NXP Semiconductors Document identifier: CM4AMCLIBUG
Rev. 5, 01 November 2021

User Guide

AMCLIB User's Guide

ARM® Cortex® M4

NXP Semiconductors

Contents
Chapter 1 LIDrary...... oo e e e e annn e s e e e e e e 4
I 1 (o Yo T 1 o T 4
I O 17T V=2 4
(R B B - £ I 1Y L= TP PRRPTTPRPT 4
(IR I S o o= 0114 o T 4
(I ST W o] o o]y (=To leTo] 0] 11 =T = T PRSP 5
1.1.5 Library CONfIQUIAtION..........ueiiiii ettt e et e e e e e s enneeeee s 5
1.1.6 SPECIAI ISSUES.eeiiiiieiiie ettt e et e e e e bt e e e e et e e e e e b b e e e e e e nbreeeeeannreas 5
1.2 Library integration into project (MCUXPresso IDE)cccoiiiiiiiiiiiiiee e 5
1.3 Library integration into project (Keil HVISION)oooiiiiiiiiiiie e 8
1.4 Library integration into project (IAR Embedded Workbench)cccccceiiiiiiiiiiiie 15
Chapter 2 Algorithms in detail...........cccoooiiiiiiiirii 22
2.1 AMCLIB_ANGIETraCkODSIV. ..., 22
bt B B AN VZ= 1 F= o L IRV Z=T 1 o] o U 24
2.1.2 AMCLIB_ANGLE_TRACK _OBSRV _T_F32.. ..o 25
D IR B B 1= F= T = (o] 1N 26
b I 3 LU To [o TV T < 26
2.2 AMCLIB _CHIIFTUXVVKNG. .. tttttetivvieeiitesisseeessseessessesssesssssssssssssssssssssssessssessessesssessseeeeeseseeseeeseeeseees 27
i W AN VZ= 1 F= o (IR Z=T 1 o] o 29
2.2.2 AMCLIB_CTRL_FLUX _WKNG _T_A32....eeeeeeeeeeeeeeeeeeeeeeee e 30
R B B <o F= T = (o] o 1N 30
A LU o [ox ([0 o TV T < 30
2.3 AMCLIB_PMSMBEMFODBSIVDQL..... .ot 31
P B B AN VZ= 11 = o (IR Z=T 1 o] o 34
2.3.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type desCription.........cccceeeeiiiiiciiiiiiiiieiie e 35
B IR T B L= Tor F= = (o] 1N 36
R I 3 LU o [ox ([0 o TV T < 37
2.4 AMCLIB_PMSMBEMTODSIVAB.coieeieeieeee e e e e e e et e e e e e e e e eaans 37
oy W NV Z= 11 F= o (IR Z=T 51 o] o 40
2.4.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description............ccccouviiiiiiiiieie e 41
R B B 1= Tor F= T = (o] 1N 42
o U o Tox [0 o NV T < 42
2.5 AMCLIB _TraCKODSIV. ... e et eenaeees 43
P T B V7= 1= o (IR Z=T 51 o] o 44
2.5.2 AMCLIB_TRACK _OBSRY _T _F32.. .. e 45
R T B = Tor F= = (o] 1N 46
3 LU [ox ([0 o TV T < 46
Appendix A Library fypes. ... e e e anas 48
Y I o Yo Yo I PR T 48
YN U] € T T 48
F N U T o T 49
YN R U1 o 2 ST 50
F ST 101 < TN ST 50
F ST 101 T T 51
F A 101 72 T 51

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 2/60

NXP Semiconductors

Contents
YN I i = (o< T TP 52
YN I i = (o 1 PO 53
YN (O = 1o 2 PR 53
Y I = Ve o 1 ST 54
Y A= Ve o ¥ ST 55
A 13 GIMCLIB _BCOOR T F B ettt e e e et e e e e e e e e e e e e e e e e eeans 55
A.14 GMCLIB_2CO0R _ALBE T F B e et e e e e e e e e aeaan 56
A.15 GMCLIB_2CO0R _DQ T FAB. .ot e et e e e e e e e e e e eaaaas 56
A.16 GMCLIB_2CO0R D T F B oot e e e e e e e e 56
A.17 GMCLIB_2CO0OR_SINCOS T F B oottt a s 57
LB FALSE . ..o e e — et ——— 57
Y LS T I L 1 TP 57
AL20 FRA . ..ot ————— 58
YN B o T N Ot L T TP 58
YN o Y N O TR 58
YN 3 N O Ot L T TR 59
YN O O3 TR 59

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 3/60

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the Advanced Motor Control Library (AMCLIB) for the family of ARM Cortex M4 core-based
microcontrollers. This library contains optimized functions.

1.1.2 Data types

AMCLIB supports several data types: (un)signed integer, fractional , and accumulator. The integer data types are useful for
general-purpose computation; they are familiar to the MPU and MCU programmers. The fractional data types enable powerful
numeric and digital-signal-processing algorithms to be implemented. The accumulator data type is a combination of both; that
means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer—<0 ; 65535> with the minimum resolution of 1

» Signed 16-bit integer—<-32768 ; 32767> with the minimum resolution of 1

* Unsigned 32-bit integer—<0 ; 4294967295> with the minimum resolution of 1

» Signed 32-bit integer—<-2147483648 ; 2147483647> with the minimum resolution of 1
The following list shows the fractional types defined in the libraries:

+ Fixed-point 16-bit fractional—<-1 ; 1 - 2-15> with the minimum resolution of 2-15

+ Fixed-point 32-bit fractional—<-1 : 1 - 231> with the minimum resolution of 2-31
The following list shows the accumulator types defined in the libraries:

+ Fixed-point 16-bit accumulator—<-256.0 ; 256.0 - 27> with the minimum resolution of 27

« Fixed-point 32-bit accumulator—<-65536.0 ; 65536.0 - 2-15> with the minimum resolution of 2-15

1.1.3 API definition

AMCLIB uses the types mentioned in the previous section. To enable simple usage of the algorithms, their names use set prefixes
and postfixes to distinguish the functions' versions. See the following example:

f32Result = MLIB Mac F321ss(f32Accum, flé6Multl, fl6Mult2);

where the function is compiled from four parts:
* MLIB—this is the library prefix
* Mac—the function name—Multiply-Accumulate
* F32—the function output type

» Iss—the types of the function inputs; if all the inputs have the same type as the output, the inputs are
not marked

The input and output types are described in the following table:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 4/60

NXP Semiconductors

Library

Table 1. Input/output types

Type Output Input
frac16_t F16]
frac32_t F32 I
acc32_t A32 a

1.1.4 Supported compilers

AMCLIB for the ARM Cortex M4 core is written in C language or assembly language with C-callable interface depending on the
specific function. The library is built and tested using the following compilers:

» MCUXpresso IDE
* IAR Embedded Workbench
» Keil pyVision
For the MCUXpresso IDE, the library is delivered in the amclib.a file.
For the Kinetis Design Studio, the library is delivered in the amciib.a file.
For the IAR Embedded Workbench, the library is delivered in the amclib.afile.
For the Keil pVision, the library is delivered in the amclib./ib file.

The interfaces to the algorithms included in this library are combined into a single public interface include file, amclib.h. This is
done to lower the number of files required to be included in your application.

1.1.5 Library configuration

AMCLIB for the ARM Cortex M4 core is written in C language or assembly language with C-callable interface depending on the
specific function. Some functions from this library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It can cause an issue especially when high
optimization level is set. Therefore the optimization level for all inline assembly written functions is defined by compiler pragmas
using macros. The configuration header file RTCESL_cfg.his located in: specific library folderIMLIBlInclude. The optimization
level can be changed by modifying the macro value for specific compiler. In case of any change the library functionality is

not guaranteed.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the number is the closest number to 1 that
the resolution of the used fractional type allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest (half up).

3. This RTCESL requires the DSP extension for some saturation functions. If the core does not support the DSP extension
feature the assembler code of the RTCESL will not be buildable. For example the core1 of the LPC55s69 has no DSP
extension.

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB into any MCUXpresso SDK example or
new SDK project using MCUXpresso IDE. The SDK based project uses RTCESL from SDK package.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 5/60

NXP Semiconductors

Library
Adding RTCESL component to project

The MCUXpresso SDK package is necessary to add any example or new project and RTCESL component. In case the

package has not been downloaded go to mcuxpresso.nxp.com, build the final MCUXpresso SDK package for required board and
download it.

After package is dowloaded, open the MCUXpresso IDE and drag&drop the SDK package in zip format to the Installed SDK

window of the MCUXpresso IDE. After SDK package is dropped the mesage accepting window appears as can be show in
following figure.

B mic UXpresso IDE - [u}
File Edit Navigate Search Project Configlools Run RTOS Analysis Wi Help
Hmid | @~ &~ A2 N F-O0-Q-i® =R W BRZESR pHERDR
@0 i Ribi-Fl-oT et Q iR
[Project Bx.. 51 i Registers % Faults &, Periphera.. = O =7
8% 7 | |- 8
There are ne projects in your werkspace.
To add a project:
B Creste s new MCUXpresso IDE C/C+ + project.
@ import examples from SDK.) MCUxpresso IDE SDK import - ul 'Y
% Create s project...
Dy Import projects.. ‘."_ j Areyou sure you want to import the following SDK in the
&Y common ' maupresso’ folder?
D:ASDK_2_10_0_HVP-KV31F120Mzzip
@ inst.. 2 [Prop.. [2 Pny]
=]
[Installed SDKs
(1) Quickstart Panel £ (x)= Variables ®g Breakpoints = [Toinstallan SDK, simply drag and lpresy
. A [Installed SDKs . Available Board
- MCUXpresso IDE - Quickstart Panel B | B
0t No t selected Name
project selecte
~+ Create or import a project
p— B New project...
?a
Import SDK le(s)..
@ impo example(s) [] Do not ask for confirmation on SDK Drag and Drop install
® Import project(s) from file system...
~ Build your project
@ o[E ;
o {1 MCUX workspace o

Figure 1. MCUXpresso IDE - imporing the SDK package to MCUXpresso IDE

Click OK to confirm the SDK package import. Find the Quickstart panel in left bottom part of the MCUXpresso IDE and click New
project... item or Import SDK example(s)... to add rtcesl component to the project.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide 6/60

NXP Semiconductors

Library

8 MCUX workspace - MCU¥presso IDE

File Edit Mavigate Search Project Configlools Run RTOS Analysis Window Help

Al | &~]~ e R H-O0-U-®Y-IRETID N
@il Ril-Fl-o e
[Project Ex.. 5 4! Registers 45 Faults &, Periphera.. = O

28lv|i#% B8
There are no projects in your workspace.
To add a project:
B8 Create a new MCUXpresso IDE C/C++ project.
B Import examples from SDK.
9 Create a project..

i Import projects...

() Installed SDKs
() Quickstart Panel 53 ()= Variables @g Breakpoints =

Installed SDKs

@ inst. 52 [OProp.. (2 Probl.. B Cons.. @Term.. [z Ima..

To install an SDK, simply drag and drop an SOK (zip file/folder] into the Installed SDKs' view. [Common 'mcuxpres

- a x
[N e S hE R
Q K

= 8

@ Debu.. 2 Offfin.. = B

®o D

~
MCUXpresso IDE - Quickstart Panel
No project selected

\DE

Available Boards| Available Devices |

Name

~ Create or import a project

SDK Versien

Manifest Version Location

HHISDK_2.x_HVP-KV31F120M 2100

380 &

Invoke the new SDK project wizard

~ Build your project

@

\SDK_2_10_0_HVP-KY

~ SDK MCUs . Available boards

MCUs from installed SDKs. Please click

above or visit mcuxpresso.mxp.com to
obtain additional SDKs.

