window XML Specification
A Sample XML File
<BITFIELD BITRANGE="29"
NAME="SETA"
DESCRIPTION="Place the SETA bitfield desciption here.">

<BFVALUE VALUE="0" DESCRIPTION="Place the description of the
bitfield value of 0 here." />

<BFVALUE VALUE="1" DESCRIPTION="Place the description of the
bitfield value of 1 here." />

</BITFIELD>

<BITFIELD BITRANGE="30"
NAME="BI"
DESCRIPTION="Place the BI bitfield desciption here.">

<BFVALUE VALUE="0" DESCRIPTION="Place the description of the
bitfield value of 0 here." />

<BFVALUE VALUE="1" DESCRIPTION="Place the description of the
bitfield value of 1 here." />

</BITFIELD>

< <BITFIELD BITRANGE="31"
NAME="V"
DESCRIPTION="Place the V bitfield desciption here.">
</BITFIELD>

/REGISTER>

Completing the New XML File
Adding multiple BITFIELD attributes and the BFVALUE attributes further refines the
XML file register description. The final revision of an XML file involves completing the
descriptions for each attribute.

Refining the example of previous sections, Listing 30.5 shows the final XML file. To use
this new file with the Register Details window, place the file in the Registers folder.
For more information about this folder, refer to Accessing the XML Files from
CodeWarrior.

Listing 30.5 Sophisticated XML File

<REGISTER NAME="BR2"

BITRANGE="0:31"
DESCRIPTION="Memory Controller Base Register 2.">

<BITFIELD
BITRANGE="0:16"
NAME="BA"
467IDE 5.7 User’s Guide

Register Details Window XML Specification
A Sample XML File
DESCRIPTION="Base Address. These bits are compared to the
corresponding unmasked address signals among ADDR[0:16] to determine
if a memory bank controlled by the memory controller is being accessed
by an internal bus master. (The address types are also compared.)
These bits are used in conjunction with the A<[0:16] bits in the OR">

</BITFIELD>

<BITFIELD
BITRANGE="17:19"
NAME="AT"
DESCRIPTION="Address type. This field can be used to require

accesses of the memory bank to be limited to a certain address space
type. These bits are used in conjunction with ATM bits in the OR.">

</BITFIELD>

<BITFIELD
BITRANGE="20:21"
NAME="PS"
DESCRIPTION="Port size.">

<BFVALUE VALUE="00" DESCRIPTION="32-bit port" />
<BFVALUE VALUE="01" DESCRIPTION="8-bit port" />
<BFVALUE VALUE="10" DESCRIPTION="16-bit port" />
<BFVALUE VALUE="11" DESCRIPTION="Reserved" />

</BITFIELD>

<BITFIELD
BITRANGE="22"
NAME="-"
DESCRIPTION="Reserved.">

</BITFIELD>

<BITFIELD
BITRANGE="23"
NAME="WP"
DESCRIPTION="Write protect. An attempt to write to the range of

addresses specified in a base address register that has this bit set
can cause the TEA signal to be asserted by the bus-monitor logic (if
enabled) causing termination of this cycle.">

<BFVALUE VALUE="0" DESCRIPTION="Both read and write accesses
are allowed" />

<BFVALUE VALUE="1" DESCRIPTION="Only read accesses are
allowed. The CSx signal and TA are not asserted by the memory
controller on write cycles to this memory bank. WPER is set in the
MSTAT register if a write to this memory bank is attempted." />

</BITFIELD>
468 IDE 5.7 User’s Guide

Register Details Window XML Specification
A Sample XML File
<BITFIELD
BITRANGE="24:25"
NAME="-"
DESCRIPTION="Reserved">
</BITFIELD>

<BITFIELD
BITRANGE="26"
NAME="WEBS"
DESCRIPTION="Write-enable/byte select. This bit controls the

functionality of the WE/BE pads.">
<BFVALUE VALUE="0" DESCRIPTION="The WE/BE pads operate as WE"

/>
<BFVALUE VALUE="1" DESCRIPTION="The WE/BE pads operate as BE"

/>
</BITFIELD>

<BITFIELD
BITRANGE="27"
NAME="TBDIP"
DESCRIPTION="Toggle-burst data in progress. TBDIP determines how

long the BDIP strobe will be asserted for each data beat in the burst
of cycles.">

</BITFIELD>

<BITFIELD
BITRANGE="28"
NAME="LBDIP"
DESCRIPTION="Late-burst-data-in-progress (LBDIP). This bit

determines the timing of the first assertion of the BDIP pin in burst
cycles. Note: It is not allowed to set both LBDIP and TBDIP bits in a
region's base registers; the behavior of the design in such cases is
unpredictable.">

<BFVALUE VALUE="0" DESCRIPTION="Normal timing for BDIP
assertion (assesrts one clock after negation of TS" />

<BFVALUE VALUE="1" DESCRIPTION="Late timing for BDIP
assertion (asserts after the programmed number of wait states" />

</BITFIELD>

<BITFIELD
BITRANGE="29"
NAME="SETA"
DESCRIPTION="External transfer acknowledge.">

<BFVALUE VALUE="0" DESCRIPTION="TA generated internally by
memory controller" />

<BFVALUE VALUE="1" DESCRIPTION="TA generated by external
logic. Note that programming the timing of CS/WE OE strobes may have
no meaning if this bit is set." />
469IDE 5.7 User’s Guide

Register Details Window XML Specification
References
</BITFIELD>

<BITFIELD
BITRANGE="30"
NAME="BI"
DESCRIPTION="Burst inhibit. Note: Following a system reset, the BI

bit is set in OR0.">
<BFVALUE VALUE="0" DESCRIPTION="Memory controller drives BI

negated (high). The bank supports burst accesses." />
<BFVALUE VALUE="1" DESCRIPTION="Memory controller drives BI

asserted (low). The bank does not support burst accesses." />
</BITFIELD>

<BITFIELD
BITRANGE="31"
NAME="V"
DESCRIPTION="Valid bit. When set, this bit indicates that the

contents of the base-register and option-register pair are valid. The
CSignal does not assert until the V-bit is set. Note that an access to
a region that has no V-bit set may cause a bus monitor timeout. Note
also that following a system reset, the V-bit in BR0 reflects the
value of ID3 in the reset configuration word.">

</BITFIELD>

</REGISTER>

References
For more information about XML, consult these references:

• XML: A Primer, by Simon St. Laurent, published by IDG Books Worldwide, Inc.

• Presenting XML, by Richard Light, published by Macmillan Computer Publishing.

• The XML Companion, by Neil Bradley, published by Addison-Wesley.
470 IDE 5.7 User’s Guide

VIII

Menus

This section contains these chapters:

• IDE Menus

• Menu Commands
471IDE 5.7 User’s Guide

472 IDE 5.7 User’s Guide

31
IDE Menus

This chapter is an overview of CodeWarrior™ IDE menus and their commands. The IDE
provides two different arrangements of IDE menus, configurable in the IDE Extras
preference panel:

• Windows menu layout

• Macintosh menu layout

This chapter lists the IDE menus under each menu layout. For each menu, a table shows
this information:

• Menu command—the name of each command in the menu.

• Description—a short description of each command.

This chapter has these sections:

• Windows Menu Layout

• Macintosh Menu Layout

Windows Menu Layout
This section provides an overview of the menus and menu commands available in the
Windows menu layout.

File Menu
The File menu contains commands for opening, creating, saving, closing, and printing
source files and projects. The File menu also provides different methods for saving edited
files. Table 31.1 explains the commands of this menu.

Table 31.1 File Menu Commands

Menu command Explanation

New Creates new projects using the New Project wizard or
project stationery files.

Open Opens source and project files for editing and project
modification operations.
473IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Find and Open File Opens the file specified in the Find and Open File dialog or
from the selected text in the active window.

When using the Windows menu layout on a Macintosh
host, hold down the Option key to change this command to
Find.

Close Closes the active window.

Save Saves the active file using the editor window’s filename.

When using the Windows menu layout on a Macintosh
host, hold down the Option key to change this command to
Save All.

Save All Saves all open editor windows.

When using the Windows menu layout on a Macintosh
host, hold down the Option key to substitute this command
for the Save command.

Save As Saves a copy of the active file under a new name and
closes the original file.

Save A Copy As Saves a copy of the active file without closing the file.

Revert Discards all changes made to the active file since the last
save operation.

Open Workspace Opens a workspace that you previously saved.

Close Workspace Closes the current workspace. (You cannot close the
default workspace.)

Save Workspace Saves the current state of onscreen windows, recent items,
and debugging.

Save Workspace As Saves an existing workspace under a different name.

Import Components Imports the components from another catalog into the
current catalog.

Close Catalog Closes the current catalog and its associated Catalog
Components window and Component Palette.

Import Project Imports a project file previously saved in extensible markup
language format (XML) and converts it into project file
format.

Table 31.1 File Menu Commands (continued)

Menu command Explanation
474 IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Edit Menu
The Edit menu contains all customary editing commands, along with some CodeWarrior
additions. This menu also includes commands that open the Preferences and Target
Settings windows. Table 31.2 explains the commands of this menu.

Export Project Exports the active project file to disk in extensible markup
language (XML) format.

Page Setup Displays the Page Setup dialog for setting paper size,
orientation, and other printer options.

Print Displays the Print dialog for printing active files, and the
contents of Project, Message, and Errors & Warning
window contents.

Open Recent Displays a submenu of recently opened files and projects
that can be opened in the IDE.

Exit Quits the CodeWarrior IDE.

When using the Windows menu layout on a Macintosh
host, this command does not appear. Instead, use the Quit
or Quit CodeWarrior command in the File menu or the Quit or
Quit CodeWarrior command in the CodeWarrior menu.

Table 31.2 Edit Menu Commands

Menu command Explanation

Undo Undoes the last cut, paste, clear, or typing operation.

If you cannot undo the action, this command changes to
Can’t Undo.

Redo Redoes the action of the last Undo operation.

If you cannot redo the action, this command changes to
Can’t Redo.

Cut Removes the selected text and places a copy of it on the
Clipboard.

Copy Copies the selected text and places a copy of it on the
Clipboard.

Table 31.1 File Menu Commands (continued)

Menu command Explanation
475IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Paste Places the contents of the Clipboard at current insertion
point or replaces the selected text.

Delete Removes the selected text without placing a copy on the
Clipboard.

When using the Windows menu layout on a Macintosh
host, this command does not appear. Instead, use the
Clear command.

Select All Selects all text in current editor window or text box for cut,
copy, paste, clear, or typing operations.

Balance Selects text between the nearest set of parenthesis,
braces, or brackets.

Shift Left Moves selected text one tab stop to the left.

Shift Right Moves selected text one tab stop to the right.

Get Previous Completion Shortcut for selecting the previous item that appears in
the Code Completion window.

Get Next Completion Shortcut for selecting the next item that appears in the
Code Completion window.

Complete Code Opens the Code Completion window.

Preferences Opens the IDE Preferences window where you can set
general IDE, editor, debugger, and layout options.

Target Settings

(the name changes, based
on the name of the active
build target)

Opens the project’s Target Settings window where you
can set target, language, code generation, linker, editor,
and debugger options.

Version Control Settings Opens the VCS Settings window to enable activation of a
version control system and its relevant settings.

Commands & Key
Bindings

Opens the Customize IDE Commands window where you
can create, modify, remove menus, menu commands,
and key bindings.

Table 31.2 Edit Menu Commands (continued)

Menu command Explanation
476 IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
View Menu
The View menu contains commands for viewing toolbars, the class browser, the Message
window, and debugging windows. Table 31.3 explains the command of this menu.

Table 31.3 View Menu Commands

Menu command Explanation

Toolbars Use the Toolbars menu to show, hide, reset, and clear
window and main toolbars.

Project Inspector Opens or brings to the front a Project Inspector window.

Browser Contents Opens or brings to the front a Browser Contents window.

Class Browser Opens or brings to the front a New Class Browser
window.

Class Hierarchy or Class
Hierarchy Window

Opens or brings to the front a Class Hierarchy window.

Build Progress or Build
Progress Window

Opens the Build Progress window.

Errors & Warnings or Errors
& Warnings Window

Opens or brings to the front an Errors & Warnings
window.

Symbolics or Symbolics
Window

Opens the Symbolics window.

Processes or Processes
Window

Opens or brings to the front a Processes window.

Breakpoints or Breakpoints
Window

Opens or brings to the front the Breakpoints window. Use
this window to view, create, modify, and remove
breakpoints.

Registers or Register
Window

Opens or brings to the front a Register window.

Expressions or
Expressions Window

Opens or brings to the front an Expressions window. Use
to view, create, modify, and remove expressions.

Global Variables or Global
Variables Window

Opens or brings to the front a Global Variables window.
477IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Search Menu
The Search menu contains commands for finding text, replacing text, comparing files,
and navigating code. Table 31.4 explains the commands of this menu.

Table 31.4 Search Menu Commands

Menu command Explanation

Find Opens the Find and Replace window for performing
searches in the active editor window.

Replace Selection Opens the Find and Replace window for replacing text in
the active editor window.

Find in Files Opens the Find in Files window for performing searches in
the active editor window.

Find Next Finds the next occurrence of the find string in the active
editor window.

When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Previous.

Find In Next File Finds the next occurrence of the find string in the next file
listed in the Find window’s File Set.

When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find In Previous File.

Enter Find String Replaces the Find text box string with the selected text.

When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Enter Replace String.

Find Selection Finds the next occurrence of the selected text in the active
editor window.

When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Previous Selection.

Replace Selection Replaces the replace string in the Replace text box with
the selected text.
478 IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Project Menu
The Project menu contains commands for manipulating files, handling libraries,
compiling projects, building projects, and linking projects. Table 31.5 explains the
commands of this menu.

Replace and Find Next Replaces the selected text with the Replace text box
string, then performs a Find Next operation.

When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Replace and Find Previous.

Replace All Finds all matches of the Find text box string and replaces
them with the Replace text box string.

Find Definition Searches for definition of the routine name selected in the
active editor window using the project’s source files.

When using the Windows menu layout on a Macintosh
host, hold down the Option key to change this command
to Find Reference.

Go Back Returns to the previous CodeWarrior browser view.

Go Forward Moves to the next CodeWarrior browser view.

Go to Line Opens the Go To Line dialog where you can specify by
line number where to position the text insertion point.

Compare Files Opens the Compare Files Setup window where you can
choose to compare folders or files and merge their
contents.

Apply Difference Adds, removes, or changes the selected text in the
destination file to match the selected text in the source
file.

Unapply Difference Reverses the modifications made to the destination file by
the Apply Difference command.

Table 31.4 Search Menu Commands (continued)

Menu command Explanation
479IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Table 31.5 Project Menu Commands

Menu command Explanation

Add Window Adds the active window to the project.

Add Files Opens a dialog box that you can use to add multiple files
to the active project.

Create Group Opens the Create Group dialog box that you can use to
add a new file group to the active project. The new file
group appears below the selected file or group.

Create Target Opens the Create Target dialog box that you can use to
add a new build target to the active project. The new build
target appears below the selected build target.

Create Overlay or Create
Segment

Opens the Create Segment/Overlay dialog box that you
can use to add a new segment or overlay to the active
project. The new segment or overlay appears below the
selected one.

Create Design Opens the Create New Design dialog box that you can use
to add a design to the active project. The new design
appears in the Design tab of the project window.

Export Project as GNU
Makefile

Exports the current project to a GNU makefile.

When using the Windows menu layout on a Macintosh
host, this command does not appear.

Check Syntax Checks the active editor window or selected files in the
project window for compilation errors.

Preprocess Preprocesses the active editor window or selected files in
the project window and displays results in a new editor
window.

Precompile Precompiles the active editor window or selected files in
the project window and stores results in a new header file.

Compile Compiles the active editor window or selected files in the
project window.

Disassemble Disassembles the active editor window or selected files in
the project window and displays results in a new editor
window.

Bring Up To Date Compiles all marked or modified files in the current build
target of the active project.
480 IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Make Compiles and links all marked or modified files in the
current build target of the active project, saving the
executable file.

Stop Build Stops the current compile and linking operation and
cancels the remainder of the build process.

Remove Object Code Removes object code from one or more build targets in the
project.

When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Remove Object Code & Compact.

Re-search for Files Resets the cached locations of source files using the
project access paths, and stores them for faster builds and
project operations.

Reset Project Entry Paths Resets the location of all source files in the active project
using the project access paths.

Synchronize Modification
Dates

Updates the modification dates of all source files in the
active project.

Debug

or

Resume

Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Run Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Set Default Project Uses the Set Default Project menu to choose the default
project when more than one project is open in the IDE.

Set Default Target Uses the Set Default Target menu to choose the default
build target when more than one build target is present in
the project file.

Table 31.5 Project Menu Commands (continued)

Menu command Explanation
481IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Debug Menu
The Debug menu contains commands for managing program execution. Table 31.6
explains the commands of this menu.

Table 31.6 Debug Menu Commands

Menu command Explanation

Break Pauses execution of the program in a debugging session
to enable examination of register and variable contents

Kill Terminates the current debugging session returning
control to the IDE.

Restart Terminates the current debugging session, then restarts
the program from the beginning.

Step Over Executes each source line in the program, treating routine
calls as a single statement and stopping the program at
the next line of code.

Step Into Executes each source line in the program, following any
subroutine calls.

Step Out Executes each source line in the subroutine and stops the
program when the routine returns to its caller.

Run to Cursor Sets a temporary breakpoint on the source line containing
the insertion point.

Change Program Counter Opens the Change Program Counter dialog box that you
can use to move the current statement arrow to an
address or symbol.

Set Breakpoint

or

Clear Breakpoint

Sets a breakpoint on the source line containing the
insertion point.

Clears the breakpoint on the source line containing the
insertion point.

Set Eventpoint Sets an eventpoint on the source line containing the
insertion point.

Clear Eventpoint Clears the breakpoint on the source line containing the
insertion point.

Set/Clear Breakpoint Opens the Set/Clear Breakpoint dialog box that you can
use for setting or clearing breakpoints by address or
symbol.
482 IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Data Menu
The Data menu contains commands that control how the CodeWarrior debugger displays
data values. This menu appears only during a debugging session. Table 31.7 explains the
commands of this menu.

Enable Breakpoint

or

Disable Breakpoint

Activates the disabled breakpoint on the source line
containing the insertion point.

De-activates the breakpoint on the source line containing
the insertion point.

Clear All Breakpoints Clears all breakpoints currently set in the default build
target of the active project.

Show Breakpoints

or

Hide Breakpoints

Adds a Breakpoint Column to all project editor windows
where you can set, view, or clear breakpoints.

Removes the Breakpoint Column from all project editor
windows.

Set Watchpoint

or

Clear Watchpoint

Sets a watchpoint on the source line containing the
insertion point.

Clears the watchpoint on the source line containing the
insertion point.

Enable Watchpoint

or

Disable Watchpoint

Activates the disabled watchpoint on the source line
containing the insertion point.

De-activates the watchpoint on the source line containing
the insertion point.

Clear All Watchpoints Clears all watchpoints currently set in the default build
target of the active project.

Break on C++ Exception Configures the debugger to break at __throw() each
time a C++ exception occurs.

Break on Java Exceptions Use this menu to select the Java exceptions on which the
debugger breaks.

Connect Establishes communication with an embedded device to
start a debugging session.

When using the Windows menu layout on a Macintosh
host, this command does not appear.

Table 31.6 Debug Menu Commands (continued)

Menu command Explanation
483IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Table 31.7 Data Menu Commands

Menu command Explanation

Show Types Toggles the appearance of the data type on local and
global variables displayed in Variable panes and Variable
windows.

Refresh All Data Updates data displays.

New Expression Creates a new expression entry in the Expressions
window.

Copy to Expression Copies the selected variable to the Expressions window.

View As Displays the View As dialog where the data type of the
selected variable can be specified.

View Variable Displays the selected variable in a new Variables window.

View Array Displays the selected array variable in a new Arrays
window.

View Memory Displays the selected variable in a new Memory window.

View Memory As Displays the View As dialog where the data type of the
selected variable can be specified, then shown in a new
Memory window.

Cycle View Toggles the data view among View Source, View
Disassembly, View Mixed, and View Raw Data.

View Source View data as source code.

View Disassembly View data as language disassembly.

View Mixed View data as source code and its disassembly.

View Raw Data View data without applied formatting.

View As Default Views the selected variable in the default value format.

View As Binary Views the selected variable as a binary value.

View As Signed Decimal Views the selected variable as a signed decimal value.

View As Unsigned
Decimal

Views the selected variable as an unsigned decimal value.

View As Hexadecimal Views the selected variable as a hexadecimal value.
484 IDE 5.7 User’s Guide

IDE Menus
Windows Menu Layout
Window Menu
The Window menu contains commands that manipulate IDE windows. Table 31.8
explains the commands of this menu.

The Window menu also lists the names of all open file and project windows. A checkmark
appears beside the active window; an underline indicates a modified and unsaved file.

View As Character Views the selected variable as a character value.

View As C String Views the selected variable as a C string.

View As Pascal String Views the selected variable as a Pascal string.

View As Unicode String Views the selected variable as a Unicode string.

View As Floating Point Views the selected variable as a floating point value.

View As Enumeration Views the selected variable as an enumerated value.

View As Fixed Views the selected variable as a 32-bit fixed value.

Table 31.8 Window Menu Commands

Menu command Explanation

Close Closes the active window.

When using the Windows menu layout on a Macintosh
host, hold down the Option key to change this command
to Close All.

Close All Closes all non-project windows.

When using the Windows menu layout on a Macintosh
host, hold down the Option key to substitute this
command for the Close command.

Cascade Arranges all editor windows so that only the title bar is
visible.

Tile Horizontally Tiles all editor windows horizontally on the screen so
none overlap.

Table 31.7 Data Menu Commands (continued)

Menu command Explanation
485IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Help Menu
The Help menu contains commands for accessing the IDE’s online help. Table 31.9
explains the commands of this menu.

Macintosh Menu Layout
This section provides an overview of the menus and menu commands available in the
Macintosh menu layout.

Apple Menu
The Apple menu (Mac OS 9.x.x and earlier) provides access to the CodeWarrior About
box, shows system applications, and lists additional items.

Tile Vertically Tiles all editor windows vertically on the screen so none
overlap.

Save Default Window Saves the active browser windows settings and applies it
to other browser windows as they are opened.

Table 31.9 Help Menu Commands

Menu command Explanation

CodeWarrior Help Launches a help viewer to display the online help.
Click on a link to view a specific IDE topic.

Index Launches a help viewer to display a glossary of
common terms used in the CodeWarrior help and
manuals.

Search Launches a help viewer to a page for searching the
CodeWarrior help and manuals.

Freescale CodeWarrior Website Launches a browser and automatically points you to
the web site.

About Freescale CodeWarrior Displays the CodeWarrior IDE version and build
number information.

Table 31.8 Window Menu Commands (continued)

Menu command Explanation
486 IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Select About Freescale CodeWarrior to display the IDE version and build-number
information.

When using the Macintosh menu layout on a Windows host, this menu does not appear.

CodeWarrior Menu
The CodeWarrior Menu (visible in Mac OS X only) provides access to the CodeWarrior
About box, IDE preferences, and the command that quits the IDE. Table 31.10 explains
the commands of this menu.

If you use the Macintosh menu layout on a Windows host, this menu does not appear.

File Menu
The File menu contains commands for opening, creating, saving, closing, and printing
source files and projects. The File menu also provides different methods for saving edited
files. Table 31.11 explains the commands of this menu.

Table 31.10 Apple Menu Commands

Menu command Explanation

About Freescale CodeWarrior Displays the CodeWarrior IDE version and build
number information.

Preferences Opens the IDE Preferences window where you can
set general IDE, editor, debugger, and layout
options.

Quit or Quit CodeWarrior Quits the CodeWarrior IDE.

Table 31.11 File Menu Commands

Menu command Explanation

New Text File Creates a new text file and displays it in a new editor
window.

New Creates new projects using the New Project wizard or
project stationery files.

Open Opens source and project files for editing and project
modification operations.

Open Recent Displays a submenu of recently opened files and projects
that can be chosen to open in the IDE.
487IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Find and Open File Opens the file specified in the Find and Open File dialog
or from the selected text in the active window.

Close Closes the active window.

When using the Macintosh menu layout on a Macintosh
host, hold down the Option key to change this command
to Close All.

Save Saves the active file using the editor window’s filename.

When using the Macintosh menu layout on a Macintosh
host, hold down the Option key to change this command
to Save All.

Save As Saves a copy of the active file under a new name and
closes the original file.

Save A Copy As Saves a copy of the active file without closing the file.

Revert Discards all changes made to the active file since the last
save operation.

Open Workspace Opens a workspace that you previously saved.

Close Workspace Closes the current workspace. (You cannot close the
default workspace.)

Save Workspace Saves the current state of onscreen windows, recent
items, and debugging.

Save Workspace As Saves an existing workspace under a different name.

Import Components Imports the components from another catalog into the
current catalog.

Close Catalog Closes the current catalog and its associated Catalog
Components window and Component Palette.

Import Project Imports a project file previously saved in extensible
markup language format (XML) and converts it into project
file format.

Export Project Exports the active project file to disk in XML format.

Page Setup Displays the Page Setup dialog for setting paper size,
orientation, and other printer options.

