

Variable-Length Encoding (VLE)
Extension Programming

Interface Manual

VLEPIM
Rev. 1, 2/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The PowerPC
name is a trademark of IBM Corp. and is used under license. All other product or service names are
the property of their respective owners.

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Document Number: VLEPIM
Rev. 1, 2/2006

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor iii

Contents
Paragraph
Number Title

Page
Number

Contents

About this Book

Chapter 1
Overview

1.1 Application Binary Interface (ABI) ... 1-1
1.2 Assembly Language Interface ... 1-1
1.3 Simplified Mnemonics Assembly Language Interface.. 1-1

Chapter 2
Application Binary Interface (ABI)

2.1 Instruction and Data Representation.. 2-1
2.2 Executable and Linking Format (ELF) Object Files ... 2-2
2.2.1 VLE Information Section... 2-2
2.2.2 VLE Identification ... 2-3
2.2.3 Relocation Types.. 2-4

Chapter 3
Instruction Set

Appendix A
Simplified Mnemonics for VLE Instructions

A.1 Overview... A-1
A.2 Subtract Simplified Mnemonics ... A-1
A.2.1 Subtract Immediate ... A-2
A.2.2 Subtract ... A-2
A.3 Rotate and Shift Simplified Mnemonics... A-2
A.3.1 Operations on Words .. A-3
A.4 Branch Instruction Simplified Mnemonics... A-3
A.4.1 Key Facts about Simplified Branch Mnemonics .. A-5
A.4.2 Eliminating the BO32 and BO16 Operands ... A-5
A.4.3 The BI32 and BI16 Operand—CR Bit and Field Representations............................. A-6
A.4.4 BI32 and BI16 Operand Instruction Encoding ... A-7
A.4.4.1 Specifying a CR Bit .. A-8
A.4.4.2 The crS Operand ... A-9
A.5 Simplified Mnemonics that Incorporate the BO32 and BO16 Operands A-9

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

iv Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

A.5.1 Examples that Eliminate the BO32 and BO16 Operands ... A-10
A.5.2 Simplified Mnemonics that Incorporate CR Conditions (Eliminates

BO32 and BO16 and Replaces BI32 with crS) .. A-12
A.5.3 Branch Simplified Mnemonics that Incorporate CR Conditions: Examples............ A-14
A.5.4 Branch Simplified Mnemonics that Incorporate CR Conditions: Listings............... A-14
A.6 Compare Word Simplified Mnemonics .. A-15
A.7 Trap Instructions Simplified Mnemonics ... A-16
A.8 Simplified Mnemonics for Accessing SPRs... A-18
A.9 Recommended Simplified Mnemonics... A-18
A.9.1 No-Op (nop) ... A-19
A.9.2 Load Address (la) ... A-19
A.9.3 Move Register (mr) .. A-19
A.9.4 Complement Register (not) .. A-19
A.9.5 Move to Condition Register (mtcr).. A-19
A.10 EIS-Specific Simplified Mnemonics .. A-20
A.10.1 Integer Select (isel) ... A-20
A.11 Comprehensive List of Simplified Mnemonics .. A-20

Appendix B
Revision History

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor v

Figures
Figure
Number Title

Page
Number

Figures

2-1 Typical Elf Note Section Format... 2-2
2-2 VLE Relocation Fields.. 2-4
A-1 Branch Conditional (e_bc, se_bc) Instruction Formats ... A-4
A-2 BI32 and BI16 Fields ... A-7

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

vi Freescale Semiconductor

Figures
Figure
Number Title

Page
Number

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor vii

Tables
Table
Number Title

Page
Number

Tables

2-1 VLE Identifier ... 2-2
2-2 VLE Relocation Field Descriptions .. 2-5
2-3 Notation Conventions ... 2-5
2-4 VLE Relocation Types .. 2-6
2-5 Relocation Types with Special Semantics... 2-7
A-1 Subtract Immediate Simplified Mnemonics .. A-2
A-2 Subtract Simplified Mnemonics... A-2
A-3 Word Rotate and Shift Simplified Mnemonics .. A-3
A-4 Branch Instructions .. A-4
A-5 BO32 and BO16 Operand Encodings .. A-6
A-6 CR0 and CR1 Fields as Updated by Integer and Floating-Point Instructions A-8
A-7 BI32 and BI16 Operand Settings for CR Fields for Branch Comparisons A-8
A-8 CR Field Identification Symbols.. A-9
A-9 Branch Simplified Mnemonics .. A-10
A-10 Branch Instructions .. A-10
A-11 Simplified Mnemonics for e_bc and se_bc without LR Update ..A-11
A-12 Simplified Mnemonics for e_bcl with LR Update..A-11
A-13 Standard Coding for Branch Conditions .. A-12
A-14 Branch Instructions and Simplified Mnemonics that Incorporate CR Conditions A-13
A-15 Simplified Mnemonics with Comparison Conditions.. A-13
A-16 Simplified Mnemonics for e_bc and se_bc without Comparison Conditions

or LR Updating.. A-14
A-17 Simplified Mnemonics for e_bcl with Comparison Conditions and LR Updating A-15
A-18 Word Compare Simplified Mnemonics ... A-15
A-19 Standard Codes for Trap Instructions... A-16
A-20 Trap Simplified Mnemonics .. A-17
A-21 TO Operand Bit Encoding ... A-17
A-22 Additional Simplified Mnemonics for Accessing SPRGs ... A-18
A-23 Simplified Mnemonics ... A-20
B-1 Document Revision History..B-1

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

viii Freescale Semiconductor

Tables
Table
Number Title

Page
Number

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor ix

About this Book
The primary objective of this manual is to help programmers provide software that is compatible across
the family of processors using variable-length encoding (VLE) extension.

Individual VLE technology implementations are beyond the scope of this manual. Each processor is
unique in its implementation of the VLE extension.

The information in this book is subject to change without notice. As with any technical documentation, it
is the reader’s responsibility to ensure they are using the most recent version of the documentation. For
more information, contact your sales representative.

Audience
This manual is for system software and application programmers who want to develop products using the
VLE extension. An understanding of operating systems, microprocessor system design, the basic
principles of RISC processing, and the VLE instruction set is assumed.

Organization
Following is a summary of the major sections of this manual:

• Chapter 1, “Overview,” provides a general understanding of what the programming model defines
in the VLE extension.

• Chapter 2, “Application Binary Interface (ABI),” describes the VLE extensions for the PowerPC™
e500 Application Binary Interface (e500 ABI) to support VLE technology.

• Chapter 3, “Instruction Set,” provides an overview of the VLE instruction set architecture. For a
detailed description of each instruction, including assembly language syntax, refer to the VLE
section of the EREF.

• Appendix A, “Simplified Mnemonics for VLE Instructions,” describes simplified mnemonics,
which are provided for easier coding of assembly language programs using VLE technology.

Suggested Reading
This section lists background reading for this manual as well as general information on the VLE extension
and PowerPC architecture.

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

x Freescale Semiconductor

Related Documentation
Freescale Semiconductor processor documentation is organized in the following types of documents:

• EREF: A Reference for Freescale Book E (Freescale order no. EREF)—A higher-level
view of the programming model as it is defined by Book E, the Freescale Book E
implementation standards

• User’s manuals—Provide details on individual implementations and are for use with the
Programming Environments Manual for 32-Bit Implementations of the PowerPC™ Architecture

• Addenda/errata to user’s manuals—Because some processors have follow-on parts, an addendum
describes the additional features and changes to functionality. These addenda are for use with the
corresponding user’s manuals.

• Hardware specifications—Specific data regarding bus timing, signal behavior, and AC, DC, and
thermal characteristics, as well as other design considerations.

• Technical summaries—Overview of device features.
• Application notes—Address-specific design issues useful to programmers and engineers working

with Freescale Semiconductor processors.

Additional literature is released as new processors become available.

General Information

The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street, Sixth
Floor, San Francisco, CA, provides useful information on the PowerPC architecture and computer
architecture in general:

• The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second
Edition, by International Business Machines, Inc.
For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html.

• Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and
David A. Patterson

• Computer Organization and Design: The Hardware/Software Interface, Second Edition,
David A. Patterson and John L. Hennessy

Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of
one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold.

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor xi

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.
Internal signals are set in italics, for example, qual BG.

0x0 Prefix to denote hexadecimal number
0b0 Prefix to denote binary number
rA, rB Instruction syntax used to identify a source GPR
rD Instruction syntax used to identify a destination GPR
REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or

ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode
enable bit in the machine state register.

x In some contexts, such as signal encodings, an unitalicized x indicates a don’t
care.

x An italicized x indicates an alphanumeric variable.
n An italicized n indicates an numeric variable.
¬ NOT logical operator
& AND logical operator
| OR logical operator

Terminology Conventions
Table i lists certain terms used in this manual that differ from the architecture terminology conventions.