Please select an available board for your project.

[Supported boards for device: MKV3TFS120012

vllx — >
Figure 2. MCUXpresso IDE - create new project or Import SDK example(s)
Then select your board, and clik Next button.
) 50K Wizard o x
(D) Cresting project for device: MKV31F5120012 using board: HVP-KV31F120M x @
. Board and/or Device selection page .

NP MKV3TF512300x12

v KV3x
MKV3TF512xxx12

hvpkv31£120m

~ Preinstalled MCUs
MCUs from preinstalled LPC and
generic Cortex-M part support
NXP PN7462AU-C3-00 "
PN7462AU-C2-00
PN7462AU-C3-00
Generic-MD
Generic-Moplus
Generic-M23
Generic-M3
Generic-M33
Generic-M4
Generie-M7

v

Selected Device: MKV31F512300¢12 using board: HVP-KV31F120M
Target Core: emd
Description:

SDKs for selected MCU
Name

Kinetis KV3x-100-120 MHz, Advanced 3ph FOC / Sensorless Motor Control MCUs

based on ARM Cortex-M4 2 SDK_2x_HVP-KVITF120M 2,100

@

SDK Version

Manifest Ve... Location

(49420; 380 JE <Common>\SDK_2_10_0_HVP-KV:

< Back Finish Cancel

Figure 3. MCUXpresso IDE - selecting the board

Find the Middleware tab in the Components part of the window and click on the checkbox to be the rtcesl component ticked. Last

step is to click the Finish button and wait for project creating with all RTCESL libraries and include paths.

User Guide

AMCLIB User's Guide, Rev. 5, 01 November 2021

7/60

NXP Semiconductors

Library
3 soK Wizard u] X
i, The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2x_HVP-KV31F120M' SDK. VA &
. Configure the project
Project neme: | MKV31F31212_FirstProject] * | Project name suffix:

Use default location

C:\MCUX_workspace\MKV31F51212_FirstProject Browse..
Device Packages Board Project Type Project Options
® MKV3IFS12VLLIZ ® Defaut board files @CProject (O Cr+ Project SDK Debug Console (3 Semihost @) UART
O MKV31F312VLH12 O Empty board files [CMSIS-Core

(O C Static Library () C++ Static Library Copy sources

[Import other files

Components [F] Components selection summary B
Add or remove SDK software companents [ipesotiter |
Operating Systems [Drivers [CMSIS Drivers [Utilities [Widdieware™ Board Components| Abstraction Layer| Software C =
Name Description Ve Info
Middleware B %l ®E £ Drivers
[opesotiter | £ Middlenere
£ Operating Systems
Name Description Version Info = Software Component
[£ FresMASTER £ Utilties
[£ Memories.
[1 = Motor Cantrol
T rice! Real Time Control Embedded Software Library for CM... 110 | Real Time Gontrol Embedded Software Library far CNUF core
@ <Back Next> T

Figure 4. MCUXpresso IDE - selecting rtcesl component

Type the #include syntax into the code where you want to call the library functions. In the left-hand dialog, open the required .c
file. After the file opens, include the following lines into the #include section:

#include "mlib.h"

#include "gflib.h"
#include "gdflib.h"
#include "gmclib.h"
#include "amclib.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB into an empty project or any
MCUXpresso SDK example or demo application projects using Keil pVision. This example uses the default installation path
(C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL). If you have a different installation path, use that path instead. If any MCUXpresso
SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter otherwise read
next chapter.

NXP pack installation for new project (without MCUXpresso SDK)

This example uses the NXP MKV46F256xxx15 part, and the default installation path (C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL)
is supposed. If the compiler has never been used to create any NXP MCU-based projects before, check whether the NXP MCU
pack for the particular device is installed. Follow these steps:

1. Launch Keil yVision.

2. In the main menu, go to Project > Manage > Pack Installer....

3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale (NXP) node.
4

. Look for a line called "KVxx Series" and click it.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 8/60

NXP Semiconductors

Library

5. In the right-hand dialog (under the Packs tab), expand the Device Specific node.

6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update options, click the button to install/
update the package. See Figure 5.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

{6 Pack Installer - Ci\Keil uS\ARM\PACK - . - ==& =]
File Packs Window Help
> ‘ Device: Freescale - Kvox Series
4 Devices | Boards | | |la] " Packs | Examples | |
‘ Search: - X Pack Description
| o= /| summary 171 Device Specific
@ Atmel 257 Devices ||| KeaKinetis Ko DFP Freescale Kinetis Ko Series Device Support
@ Freescale 234 Devices El-Generic
% K Series 1 Device ARMECMSIS CMSIS (Cortex Microcontraller Software Interface Standard)
%2 K00 Series. 2 Devices Keil:zARM_Compiler Keil ARM Compiler extensions
%2 K10 Series. 23 Devices Keil:lansson Jansson is a C library for encoding, decoding and manipula
42 K20 Series. #1 Devices Keil:zMDK-Middleware Keil MDK-ARM Professional Middleware for ARM Cartex-M
%2 K30 Series. 6 Devices Keil:zMDK-Network_D! Keil MDK-ARM Professional Middleware Dual-Stack IPv4/IP
% K40 Series. 6 Devices WPz wIP IWIP is 2 light-weight implementation of the TCP/IP protoc
%2 K50 Series. 11 Devices Micrium:RTOS Micrium software components
%2 K60 Series. 18 Devices Ory Package (CycloneTCP, CycloneSSL and Cyclon
%2 K70 Series. 3 Devices WoIfSSL:CyaSSL Light weight SSL/TLS and Crypt Library for Embedded Syste
%2 K80 Series. 2 Devices 1 YOGITECH:fRSTL_AR... |& YOGITECH fRSTL Functional Safety EVAL Software Pack for
. KEAvo Series 6 Devices
Kb Series 11 Devices
Kl Series 54 Devices
A Koo Series 14 Devices
A Kiioc Series 26 Devices
. Koo Series 8 Devices
% WPRISI6 Series |1 Device
&t i)l i
Output 3 x

Refresh Pack descriptions
Update available for Keil:MDK-Middleware (installed: 6.4.0, available: 7.0.0-eta)

i Ready [[onume

Figure 5. Pack Installer

New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and is opened, skip to the next section. Follow
these steps to create a new project:

1. Launch Keil yVision.
2. In the main menu, select Project > New pVision Project..., and the Create New Project dialog appears.

3. Navigate to the folder where you want to create the project, for example C:\KeilProjects\MyProject01. Type the name of the
project, for example MyProject01. Click Save. See Figure 6.

Create New Project

File name: MyProject0l

Save as type: |Project Files (“uvproj: ".uvprojs)

* Browse Folders

Figure 6. Create New Project dialog

In the next dialog, select the Software Packs in the very first box.

Type 'kv4' into the Search box, so that the device list is reduced to the KV4x devices.
Expand the KV4x node.

Click the MKV46F256xxx15 node, and then click OK. See Figure 7.

N o o &

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 9/60

NXP Semiconductors

Library

- =
Select Device for Target 'Target 1°. u

ICPUl

ISoﬂware Packs LI

Vendor: Freescale
Device: MKV46F2560cc15

Toolset: ~ ARM
Search I
Description:
] MKVA3F128500d 5 :I The Kinetis K\4x family of MCUs is a high-performance solution for -
offering exceptional precision, sensing and control for the some of the
€ MKV43F6d0015 most demanding applications in motor and power contral.
1 MKVA4F1 285001 5 Built upon the ARM Cortex-M4 core running at 150 MHz with DSP and
Floating peint unit, it features dual 12-bit analogto-digital converters
€1 MKV44FEd0005 {ADCs) with 240 ns conversion time, eFexPWM medule with 312ps
g1 MKVASFL 28100d 5 resolution and ManoEdage support, up to 30 PWM channels for support
of multi-motor systems and dual AexCAN modules.
€1 MKV45F256:0015 | The Kinetis K\dx family is supported by a comprehensive enablement
2 MKVAEF1 281005 suite from Freescale and thind-party resources including reference
@ designs, software libraries and motor configuration tools.
4 -

Figure 7. Select Device dialog

8. In the next dialog, expand the Device node, and tick the box next to the Startup node. See Figure 8.

9. Expand the CMSIS node, and tick the box next to the CORE node.

Software Component Sel. Variant Version Description
=4 cwmsis Cortex Micracontroller Saftware Interface Components
@ CORE I 410 CIMSIS-CORE for Cortex-M. 5C000, and SC300
@ Dse r 145 CIMSIS-DSP Library for Cortex-M. 5C000, and SC300
| € RTOS (AP]) 10 CMSIS-RTOS API for Cortex-M, SC000. and SC300
€ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
& Compiler ARM Compiler Software Extensions
£ 4 Device Startup, System Setup
@ Startup I 100 System Startup for Kinetis KV45 150MHz devices devices devices
4 File System MDK-Pro 640 File Access on various storage devices
4 Graphics MDK-Pro 5261 Userlnterface on graphical LCD displays
& Network MDK-Pro 640 I Networking using Ethernet or Serial protocals
& use MDK-Pre G40 USE Communication with verious device classes

Figure 8. Manage Run-Time Environment dialog

10. Click OK, and a new project is created. The new project is now visible in the left-hand part of Keil yVision. See Figure 9.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

10/60

NXP Semiconductors

11. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.

12. Select the Target tab.

Figure 9. Project

C jectsiM jectd1\M ject0l.uvprojx - pVision

File Edit View Project Flash Debug Peripherals

Too

Project 1 [

=8 Project: MyProjectil
El@ Target1

ﬁ Source Group 1

& omsIs

El‘ Device
] startup_MKV46F15.s (Startup)
[system_MKV46FL5.c (Startup)
[0 system_MKV46F15.h (Startup)

13. Select Not Used in the Floating Point Hardware option. See Figure 9.

Linking the files into the project
AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The following steps show how to include all

Figure 10. FPU

—Code Generation

ARM Compiler: ILlse default compiler version

[Use Cross-Module Optimization
[Use MicroLIB I EBig Endian
Floating Poirt Hardware: Mot Used

-]

dependent modules.

To include the library files in the project, create groups and add them.

1.

Click the newly created group, and press F2 to rename it to RTCESL.

AMCLIB User's Guide, Rev. 5, 01 November 2021

Right-click the Target 1 node in the left-hand part of the Project tree, and select Add Group... from the menu. A new group
with the name New Group is added.

Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'... from the menu.

User Guide

NXP Semiconductors

Library

4. Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\MLIB\Include, and select the m/ib.h

file. If the file does not appear, set the Files of type filter to Text file. Click Add. See Figure 11.

Look in:) Include

~| & &k E-

Date modified

-

16.10.2014 9:19

MLIE_Abs_F16.h
MLIE_Abs_F32.h
| MLIB_Add_A32.h
| MLIB_Add_F16.h
| MLIB_Add_F32.h
.| MLIB_Add4_F16.h
| MLIB_Add4_F32.h
.| MLIB_BiShift_F16.h
_ | MLIB_BiShift_F32.h

RALTR il F4E L

=l
=
=

21.10.2014 9:45
16.10.2014 219
16.10.2014 219
16.10.2014 219
16.10.2014 919
16.10.2014 9:19
16.10.2014 9:19
16.10.2014 2:19
16.10.2014 9:19

R W TG %

-

1 | n

File name: |mlib.h

3

Figure 11. Adding .h files dialog

Files of type: | Teut file ("be; ~h; “inc)

| Close

. Navigate to the parent folder C:ANXP\RTCESL\CM4_RTCESL_4.6_KEIL\MLIB, and select the m/ib./ib file. If the file does
not appear, set the Files of type filter to Library file. Click Add. See Figure 12.