Table 31.11 File Menu Commands (continued)

Menu command Explanation
488 IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Edit Menu
The Edit menu contains all customary editing commands, along with some CodeWarrior
additions. This menu also includes the commands that open the Preferences and Target
Settings windows. Table 31.12 explains the commands of this menu.

Print Displays the Print dialog for printing active files, and the
contents of Project, Message, and Errors & Warning
window contents.

Quit or Quit CodeWarrior
(Classic Mac OS)

Quits the CodeWarrior IDE.

Table 31.12 Edit Menu Commands

Menu command Explanation

Undo Undoes the action of the last cut, paste, clear or typing
operation.

If you cannot undo the action, this command changes to
Can’t Undo.

Redo Redoes the action of the last Undo operation.

If you cannot redo the action, this command changes to
Can’t Redo.

Cut Removes the selected text and places a copy of it on the
Clipboard.

Copy Copies the selected text and places a copy of it on the
Clipboard.

Paste Places the contents of the Clipboard at current insertion
point or replaces the selected text.

Clear Removes the selected text without placing a copy on the
Clipboard.

When using the Macintosh menu layout on a Windows
host, this command does not appear. Instead, use the
Delete command.

Table 31.11 File Menu Commands (continued)

Menu command Explanation
489IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Search Menu
The Search menu contains commands for finding text, replacing text, comparing files,
navigating code, and finding routine definitions. Table 31.13 explains the commands of
this menu.

Select All Selects all text in the current editor window or text box for
cut, copy, paste, clear, or typing operations.

Balance Selects text between the nearest set of parenthesis,
braces, or brackets.

Shift Left Moves selected text one tab stop to the left.

Shift Right Moves selected text one tab stop to the right.

Get Previous Completion Shortcut for selecting the previous item that appears in
the Code Completion window.

Get Next Completion Shortcut for selecting the next item that appears in the
Code Completion window.

Complete Code Opens the Code Completion window.

Insert Reference Template Inserts a routine template corresponding to the selected
Mac OS Toolbox call in the active window.

When using the Macintosh menu layout on a Windows
host, this command does not appear.

Preferences Opens the IDE Preferences window where you can set
general IDE, editor, debugger, and layout options.

Target Settings

(name changes, based on
name of active build target)

Opens the project’s Target Settings window where you
can set target, language, linker, editor, and debugger
options.

Version Control Settings Opens the VCS Settings window to enable activation of a
version control system and its relevant settings.

Commands & Key Bindings Opens the Customize IDE Commands window where
you can create, modify, remove menus, menu
commands, and key bindings.

Table 31.12 Edit Menu Commands (continued)

Menu command Explanation
490 IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Table 31.13 Search Menu Commands

Menu command Explanation

Find and Replace Opens the Find and Replace window for performing find
and replace operations on the active editor window.

Find in Files Opens the Find in Files window for performing searches
in the active editor window.

Find Next Finds the next occurrence of the find string in the active
editor window.

When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Previous.

Find In Next File Finds the next occurrence of the find string in the next file
listed in the Find window’s File Set.

When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find In Previous File.

Enter Find String Replaces the Find text box string with the selected text.

When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Enter Replace String.

Find Selection Finds the next occurrence of the selected text in the
active editor window.

When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Previous Selection.

Replace Selection Replaces the replace string in the Replace text box with
the selected text.

Replace and Find Next Replaces the selected text with the Replace text box
string, then performs a Find Next operation.

When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Replace and Find Previous.

Replace All Finds all matches of the Find text box string and replaces
them with the Replace text box string.
491IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Project Menu
The Project menu contains commands for manipulating files, handling libraries,
compiling projects, building projects, and linking projects. Table 31.14 explains the
commands of this menu.

Find Definition Searches for the definition of the routine name selected
in the active editor window using the project’s source
files.

When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Definition & Reference.

Find Reference Searches for the definition of the routine name selected
in the active editor window using the specified online help
system.

When using the Macintosh menu layout on a Windows
host, this command does not appear.

Go Back Returns to the previous CodeWarrior browser view.

Go Forward Moves to the next CodeWarrior browser view.

Go to Line Opens the Go To Line dialog where you can specify by
line number where to position the text insertion point.

Compare Files Opens the Compare Files Setup window where you can
choose to compare folders or files and merge their
contents.

Apply Difference Adds, removes, or changes the selected text in the
destination file to match the selected text in the source
file.

Unapply Difference Reverses the modifications made to the destination file
by the Apply Difference command.

Table 31.13 Search Menu Commands (continued)

Menu command Explanation
492 IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Table 31.14 Project Menu Commands

Menu command Explanation

Add Window

(name changes, based on
name of selected item)

Adds the active window to the project.

Add Files Opens a dialog that you can use to add multiple files to
the active project.

Create Group

or

Create Target

or

Create Overlay or Create
Segment

or

Create Overlay or Create
Segment

Displays the Create Group dialog where you can add a
new file group to the active project immediately after
selected file or group.

Displays the Create Target dialog where you can add a
new build target to the active project immediately after
selected build target.

Displays the Create Overlay dialog where you can add a
new memory overlay to the active project immediately
after the selected overlay.

Displays the Create Segment dialog where you can add
a new segment to the active project immediately after
the selected segment.

Create Design Opens the Create New Design dialog box that you can
use to add a design to the active project. The new design
appears in the Design tab of the project window.

Check Syntax Checks the active editor window or selected files in the
project window for compilation errors.

Preprocess Preprocesses the active editor window or selected files
in the project window and displays results in a new editor
window.

Precompile Precompiles active editor window or selected files in
project window and stores results in a new header file.

Compile Compiles the active editor window or selected files in
project window.

Disassemble Disassembles the active editor window or selected files
in the project window and displays the results in a new
editor window.

Bring Up To Date Compiles all marked or modified files in the current build
target of the active project.
493IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Make Compiles and links all marked or modified files in the
current build target of the active project; saving the
executable file.

Stop Build Stops the current compile and link operation and cancels
the remainder of the build process.

Remove Object Code Removes the object code from one or more build targets
in the project.

When using the Macintosh menu layout on a Macintosh
host, hold down the Option key to change this command
to Remove Object Code & Compact.

Re-search for Files Resets the cached locations of source files using the
project access paths, and storing them for faster builds
and project operations.

Reset Project Entry Paths Resets the location of all source files in the active project
using the project access paths.

Synchronize Modification
Dates

Updates the modification dates of all source files in the
active project.

Debug

or

Resume

Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Run Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Set Default Project Uses the Set Default Project menu to choose the default
project when more than one project is open in the IDE.

Set Default Target Uses the Set Default Target menu to choose the default
build target when more than one build target is present in
the project file.

Table 31.14 Project Menu Commands (continued)

Menu command Explanation
494 IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Debug Menu
The Debug menu contains commands for managing program execution. Table 31.15
explains the commands of this menu.

Table 31.15 Debug Menu Commands

Menu command Explanation

Kill Terminates the current debugging session returning
control to the IDE.

Restart Terminates the current debugging session, then
restarts the program from the beginning.

Step Over Executes each source line in the program, treating
routine calls as a single statement and stopping the
program at the next line of code.

Step Into Executes each source line in the program, following
any subroutine calls.

Step Out Executes each source line in the subroutine and stops
the program when the routine returns to its caller.

Stop Pauses execution of the program in a debugging
session to enable examination of register and variable
contents.

Set Breakpoint

or

Clear Breakpoint

Sets a breakpoint on the source line containing the
insertion point.

Clears the breakpoint on the source line containing the
insertion point.

Set Eventpoint Sets an eventpoint on the source line containing the
insertion point.

Clear Eventpoint Clears the breakpoint on the source line containing the
insertion point.

Set/Clear Breakpoint Displays the Set/Clear Breakpoint dialog for setting or
clearing breakpoints by address or symbol.

Enable Breakpoint

or

Disable Breakpoint

Activates the disabled breakpoint on the source line
containing the insertion point.

De-activates the breakpoint on the source line
containing the insertion point.
495IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Clear All Breakpoints Clears all breakpoints currently set in the default build
target of the active project.

Show Breakpoints

or

Hide Breakpoints

Adds a Breakpoint Column to all project editor windows
where breakpoints can be set, viewed, and cleared.

Removes the Breakpoint Column from all project editor
windows.

Set Watchpoint

or

Clear Watchpoint

Sets a watchpoint on the source line containing the
insertion point.

Clears the watchpoint on the source line containing the
insertion point.

Enable Watchpoint

or

Disable Watchpoint

Activates the disabled watchpoint on the source line
containing the insertion point.

De-activates the watchpoint on the source line
containing the insertion point.

Clear All Watchpoints Clears all watchpoints currently set in the default build
target of the active project.

Run to Cursor Sets a temporary breakpoint on the source line
containing the insertion point.

Change Program Counter Displays the Change Program Counter dialog where
you can move the current statement arrow to an
address or symbol.

Break on C++ Exception Configures the debugger to break at __throw() each
time a C++ exception occurs.

Break on Java Exceptions Use this menu to select which Java exceptions the
debugger should break on.

Switch to Monitor Configures the IDE to use an external debugger
instead of the CodeWarrior debugger.

When using the Macintosh menu layout on a Windows
host, this command does not appear.

Table 31.15 Debug Menu Commands (continued)

Menu command Explanation
496 IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Data Menu
The Data menu contains commands that control how the CodeWarrior debugger displays
data values. This menu only appears during a debugging session. Table 31.16 explains the
commands of this menu.

Table 31.16 Data Menu Commands

Menu command Description

Show Types Toggles the appearance of the data type on local and
global variables displayed in Variable panes and
Variable windows.

Refresh All Data Updates data displays.

New Expression Creates a new expression entry in the Expressions
window.

Copy to Expression Copies the selected variable to the Expressions
window.

View As Displays the View As dialog where the data type of the
selected variable can be specified.

View Variable Displays the selected variable in a new Variables
window.

View Array Displays the selected array variable in a new Arrays
window.

View Memory Displays the selected variable in a new Memory
window.

View Memory As Displays the View As dialog where the data type of the
selected variable can be specified, then shown in a
new Memory window.

Cycle View Toggles the data view among View Source, View
Disassembly, View Mixed, and View Raw Data.

View Source View data as source code.

View Disassembly View data as disassembled.

View Mixed View data as source code and disassembled.

View Raw Data View data without applied formatting.

View As Default Views selected variable in default value format.
497IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Window Menu
The Window menu contains commands that manipulate IDE windows. This menu’s
sections are:

• window commands to stack, tile, zoom, collapse, and save window positions.

• toolbar submenu for showing, hiding, resetting, and clearing window and floating
toolbars.

• commands to open specific browser, IDE, and debugger windows.

• names of all open file and project windows.

Table 31.17 explains the commands of this menu.

The Window menu also lists the names of all open file and project windows. A checkmark
appears beside the active window; an underline indicates a modified and unsaved file.

View As Binary Views selected variable as a binary value.

View As Signed Decimal Views selected variable as a signed decimal value.

View As Unsigned Decimal Views selected variable as an unsigned decimal value.

View As Hexadecimal Views selected variable as a hexadecimal value.

View As Character Views selected variable as a character value.

View As C String Views selected variable as a C string.

View As Pascal String Views selected variable as a Pascal string.

View As Unicode String Views selected variable as a Unicode string.

View As Floating Point Views selected variable as a floating point value.

View As Enumeration Views selected variable as an enumerated value.

View As Fixed Views selected variable as a 32-bit fixed value.

View As Fract Views selected variable as a fract value.

When using the Macintosh menu layout on a Windows
host, this command does not appear.

Table 31.16 Data Menu Commands (continued)

Menu command Description
498 IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Table 31.17 Window Menu Commands

Menu command Description

Stack Editor Windows Arranges all editor windows so that only the title bar is
visible.

Tile Editor Windows Tiles all editor windows horizontally on the screen so
none overlap.

Tile Editor Windows Vertically Tiles all editor windows vertically on the screen so
none overlap.

Zoom Window Restores the active editor window to its previous size
and position.

Collapse Window

(Minimize Window)

or

Expand Window

(Maximize Window)

Collapses the active editor window so that only its title
bar is visible.

Expands the collapsed editor window to its previous
size and position.

Save Default Window Saves the current browser-window settings for later re-
use.

Toolbars Use the Toolbars submenu to show, hide, reset, and
clear window, main, and floating toolbars.

Browser Contents Opens or brings to the front a Browser Contents
window.

Class Hierarchy or Class
Hierarchy Window

Opens or brings to the front a Class Hierarchy window.

New Class Browser Opens or brings to the front a New Class Browser
window.

Build Progress or Build
Progress Window

Opens or brings to the front a Build Progress window.

Errors & Warnings or Errors
& Warnings Window

Opens or brings to the front an Errors & Warnings
window.

Project Inspector Opens or brings to the front a Project Inspector
window.
499IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
VCS Menu
The VCS (Version Control System) menu appears in the IDE’s menu bar when the Use
Version Control option is enabled. The CodeWarrior IDE can operate with many
difference version control systems including CVS, Visual SourceSafe, and others.

This icon represents the VCS menu in the Macintosh-hosted IDE
menu bar.

Refer to the documentation that came with the version control system to learn
about using it with the CodeWarrior IDE.

Tools Menu
On the Mac OS hosted IDE, the Tools menu appears in the IDE’s menu bar after you
enable the Use ToolServer menu checkbox in the IDE Extras preference panel. The Tools
menu contains commands for controlling Apple® ToolServer™ and Macintosh
Programmer’s Workbench (MPW).

Macintosh: This icon represents the Tools menu in the Macintosh-hosted IDE
menu bar.

ToolServer Worksheet Opens or brings to the front a ToolServer Worksheet
window.

When using the Macintosh menu layout on a Windows
host, this command does not appear.

Symbolics or Symbolics
Window

Opens or brings to the front a Symbolics window.

Processes or Processes
Window

Opens or brings to the front a Processes window.

Expressions or Expressions
Window

Opens or brings to the front an Expressions window.
Use to view, create, modify, and remove expressions.

Global Variables or Global
Variables Window

Opens or brings to the front a Global Variables window.

Breakpoints or Breakpoints
Window

Opens or brings to the front a Breakpoints window. Use
to view, create, modify, and remove breakpoints.

Registers or Register
Window

Opens or brings to the front a Register window.

Table 31.17 Window Menu Commands (continued)

Menu command Description
500 IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
Refer to Targeting Mac OS to learn about using ToolServer and MPW
with projects.

Scripts Menu
The Scripts menu appears in the IDE’s menu bar after you enable the Use script menu
checkbox in the IDE Extras preference panel and creates a (Scripts) folder in the
Metrowerks CodeWarrior folder of your IDE installation.

The Scripts menu uses the directory structure of the (Scripts) folder to create a
hierarchical menu. This hierarchical menu lists all scripts in the (Scripts) folder. Open
a script-editing utility or a text editor to learn more about the scripts that might already
exist in the (Scripts) folder.

Refer to the CodeWarrior Scripting Reference to learn about scripting the IDE.

Help Menu
The Help menu contains commands for accessing the IDE’s online help. Table 31.18
explains the commands of this menu.

NOTE Classic Macintosh: The Help menu contains additional menu commands for
Balloon Help and accessing Apple’s online help.

Table 31.18 Help Menu Commands

Menu command Description

CodeWarrior Help Launches a help viewer to display the online help. Click
on a link to view a specific IDE topic.

Index (Windows) Opens the online help to the Index tab.

Search (Windows) Opens the online help to the Search tab.

Freescale CodeWarrior
Website

Launches a browser and automatically points you to
the website.

About Freescale
CodeWarrior (Windows)

Displays the CodeWarrior IDE version and build
number information.
501IDE 5.7 User’s Guide

IDE Menus
Macintosh Menu Layout
502 IDE 5.7 User’s Guide

32
Menu Commands

This section presents an alphabetical listing of all available menu commands in the
CodeWarrior™ IDE. Menu commands that appear only on certain host platforms are
documented. A menu command that has no host information is available on all hosts.

Use this listing as a reference to find information about a specific menu command.

A

About Freescale CodeWarrior
This command displays the CodeWarrior IDE version and build number information.

TIP Click the Installed Products button in this window to view and save information
about installed products and plugins for the CodeWarrior IDE. You can also use
this window to enable or disable plugin diagnostics.

Add Files
The Add Files command opens a dialog which allows one or more files to be added to the
project.

Add Window
The Add Window command adds the file in the active Editor window to the open project.
The name of the menu command changes, based on the name of the active window. For
example, if the name of the active window is MyFile, the name of the menu command
changes to Add MyFile to Project.

Align
Reveals the Align submenu with component alignment commands like Right Edges,
Vertical Centers, and others.

See also:
503IDE 5.7 User’s Guide

Menu Commands
• Bottom Edges

• Horizontal Center

• Left Edges

• Right Edges

• To Grid

• Top Edges

• Vertical Center

All Exceptions
The All Exceptions command of the Java submenu tells the debugger to break every time
an exception occurs. This behavior includes exceptions thrown by the virtual machine,
your own classes, the debugger, classes in classes.zip, and so on. Java programs
throw many exceptions in the normal course of execution, so catching all exceptions
causes the debugger to break often.

Anchor Floating Toolbar
The Anchor Floating Toolbar command attaches the floating toolbar beneath the menu
bar. Once attached, the anchored toolbar can not be moved again until it is unanchored.

See also: Unanchor Floating Toolbar

Apply Difference
The Apply Difference command applies the selected difference from the source file into
the destination file.

B

Balance
The Balance command selects all text starting at the current insertion point and enclosed
in parentheses (), brackets [], or braces {},

Bottom Edges
The Bottom Edges command of the Align submenu aligns the bottom edges of the
selected components.
504 IDE 5.7 User’s Guide

Menu Commands
Break
The Break command temporarily suspends execution of the target program and returns
control to the debugger.

See also: Stop.

Break on C++ Exception
The Break on C++ Exception command tells the debugger to break at __throw() each
time a C++ exception occurs.

Break on Java Exceptions
The Break on Java Exceptions command reveals the Java Exceptions submenu.

See also:

• Exceptions in Targeted Classes

• Uncaught Exceptions Only.

Breakpoints or Breakpoints Window
These commands open the Breakpoints window.

Bring To Front
The Bring To Front command moves the selected objects so that they are displayed in
front of all other objects.

Bring Up To Date
The Bring Up To Date command updates the current build target in the active project by
compiling all of the build target’s modified and touched files.

Browser Contents
The Browser Contents command opens the Browser Contents window. This command is
not available if the Enable Browser option is not activated.

Build Progress or Build Progress Window
These commands open the Build Progress window. Use it to monitor the IDE’s status as it
compiles a project.
505IDE 5.7 User’s Guide

Menu Commands
C

Cascade
The Cascade command arranges open editor windows one on top of another, with their
window titles visible.

Change Program Counter
The Change Program Counter command opens a window that lets you move the
current-statement arrow to a particular address or symbol.

Check Syntax
The Check Syntax command checks the syntax of the source file in the active Editor
window or the selected files in the open project window. If the IDE detects one or more
errors, a Message window appears and shows information about the errors.

The Check Syntax command is not available if the active Editor window is empty or no
project file is open.

Check Syntax does not generate object code.

Table 32.1 explains how to abort the syntax-checking process:

Class Browser
The Class Browser command opens a Class Browser window. This command is
unavailable if the Enable Browser option is not enabled.

Table 32.1 Aborting Syntax Checking

On this host… Do this…

Windows Press Esc

Macintosh Press Command-. (Command-Period)

Solaris Press Esc

Linux Press Esc
506 IDE 5.7 User’s Guide

Menu Commands
Class Hierarchy or Class Hierarchy Window
These commands open a Multi-Class Browser window. This command is unavailable if
the Enable Browser option is not enabled.

Clear
The Clear command removes the selected text. This menu command is equivalent to
pressing the Backspace or Delete key.

Clear All Breakpoints
The Clear All Breakpoints command clears all breakpoints in all source files belonging
to the target program.

Clear All Watchpoints
The Clear All Watchpoints command clears all watchpoints in the current program.

Clear Breakpoint
The Clear Breakpoint command clears the breakpoint at the currently selected line. If the
Show Breakpoints option is enabled, the marker in the Breakpoints column of the Editor
window disappears.

Clear Eventpoint
This command opens a submenu that lets you remove an eventpoint from the currently
selected line. If the Show Breakpoints option is active, the Breakpoints column in the
editor windows shows a marker next to each line with an eventpoint. The marker
represents the eventpoint type.

Clear Floating Toolbar
The Clear Floating Toolbar command removes all shortcut icons from the floating
toolbar. Once the toolbar is cleared, drag shortcut icons from the Commands and Key
Bindings window to the toolbar to create a custom floating toolbar.

Clear Main Toolbar
The Clear Main Toolbar command removes all shortcut icons from the main toolbar.
Once the toolbar is cleared, drag shortcut icons from the Commands and Key Bindings
window to the toolbar to create a custom main toolbar.
507IDE 5.7 User’s Guide

Menu Commands
Clear Watchpoint
The Clear Watchpoint command removes a watchpoint from the selected variable or
memory range.

Clear Window Toolbar
The Clear Window Toolbar command removes all shortcut icons from the window
toolbar. Once the toolbar is cleared, drag shortcut icons from the Commands and Key
Bindings window to the toolbar to create a custom window toolbar.

Close
The Close command closes the active window.

Close All
The Close All command closes all open windows of a certain type. The name of this menu
command changes, based on the type of item selected. For example, select one of several
open editor windows, the menu command changes its name to Close All Editor
Documents.

NOTE Macintosh: Press the Option key to change Close to Close All.

Close Catalog
The Close Catalog command closes the current catalog and removes the catalog from the
Component Catalog window and the Component Palette.

Close Workspace
This command closes the current workspace.

You cannot close the default workspace, but you can choose whether to use it by toggling
the Use default workspace option in the IDE Extras preference panel.

Commands & Key Bindings
The Commands and Key Bindings command opens the Customize IDE Commands
window.
508 IDE 5.7 User’s Guide

Menu Commands
Complete Code
The Complete Code command opens the Code Completion window. Use this window to
help you automatically complete programming-language symbols as you type them in the
active editor window.

CodeWarrior Glossary
The CodeWarrior Glossary command opens and displays a list of vocabulary terms used
by the CodeWarrior manuals and online help.

CodeWarrior Help
This command opens the online help for the CodeWarrior IDE.

Collapse Window
The Collapse Window command collapses the active window so that only its title is
visible.

Compare Files
The Compare Files command opens the Compare Files Setup window. Use it to choose
two files or folders for comparison and merging. After choosing the items, a comparison
window appears that shows differences between the items.

Compile
The Compile command compiles selected source files into binary files. The IDE compiles
source files that are:

• part of the current project and open in the active Editor window, or

• selected files, segments, or groups in a project window.

Connect
The Connect command establishes communication between the IDE and embedded
hardware to begin a debugging session.

Copy
The Copy command copies selected text to the system Clipboard. If the Message Window
is active, the Copy command copies all text in the Message Window to the Clipboard.
509IDE 5.7 User’s Guide

Menu Commands
Copy to Expression
The Copy to Expression command copies the variable selected in the active pane to the
Expressions window.

Create Design
This command creates a new design in the current project. The new design appears in the
Design tab of the project window. You cannot create a design if each build target in the
project already belongs to a design.

Create Group
The Create Group command creates a new group in the current project. This command is
active when the Files view is visible in the project window.

Create Overlay or Create Segment
These commands create a new segment or overlay in the current project. This command is
active when the Segments view or Overlays view is visible in the project window.

Create Target
The Create Target command creates a new build target in the current project. This
command is active when the Targets view is visible in the project window.

Cut
The Cut command copies the selected text to the system Clipboard, replacing the previous
Clipboard contents, and removes it from the current document or text box.

Cycle View
Toggles view among various data formats.

See also:

• View Disassembly

• View Mixed

• View Raw Data

• View Source
510 IDE 5.7 User’s Guide

Menu Commands
D

Debug
This command compiles and links a project, then runs the CodeWarrior debugger with the
project’s code. If debugging is active, the debugging window appears to examine program
information and step through the code as it executes. If debugging is not active, the
window appears, but the program executes without stopping in the debugger.

Delete
The Delete command removes selected text without placing it on the system clipboard.
This menu command is equivalent to pressing the Backspace or Delete key.

Disable Breakpoint
The Disable Breakpoint command de-activates the breakpoint at the currently selected
line.

Disable Watchpoint
The Disable Watchpoint command de-activates a watchpoint for the selected variable or
memory range.

Disassemble
The Disassemble command disassembles the compiled source files selected in the project
window. After disassembling a file, the IDE creates a .dump file that contains the file’s
object code. The .dump file appears in a new window after the IDE completes the
disassembly process.

Display Grid
The Display Grid command toggles the visibility of grid lines in the layout window.
When checked, the grid lines appear, otherwise, no grid is visible.
511IDE 5.7 User’s Guide

Menu Commands
E

Enable Breakpoint
The Enable Breakpoint command activates a breakpoint at the currently selected line.
The breakpoint appears in the left side of the editor window if the Breakpoint column is
visible. The states of the breakpoint marker include:

• enabled breakpoint.

• disabled breakpoint.

• no breakpoint in line.

Enable Watchpoint
The Enable Watchpoint command activates a watchpoint for the selected variable or
memory range.

Enabled watchpoints are indicated by an underline of the selected variable or range of
memory. Disabled watchpoints have a grey underline. The underline’s color can be
configured in the Display Settings preference panel of the IDE Preference window.