Table i. Terminology Conventions

Architecture Specification This Manual

Change bit Changed bit

Extended mnemonics Simplified mnemonics

Out of order memory accesses Speculative memory accesses

Privileged mode (or privileged state) Supervisor level

Problem mode (or problem state) User level

Reference bit Referenced bit

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

xii Freescale Semiconductor

Acronyms and Abbreviations
Table ii contains acronyms and abbreviations that are used in this document.

Table ii. Acronyms and Abbreviated Terms

Term Meaning

CR Condition register

CTR Count register

DCR Data control register

DTLB Data translation lookaside buffer

EA Effective address

ECC Error checking and correction

FPR Floating-point register

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

L2 Secondary cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

PTE Page table entry

RISC Reduced instruction set computing

RTL Register transfer language

SIMM Signed immediate value

SPR Special-purpose register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor xiii

UISA User instruction set architecture

VA Virtual address

VLE Variable-length encoding

XER Register used primarily for indicating conditions such as carries and overflows for integer operations

Table ii. Acronyms and Abbreviated Terms (continued)

Term Meaning

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

xiv Freescale Semiconductor

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor 1-1

Chapter 1
Overview
This document defines a programming model for use with the variable-length encoding (VLE) instruction
set extension. Three types of programming interfaces are described herein:

• An application binary interface (ABI) defining low-level coding conventions
• An assembly language interface
• A simplified mnemonic assembly language interface

1.1 Application Binary Interface (ABI)
The VLE programming model extends the existing PowerPC™ ABIs. This extension is independent of the
endian mode with regard to data; however, VLE instructions are supported only in big-endian mode. The
ABI reviews instruction and data representations for memory management and distinguishes between
PowerPC Book E and VLE instructions. The ABI also discusses VLE section identification and relocation
types used by the executable and linking format (ELF).

NOTE
Use this chapter in conjunction with the PowerPC e500 Application Binary
Interface (e500 ABI). Except for the sections discussed in this chapter, the
VLE ABI follows the e500 ABI standard. For information on register usage
and availability, function calling sequence, parameter passing, stack frames,
and other topics, refer to the e500 ABI.

1.2 Assembly Language Interface
The assembly language interface provides an overview of the VLE instructions. The description of each
instruction along with the instruction mnemonic and operands can be found in the VLE section of the
EREF.

1.3 Simplified Mnemonics Assembly Language Interface
Simplified mnemonics are provided for easier coding of assembly language programs. They are defined
for the most frequently used forms of branch conditional, compare, trap, rotate and shift, and certain other
instructions defined by the VLE extension. Some assemblers may define additional simplified mnemonics
not listed in this document; however, all assemblers should support the VLE simplified mnemonics listed
in Appendix A.

Overview

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

1-2 Freescale Semiconductor

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor 2-1

Chapter 2
Application Binary Interface (ABI)

NOTE
The ABI extensions described herein for VLE applications are still under
review by the PowerPC ABI industry working group and may be subject to
change. Any modifications will be highlighted in revisions of this
document.

This chapter specifies VLE extensions to the PowerPC e500 Application Binary Interface (e500 ABI) that
defines both a big-endian and a little-endian ABI. This VLE ABI extension is independent of the endian
mode with regards to data; however, VLE instructions are supported only in big-endian mode.

NOTE
This chapter should be used in conjunction with the PowerPC e500
Application Binary Interface (e500 ABI). Except for the sections discussed
in this chapter, the VLE ABI follows the e500 ABI standard. For
information on topics not covered in this section, including function calling
sequence, register usage and availability, stack frame layout, parameter
passing, and other topics, please refer to the e500 ABI.

2.1 Instruction and Data Representation
The VLE extension includes additional operations with an alternate instruction encoding to enable reduced
code footprint. This alternate encoding set is selected on an instruction page basis. A single page attribute
bit selects between standard PowerPC Book E instruction encodings and the VLE instructions for the
particular page of memory. This page attribute is an extension to the existing PowerPC Book E page
attributes. Pages can be freely intermixed, allowing for a mixture of code with both types of encodings.

Instruction encodings in pages marked as using VLE are either 16 or 32 bits long and are aligned on 16-bit
boundaries. Therefore, all instruction pages marked as VLE must use big-endian byte ordering.

The programmer’s model uses the same register set when executing either instruction encoding, although
certain registers are not accessible to VLE instructions using the 16-bit formats, and not all fields of the
condition register (CR) are used by condition setting or conditional branch instructions when executing
from a VLE instruction page. In addition, immediate fields and displacements differ in size and use, due
to the more restrictive encodings imposed by VLE instructions.

Other than the requirement of big-endian byte ordering for instruction pages, and the additional page
attribute to identify whether the instruction page corresponds to a VLE section of code, VLE uses the
identical storage model, interrupts and exceptions, timer facilities, debug facilities, and special-purpose
registers (SPRs) defined throughout Book E.

Application Binary Interface (ABI)

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

2-2 Freescale Semiconductor

2.2 Executable and Linking Format (ELF) Object Files
Both VLE and Book E instructions can coexist in the same ELF binary separated into different ELF
sections allowing easy identification for defining memory management page tables for run-time
environments. Because implementations supporting VLE use an extension to the existing PowerPC
Book E page attributes, providing a single additional page attribute to select between VLE and Book E
encodings, memory pages of VLE and Book E instructions can be freely intermixed. Binding of VLE and
Book E memory pages to different memory bounds requires separation of VLE and Book E encodings into
different ELF sections.

The VLE encodings also require additional relocation types, which allow the linker to resolve immediate
and branch displacement fields in the instruction encoding once a symbol or label address is known (at link
time). The VLE encodings require additional relocation types to resolve fields not present in the PowerPC
Book E encodings.

2.2.1 VLE Information Section

The e500 ABI defines an information section named .PPC.EMB.apuinfo having type SHT_NOTE and
attributes of 0, which matches the format of a typical ELF note section as shown in Figure 2-1. The
information section allows disassemblers and debuggers to interpret the instructions properly within the
binary and can be used by operating systems to provide emulation or error checking of the VLE extension
revisions.

For the .PPC.EMB.apuinfo section, the name is APUinfo, the type is 2 (as type 1 is already reserved), and
the data contains a series of words providing information about the APU or extension, one per word. The
information contains two unsigned half words: the upper half contains the unique identifier, and the lower
half contains the revision number. The VLE identifier is shown in Table 2-1.

length of name (in bytes)

length of data (in bytes)

type

name (null-terminated, padded to 4-byte alignment)

data

Figure 2-1. Typical Elf Note Section Format

Table 2-1. VLE Identifier

Identifier (16 Bits) APU/Extension

0x0104 VLE

Application Binary Interface (ABI)

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor 2-3

Example 2-1. Object file a.o:

0 0x00000008 # 8 bytes in "APUinfo\0"
4 0x0000000C # 12 bytes (3 words) of APU information
8 0x00000002 # NOTE type 2
12 0x41505569 # ASCII for "APUi"
16 0x6e666f00 # ASCII for "nfo\0"
20 0x00010001 # APU #1, revision 1
24 0x01040001 # VLE, revision 1
28 0x00040001 # APU #4, revision 1

Example 2-2. Object file b.o:

0 0x00000008 # 8 bytes in "APUinfo\0"
4 0x00000008 # 8 bytes (2 words) of APU information
8 0x00000002 # NOTE type 2
12 0x41505569 # ASCII for "APUi"
16 0x6e666f00 # ASCII for "nfo\0"
20 0x00010002 # APU #1, revision 2
24 0x00040001 # APU #4, revision 1

Linkers merge all .PPC.EMB.apuinfo sections in individual object files into one, with merging of per-APU
information. For example, after linking file a.o and b.o, the merged .PPC.EMB.apuinfo is as shown in
Example 2-3.

Example 2-3. PPC.EMB.apuinfo:

0 0x00000008 # 8 bytes in "APUinfo\0"
4 0x0000000C # 12 bytes (3 words) of APU information
8 0x00000002 # NOTE type 2
12 0x41505569 # ASCII for "APUi"
16 0x6e666f00 # ASCII for "nfo\0"
20 0x00010002 # APU #1, revision 2
24 0x01040001 # VLE, revision 1
28 0x00040001 # APU #4, revision 1

Note that it is assumed that a later revision of any APU or extension is compatible with an earlier one, but
not vice versa. Thus, the resultant .PPC.EMB.apuinfo section requires APU #1 revision 2 or greater to
work, and does not work on APU #1 revision 1. If a revision breaks backwards compatibility, it must be
given a new unique identifier.