Lool in: , MLIB

Marme

J Include
|| MLIB.lib

~| & ® ek B

Date modified Ty
20102014 15:37 Fi
16.10.2014 9:19 LI

4| (1

File name: |MLIB.Iib

3

Files of type: | Library file (* lib)

Figure 12. Adding .lib files dialog

~| Close

6. Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\GFLIB\Include, and select the gfiib.h
file. If the file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\GFLIB, and select the gfiib./ibfile. If the file does
not appear, set the Files of type filter to Library file. Click Add.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 12/60

NXP Semiconductors

Library

8. Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\GDFLIB\Include, and select the
gdfiib.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add.

9. Navigate to the parent folder C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\GDFLIB, and select the gdfiib./ibfile. If the file
does not appear, set the Files of type filter to Library file. Click Add.

10. Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\GMCLIB\Include, and select the
gmclib.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add.

11. Navigate to the parent folder C:\ANXP\RTCESL\CM4_RTCESL_4.6_KEIL\GMCLIB, and select the gmclib./ibfile. If the file
does not appear, set the Files of type filter to Library file. Click Add.

12. Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\AMCLIB\Include, and select the
amclib.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add.

13. Navigate to the parent folder CANXP\RTCESL\CM4_RTCESL_4.6_KEIL\AMCLIB, and select the amclib.libfile. If the file
does not appear, set the Files of type filter to Library file. Click Add.

14. Now, all necessary files are in the project tree; see Figure 13. Click Close.

Project 1 8]
=& Project: MyProjectll
-3 Targetl
L4 Source Group 1
-4 RTCESL
mlib.h
MLIE.lib
gflib.h
GFLIB.lib
gmclib.h
GMCLIB.lib
amclib.h
AMCLIB.lib
& cmsis
=4 Device

(G IR L W

Figure 13. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules.
1. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.
2. Select the C/C++ tab. See Figure 14.

3. Inthe Include Paths text box, type the following paths (if there are more paths, they must be separated by ';') or add them
by clicking the ... button next to the text box:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 13/60

NXP Semiconductors

Library

"C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\MLIB\Include"
"C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\GFLIB\Include"
"C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\GDFLIB\Include"
"C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\GMCLIB\Include"
"C:\NXP\RTCESL\CM4_RTCESL_4.6_KEIL\AMCLIB\Include"

4. Click OK.
5. Click OK in the main dialog.

Figure 14. Library path addition

Devicel Target | Oulpull Listingl User C/Ces I.&'sm I Linkerl Debug | Lkilties | l
P Symbals
Define: I
Undefine: I
— Language / Code Generation
I Sirict ANSIC e
Optimization: |Level 0 (00) ~ I™ Enum Container abways int All Wamings <
I Optimize for Time ™ Plain Char is Signed [T Thumb Mode
™ Spli Load and Store Multiple [~ Read-Cnly Position Independent [~ No Auto Includes
[One ELF Section per Function ™ Read-Wite Posttion Independert [~ €39 Mode
Include
Paths Il J
Misc I
Controls
Compiler | —cpu Cortex-M0+ -D__EVAL -g -00 -apcs=interwork .
control [C:\KeilProjects \MyProject01\RTE
string -
0K I Cancel Defaults Help I

Type the #include syntax into the code. Include the library into a source file. In the new project, it is necessary to create a

source file:

1. Right-click the Source Group 1 node, and Add New ltem to Group 'Source Group 1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for example 'main.c. See Figure 15.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

14 /60

NXP Semiconductors

Library

-

Add New Item to Group "Source Group 1

Create a new C source file and add it to the projec
C |CFils{c)

@ C++ File cpp)
\ﬂ Asm File (s)

\ﬂ Header File (h)
é Text File ()
jg\ Image File ()

mf

1@ |Jser Code Template
Type:
Mame: |"“E'i"'-C
Location: | C:KeiProjects\MyProjectd1
Add Close
L

Figure 15. Adding new source file dialog

3. Click Add, and a new source file is created and opened up.

4. In the opened source file, include the following lines into the #include section, and create a main function:

#include
#include
#include
#include
#include

"mlib.h"
"gflib.h"
"gdflib.h"
"gmclib.h"
"amclib.h"

int main (void)

{

while (1) ;

}

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded Workbench)

This section provides a step-by-step guide on how to quickly and easily include the AMCLIB into an empty project or any

MCUXpresso SDK example or demo application projects using IAR Embedded Workbench. This example uses the default
installation path (C:\NXP\RTCESL\CM4_RTCESL_4.6_IAR). If you have a different installation path, use that path instead. If any
MCUXpresso SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter

otherwise read next chapter.

New project (without MCUXpresso SDK)

This example uses the NXP MKV46F256xxx15 part, and the default installation path (C:\NXP\RTCESL\CM4_RTCESL_4.6_IAR)
is supposed. To start working on an application, create a new project. If the project already exists and is opened, skip to the next
section. Perform these steps to create a new project:

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

15/60

NXP Semiconductors

1. Launch IAR Embedded Workbench.

2.

Library

In the main menu, select Project > Create New Project... so that the "Create New Project" dialog appears. See Figure 16.

oo

Tool chain: | ARM

Project templates:

[+ asm
[# C++
=]

| Y | Ny W TSP By [

- DLIB [, C++ with exceptions and RTTI]
- DLIB [C, Extended Embedded C++)

Description:

Figure 16. Create New Project dialog

 project using default tool zettings including an empty main. file,

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:\IARProjects\MyProject01. Type the name of the
project, for example, MyProject01. Click Save, and a new project is created. The new project is now visible in the left-hand
part of IAR Embedded Workbench. See Figure 17.

& IAR Embedded Workbench IDE

5.
6.

Figure 17. New project

Eile Edit Yiew Project Simulater Teols Window Help
D@ & bR o - 4
Workspace x main.cl
[Debug v]
|| Files £ P
E¥5 |MyProjectd] -Deb__ | v | | return 0;
FrIdin. c *]
L@ (1 Output

In the main menu, go to Project > Options..., and a dialog appears.

In the Target tab, select the Device option, and click the button next to the dialog to select the MCU. In this example, select

NXP > KV4x > NXP MKV46F256xxx15. Select None in the FPU option. Click OK. See Figure 18.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

16 /60

NXP Semiconductors

Library

Cateqary:

Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
QOutput Converter
Custom Build
Build Actions
Linker
Debuager
Simulator
Angel
CMSIS DAP
GDE Server
TAR. ROM-monitor
T4et/TTAG]et
J-Link/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMK
Third-Party Driver
TI XDS

,

=)

Target | Qutput | Library Configuration | Library Options | MISRAC:200/ « | »

Processor varant

|:::| Core Cortex-M4

@ Device MXP MKVAGF2560015
Endian mode Floating point settings
@) Little FPU
Eig
BE3Z [registers B
(@ BES

Adwvanced SIMD (NEON)

Figure 18. Options dialog

] [Cancel

Library path variable

To make the library integration easier, create a variable that will hold the information about the library path.

1. In the main menu, go to Tools > Configure Custom Argument Variables..., and a dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the name of the group PATH, and click OK.

See Figure 19.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

17 /60

NXP Semiconductors

Library

Configure Custom Argument Variables

Workspace | Global

Enable Group
Troup...
MNew Group | 5= | E_ B
Fiable...
M : 3
ame PATH iable. ..
lete
oK l [Cancel IF
prt...
Expand/Collapse All
[Hide disabled groups
oK l l Cancel

A

Figure 19. New Group

3. Click on the newly created group, and click the Add Variable button. A dialog appears.

Type this name: RTCESL_LOC

To set up the value, look for the library by clicking the '..." button, or just type the installation path into the box:

C:\NXP\RTCESL\CM4_RTCESL_4.6_IAR. Click OK.
In the main dialog, click OK. See Figure 20.

' Configure Custom Argument Variables [= |
Workspace | Global
[pATH Disable Group
o ™y
Add Variable e
Name: |RTCESL_LOC |
Value: |C:WXP\,RTCESL_CM4_RTCESL_X.X_IAR| | I
OK. J[Cancel]

Figure 20. New variable

Linking the files into the project

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.
1.
2. Type RTCESL, and click OK.
3.
4

Go to the main menu Project > Add Group...

Click on the newly created node RTCESL, go to Project > Add Group..., and create a MLIB subgroup.

AMCLIB User's Guide, Rev. 5, 01 November 2021

. Click on the newly created node MLIB, and go to the main menu Project > Add Files... See Figure 22.

User Guide

18/60

NXP Semiconductors

10.

11.
12.
13.

14.

15.
16.
17.

18.

19.
20.
21.

22.

23.

Library

Navigate into the library installation folder C:\ANXP\RTCESL\CM4_RTCESL_4.6_IAR\MLIB\Include, and select the miib.h
file. (If the file does not appear, set the file-type filter to Source Files.) Click Open. See Figure 21.

Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_IAR\MLIB, and select the ml/ib.afile. If the
file does not appear, set the file-type filter to Library / Object files. Click Open.

b Systern (C:) » MXP » RTCESL » CM4_RTCESL 4.3 IAR » MLIE » Include

it MName Date modified Type
. mlib.h 16.10.2015 9:38 H File
| MLIB_Abs_F16.h 16.10.2015 9:38 H File

Figure 21. Add Files dialog

Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB subgroup.
Click on the newly created node GFLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_IAR\GFLIB\Include, and select the gflib.h
file. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\ANXP\RTCESL\CM4_RTCESL_4.6_IAR\GFLIB, and select the gfiib.afile. If
the file does not appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GDFLIB subgroup.
Click on the newly created node GDFLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:\ANXP\RTCESL\CM4_RTCESL_4.6_IAR\GDFLIB\Include, and select the
gdflib.hfile. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_IAR\GDFLIB, and select the gdfiib.afile.
If the file does not appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GMCLIB subgroup.
Click on the newly created node GMCLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_IAR\GMCLIB\Include, and select the
gmclib.hfile. If the file does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\NXP\RTCESL\CM4_RTCESL_4.6_IAR\GMCLIB, and select the gmclib.a
file. If the file does not appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create an AMCLIB subgroup.
Click on the newly created node AMCLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:ANXP\RTCESL\CM4_RTCESL_4.6_IAR\AMCLIB\Include, and select the
amclib.hfile. If the file does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder CANXP\RTCESL\CM4_RTCESL_4.6_IAR\AMCLIB, and select the amclib.afile.
If the file does not appear, set the file-type filter to Library / Object files. Click Open.

Now you will see the files added in the workspace. See Figure 22.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide 19/60

NXP Semiconductors

Library

Workspace x
' [Debug -]

Files fn o
=f5 |MyProject0] -Deb... [v | |
HE O RTCESL

HE 1 AMCLIE

— [AMCLIE &

L— [armcliboh

HE (1 GFLIB

— [GFLIE.a

L [gflibh

HE (1 GhCLEB

— [GMCLIE.a

L— [gmclibh

A [(IMLUE

— [MLIB &

— k] mlib.h

FrIdin. c *
=1 [Qutput

Figure 22. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules:
1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.

3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in the right; use the arrow icons
for navigation).