Enter Find String
The Enter Find String command copies selected text in the active window directly into
the target search string. It will then appear in the Find text box of both the Find and
Replace and Find in Files windows. Once done, use any of the find commands to search
for matches without opening any Find-related windows.

Enter Replace String
The Enter Replace String command copies the selected text in the active window
directly into the target search string. It will then appear in the Replace with text box of
both the Find and Replace and Find in Files windows. Once done, use any of the find
commands to search for matches without opening any Find-related windows.

NOTE Macintosh: Press the Shift key to change the Enter Find String command to the
Enter Replace String menu command.
512 IDE 5.7 User’s Guide

Menu Commands
Errors & Warnings or Errors & Warnings Window
These commands open the Errors and Warnings window.

Exceptions in Targeted Classes
The Exceptions in Targeted Classes command of the Java submenu instructs the
debugger to break on exceptions thrown by your own classes in the project. Choose this
command to break on exceptions thrown by your classes, rather than exceptions that Java
programs throw in the normal course of execution.

Exit
The Exit command exits the CodeWarrior IDE immediately, provided that:

• all changes to the open editor files are already saved, or

• the open editor files are not changed.

If a Project window is open, the IDE saves all changes to the project file before exiting. If
an Editor window is open and changes are not saved, the CodeWarrior IDE asks if you
want to save your changes before exiting.

Expand Window
The Expand Window command expands a collapsed window (a window with only its
title visible). Only available when a collapsed window is currently active.

Export Project
The Export Project command exports a CodeWarrior project to a file in XML format.
The IDE prompts for a name and location to save the new XML file.

Export Project as GNU Makefile
This command exports a CodeWarrior project to a GNU makefile. The IDE displays a
message that tells you the name of the makefile and its location on the hard disk.

Expressions or Expressions Window
These commands open an Expressions window.
513IDE 5.7 User’s Guide

Menu Commands
F

Find
The Find command opens the Find and Replace window to perform find operations within
the active file.

Find Definition & Reference
The Find Definition & Reference command searches for the definition of the selected
routine name in the active Editor window. Searching starts within the source files
belonging to the open project. If the IDE does not find a definition, a system beep sounds.

If the IDE does not find the routine definition within the project files, searching continues,
using the online help system specified in the IDE Extras preference panel.

NOTE Macintosh: Press the Option key to change the Find Definition menu command
to the Find Definition & Reference menu command.

Find Definition
The Find Definition command searches for the definition of the selected routine name in
the active window. Searching occurs in the source files belonging to the open project. If
the IDE finds the definition, the source file that contains the definition appears in an Editor
window, and the routine name appears highlighted.

If the IDE finds more than one definition, a Message window appears warning of multiple
definitions. If the IDE does not find a definition, a system beep sounds.

NOTE Select the Activate Browser option in the Build Extras target settings panel
and re-compile the project in order to use the Find Definition command.

Find in Files
The Find in Files command opens the Find in Files window. This window allows you to
perform find-and-replace operations across multiple files using specified search criteria.
514 IDE 5.7 User’s Guide

Menu Commands
Find In Next File
The Find in Next File command searches for the next occurrence of the Find text box
string in the next file listed in the Find in Files window.

Find In Previous File
This command searches for the next occurrence of the Find text box string in the previous
file listed in the Find in Files window.

NOTE (Macintosh) Press the Shift key to change the Find In Next File menu
command to the Find In Previous File menu command.

Find Next
The Find Next command searches for the next occurrence of the Find text box string in
the active window.

Find and Open File
The Find and Open File command opens the Find and Open File dialog. Enter a
filename, click OK, and the IDE searches the current project access paths as specified in
the Access Paths panel of the Target Settings window.

Find and Open ‘Filename’
The Find and Open ‘Filename’ command opens an existing text file, using the currently
selected text in the Editor window as the filename.

Find Previous
The Find Previous command searches for the previous occurrence of the user defined
string in the active window.

NOTE Macintosh: Press the Shift key to change the Find Next menu command to the
Find Previous menu command.

Find Previous Selection
The Find Previous Selection searches for the previous occurrence of the selected text in
the active editor window.
515IDE 5.7 User’s Guide

Menu Commands
NOTE Macintosh: Press the Shift key to change the Find Selection menu command to
the Find Previous Selection menu command.

Find Reference
The Find Reference command searches for the definition of the selected routine name in
the active Editor window, using the online help system specified in the IDE Extras
preference panel.

If the IDE does not find a definition, a system beep sounds.

Find and Replace
The Find and Replace command opens the Find and Replace window. Use this window
to perform find-and-replace operations within the active file.

Find Selection
The Find Selection command searches for the next occurrence of the selected text in the
active Editor window.

Freescale CodeWarrior Website
The CodeWarrior Website command launches a web browser and displays the
CodeWarrior web site.

G

Get Next Completion
The Get Next Completion command acts as a shortcut that bypasses using the Code
Completion window. Instead of scrolling through the Code Completion window to select
the next symbol from the one currently selected, use this command to insert that next
symbol directly into the active editor window.

Get Previous Completion
The Get Previous Completion command acts as a shortcut that bypasses using the Code
Completion window. Instead of scrolling through the Code Completion window to select
516 IDE 5.7 User’s Guide

Menu Commands
the previous symbol from the one currently selected, use this command to insert that
previous symbol directly into the active editor window.

Global Variables or Global Variables Window
These commands open the Global Variables window. Use this window to view global
variables for an entire project or for a single file. Click a filename in the Files list to
display the file’s global variables in the Variables list.

Go Back
The Go Back command returns to the previous view in the CodeWarrior browser.

Go Forward
The Go Forward command moves to the next view in the CodeWarrior Browser (after
you select Go Back command to return to previous view).

Go to Line
The Go to Line command opens the Line Number dialog box. Enter a specific line
number to move the text-insertion point. If the line number specified exceeds the number
of lines in the file, the text-insertion point moves to the last line in the file.

H

Hide Breakpoints
The Hide Breakpoints command conceals the Breakpoints column, which appears to the
left of the source code shown in editor windows.

Hide Floating Toolbar
The Hide Floating Toolbar command conceals the IDE’s floating toolbar. After
concealing the floating toolbar, the command changes to Show Floating Toolbar.

Hide Main Toolbar
The Hide Main Toolbar command conceals the IDE’s main toolbar. After concealing the
main toolbar, the command changes to Show Main Toolbar.
517IDE 5.7 User’s Guide

Menu Commands
Hide Window Toolbar
The Hide Window Toolbar command conceals the toolbar in the active window. After
concealing the window toolbar, the command changes to Show Window Toolbar.

Horizontal Center
The Horizontal Center command of the Align submenu aligns the horizontal centers of
the selected components.

I

Import Components
The Import Components command imports components from another catalog for use
with the current catalog.

Import Project
The Import Project command imports project files previously saved in a XML file with
the Export Project command.

Insert Reference Template
This command inserts a routine template corresponding to the selected Mac OS Toolbox
call in the active window. The IDE uses the online reference database application
specified in the Find Reference Using pop-up to search for the routine’s definition.

K-L

Kill
The Kill command terminates the target program and returns control to the debugger.

Left Edges
The Left Edges command of the Align submenu aligns the left edges of the selected
components.
518 IDE 5.7 User’s Guide

Menu Commands
M-N

Make
The Make command builds the selected project by compiling and linking its modified and
touched files. The results of a successful build depend on the selected project type.

Maximize Window
Windows equivalent of Expand Window.

See also: Expand Window

Minimize Window
Windows equivalent of Collapse Window.

See also: Collapse Window

New
The New command opens the New window. Use the New window to create new projects,
files, components, and objects.

New Class
The New Class command opens the New Class wizard. Use this wizard to help create new
classes in a project.

New Class Browser
The New Class Browser command opens a Browser window. The IDE grays out this
menu command if the CodeWarrior browser is not activated. This menu command is
equivalent to the Class Browser menu command.

New Data Member
The New Data Member command opens the New Data Member wizard. Use this wizard
to help create new data members for a class.
519IDE 5.7 User’s Guide

Menu Commands
New Event
The New Event command opens the New Event window. Use this window to help create
new events for a selected class in a project.

New Event Set
The New Event Set command opens the New Event Set window to create a new event set
for a selected class in a project.

New Expression
The New Expression command creates a new entry in the Expressions window,
prompting entry of a new expression.

New Member Function
The New Member Function command opens the New Member Function wizard. Use this
wizard to help create new member functions for a class.

New Method
The New Method command opens the New Method window. Use this window to create a
new method for a selected class in a project.

New Property
The New Property command opens the New Property window. Use this window to create
a new property for a selected class in a project.

New Text File
The New Text File command creates a new editable text file and opens an editor window.

No Exceptions
The No Exceptions command of the Java submenu instructs the debugger to not break
when exceptions occur.
520 IDE 5.7 User’s Guide

Menu Commands
O

Open
The Open command opens an existing project or source file.

Open Recent
The Open Recent menu item reveals a submenu of recently opened projects and files.
Choose a file from the submenu to open that item.

If two or more files in the submenu have identical names, the submenu shows the full
paths to those files in order to distinguish between them.

Open Scripts Folder
This command opens the (Scripts) folder. This command is only available if the Use
Scripts menu option is enabled.

Open Workspace
This command opens a workspace file that you previously saved.

P-Q

Page Setup
The Page Setup command sets the options used for printing CodeWarrior IDE files.

Paste
The Paste command replaces the selected text with contents of the system clipboard into
the active Editor window or text box. If no text is selected, the IDE places the clipboard
contents at the text-insertion point.

The Paste command is unavailable if the Message window is active.
521IDE 5.7 User’s Guide

Menu Commands
Precompile
The Precompile command precompiles the text file in the active Editor window into a
precompiled header file.

Preferences
The Preferences command opens the IDE Preferences window. Use this window to
change the global preferences used by the CodeWarrior IDE.

Preprocess
This command preprocesses selected source files in any language that has a preprocessor,
such as C, C++, and Java.

Print
The Print command prints CodeWarrior IDE files, as well as Project, Message, and Errors
and Warnings window contents.

Processes or Processes Window
These commands open the Processes window for those platforms that support it.

Project Inspector
Opens the Project Inspector window so that you can view information about your project.
You can also use this window to manipulate file-specific information.

Quit or Quit CodeWarrior
Mac OS command equivalent of Exit: See Exit.

R

Redo
After undoing an operation, you can redo it. For example, after choosing the Undo
Typing command to remove some text that you typed, you can choose Redo Typing to
override the undo and restore the text.
522 IDE 5.7 User’s Guide

Menu Commands
You can enable the Use multiple undo option in the Editor Settings preference panel to
allow greater flexibility with regard to Undo and Redo operations. After enabling this
option, you can choose Undo multiple times to undo multiple actions, and you can Redo
multiple times to redo multiple actions.

Refresh All Data
This command updates the data that appears in all windows.

Register Details Window
The Register Details Window command opens the Register Details window, which
allows you to view descriptions of registers, bit fields, and bit values.

Registers or Register Window
These commands reveal the Registers submenu, which can be used to view general
registers or FPU registers.

See also: Register Details Window

Remove Object Code
The Remove Object Code command shows the Remove Object Code dialog box. Use
this dialog box to remove binary object code from the active project, or to mark the
project’s files for re-compilation.

Remove Object Code & Compact
This command removes all binaries from the project and compacts it. Compacting the
project removes all binary and debugging information and retains only the information
regarding the files that belong to the project and project settings.

Remove Selected Items
The Remove Selected Items command removes the currently selected items from the
Project window.

CAUTION You cannot undo this command.
523IDE 5.7 User’s Guide

Menu Commands
Replace
The Replace command opens the Find and Replace dialog box. Use this dialog box to
perform find-and-replace operations within the active file.

Replace All
The Replace All command finds all occurrences of the Find string and replaces them with
the Replace string. If no text is selected in the active Editor window and there is no text in
the Find text box, the IDE dims this menu command.

Replace and Find Next
This command substitutes selected text with text in the Replace text box of the Find
window, and then performs a Find Next operation. If no text is selected in the active
Editor window and there is no text in the Find field of the Find window, the IDE grays out
this menu command.

Replace and Find Previous
This command substitutes selected text with the text in the Replace text box of the Find
window, and then performs a Find Previous operation. If no text is selected in the active
Editor window and there is no text in the Find field of the Find window, the IDE grays out
this menu command.

NOTE (Mac OS) Press the Shift key to change the Replace and Find Next menu
command to the Replace and Find Previous menu command.

Replace Selection
The Replace Selection command substitutes the selected text in the active window with
the text in the Replace text box of the Find window. If no text is selected in the active
Editor window, the IDE grays out the menu command.

This menu command replaces one instance of a text string without having to open the Find
window. Suppose that you replaced all occurrences of the variable icount with
jcount. While scrolling through your source code, you notice an instance of the variable
icount misspelled as icont. To replace this misspelled variable with jcount, select
icont and the Replace Selection menu command.
524 IDE 5.7 User’s Guide

Menu Commands
Re-search for Files
The Project > Re-search for Files command speeds up builds and other project
operations, the IDE caches the location of project files after finding them in the access
paths. Re-search for Files forces the IDE to forget the cached locations and re-search for
them in the access paths. This command is useful if you moved several files and you want
the IDE to find the files in their new locations.

If the Save project entries using relative paths option is enabled, the IDE does not reset
the relative-path information stored with each project entry, so re-searching for files finds
the source files in the same location (the exception is if the file no longer exists in the old
location). In this case, the IDE only re-searches for header files. To force the IDE to also
re-search for source files, choose the Project > Reset Project Entry Paths menu
command.

If the Save project entries using relative paths option is disabled, the IDE re-searches
for both header files and source files.

Reset
The Reset command resets the program and returns control to the IDE.

Reset Floating Toolbar
The Reset Floating Toolbar command restores the default state of the floating toolbar.
Use this command to return the floating toolbar to its original default settings.

Reset Main Toolbar
The Reset Main Toolbar command restores the default state of the main toolbar. Use this
command to return the main toolbar to its original default settings.

Reset Project Entry Paths
The Reset Project Entry Paths command resets the location information stored with each
project entry and forces the IDE to re-search for the project entries in the access paths.
This command does nothing if the Save project entries using relative paths option is
disabled.

Reset Window Toolbar
The Reset Window Toolbar command restores the default state of the toolbar in the
active window. Use this command to return the toolbar to its original default settings.
525IDE 5.7 User’s Guide

Menu Commands
Resize
The Resize command reveals the Resize submenu.

See also:

• To Largest Height

• To Largest Width

• To Smallest Height

• To Smallest Width

Restart
The Restart command terminates the current debugging session, then starts a new
debugging session.

Restore Window
The Restore Window command restores a minimized window (a window reduced to an
item in the task bar).

Resume
The Resume command switches from the IDE to the running application. This menu
command only appears after the IDE starts a debugging session and the application being
debugged is currently running.

Revert
The Revert command restores the last saved version of the active Editor window.

Right Edges
The Right Edges command of the Align submenu aligns the right edges of the selected
components.

Run
The Run command compiles, links, creates a standalone application, and then runs that
application. This command is unavailable if the project creates libraries, shared libraries,
code resources, and other non-application binaries.
526 IDE 5.7 User’s Guide

Menu Commands
Run to Cursor
The Run to Cursor command sets a temporary breakpoint at the line of source code that
has the text-insertion point, then runs the program.

S

Save
The Save command saves the contents of the active window to disk.

Save A Copy As
The Save A Copy As command saves the active window to a separate file. This command
operates in different ways, depending on the active window.

Save All
The Save All command saves all currently open editor files.

NOTE Mac OS: Press the Option key to change the Save command to the Save All
menu command.

Save As
The Save As command saves the contents of the active window to disk under a different
name.

Save Default Window
This command saves the window settings, such as position and size, of the active Browser
or Search Results window. The IDE applies the saved settings to subsequently opened
windows.

Save Workspace
This command saves the current state of onscreen windows, recent items, and debugging.
Use the dialog box that appears to name the workspace and navigate to a location in which
to store the workspace file.
527IDE 5.7 User’s Guide

Menu Commands
Save Workspace As
This command saves a copy of an existing workspace. Use this command to save the
workspace under a different name.

Select All
The Select All command selects all text in the active window or text box. This command
is usually used in conjunction with other Edit menu commands such as Cut, Copy, and
Clear.

Send To Back
The Send To Back command moves the selected window behind all other windows.

Set Breakpoint
The Set Breakpoint command sets a breakpoint at the currently selected line. If the Show
Breakpoints option is active, the Breakpoints column in the editor windows will display a
marker next to each line with a breakpoint.

Set/Clear Breakpoint
The Set/Clear Breakpoint command displays the Set/Clear Breakpoints dialog that lets
you set or clear a breakpoint at a particular address or symbol.

Set Default Project
The Set Default Project command sets a particular project as the default project when
more than one project is open. This is the project that all commands are directed.

Set Default Target
The Set Default Target command allows you to specify a different build target within the
current project. Choose the build target to work with from the submenu. This menu
command is useful for switching between multiple build targets in a project and
performing a build for each target.

Set Eventpoint
This command opens a submenu that lets you set an eventpoint at the currently selected
line. If the Show Breakpoints option is enabled, the Breakpoints column in the editor
528 IDE 5.7 User’s Guide

Menu Commands
windows shows a marker next to each line with an eventpoint. The marker represents the
eventpoint type.

Set Watchpoint
The Set Watchpoint command sets a watchpoint for the selected variable or memory
range. Watchpoint variables are identified using an underline.

Shift Left
The Shift Left command shifts the selected source code one tab to the left. The amount of
shift is controlled by the Tab Size option.

Shift Right
The Shift Right command shifts the selected source code one tab to the right. The amount
of shift is controlled by the Tab Size option.

Show Breakpoints
The Show Breakpoints command displays the Breakpoints column in editor windows.
When active, the Breakpoints column appears along the left edge of all editor windows.

Show Floating Toolbar
The Show Floating Toolbar command displays the IDE’s floating toolbar. After
displaying the floating toolbar, the command changes to Hide Floating Toolbar.

Show Main Toolbar
The Show Main Toolbar command displays the IDE’s main toolbar. After displaying the
main toolbar, the command changes to Hide Main Toolbar.

Show Types
The Show Types command displays the data types of all local and global variables that
appear in the active variable pane or variable window.

Show Window Toolbar
The Show Window Toolbar command displays the toolbar in the active window. After
displaying the window toolbar, the command changes to Hide Window Toolbar.
529IDE 5.7 User’s Guide

Menu Commands
Stack Editor Windows
The Stack Editor Windows command arranges open editor windows one on top of
another, with their window titles visible.

Step Into
The Step Into command executes a single statement, stepping into function calls.

Step Out
The Step Out command executes the remainder of the current function, then exits to that
function’s caller.

Step Over
The Step Over command executes a single statement, stepping over function calls.

Stop
This command temporarily suspends execution of the target program and returns control
to the debugger.

Stop Build
The Stop Build command halts the build currently in progress.

Switch to Monitor
This command transfers control from the CodeWarrior debugger to an external third-party
debugger.

Symbolics or Symbolics Window
These commands open the Symbolics window. Use this window to examine the
executable files in a project.

Synchronize Modification Dates
The Synchronize Modification Dates command updates the modification dates stored in
the project file. The IDE checks the modification date of each file in the project and marks
(for recompiling) those files modified since the last successful compile process.
530 IDE 5.7 User’s Guide

Menu Commands
T-U

Target Settings
The Target Settings command displays the Target Settings window. This window
contains settings panels used by the active build target. The name of the menu command
changes, based on the name of the current build target. For example, if the name of the
current build target is ReleaseTarget, the name of the menu command changes to
ReleaseTarget Settings.

Tile Editor Windows
The Tile Editor Windows command arranges and resizes all open editor windows so that
none overlap on the monitor, as Figure 32.1 shows.

Figure 32.1 Tile Editor Windows Example

Tile Editor Windows Vertically
The Tile Editor Windows Vertically command resizes all open editor windows to be
vertically long, and arranged horizontally across the monitor so that all are viewable.

Tile Horizontally
This command arranges open editor windows horizontally so that none overlap, as Figure
32.2 shows.
531IDE 5.7 User’s Guide

Menu Commands
Figure 32.2 Tile Horizontally Example

Tile Vertically
This command resizes open editor windows vertically and arranges them so that none
overlap, as Figure 32.3 shows.

Figure 32.3 Tile Vertically Example

To Grid
The To Grid command of the Align submenu aligns selected components to a grid in the
layout. You can display or hide the on screen grid.

To Largest Height
The To Largest Height command of the Resize submenu resizes the selected components
to match the height of the component with the largest height.
532 IDE 5.7 User’s Guide

Menu Commands
To Largest Width
The To Largest Width command of the Resize submenu resizes the selected components
to match the width of the component with the largest width.

Toolbars
The Toolbars command reveals the Toolbars submenu.

See also:

• Show Window Toolbar

• Hide Window Toolbar

• Reset Window Toolbar

• Clear Window Toolbar

• Show Main Toolbar

• Hide Main Toolbar

• Reset Main Toolbar

• Clear Main Toolbar

• Hide Floating Toolbar

• Show Floating Toolbar

• Reset Floating Toolbar

• Clear Floating Toolbar

ToolServer Worksheet
The ToolServer Worksheet command opens the ToolServer Worksheet window for use
with the Apple® ToolServer™ application program.

The IDE can disable this command for these reasons:

• You did not install ToolServer on your computer.

• You installed ToolServer on your computer, but you did not start it.

Top Edges
The Top Edges command of the Align submenu aligns the top edges of the selected
components.
533IDE 5.7 User’s Guide

Menu Commands
To Smallest Height
The To Smallest Height command of the Resize submenu resizes the selected
components to match the height of the component with the smallest height.

To Smallest Width
The To Smallest Width command of the Resize submenu resizes selected components to
match the width of the component with the smallest width.

Unanchor Floating Toolbar
The Unanchor Floating Toolbar command detaches the floating toolbar from beneath
the menu bar.

Unapply Difference
The Unapply Difference command reverses the action of the Apply Difference
command in a file-comparison window.

Uncaught Exceptions Only
The Uncaught Exceptions Only command of the Java submenu instructs the debugger to
break only on unhandled exceptions.

Undo
The Undo command reverses the last action. The name of this menu command changes
based upon the editor settings as well as the most recent action. For example, after typing
text in an open Editor window, the Undo command changes its name to Undo Typing.
Choose the Undo Typing command to remove the typed text.

By default, only one undo or redo action is allowed. If the Use multiple undo option is
enabled, undo and redo can act upon multiple actions.

Ungroup
The Ungroup command separates a selected group so that you can move each component
independently.
534 IDE 5.7 User’s Guide

Menu Commands
V-Z

Version Control Settings
The Version Control Settings command opens the VCS Settings window.

Vertical Center
The Vertical Center command of the Align submenu aligns the vertical centers of the
selected components.

View Array
The View Array command creates a separate window to display a selected array.

View As
The View As command displays a selected variable in a specified data type.

View As Binary
The View As Binary command displays the selected variable as a binary value.

View As Character
The View As Character command displays the selected variable as a character value.

View As C String
The View As C String command displays the selected variable as a C character string.

View As Default
The View As Default command displays the selected variable in its default format, based
on the variable’s type.

View As Enumeration
The View As Enumeration command displays the selected variable as an enumeration.
535IDE 5.7 User’s Guide

Menu Commands
View As Fixed
The View As Fixed command displays the selected variable as a fixed-type numerical
value.

View As Floating Point
The View As Floating Point command displays the selected variable as a floating-point
value.

View As Fract
This command displays the selected variable as a fractional data type.

NOTE The fractional data type is specific to the Mac OS.

View As Hexadecimal
The View As Hexadecimal command displays the selected variable as a hexadecimal
value.

View As Pascal String
The View As Pascal String command displays the selected variable as a Pascal character
string.

View As Signed Decimal
This command displays the selected variable as a signed decimal value.

View As Unicode String
The View As Unicode String command displays the selected variable as a Unicode
character string.

View As Unsigned Decimal
The View As Unsigned Decimal command displays the selected variable as an unsigned
decimal value.
536 IDE 5.7 User’s Guide

Menu Commands
View Disassembly
This command changes the data view to show language disassembly.

View Memory
The View Memory command displays the contents of memory as a hexadecimal/ASCII
character dump.

View Memory As
The View Memory As command displays the memory that a selected variable occupies or
the memory to which a selected register points.

View Mixed
This command changes the data view to show source code intermixed with assembly
code.

View Raw Data
This command changes the data view to show raw data (instead of formatting that data as
source code, disassembly, or another format).

View Source
This command changes the data view to show source code.

View Variable
The View Variable command creates a separate window to display a selected variable.