A linker may optionally warn when different objects require different revisions, because moving the
revision up may make the executable no longer work on processors with the older revision. In this
example, the linker could emit a warning like “Warning: bumping APU #1 revision number to 2, required
by b.o.”

2.2.2 VLE Identification

The executable and linking format (ELF) allows processor-specific section header and program header
flag attributes to be defined. The following section header and program header flag attribute definitions
are used to mark ELF sections containing VLE instruction encodings.
#define SHF_PPC_VLE 0x10000000 /* section header flag */
#define PF_PPC_VLE 0x10000000 /* program header flag */

Application Binary Interface (ABI)

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

2-4 Freescale Semiconductor

The SHF_PPC_VLE flag marks ELF sections containing VLE instructions. Similarly, the PF_PPC_VLE
flag is used by ELF program headers to mark program sections containing VLE instructions. If either the
SHF_PPC_VLE flag or the PF_PPC_VLE flag is set, then instructions in those marked sections are
interpreted as VLE instructions; Book E instructions reside in sections that do not have these flags set.

ELF sections setting the SHF_PPC_VLE flag that contain VLE instructions should also use the
SHF_ALLOC and SHF_EXECINSTR bits as necessary. Setting the SHF_PPC_VLE bit does not
automatically imply a section that is marked as allocate (SHF_ALLOC) or executable
(SHF_EXECINSTR). The linker keeps sections marked as VLE (SHF_PPC_VLE) in separate output
sections that do not contain Book E instructions.

Similarly, ELF program headers setting the PF_PPC_VLE flag should use the PF_X, PF_W, and PF_R
flags to indicate executable, writable, or readable attributes. It is considered an error for a program header
with PF_PPC_VLE set to contain sections that do not have SHF_PPC_VLE set.

A program loader or debugger can then scan the section headers or program headers to detect VLE sections
in case anything special is required for section processing or downloading.

2.2.3 Relocation Types

Relocation entries describe how to alter the instruction relocation fields once symbols or labels are defined
at link time. The VLE instruction set requires relocation types beyond those described in the PowerPC
e500 Application Binary Interface (e500 ABI). Table 2-2 shows additional relocation fields used by the
VLE instruction set.

Figure 2-2. VLE Relocation Fields

Relocation
Field Name

low21
0 10 11 31

— low21

split20
0 5 6 10 11 15 16 17 20 21 31

011100 — split204:8 0 split200:3 split209:19

split16a
0 10 11 15 16 20 21 31

— split16a0:4 — split16a5:15

split16d
0 5 6 10 11 20 21 31

— split16d0:4 — split16d5:15

bdh24
0 6 7 30 31

— bdh24 —

bdh15
0 15 16 30 31

— bdh15 —

bdh8
0 7 8 15

— bdh8

Application Binary Interface (ABI)

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor 2-5

Table 2-2 describes the additional relocation fields required by VLE instructions.

NOTE
Relocation entry types applied to VLE sections use half-word alignment
boundaries, because the VLE instruction architecture mixes 16- and 32-bit
encodings within a VLE section. Book E instruction encodings in non-VLE
sections use e500 ABI alignment specifications.

Calculations in Table 2-4 assume the actions are transforming a relocatable file into either an executable
or a shared object file. Conceptually, the link editor merges one or more relocatable files to form the output.
It determines how to combine and locate the input files, updates the symbol values, and then performs
relocations. Relocations applied to executable or shared object files are similar and accomplish the same
result. The notations used in Table 2-4 are described in Table 2-3.

Relocation entries apply to half words or words. In either case, the r_offset value designates the offset or
virtual address of the first byte of the affected storage unit. The relocation type specifies which bits to
change and how to calculate their values. Processors that implement the PowerPC architecture use only
the Elf32_Rela relocation entries with explicit addends. For relocation entries, the r_addend member

Table 2-2. VLE Relocation Field Descriptions

Field Descriptions

low21 21-bit field occupying the lsbs of a word (bits 11–31).

split20 20-bit field with the 4 msbs occupying bits 17–20, the next 5 bits occupying bits 11–15, and the remaining 11 bits
occupying bits 21–31. In addition, bits 0–5 in the destination word are encoded with the binary value 011100, bit 16
is encoded with the binary value 0.
Note: This relocation field specifies the opcode for the VLE e_li instruction, allowing the linker to force the encoding

of the e_li instruction, potentially changing the user’s specified instruction. This functionality supports small
data area relocation types. (R_PPC_VLE_SDA21 and R_PPC_VLE_SDA21_LO).

split16a 16-bit field with the 5 msbs occupying bits 11–15 (the rA field) and the remaining 11 bits occupying bits 21–31.

split16d 16-bit field with the 5 msbs occupying bits 6–10 (the rD field) and the remaining 11 bits occupying bits 21–31.

bdh24 24-bit field occupying bits 7–30 used to resolve branch displacements to half-word boundaries.

bdh15 15-bit field occupying bits 16–30 used to resolve branch displacements to half-word boundaries.

bdh8 8-bit field occupying bits 8–15 of a half-word. This field is used by a 16-bit branch instruction.

Table 2-3. Notation Conventions

Field Descriptions

A Represents the addend used to compute the value of the relocatable field.

P Represents the place (section offset or address) of the storage unit being relocated (computed using r_offset).

S Represents the value of the symbol whose index resides in the relocation entry.

X Represents the offset from the appropriate base (_SDA_BASE_, _SDA2_BASE_, or 0) to where the linker placed the
symbol whose index is in r_info.

Y Represents a 5-bit value for the base register for the section where the linker placed the symbol whose index is in r_info.
Acceptable values are: the value 13 for symbols in .sdata or .sbss, the value 2 for symbols in .PPC.EMB.sdata2 or
.PPC.EMB.sbss2, or the value 0 for symbols in .PPC.EMB.sdata0 or .PPC.EMB.sbss0.

Application Binary Interface (ABI)

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

2-6 Freescale Semiconductor

serves as the relocation addend. In all cases, the offset, addend, and the computed result use the byte order
specified in the ELF header.

The following general rules apply to the interpretation of the relocation types in Table 2-4:
• + and – denote 32-bit modulus addition and subtraction.

|| denotes concatenation of bits or bit fields.
>> denotes arithmetic right-shifting (shifting with sign copying) of the value of the left operand by
the number of bits given by the right operand.

• For relocation types associated with branch displacements, in which the name of the relocation
type contains 8, the upper 24 bits of the computed value before shifting must all be the same (either
all zeros or all ones—that is, sign-extended displacement). For relocation types in which the name
contains 15, the upper 17 bits of the computed value before shifting must all be the same. For
relocation types in which the name contains 24, the upper 7 bits of the computed value before
shifting must all be the same. For relocation types whose names contain 8, 15, or 24, the low 1-bit
of the computed value before shifting must be zero (half-word boundary).

• #hi(value) and #lo(value) denote the 16 msbs and lsbs of the indicated value. That is,
#lo(x)=(x & 0xFFFF) and #hi(x)=((x>>16) & 0xFFFF).
The high-adjusted value, #ha(value), compensates for #lo() being treated as a signed number:
#ha(x)=(((x >> 16) + ((x & 0x8000) ? 1 : 0)) & 0xFFFF).

• _SDA_BASE_ is a symbol defined by the link editor whose value in shared objects is the same as
_GLOBAL_OFFSET_TABLE_, and in executable programs is an address within the small data
area. Similarly, _SDA2_BASE_ is a symbol defined by the link editor whose value in executable
programs is an address within the small data 2 area.

Note that the relocation types in Figure 2-4 apply only to VLE sections. Sections containing Book E
instructions should use the PowerPC e500 Application Binary Interface.

Table 2-4. VLE Relocation Types

Name Value Field Calculation

R_PPC_VLE_REL8 216 bdh8 (S + A - P) >> 1

R_PPC_VLE_REL15 217 bdh15 (S + A - P) >> 1

R_PPC_VLE_REL24 218 bdh24 (S + A - P) >> 1

R_PPC_VLE_LO16A 219 split16a #lo(S + A)

R_PPC_VLE_LO16D 220 split16d #lo(S + A)

R_PPC_VLE_HI16A 221 split16a #hi(S + A)

R_PPC_VLE_HI16D 222 split16d #hi(S + A)

R_PPC_VLE_HA16A 223 split16a #ha(S + A)

R_PPC_VLE_HA16D 224 split16d #ha(S + A)

R_PPC_VLE_SDA21 225 low21
split20

 Y || (X + A). See Table 2-5.