4. In the text box (at the Additional include directories title), type the following folder (using the created variable):
+ $RTCESL_LOC$\WMLIB\Include
« $RTCESL_LOCS$\GFLIB\Include
+ $RTCESL_LOCS$\GDFLIB\Include
+ $RTCESL_LOC$\GMCLIB\Include
+ $RTCESL_LOCS$\AMCLIB\Include
5. Click OK in the main dialog. See Figure 23.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 20/60

NXP Semiconductors

Library

,
orvrs e e

Categony:

==

General Options
Static Analysis
Runtime Checking
Assembler
Qutput Conwverter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDE Server
IAR. ROM-monitor
I§et/ITAGjet
Jink/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LINK
Third-Party Driver

[] Multi-file: Compilation

Dizcard Unuzed Publics

Factary Settings

| Language 1 I Language 2 I Code I Ciptimizations I Cutput I List

|[< s

[7] Ignore standard include directories

Additional include directories: (one per ling)

SRTCESL_LOCS\MLIBYinclude
SRTCESL_LOCS\GFLIBtinclude
SRTCESL LOCSWGMCLIBNnclude
SRTCESL_LOCSWGDFLIBinclude
SRTCESL_LOCS'AMCLIBYinclude

Preinclude file:

Defined symbols: {one per ling)

[Preprocessor output to file
Preserve comments
Generate Hine directives

TIXDS

Figure 23. Library path adition

[0K] [Cancel

Type the #include syntax into the code. Include the library included into the main.cfile. In the workspace tree, double-click the
main.cfile. After the main.cfile opens up, include the following lines into the #include section:

#include
#include
#include
#include
#include

"mlib.h"
"gflib.h"
"gdflib.h"
"gmclib.h"
"amclib.h"

When you click the Make icon, the project will be compiled without errors.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

21/60

NXP Semiconductors

Chapter 2
Algorithms in detall

2.1 AMCLIB_AngleTrackObsrv

The AMCLIB_TrackObsrv function calculates an angle-tracking observer for determination of angular speed and position of the
input signal. It requires two input arguments as sine and cosine samples. The practical implementation of the angle-tracking
observer algorithm is described below.

The angle-tracking observer compares values of the input signals - sin(B), cos(B) with their corresponding estimations. As in any
common closed-loop systems, the intent is to minimize the observer error towards zero value. The observer error is given here
by subtracting the estimated resolver rotor angle from the actual rotor angle.

The tracking-observer algorithm uses the phase-locked loop mechanism. It is recommended to call this function at every sampling
period. It requires a single input argument as phase error. A phase-tracking observer with standard Pl controller used as the loop
compensator is shown in Figure 1.

K>
sin(8)
1 1 A
Kl — E E 6

cos(6)—

AY,
V2’

Figure 24. Block diagram of proposed PLL scheme for position estimation

Note that the mathematical expression of the observer error is known as the formula of the difference between two angles:

sin(0 —) = sin(6) - cos(d) — cos(6) - sin(d)

If the deviation between the estimated and the actual angle is very small, then the observer error may be expressed using the
following equation:

sin@-9)=0-0

The primary benefit of the angle-tracking observer utilization, in comparison with the trigonometric method, is its smoothing
capability. This filtering is achieved by the integrator and the proportional and integral controllers, which are connected in series
and closed by a unit feedback loop. This block diagram tracks the actual rotor angle and speed, and continuously updates their
estimations. The angle-tracking observer transfer function is expressed as follows:

Os) K(1+sK))
0(S) - S2+SK]K2+K1

The characteristic polynomial of the angle-tracking observer corresponds to the denominator of the following transfer function:

S2+SK]K2+K1

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 22/60

NXP Semiconductors

Algorithms in detail

Appropriate dynamic behavior of the angle-tracking observer is achieved by the placement of the poles of characteristic
polynomial. This general method is based on matching the coefficients of characteristic polynomial with the coefficients of a
general second-order system.

The analog integrators in the previous figure (marked as 1/ s) are replaced by an equivalent of the discrete-time integrator
using the backward Euler integration method. The discrete-time block diagram of the angle-tracking observer is shown in the
following figure:

K>
sin(6(k))
Ki = P55 6(k)
cos(6(k))—
Y 1
w7 Z

Figure 25. Block scheme of discrete-time tracking observer

The essential equations for implementating the angle-tracking observer (according to this block scheme) are as follows:

(k) = sin(6(k)) - cos(O(k — 1) ~ cos(0(k)) sin(D(k — 1)

o(k)=Ts* K ;e elk)+ ok —1)

axk)= Ty (k) + afk — 1)

0(k) =K, (k) +ay(k)

where:
» Kj is the integral gain of the | controller
» K, is the proportional gain of the Pl controller
» T, is the sampling period [s]
» e(k) is the position error in step k
» w(k) is the rotor speed [rad / s] in step k
* w(k - 1) is the rotor speed [rad / s] in step k - 1
» a(k) is the integral output of the PI controler [rad / s] in step k
« a(k - 1) is the integral output of the PI controler [rad / s] in step k - 1
» 0(k) is the rotor angle [rad] in step k
* B(k - 1) is the rotor angle [rad] in step k - 1
» 0(k) is the estimated rotor angle [rad] in step k
* B(k - 1) is the estimated rotor angle [rad] in step k - 1

In the fractional arithmetic, AMCLIB_AngleTrackObsrv_Eq5 to AMCLIB_AngleTrackObsrv_EQg8 are as follows:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 23/60

NXP Semiconductors

Algorithms in detail

@5 k) * Omax=Ts* K * e(k)+ sk = 1) * Wpax

a25c(k) * Oppax = Ts * w5 dk) * O+ az;c(k = 1) Oax

ésc(k) 'gmaszZ'wsc(k) 'wmax+azsc(k) 'Hmax

where:
* e4c(K) is the scaled position error in step k
* Wwgc(k) is the scaled rotor speed [rad / s] in step k
* wgc(k - 1) is the scaled rotor speed [rad / s] in step k - 1
* agc(k) is the integral output of the PI controler [rad / s] in step k
* ag(k - 1) is the integral output of the Pl controler [rad / s] in step k - 1
* Bsc(Kk) is the scaled rotor angle [rad] in step k
* Bgc(k - 1) is the scaled rotor angle [rad] in step k - 1
* B5c(Kk) is the scaled rotor angle [rad] in step k
* Bgc(k - 1) is the scaled rotor angle [rad] in step k - 1
* Wmax IS the maximum speed

* Bmax is the maximum rotor angle (typicaly)

2.1.1 Available versions
The function is available in the following versions:
» Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).

The available versions of the AMCLIB_AngleTrackObsrv function are shown in the following table:

Table 2. Init versions

Function name Init angle Parameters Result
type
AMCLIB_AngleTrackObsrvInit_F16 frac16_t AMCLIB_ANGLE_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1 ; 1) that
represents an angle in (radians) within the range <-1r;).

Table 3. Function versions

Function name Input type Parameters Result
type
AMCLIB_AngleTrackObsrv_F16 GMCLIB_2COOR_SINCOS_T_F16 * | AMCLIB_ANGLE_TRACK_OBSRV_ | frac16_t
T_F32*

Angle-tracking observer with a two-componenent (sin/cos) 16-bit fractional position input
within the range <-1 ; 1). The output from the obsever is a 16-bit fractional position
normalized to the range <-1 ; 1) that represents an angle (in radians) within the range
<-TT;).

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 24 /60

NXP Semiconductors

Algorithms in detail

2.1.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32

Variable name

Input
type

Description

f32Speed

frac32_t

Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1; 1). Controlled by the AMCLIB_AngleTrackObsrv_F16 algorithm; cleared by the
AMCLIB_AngleTrackObsrvinit_F16 function.

f32A2

frac32_t

QOutput of the second numerical integrator. The parameter is within the range <-1 ; 1).
Controlled by the AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16
algorithms.

f16Theta

frac16_t

Estimated position as the output of the observer. The parameter is normalized to the range
<-1; 1) that represents an angle (in radians) within the range <-1 ;). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.

f16SinEstim

frac16_t

Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.

f16CosEstim

frac16_t

Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.

f16K1Gain

frac16_t

Observer K1 gain is set up according to Equation 9 as:

TS'Kj' I .2—K1sh

Opmax

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K1GainSh

int16_t

Observer K2 gain shift takes care of keeping the f16K1Gain variable within the fractional
range <-1; 1). The shift is determined as:

log (T K")~ log, 1 < KIsh < log (T K * ez — log 0.5

The parameter is a 16-bit integer type within the range <-15; 15>. Set by the user.

f16K2Gain

frac16_t

Observer K2 gain is set up according to Equation 11 as:

, — o
K2_ omwc) K 2sh

max

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K2GainSh

int16_t

Observer K2 gain shift takes care of keeping the f16K2Gain variable within the fractional
range <-1; 1). The shift is determined as:

log (K, 72) ~ log,1 < K2sh < log (K, ")~ log 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16A2Gain

frac16_t

Observer A2 gain for the output position is set up according to Equation 10 as:

, _
Ts L Omax o A2sh
max

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16A2GainSh

int16_t

Observer A2 gain shift for the position integrator takes care of keeping the f16A2Gain
variable within the fractional range <-1 ; 1). The shift is determined as:

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

25/60

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name

Input
type

Description

log (T’ max log, 1< A2sh<log (T mar) log,0.5

Omax

Omax

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

2.1.3 Declaration

The available AMCLIB_AngleTrackObsrvinit functions have the following declarations:

void AMCLIB AngleTrackObsrvInit F16 (fracl6 t fl6ThetaInit, AMCLIB ANGLE TRACK OBSRV T F32 *psCtrl)

The available AMCLIB_AngleTrackObsrv functions have the following declarations:

fracl6_t AMCLIB_AngleTrackObsrv_F16 (const GMCLIB_2COOR_SINCOS T F16 *psAnglePos,
AMCLIB_ANGLE TRACK OBSRV_T F32 *psCtrl)

2.1.4 Function use

The use of the AMCLIB_AngleTrackObsrvinit and AMCLIB_AngleTrackObsrv functions is shown in the following example:

static

{

#include

sAto.
sAto.
sAto.
sAto.
sAto.
sAto.

fraclé t

void Isr (void) ;

void main (void)

f16K1Gain
116K1GainSh
f16K2Gain
116K2GainSh
f16A2Gain
116A2GainSh

fl6PositionInit

sAnglePos.f16Sin
sAnglePos.fl6Cos

"amclib.h"

fl6PositionEstim,

static AMCLIB ANGLE TRACK OBSRV_T F32 sAto;
static GMCLIB 2COOR SINCOS T F16 sAnglePos;
fl6PositionInit;

FRAC16(0.6434) ;
-9;
FRAC16(0.6801) ;
_2,.
FRAC16 (0.6400) ;
_4,-

FRAC16(0.0) ;

AMCLIB AngleTrackObsrvInit F16(fl6PositionInit,

FRAC16(0.0) ;
FRAC16(1.0);

&sAto) ;

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

26 /60

NXP Semiconductors

Algorithms in detail

/* Periodical function or interrupt */
void Isr(void)
{
/* Angle tracking observer calculation */
fléPositionEstim = AMCLIB AngleTrackObsrv F16 (&sAnglePos, &sAto);
}

2.2 AMCLIB_CtrIFluxWkng

The AMCLIB_CtrIFluxWkng function controls the motor magnetizing flux for a speed exceeding above the nominal speed of the
motor. Where a higher maximum motor speed is required, the flux (field) weakening technique must be used. The basic task of the
function is to maintain the motor magnetizing flux below the nominal level which does not require a higher supply voltage when the
motor rotates above the nominal motor speed. The lower magnetizing flux is provided by maintaining the flux-producing current
component ip in the flux-weakening region, as shown in Figure 1).

voltage T
flux

flux voltage

nominal flux

normal operation
(constant torque)

flux-weakening region
(constant power)

nominal speed speed

Figure 26. Flux weakening operating range

The AMCLIB_CtrIFluxWkng function processes the magnetizing flux by the Pl controller function with the anti-windup functionality
and output limitation. The controller integration can be stopped if the system is saturated by the input flag pointer in the
flux-weakening controller structure. The flux-weakening controller algorithm is executed in the following steps:

1. The voltage error calculation from the voltage limit and the required voltage.

I gain

Uerr = (UoLim= |Uoreq|) * T gain

Figure 27.

where:
* Ugr is the voltage error
* uqLim is the Q voltage limit component
* Uqreq is the Q required voltage component
* lgain is the voltage scale - max. value (for fraction gain = 1)
* Ugain is the current scale - max. value (for fraction gain = 1)

2. The input Q current error component must be positive and filtered by the infinite impulse response first-order filter.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 27 /60

NXP Semiconductors

Algorithms in detail

iQerrIIR= IIRI(|iQerr|)

Figure 28.

where:
* igerrir is the Q current error component filtered by the first-order IR

* igerr is the input Q current error component (calculated before calling the AMCLIB_CtrIFluxWkng function from the
measured and limited required Q current component value).