Zoom Window
The Zoom Window command expands the active window to its previously set size.
Choose Zoom Window a second time to return the window to its original size.
537IDE 5.7 User’s Guide

Menu Commands
538 IDE 5.7 User’s Guide

Index

Symbols
#include files, caching 430
#pragma directives, profiler 316
%file command-line string 432
%line command-line string 432
(Scripts) folder 501, 521
.*[_]Data 364
.mcp 35
\(.*\) 364
^var 233
__copy_vectors() 318
__PROFILE_ENTRY 308
__PROFILE_EXIT 308
__throw() 505

A
abnormal termination 307
about

breakpoints 203
console applications 77
dockable windows 63
eventpoints 203
Files page in Project window 43
markers 108
projects 29
special breakpoints 203
watchpoints 203
workspaces 73

About Metrowerks CodeWarrior menu
command 503

Absolute Path option
in Source Trees preference panel 447
in Type list box 447

abstract, icon for 161
access breakpoint - refer to watchpoints 224
access breakpoint enabled 225
Access Filter display 164
Access Paths settings panel 362, 393

columns
Framework 396
Recursive Search 395

Search Status 395
options

Add 395
Add Default 395
Always Search User Paths 394
Change 395
Host Flags 395
Interpret DOS and Unix Paths 395
Remove 395
Require Framework Style Includes 395
System Paths 446
User Paths 450

Access Target button 278
Action option 335
actions for debugging 192
Activate Browser Coloring option 415

in Text Colors panel 428
Activate Browser option

and relation to Symbolics window 253
in Build Extras panel 514

Activate Syntax Coloring option 415, 420
in Text Colors panel 428, 431, 444

activating automatic code completion 96
Active icon 207
Add button 395
Add Default button 415
Add Files button 127
Add Files menu command 503
Add Window menu command 503
adding

gray background behind IDE. See Use
Multiple Document Interface, turning on.

remote connections 386
source trees 366

Address checkbox 281
Address Line fault 282
Address text box 248
advanced topics

for projects 38
Align submenu 503, 504, 518, 526, 532, 533, 535

Horizontal Center command 518
Left Edges command 518
539IDE 5.7 User’s Guide

Vertical Center command 526, 532, 533, 535
All Exceptions command 504
All Info option, in Plugin Diagnostics 433
All Sectors checkbox 271
All Sectors list 271
All Text option button 114, 117, 120
alphabetical sorting of Functions list pop-up 106,

107
Always Search User Paths option 415
Analyzer Can Cause Target Breakpoint

checkbox 288
Analyzer Configuration File text box 287
Analyzer Connections target settings panel 285
Analyzer Slot text box 287
Analyzer Type list box 287
Ancestor pop-up 166
Anchor Floating Toolbar command 504
Appears in Menus 335, 336
Appears in Menus checkbox 131
Apple Help Viewer 428
Apple menu 486
Application field 416
applications

for the console, about 77
for the console, creating 77

Apply Address Offset checkbox 269
Apply button 140
Apply Difference command 141, 504, 534
Arguments field 416
Arithmetic Optimizations 404
Arm command 289
Array window 242

opening 243
arrays, setting default viewing size for

unbounded 422
arrows

current statement 191
assigning

Quote Key prefix 351
Attempt To Use Dynamic Type of C++, Object

Pascal And SOM Objects option 416
Auto Indent option 416
Auto Repeat 335
Auto Target Libraries option 416

Auto, of Text View list box 251
auto-complete code. See code completion.
Automatic Invocation option 416
Automatically Launch Applications When SYM

File Opened option 417
Auto-target Libraries option 416

B
Background option 417
background, desktop

removing from behind IDE. See Use
Multiple Document Interface, turning on.

seeing behind IDE. See Use Multiple
Document Interface, turning off.

Balance Flash Delay option 417
Editor Settings panel 418

Balance menu command 504
Balance While Typing option 417, 418
balancing punctuation 94

toggling 95
Balloon Help 344, 423, 501
Base Classes field 178
Begin Scope Loop button 280
Begin Test button 282
bestTimeBase 305, 317
BFVALUE 460
Bit Value Modifier list box 249
Bit Value text box 249
BITFIELD 457
Bitfield Description option

of Text View pop-up menu 251
Bitfield Name list box 249
Blank Check button 272
Bottom Edges command 504
boxes

Destination 136
Pane Collapse 143, 190
Pane Expand 143, 190
Source 136

Branch Optimizations 404
Break command 194
Break menu command 505
Break On C++ Exception menu command 505
Break on Java Exceptions command 505
540 IDE 5.7 User’s Guide

Breakpoint Properties button 206
breakpoint template 212
breakpoint template, defined 204
breakpoint templates

creating 212
deleting 213
specifying the default 214
working with 212

Breakpoints 204
breakpoints

Breakpoint Type property 209
clearing all 210
Condition property 209
conditional 204
default template 212
defined 203
disabled 204, 225
enabled 204
File-Info property 209
Hardware property 209
Hit Count property 209
Name property 209
Original Process property 209
Original-Target property 209
purpose of 203
regular 204
saving sets of 207
Serial Number property 209
setting conditional 211
setting temporary 211
template 212
temporary 204
Thread property 209
Times Hit property 209
Times Left property 209
viewing 207
working with 207

Breakpoints button 190
Breakpoints column, in editor window 88
Breakpoints menu command 505
Breakpoints window 204

Active icon 207
Breakpoint Properties button 206
Create Breakpoint Template button 205

Groups tab 206
Inactive icon 207
Instances tab 206
opening 207
Rename Breakpoint button 206
saving contents of 207
Set Default Breakpoint Template button 206
Templates tab 206

Breakpoints Window menu command 505
breakpoints, clearing 210
breakpoints, disabling 210
breakpoints, enabling 210, 223
breakpoints, setting 207
breakpoints, viewing properties for 208
Bring To Front menu command 505
Bring Up To Date

menu command 51, 52
Bring Up To Date menu command 427, 505
Browse button 121, 248, 250, 264, 268, 276
Browse In Processes Window option 386, 387
browser 150

Class Browser window 153
Classes pane 159
collapsing panes 159
creating new classes 160, 175, 176
creating new data members 183
creating new member functions 180, 181,

183
expanding panes 158
hierarchy windows 166
Member Functions pane 161
overview 25
printing class hierarchies 167
purpose of 147
setting options 147
Source pane 163
status area 163
viewing data by contents 170
viewing data by inheritance 166
working with 147

Browser Access Filters 155
Browser Commands option 418

Editor Settings panel 431
Browser Contents 154
541IDE 5.7 User’s Guide

Browser Contents command 505
Browser Contents window 169

Symbols list 170
browser database

defined 147
Browser menu 418
Browser Path option 418
Browser Wizard 175
Build Before Running option 418
Build Extras panel

options
Initial Directory field 430
Use External Debugger 448
Use modification date caching 449

Build Extras settings panel 253, 396
options

Application 398
Arguments 398
Cache Subprojects 397
Dump internal browse information after

compile 398
Generate Browser Data From 398
Initial directory 398
Use External Debugger 398
Use modification date caching 397

Build Extras target settings panel 514
Build Progress menu command 505
Build Progress Window menu command 505
Build Settings panel

options
Include file cache 430
Play sound after ‘Bring Up To Date’ &

‘Make’ 435
Save open files before build 438
Show message after building up-to-date

project 442
Success 445
Use Local Project Data Storage 448

Build Settings preference panel 355
options

Build before running 356
Compiler thread stack 357
Failure 356
Include file cache 356

Play sound after ‘Bring Up To Date’ &
‘Make’ 356

Save open files before build 356
Show message after building up-to-date

project 356
Success 356
Use Local Project Data Storage 357

build system
overview 26

build targets 31
configuring 55
creating 53
management 48
managing 53
moving 50
removing 48, 53
renaming 51, 54
setting default 54
strategies for 40

Bus Noise checkbox 281
Bus Noise test

subtests
Full Range Converging 284
Maximum Invert Convergence 284
Sequential 284

bus noise, defined 284
Button

Choose 341
Delete 342
Export 349
Import 350
New Binding 348
Save 342

buttons
Access Target 278
Add 395
Add Default 415
Add Files 127
Apply 140
Begin Scope Loop 280
Begin Test 282
Blank Check 272
Breakpoint Properties 206
Breakpoints 190
542 IDE 5.7 User’s Guide

Browse 121, 248, 250, 264, 268, 276
Calculate Checksum 273
Cancel 114, 116, 263, 275
Change 395
Clear List 127
Compare 137
Create Breakpoint Template 205
Debug 190
Details 270, 271, 273, 278, 280, 282
Edit 377
Erase 272
Export Panel 424
Expressions 190
Factory Settings 427
Find 114, 116, 119
Find All 114, 119
Installed Products 503
Kill 190
Line and Column 192
Load Settings 262, 275
Next Result 130
OK 263, 275
Previous Result 130
Program 270
Purge Cache 436
Read 250
Redo 141
Remove 395
Remove a Set 127
Rename Breakpoint 206
Replace 116, 119
Replace All 116, 119
Reset Value 250
resetting in toolbars 346
Resume 190
Revert 250
Run 190
Save Settings 262, 275
Save This Set 127
Set Default Breakpoint Template 206
Show Log 262, 282
Source File 191
Step Into 190
Step Out 190

Step Over 190
Stop 119, 129, 190
Symbolics 190
Unapply 140
Undo 141
Variables Pane Listing 191
Verify 270
Warnings 129
Write 250

By Type text/list box 121
Byte option button 277, 279, 281

C
cache

purging 436
Cache Edited Files Between Debug Sessions

option 419
Cache Subprojects option 419
Cache Symbolics Between Runs option 419
Cache window 290

opening 290
caching

#include files 430
precompiled headers 430

Calculate Checksum button 273
Can’t Redo menu command 475, 489
Can’t Undo menu command 475, 489
Cancel button 114, 116, 263, 275
Cancel button, in Remove Markers window 109
Cascade menu command 506
Case Sensitive checkbox 114, 116, 120, 136
Case Sensitive option 419
Change button 395
Change Program Counter menu command 506
changing

find strings 131
line views in a hierarchical window 168
register data views 246
register values 246
remote connections 387
source trees 366

Check Syntax command 506
Checkbox

Numeric Keypad Bindings 348
543IDE 5.7 User’s Guide

checkboxes
Address 281
All Sectors 271
Analyzer Can Cause Target Breakpoint 288
Appears in Menus 131
Apply Address Offset 269
Bus Noise 281
Case sensitive 114, 116, 120, 136
Compare text file contents 137
Enable Logging 265
Erase Sectors Individually 271
Ignore extra space 137
Log Message 216
Match whole word 114, 116, 120
Only show different files 137
Project headers 123
Project sources 123
Regular expression 114, 117, 120
Restrict Address Range 269
Search cached sub-targets 123
Search selection only 114, 117
Search sub-folders 121
Search up 114, 117
Speak Message 216
Stop at end of file 114, 117
Stop in Debugger 217, 219, 220
System headers 123
Target Breakpoint Can Cause Analyzer

Trigger checkbox 288
Treat as Expression 217
Use Custom Settings 264, 276
Use Selected File 268
Use Target CPU 282
Use Target Initialization 264, 276
View Target Memory Writes 265
Walking 1’s 281

Checkout Status column
in Files view of Project window 44

Checksum panel 272
child windows, defined 63
choosing

a default project 37
linkers 329

one character from many in regular
expressions 134

class browser
purpose of windows 153
working with windows 153

Class Browser menu command 506
Class Browser window 153

Classes pane 155
Data Members pane 155
Member Functions pane 155
Status area 155

class data
viewing from hierarchy windows 158

Class Declaration 164
Class Hierarchy 154
Class Hierarchy menu command 507
Class Hierarchy Window menu command 507
class hierarchy windows

purpose of 165
working with 165

class view 312
classes

creating 160, 175, 176
hiding pane for 160
showing pane for 160
sorting list of 161

Classes option 377
Classes pane 159

in Class Browser window 155
classes.zip 504
Clear All Breakpoints menu command 507
Clear All Watchpoints menu command 507
Clear Breakpoint menu command 507
Clear Eventpoint menu command 507
Clear Floating Toolbar command in Toolbar

submenu 507
Clear List button 127
Clear Main Toolbar menu command 507
Clear menu command 507
Clear Watchpoint menu command 508
Clear Window Toolbar command in Toolbar

submenu 508
clearing

all breakpoints 210
544 IDE 5.7 User’s Guide

all watchpoints 227
breakpoints 210
watchpoints 227

client area, defined 63
Clone Existing Target option 53
Close All command 61
Close All Editor Documents menu command 508
Close All menu command 508
Close Catalog menu command 508
Close command 38, 60
Close menu command 508
Close Non-debugging Windows option 420
Close Workspace menu command 508
closing

all files 61
dockable windows 71
files 60
projects 38
workspaces 75

Code 405
code

adding markers to 109
completing 96
disabling breakpoints 210
disabling eventpoints 222
disabling special breakpoints 228
disabling watchpoints 226
enabling breakpoints 210, 223
enabling special breakpoints 228
enabling watchpoints 226
locating 105
navigating 105
setting breakpoints in 207
setting watchpoints in 225
viewing breakpoint properties 208
viewing eventpoint properties 222
viewing watchpoint properties 226

Code column
in Files view of Project window 44

code completion
activating automatic behavior 96
configuration 96
deactivating automatic behavior 97
for data members 101

for parameter lists 102
navigating window 100
selecting items 101
triggering by keyboard 97
triggering from IDE menu bar 97

Code Completion Delay option 420
Code Completion preference panel 367

options
Automatic Invocation 368
Case sensitive 368
Code Completion Delay 368
Display deprecated items 368
Window follows insertion point 368

Code Completion window 98
code completion, triggering from IDE menu

bar 97
Code Formatting preference panel 369

options
Close Braces, Brackets, And

Parentheses 371
Format Braces 370
Indent Braces 370
Indent Case Within Switch

Statement 371
Indent Code Within Braces 370
Language Settings 369
Place Else On Same Line As Closing

Brace 370
Place Opening Brace On Separate

Line 370
Use Automatic Code Formatting 369

Code Only option button 115, 117, 120
CodeWarrior

menu reference 473
overview 21

CodeWarrior Glossary command 509
CodeWarrior Help menu command 509
CodeWarrior IDE

Apple menu 486
CodeWarrior menu 487
Data menu 483, 497
Debug menu 482, 495
Edit menu 475, 489
File menu 473, 487
545IDE 5.7 User’s Guide

Help menu 486, 501
Project menu 479, 492
Scripts menu 501
Search menu 478, 490
Tools menu 500
VCS menu 500
Window menu 477, 485, 498

CodeWarrior menu 487
Collapse Non-debugging Windows option 420
Collapse Window menu command 509
collapsing

browser panes 159
dockable windows 71

collection method 305
COM 422
Command Actions

Arguments 337
Defining (Mac OS) 341
Defining (Windows) 337
Directory 337
Execute 337

Command Group
Delete 341

Command Groups 341
Delete 341

Command window 292
issuing command lines 293
opening 292

command-line window 292
Commands

Import 350
Modify 335

commands 161
About Metrowerks CodeWarrior 503
Add Files 503
Add Window 503
Apply Difference 141, 504
Arm 289
Balance 504
Bottom Edges 504
Break 194, 505
Break On C++ Exception 505
Break on Java Exceptions 505
Breakpoints 505

Breakpoints Window 505
Bring To Front 505
Bring Up To Date 505
Browser Contents 154, 505
Build Progress 505
Build Progress Window 505
Can’t Redo 475, 489
Can’t Undo 475, 489
Cascade 506
Change Program Counter 506
Check Syntax 506
Class Browser 506
Class Declaration 164
Class Hierarchy 154, 507
Class Hierarchy Window 507
Clear 507
Clear All Breakpoints 507
Clear All Watchpoints 507
Clear Breakpoint 507
Clear Eventpoint 507
Clear Main Toolbar 507
Clear Watchpoint 508
Close 38, 508
Close All 508
Close All Editor Documents 508
Close Catalog 508
Close Workspace 508
CodeWarrior Glossary 509
CodeWarrior Help 509
Collapse Window 509
Commands & Key Bindings 508
Compare Files 137, 509
Compile 509
Complete Code 509
Connect 288, 509
Copy 509
Copy To Expression 510
Create Design 510
Create Group 510
Create Target 510
Cut 510
Cycle View 510
Debug 192, 511
Delete 511
546 IDE 5.7 User’s Guide

Diagonal Line 168
Disable Breakpoint 511
Disable Watchpoint 511
Disarm 289
Disassemble 511
Disconnect 289
Display Grid 511
Enable Breakpoint 512
Enable Watchpoint 512
Enter Find String 131, 512
Enter Replace String 512
Errors And Warnings 513
Errors And Warnings Window 513
Exit 513
Expand Window 513
Export Project 37, 513, 518
Export Project as GNU Makefile 513
Expressions 513
Expressions Window 513
File Path 45
Find 115, 514
Find and Open ‘Filename’ 515
Find and Open File 515
Find And Replace 516
Find Definition 514
Find Definition & Reference 111, 514
Find In Files 514
Find In Next File 515
Find In Previous File 515
Find Next 130, 515
Find Previous 131, 515
Find Previous Selection 515
Find Reference 111, 516
Find Selection 132, 516
Get Next Completion 516
Get Previous Completion 516
Global Variables 517
Global Variables Window 517
Go Back 154, 517
Go Forward 154, 517
Go To Line 517
Hide Breakpoints 517
Hide Classes 160
Hide Classes pane 163

Hide Window Toolbar 518
Import Components 518
Import Project 37, 518
Insert Reference Template 518
Kill 194, 518
Make 519
Maximize Window 519
Metrowerks Website 516
Minimize Window 519
New 519
New Class 519
New Class Browser 519
New Data 519
New Event 520
New Event Set 520
New Expression 520
New Item 160
New Member Function 520
New Method 520
New Property 520
New Text File 520
Open 521
Open File 163
Open In Windows Explorer 45
Open Recent 521
Open Scripts Folder 521
Open Workspace 521
Page Setup 521
Pane Collapse 159
Pane Expand 158
Precompile 522
Preferences 522
Print 522
Processes 522
Processes Window 522
Project Inspector 36
Redo 522
Refresh All Data 523
Register Details Window 247, 523
Register Windows 523
Registers 523
Remove Object Code 523
Remove Object Code & Compact 523
Remove Toolbar Item 345
547IDE 5.7 User’s Guide

Replace 117, 524
Replace All 524
Replace and Find Next 524
Restart 195
Resume 194, 526
Revert 526
Run 195, 436, 526
Run To Cursor 527
Save Default Window 527
Save Workspace 527
Save Workspace As 528
Select All 528
Send To Back 528
Set Breakpoint 528
Set Default Project 37, 528
Set Default Target 528
Set Eventpoint 528
Set Watchpoint 529
Shift Right 529
Show Breakpoints 507, 529
Show Classes 160
Show Classes pane 163
Show Inherited 155
Show private 156
Show protected 156
Show public 156
Show Types 529
Show Window Toolbar 518
Single Class Hierarchy Window 154
Sort Alphabetical 160, 161
Sort Hierarchical 160
Stack Editor Windows 530
Step Into 193
Step Out 193
Step Over 193, 530
Stop 194
Stop Build 530
Straight Line 168
Switch To Monitor 530
Symbolics 530
Symbolics Window 530
Synchronize Modification Dates 530
Unapply Difference 141
Update Data 289

View Array 535
View as implementor 156
View as subclass 156
View As Unsigned Decimal 535, 536
View as user 156
View Disassembly 537
View Mixed 537
View Source 537
View Variable 537
Zoom Window 537

Commands & Key Bindings menu command 508
Commands tab 333, 335, 347
Commands&KeyBindings.mkb file 349, 350
Comments Only option button 115, 117, 120
Comments option 420
common debugging actions 192
Common Subexpression Elimination 404
Compare button 137
Compare Files command 137
Compare Files menu command 509
Compare Files Setup window 136

Case Sensitive checkbox 136
Compare button 137
Compare Text File Contents checkbox 137
Destination box 136
Ignore Extra Space checkbox 137
Only Show Different Files checkbox 137
Source box 136

Compare Text File Contents checkbox 137
comparing files

differences, applying 141
differences, unapplying 141
overview 135
setup 136, 137

comparing files, explained 139
comparing folders

examining results 144
overview 135
setup 136, 138

comparing folders, explained 142
comparison

destination item 136
source item 136

Compile menu command 509
548 IDE 5.7 User’s Guide

compiler
avoiding crashes 421

compiler directives 304, 316
Compiler option 420
Compiler option, in Generate Browser Data From

menu 429
compiler thread stack

and avoiding compiler crashes 421
Compiler Thread Stack field 420
Complete Code menu command 509
completing code 96
Component Object Model. See COM.
Concurrent Compiles panel

options
Use Concurrent Compiles 437, 447
User Specified 450

Concurrent Compiles preference panel 357
options

Recommended 358
Use Concurrent Compiles 357
User Specified 358

condition, breakpoint property 209
conditional access breakpoint 227
conditional breakpoint, defined 211
conditional breakpoints 204

setting 211
conditional eventpoint, defined 223
conditional eventpoints

setting 223
conditional watchpoint, defined 227
conditional watchpoints

setting 227
Configuration panel 275
configuring

build targets 55
code completion 96
projects for a logic analyzer 285
targets 55

Confirm “Kill Process” When Closing Or
Quitting option 421

Confirm Invalid File Modification Dates When
Debugging option 421

Connect command 288
Connect menu command 509

Connection list box 264, 276
Connection pop-up menu, in Remote Debugging

settings panel 412
Connection Type list box 287
Connection Type option 386, 387
console applications

creating 77
applications

creating console
applications 78

console applications, about 77
constant

adding to a variable 235
Constants option 377
contents

of register 247
Context Popup Delay option 421
contextual menus 196

File Path command 45
Open In Windows Explorer command 45
using 197
using to dock a window 66

controlling program execution 187
conventions

figures 19
for manual 19
keyboard shortcuts 20

Copy And Expression Propagation 404
Copy menu command 509
Copy Propagation 404
Copy To Expression command 510
cores, debugging multiple 197
Create Breakpoint Template button 205
Create Design menu command 510
Create Group menu command 510
Create Target command 53
Create Target menu command 510
creating

a new data member 162
build targets 53
console application 78
console applications 77
custom project stationery 38
549IDE 5.7 User’s Guide

empty projects 34
files (Macintosh) 58
files (Windows) 57
member functions 162
new classes 160, 175, 176
new data member 183
new data members 183
new member function 180
new member functions 181
projects from makefiles 33
projects using stationery 33
subprojects 39
targets 53

cross-platform migration, and opening
projects 35

Current Target list pop-up 42
Current Target menu 345
current-statement arrow 191
custom project stationery 38
Customize IDE Commands window 131, 333,

347, 348
Action 335
Appears in Menus 335, 336
Appears in Menus checkbox 131
Auto Repeat 335
Key Bindings 335
Name field 335
New Binding 335
New Group 336
Numeric Keypad Bindings checkbox 351

Cut command 510
CVS 364
Cycle View menu command 510

D
dash 191
data

finding problems 313
sorting 310
viewing 309

Data column
in Files view of Project window 44

data columns
contents 310

Data Line fault 283
data members

completing code 101
creating 162, 183
identifier icons 161

Data Members pane 162
in Class Browser window 155

Data menu 483, 497
data, for debugger, working with 253
database

navigation for browser 150
deactivating automatic code completion 97
Dead Code Elimination 404
Dead Store Elimination 404
Debug button 190
Debug column

in Files view of Project window 44
Debug command 51, 52, 192
Debug menu 421, 482, 495

Clear All Breakpoints command 483, 496
Disable Watchpoint command 483, 496
Enable Breakpoint command 483, 495
Enable Watchpoint command 483, 495, 496
Hide Breakpoints command 483, 496

Debug menu command 511
debugger 436

attaching to a process 258
choosing for an opened symbolics file 386
overview 26
restarting 195
starting 192
working with data 253
working with memory 237
working with variables 229

Debugger Commands option 421
Debugger list box 287
Debugger section, of IDE preference panels 379
Debugger Settings panel 258, 410

options
Auto-target Libraries 411
Cache symbolics between runs 411
Default language entry point 411, 422
Location of Relocated Libraries and

Code Resources 410, 433
550 IDE 5.7 User’s Guide

Log System Messages 411, 433
Program entry point 436
Stop at Watchpoints 411, 443
Stop on application launch 410, 443
Update data every n seconds 447
Update data every n seconds 411
User specified 411

debugger, defined 187
debugging

common actions 192
multiple cores 197
program execution 187
restarting a session 195
starting a session 192

Declaration File field 177
default breakpoint template 212
Default File Format option 421
default filename extensions 425
Default Language Entry Point option

Debugger Settings panel 422
Default Project 264, 276
default projects 37
default size and position of windows, setting 527
Default Size For Unbounded Arrays option 422
Default Target 264, 276
default target, setting 54
default workspace

definition of 73
using 73

definition
of breakpoint template 204
of breakpoints 203
of bus noise 284
of child windows 63
of client area 63
of conditional breakpoint 211
of conditional eventpoint 223
of conditional watchpoint 227
of debugger 187
of default workspace 73
of dock 63
of eventpoints 214
of machines 256
of memory aliasing 283

of non-modal 65
of project 29
of regular expression 132
of special breakpoints 228
of symbolics file 188
of symbols 110, 111
of temporary breakpoint 211
of touch 44
of watchpoints 224
of workspace 73

Delete menu command 511
Description 249
Description File text box 248, 250
design problems, finding 312
Design view 50
Designs view 36
desktop background

removing from behind IDE. See Use
Multiple Document Interface, turning on.

seeing behind IDE. See Use Multiple
Document Interface, turning off.