Application Binary Interface (ABI)

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor 2-7

Relocation types with special semantics are described in Table 2-5.

R_PPC_VLE_SDA21_LO 226 low21
split20

 Y || #lo(X + A). See Table 2-5.

R_PPC_VLE_SDAREL_LO16A 227 split16a #lo(X + A)

R_PPC_VLE_SDAREL_LO16D 228 split16d #lo(X + A)

R_PPC_VLE_SDAREL_HI16A 229 split16a #hi(X + A)

R_PPC_VLE_SDAREL_HI16D 230 split16d #hi(X + A)

R_PPC_VLE_SDAREL_HA16A 231 split16a #ha(X + A)

R_PPC_VLE_SDAREL_HA16D 232 split16d #ha(X + A)

Table 2-5. Relocation Types with Special Semantics

Name Description

R_PPC_VLE_SDA211

1 Note that if the opcode is changed, 27 bits are changed instead of 21.

The linker computes a 21-bit value with the 5 msbs having the value 13 (for GPR13), 2 (for GPR2),
or 0. If the symbol whose index is in r_info is contained in .sdata or .sbss, a linker supplies a value
of 13; if the symbol is in .PPC.EMB.sdata2 or .PPC.EMB.sbss2, the linker supplies a value of 2; if
the symbol is in .PPC.EMB.sdata0 or .PPC.EMB.sbss0, the linker supplies a value of 0; otherwise,
the link fails.
The 16 lsbs of this 21-bit value are set to the address of the symbol plus the relocation entry
r_addend value minus the appropriate base for the symbol section:
 • _SDA_BASE_ for a symbol in .sdata or .sbss
 • _SDA2_BASE_ for a symbol in .PPC.EMB.sdata2 or .PPC.EMB.sbss2
 • 0 for a symbol in .PPC.EMB.sdata0 or .PPC.EMB.sbss0
If the 5 msbs of the computed 21-bit value are non-zero, the linker uses the low21 relocation field,
where the 11 msbs remain unchanged and the computed 21-bit value occupies bits 11–31.
Otherwise, the 5 msbs of the computed 21-bit value are zero, with the following results:
 • The linker uses the split20 relocation field, where only bits occupying 6–10 remain unchanged
 • The 5 msbs of the 21-bit value are ignored
 • The next msb is copied to bit 11 and to bits 17–20 as a sign-extension
 • The next 4 msbs are copied to bits 12–15
 • The 11 remaining bits are copied to bits 21–31.
 • In the destination word, bits 0–5 are encoded with the binary value 011100, and bit 16 is

encoded with the binary value 0.
Note: Use of the split20 relocation field forces the encoding of the VLE e_li instruction, which may

change the user's specified instruction. See Table 2-2.

R_PPC_VLE_SDA21_LO 1 Like R_PPC_VLE_SDA21, except that the #lo() operator obtains the 16 lsbs of the 21-bit value.
The #lo() operator is applied after the address of the symbol plus the relocation entry r_addend
value is calculated, minus the appropriate base for the symbol’s section: _SDA_BASE_ for a
symbol in .sdata or .sbss, _SDA2_BASE_ for a symbol in .PPC.EMB.sdata2 or .PPC.EMB.sbss2,
or 0 for a symbol in .PPC.EMB.sdata0 or .PPC.EMB.sbss0. The R_PPC_VLE_SDA21 entry
describes applying the calculated 21-bit value to the destination word that uses either the low21
relocation field or the split20 relocation field. See Table 2-2.

Table 2-4. VLE Relocation Types (continued)

Name Value Field Calculation

Application Binary Interface (ABI)

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

2-8 Freescale Semiconductor

NOTE
The relocations in Table 2-5 are not for load and store instructions (such as,
e_lwz and e_stw), which should use the EABI relocation
R_PPC_EMB_SDA21. These relocations, as written here, only start with an
e_add16i. A linker might convert the instruction to an e_li. Although other
relocations do not specify the instructions they apply to, it may be useful to
know that these relocations can apply only to one instruction.

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor 3-1

Chapter 3
Instruction Set

NOTE
This section provides an overview of the VLE instruction set architecture.
For details on each instruction, including assembly mnemonic and
operands, refer to the VLE section of the EREF.

The VLE extension allows PowerPC Book E implementations to support more efficient binary
representations of applications for the embedded processor spaces where code density plays a major role
in affecting overall system cost, and to a somewhat lesser extent, performance. The intent of the VLE
extension is not to define an entirely different ISA nor to supplant the existing PowerPC ISA. Instead, it
can be viewed as a supplement that is applied conditionally to an application, or to part of an application,
to improve code density.

The major objectives of the VLE extension are as follows:
• Maintain coexistence and consistency with the existing PowerPC Book E ISA and architecture
• Maintain a common programming model and instruction operation model in the VLE extension
• Reduce overall code size by 30 percent over existing PowerPC text segments
• Limit the increase in execution path length to under 10 percent for most important applications
• Limit the increase in hardware complexity for implementations containing the VLE extension

By meeting these objectives, cost-sensitive markets may significantly benefit from the use of the VLE
extension.

The VLE extension uses the same semantics as traditional Book E. Due to the limited instruction encoding
formats, VLE instructions typically support reduced immediate fields and displacements, and not all
Book E operations are encoded in the VLE extension. The basic philosophy is to capture all useful
operations, with most frequent operations given priority. Immediate fields and displacements are provided
to cover most ranges encountered in embedded control code. Instructions are encoded in either a 16- or
32-bit format, and these formats can be freely intermixed.

Book E floating-point registers are not accessible to VLE instructions. Book E GPRs and SPRs are used
by VLE instructions with the following limitations:

• VLE instructions using the 16-bit formats are limited to addressing GPR0–GPR7 and
GPR24–GPR31 in most instructions. Move instructions are provided to transfer register contents
between these registers and GPR8–GPR23.

• VLE instructions using the 16-bit formats are limited to addressing CR0.
• VLE instructions using the 32-bit formats are limited to addressing CR0-CR3.

Instruction Set

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

3-2 Freescale Semiconductor

VLE instruction encodings generally differ from Book E instructions, except that most Book E
instructions falling within Book E primary opcode 31 are encoded identically in 32-bit VLE instructions.
Also, they have identical semantics unless they affect or access a resource not supported by the VLE
extension. Primary opcode 4 is available to support additional instructions using identical encodings for
both Book E and VLE. Therefore, an implementation of VLE can include additional APUs, such as the
cache line locking APU, vector or scalar single-precision floating-point APU, and SPE extension and use
the exact encodings.

The VLE extension does not currently fully encompass 64-bit operations, although the addition of such
operations in a future version is envisioned. For future compatibility, and to avoid confusion with Book E,
register bit numbering remains the same as in traditional Book E.

The description of each instruction is contained in the VLE section of the EREF and includes the
mnemonic and a formatted list of operands. VLE instructions have either exact or similar semantics to
Book E instructions. Where the semantics, side-effects, and binary encodings are identical, the Book E
mnemonics and formats are used. Where the semantics are similar but the binary encodings differ, the
Book E mnemonic is generally preceded with an ‘e_’. To distinguish similar instructions available in both
16- and 32-bit formats under VLE and standard Book E instructions, VLE instructions encoded with 16
bits have an ‘se_’ prefix. VLE instructions encoded with 32 bits that have different binary encodings or
semantics than the equivalent Book E instruction have an ‘e_’ prefix. Some examples are the following:
stw RS,D(RA) // Standard Book E instruction
e_stw RS,D(RA) // 32-bit VLE instruction
se_stw RZ,SD4(RX) // 16-bit VLE instruction

For detailed functional descriptions of each VLE instruction, along with the assembly mnemonic and
operands, refer to the VLE section of the EREF.

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-1

Appendix A
Simplified Mnemonics for VLE Instructions
This appendix describes simplified mnemonics for easier coding of assembly language programs.
Simplified mnemonics are defined for the most frequently used forms of branch conditional, compare,
trap, rotate and shift, and certain other instructions defined by the VLE extension.

The simplified mnemonics for the VLE extension are similar to those defined for the PowerPC
programming environment. The result is a consistent programming view when working with VLE
instructions on PowerPC architectures. Section A.11, “Comprehensive List of Simplified Mnemonics,”
provides an alphabetical listing of VLE simplified mnemonics used by a variety of processors. Some
assemblers may define additional simplified mnemonics not included here. The simplified mnemonics
listed here should be supported by all compilers.