3. The flux error is obtained from the previously calculated voltage and current errors as follows:

Lerr = IQerrIIR - Uerr

Figure 29.

where:
* igrr is the Q current error component for the flux Pl controller
* iqemir is the current error component filtered by the first-order IR
* U is the voltage error for the flux PI controller

4. Finally, the flux error (corresponding the Ip) is processed by the flux Pl controller:

ipreq = CtriPIpAW (iey)

Figure 30.

where:
* ipreq i the required D current component for the current control
* igr is the flux error (corresponding the D current component) for the flux Pl controller

The controller output should be used as the required D current component in the fast control loop and concurrently used as an
input for the GFLIB_VectorLimit1 function which limits the Iq controller as follows:

. %) ")
iQreq < Vlnzax “!Dreq

Figure 31.

where:
* iqreq is the required Q current component for the current control
* imax is application current limit
* ipreq is the required D current component for the current control

The following figure shows an example of applying the flux-weakening controller function in the control structure. The flux
controller starts to operate when the I controller is not able to compensate the Iq ¢ and creates a deviation between its input
and ouput. The flux controller processes the deviation and decreases the flux excititation (for ACIM, or starts to create the flux
extitation against a permanent magnet flux in case of PMSM). A lower BEMF causes a higher Iq and the motor speed increases.
The speed controller with Iq (g 0N the output should be limited by the vector limit1 function because a part of the current is used
for flux excitation.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 28 /60

NXP Semiconductors

Algorithms in detail

Dreq

ACIM: |y norm OF
MTPA output

Io

stop integration flag

Figure 32. Flux weakening function in control block structure

2.2.1 Available versions

This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1) in case of no limitation.

The parameters are of fractional or accumulator types.

The available versions of the AMCLIB_CtrlIFluxWknglnit function are shown in the following table:

Table 4. Init function versions

Function name Input Parameters Result
type type
AMCLIB_CtrIFluxWknglnit_F |frac16_t | AMCLIB_CtrlIFluxWknglnit_A32* void
16

flux PI controller and the IIR1 filter.

The inputs are a 16-bit fractional initial value for the flux PI controller integrating the part state
and a pointer to the flux-weakening controller's parameters structure. The function initializes the

The available versions of the AMCLIB_CtrIFluxWkng function are shown in the following table:

Table 5. Function versions

Function name Input type Parameters Result
Q current Q required Q voltage type
error voltage limit
AMCLIB_CtrIFluxWkn | frac16_t frac16_t frac16_t AMCLIB_CTRL_FLUX_WKNG_T_A32* frac16_t
g_F16

The Q current error component value input (g controller input) and the Q required voltage value input
(Iq controller output) are 16-bit fractional values within the range <-1; 1). The Q voltage limit value input
(constant value) is a 16-bit fractional value within the range (0 ; 1). The parameters are pointed to by an
input pointer. The function returns a 16-bit fractional value in the range <f16LowerLim ; f16UpperLim>.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

29/60

NXP Semiconductors

Algorithms in detail

2.2.2 AMCLIB_CTRL_FLUX_WKNG_T_A32

Variable name Input type Description

sFWPiParam GFLIB_CTRL_PI_P_AW_T_A | The input pointer for the flux PI controller parameter structure. The flux
32 controller output should be negative. Therefore, set at least the following
parameters:

» a32PGain - proportional gain, the range is <0 ; 65536.0).
+ a32IGain - integral gain, the range is <0 ; 65536.0).
» f16UpperLim - upper limit, the zero value should be set.

« f16LowerLim - the lower limit, the range is <-1; 0).

slgErrlIR1Para | GDFLIB_FILTER_IIR1_T_F32 | The input pointer for the 1IR1 filter parameter structure. The IIR1 filters the
m absolute value of the Q current error component for the flux controller. Set
at least the following parameters:

* sFItCoeff.f32B0 - B0 coefficient, must be divided by 2.
+ sFItCoeff.f32B1 - B1 coefficient, must be divided by 2.

» sFItCoeff.f32A1 - A1 (sign-inverted) coefficient, must be divided by -2
(negative two).

f16IqErrlIR1 frac32_t The Iq current error component,filtered by the [IR1 filter for the flux PI
controller, as shown in Equation 2. The output value calculated by the
algorithm.

f16UFWErr frac16_t The voltage error, as shown in Equation 1. The output value calculated by

the algorithm.

f16FWErr frac16_t The flux-weakening error, as shown in Equation 3. The output value
calculated by the algorithm.

*bStopintegFla |frac16_t The integration of the Pl controller is suspended if the stop flag is set.
g When it is cleared, the integration continues. The pointer is set by the user
and controlled by the application.

2.2.3 Declaration
The available AMCLIB_CtrlFluxWknginit functions have the following declarations:

void AMCLIB CtrlFluxWkngInit F16(fracl6 t f16InitVval, AMCLIB CTRL FLUX WKNG T A32 *psParam)

The available AMCLIB_CtrIFluxWkng functions have the following declarations:

fraclé t AMCLIB CtrlFluxWkng F16(fracl6 t fl16IQErr, fracl6 t fl16UQReq, fraclé6 t f16UQLim,
AMCLIB CTRL FLUX WKNG T A32 *psParam)

2.2.4 Function use
The use of the AMCLIB_CtrIFluxWknglnit and AMCLIB_CtrIFluxWkng functions is shown in the following examples:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 30/60

NXP Semiconductors

Algorithms in detail

Fixed-point version:
#include "amclib.h"

static AMCLIB CTRL FLUX WKNG T A32 sCtrl;
static fraclé t f16IQErr, f16UQReq, £f16UQLim;
static fracl6_t fl6IdReqg, fl6InitVal;

static bool t bStopIntegFlag;

void Isr (void) ;

void main (void)

{
/* Associate input stop integration flag */
bStopIntegFlag = FALSE;
sCtrl.bStopIntegFlag = &bStopIntegFlag;

/* Set PI controller and IIRl parameters */
sCtrl.sFWPiParam.a32PGain = ACC32(0.1);

sCtrl.sFWPiParam.a32IGain = ACC32(0.2);

sCtrl.sFWPiParam.fl6UpperLim = FRAC16(0.)
sCtrl.sFWPiParam.fl6LowerLim = FRAC16 (-0.
sCtrl.sIgErrIIlParam.sFltCoeff.£f32B0
sCtrl.sIgErrIIlParam.sFltCoeff.f32B1

9);

/* Flux weakening controller initialization */
fl6InitVal = FRAC16(0.0);
AMCLIB CtrlFluxWkngInit F16(f16InitVal, &sCtrl);

/* Assign input variable */
f16IQErr = FRACl6(-0.1);
f16UQReqg = FRAC16(-0.2);
f16UQLim = FRAC16(0.8);

/* Periodical function or interrupt */
void Isr ()
{
/* Flux weakening controller calculation */
fl6Result = AMCLIB CtrlFluxWkng F16 (f16IQErr, f16UQReq, fl6UQLim,

FRAC32 (0.245237275252786 / 2.0);
FRAC32(0.245237275252786 / 2.0);
sCtrl.sIgErrIIlParam.sFltCoeff.f32A1 = FRAC32(-0.509525449494429 / -2.0);

&sCtrl) ;

2.3 AMCLIB_PMSMBemfObsrvDQ

The AMCLIB_PMSMBemfObsrvDQ function calculates the algorithm of back-electro-motive force observer in a rotating reference
frame. The method for estimating the rotor position and angular speed is based on the mathematical model of an interior PMSM
motor with an extended electro-motive force function, which is realized in an estimated quasi-synchronous reference frame y-0

as shown in Figure 1.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

31/60

NXP Semiconductors

Algorithms in detail

Figure 33. The estimated and real rotor dq synchronous reference frames

The back-EMF observer detects the generated motor voltages induced by the permanent magnets. A tracking observer uses the
back-EMF signals to calculate the position and speed of the rotor. The transformed model is then derived as follows:

Rg+sLp —awlp

Uy
oLy Rg+sLp

u(57

", (AL + (i~ sig)+ ¥e,) *

s,

- Sin(gerror)]
c08(Oerror)

where:
* Rgis the stator resistance
* Lp and Lq are the D-axis and Q-axis inductances
* Y, is the back-EMF constant
* wy is the angular electrical rotor speed
* Uy and ug are the estimated stator voltages
* iy and i5 are the estimated stator currents
* Beror is the error between the actual D-Q frame and the estimated frame position
» s is the operator of the derivative

The block diagram of the observer in the estimated reference frame is shown in Figure 1. The observer compensator is substituted
by a standard PI controller with following equation in the fractional arithmetic.

isc(k) *Imax = KP) esc(k) “Emax T T- KI) esc(k) “Epax T isc(k - 1) *Imax

where:
* Kp is the observer proportional gain [-]
» K, is the observer integral gain [-]
* isc(k) = [iy, ig] is the scaled stator current vector in the actual step
* isc(k - 1) =iy, is] is the scaled stator current vector in the previous step
* egc(k) = [y, eg] is the scaled stator back-EMF voltage vector in the actual step
* imax IS the maximum current [A]
* emax IS the maximum back-EMF voltage [V]
* Tgis the sampling time [s]

As shown in Figure 1, the observer model and hence also the Pl controller gains in both axes are identical to each other.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 32/60

NXP Semiconductors

Algorithms in detail

Uy
Py 1
e
by z sLp+Rs
X lev
Wr Lo _f — Berror
X Tea
(72)—» -
8 /- \ sLp+Rs
Us

Figure 34. Block diagram of proposed Luenberger-type stator current observer acting as state filter for back-EMF

The position estimation can now be performed by extracting the B¢, term from the model, and adjusting the position of the
estimated reference frame to achieve B¢ = 0. Because the B, term is only included in the saliency-based EMF component of
both uy, and ug axis voltage equations, the Luenberger-based disturbance observer is designed to observe the u, and us voltage
components. The position displacement information B¢, is then obtained from the estimated back-EMFs as follows:

24
Ocrror = at an(e_é)

The estimated position

A

0.
can be obtained by driving the position of the estimated reference frame to achieve zero displacement B¢ro; = 0. The
phase-locked-loop mechanism can be adopted, where the loop compensator ensures correct tracking of the actual rotor flux
position by keeping the error signal B¢ror zeroed, Bgror = 0.

A perfect match between the actual and estimated motor model parameters is assumed, and then the back-EMF transfer function
can be simplified as follows:

A Fs)
El= =Bl ST, TR)

The appropriate dynamic behavior of the back-EMF observer is achieved by the placement of the poles of the stator current
observer characteristic polynomial. This general method is based on matching the coefficients of the characteristic polynomial with
the coefficients of the general second-order system.