Destination box 136
destination item, for comparison 136
Destination pane 140
detail view 311

finding design problems 312
detailed data, collecting 305
details

viewing for registers 247
Details button 270, 271, 273, 278, 280, 282
development-process cycle for software 21
Device pane 266
diagnostics

disabling for plug-ins 503
enabling for plug-ins 503

Diagonal Line 168
dialog boxes

New Connection 386
difference from Single-Class Hierarchy

window 168
Differences pane 141
directives

C/C++ 316
compiler 304
551IDE 5.7 User’s Guide

Disable Breakpoint menu command 511
Disable Third Party COM Plugins option 422
Disable Watchpoint menu command 511
disabled breakpoint 204, 225
disabled eventpoint 215
disabling

plug-in diagnostics 503
Disarm command 289
Disassemble menu command 511
disclosure triangles

Source Code pane 130
Source pane 191

Disconnect command 289
Display Deprecated Items option 422
Display Grid menu command 511
Display Settings panel 226

options
Show all locals 439
Show tasks in separate windows 442
Show values as decimal instead of

hex 442
Show variable location 442
Show variable types 443
Show variable values in source

code 443
Sort functions by method name in

symbolics window 443
Variable Values Change 451
Watchpoint Indicator 451

Display Settings preference panel 379
options

Attempt to use dynamic type of C++,
Object Pascal and SOM objects 381

Default size for unbounded arrays 381
Show all locals 380
Show tasks in separate windows 383
Show values as decimal instead of

hex 381
Show variable location 380
Show variable types 380
Show variable values in source

code 381
Sort functions by method name in

symbolics window 381

Variable values change 380
Watchpoint indicator 380

DLL 385, 416
Do Nothing option 422
Do Nothing To Project Windows option 422
dock bars 70
dock, defined 63
dockable windows 63, 66

about 63
closing 71
collapsing 71
dock bars 70
docking windows of the same kind 67
expanding 71
moving 71
suppressing 70
turning off 70
types 64

Document Settings list pop-up 87
document settings pop-up

using 87
documentation

formats 18
structure 18
types 19

Documents option
IDE Extras panel 422

Don’t Step Into Runtime Support Code 423
Don’t Step Into Runtime Support Code

option 423
Done button, in Remove Markers window 109
drag and drop

using to dock a window 67
Drag And Drop Editing option 423
Dump Internal Browse Information After

Compile option 423
dump memory 537

E
Edit button 377
Edit Commands option 423
Edit Language option 423
Edit menu 423, 475, 489
editing
552 IDE 5.7 User’s Guide

source code 91
symbols, shortcuts for 94

editor 83
overview 25
third-party support 450

Editor section, of IDE preference panels 367
Editor Settings panel

options
Balance Flash Delay 418
Browser Commands 431
Font Preferences 428
Insert Template Commands 431
Left margin click selects line 432
Project Commands 436
Relaxed C popup parsing 437
Selection position 439
Sort function popup 445
Use multiple undo 449
VCS Commands 451
Window position and size 451

Editor Settings preference panel 371
options

Balance Flash Delay 373
Balance while typing 373
Browser Commands 372
Debugger Commands 373
Default file format 373
Drag and drop editing 373
Edit Commands 372
Enable Virtual Space 373
Font preferences 372
Insert Template Commands 372
Left margin click selects line 373
Project Commands 373
Relaxed C popup parsing 373
Selection position 372
Sort function popup 373
Use multiple undo 373
VCS Commands 373
Window position and size 372

editor toolbar 86
editor window 83

adding panes to 89
Breakpoints column 88

collapsing toolbar in 86
expanding toolbar in 86
line and column indicator 89
pane splitter controls 89
removing panes from 89
resizing panes 89
text editing area 88

editor windows
other 88
selecting text in 91

Emacs text editor 432
empty projects

creating 34
Empty Target option 53
Enable Automatic Toolbar Help option 423
Enable Breakpoint menu command 512
Enable Browser option 505
Enable Logging checkbox 265
Enable Remote Debugging option 424
Enable Virtual Space option 424
Enable Watchpoint menu command 512
enabled breakpoint 204
enabled eventpoint 215
enabled watchpoint 225
enabling

plug-in diagnostics 503
End text box 269, 281
end-of-line format 421
enlarging panes, in browser 158
Enter Find String command 131
Enter Find String menu command 512
Enter Replace String menu command 512
Entire Flash option button 273
Enums option 377
Environment Settings option 424
Environment Variable option

of Source Trees preference panel 447
Environment Variable option, in Type pop-up

menu 447
environment variables

Macintosh limitations 447
EOL format 421
Erase / Blank Check panel 270
Erase button 272
553IDE 5.7 User’s Guide

Erase Sectors Individually checkbox 271
Errors And Warnings menu command 513
Errors And Warnings Window menu

command 513
Errors Only option

of Plugin Diagnostics 433
eventpoints

defined 214
disabled 215
enabled 215
Log Point 215, 216
Log Point, clearing 217
Log Point, setting 216
Pause Point 215, 217
Pause Point, clearing 218
Pause Point, setting 217
purpose of 203
Script Point 215, 218
Script Point, clearing 219
Script Point, setting 218
setting conditional 223
Skip Point 215, 219
Skip Point, clearing 219
Skip Point, setting 219
Sound Point 215, 220
Sound Point, clearing 221
Sound Point, setting 220
Sound Point, Speak Message 220
Trace Collection Off 215, 221
Trace Collection Off, clearing 221
Trace Collection Off, setting 221
Trace Collection On 215, 221
Trace Collection On, clearing 222
Trace Collection On, setting 222
working with 222

eventpoints, disabling 222
eventpoints, viewing properties for 222
examining debugger data 253
examining memory 237
examining variables 229
exceptions 307
Exceptions In Targeted Classes command in Java

Exceptions submenu 513
executable files

adding to the Other Executables list 408
changing in the Other Executables list 409
removing from the Other Executables

list 409
execution

of program, controlling 187
execution, killing 194
execution, resuming 194
execution, stopping 194
Exit menu command 513
exit() 307
Expand Window menu command 513
expanding

browser panes 158
dockable windows 71

Export 349
Export Panel button 334, 354, 424
Export Project as GNU Makefile menu

command 513
Export Project command 37
Export Project menu command 513, 518
exporting

projects to XML files 37
Expression Simplification 404
Expressions button 190
Expressions menu command 513
Expressions window 233

adding expressions 234
opening 234

Expressions Window menu command 513
Extension field 424
external editor

using on the Macintosh 360
external editor support 450

F
Factory Settings button 427
Failure option 427
FDI 359, 449

and dockable windows 63
fields

Application 416
Arguments 416
Base Classes 178
554 IDE 5.7 User’s Guide

Compiler thread stack 420
Declaration File 177
Extension 424
File Type 427
IP Address 386
Relative to class 177
Run App/Script 341

figure conventions 19
File

Commands&KeyBindings.mkb 349, 350
File column

in Files view of Project window 44
%file command-line string 432
File Compare Results window 139

Apply button 140
Destination pane 140
Differences pane 141
pane resize bar 140
Redo button 141
Source pane 140
Unapply button 140
Undo button 141

File list 123
file management 48
File Mappings list 420
File Mappings settings panel 400

options
Add 402
Change 402
Compiler 401
Edit Language 402
Extension 401
File Mappings list 401
File Type 401
Flags 401
Ignored By Make flag 401
Launchable flag 401
Precompiled File flag 401
Remove 402
Resource File flag 401

File menu 473, 487
New Text File command 487

file modification icon 88
File On Host option button 273

File On Target option button 273
File Path command 45
file paths

viewing 45
File Set list 127
File Set list box 127
File Type field 427
File Type option 420
file-info, breakpoint property 209
filename extensions

default settings 425
files

close all 61
closing 60
comparing 139
creating (Macintosh) 58
creating (Windows) 57
destination (for a comparison) 136
inspecting 36
moving 50
opening 58
print selections 61
printing 61
renaming 50
replacing text in 117
reverting 62
save all 59
saving 59
saving copies 60
searching (multiple) 127
searching (single) 115
source (for a comparison) 136
touching 51
touching all 51
untouching 52
untouching all 52
working with 57

Files In Both Folders pane 143
Files Only In Destination pane 144
Files Only In Source pane 144
Files page, about 43
Files tab 48
Files view 36, 50, 52

Checkout Status column 44
555IDE 5.7 User’s Guide

Code column 44
Data column 44
Debug column 44
File column 44
Interfaces list pop-up 45
Sort Order button 45
Target column 44
Touch column 44

files, tasks for managing 57
Find

by text selection 130
single-file 113

Find All button 114, 119
Find and compare operations option

Shielded Folders panel 427
Find And Open ‘Filename’ menu command 515
Find and Open File command 515
Find and Replace

multiple-file 118
single-file 115

Find And Replace menu command 516
Find and Replace window

All Text option button 117
Cancel button 116
Case Sensitive checkbox 116
Code Only option button 117
Comments Only option button 117
Find button 116
Find text/list box 116
Match Whole Word checkbox 116
Regular Expression checkbox 117
Replace All button 116
Replace button 116
Replace With text/list box 116
Search Selection Only checkbox 117
Search Up checkbox 117
Stop At End Of File checkbox 117

Find button 114, 116, 119
Find command 115, 514
Find Definition & Reference command 111
Find Definition & Reference menu command 514
Find Definition menu command 514
Find In Files menu command 514
Find in Files window

All Text option button 120
Case Sensitive checkbox 120
Code Only option button 120
Comments Only option button 120
Find All button 119
Find button 119
Find text/list box 119
In Files page 126, 127

Add Files button 127
Clear List button 127
File Set list 127
File Set list box 127
Remove A Set button 127
Save This Set button 127

In Files tab 120
In Folders page 120, 121

Browse button 121
By Type text/list box 121
Search In text/list box 121
Search Sub-Folders checkbox 121

In Folders tab 120
In Projects page 122, 123

File list 123
Project Headers checkbox 123
Project list box 123
Project Sources checkbox 123
Search Cached Sub-Targets

checkbox 123
System Headers checkbox 123
Target list box 123

In Projects tab 120
In Symbolics page 124, 125

Symbolics list 125
Symbolics list box 125

In Symbolics tab 120
Match Whole Word checkbox 120
Regular Expression checkbox 120
Replace All button 119
Replace button 119
Replace With text/list box 119
Stop button 119

Find In Next File menu command 515
Find In Previous File menu command 515
Find Next
556 IDE 5.7 User’s Guide

using 130
Find Next command 130
Find Next menu command 515
Find Previous

using 131
Find Previous command 131

enabling in the Customize IDE Commands
window 131

Find Previous menu command 515
Find Previous Selection menu command 515
Find Reference command 111
Find Reference menu command 516
Find Reference using option

IDE Extras panel 427
Find Selection command 132
Find Selection menu command 516
Find symbols with prefix 94
Find symbols with substring 94
Find text/list box 114, 116, 119
Find window

All Text option button 114
Cancel button 114
Case Sensitive checkbox 114
Code Only option button 115
Comments Only option button 115
Find All button 114
Find button 114
Find text/list box 114
Match Whole Word checkbox 114
Regular Expression checkbox 114
Search Selection Only checkbox 114
Search Up checkbox 114
Stop At End Of File checkbox 114

finding problems 313
finding text

overview 113
Flags pop-up menu 401

Ignored By Make flag 401
Launchable flag 401
Precompiled File flag 401
Resource File flag 401

Flash Base + Offset 269
Flash Base Address 269
Flash Configuration panel 265

Flash Memory Base Address text box 266
Flash Programmer pane 262
flash programmer panels

Checksum 272
Erase / Blank Check 270
Flash Configuration 265
Program / Verify 267
Target Configuration 263

Flash Programmer window 261
Cancel button 263
Checksum panel

Calculate Checksum button 273
Details button 273
Entire Flash option button 273
File On Host option button 273
File On Target option button 273
Memory Range On Target option

button 273
Size text box 273
Start text box 273
Status 273

Erase / Blank Check panel
All Sectors checkbox 271
All Sectors list 271
Blank Check button 272
Details button 271
Erase button 272
Erase Sectors individually

checkbox 271
Status 271

Flash Configuration panel
Device pane 266
Flash Memory Base Address text

box 266
Organization pane 267
Sector Address Map pane 267

Flash Programmer pane 262
Load Settings button 262
OK button 263
opening 261
Program / Verify panel

Apply Address Offset checkbox 269
Browse button 268
Details button 270
557IDE 5.7 User’s Guide

End text box 269
Flash Base + Offset 269
Flash Base Address 269
Offset text box 269
Program button 270
Restrict Address Range checkbox 269
Start text box 269
Status 270
Use Selected File checkbox 268
Use Selected File text box 268
Verify button 270

Save Settings button 262
Show Log button 262
Target Configuration panel

Browse button 264
Connection list box 264
Default Project 264
Default Target 264
Enable Logging checkbox 265
Target Memory Buffer Address text

box 264
Target Memory Buffer Size text

box 265
Target Processor text/list box 264
Use Custom Settings checkbox 264
Use Target Initialization checkbox 264
Use Target Initialization text box 264
View Target Memory Writes

checkbox 265
flat view 311
floating a window 69
Floating Document Interface. See FDI.
floating window type 64
focus bar 50
Folder Compare Results window 142

Files In Both Folders pane 143
Files Only In Destination pane 144
Files Only In Source pane 144
Pane Collapse box 143
Pane Expand box 143
pane resize bar 143
Selected Item group 144

folders
comparing 142

Registers 247
searching (multiple) 121

Font & Tabs panel 375
options

Font 428
Scripts 439
Size 443
Tab indents selection 446
Tab Inserts Spaces 446
Tab Size 446

Font & Tabs preference panel 373, 376
options

Auto Indent 375
Font 374
Script 374
Size 374
Tab indents selection 374
Tab Inserts Spaces 375
Tab Size 374

Font option
Font & Tabs panel 428

Font Preferences option
Editor Settings panel 428

Font Settings 375
Foreground option

Text Colors panel 428
Format list box 248
format, for end of line (EOL) 421
formats

for documentation 18
FPU Registers 245
Framework column, in Access Paths panel 396
Full Range Converging subtest 284
function

New Data Member 162
function-level profiling 301, 316
functions

creating new member 162
locating 105, 106

Functions list box 192
Functions list pop-up 86

sorting alphabetically 106, 107
using 106

Functions option 377
558 IDE 5.7 User’s Guide

G
General Registers 245
General section, of IDE preference panels 355
Generate Browser Data From option 429

Compiler 429
Language Parser 429
Language Parser, Macro file 429
Language Parser, Prefix file 429
None 429

Generate Constructor and Destructor 178
Get Next Completion menu command 516
Get next symbol 94
Get Previous Completion menu command 516
Get previous symbol 94
Global Optimizations settings panel 402

options
Details 403
Faster Execution Speed 403
Optimization Level slider 403
Smaller Code Size 403

Global Register Allocation 404
Global Register Allocation Only For Temporary

Values 404
Global Settings panel

options
Maintain Files in Cache 433
Select stack crawl window when task is

stopped 439
Global Settings preference panel

options
Auto Target Libraries 385
Automatically launch applications

when SYM file opened 384
Cache Edited Files Between Debug

Sessions 384
Confirm "Kill Process" when closing or

quitting 384
Confirm invalid file modification dates

when debugging 384
Don’t step into runtime support

code 385
Maintain files in cache 384
Purge Cache 384

Select stack crawl window when task is
stopped 384

Global Variables menu command 517
Global Variables window 229

opening 230
viewing for different processes 230

Global Variables Window menu command 517
Globals option 377
Go Back 154
Go Back menu command 517
Go Forward 154
Go Forward menu command 517
Go To Line menu command 517
going back 107
going forward 107
going to a particular line 107
gray background, adding behind IDE. See Use

Multiple Document Interface, turning on.
gray background, removing from behind IDE. See

Use Multiple Document Interface, turning off.
Grid Size X option

Layout Editor panel 429
Grid Size Y option

Layout Editor panel 429
group management 48
grouping

regular expressions 134
groups

moving 50
removing 48
renaming 50
Selected Item 144
touching 51
touching all 51
untouching 52
untouching all 52

Groups tab 206

H
hardware diagnostic panels

Configuration 275
Memory Read / Write 276
Memory Tests 280

Address 283
559IDE 5.7 User’s Guide

Bus Noise 284
Bus Noise in address lines 284
Bus Noise in data lines 285
Walking Ones 282

Scope Loop 278
Hardware Diagnostics pane 275
Hardware Diagnostics window 274

Cancel button 275
Configuration panel

Browse button 276
Connection list box 276
Default Project 276
Default Target 276
Target Processor text/list box 276
Use Custom Settings checkbox 276
Use Target Initialization checkbox 276
Use Target Initialization text box 276

Hardware Diagnostics pane 275
Load Settings button 275
Memory Read / Write panel

Access Target button 278
Byte option button 277
Details button 278
Long Word option button 277
Read option button 277
Status 278
Target Address text box 277
Value to write text box 278
Word option button 277
Write option button 277

Memory Tests panel
Address checkbox 281
Begin Test button 282
Bus Noise checkbox 281
Byte option button 281
Details button 282
End text box 281
Long Word option button 282
Passes text box 282
Show Log button 282
Start text box 281
Status 282
Target Scratch Memory End text

box 282

Target Scratch Memory Start text
box 282

Use Target CPU checkbox 282
Walking 1’s checkbox 281
Word option button 282

OK button 275
opening 274
Save Settings button 275
Scope Loop panel

Begin Scope Loop button 280
Byte option button 279
Details button 280
Long Word option button 279
Read option button 279
Speed slider 280
Status 280
Target Address text box 279
Value to write text box 279
Word option button 279
Write option button 279

hardware tools, working with 261
hardware, breakpoint property 209
headers

caching precompiled headers 430
Help menu 486, 501
Help Preferences panel 361

options
Browser Path 361
Set 361

Hide Breakpoints menu command 517
Hide Classes 160
Hide Classes pane 163
Hide Floating Toolbar command 517
Hide Main Toolbar command in Toolbar

submenu 517
Hide non-debugging windows option

Windowing panel 429
Hide Window Toolbar command 518
hiding

classes pane 160
Hierarchy Control 166
hierarchy window 166
hierarchy windows

changing line views 168
560 IDE 5.7 User’s Guide

using to view class data 158
hit count, breakpoint property 209
Horizontal Center command 518
Host Application for Libraries & Code Resources

option
Runtime Settings panel 430

Host Application For Libraries And Code
Resources field

of Runtime Settings panel 430
Host Name text box 287
host-specific registers 245
how to

activate automatic code completion 96
add a constant to a variable 235
add a keyword to a keyword set 406
add an executable file 408
add expressions (Expressions window) 234
add markers to a source file 109
add panes to an editor window 89
add remote connections 386
add source trees 366
adding subprojects to a project 39
alphabetize Functions list pop-up order 106,

107
apply file differences 141
arm a logic analyzer 289
attach the debugger to a process 258
balance punctuation 94
change an executable file 409
change line views in a hierarchical

window 168
change register data views 246
change register values 246
change remote connections 387
change source trees 366
change the find string 131
choose a default project 37
choose files to compare 137
choose folders to compare 138
clear a breakpoint 210
clear a Log Point 217
clear a Pause Point 218
clear a Script Point 219
clear a Skip Point 219

clear a Sound Point 221
clear a Trace Collection Off eventpoint 221
clear a Trace Collection On eventpoint 222
clear a watchpoint 227
clear all breakpoints 210
clear all watchpoints 227
close a docked window 71
close a workspace 75
close projects 38
collapse a docked window 71
collapse browser panes 159
collapse the editor window toolbar 86
complete code for data members 101
complete code for parameter lists 102
connect to a logic analyzer 289
create a breakpoint template 212
create a console application 78
create a new class 160, 175, 176
create a new data member 183
create a new data members 162
create a new member function 162, 180, 181
create custom project stationery 38
create empty projects 34
create new projects from makefiles 33
create new projects using project

stationery 33
deactivate automatic code completion 97
delete a breakpoint template 213
disable a breakpoint 210
disable a watchpoint 226
disable an eventpoint 222
disarm a logic analyzer 289
disconnect from a logic analyzer 289
dock a window by using a contextual

menu 66
dock a window by using drag and drop 67
dock windows of the same kind 67
enable a breakpoint 210, 223
enable a watchpoint 226
examine items in the Folder Compare

Results window 144
expand a docked window 71
expand browser panes 158
expand the editor window toolbar 86
561IDE 5.7 User’s Guide

export projects to XML files 37
float a window 69
generate project link maps 330
go to a particular line 107
hide the classes pane 160
import projects saved as XML files 37
indent text blocks 93
insert a reference template 111
issue command lines 293
kill program execution 194
look up symbol definitions 111
make a summation of two variables 235
make a window an MDI Child 70
manipulate variable formats 232
move a docked window 71
navigate browser data 150
navigate Code Completion window 100
navigate to a marker 109
open a recent workspace 76
open a single-class hierarchical window 169
open a workspace 74
open an Array window 243
open projects 35
open projects created on other hosts 35
open registers in a separate Registers

window 247
open subprojects 40
open the Breakpoints window 207
open the Cache window 290
open the Command window 292
open the Expressions window 234
open the Flash Programmer window 261
open the Global Variables window 230
open the Hardware Diagnostics window 274
open the Log window 259
open the Processes window 256, 257
open the Profile window 291
open the Registers window 245
open the Symbolics window 255
open the symbols window 172
open the Target Settings window 391
open the Trace window 290
overstrike text (Windows) 92
print class hierarchies 167

print projects 36
remove a keyword from a keyword set 407
remove a marker from a source file 109
remove all markers from a source file 110
remove an executable file 409
remove panes from an editor window 89
remove remote connections 387
remove source trees 367
replace text in a single file 117
resize panes in an editor window 89
restart the debugger 195
resume program execution 194
run a program 195
save a copy of a workspace 75
save a workspace 74
save projects 35
save the contents of the Breakpoints

window 207
search a single file 115
search for text across multiple files 127
search for text across multiple folders 121
search for text across multiple projects 123
search for text across multiple symbolics

files 125
search with a text selection 132
select entire routines 92
select item in Code Completion window 101
select lines 92
select multiple lines 92
select rectangular portions of lines 92
select text in editor windows 91
set a breakpoint 207
set a conditional breakpoint 211
set a conditional eventpoint 223
set a conditional watchpoint 227
set a Log Point 216
set a Pause Point 217
set a Script Point 218
set a Skip Point 219
set a Sound Point 220
set a temporary breakpoint 211
set a Trace Collection Off eventpoint 221
set a Trace Collection On eventpoint 222
set a watchpoint 225
562 IDE 5.7 User’s Guide

show the classes pane 160
sort the classes list 161
specify the default breakpoint template 214
start the debugger 192
step into a routine 193
step out of a routine 193
step over a routine 193
stop program execution 194
suppress dockable windows 70
toggle automatic punctuation balancing 95
toggle the symbol hint 195
trigger code completion by keyboard 97
trigger code completion from IDE menu

bar 97
unapply file differences 141
undock a window 68
unfloat a window 69
unindent text blocks 93
update data from a logic analyzer 289
use an external editor on the Macintosh 360
use contextual menus 197
use the default workspace 73
use the document settings pop-up 87
use the Executables pane in the Symbolics

window 255, 256
use the Files pane in the Symbolics

window 255
use the Find Next command 130
use the Find Previous command 131
use the Functions list pop-up 106
use the Functions pane in the Symbolics

window 255
use the Interfaces list pop-up 106
use the symbol hint 196
use the VCS pop-up 87
use virtual space 93
view a file path 45
view breakpoint properties 208
view browser data by contents 170
view browser data by inheritance 166
view class data from hierarchy window 158
view eventpoint properties 222
view global variables for different

processes 230

view registers 245
view watchpoint properties 226

I
icon

for Tools menu 500
for VCS menu 500

icons
Active 207
file modification 88
for data members 161
for member functions 161
Inactive 207

IDE
and threading 420
Apple menu 486
Code Completion window 98
CodeWarrior menu 487
Data menu 483, 497
Debug menu 482, 495
Edit menu 475, 489
editing source code 91
editor 83
File menu 473, 487
Flash Programmer window 261
Hardware Diagnostics window 274
hardware tools 261
Help menu 486, 501
linkers 329
Mac-hosted 344
menu reference 473
preferences, working with 353
project manager and build targets 29
Project menu 479, 492
Scripts menu 501
Search menu 478, 490
target settings, working with 389
Tools menu 500
tools overview 24
User’s Guide overview 17
VCS menu 500
Window menu 477, 485, 498
Windows-hosted 344
workspaces 73
563IDE 5.7 User’s Guide

IDE Extras 500, 501
IDE Extras panel

options
Documents 422
Find Reference using 427
Launch Editor 431
Launch Editor w/ Line # 432
Menu bar layout 434
Projects 436
Symbolics 446
Use Default Workspace’ 448
Use External Editor 448
Use Multiple Document Interface 449
Use Script menu 449
Use ToolServer menu 450
Workspaces 452
Zoom windows to full screen 452

IDE Extras preference panel 358
options

Context popup delay 359
Documents 359
Enable automatic Toolbar help 360
Find Reference using 360
Launch Editor 359
Launch Editor w/ Line # 359
Menu bar layout 359
Projects 359
Recent symbolics 359
Use Default workspace 360
Use External Editor 360
Use Multiple Document Interface 359
Use Script menu 360
Use Third Party Editor 359
Use ToolServer menu 360
Zoom windows to full screen 359

Use Third Party Editor option 450
IDE Preference Panels list 354
IDE Preference Panels, Font & Tabs 375
IDE Preference Panels, Font Settings 375
IDE preferences