A.1 Overview
Simplified (or extended) mnemonics allow an assembly-language programmer to use more intuitive
mnemonics and symbols than the instructions and syntax defined by the instruction set architecture. For
example, to code the conditional call “branch to target if CR3 specifies a greater than condition, setting the
LR” without simplified mnemonics, the programmer would write the branch conditional and link
instruction e_bcl 1,13,target. The simplified mnemonic, branch if greater than and link, e_bgtl cr3,target,
incorporates the conditions. Not only is it easier to remember the symbols than the numbers when
programming, it is also easier to interpret simplified mnemonics when reading existing code.

Simplified mnemonics are not a formal part of the architecture, but rather a recommendation for
assemblers that support the instruction set.

Simplified mnemonics for VLE instructions provide a consistent assembly-language interface with the
PowerPC architecture. Many simplified mnemonics were originally defined in the PowerPC architecture
documentation. Some assemblers created their own, and others have been added to support extensions to
the instruction set (for example, AltiVec instructions and Book E auxiliary processing units (APUs)).
Simplified mnemonics for new architecturally defined and new implementation-specific special-purpose
registers (SPRs) are described here very generally.

A.2 Subtract Simplified Mnemonics
This section describes simplified mnemonics for subtract instructions.

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-2 Freescale Semiconductor

A.2.1 Subtract Immediate

The effect of a subtract immediate instruction can be achieved by negating the immediate operand of the
add immediate instructions, e_add16i, e_add2i., e_add2is, and e_addi. Simplified mnemonics include
this negation, making the intent of the computation clearer. These are listed in Table A-1.

A.2.2 Subtract

Subtract from instructions subtract the second operand (rA) from the third (rB). The simplified
mnemonics in Table A-2 use the more common order in which the third operand is subtracted from the
second.

A.3 Rotate and Shift Simplified Mnemonics
Rotate and shift instructions provide powerful, general ways to manipulate register contents, but they can
be difficult to understand. Simplified mnemonics are provided for the following operations:

• Extract—Select a field of n bits starting at bit position b in the source register; left or right justify
this field in the target register; clear all other bits of the target register.

• Insert—Select a left- or right-justified field of n bits in the source register; insert this field starting
at bit position b of the target register; leave other bits of the target register unchanged.

• Rotate—Rotate the contents of a register right or left n bits without masking.
• Shift—Shift the contents of a register right or left n bits, clearing vacated bits (logical shift).
• Clear—Clear the leftmost or rightmost n bits of a register.
• Clear left and shift left—Clear the leftmost b bits of a register, then shift the register left by n bits.

This operation can be used to scale a (known non-negative) array index by the width of an element.

Table A-1. Subtract Immediate Simplified Mnemonics

Simplified Mnemonic Standard Mnemonic

e_sub16i rD,rA,value e_add16i rD,rA,–value

e_sub2i. rA,value e_add2i. rA,–value

e_sub2is rA,value e_add2is rA,–value

e_subi rD,rA,value e_addi rD,rA,–value

e_subic rD,rA,value e_addic rD,rA,–value

e_subic. rD,rA,value e_addic. rD,rA,–value

Table A-2. Subtract Simplified Mnemonics

Simplified Mnemonic Standard Mnemonic1

1 rD,rB,rA is not the standard order for the operands. The order of rB and rA is
reversed to show the equivalent behavior of the simplified mnemonic.

sub[o][.] rD,rA,rB subf[o][.] rD,rB,rA

subc[o][.] rD,rA,rB subfc[o][.] rD,rB,rA

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-3

A.3.1 Operations on Words

The simplified mnemonics in Table A-3 do not support coding with a dot (.) suffix. In PowerPC
instructions, a dot (.) suffix causes the Rc bit to be set in the underlying instruction. However, the following
VLE instruction forms do not support this.

Examples using word mnemonics follow:
1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.

e_extrwi rA,rS,1,0 equivalent to e_rlwinm rA,rS,1,31,31
2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.

e_insrwi rB,rA,1,0 equivalent to e_rlwimi rB,rA,31,0,0
3. Shift the contents of rA left 8 bits.

e_slwi rA,rA,8 equivalent to e_rlwinm rA,rA,8,0,23
4. Clear the high-order 16 bits of rS and place the result into rA.

e_clrlwi rA,rS,16 equivalent to e_rlwinm rA,rS,0,16,31

A.4 Branch Instruction Simplified Mnemonics
Branch conditional instructions can be coded with the operations and with a condition to be tested as part
of the instruction mnemonic rather than as numeric operands (the BO32, BI32 and BO16, BI16 operands).
Table A-4 shows the four general types of branch instructions. Simplified mnemonics are defined only for
branch conditional instructions that include either the BO32, BI32 or BO16, BI16 operands; there is no
need to simplify the other branch mnemonics.

Table A-3. Word Rotate and Shift Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Extract and left justify word immediate e_extlwi rA,rS,n,b (n > 0) e_rlwinm rA,rS,b,0,n – 1

Extract and right justify word immediate e_extrwi rA,rS,n,b (n > 0) e_rlwinm rA,rS,b + n,32 – n,31

Insert from left word immediate e_inslwi rA,rS,n,b (n > 0) e_rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right word immediate e_insrwi rA,rS,n,b (n > 0) e_rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left word immediate e_rotlwi rA,rS,n e_rlwinm rA,rS,n,0,31

Rotate right word immediate e_rotrwi rA,rS,n e_rlwinm rA,rS,32 – n,0,31

Shift left word immediate e_slwi rA,rS,n (n < 32) e_rlwinm rA,rS,n,0,31 – n

Shift right word immediate e_srwi rA,rS,n (n < 32) e_rlwinm rA,rS,32 – n,n,31

Clear left word immediate e_clrlwi rA,rS,n (n < 32) e_rlwinm rA,rS,0,n,31

Clear right word immediate e_clrrwi rA,rS,n (n < 32) e_rlwinm rA,rS,0,0,31 – n

Clear left and shift left word immediate e_clrlslwi rA,rS,b,n (n ≤ b ≤ 31) e_rlwinm rA,rS,n,b – n,31 – n

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-4 Freescale Semiconductor

The BO32, BI32, and BO16, BI16 operands correspond to fields in the instruction opcode, as Figure A-1
shows for Branch Conditional (e_bc, e_bcl, and se_bc) instructions.

e_bc (e_bcl)

se_bc

Figure A-1. Branch Conditional (e_bc, se_bc) Instruction Formats

Both the BO32 and BO16 operands allow testing whether a CR bit causes a branch to occur based on a
true or false condition. The BO32 operand provides additional capability that allows branch operations that
involve decrementing the CTR and testing for a zero or non-zero CTR value.

The BI32 and BI16 operands identify a CR bit to test (whether a comparison is less than or greater than,
for example). The simplified mnemonics avoid the need to memorize the numerical values for BO32,
BI32, and BO16, BI16 operands.

For example, e_bc 2,0,target is a conditional branch that, as a BO32 value of 2 (0b10) indicates,
decrements the CTR, then branches if the decremented CTR is not zero. The operation specified by BO32
is abbreviated as d (for decrement) and nz (for not zero), which replace the c in the original mnemonic; so
the simplified mnemonic for e_bc becomes e_bdnz. The branch does not depend on a condition in the CR,
so BI32 can be eliminated, reducing the expression to e_bdnz target.

In addition to CTR operations, the BO32 operand provides branch decisions based on true or false
conditions. For example, if a branch instruction depends on an equal condition in CR0, the expression is
e_bc 1,2,target. To specify a true condition, the BO32 value becomes 1; the CR0 equal field is indicated
by a BI32 value of 2. Incorporating the branch-if-true condition a ‘t’ is used to replace the c in the original
mnemonic, e_bt. The BI32 value of 2 is replaced by the eq symbol. Using the simplified mnemonic and
the eq operand, the expression becomes e_bt eq,target.

Table A-4. Branch Instructions

Instruction Name Mnemonic Syntax

Branch e_b (e_bl)
se_b (se_bl)

target_addr
target_addr

Branch Conditional e_bc (e_bcl)
se_bc

BO32,BI32,target_addr
BO16,BI16,target_addr

Branch to Link Register se_blr (se_blrl) —

Branch to Count Register se_bctr (se_bctrl) —

0 5 6 9 10 11 12 15 16 30 31

0 1 1 1 1 0 1 0 0 0 BO32 BI32 BD15 LK

0 4 5 6 7 8 15

1 1 1 1 0 BO16 BI16 BD8

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-5

This example tests CR0[EQ]; however, to test the equal condition in CR3 (CR bit 14), the expression
becomes e_bc 1,14,target. The BI32 operand of 14 indicates CR[14] (CR3[2], or BI32 field 0b1110). This
can be expressed as the simplified mnemonic, e_bt 4 × cr3 + eq,target.