The back-EMF observer is a Luenberger-type observer with a motor model, which is implemented using the backward Euler
transformation as follows:

N TS Ts LQTS . LD .
l(k)* LD+TSRS .u(k)+LD+TSRS oe(k)+ LD+TSRS .we(k).l(k)+—LD+TSRS -l(k* 1)

where:
* i(k) = [iy, is] is the stator current vector in the actual step

s i(k - 1) =iy, i5] is the stator current vector in the previous step

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 33/60

NXP Semiconductors

Algorithms in detail

* u(k) = [uy, ug] is the stator voltage vector in the actual step

* e(k) = [ey, eg] is the stator back-EMF voltage vector in the actual step

* i'(k) = [iy, -ig] is the complementary stator current vector in the actual step
* we(K) is the electrical angular speed in the actual step

» Tgis the sampling time [s]

This equation is transformed into the fractional arithmetic as follows:

YT A _ I _Loly it D :
Isc(k) * imax = Ly+ TRy * s (k) * gy + Lp+ TR * es k) ® emaxt+ Lp+ TR * Wesdk) ® Omax ® §'5lk) * imax + Lp+ TR * dsclk = 1) iy

where:
* isc(K) = [iy, is] is the scaled stator current vector in the actual step
* isc(k - 1) =iy, i] is the scaled stator current vector in the previous step
* Use(K) = [uy, ug] is the scaled stator voltage vector in the actual step
* esc(k) = [ey, eg] is the scaled stator back-EMF voltage vector in the actual step
* i'sc(k) = [iy, -ig] is the scaled complementary stator current vector in the actual step
* Wwesc(k) is the scaled electrical angular speed in the actual step
* imax is the maximum current [A]
* emax IS the maximum back-EMF voltage [V]
* Umax IS the maximum stator voltage [V]
* Wmax IS the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary reference frame, the back-EMF can be
estimated as a disturbance produced by the observer controller. However, this is only valid when the back-EMF term is not
included in the observer model. The observer is a closed-loop current observer, therefore it acts as a state filter for the
back-EMF term.

The estimate of the extended EMF term can be derived from AMCLIB_PMSMBemfObsrvDQ_Eq3 as follows:

_f?y,s(S): sKp+K;
E\ss) s2Lp+sRg+sKp+ K,

The observer controller can be designed by comparing the closed-loop characteristic polynomial with that of a standard
second-order system as follows:

Kp+Rg K;
52+ 5 °s+L—D= 2+2§w0s+w%

where:
* Wy is the natural frequency of the closed-loop system (loop bandwith)
« ¢ is the loop attenuation
* Kp is the proporional gain

* k; is the integral gain

2.3.1 Available versions

This function is available in the following versions:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 34/60

NXP Semiconductors

Algorithms in detail

 Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The parameters use
the accumulator types.

» Accumulator output with floating-point inputs - the output is the accumulator result; the result is within the range <-1; 1). The
inputs are 32-bit single precision floating-point values.

The available versions of the AMCLIB_PMSMBemfObsrvDQ function are shown in the following table:

Table 6. Init versions

Function name Parameters Result type

AMCLIB_PMSMBemfObsrvDQInit_F16 AMCLIB_BEMF_OBSRV_DQ_T_A32 * void

Initialization does not have any input.

Table 7. Function versions

Function name Input/output type Result type

AMCLIB_PMSMBemfObsrvDQ_F16 Input GMCLIB_2COOR_DQ_T_F16 * frac16_t
GMCLIB_2COOR_DQ_T_F16 *

frac16_t
Parameters AMCLIB_BEMF_OBSRV_DQ_T_A32 *

Back-EMF observer with a 16-bit fractional input D-Q current and voltage, and a
16-bit electrical speed. All are within the range <-1 ; 1).

2.3.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description

Variable name Data type Description
sEObsrv GMCLIB_2COOR_DQ_T | Estimated back-EMF voltage structure.
_F32
slObsrv GMCLIB_2COOR_DQ_T | Estimated current structure.
_F32
sCirl f32ID_1 frac32_t State variable in the alpha part of the observer, integral part at
step k - 1. The variable is within the range <-1; 1).
f321Q_1 frac32_t State variable in the beta part of the observer, integral part at
step k - 1. The variable is within the range <-1 ; 1).
a32PGain acc32_t The observer proportional gain is set up according to Equation
7 as:

(28woLp-Rg) o

€max

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32lGain acc32_t The observer integral gain is set up according to Equation 7 as:

imax
wiLpT

$ €max

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 35/60

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Data type Description

The parameter is within the range <0 ; 65536.0). Set by the

user.
a32IGain acc32_t The current coefficient gain is set up according to Equation 5
as:
LD
Lp+TLRs

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32UGain acc32_t The voltage coefficient gain is set up according to Equation 5
as:

T o Ymax
Lp+TsRg imax

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain acc32_t The angular speed coefficient gain is set up according to
Equation 5 as:
LoTy
Lp+ TRy " ©max

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to Equation 5
as:

Ts . emwc
Lp+TRg imax

The parameter is within the range <0 ; 65536.0). Set by the
user.

f16Error frac16_t Output - estimated phase error between a real D / Q frame
system and an estimated D / Q reference system. The error is
within the range <-1; 1).

2.3.3 Declaration
The available AMCLIB_PMSMBemfObsrvDQInit functions have the following declarations:

void AMCLIB PMSMBemfObsrvDQInit F16(AMCLIB BEMF OBSRV DQ T A32 *psCtrl)

The available AMCLIB_PMSMBemfObsrvDQ functions have the following declarations:

fraclé t AMCLIB PMSMBemfObsrvDQ F16 (const GMCLIB 2COOR DQ T F16 *psIDQ, const GMCLIB 2COOR DQ T F16
*psUDQ, fracl6_t fl6Speed, AMCLIB_BEMF OBSRV_DQ T A32 *psCtrl)

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 36/60

NXP Semiconductors

2.3.4 Function use

Algorithms in detail

The use of the AMCLIB_PMSMBemfObsrvDQ function is shown in the following example:

#include "amclib.h"

void Isr (void) ;

void main (void)

{

sBemfObsrv.a32IGain =
sBemfObsrv.a32UGain =
sBemfObsrv.a32WIGain=
sBemfObsrv.a32EGain =

sIdg.f16D = FRACL6 (0.

sIdg.f16Q = FRACL6 (0.

sUdqg.£f16D = FRAC16 (0.
(-

sUdq.f16Q = FRACL6

void Isr (void)

{

static GMCLIB_2COOR DQ T F16
static AMCLIB BEMF OBSRV DQ T A32
static fracl6 t fl6Speed, fl6Error;

sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
sBemfObsrv.sCtrl.a32IGain= ACC32(0.134);

ACC32(0.986) ;
ACC32(0.170) ;
ACC32(0.110);
ACC32(0.116) ;

/* Initialization of the observer's structure */
AMCLIB_ PMSMBemfObsrvDQInit F16 (&sBemfObsrv) ;

05) ;
1)
2),

1)

/* Periodical function or interrupt */

/* BEMF Observer calculation */
fl6Error = AMCLIB PMSMBemfObsrvDQ F16 (&sIdq, &sUdqg, fl6Speed, &sBemfObsrv);

sIdg, sUdg;
sBemfObsrv;

2.4 AMCLIB_PMSMBemfObsrvAB

The AMCLIB_PMSMBemfObsrvAB function calculates the algorithm of the back-electro-motive force (back-EMF) observer in a
stationary reference frame. The estimation method for the rotor position and the angular speed is based on the mathematical
model of an interior PMSM motor with an extended electro-motive force function, which is realized in the alpha/beta stationary

reference frame.

The back-EMF observer detects the generated motor voltages, induced by the permanent magnets. The angle-tracking observer
uses the back-EMF signals to calculate the position and speed of the rotor. The transformed model is then derived as:

ua
[uﬁ -

Re+sLp wAL

- C()rAL RS + SLD

ig

(6)
[AL-(wrl D szQ)+ ‘mer [S:;H,)]

l

Where:

* Rgis the stator resistance

* Lp and Lq are the D-axis and Q-axis inductances

* AL = Lp - Lq is the motor saliency

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

37/60

NXP Semiconductors

Algorithms in detail

WY, is the back-EMF constant

* wy is the angular electrical rotor speed

* Ug and ug are the estimated stator voltages
* igand ig are the estimated stator currents

+ B, is the estimated rotor electrical position
s is the operator of the derivative

This extended back-EMF model includes both the position information from the conventionally defined back-EMF and the stator
inductance as well. This enables extracting the rotor position and velocity information by estimating the extended back-EMF only.

Both the alpha and beta axes consist of the stator current observer based on the RL motor circuit which requires the
motor parameters.

The current observer input is the sum of the actual applied motor voltage and the cross-coupled rotational term, which corresponds
to the motor saliency (Lp - Lg) and the compensator corrective output. The observer provides the back-EMF signals as a
disturbance because the back-EMF is not included in the observer model.

The block diagram of the observer in the estimated reference frame is shown in Figure 1. The observer compensator is substituted
by a standard PI controller with following equation in the fractional arithmetic.

isc(k) *Imax = KP) esc(k) “Cmaxt Ts* KI) esc(k) “Epax T isc(k - 1) *Imax

where:
» Kp is the observer proportional gain [-]
» K| is the observer integral gain [-]
* isc(K) = [iy, is] is the scaled stator current vector in the actual step
* ise(k - 1) =iy, is] is the scaled stator current vector in the previous step
* esc(k) = [ey, eg] is the scaled stator back-EMF voltage vector in the actual step
* imax is the maximum current [A]
* emax i the maximum back-EMF voltage [V]
» Tgis the sampling time [s]

As shown in Figure 1, the observer model and hence also the Pl controller gains in both axes are identical to each other.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 38/60

NXP Semiconductors

Algorithms in detail

Ua
. - 3 1
— e L
o 21 SLo+Rs
X Eu
wr—Llp—-Lo
X »€8
i A\ f> , 1
b = ¢ SLp+Rs
up

Figure 35. Block diagram of back-EMF observer

It is obvious that the accuracy of the back-EMF estimates is determined by the correctness of the motor parameters used (R, L),
the fidelity of the reference stator voltage, and the quality of the compensator, such as the bandwidth, phase lag, and so on.

The appropriate dynamic behavior of the back-EMF observer is achieved by the placement of the poles of the stator current
observer characteristic polynomial. This general method is based on matching the coefficients of the characteristic polynomial to
the coefficients of the general second-order system.

. Fs)
Eu9)= ~ B T R TP

The back-EMF observer is a Luenberger-type observer with a motor model, which is implemented using the backward Euler
transformation as:

. _ TS TS ALT&) LD .
l(k)— LD+TSRS -u(k)"r LD+TSRS oe(k)— LD+TSRS .we(k).l(k)+m -l(k_ 1)

Where:
* i(k) = [iy, is] is the stator current vector in the actual step
* i(k - 1) =iy, iz] is the stator current vector in the previous step
* u(k) = [uy, ug] is the stator voltage vector in the actual step
* e(k) = [ey, eg] is the stator back-EMF voltage vector in the actual step
* i'(k) = [iy, -is] is the complementary stator current vector in the actual step
* we(K) is the electrical angular speed in the actual step
» Tgis the sampling time [s]

This equation is transformed into the fractional arithmetic as:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 39/60

NXP Semiconductors

Algorithms in detail

Cyei =L e 4L o yeo AT o ()i +i-’k71-'
sdk) lmax*LD.q.TSRS us(K) * tmax Lp+ TR sk) * emax L+ TR Wesk) * Omax * V'sdK) * Imax L+ TR sl) ® imax

Where:
* isc(K) = [iy, is] is the scaled stator current vector in the actual step
* isc(k - 1) =iy, i] is the scaled stator current vector in the previous step
* Ugc(k) = [uy, ug] is the scaled stator voltage vector in the actual step
* egc(k) = [y, eg] is the scaled stator back-EMF voltage vector in the actual step
* i'sc(k) = [iy, -ig] is the scaled complementary stator current vector in the actual step
* Wesc(K) is the scaled electrical angular speed in the actual step
* imax is the maximum current [A]
* €may is the maximum back-EMF voltage [V]
* Umax IS the maximum stator voltage [V]
* Wmax IS the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary reference frame, the back-EMF can be
estimated as a disturbance produced by the observer controller. However, this is only valid when the back-EMF term is not
included in the observer model. The observer is a closed-loop current observer, therefore, it acts as a state filter for the
back-EMF term.