Activate Browser Coloring 377
Activate Syntax Coloring 377
Add 363, 365, 386

Attempt to use dynamic type of C++, Object
Pascal and SOM objects 381

Auto Indent 375
Auto Target Libraries 385
Automatic Invocation 368
Automatically launch applications when

SYM file opened 384
Background 377
Balance Flash Delay 373
Balance while typing 373
Browser Commands 372
Browser Path 361
Build before running 356
Cache Edited Files Between Debug

Sessions 384
Case sensitive 368
Change 364, 365, 386
Choose 365
Classes 377
Close Braces, Brackets, And

Parentheses 371
Close non-debugging windows 382
Code Completion Delay 368
Collapse non-debugging windows 382
Comments 377
Compiler thread stack 357
Confirm "Kill Process" when closing or

quitting 384
Confirm invalid file modification dates when

debugging 384
Constants 377
Context popup delay 359
Debugger Commands 373
Default file format 373
Default size for unbounded arrays 381
Disable third party COM plugins 362
Display deprecated items 368
Do nothing 382
Do nothing to project windows 382
Documents 359
Don’t step into runtime support code 385
Drag and drop editing 373
Edit 377
Edit Commands 372
564 IDE 5.7 User’s Guide

Enable automatic Toolbar help 360
Enable Virtual Space 373
Enums 377
Failure 356
Find and compare operations 363
Find Reference using 360
Font 374
Font preferences 372
Foreground 377
Format Braces 370
Functions 377
Globals 377
Hide non-debugging windows 382
Include file cache 356
Indent Braces 370
Indent Case Within Switch Statement 371
Indent Code Within Braces 370
Insert Template Commands 372
Keywords 377
Language Settings 369
Launch Editor 359
Launch Editor w/ Line # 359
Left margin click selects line 373
Level 362
Macros 378
Maintain files in cache 384
Menu bar layout 359
Minimize non-debugging windows 382
Monitor for debugging 382
Move open windows to debugging monitor

when debugging starts 383
Name 365
Open windows on debugging monitor during

debugging 383
Other 378
Place Else On Same Line As Closing

Brace 370
Place Opening Brace On Separate Line 370
Play sound after ‘Bring Up To Date’ &

‘Make’ 356
Project Commands 373
Project operations 363
Projects 359
Purge Cache 384

Recent symbolics 359
Recommended 358
Regular Expression 363
Relaxed C popup parsing 373
Remote Connection list 386
Remove 364, 365, 386
Save open files before build 356
Script 374
Select stack crawl window when task is

stopped 384
Selection position 372
SEt 361
Set 1, Set 2, Set 3, Set 4 377
Shielded folder list 363
Show all locals 380
Show message after building up-to-date

project 356
Show tasks in separate windows 383
Show values as decimal instead of hex 381
Show variable location 380
Show variable types 380
Show variable values in source code 381
Size 374
Sort function popup 373
Sort functions by method name in symbolics

window 381
Source Tree list 365
Strings 377
Success 356
Tab indents selection 374
Tab Inserts Spaces 375
Tab Size 374
Templates 378
Type 365
TypeDefs 378
Use Automatic Code Formatting 369
Use Concurrent Compiles 357
Use Debugging Monitor 382
Use Default workspace 360
Use External Editor 360
Use Local Project Data Storage 357
Use Multiple Document Interface 359
Use multiple undo 373
Use Script menu 360
565IDE 5.7 User’s Guide

Use Third Party Editor 359
Use ToolServer menu 360
User Specified 358
Variable values change 380
VCS Commands 373
Watchpoint indicator 380
Window follows insertion point 368
Window position and size 372
Zoom windows to full screen 359

IDE Preferences window 226, 334, 353, 354
Apply button 355
Cancel button 355
Factory Settings button 334, 354
IDE Preference Panels list 354
Import Panel 430
Import Panel button 335, 354
OK button 355
Revert Panel button 334, 354
Save button 335, 355

Ignore Extra Space checkbox 137
Ignored By Make File flag 401
Import button 350
Import Commands 350
Import Components menu command 518
Import Panel 430
Import Project command 37
Import Project menu command 518
importing

projects saved as XML files 37
In Files page 126, 127
In Files tab 120
In Folders page 120, 121
In Folders tab 120
In Projects page 122, 123
In Projects tab 120
In Symbolics page 124, 125
In Symbolics tab 120
Inactive icon 207
Include file cache option

Build Settings panel 430
Include Files 182
Include files 179
#include files, caching 430
indenting

text blocks 93
Initial Directory field

Build Extras panel 430
Initializer 184
Insert Reference Template 112
Insert Reference Template menu command 518
Insert Template Commands option

Editor Settings panel 431
inserting a reference template 111
inspecting

project files 36
Installed Products button 503
Instances tab 206
Instruction Scheduling 405
interface files

locating 105
Interface menu 51
Interfaces list pop-up

in Files view of Project window 45
using 106

interfaces list pop-up 86
interrupt time

and profiler 320
interrupt time, and profiler 320
IP Address field 386

J
Java Exceptions Submenu

No Exceptions command 520
Java Exceptions submenu

All Exceptions command 504
Exceptions In Targeted Classes

command 513
Uncaught Exceptions Only command 534

Java submenu 504, 513, 520, 534

K
Key Bindings 333, 335

Add 348
Customize 347

key bindings 111
keyboard conventions 20
keyboard shortcuts

Find symbols with prefix 94
566 IDE 5.7 User’s Guide

Find symbols with substring 94
Get next symbol 94
Get previous symbol 94

keys
Quote Key prefix 350

keywords
adding to a keyword set 406
removing from a keyword set 407

Keywords option
Text Colors panel 431

Kill button 190
Kill command 194
Kill menu command 518
killing program execution 194

L
Language Parser option, in Generate Browser

Data From menu 429
Launch Editor option

IDE Extras panel 431
Launch Editor w/ Line # option

IDE Extras panel 432
Launch Remote Host Application option

Remote Debugging settings panel 432
Launchable flag 401
Layout Editor panel

options
Grid Size X 429
Grid Size Y 429
Show the component palette when

opening a form 442
Show the object inspector when

opening a form 442
layout management 48
layouts

moving 50
removing 48
renaming 50

least significant bit 283
Left Edges command 518
Left margin click selects line option

Editor Settings panel 432
Level option

Plugin Settings panel 432

libraries
profiler 303

Lifetime Based Register Allocation 405
line

going to in source code 107
Line And Column button 192
line and column indicator, in editor window 89
%line command-line string 432
Line Display 166
lines, selecting 92
lines, selecting multiple 92
lines, selecting rectangular portions of 92
link maps

generating for projects 330
Link Order page 47
Link Order tab 48
Link Order view 36, 50
Linker option

Target Settings panel 433
linkers 329

choosing 329
linking projects 330
Linux

modifier key mappings 20
list

of symbols in Browser Contents
window 170

list boxes
Analyzer Type 287
Bit Value Modifier 249
Bitfield Name 249
Connection 264, 276
Connection Type 287
Debugger 287
File Set 127
Format 248
Functions 192
Project 123
Source 192
Symbolics 125
Target 123
Text View 250, 251

list menus
document settings 87
567IDE 5.7 User’s Guide

functions 86
interfaces 86
markers 86
VCS 87

list pop-up menus
Current Target 42

list pop-ups
Ancestor 166
Browser Access Filters 155
document settings 87
functions 86
interfaces 86
markers 86
Symbols 170
VCS 156

lists
All Sectors 271
File 123
File Mappings 420
File Set 127
Symbolics 125

Live Range Splitting 404
Load Settings button 262, 275
locating functions 105, 106
locating interface files 105
locating source code 105
Location of Relocated Libraries and Code

Resources option
Debugger Settings panel 433

Log Message checkbox 216
Log Point 215, 216
Log Point Settings window 216

Message text box 216
Speak Message checkbox 216
Stop in Debugger checkbox 217
Treat as Expression checkbox 217

Log Point, clearing 217
Log Point, setting 216
Log System Messages 258
Log System Messages option

Debugger Settings panel 433
Log Window

Log System Messages option 258
Log window 258

opening 259
logic analyzer 285

Arm command 289
arming 289
configuring a project 285
Connect command 288
connecting to 289
Disarm command 289
disarming 289
Disconnect command 289
disconnect from 289
Update Data command 289
updating data from 289
using 288

Logic Analyzer connection options
Analyzer Can Cause Target Breakpoint

checkbox 288
Analyzer Configuration File text box 287
Analyzer Slot text box 287
Analyzer Type list box 287
Connection Type list box 287
Debugger list box 287
Host Name text box 287
Name text box 287
Target Breakpoint Can Cause Analyzer

Trigger checkbox 288
Trace Support File text box 288

Long Word option button 277, 279, 282
longjmp() 307
looking up symbol definitions 111
Loop Transformations 405
Loop Unrolling 405
Loop Unrolling (Opt For Speed Only) 405
Loop-Invariant Code Motion 405
LSB 283

M
Mac OS

QuickHelp 110
QuickView 110, 111
THINK Reference 111

Mac OS X API 428
machines, defined 256
Macintosh
568 IDE 5.7 User’s Guide

creating files 58
using an external editor 360

Macintosh menu layout 486
Macro file option, in Generate Browser Data

From menu 429
Macros option 378
Maintain Files In Cache option 419
Maintain Files in Cache option

Global Settings panel 433
Make command 50, 51, 52
Make menu command 519
Make option 427
Make toolbar button 42
Makefile Importer wizard 33
makefiles

converting into projects 33
managing

build targets 53
projects 32
targets 53

managing files, tasks 57
manipulating program execution 203

Breakpoints window 204
manual conventions 19
markers 108

adding to a source file 109
navigating to 109
removing all from source files 110
removing from source files 109

Markers list pop-up 86
Markers list, in Remove Markers window 109
Match Whole Word checkbox 114, 116, 120
matching

any character with regular expressions 134
replace strings to find strings with regular

expressions 134, 135
with simple regular expressions 133

Maximize Window menu command 519
Maximum Invert Convergence subtest 284
.mcp 35
MDI 359, 434, 449

and dockable windows 63
making a window an MDI child 70

Member Function Declaration 182

member functions
creating 162, 181
identifier icons 161

Member Functions pane 161
in Class Browser window 155

memory aliasing, defined 283
memory dump 537
Memory Range On Target option button 273
Memory Read / Write panel 276
memory tests

Address 283
Bus Noise 284

address lines 284
data lines 285

Bus Noise test
Full Range Converging subtest 284
Maximum Invert Convergence

subtest 284
Sequential subtest 284

Walking Ones 282
Walking Ones test

Address Line fault 282
Data Line fault 283
Ones Retention subtest 283
Retention fault 283
Walking Ones subtest 283
Walking Zeros subtest 283
Zeros Retention subtest 283

Memory Tests panel 280
Address test 283
Bus Noise test 284

address lines 284
data lines 285

Walking Ones test 282
memory usage 317
Memory window 237
memory, working with 237
Menu

Current Target 345
menu

Search 111
Menu bar layout option

IDE Extras panel 434
menu commands
569IDE 5.7 User’s Guide

About Metrowerks CodeWarrior 503
Add Files 503
Add Window 503
Apply Difference 141, 504
Arm 289
Balance 504
Bottom Edges 504
Break 505
Break On C++ Exception 505
Break on Java Exceptions 505
Breakpoints 505
Breakpoints Window 505
Bring To Front 505
Bring Up To Date 505
Browser Contents 505
Build Progress 505
Build Progress Window 505
Can’t Redo 475, 489
Can’t Undo 475, 489
Cascade 506
Change Program Counter 506
Check Syntax 506
Class Browser 506
Class Hierarchy 507
Class Hierarchy Window 507
Clear 507
Clear All Breakpoints 507
Clear All Watchpoints 507
Clear Breakpoint 507
Clear Eventpoint 507
Clear Watchpoint 508
Close 508
Close All 508
Close All Editor Documents 508
Close Catalog 508
Close Workspace 508
CodeWarrior Help 509
Collapse Window 509
Commands & Key Bindings 508
Compare Files 137, 509
Compile 509
Complete Code 509
Connect 288, 509
Copy 509

Copy To Expression 510
Create Design 510
Create Group 510
Create Target 510
Cycle View 510
Debug 511
Delete 511
Disable Breakpoint 511
Disable Watchpoint 511
Disarm 289
Disassemble 511
Disconnect 289
Display Grid 511
Enable Breakpoint 512
Enable Watchpoint 512
Enter Find String 131, 512
Enter Replace String 512
Errors And Warnings 513
Errors And Warnings Window 513
Exit 513
Expand Window 513
Export Project 513, 518
Export Project as GNU Makefile 513
Expressions 513
Expressions Window 513
Find 115, 514
Find and Open ‘Filename’ 515
Find and Open File 515
Find And Replace 516
Find Definition 514
Find Definition & Reference 514
Find In Files 514
Find In Next File 515
Find In Previous File 515
Find Next 130, 515
Find Previous 131, 515
Find Previous Selection 515
Find Reference 516
Find Selection 132, 516
Get Next Completion 516
Get Previous Completion 516
Global Variables 517
Global Variables Window 517
Go Back 517
570 IDE 5.7 User’s Guide

Go Forward 517
Go To Line 517
Hide Breakpoints 517
Hide Window Toolbar 518
Import Components 518
Import Project 518
Insert Reference Template 112, 518
Kill 518
Make 519
Maximize Window 519
Metrowerks Website 516
Minimize Window 519
New 519
New Class 519
New Class Browser 519
New Data 519
New Event 520
New Event Set 520
New Expression 520
New Member Function 520
New Method 520
New Property 520
New Text File 520
Open 521
Open Recent 521
Open Scripts Folder 521
Open Workspace 521
Page Setup 521
Precompile 522
Preferences 522
Print 522
Processes 522
Processes Window 522
Redo 522
Refresh All Data 523
Register Details Window 247, 523
Register Windows 523
Registers 523
Remove Object Code 523
Remove Object Code & Compact 523
Remove Toolbar Item 345
Replace 117, 524
Replace All 524
Replace and Find Next 524

Resume 526
Revert 526
Run 436, 526
Run To Cursor 527
Save Default Window 527
Save Workspace 527
Save Workspace As 528
Select All 528
Send To Back 528
Set Breakpoint 528
Set Default Project 528
Set Default Target 528
Set Eventpoint 528
Set Watchpoint 529
Shift Right 529
Show Breakpoints 507, 529
Show Types 529
Show Window Toolbar 518
Stack Editor Windows 530
Step Over 530
Stop Build 530
Switch To Monitor 530
Symbolics 530
Symbolics Window 530
Synchronize Modification Dates 530
Unapply Difference 141
Update Data 289
View Array 535
View As Unsigned Decimal 535, 536
View Disassembly 537
View Mixed 537
View Source 537
View Variable 537
Zoom Window 537

menu layouts
Macintosh 486
Windows 473

menu reference
for IDE 473

menus 155
contextual 196
VCS 163

Message text box 216
Metrowerks Website command 516
571IDE 5.7 User’s Guide

microsecondsTimeBase 305, 317
Minimize non-debugging windows option

Windowing panel 434
Minimize Window menu command 519
Monitor for debugging option

Windowing panel 434
most significant bit 283
Move open windows to debugging monitor when

debugging starts option
Windowing panel 434

moving
build targets 50
dockable windows 71
files 50
groups 50
layouts 50
targets 50

MSB 283
Multi-Class Hierarchy window 165, 168
multi-core debugging 197
Multiple Document Interface. See MDI.
multiple files, searching 127
multiple folders, searching 121
multiple projects, searching 123
multiple Redo 523
multiple symbolics files, searching 125
multiple Undo 523
multiple-file Find and Replace window 118

N
Name field 335
Name text box 287
name, breakpoint property 209
navigating

browser data 150
Code Completion window 100
to markers 109

navigating data 150
navigating source code 105
New Binding 335, 348
New C++ Class window 177
New C++ Data Member window 184
New C++ Member Function window 182
New Class Browser menu command 519

New Class menu command 519
New Class wizard 160, 175, 176
New Command 336
New command 57, 78
New Command Group

Create 336
New Connection dialog box 386
New Data Member 162, 181, 184
new data member functions

creating 183
New Data Member wizard 162, 183
New Data menu command 519
New Event menu command 520
New Event Set menu command 520
New Expression menu command 520
New Group 336
New Item 160
New Member Function menu command 520
New Member Function wizard 162, 180, 181
new member functions

creating 180
New Menu Command

Create 336, 340
New menu command 519
New Method menu command 520
New Property menu command 520
New Text File command 58
New Text File menu command 520
Next Result button 130
No Exceptions command 520
None option

of Plugin Diagnostics 432
None option, in Generate Browser Data From

menu 429
non-modal, defined 65
notes

for the latest release 17
Numeric Keypad Bindings 348
Numeric Keypad Bindings checkbox

of Customize IDE Commands window 351

O
object performance 312
Offset text box 269
572 IDE 5.7 User’s Guide

OK button 263, 275
Ones Retention subtest 283
Only Show Different Files checkbox 137
Open command 58
Open File 163
Open In Windows Explorer command 45
Open menu command 521
Open Recent menu command 521
Open Scripts Folder menu command 521
Open windows on debugging monitor during

debugging option
Windowing panel 435

Open Workspace menu command 521
opening 172

a recent workspace 76
a single-class hierarchical window 169
files 58
Flash Programmer window 261
Hardware Diagnostics window 274
projects 35
projects from other hosts 35
subprojects 40
Symbolics window 255
symbols window 172
workspaces 74

opening last project (default workspace) 448
opening last project, preventing (default

workspace) 448
openings

registers in a separate Registers window 247
optimizations

Arithmetic Optimizations 404
Branch Optimizations 404
Common Subexpression Elimination 404
Copy And Expression Propagation 404
Copy Propagation 404
Dead Code Elimination 404
Dead Store Elimination 404
Expression Simplification 404
Global Register Allocation 404
Global Register Allocation Only For

Temporary Values 404
Instruction Scheduling 405
Lifetime Based Register Allocation 405

Live Range Splitting 404
Loop Transformations 405
Loop Unrolling 405
Loop Unrolling (Opt For Speed Only) 405
Loop-Invariant Code Motion 405
Peephole Optimization 404
Register Coloring 405
Repeated 405
Strength Reduction 405
Vectorization 405

option buttons
All text 114, 117, 120
Byte 277, 279, 281
Code Only 115, 117, 120
Comments Only 115, 117, 120
Entire Flash 273
File on Host 273
File on Target 273
Long Word 277, 279, 282
Memory Range on Target 273
Read 277, 279
Word 277, 279, 282
Write 277, 279

options 423
Access Paths settings panel 362, 393
Activate Browser 514
Activate Browser Coloring 415
Activate Syntax Coloring 415, 420
Add Default 415
Always Search User Paths 415
Application 416
Arguments 416
Attempt to use dynamic type of C++, Object

Pascal and SOM objects 416
Auto Indent 416
Auto Target Libraries 416
Automatic Invocation 416
Automatically Launch Applications When

SYM File Opened 417
Auto-target Libraries 416
Background 417
Balance Flash Delay 417
Balance while typing 417, 418
Bring Up To Date 427
573IDE 5.7 User’s Guide

Browse in processes window 386, 387
Browser Commands 418
Browser Path 418
Build before running 418
Build Extras settings panel 396
Build Settings preference panel 355
Cache Edited Files Between Debug

Sessions 419
Cache Subprojects 419
Cache symbolics between runs 419
Case Sensitive 419
Checksum panel 272
choosing host application for non-executable

files 430
Classes 377
Close non-debugging windows 420
Code Completion Delay 420
Code Completion preference panel 367
Code Formatting preference panel 369
Collapse non-debugging windows 420
Comments 420
Compiler 420
Compiler thread stack 420
Concurrent Compiles preference panel 357
Configuration panel 275
Confirm “Kill Process” when closing or

quitting 421
Confirm invalid file modification dates when

debugging 421
Connection Type 386, 387
Constants 377
Context popup delay 421
Debugger Commands 421
Debugger preference panels 379
Debugger Settings 258
Debugger Settings panel 410
Default File Format 421
Default size for unbounded arrays 422
Disable third party COM plugins 422
Display Deprecated Items 422
Display Settings preference panel 379
Do nothing 422
Do nothing to project windows 422
Drag and drop editing 423

Dump internal browse information after
compile 423

Edit Commands 423
Edit Language 423
Editor preference panels 367
Editor Settings preference panel 371
Enable automatic Toolbar help 423
Enable remote debugging 424
Enable Virtual Space 424
Enums 377
Environment Settings 424
Erase / Blank Check panel 270
Failure 427
File Mappings settings panel 400
File Type 420
Flash Configuration panel 265
Font & Tabs preference panel 373, 376
Functions 377
General preference panels 355
Generate Browser Data From 429
Global Optimizations settings panel 402
Globals 377
Help Preferences panel 361
IDE Extras preference panel 358
Import Panel 430
Macros 378
Maintain files in cache 419
Make 427
Memory Read / Write panel 276
Memory Tests panel 280
Other 378
Other Executables settings panel 407
Plugin Settings preference panel 361
Program / Verify panel 267
Purge Cache 419
Remote Connections preference panel 385
Remote Debugging settings panel 411
Require Framework Style Includes 437
Runtime Settings panel 398
Scope Loop panel 278
Set 1, Set 2, Set 3, Set 4 377
setting for browser 147
Shielded Folders preference panel 362
Source Trees preference panel 364
574 IDE 5.7 User’s Guide

Target Configuration panel 263
Target Settings panel 392
Templates 378
TypeDefs 378
Use Multiple Document Interface 63
User specified 411
Window Follows Insertion Point 451
Window Settings preference panel 381

Organization pane 267
original process, breakpoint property 209
original-target, breakpoint property 209
other editor windows 88
Other Executables settings panel 407
Other option 378
Output Directory option

Target Settings panel 435
Overlays tab 48
overstrike 92
overstriking text (Windows) 92
overtype. See overstrike.
overview

of browser 25
of build system 26
of CodeWarrior 21
of debugger 26
of editor 25
of IDE project manager and build targets 29
of IDE tools 24
of IDE User’s Guide 17
of project manager 25
of search engine 25

P
Page Setup command 521
pages

In Files 126
In Folders 120
in project window 43
In Projects 122
In Symbolics 124

PalmQuest reference 428
Pane Collapse 159
Pane Collapse box 143, 190
Pane Expand 158

Pane Expand box 143, 190
Pane resize bar 130, 140, 143, 191
pane resize bar

in File Compare Results window 140
in Folder Compare Results window 143

pane splitter controls, in editor window 89
panel

Display Settings 226
panels

Analyzer Connections 285
Font & Tabs 375

panes
adding to editor window 89
Destination 140
Device 266
Differences 141
Files in Both Folders 143
Files Only in Destination 144
Files Only in Source 144
Flash Programmer 262
Hardware Diagnostics 275
Organization 267
removing from editor window 89
resizing in an editor window 89
Results 130
Sector Address Map 267
Source 140, 191
Source Code 130
Stack 191
Variables 191

parameter lists
completing code 102

Passes text box 282
path caption 88
Pause Point 215, 217
Pause Point, clearing 218
Pause Point, setting 217
Peephole Optimization 404
Play sound after ‘Bring Up To Date’ & ‘Make’

option
Build Settings panel 435

Plugin Diagnostics
All Info option 433
Errors Only option 433
575IDE 5.7 User’s Guide

None option 432
plug-in diagnostics

disabling 503
enabling 503

Plugin Settings panel
options

Level 432
Plugin Settings preference panel 361

options
Disable third party COM plugins 362
Level 362

plug-ins
saving information about those installed in

IDE 503
viewing those installed in IDE 503

pop-up menus
document settings 87
functions 86
interfaces 86
markers 86
VCS 87

pop-ups
Ancestor 166
Browser Access Filters 155
Symbols 170
VCS 156

Post-linker option
Target Settings panel 435

PPCTimeBase 305, 317
Precompile menu command 522
Precompiled File flag 401
precompiled headers

caching 430
preference panels

Build Settings 355
Code Completion 367
Code Formatting 369
Concurrent Compiles 357
Display Settings 379
Editor Settings 371
Font & Tabs 373, 376
Help Preferences 361
IDE Extras 358
Plugin Settings 361

Remote Connections 385
reverting 438
Shielded Folders 362
Source Trees 364
Window Settings 381

preferences
Activate Browser Coloring 377
Activate Syntax Coloring 377
Add 363, 365, 386
Apply button 355
Attempt to use dynamic type of C++, Object

Pascal and SOM objects 381
Auto Indent 375
Auto Target Libraries 385
Automatic Invocation 368
Automatically launch applications when

SYM file opened 384
Background 377
Balance Flash Delay 373
Balance while typing 373
Browser Commands 372
Browser Path 361
Build before running 356
Cache Edited Files Between Debug

Sessions 384
Cancel button 355
Case sensitive 368
Change 364, 365, 386
Choose 365
Classes 377
Close Braces, Brackets, And

Parentheses 371
Close non-debugging windows 382
Code Completion Delay 368
Collapse non-debugging windows 382
Comments 377
Compiler thread stack 357
Confirm "Kill Process" when closing or

quitting 384
Confirm invalid file modification dates when

debugging 384
Constants 377
Context popup delay 359
Debugger 379
576 IDE 5.7 User’s Guide