The notation, 4 × cr3 + eq may at first seem awkward, but it eliminates computing the value of the CR bit.
It can be seen that (4 × 3) + 2 = 14. Note that although 32-bit registers in Book E processors are numbered
32–63, only values 0–15 are valid (or possible) for BI32 operands. A Book E–compliant processor
automatically translates the BI32 bit values; specifying a BI32 value of 14 selects bit 46 on a Book E
processor, or CR3[2] = CR3[EQ].

To reduce code size, VLE provides a 16-bit conditional branch instruction that uses the BO16 and BI16
operands. For example, the 32-bit conditional branch e_bc 1,2,target can be expressed using a 16-bit
instruction format, se_bc 1,2,target. In simplified mnemonic form this becomes se_bt eq,target. The BO16
operand only allows testing a true or false condition, unlike the BO32 operand that also allows
decrementing the CTR. The BI16 operand allows testing of only CR0, unlike the BI32 operand, which
allows testing CR0–CR3.

A.4.1 Key Facts about Simplified Branch Mnemonics

The following key points are helpful in understanding how to use simplified branch mnemonics:
• All simplified branch mnemonics eliminate the BO32 and BO16 operands, so if any operand is

present in a branch simplified mnemonic, it is the BI32 or BI16 operand (or a reduced form of it).
• If the CR is not involved in the branch, the BI32 and BI16 operands can be deleted.
• If the CR is involved in the branch, the BI32 and BI16 operands can be treated in the following

ways:
— It can be specified as a numeric value, just as it is in the architecturally defined instruction, or

it can be indicated with an easier to remember formula, 4 * crn + [test bit symbol], where n
indicates the CR field number. For BI16 operands only CR0 is allowed, for BI32 CR0–CR3 is
allowed.

— The condition of the test bit (eq, lt, gt, and so) can be incorporated into the mnemonic, leaving
the need for an operand that defines only the CR field.
– If the test bit is in CR0, no operand is needed.
– If the test bit is in CR1–CR3, the BI32 operand can be replaced with a crS operand (that is,

cr1, cr2, or cr3). The BI16 operand cannot be used for test bits that are not in CR0.

A.4.2 Eliminating the BO32 and BO16 Operands

The 2-bit BO32 field, shown in Figure A-1, encodes the following operations in 32-bit conditional branch
instructions:

• Decrement count register (CTR)
— And test if result is equal to zero
— And test if result is not equal to zero

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-6 Freescale Semiconductor

• Test condition register (CR)
— Test condition true
— Test condition false

The 1-bit BO16 field, shown in Figure A-1, encodes the following operations in 16-bit conditional branch
instructions:

• Test condition register (CR)
— Test condition true
— Test condition false

As shown in Table A-5, the ‘c’ in the standard mnemonic is replaced with the operations otherwise
specified in the BO32 or BO16 field, (d for decrement, z for zero, nz for non-zero, t for true, and f for
false).

A.4.3 The BI32 and BI16 Operand—CR Bit and Field Representations

With standard branch mnemonics, the BI32 and BI16 operands are used to test a CR bit, as shown in the
example in Section A.4, “Branch Instruction Simplified Mnemonics,”

With simplified mnemonics, the BI32 and BI16 operands are handled differently depending on whether
the simplified mnemonic incorporates a CR condition to test, as follows:

• Some branch simplified mnemonics incorporate only the BO32 or BO16 operand. These simplified
mnemonics can use the architecturally defined BI32 or BI16 operand to specify the CR bit, as
follows:
— The BI32 or BI16 operands can be presented exactly as it is with standard mnemonics—as a

decimal number, 0–15 for the BI32 operand, and 0–3 for the BI16 operand.
— Symbols can be used to replace the decimal operand, as shown in the example in Section A.4,

“Branch Instruction Simplified Mnemonics,” where e_bt 4 * cr3 + eq,target could be used
instead of e_bt 14,target. This is described in Section A.4.4.1, “Specifying a CR Bit.”

Table A-5. BO32 and BO16 Operand Encodings

BO32 Field BO16 Field Value (Decimal) Description Symbol

00 0 0 Branch if the condition is FALSE.1

1 Instructions for which BO32 or BO16 are 0 (branch if condition true) or 1 (branch if condition false) do not depend on the CTR
value and alternately can be coded by incorporating the condition specified by the BI32 or BI16 fields. See Section A.5.2,
“Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO32 and BO16 and Replaces BI32 with crS).”

f

01 1 1 Branch if the condition is TRUE.1 t

102

2 Simplified mnemonics for branch instructions that do not test CR bits (BO32 = 2 or 3) should specify only a target. Otherwise
a programming error may occur.

— 2 Decrement the CTR, then branch if the decremented CTR ≠ 0. dnz3

3 Notice that these instructions do not use the branch in condition true or false operations, so simplified mnemonics for these
should not specify a BI32 operand.

112 — 3 Decrement the CTR, then branch if the decremented CTR = 0. dz3

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-7

The simplified mnemonics in Section A.5, “Simplified Mnemonics that Incorporate the BO32 and
BO16 Operands,” use one of these two methods to specify a CR bit.

• Additional simplified mnemonics incorporate CR conditions that would otherwise be specified by
the BI32 or BI16 operand, so the BI32 or BI16 operand is replaced by the crS operand to specify
the CR field. See Section A.4.4, “BI32 and BI16 Operand Instruction Encoding.”

These mnemonics are described in Section A.5.2, “Simplified Mnemonics that Incorporate CR Conditions
(Eliminates BO32 and BO16 and Replaces BI32 with crS).”

A.4.4 BI32 and BI16 Operand Instruction Encoding

The entire 4-bit BI32 and 2-bit BI16 fields, shown in Figure A-2, represent the bit number for the CR bit
to be tested. For standard branch mnemonics and for branch simplified mnemonics that do not incorporate
a CR condition, the BI32 operand provides all 4 bits and the BI16 operand provides all 2 bits.

For simplified branch mnemonics described in Section A.5.2, “Simplified Mnemonics that Incorporate CR
Conditions (Eliminates BO32 and BO16 and Replaces BI32 with crS),” the BI32 or BI16 operand is
replaced by a crS operand. To understand this, it is useful to view the BI32 operand as composed of two
parts. As Figure A-2 shows, BI32[0–1] indicates the CR field and BI32[2–3] represents the condition to
test. The 2-bit BI16 operand only has one part, BI16[0–1] represents the condition within CR0 to test.

Figure A-2. BI32 and BI16 Fields

Integer record-form instructions update CR0 and floating-point record-form instructions update CR1, as
described in Table A-6.

0 1 2 3

BI32[0–1] specifies CR field, CR0–CR3. BI32[2–3] and BI16[0–1] specifies one
of the 4 bits in a CR field. (LT, GT, EQ,
SO)

Simplified mnemonics based on CR
conditions but not CTR values

—branch if true : BO32=1 or BO16=1
—branch if false: BO32=0 or BO16=0

Specified by a separate,
reduced BI32 operand (crS)

Incorporated into the simplified
mnemonic.

Standard branch mnemonics and
simplified mnemonics based on CTR values

The BI32 operand specifies the entire 4-bit field and the BI16
operand specifies a 2-bit field. If CR0 is used, the bit can be
identified by LT, GT, EQ, or SO. For BI32, if CR1–CR3 are used,
the form 4 * crS + LT|GT|EQ|SO can be used.

BI32 Opcode Field

0 1

BI16 Opcode Field

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-8 Freescale Semiconductor

A.4.4.1 Specifying a CR Bit

Note that the AIM version of the PowerPC architecture numbers CR bits 0–31 and Book E numbers them
32–63. However, no adjustment is necessary to the code; in Book E devices, 32 is automatically added to
the BI32 and BI16 values, as shown in Table A-6 and Table A-7.

Some simplified mnemonics incorporate only the BO32 or BO16 fields (as described Section A.4.2,
“Eliminating the BO32 and BO16 Operands”). If one of these simplified mnemonics is used and the CR
must be accessed, the BI32 or BI16 operand can be specified either as a numeric value or by using the
symbols in Table A-7.

Compare word instructions (described in Section A.6, “Compare Word Simplified Mnemonics”),
floating-point compare instructions, move to CR instructions, and others can also modify CR fields, so
CR0 and CR1 may hold values that do not adhere to the meanings described in Table A-6.