The estimate of the extended EMF term can be derived from AMCLIB_PMSMBemfObsrvAB_Eq1 as:

_Ey(;(s) - sKp+ K,
E,fs) s2Lp+sRs+sKp+K;

The observer controller can be designed by comparing the closed-loop characteristic polynomial to that of a standard second-
order system as:

Kp+Ry K,
§2+ I, 's+L—D=s2+25wos+a%

where:
* wy is the natural frequency of the closed-loop system (loop bandwidth)
« ¢ is the loop attenuation
» Kp is the proporional gain

» K, is the integral gain

2.4.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1). The parameters use
the accumulator types.

The available versions of the AMCLIB_PMSMBemfObsrvAB function are shown in the following table:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 40/60

NXP Semiconductors

Table 8. Init versions

Algorithms in detail

Function name

Parameters Result type

AMCLIB_PMSMBemfObsrvABInit_F16

AMCLIB_BEMF_OBSRV_AB_T_A32 * void

The initialization does not have an input.

The available versions of the AMCLIB_PMSMBemfObsrvAB function are shown in the following table:

Table 9. Function versions

Function name

Input/output type Result type

AMCLIB_PMSMBemfObsrvAB_F16 | Input GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_ALBE_T_F16 *

frac16_t

Parameters AMCLIB_BEMF_OBSRV_AB_T_A32 *

The back-EMF observer with a 16-bit fractional input Alpha/Beta current and voltage, and
a 16-bit electrical speed. All are within the range <-1; 1).

242 AMCLIB_BEMF_OBSRV_AB_T_A32 type description

Variable name Data type Description
sEObsrv GMCLIB_2COOR_ALBE | The estimated back-EMF voltage structure.
_T_F32
slObsrv GMCLIB_2COOR_ALBE | The estimated current structure.
_T_F32
sCirl f32lAlpha_1 frac32_t The state variable in the alpha part of the observer, integral part
at step k-1. The variable is within the range <-1 ; 1).
f32IBeta_1 frac32_t The state variable in the beta part of the observer, integral part
at step k-1. The variable is within the range <-1; 1).
a32PGain acc32_t The observer proportional gain is set up according to Equation
7 as:
i
(28woLp-Rs) Zmax
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32lGain acc32_t The observer integral gain is set up according to Equation 7 as:
i
W(Z)LDTS enn:Z:
The parameter is within the range <0 ; 65536.0). Set by the
user.
a321Gain acc32_t The current coefficient gain is set up according to Equation 5
as:

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

41/60

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Data type Description

_Lp
I, T.R;

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32UGain acc32_t The voltage coefficient gain is set up according to Equation 5
as:

T S umax

Lo+ TsRs * Tmax

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain acc32_t The angular speed coefficient gain is set up according to
Equation 5 as:
ALT,
Lp+ TRy * ©max

The parameter is within the range <0 ; 65536.0).Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to Equation 5
as:

Ty o Gmax
Lp+TeRg ipmax

The parameter is within the range <0 ; 65536.0). Set by the
user.

sUnityVctr GMCLIB_2COOR_SINC | The output - estimated angle as the sin/cos vector.
OS_T_F16

2.4.3 Declaration
The available AMCLIB_PMSMBemfObsrvABInit functions have the following declarations:

void AMCLIB PMSMBemfObsrvABInit F16 (AMCLIB BEMF OBSRV_AB T A32 *psCtrl)

The available AMCLIB_PMSMBemfObsrvAB functions have the following declarations:

void AMCLIB_ PMSMBemfObsrvAB_F16 (const GMCLIB 2COOR ALBE T F16 *psIAlBe, const GMCLIB 2COOR _ALBE T F16
*psUAlBe, fracl6 t flé6Speed, AMCLIB BEMF OBSRV_AB T A32 *psCtrl)

2.4.4 Function use
The use of the AMCLIB_PMSMBemfObsrvAB function is shown in the following examples:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 42 /60

NXP Semiconductors

Algorithms in detail

Fixed-point version:
#include "amclib.h"

static GMCLIB 2COOR ALBE T F16 sIAlBe, sUAlBe;
static AMCLIB_BEMF OBSRV_AB T A32 sBemfObsrv;
static fracl6_t fl6Speed;

void Isr (void) ;

void main (void)

{
sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
sBemfObsrv.sCtrl.a32IGain= ACC32(0.134);
sBemfObsrv.a32IGain = ACC32(0.986) ;
sBemfObsrv.a32UGain = ACC32(0.170) ;
sBemfObsrv.a32WIGain= ACC32(0.110) ;
sBemfObsrv.a32EGain = ACC32(0.116);

/* Initialization of the observer's structure */
AMCLIB_PMSMBemfObsrvABInit F16 (&sBemfObsrv) ;

sIAlBe.fl6Alpha = FRAC16(0.05);
sIAlBe.fl6Beta = FRACLl6(0.1);
sUAlBe.fl6Alpha = FRAC16(0.2);
sUAlBe.fl6Beta = FRACl6(-0.1);

/* Periodical function or interrupt */
void Isr (void)
{
/* BEMF Observer calculation */
AMCLIB_PMSMBemfObsrvAB F16 (&sIAlBe, &sUAlBe, flé6Speed, &sBemfObsrv);

2.5 AMCLIB_TrackObsrv

The AMCLIB_TrackObsrv function calculates a tracking observer for the determination of angular speed and position of the input
error functional signal. The tracking-observer algorithm uses the phase-locked-loop mechanism. It is recommended to call this
function at every sampling period. It requires a single input argument as a phase error. A phase-tracking observer with a standard
PI controller used as the loop compensator is shown in Figure 1.

Oerror __| W 1 _,9
S

Figure 36. Block diagram of proposed PLL scheme for position estimation

The depicted tracking observer structure has the following transfer function:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 43 /60

NXP Semiconductors

Algorithms in detail

Os) sKptK,
O(s) — s2+sKp+K;

The controller gains K, and K; are calculated by comparing the characteristic polynomial of the resulting transfer function to a
standard second-order system polynomial.

The essential equations for implementation of the tracking observer according to the block scheme in Figure 1 are as follows:

o(k)=Kpeelk)+Ts+ Kp*ek)+ok—1)

0(k) =Ty w(k)+0(k—1)

where:
* Kp is the proportional gain
» K is the integral gain
* Tgis the sampling period [s]
» e(k) is the position error in step k
» w(Kk) is the rotor speed [rad / s] in step k
* w(k - 1) is the rotor speed [rad / s] in step k - 1
» 0(k) is the rotor angle [rad] in step k
* B(k - 1) is the rotor angle [rad] in step k - 1
In the fractional arithmetic, AMCLIB_TrackObsrv_Eq1 and AMCLIB_TrackObsrv_Eq2 are as follows:

05 k) " Opax = K P’ esl)+ T+ Ky es k) + sk — 1) - Oy

Osc (k) Omax = Ty~ 05 (k) - Opax T Osc (K= 1) * Oy

where:
* esc(K) is the scaled position error in step k
* wgc(K) is the scaled rotor speed [rad / s] in step k
* Wwge(k - 1) is the scaled rotor speed [rad / s] in step k - 1
* B4c(K) is the scaled rotor angle [rad] in step k
* Bsc(k - 1) is the scaled rotor angle [rad] in step k - 1
* Wmax IS the maximum speed

* Bmax is the maximum rotor angle (typically)

2.5.1 Available versions
The function is available in the following versions:
» Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).

The available versions of the AMCLIB_TrackObsrv function are shown in the following table:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 44 /60

NXP Semiconductors

Table 10. Init versions

Algorithms in detail

Function name

Init angle Parameters Result type

AMCLIB_TrackObsrvinit_F16

frac16_t AMCLIB_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1; 1) that
represents an angle (in radians) within the range <-r ;).

Table 11. Function versions

Function name

Input type Parameters Result type

AMCLIB_TrackObsrv_F16

frac16_t AMCLIB_TRACK_OBSRV_T_F32 * frac16_t

Tracking observer with a 16-bit fractional position error input divided by 1. The output from
the obsever is a 16-bit fractional position normalized to the range <-1 ; 1) that represents
an angle (in radians) within the range <-1 ;).

2.5.2 AMCLIB_TRACK_OBSRV_T_F32

Variable name Input Description
type
f32Theta frac32_t | Estimated position as the output of the second numerical integrator. The parameter is within
the range <-1 ; 1). Controlled by the algorithm.
f32Speed frac32_t | Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1; 1). Controlled by the algorithm.
f321_1 frac32_t | State variable in the controller part of the observer; integral part at step k - 1. The parameter
is within the range <-1; 1). Controlled by the algorithm.
f161Gain frac16_t | The observer integral gain is set up according to Equation 4 as:
Ts . K] . m . 2*1Sh
The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.
i161GainSh int16_t The observer integral gain shift takes care of keeping the f161Gain variable within the
fractional range <-1 ; 1). The shift is determined as:
log (s K~ mpe) — log, 1 < Ish <log (T~ K o) — log 0.5
The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.
f16PGain frac16_t | The observer proportional gain is set up according to Equation 4 as:
KP' wl . 2*PSh
The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.
i16PGainSh int16_t The observer proportional gain shift takes care of keeping the f16PGain variable within the

fractional range <-1 ; 1). The shift is determined as:

log (Kp- m) —log, 1< Psh<log(Kp- W) —log 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

45/60

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Input Description
type
f16ThGain frac16_t | The observer gain for the output position integrator is set up according to Equation 5 as:
Ts'% .o~ Thsh
The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.
i16ThGainSh int16_t The observer gain shift for the position integrator takes care of keeping the f16ThGain

variable within the fractional range <-1 ; 1). The shift is determined as:
log (7’ %) —log,1<THsh<log (T, %) —log,0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

2.5.3 Declaration

The available AMCLIB_TrackObsrvInit functions have the following declarations:

void AMCLIB TrackObsrvInit F16(fraclé t flé6ThetalInit, AMCLIB TRACK OBSRV T F32 *psCtrl)

The available AMCLIB_TrackObsrv functions have the following declarations:

fracl6 t AMCLIB TrackObsrv F16(fracl6é t flé6Error, AMCLIB TRACK OBSRV T F32 *psCtrl)

2.5.4 Function use

The use of the AMCLIB_TrackObsrv function is shown in the following example:

void I

{
sTo.
sTo.
sTo.
sTo.
sTo.
sTo.