Debugger Commands 373
Default file format 373
Default size for unbounded arrays 381
Disable third party COM plugins 362
Display deprecated items 368
Do nothing 382
Do nothing to project windows 382
Documents 359
Don’t step into runtime support code 385
Drag and drop editing 373
Edit 377
Edit Commands 372
Editor 367
Enable automatic Toolbar help 360
Enable Virtual Space 373
Enums 377
Export Panel button 334, 354
Factory Settings button 334, 354
Failure 356
Find and compare operations 363
Find Reference using 360
Font 374
Font preferences 372
for IDE 353
Foreground 377
Format Braces 370
Functions 377
General 355
Globals 377
Hide non-debugging windows 382
IDE Preference Panels list 354
IDE window 353
Import Panel button 335, 354
Include file cache 356
Indent Braces 370
Indent Case Within Switch Statement 371
Indent Code Within Braces 370
Insert Template Commands 372
Keywords 377
Language Settings 369
Launch Editor 359
Launch Editor w/ Line # 359
Left margin click selects line 373
Level 362

Macros 378
Maintain files in cache 384
Menu bar layout 359
Minimize non-debugging windows 382
Monitor for debugging 382
Move open windows to debugging monitor

when debugging starts 383
Name 365
OK button 355
Open windows on debugging monitor during

debugging 383
Other 378
Place Else On Same Line As Closing

Brace 370
Place Opening Brace On Separate Line 370
Play sound after ‘Bring Up To Date’ &

‘Make’ 356
Project Commands 373
Project operations 363
Projects 359
Purge Cache 384
Recent symbolics 359
Recommended 358
Regular Expression 363
Relaxed C popup parsing 373
Remote Connection list 386
Remove 364, 365, 386
Revert Panel button 334, 354
Save button 335, 355
Save open files before build 356
Script 374
Select stack crawl window when task is

stopped 384
Selection position 372
Set 361
Set 1, Set 2, Set 3, Set 4 377
Shielded folder list 363
Show all locals 380
Show message after building up-to-date

project 356
Show tasks in separate window 383
Show values as decimal instead of hex 381
Show variable location 380
Show variable types 380
577IDE 5.7 User’s Guide

Show variable values in source code 381
Size 374
Sort function popup 373
Sort functions by method name in symbolics

window 381
Source Tree list 365
Strings 377
Success 356
Tab indents selection 374
Tab Inserts Spaces 375
Tab Size 374
Templates 378
Type 365
TypeDefs 378
Use Automatic Code Formatting 369
Use Concurrent Compiles 357
Use Debugging Monitor 382
Use Default workspace 360
Use External Editor 360
Use Local Project Data Storage 357
Use Multiple Document Interface 359
Use multiple undo 373
Use Script menu 360
Use Third Party Editor 359
Use ToolServer menu 360
User Specified 358
Variable values change 380
VCS Commands 373
Watchpoint indicator 380
Window follows insertion point 368
Window position and size 372
Zoom windows to full screen 359

Preferences menu command 522
Prefix file option, in Generate Browser Data From

menu 429
prefix keys

Quote Key 350
Pre-linker option

Target Settings panel 436
preprocessor directives 304

C/C++ 316
Previous Result button 130
print

file selections 61

Print command 61, 522
printing

class hierarchies 167
files 61
projects 36

process
attaching debugger to 258

process cycle
of software development 21

processes
related to machines 256
viewing global variables for 230

Processes menu command 522
Processes window 256, 386

opening 256, 257
Processes Window menu command 522
products

saving information about those installed in
IDE 503

viewing those installed in IDE 503
Profile window

opening 291
profiler

libraries 303
Profiler Function Reference 318

ProfilerClear() 322
ProfilerDump() 321
ProfilerGetDataSizes() 321
ProfilerGetStatus() 320
ProfilerInit() 318
ProfilerSetStatus() 320
ProfilerTerm() 320

ProfilerClear() 322
ProfilerDump() 307, 321
ProfilerGetDataSizes() 321
ProfilerGetStatus() 320
ProfilerInit() 317, 318

warning 308
ProfilerSetStatus() 320
ProfilerTerm() 307, 320

warning 308
profiling

activating 300
by function 301, 316
578 IDE 5.7 User’s Guide

exceptions 307
inline functions 315
setjmp() 307

program
killing execution 194
resuming execution 194
running 195
stopping execution 194

Program / Verify panel 267
Program Arguments field

of Runtime Settings panel (Windows) 436
Program Arguments option

Runtime Settings panel 436
Program button 270
Program Entry Point option

Debugger Settings panel 436
program execution, manipulating 203
project

configuring for a logic analyzer 285
Project Commands option

Editor Settings panel 436
project data folder 448
Project Headers checkbox 123
Project Inspector command 36
Project list box 123
project manager 29

overview 25
Project menu 436, 479, 492

Remove Object Code command 481, 494
Stop Build command 481, 494

Project operations option
Shielded Folders panel 436

Project Settings 300
Project Sources checkbox 123
project stationery

creating 38
custom 38

Project window
about Files page 43
Current Target list pop-up 42
Files view

Checkout Status column 44
Code column 44
Data column 44

Debug column 44
File column 44
Interfaces list pop-up 45
Sort Order button 45
Target column 44
Touch column 44

Make toolbar button 42
Synchronize Modification Dates toolbar

button 42
Target Settings toolbar button 42

project window 41
Link Order page 47
pages 43
Targets page 47

project window, about 41
project, defined 29
projects

about subprojects 39
advanced topics 38
choosing default 37
closing 38
creating custom stationery 38
creating empty 34
creating subprojects 39
creating using makefiles 33
creating using stationery 33
data folder 448
exporting to XML files 37
generating link maps for 330
importing XML versions of 37
inspecting files 36
linking 330
managing 32
opening 35
opening from other hosts 35
printing 36
project window 41
project window pages 43
project window, about 41
reopening last one used (default

workspace) 448
reopening last one used, preventing (default

workspace) 448
saving 35
579IDE 5.7 User’s Guide

searching (multiple) 123
strategies for 40
subprojects, strategies for 40
working with 29

Projects option
IDE Extras panel 436

properties
condition, breakpoint 209
file-info, breakpoint 209
hardware, breakpoint 209
hit count, breakpoint 209
name, breakpoint 209
original process, breakpoint 209
original-target, breakpoint 209
serial number, breakpoint 209
thread, breakpoint 209
times hit, breakpoint 209
times left, breakpoint 209
type, breakpoint 209

punctuation balancing, toggling 95
punctuation, balancing 94
pure virtual

icon for 161
Purge Cache button 436
Purge Cache option 419
purging cache 436
purpose

of breakpoints 203
of Browser Contents window 169
of Classes pane in browser 159
of Data Members pane 162
of eventpoints 203
of Member functions pane 161
of Multi-Class Hierarchy window 165
of Single-Class Hierarchy window 168
of Source pane 163
of special breakpoints 203
of status area in browser 163
of Symbols window 171
of watchpoints 203

Q
QuickDraw 434
QuickHelp (Mac OS) 110

QuickView 110, 111, 428
QuickView, Mac OS 111
QuickView, THINK Reference 111
Quote Key prefix 350

assigning 351

R
Read button 250
Read option button 277, 279
Recursive Search column, in Access Paths

panel 395
Redo button 141
Redo menu command 522
reference information

for IDE menus 473
reference template 111
reference template, inserting 111
reference templates (Macintosh) 111
Refresh All Data menu command 523
REGISTER 455
Register Coloring 405
Register Description option

of Text View pop-up menu 251
Register Details option

of Text View pop-up menu 251
Register Details window 247

Address text box 248
Bit Value Modifier list box 249
Bit Value text box 249
Bitfield Description text view option 251
Bitfield Name list box 249
Browse button 248, 250
Description 249
Description File text box 248, 250
Format list box 248
Read button 250
Register Description text view option 251
Register Details text view option 251
Register display 249, 251
Register Name 248
Reset Value button 250
Revert button 250
Text View list box 250, 251
using 250
580 IDE 5.7 User’s Guide

Write button 250
XML

file locations 461
sample files 462
specification 453

Register Details Window command 247
Register Details Window menu command 523
Register display 249, 251
Register Name 248
Register Windows menu command 523
registers

changing data views of 246
changing values of 246
FPU Registers 245
General Registers 245
host-specific 245
Register Details window 247
viewing 245
viewing details of 247

Registers folder 247
Registers menu command 523
Registers window 244

opening 245
opening more than one 247

Registry Key option
of Source Trees preference panel 447

Registry Key option, in Type pop-up menu 447
regular breakpoints 204
Regular Expression checkbox 114, 117, 120
Regular Expression option

Shielded Folders panel 437
regular expressions 132

.*[_]Data 364
\(.*\) 364
choosing one character from many 134
CVS 364
defined 132
grouping 134
matching any character 134
matching simple expressions 133
using the find string in the replace

string 134, 135
Relative to class field 177
Relaxed C popup parsing option

Editor Settings panel 437
release notes 17
remembering last project (default

workspace) 448
remembering last project, turning off (default

workspace) 448
remote connections

adding 386
changing 387
removing 387

Remote Connections preference panel 385
options

Add 386
Change 386
Remote Connection list 386
Remove 386

Remote Debugging settings panel 411
Connection pop-up menu 412
options

Launch remote host application 432
Remove A Set button 127
Remove button 395
Remove button, in Remove Markers window 109
Remove command 48
Remove Markers window 108

Cancel button 109
Done button 109
Markers list 109
Remove button 109

Remove Object Code & Compact menu
command 523

Remove Object Code menu command 523
Remove Toolbar Item 345
removing

build targets 48, 53
desktop background from behind IDE. See

Use Multiple Document Interface, turning
on.

files 48
gray background from behind IDE. See Use

Multiple Document Interface, turning off.
groups 48
layouts 48
remote connections 387
581IDE 5.7 User’s Guide

source trees 367
targets 48, 53

Rename Breakpoint button 206
Rename command 50, 54
renaming

build targets 51, 54
files 50
groups 50
layouts 50
targets 50, 51, 54

reopening last project used
in default workspace 448
suppressing in the default workspace 448

Repeated optimizations 405
Replace All button 116, 119
Replace All menu command 524
Replace and Find Next menu command 524
Replace and Find Previous command 524
Replace button 116, 119
Replace command 117
Replace menu command 524
Replace With text/list box 116, 119
replacing

text in a single file 117
text, overview 113

Require Framework Style Includes 437
Reset Value button 250
Reset Window Toolbar command in Toolbar

submenu 46, 525
resetting

toolbars 346
resize bars

Pane 130, 191
Resize submenu

To Smallest Height command 534
To Smallest Width command 534

resizing
panes in an editor window 89

Resource File flag 401
Restart command 195
restarting

debugger 195
Restore Window command (Windows) 526
Restrict Address Range checkbox 269

Result Count text box 129
results

finding problems 313
of multi-item search 128
opening 309
sorting 310

Results pane 130
Resume button 190
Resume command 194
Resume menu command 526
resuming program execution 194
Retention fault 283
Revert button 250
Revert command 62
Revert menu command 526
reverting

files 62
preference panels 438
settings panels 438

revision control 451, 500
routine

stepping into 193
stepping out of 193
stepping over 193

routine, selecting entirely 92
Run App/Script 341
Run button 190
Run command 51, 52, 195
Run menu command 436, 526
Run To Cursor menu command 527
running

a program 195
Runtime Settings panel 398

Host Application For Libraries And Code
Resources field 430

options
Add 399
Change 399
Environment Settings 399
Host Application for Libraries & Code

Resources 399, 430
Program Arguments 399, 436
Remove 400
Value 400
582 IDE 5.7 User’s Guide

Variable 400
Working Directory 399, 452

Program Arguments field (Windows) 436

S
Save a Copy As command 60
Save All command 59
Save command 59
Save Default Window menu command 527
Save open files before build option

Build Settings panel 438
Save project entries using relative paths option

Target Settings panel 46, 438
Save Settings button 262, 275
Save This Set button 127
Save Workspace As menu command 528
Save Workspace menu command 527
saving

a copy of a workspace 75
all files 59
file copies 60
files 59
information about installed plug-ins 503
information about installed products 503
projects 35
workspaces 74

Scope Loop panel 278
Script Point 215, 218
Script Point Settings window

Stop in Debugger checkbox 219
Script Point, clearing 219
Script Point, setting 218
(Scripts) folder 501, 521
Scripts menu 501
Scripts option

Font & Tabs panel 439
search

single characters with regular
expressions 134

using finds strings in replace strings with
regular expressions 135

Search Cached Sub-Targets checkbox 123
Search Criteria text box 129
search engine

overview 25
Search In text/list box 121
Search menu 111, 478, 490
Search Results window 128

Next Result button 130
Pane resize bar 130
Previous Result button 130
Result Count text box 129
Results pane 130
Search Criteria text box 129
setting default size and position of 527
Source Code pane 130
Source Code Pane disclosure triangle 130
Stop button 129
Warnings button 129

Search Selection Only checkbox 114, 117
Search Status column, in Access Paths panel 395
Search Sub-Folders checkbox 121
Search Up checkbox 114, 117
searching

choosing one character from many in regular
expressions 134

grouping regular expressions 134
multiple files 127
multiple folders 121
multiple projects 123
multiple symbolics files 125
single characters with regular

expressions 134
single files 115
using finds strings in replace strings with

regular expressions 134
using regular expressions 132
with simple regular expressions 133

Sector Address Map pane 267
seeing desktop background behind IDE. See Use

Multiple Document Interface, turning off.
Segments tab 48
Select All menu command 528
Select stack crawl window when task is stopped

option
Global Settings panel 439

Selected Item group 144
selecting
583IDE 5.7 User’s Guide

Code Completion window items 101
text in editor windows 91

selecting entire routines 92
selecting lines 92
selecting multiple lines 92
selecting rectangular portions of lines 92
Selection position option

Editor Settings panel 439
selections

searching (text) 132
Send To Back menu command 528
Sequential subtest 284
serial number, breakpoint property 209
Set 1, Set 2, Set 3, Set 4 377
Set Breakpoint menu command 528
Set Default Breakpoint Template button 206
Set Default Project command 37
Set Default Project menu command 528
Set Default Target menu command 528
Set Eventpoint menu command 528
Set Watchpoint menu command 529
setjmp() 307
setting

browser options 147
temporary breakpoints 211

setting access breakpoint 225
setting default size and position of windows 527
settings

Add 365, 395, 399, 402
Add Default 395
Always Search User Paths 394
Application 398
Apply button 391
Arguments 398
Auto-target Libraries 411
Cache subprojects 397
Cache symbolics between runs 411
Cancel button 391
Change 365, 395, 399, 402
Choose 365, 393
Clear 393
Compiler 401
Default language entry point 411
Details 403

Dump internal browse information after
compile 398

Edit Language 402
Environment Settings 399
Export Panel button 391
Extension 401
Factory Settings button 390
Faster Execution Speed 403
File Mappings list 401
File Type 401
Flags 401
Generate Browser Data From 398
Host Application for Libraries & Code

Resources 399
Host Flags 395
IDE window 389
Ignored By Make flag 401
Import Panel button 391
Initial directory 398
Interpret DOS and Unix Paths 395
Launchable flag 401
Linker 392
Log System Messages 411
Name 365
OK button 391
Optimization Level slider 403
Output Directory 393
Post-linker 392
Precompiled File flag 401
Pre-linker 392
Program Arguments 399
Program entry point 410
Remove 365, 395, 400, 402
Require Framework Style Includes 395
Resource File flag 401
Revert Panel button 390
Save button 391
Save project entries using relative paths 393
Smaller Code Size 403
Source Tree list 365
Stop at Watchpoints 411
Stop on application launch 410
Target Name 392
Target Settings Panels list 390
584 IDE 5.7 User’s Guide

Type 365
Update data every n seconds 411
Use External Debugger 398
Use modification date caching 397
User specified 411
Value 400
Variable 400
Working Directory 399

settings panels
Access Paths 362, 393
Build Extras 396, 514
Debugger Settings 258, 410
File Mappings 400
Global Optimizations 402
Other Executables 407
Remote Debugging 411
reverting 438
Runtime Settings 398
Source Trees 364
Target Settings 392

setup
code completion 96

Shielded Folders panel
options

Find and compare operations 427
Project operations 436
Regular Expression 437

Shielded Folders preference panel 362
options

Add 363
Change 364
Find and compare operations 363
Project operations 363
Regular Expression 363
Remove 364
Shielded folder list 363

Shift Right menu command 529
shortcut conventions 20
Show all locals option

Display Settings panel 439
Show Breakpoints menu command 507, 529
Show Classes 160
Show Classes pane 163
Show Floating Toolbar command 517

Show Floating Toolbar command in Toolbar
submenu 529

Show Inherited 155
Show Log button 262, 282
Show Main Toolbar command 517
Show message after building up-to-date project

option
Build Settings panel 442

Show private 156
Show protected 156
Show public 156
Show tasks in separate windows option

Display Settings panel 442
Show the component palette when opening a form

option
Layout Editor panel 442

Show the object inspector when opening a form
option

Layout Editor panel 442
Show Types menu command 529
Show values as decimal instead of hex option

Display Settings panel 442
Show variable location option

Display Settings panel 442
Show variable types option

Display Settings panel 443
Show variable values in source code option

Display Settings panel 443
Show Window Toolbar command 518
Show Window Toolbar command in Toolbar

submenu 529
showing

classes pane 160, 161
shrinking panes, in browser 159
Single Class Hierarchy Window 154
single files, searching 115
single-class hierarchical window

opening 169
Single-Class Hierarchy window 168

difference from Multi-Class Hierarchy
window 168

single-file Find and Replace window 115
single-file Find window 113
size
585IDE 5.7 User’s Guide

setting default for unbounded arrays 422
Size option

Font & Tabs panel 443
Size text box 273
Skip Point 215, 219
Skip Point, clearing 219
Skip Point, setting 219
software

development process cycle 21
Solaris

modifier key mappings 20
Sort Alphabetical 160, 161
Sort function popup option

Editor Settings panel 445
Sort functions by method name in symbolics

window option
Display Settings panel 443

Sort Hierarchical 160, 161
Sort Order button

in Files view of Project window 45
sorting

classes list 161
Functions list pop-up (alphabetically) 106,

107
sorting data 310
Sound Point 215, 220
Sound Point Settings window

Stop in Debugger checkbox 220
Sound Point, clearing 221
Sound Point, setting 220
Sound Point, Speak Message 220
Source box 136
source code

disabling breakpoints 210
disabling eventpoints 222
disabling special breakpoints 228
disabling watchpoints 226
editing 91
enabling breakpoints 210, 223
enabling special breakpoints 228
enabling watchpoints 226
going to a particular line 107
locating 105
setting breakpoints in 207

setting watchpoints in 225
viewing breakpoint properties 208
viewing eventpoint properties 222
viewing watchpoint properties 226

Source Code pane 130
Source Code Pane disclosure triangle 130
source code, navigating 105
source file

adding markers to 109
Source File button 191
source files

removing all markers from 110
removing markers from 109

source item, for comparison 136
Source list box 192
Source pane 140, 163, 191

in Symbols window 173
Source Pane disclosure triangle 191
source relative includes 445
source trees

adding 366
changing 366
removing 367

Source Trees panel
options

Add 365
Change 365
Choose 365
Name 365
Remove 365
Source Tree list 365
Type 365, 447

Source Trees preference panel 364
Absolute Path option 447
Environment Variable option 447
Registry Key option 447

Source Trees settings panel 364
Speak Message checkbox 216
special breakpoints

defined 228
purpose of 203

special breakpoints, disabling 228
special breakpoints, enabling 228
Speed slider 280
586 IDE 5.7 User’s Guide

Stack Editor Windows menu command 530
Stack pane 191
stack space, finding problems 313
Start text box 269, 273, 281
starting

debugger 192
state

disabled, for breakpoints 204, 225
disabled, for eventpoints 215
enabled, for breakpoints 204
enabled, for eventpoints 215
enabled, for watchpoints 225

static
icon for 161

stationery
creating for projects 38
creating projects 33
custom 38

Status 270, 271, 273, 278, 280, 282
Status area

in Class Browser window 155
status area 163
Step Into button 190
Step Into command 193
Step Out button 190
Step Out command 193
Step Over button 190
Step Over command 193
Step Over menu command 530
stepping into a routine 193
stepping out of a routine 193
stepping over a routine 193
Stop At End Of File checkbox 114, 117
Stop at Watchpoints option

Debugger Settings panel 443
Stop Build menu command 530
Stop button 119, 129, 190
Stop command 194, 530
Stop in Debugger checkbox 217, 219, 220
Stop On Application Launch option

Debugger Settings panel 443
stopping program execution 194
Straight Line 168
strategies

for build targets 40
for projects 40
for subprojects 40

Strength Reduction 405
Strings option

Text Colors panel 444
structure

of documentation 18
submenus

Align 503, 504
subproject, defined 39
subprojects

creating 39
opening 40
strategies for 40

Success option
Build Settings panel 445

summary data 305
summation, of two variables 235
Switch To Monitor menu command 530
symbol definitions 110, 111
symbol definitions, looking up 111
Symbol hint 195
symbol hint

toggling 195
turning off 195
turning on 195
using 196

symbol implementations
viewing all 172

symbol-editing shortcuts 94
Symbolics button 190
symbolics file, defined 188
symbolics files

choosing a debugger for 386
searching (multiple) 125

Symbolics list 125
Symbolics list box 125
Symbolics menu command 530
Symbolics option

IDE Extras panel 446
Symbolics window 253

opening 255
using the Executables pane 255, 256
587IDE 5.7 User’s Guide

using the Files pane 255
using the Functions pane 255

Symbolics Window menu command 530
symbols

shortcuts for editing 94
viewing all implementations 172

Symbols list
in Browser Contents window 170

Symbols pane 173
Symbols pop-up 170
Symbols window 171

Source pane 173
Symbols pane 173
toolbar 173

symbols window 172
Synchronize Modification Dates command 47
Synchronize Modification Dates menu

command 530
Synchronize Modification Dates toolbar

button 42
System Headers checkbox 123
System Paths list

Framework column 396
Recursive Search column 395
Search Status column 395

System Paths option
Access Paths panel 446

T
Tab indents selection option

Font & Tabs panel 446
Tab Inserts Spaces option

Font & Tabs panel 446
Tab Size option

Font & Tabs panel 446
tabs

Groups 206
In Files 120
In Folders 120
In Projects 120
In Symbolics 120
Instances 206
Templates 206

Target Address text box 277, 279

Target Breakpoint Can Cause Analyzer Trigger
checkbox 288

Target column
in Files view of Project window 44

Target Configuration panel 263
Target list box 123
target management 48
Target Memory Buffer Address text box 264
Target Memory Buffer Size text box 265
Target Name option

Target Settings panel 447
Target Processor text/list box 264, 276
Target Scratch Memory End text box 282
Target Scratch Memory Start text box 282
target settings

Add 365, 395, 399, 402
Add Default 395
Always Search User Paths 394
Application 398
Apply button 391
Arguments 398
Auto-target Libraries 411
Cache subprojects 397
Cache symbolics between runs 411
Cancel button 391
Change 365, 395, 399, 402
Choose 365, 393
Clear 393
Compiler 401
Connection pop-up menu 412
Default language entry point 411
Details 403
Dump internal browse information after

compile 398
Edit Language 402
Environment Settings 399
Export Panel button 391
Extension 401
Factory Settings button 390
Faster Execution Speed 403
File Mappings list 401
File Type 401
Flags 401
for IDE 389
588 IDE 5.7 User’s Guide

Generate Browser Data From 398
Host Application for Libraries & Code

Resources 399
Host Flags 395
Ignored By Make flag 401
Import Panel button 391
Initial directory 398
Interpret DOS and Unix Paths 395
Launchable flag 401
Linker 392
Log System Messages 411
Name 365
OK button 391
Optimization Level slider 403
Output Directory 393
Post-linker 392
Precompiled File flag 401
Pre-linker 392
Program Arguments 399
Program entry point 410
Remove 365, 395, 400, 402
Require Framework Style Includes 395
Resource File flag 401
Revert Panel button 390
Save button 391
Save project entries using relative paths 393
Smaller Code Size 403
Source Tree list 365
Source Trees 364
Stop at Watchpoints 411
Stop on application launch 410
Target Name 392
Target Settings Panels list 390
Type 365
Update data every n seconds 411
Use External Debugger 398
Use modification date caching 397
User specified 411
Value 400
Variable 400
Working Directory 399

Target Settings command 531
Target Settings panel 55, 392

options

Choose 393
Clear 393
Linker 392, 433
Output Directory 393, 435
Post-linker 392, 435
Pre-linker 392, 436
Save project entries using relative

paths 46, 393, 438
Target Name 392, 447

target settings panels
Access Paths 393
Analyzer Connections 285
Build Extras 396, 514
Debugger Settings 258, 410
File Mappings 400
Global Optimizations 402
Other Executables 407
Remote Debugging 411
Runtime Settings 398
Target Settings 392

Target Settings Panels list 390
Target Settings toolbar button 42
Target Settings window 389

Apply button 391
Cancel button 391
Export Panel button 391
Factory Settings button 390
Import Panel button 391
OK button 391
opening 391
Revert Panel button 390
Save button 391
Target Settings Panels list 390

targets 31
configuring 55
creating 53
files 48
managing 53
moving 50
removing 48, 53
renaming 50, 51, 54
setting default 54
strategies for 40