Table A-6. CR0 and CR1 Fields as Updated by Integer and Floating-Point Instructions

 CRn Bit
CR Bits BI32 BI16

Description
AIM Book E 0–1 2–3 0–1

CR0[0] 0 32 00 00 00 Negative (LT)—Set when the result is negative.

CR0[1] 1 33 00 01 01 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 2 34 00 10 10 Zero (EQ)—Set when the result is zero.

CR0[3] 3 35 00 11 11 Summary overflow (SO). Copy of XER[SO] at the instruction’s completion.

CR1[0] 4 36 01 00 — Copy of FPSCR[FX] at the instruction’s completion.

CR1[1] 5 37 01 01 — Copy of FPSCR[FEX] at the instruction’s completion.

CR1[2] 6 38 01 10 — Copy of FPSCR[VX] at the instruction’s completion.

CR1[3] 7 39 01 11 — Copy of FPSCR[OX] at the instruction’s completion.

Table A-7. BI32 and BI16 Operand Settings for CR Fields for Branch Comparisons

 CRn
Bit

Bit Expression

CR Bits BI32 BI16

DescriptionAIM
BI

Operand
Book E 0–1 2–3 0–1

CRn[0] 4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3+ lt

0
4
8
12

32
36
40
44

00
01
10
11

00 00
—
—
—

Less than or floating-point less than (LT, FL).
For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA <
UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

CRn[1] 4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3+ gt

1
5
9
13

33
37
41
45

00
01
10
11

01 01
—
—
—

Greater than or floating-point greater than (GT,
FG).
For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA >
UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA > frB.

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-9

Only the most useful simplified mnemonics are found in Section A.5, “Simplified Mnemonics that
Incorporate the BO32 and BO16 Operands.” Unusual cases can still be coded using a standard branch
conditional syntax.

A.4.4.2 The crS Operand

The crS symbols are shown in Table A-8. Note that either the symbol or the operand value can be used in
the syntax used with the simplified mnemonic.

To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a
bit-number-within-CR-field symbol can be used, (for example, cr0 * 4 + eq).

A.5 Simplified Mnemonics that Incorporate the BO32 and BO16
Operands

The mnemonics in Table A-9 allow common BO32 and BO16 operand encodings to be specified as part
of the mnemonic, along with the set link register bit (LK). There are no simplified mnemonics for
unconditional branches, branch to link register, and branch to count register. For these, the basic
mnemonics e_b, e_bl, se_b, se_bl, se_blr, se_blrl, se_bctr, and se_bctrl are used.

CRn[2] 4 * cr0 + eq (or eq)
4 * cr1 + eq
4 * cr2 + eq
4 * cr3+ eq

2
6
10
14

34
38
42
46

00
01
10
11

10 10
—
—
—

Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM,
UIMM, or rB.
For floating-point compare instructions: frA = frB.

CRn[3] 4 * cr0 + so/un (or so/un)
4 * cr1 + so/un
4 * cr2 + so/un
4 * cr3 + so/un

3
7
11
15

35
39
43
47

00
01
10
11

11 11
—
—
—

Summary overflow or floating-point unordered
(SO, FU).
For integer compare instructions, this is a copy of
XER[SO] at instruction completion.
For floating-point compare instructions, one or
both of frA and frB is a NaN.

Table A-8. CR Field Identification Symbols

Symbol BI32[0–1] BI16 CR Bits

cr0 (default, can be eliminated from syntax) 00 Implied 32–35

cr1 01 — 36–39

cr2 10 — 40–43

cr3 11 — 44–47

Table A-7. BI32 and BI16 Operand Settings for CR Fields for Branch Comparisons (continued)

 CRn
Bit

Bit Expression

CR Bits BI32 BI16

DescriptionAIM
BI

Operand
Book E 0–1 2–3 0–1

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-10 Freescale Semiconductor

Table A-10 shows the syntax for basic simplified branch mnemonics

The simplified mnemonics in Table A-9 that test a condition require a corresponding CR bit as the first
operand (as the examples 2–5 in Section A.5.1, “Examples that Eliminate the BO32 and BO16 Operands,”
below illustrate). The symbols in Table A-8 can be used in place of a numeric value.

A.5.1 Examples that Eliminate the BO32 and BO16 Operands

The simplified mnemonics in Table A-9 are used in the following examples:
1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into

CTR) (note that no CR bits are tested).
e_bdnz target equivalent to e_bc 2,0,target
Because this instruction does not test a CR bit, the simplified mnemonic should specify only a
target operand. Specifying a CR (for example, e_bdnz 0,target or e_bdnz cr0,target) may be
considered a programming error. Subsequent examples test conditions).

2. Branch if condition in CR0 is equal.
e_bt eq,target equivalent to e_bc 1,2,target
Other equivalents include e_bt 2,target or the unlikely e_bt 4 * cr0 + eq,target

Table A-9. Branch Simplified Mnemonics

Branch Semantics
LR Update Not Enabled LR Update Enabled

e_bc se_bc e_bcl

Branch if condition true e_bt se_bt e_btl

Branch if condition false e_bf se_bf e_bfl

Decrement CTR, branch if CTR ≠ 01

1 Simplified mnemonics for branch instructions that do not test CR bits should specify
only a target. Otherwise, a programming error may occur.

e_bdnz — e_bdnzl

Decrement CTR, branch if CTR = 01 e_bdz — e_bdzl

Table A-10. Branch Instructions

Instruction
Standard

Mnemonic
Syntax

Simplified
Mnemonic

Syntax

Branch e_b (e_bl)
se_b (se_bl)

target_addr N/A, syntax does not include BO32 or BO16

Branch Conditional e_bc (e_bcl)
se_bc

BO32,BI32,target_addr
BO16,BI16,target_addr

e_bx1 (e_bxl)
se_bx1

1 x stands for one of the symbols in Table A-5, where applicable.

BI322,target_addr
BI16 2,target_addr

2 BI32 or BI16 can be a numeric value or an expression as shown in Table A-8.

Branch to Link Register se_blr (se_blrl) — N/A, syntax does not include BO32 or BO16

Branch to Count Register se_bctr (se_bctrl) — N/A, syntax does not include BO32 or BO16

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-11

3. Same as (2), but equal condition is in CR3.
e_bt 4 * cr3 + eq,target equivalent to e_bc 1,14,target
e_bt 14,target would also work

4. Branch if bit 47 of CR is false.
bf 15,target equivalent to e_bc 0,15,target
bf 4 * cr3 + so,target would also work

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 15,target equivalent to bcl 4,15,target

Table A-11 lists simplified mnemonics and syntax for e_bc and se_bc without LR updating.

Table A-12 provides simplified mnemonics and syntax for e_bcl.

Table A-11. Simplified Mnemonics for e_bc and se_bc without LR Update

Branch Semantics e_bc
Simplified
Mnemonic

se_bc
Simplified
Mnemonic

Branch if condition true e_bc 1,BI32,target e_bt BI32,target1

1 Instructions for which B032 is either 1 (branch if condition true) or 0 (branch if condition false) do not depend on the CTR
value and can be alternately coded by incorporating the condition specified by the BI32 field, as described in Section A.5.2,
“Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO32 and BO16 and Replaces BI32 with crS).”

se_bc 1,BI16,target se_bt BI16,target

Branch if condition false e_bc 0,BI32,target e_bf BI32,target1 se_bc 0,BI16,target se_bf BI16,target

Decrement CTR, branch if CTR ≠ 0 e_bc 2,0,target e_bdnz target2

2 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise, a programming
error may occur.

— —

Decrement CTR, branch if CTR = 0 e_bc 3,0,target e_bdz target2 — —

Table A-12. Simplified Mnemonics for e_bcl with LR Update

Branch Semantics e_bcl
Simplified
Mnemonic

Branch if condition true1

1 Instructions for which B032 is either 1 (branch if condition true) or 0 (branch if condition false) do not
depend on the CTR value and can be alternately coded by incorporating the condition specified by the
BI32 field. See Section A.5.2, “Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO32
and BO16 and Replaces BI32 with crS).”

e_bcl 1,BI32,target e_btl BI32,target

Branch if condition false1 e_bcl 0,BI32,target e_bfl BI32,target

Decrement CTR, branch if CTR ≠ 0 e_bcl 2,0,target e_bdnzl target2

2 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target.
Otherwise, a programming error may occur.