{

#include

static AMCLIB TRACK OBSRV T F32 sTo;
static fraclé6 t
static fracl6 t

sr (void) ;

void main (void)

fl6IGain
i16IGainSh
f16PGain
116PGainsSh
f16ThGain
i16ThGainSh

AMCLIB TrackObsrvInit F16 (FRAC16(0.0), &sTo);

fléThetaError

/* Periodical function or interrupt */
void Isr (void)

"amclib.h"

fl6ThetaError;
fl6PositionEstim;

= FRAC16(0.6434);
= -9;
= FRAC16(0.6801) ;
= -2;
= FRAC16(0.6400) ;
= —4;

= FRAC16(0.5);

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

46 /60

NXP Semiconductors

Algorithms in detail

/* Tracking observer calculation */
fléPositionEstim = AMCLIB TrackObsrv_F16 (fl6ThetaError, &sTo);

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 47 /60

NXP Semiconductors

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two states: TRUE (1) or FALSE (0). Its definition
is as follows:

typedef unsigned short bool t;

The following figure shows the way in which the data is stored by this type:

Table 12. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused Logi

cal

TRUE Ol o|o|o0o|]o|O0O|]O|O|]O|O|]O|O/|]O]|oO]|]oO] 1
0 0 0 1

FALSE o|lo|o|lo|o|lo|]o|oOo|]O|O|]O|O|O|O|O|oO
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within the range <0 ; 255>. Its definition is
as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

Table 13. Data storage

Value Integer

255 1 1 1 1 1 1 1 1

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 48 /60

NXP Semiconductors

Library types
Table 13. Data storage (continued)
11 0 0 0 1 1
0
124 0 1 1 1 0
7
159 1 0 0 1 1
9
A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables within the range <0 ; 65535>. Its definition is

as follows:

typedef unsigned short uintlé6 t;

The following figure shows the way in which the data is stored by this type:

Table 14. Data storage

15 14 13 12 1" 10 7 0
Value Integer

65535 1 1 1 1 1 1 1 1
F

5 0 0 0 0 0 0 0 1
0

15518 0 0 1 1 1 1 1 0
3

40768 1 0 0 1 1 1 0 0
9

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 49/60

NXP Semiconductors

A4 uint32_t

Library types

The uint32_t type is an unsigned 32-bit integer type. Itis able to store the variables within the range <0 ; 4294967295>. Its definition

is as follows:

typedef unsigned long uint32 t;

The following figure shows the way in which the data is stored by this type:

Table 15. Data storage

31 24 23 16 15 7 0
Value Integer
4294967295 F F F F
2147483648 8 0 0 0
55977296 0 3 2 0
3451051828 C D D 4
A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;

The following figure shows the way in which the data is stored by this type:

Table 16. Data storage

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021

7 6 5 3 0
Value Sign Integer

127 0 1 1 1 1
7

-128 1 0 0 0 0
8

60 0 0 1 1 0
3

User Guide

50/60

NXP Semiconductors

Library types

Table 16. Data storage (continued)

-97 1 0 0 1 1 1 1 1

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the range <-32768 ; 32767>. Its definition is
as follows:

typedef short intl6 t;

The following figure shows the way in which the data is stored by this type:

Table 17. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Integer
32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 F F F
-32768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0
15518 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
3 Cc 9 E
-24768 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
9 F 4 0
A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the range <-2147483648 ; 2147483647>. Its
definition is as follows:

typedef long int32 t;

The following figure shows the way in which the data is stored by this type:

Table 18. Data storage

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 51/60

NXP Semiconductors

Library types
Table 18. Data storage (continued)
31 24 23 16 15 8 7 0
Value S Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4
A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is as follows:
typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:

Table 19. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0.99219 0 1 1 1 1 1 1 1
7 F
-1.0 1 0 0 0 0 0 0 0
8 0
0.46875 0 0 1 1 1 1 0 0
3 C
-0.75781 1 0 0 1 1 1 1 1
9 F

To store a real number as frac8_t, use the FRAC8 macro.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 52/60

NXP Semiconductors

Library types

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is
as follows:

typedef short fraclé6 t;

The following figure shows the way in which the data is stored by this type:

Table 20. Data storage

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Fractional
0.99997 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 F F F
-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0
0.47357 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
3 Cc 9 E
-0.75586 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within the range <-1; 1). Its definition is
as follows:

typedef long frac32 t;

The following figure shows the way in which the data is stored by this type:

Table 21. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995

~
M

F F F F F F

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 53/60

NXP Semiconductors

Table 21. Data storage (continued)

Library types

-1.0 8 0 0 0 0
0.02606645970 0 3 5 6 2
-0.3929787632 Cc D B 2 D

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-256 ; 256). Its definition is

as follows:
typedef short accl6 t;

The following figure shows the way in which the data is stored by this type:

Table 22. Data storage

15 14 13 12 11 10 9 8 7 6 5 3
Value Sign Integer Fractional

255.9921875 0 1 1 1 1 1 1 1 1 1 1 1
7 F F

-256.0 1 0 0 0 0 0 0 0 0 0 0 0
8 0 0

1.0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 8

-1.0 1 1 1 1 1 1 1 1 1 0 0 0
F F 8

13.7890625 0 0 0 0 0 1 1 0 1 1 1 0
0 6 E

-89.71875 1 {10 1]{o]o |11 |]0]|o0]1 0
D 3 2

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

54 /60

NXP Semiconductors

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

Library types

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables within the range <-65536 ; 65536). Its
definition is as follows:

typedef long acc32 t;

The following figure shows the way in which the data is stored by this type:

Table 23. Data storage

1

Value

65535.999969

-65536.0

.0

-1.0

23.789734

-1171.306793

31 24 23 16 15 87 0
S Integer Fractional

7 F F F F F F

8 0 0 0 0 0 0

0 0 0 0 8 0 0

F F F F 8 0 0

0 0 0 B E 5 1

F D B 6 S 8 B

To store a real number as acc32_t, use the ACC32 macro.

A.13 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary coordinate system, based on the A, B, and
C components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct

{

fracle t f16A;
fracle t f16B;
fracle t f16C;

} GMCLIB_3COOR T F16;

The structure description is as follows:

Table 24. GMCLIB_3COOR_T_F16 members description

Type Name Description
frac16_t f16A A component; 16-bit fractional type
frac16_t f16B B component; 16-bit fractional type
frac16_t f16C C component; 16-bit fractional type

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

55/60

NXP Semiconductors

Library types

A.14 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase stationary coordinate system, based on the
Alpha and Beta orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct

{
fracle_t fl6Alpha;
fraclé t fléBeta;

} GMCLIB 2COOR ALBE T F16;

The structure description is as follows:

Table 25. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description
frac16_t f16Apha a-component; 16-bit fractional type
frac16_t f16Beta B-component; 16-bit fractional type

A.15 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct

{
fraclé t f16D;
fraclée t £16Q;

} GMCLIB 2COOR DQ T F16;

The structure description is as follows:

Table 26. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description
frac16_t f16D D-component; 16-bit fractional type
frac16_t f16Q Q-component; 16-bit fractional type

A.16 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the frac32_t data type. The structure definition is as follows:

typedef struct

{
frac32 t £32D;
frac32 t £320;

} GMCLIB 2COOR DQ T F32;

The structure description is as follows:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 56 /60

NXP Semiconductors

Library types

Table 27. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description
frac32_t f32D D-component; 32-bit fractional type
frac32_t f32Q Q-component; 32-bit fractional type

A.17 GMCLIB_2COOR_SINCOS_T_F16

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase coordinate system, based on the Sin and
Cos components of a certain angle. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct

{
fracle_t fl6Sin;
fraclée t fl6Cos;

} GMCLIB_2COOR_SINCOS_T_F16;

The structure description is as follows:

Table 28. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description
frac16_t f16Sin Sin component; 16-bit fractional type
frac16_t f16Cos Cos component; 16-bit fractional type

A.18 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value of the bool_t type. Its definition is as follows:

#define FALSE ((bool t)O0)

#include "mlib.h"
static bool t bval;

void main (void)
{

bval = FALSE; /* bVal = FALSE */
}

A.19 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"

static bool t bval;

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 57 /60

NXP Semiconductors

Library types

void main (void)
{
bVal = TRUE; /* bVal = TRUE */

A.20 FRACS8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as follows:

#define FRAC8 (x) ((frac8 t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>, which corresponds to <-1.0 ; 1.0-27>.

#include "mlib.h"
static frac8_t f8val;
void main (void)

{
f8val = FRAC8(0.187); /* f8Val = 0.187 */

A.21 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is as follows:
#define FRACL6(x) ((fraclé t) ((x) < 0.999969482421875 ? ((x) >= -1 2 (x)*0x8000 : 0x8000) : O0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ; 0x7FFF>, which corresponds to
<-1.0; 1.0-21%>,

#include "mlib.h"
static fraclé6_t flé6Val;

void main (void)
{
fleval

FRAC16 (0.736) ; /* fléeval

0.736 */

A.22 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is as follows:

#define FRAC32 (x) ((frac32 t) ((x) <1 ? ((x) > -1 ? (x)*0x80000000 : 0x80000000) : Ox7FFFFFFF))

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

58 /60

NXP Semiconductors

Library types

The input is multiplied by 2147483648 (=23). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds

to <-1.0; 1.0-231>,

#include "mlib.h"
static frac32 t f32val;
void main (void)

{
£32Val = FRAC32(-0.1735667) ; /* £32val = -0.1735667 */

A.23 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as follows:
#define ACC16 (x) ((accl6_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : Ox7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ; 0x7FFF> that corresponds to
<-256.0 ; 255.9921875>.

#include "mlib.h"
static accl6_t aleval;
void main (void)

{
aléval = ACC16(19.45627); /* aleVal = 19.45627 */

A.24 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. lts definition is as follows:

#define ACC32 (x) ((acc32 t) ((x) < 65535.999969482421875 ? ((x) >= -65536 2 (x)*0x8000 : 0x80000000)

Ox7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds to

<-65536.0 ; 65536.0-2-15>.

#include "mlib.h"
static acc32_t a32val;
void main (void)

{
a32vVal = ACC32(-13.654437); /* a32vVal = -13.654437 */

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

59/60

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at

the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer

is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision

Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 01 November 2021
Document identifier: CM4AAMCLIBUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Library
	1.1 Introduction
	1.1.1 Overview
	1.1.2 Data types
	1.1.3 API definition
	1.1.4 Supported compilers
	1.1.5 Library configuration
	1.1.6 Special issues

	1.2 Library integration into project (MCUXpresso IDE)
	1.3 Library integration into project (Keil µVision)
	1.4 Library integration into project (IAR Embedded Workbench)

	2 Algorithms in detail
	2.1 AMCLIB_AngleTrackObsrv
	2.1.1 Available versions
	2.1.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32
	2.1.3 Declaration
	2.1.4 Function use

	2.2 AMCLIB_CtrlFluxWkng
	2.2.1 Available versions
	2.2.2 AMCLIB_CTRL_FLUX_WKNG_T_A32
	2.2.3 Declaration
	2.2.4 Function use

	2.3 AMCLIB_PMSMBemfObsrvDQ
	2.3.1 Available versions
	2.3.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description
	2.3.3 Declaration
	2.3.4 Function use

	2.4 AMCLIB_PMSMBemfObsrvAB
	2.4.1 Available versions
	2.4.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description
	2.4.3 Declaration
	2.4.4 Function use

	2.5 AMCLIB_TrackObsrv
	2.5.1 Available versions
	2.5.2 AMCLIB_TRACK_OBSRV_T_F32
	2.5.3 Declaration
	2.5.4 Function use

	A Library types
	A.1 bool_t
	A.2 uint8_t
	A.3 uint16_t
	A.4 uint32_t
	A.5 int8_t
	A.6 int16_t
	A.7 int32_t
	A.8 frac8_t
	A.9 frac16_t
	A.10 frac32_t
	A.11 acc16_t
	A.12 acc32_t
	A.13 GMCLIB_3COOR_T_F16
	A.14 GMCLIB_2COOR_ALBE_T_F16
	A.15 GMCLIB_2COOR_DQ_T_F16
	A.16 GMCLIB_2COOR_DQ_T_F32
	A.17 GMCLIB_2COOR_SINCOS_T_F16
	A.18 FALSE
	A.19 TRUE
	A.20 FRAC8
	A.21 FRAC16
	A.22 FRAC32
	A.23 ACC16
	A.24 ACC32