Targets page 47
589IDE 5.7 User’s Guide

Targets tab 55
Targets view 36, 50, 53
tasks

activating automatic code completion 96
adding a constant to a variable 235
adding a keyword to a keyword set 406
adding an executable file 408
adding expressions (Expressions

window) 234
adding markers to a source file 109
adding panes to an editor window 89
adding remote connections 386
adding source trees 366
adding subprojects to a project 39
alphabetizing Functions list pop-up

order 106, 107
applying file differences 141
arming a logic analyzer 289
attaching the debugger to a process 258
balancing punctuation 94
changing an executable file 409
changing line views in a hierarchical

window 168
changing register data views 246
changing register values 246
changing remote connections 387
changing source trees 366
changing the find string 131
choosing a default project 37
choosing files to compare 137
choosing folders to compare 138
clearing a breakpoint 210
clearing a Log Point 217
clearing a Pause Point 218
clearing a Script Point 219
clearing a Skip Point 219
clearing a Sound Point 221
clearing a Trace Collection Off

eventpoint 221
clearing a Trace Collection On

eventpoint 222
clearing a watchpoint 227
clearing all breakpoints 210
clearing all watchpoints 227

closing a docked window 71
closing a workspace 75
closing projects 38
collapsing a docked window 71
collapsing browser panes 159
collapsing the editor window toolbar 86
completing code for data members 101
completing code for parameter lists 102
connecting to a logic analyzer 289
creating a breakpoint template 212
creating a console application 78
creating a new class 160, 175, 176
creating a new data member 162, 183
creating a new member function 162, 180,

181
creating custom project stationery 38
creating empty projects 34
creating new projects from makefiles 33
creating new projects using project

stationery 33
deactivating automatic code completion 97
deleting a breakpoint template 213
disabling a breakpoint 210
disabling a watchpoint 226
disabling an eventpoint 222
disarming a logic analyzer 289
disconnecting from a logic analyzer 289
docking a window by using a contextual

menu 66
docking a window by using drag and

drop 67
docking windows of the same kind 67
enabling a breakpoint 210, 223
enabling a watchpoint 226
examining items in the Folder Compare

Results window 144
expanding a docked window 71
expanding browser panes 158
expanding the editor window toolbar 86
exporting projects to XML files 37
floating a window 69
for managing files 57
generating project link maps 330
going to a particular line 107
590 IDE 5.7 User’s Guide

hiding the classes pane 160
importing projects saved as XML files 37
indenting text blocks 93
inserting a reference template 111
issuing command lines 293
killing program execution 194
looking up symbol definitions 111
making a summation of two variables 235
making a window an MDI child 70
manipulating variable formats 232
moving a docked window 71
navigating browser data 150
navigating Code Completion window 100
navigating to a marker 109
opening a recent workspace 76
opening a single-class hierarchical

window 169
opening a workspace 74
opening an Array window 243
opening projects 35
opening projects created on other hosts 35
opening registers in a separate Registers

window 247
opening subprojects 40
opening the Breakpoints window 207
opening the Cache window 290
opening the Command window 292
opening the Expressions window 234
opening the Flash Programmer window 261
opening the Global Variables window 230
opening the Hardware Diagnostics

window 274
opening the Log window 259
opening the Processes window 256, 257
opening the Profile window 291
opening the Registers window 245
opening the Symbolics window 255
opening the symbols window 172
opening the Target Settings window 391
opening the Trace window 290
overstriking text (Windows) 92
printing class hierarchies 167
printing projects 36

removing a keyword from a keyword
set 407

removing a marker from a source file 109
removing all markers from a source file 110
removing an executable file 409
removing panes from an editor window 89
removing remote connections 387
removing source trees 367
replacing text in a single file 117
resizing panes in an editor window 89
restarting the debugger 195
resuming program execution 194
running a program 195
saving a copy of a workspace 75
saving a workspace 74
saving projects 35
saving the contents of the Breakpoints

window 207
searching a single file 115
searching for text across multiple files 127
searching for text across multiple

folders 121
searching for text across multiple

projects 123
searching for text across multiple symbolics

files 125
searching with a text selection 132
selecting entire routines 92
selecting item in Code Completion

window 101
selecting lines 92
selecting multiple lines 92
selecting rectangular portions of lines 92
selecting text in editor windows 91
setting a breakpoint 207
setting a conditional breakpoint 211
setting a conditional eventpoint 223
setting a conditional watchpoint 227
setting a Log Point 216
setting a Pause Point 217
setting a Script Point 218
setting a Skip Point 219
setting a Sound Point 220
setting a temporary breakpoint 211
591IDE 5.7 User’s Guide

setting a Trace Collection Off
eventpoint 221

setting a Trace Collection On
eventpoint 222

setting a watchpoint 225
showing the classes pane 160
sorting the classes list 161
specifying the default breakpoint

template 214
starting the debugger 192
stepping into a routine 193
stepping out of a routine 193
stepping over a routine 193
stopping program execution 194
suppressing dockable windows 70
toggling automatic punctuation balancing 95
toggling the symbol hint 195
triggering code completion by keyboard 97
triggering code completion from IDE menu

bar 97
unapplying file differences 141
undocking a window 68
unfloating a window 69
unindenting text blocks 93
updating data from a logic analyzer 289
using an external editor on the

Macintosh 360
using contextual menus 197
using the default workspace 73
using the document settings pop-up 87
using the Executables pane in the Symbolics

window 255, 256
using the Files pane in the Symbolics

window 255
using the Find Next command 130
using the Find Previous command 131
using the Functions list pop-up 106
using the Functions pane in the Symbolics

window 255
using the Interfaces list pop-up 106
using the symbol hint 196
using the VCS pop-up 87
using virtual space 93
viewing a file path 45

viewing breakpoint properties 208
viewing browser data by contents 170
viewing browser data by inheritance 166
viewing class data from hierarchy

windows 158
viewing eventpoint properties 222
viewing global variables for different

processes 230
viewing registers 245
viewing watchpoint properties 226

template, default for breakpoints 212
template, for breakpoints 212
Templates option 378
Templates tab 206
templates, creating for breakpoints 212
templates, deleting for breakpoints 213
templates, reference (Macintosh) 111
templates, specifying the default for

breakpoints 214
temporary breakpoint, defined 211
temporary breakpoints 204

setting 211
text

changing a find string 131
find by selecting 130
finding 113
overstriking (Windows) 92
replacing 113
searching with a selection 132

text blocks, indenting 93
text blocks, unindenting 93
text boxes

Address 248
Analyzer Configuration File text box 287
Analyzer Slot 287
Bit Value 249
Description File 248, 250
End 269, 281
Flash Memory Base Address 266
Host Name 287
Message 216
Name 287
Offset 269
Passes 282
592 IDE 5.7 User’s Guide

Result Count 129
Search Criteria 129
Size 273
Start 269, 273, 281
Target Address 277, 279
Target Memory Buffer Address 264
Target Memory Buffer Size 265
Target Scratch Memory End 282
Target Scratch Memory Start 282
Trace Support File 288
Use Selected File 268
Use Target Initialization 264, 276
Value to Write 278, 279

Text Colors panel
options

Activate Browser Coloring 428
Activate Syntax Coloring 428, 431, 444
Foreground 428
Keywords 431
Strings 444

Text Colors preference panel
options

Activate Browser Coloring 377
Activate Syntax Coloring 377
Background 377
Classes 377
Comments 377
Constants 377
Edit 377
Enums 377
Foreground 377
Functions 377
Globals 377
Keywords 377
Macros 378
Other 378
Set 1, Set 2, Set 3, Set 4 377
Strings 377
Templates 378
TypeDefs 378

text editing area, in editor window 88
Text View list box 250, 251

Auto 251
Text View pop-up menu

Bitfield Description option 251
Register Description option 251
Register Details option 251

text/list boxes
By Type 121
Find 114, 116, 119
Replace With 116, 119
Search in 121
Target Processor 264, 276

text-selection Find 130
THINK Reference 110, 111, 428
third-party editor support 450
third-party text editors

Emacs 432
Thread window

Breakpoints button 190
current-statement arrow 191
dash 191
debug button 190
Expressions button 190
Functions list box 192
Kill button 190
Line And Column button 192
Pane Collapse box 190
Pane Expand box 190
Pane resize bar 191
Resume button 190
run button 190
Source File button 191
Source list box 192
Source pane 191
Source Pane disclosure triangle 191
Stack pane 191
Step Into button 190
Step Out button 190
Step Over button 190
Stop button 190
Symbolics button 190
Variables pane 191
Variables Pane Listing button 191

thread window 188
thread, breakpoint property 209
threading in IDE 420
__throw() 505
593IDE 5.7 User’s Guide

ticksTimeBase 305, 310, 317
Tile Editor Windows command 531
Tile Editor Windows Vertically command 531
Tile Horizontally command 531
Tile Vertically command 532
time hogs, finding 313
timebase 305, 317
timeMgrTimeBase 305, 317
times hit, breakpoint property 209
times left, breakpoint property 209
To Smallest Height command in Resize

submenu 534
To Smallest Width command in Resize

submenu 534
toggling

symbol hint 195
toolbar

collapsing in editor window 86
expanding in editor window 86

Toolbar (Editor Window) Elements
Document Settings 345
File Dirty Indicator 345
File Path field 345
Functions 345
Header Files 345
Markers 345
Version Control Menus 345

toolbar buttons
Browser Contents 154
Class Hierarchy 154
Go Back 154
Go Forward 154
Make 42
Single Class Hierarchy Window 154
Synchronize Modification Dates 42
Target Settings 42

Toolbar Items 333, 344
Toolbar submenu

Anchor Floating Toolbar command 504
Clear Floating Toolbar command 507
Clear Main Toolbar command 507
Clear Window Toolbar command 508
Hide Floating Toolbar command 517
Hide Main Toolbar command 517

Reset Window Toolbar command 46, 525
Show Floating Toolbar command 517, 529
Show Main Toolbar command 517
Show Window Toolbar command 529

Toolbars
Add element 344
Clear Elements 345
Customize 342
Elements 342, 343
Icons 344
Instances of 343
Main (floating) 343
Modify 344
Project and Window 343
Remove single element 344
Toolbar Items tab 344
Types 343

toolbars
editor 86
for Symbols window 173
resetting 346

tools
browser 25
build system 26
debugger 26
editor 25
project manager 25
search engine 25

Tools menu 500
icon 500

tools, for hardware 261
ToolServer menu 450
ToolServer Worksheet command 533
ToolTip 344
touch

defined 44
Touch column 51, 52

in Files view of Project window 44
Touch command 51
touching

all files 51
all groups 51
files 51
groups 51
594 IDE 5.7 User’s Guide

trace
working with logic analyzer 285

Trace Collection Off 221
Trace Collection Off eventpoint 215
Trace Collection Off eventpoint, clearing 221
Trace Collection Off eventpoint, setting 221
Trace Collection On 221
Trace Collection On eventpoint 215
Trace Collection On eventpoint, clearing 222
Trace Collection On eventpoint, setting 222
Trace Support File text box 288
Trace window 290

opening 290
Treat as Expression checkbox 217
triggering

code completion by keyboard 97
code completion from IDE menu bar 97

turning off
symbol hint 195

turning on
symbol hint 195

Type list box
Absolute Path option 447

Type option
Source Trees panel 447

Type pop-up menu
Environment Variable option 447
Registry Key option 447

type, breakpoint property 209
TypeDefs option 378
types

of documentation 19

U
Unanchor Floating Toolbar command 534
Unapply button 140
Unapply Difference command 141, 534
unbounded arrays, setting default size for

viewing 422
Uncaught Exceptions Only command 534
Undo button 141
Undo command 534
undocking windows 68
unfloating windows 69

Ungroup command 534
unindenting text blocks 93
Untouch command 52
untouching

a file 52
a group 52
all files 52
all groups 52

Update Data command 289
Update Data Every n Seconds option 447
Use Concurrent Compiles option 437, 447
Use Custom Settings checkbox 264, 276
Use Debugging Monitor option 447
Use Default Workspace option 448
Use External Debugger option 448
Use External Editor option 448
Use Local Project Data Storage option 448
Use modification date caching option 449
Use Multiple Document Interface option 63, 449

turning off 359
turning on 359

Use multiple undo option 534
in Editor Settings panel 449

Use Script menu option 449
Use Scripts Menu option 501
Use Selected File checkbox 268
Use Selected File text box 268
Use Target CPU checkbox 282
Use Target Initialization checkbox 264, 276
Use Target Initialization text box 264, 276
Use Third Party Editor option 450
Use ToolServer Menu option 500
Use ToolServer menu option

IDE Extras panel 450
User Paths list

Framework column 396
Recursive Search column 395
Search Status column 395

User Paths option 450
User Specified option 450
User specified option 411
using

document settings pop-up 87
595IDE 5.7 User’s Guide

Executables pane in the Symbolics
window 255, 256

Files pane in the Symbolics window 255
Find Next command 130
Find Previous command 131
Functions list pop-up 106
Functions pane in the Symbolics

window 255
Interfaces list pop-up 106
logic analyzer 288
Register Details window 250
symbol hint 196
VCS pop-up 87
virtual space 93

V
Value to Write text box 278, 279
variable formatting 232
Variable Values Change option

Display Settings panel 451
Variable window 231
variables

^var placeholder 233
adding a constant to 235
making a summation of 235
manipulating formats 232
symbol hint 195

Variables pane 191
Variables Pane Listing button 191
variables, working with 229
VCS 87

list pop-up 156
menu 500
pop-up 87

VCS Commands option
Editor Settings panel 451

VCS menu 163, 451
icon 500

VCS pop-up
using 87

Vectorization 405
Verify button 270
version control 451, 500
Version Control Settings command 535

Version Control System. See VCS.
Vertical Center command in Align submenu 526,

532, 533, 535
View Array menu command 535
View as implementor 156
View as subclass 156
View As Unsigned Decimal menu command 535,

536
View as user 156
View Disassembly menu command 537
view in profiler

class 312
detail 311
flat 311

View Memory As command 537
View Memory command 537
View Mixed menu command 537
View Source menu command 537
View Target Memory Writes checkbox 265
View Variable menu command 537
viewing

all symbol implementations 172
breakpoints 207
browser data by contents 170
browser data by inheritance 166
file paths 45
register details 247
registers 245

viewing access breakpoint 226
viewing installed plug-ins 503
viewing installed products 503
virtual

icon for 161
virtual space, using 93

W
Walking 1’s checkbox 281
Walking Ones subtest 283
Walking Ones test

Address Line fault 282
Data Line fault 283
Retention fault 283
subtests

Ones Retention 283
596 IDE 5.7 User’s Guide

Walking Ones 283
Walking Zeros 283
Zeros Retention 283

Walking Zeros subtest 283
Warnings button 129
Watchpoint Indicator option

Display Settings panel 451
watchpoints

access breakpoint 224
clearing all 227
defined 224
enabled 225
purpose of 203
setting conditional 227

watchpoints, clearing 227
watchpoints, disabling 226
watchpoints, enabling 226
watchpoints, setting 225
watchpoints, viewing properties for 226
what is

a debugger 187
a symbolics file 188

win32TimeBase 305, 317
window

Customize IDE Commands 347
Window Follows Insertion Point option 451
Window menu 477, 485, 498

Restore Window command (Windows) 526
Window position and size option

Editor Settings panel 451
Window Settings preference panel 381

options
Close non-debugging windows 382
Collapse non-debugging windows 382
Do nothing 382
Do nothing to project windows 382
Hide non-debugging windows 382
Minimize non-debugging windows 382
Monitor for debugging 382
Move open windows to debugging

monitor when debugging starts 383
Open windows on debugging monitor

during debugging 383
Use Debugging Monitor 382

window types
docked 64
floating 64
MDI child 64

Windowing panel
options

Hide non-debugging windows 429
Minimize non-debugging windows 434
Monitor for debugging 434
Move open windows to debugging

monitor when debugging starts 434
Open windows on debugging monitor

during debugging 435
Use Debugging Monitor 447

Windows
creating files 57

windows 204
Array 242
Browser Contents 169
Cache 290
Class Browser 153
Code Completion 98
Command 292
Compare Files Setup 136
Customize IDE Commands 131
dock bars in dockable windows 70
dockable 63
dockable, about 63
dockable, turning off 70
dockable, working with 66
docking the same kind of 67
docking with a contextual menu 66
docking with drag and drop 67
editor 83
editor, other 88
Expressions 233
File Compare Results 139
Find (single-file) 113
Find and Replace (multiple-file) 118
Find and Replace (single-file) 115
Flash Programmer 261
floating 69
Folder Compare Results 142
Global Variables 229
597IDE 5.7 User’s Guide

Hardware Diagnostics 274
hierarchy 166
IDE Preferences 226, 353
Log 258
making MDI children of 70
Memory 237
New C++ Class 177
New C++ Data Member 184
New C++ Member Function 182
Processes 256
project window 41
Registers 244
remembering size and position of 527
Remove Markers 108
saving default size and position of 527
Search results 128
Symbolics 253
Target Settings 389
Trace 290
undocking 68
unfloating 69
variable 231

Windows menu layout 473
WinHelp (Windows) 110
Wizards

Browser 175
wizards

New Class 160, 175, 176
New Data Member 162, 183
New Member Function 180, 181
New Member Functions 162

Word option button 277, 279, 282
working

with IDE preferences 353
with IDE target settings 389

Working Directory option
Runtime Settings panel 452

working with 66
browser 147
class browser windows 153
class hierarchy windows 165
IDE hardware tools 261
logic analyzer 285, 288

working with breakpoint templates 212

working with breakpoints 207
working with debugger data 253
working with dockable windows 66
working with eventpoints 222
working with files 57
working with memory 237
working with projects 29
working with variables 229
workspace, defined 73
workspaces 73

closing 75
opening 74
opening recent 76
saving 74
saving copies of 75
using default 73

Workspaces option
IDE Extras panel 452

workspaces, about 73
Write button 250
Write option button 277, 279

X
XML

exporting projects 37
importing projects 37
Register Details Window

BFVALUE 460
BITFIELD 457
file locations 461
REGISTER 455
sample files 462

Register Details window
specification 453

Z
Zeros Retention subtest 283
Zoom Window menu command 537
Zoom windows to full screen option

IDE Extras panel 452
598 IDE 5.7 User’s Guide

	Introduction
	IDE User’s Guide Overview
	Release Notes
	Licensing
	Documentation Structure
	Documentation Formats
	Documentation Types

	Manual Conventions
	Figure Conventions
	Keyboard Conventions
	Special note for Solaris and Linux users

	CodeWarrior IDE Overview
	Development Cycle
	CodeWarrior IDE Advantages
	IDE Tools Overview

	Projects
	Working with Projects
	About Projects
	Project Manager
	Build Targets

	Managing Projects
	Advanced Projects
	Custom Project Stationery
	Subprojects
	Strategies

	Project Window
	About the Project Window
	Project Window Pages
	Files Page
	Link Order Page
	Targets Page

	File, Group, Layout, and Target Management
	Build-Target Management

	Working with Files
	Managing Files

	Dockable Windows
	About Dockable Windows
	Working with Dockable Windows
	Dock Bars

	Workspaces
	About Workspaces
	Using Workspaces

	Creating Console Applications
	About Console Applications
	Creating Console Applications

	Editor
	CodeWarrior Editor
	Editor Window
	Editor Toolbar
	Interfaces Menu
	Functions Menu
	Markers Menu
	Document Settings Menu
	Version Control System Menu

	Other Editor Window Components
	Path Caption
	File Modification Icon
	Breakpoints Column
	Text Editing Area
	Line and Column Indicator
	Pane Splitter Controls

	Editing Source Code
	Text Manipulation
	Symbol Editing Shortcuts

	Punctuation Balancing
	Code Completion
	Code Completion Configuration
	Code Completion Window

	Navigating Source Code
	Finding Interface Files, Functions, Lines
	Finding Interface Files
	Locating Functions

	Going Back and Forward
	Using Markers
	Remove Markers Window

	Symbol Definitions
	Reference Templates (Macintosh)

	Finding and Replacing Text
	Single-File Find
	Single-File Find and Replace
	Multiple-File Find and Replace
	In Folders
	In Projects
	In Symbolics
	In Files

	Search Results Window
	Text-Selection Find
	Regular-Expression Find
	Using the Find String in the Replace String
	Remembering Sub-expressions

	Comparing Files and Folders
	Comparison Setup
	File Comparison
	Folder Comparison

	Browser
	Using the Browser
	Browser Database
	Browser Data

	Browser Symbols
	Browser Contextual Menu

	Using Class Browser Windows
	Class Browser window
	Classes Pane
	Member Functions Pane
	Data Members Pane
	Source Pane
	Status Area

	Using Other Browser Windows
	Multiple-Class Hierarchy Window
	Single-Class Hierarchy Window
	Browser Contents window
	Symbols Window
	Symbols toolbar
	Symbols pane
	Source pane

	Using Browser Wizards
	New Class Wizard
	The New Member Function Wizard
	The New Data Member Wizard

	Debugger
	Working with the Debugger
	About the Debugger
	About Symbolics Files
	Thread Window
	Common Debugging Actions
	Symbol Hint
	Contextual Menus
	Multi-Core Debugging
	Data Viewer Plugins
	External Builds Support
	External Build Wizard

	Manipulating Program Execution
	Breakpoints
	Breakpoints Window
	Working with Breakpoints
	Working with Breakpoint Templates

	Eventpoints
	Log Point
	Pause Point
	Script Point
	Skip Point
	Sound Point (Windows OS)
	Trace Collection Off
	Trace Collection On
	Working with Eventpoints

	Watchpoints
	Special Breakpoints

	Working with Variables
	Global Variables Window
	Variable Window
	Expressions Window

	Working with Memory
	Memory Window
	Array Window
	Registers Window
	General Registers
	FPU Registers
	Host-specific Registers

	Register Details Window (Windows OS)
	Description File
	Register Display
	Text View

	Working with Debugger Data
	Symbolics Window
	System Browser Window
	Log Window

	Working with Hardware Tools
	Flash Programmer Window
	Target Configuration
	Flash Configuration
	Program / Verify
	Erase / Blank Check
	Checksum

	Hardware Diagnostics Window
	Configuration
	Memory Read / Write
	Scope Loop
	Memory Tests

	Working with a Logic Analyzer
	Configuring the Project
	Using the Logic Analyzer

	Trace Window
	Cache Window
	Profile Window
	Command Window

	Profiler
	Overview
	What Is a Profiler?
	Types of Profilers
	A Profiling Strategy
	Profiling Code

	Using the Profiler
	What It Does
	How It Works
	Profiling Made Easy

	Configuring
	Profiler Libraries and Interface Files
	Profiling Special Cases

	Viewing Results
	What It Does
	How It Works
	Finding Performance Problems

	Troubleshooting
	Profile Times Vary Between Runs
	Problems while Profiling Inline Functions
	Profiling Library Could not be Found

	Reference
	Compiler Directives
	Memory Usage
	Time and Timebases
	Profiler Function Reference
	ProfilerInit()
	ProfilerTerm()
	ProfilerSetStatus()
	ProfilerGetStatus()
	ProfilerGetDataSizes()
	ProfilerDump()
	ProfilerClear()

	Compilers and Linkers
	Compilers
	Choosing a Compiler
	Compiling Projects

	Linkers
	Choosing Linkers
	Linking Projects

	Preferences and Target Settings
	Customizing the IDE
	Customizing IDE Commands
	Commands Tab
	Pre-Defined Variables in Command Definitions

	Customize Toolbars
	Kinds of Toolbars
	Toolbar Elements
	Modify a Toolbar

	Customize Key Bindings

	Working with IDE Preferences
	IDE Preferences Window
	General Panels
	Build Settings
	Concurrent Compiles
	IDE Extras
	Help Preferences
	Plugin Settings
	Shielded Folders
	Source Trees

	Editor Panels
	Code Completion
	Code Formatting
	Editor Settings
	Font & Tabs
	Text Colors

	Debugger Panels
	Display Settings
	Window Settings
	Global Settings
	Remote Connections

	Working with Target Settings
	Target Settings Window
	Target Panels
	Target Settings
	Access Paths
	Build Extras
	Runtime Settings
	File Mappings
	Source Trees

	Code Generation Panels
	Global Optimizations

	Editor Panels
	Custom Keywords

	Debugger Panels
	Other Executables
	Debugger Settings
	Remote Debugging

	Preference and Target Settings Options
	A
	B
	C
	D
	E
	F
	G-I
	K-L
	M
	O
	P
	R
	S
	T
	U
	V
	W-Z

	Register Details Window XML Specification
	Register Details Window XML Specification
	REGISTER
	BITFIELD
	BFVALUE

	Accessing the XML Files from CodeWarrior
	A Sample XML File
	Creating the New XML File
	Adding Multiple BITFIELD Attributes
	Adding BFVALUE Attributes
	Completing the New XML File

	References

	Menus
	IDE Menus
	Windows Menu Layout
	File Menu
	Edit Menu
	View Menu
	Search Menu
	Project Menu
	Debug Menu
	Data Menu
	Window Menu
	Help Menu

	Macintosh Menu Layout
	Apple Menu
	CodeWarrior Menu
	File Menu
	Edit Menu
	Search Menu
	Project Menu
	Debug Menu
	Data Menu
	Window Menu
	VCS Menu
	Tools Menu
	Scripts Menu
	Help Menu

	Menu Commands
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K-L
	M-N
	O
	P-Q
	R
	S
	T-U
	V-Z

	Index