Decrement CTR, branch if CTR = 0 e_bcl 3,0,target e_bdzl target 2

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-12 Freescale Semiconductor

A.5.2 Simplified Mnemonics that Incorporate CR Conditions (Eliminates
BO32 and BO16 and Replaces BI32 with crS)

The mnemonics in Table A-15 are variations of the branch-if-condition-true (BO32 = 1 or BO16 = 1) and
branch-if-condition-false (BO32 = 0 or BO16 = 0) encodings. Because these instructions do not depend
on the CTR, the true/false conditions specified by either BO32 or BO16 can be combined with the CR test
bit specified by the BI32 or BI16 operand to create a different set of simplified mnemonics that eliminates
the BO32 and BO16 operands and the portion of the BI32 and BI16 operands (BI32[2–3] and BI16[0–1])
that specifies one of the four possible test bits. However, for simplified mnemonics using the BO32
operand, the simplified mnemonic cannot specify in which of the four CR fields (CR0–CR3) the test bit
falls, so the BI32 operand is replaced by a crS operand.

The standard codes shown in Table A-13 are used for the most common combinations of branch
conditions. For ease of programming, these codes include synonyms; for example, less than or equal (le)
and not greater than (ng) achieve the same result.

NOTE

A CR field symbol, cr0–cr3, is used as the first operand after the simplified
mnemonic. If the default, CR0, is used, no crS is necessary.

Table A-14 shows the syntax for simplified branch mnemonics that incorporate CR conditions. Here, crS
replaces a BI32 operand to specify only a CR field (because the specific CR bit within the field is now part
of the simplified mnemonic. Note that the default is CR0; if no crS is specified, CR0 is used.

Table A-13. Standard Coding for Branch Conditions

Code Description Equivalent Bit Tested

lt Less than — LT

le Less than or equal (equivalent to ng) ng GT

eq Equal — EQ

ge Greater than or equal (equivalent to nl) nl LT

gt Greater than — GT

nl Not less than (equivalent to ge) ge LT

ne Not equal — EQ

ng Not greater than (equivalent to le) le GT

so Summary overflow — SO

ns Not summary overflow — SO

un Unordered (after floating-point comparison) — SO

nu Not unordered (after floating-point comparison) — SO

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-13

Table A-15 shows the simplified branch mnemonics incorporating conditions.

Instructions using the mnemonics in Table A-15 indicate the condition bit, but not the CR field. If no field
is specified, CR0 is used. For 32-bit instruction forms (denoted with the e_ prefix) the CR field symbols
defined in Table A-8 (cr0–cr3) are used, as shown in examples 2–3 of Section A.5.3, “Branch Simplified
Mnemonics that Incorporate CR Conditions: Examples,” below. Note that the 16-bit instruction forms
(denoted with the se_ prefix) must use CR0.

Table A-14. Branch Instructions and Simplified Mnemonics that Incorporate CR Conditions

Instruction
Standard

Mnemonic
Syntax

Simplified
Mnemonic

Syntax

Branch e_b (e_bl)
se_b (se_bl)

target_addr —

Branch Conditional e_bc (e_bcl)
se_bc

BO32,BI32,target_addr
BO16,BI16,target_addr

e_bx 1 (e_bxl)
se_bx1

1 x stands for one of the symbols in Table A-13, where applicable.

crS2,target_addr
target_addr

2 crS can be a numeric value or an expression as shown in Table A-8.

Branch to Link Register se_blr (se_blrl) — —

Branch to Count Register se_bctr (se_bctrl) — —

Table A-15. Simplified Mnemonics with Comparison Conditions

Branch Semantics
LR Update Not Enabled LR Update Enabled

e_bc se_bc e_bcl

Branch if less than e_blt se_blt e_bltl

Branch if less than or equal e_ble se_ble e_blel

Branch if equal e_beq se_beq e_beql

Branch if greater than or equal e_bge se_bge e_bgel

Branch if greater than e_bgt se_bgt e_bgtl

Branch if not less than e_bnl se_bnl e_bnll

Branch if not equal e_bne se_bne e_bnel

Branch if not greater than e_bng se_bng e_bngl

Branch if summary overflow e_bso se_bso e_bsol

Branch if not summary overflow e_bns se_bns e_bnsl

Branch if unordered e_bun se_bun e_bunl

Branch if not unordered e_bnu se_bnu e_bnul

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-14 Freescale Semiconductor

A.5.3 Branch Simplified Mnemonics that Incorporate CR Conditions:
Examples

The following examples use the simplified mnemonics shown in Table A-15:
1. Branch if CR0 reflects not-equal condition.

e_bne target equivalent to e_bc 0,2,target
se_bne target equivalent to se_bc 0,2,target

2. Same as (1) but condition is in CR3.
e_bne cr3,target equivalent to e_bc 0,14,target

3. Branch if CR2 specifies greater than condition, setting the LR. This is a form of conditional call.
e_bgtl cr2,target equivalent to e_bcl 1,9,target

A.5.4 Branch Simplified Mnemonics that Incorporate CR Conditions:
Listings

Table A-16 shows simplified branch mnemonics and syntax for e_bc and se_bc without LR updating.
Table A-16. Simplified Mnemonics for e_bc and se_bc without Comparison Conditions

or LR Updating

Branch Semantics e_bc
Simplified
Mnemonic

se_bc
Simplified
Mnemonic

Branch if less than e_bc 1,BI321,target

1 The value in the BI32 or BI16 operand selects CRn[0], the LT bit.

e_blt crS,target se_bc 1,BI161,target se_blt target

Branch if less than or equal e_bc 0,BI322,target

2 The value in the BI32 or BI16 operand selects CRn[1], the GT bit.

e_ble crS,target se_bc 0,BI162,target se_ble target

Branch if not greater than e_bng crS,target se_bng target

Branch if equal e_bc 1,BI323,target

3 The value in the BI32 or BI16 operand selects CRn[2], the EQ bit.

e_beq crS,target se_bc 1,BI163,target se_beq target

Branch if greater than or equal e_bc 0,BI321,target e_bge crS,target se_bc 0,BI161,target se_bge target

Branch if not less than e_bnl crS,target se_bnl target

Branch if greater than e_bc 1,BI322,target e_bgt crS,target se_bc 1,BI162,target se_bgt target

Branch if not equal e_bc 0,BI323,target e_bne crS,target se_bc 0,BI163,target se_bne target

Branch if summary overflow e_bc 1,BI324,target

4 The value in the BI32 or BI16 operand selects CRn[3], the SO bit.

e_bso crS,target se_bc 1,BI164,target se_bso target

Branch if unordered e_bun crS,target se_bun target

Branch if not summary overflow e_bc 0,BI324,target e_bns crS,target se_bc 0,BI164,target se_bns target

Branch if not unordered e_bnu crS,target se_bnu target

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-15

Table A-17 shows simplified branch mnemonics and syntax for e_bcl.

A.6 Compare Word Simplified Mnemonics
In compare word instructions, the L operand indicates a word (L = 0) or double-word (L = 1). Simplified
mnemonics in Table A-18 eliminate the L operand for word comparisons.

Table A-17. Simplified Mnemonics for e_bcl with Comparison Conditions and LR Updating

Branch Semantics e_bcl Simplified Mnemonic

Branch if less than e_bcl 1,BI321,target

1 The value in the BI32 operand selects CRn[0], the LT bit.

e_bltl crS,target

Branch if less than or equal e_bcl 0,BI322,target

2 The value in the BI32 operand selects CRn[1], the GT bit.

e_blel crS,target

Branch if not greater than e_bngl crS,target

Branch if equal e_bcl 1,BI323,target

3 The value in the BI32 operand selects CRn[2], the EQ bit.

e_beql crS,target

Branch if greater than or equal e_bcl 0,BI321,target e_bgel crS,target

Branch if not less than e_bnll crS,target

Branch if greater than e_bcl 1,BI322,target e_bgtl crS,target

Branch if not equal e_bcl 0,BI323,target e_bnel crS,target

Branch if summary overflow e_bcl 1,BI324,target

4 The value in the BI32 operand selects CRn[3], the SO bit.

e_bsol crS,target

Branch if unordered e_bunl crS,target

Branch if not summary overflow e_bcl 0,BI324,target e_bnsl crS,target

Branch if not unordered e_bnul crS,target

Table A-18. Word Compare Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate e_cmpwi crD,rA,SIMM e_cmpi crD,rA,SIMM

e_cmpwi cr0,rA,SIMM e_cmp16i rA,SIMM

Compare Word cmpw crD,rA,rB cmp crD,0,rA,rB

Compare Logical Word Immediate e_cmplwi crD,rA,UIMM e_cmpli crD,rA,UIMM

e_cmplwi cr0,rA,UIMM e_cmpl16i rA,UIMM

Compare Logical Word cmplw crD,rA,rB cmpl crD,0,rA,rB

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-16 Freescale Semiconductor

As with branch mnemonics, the crD field of a compare instruction can be omitted if CR0 is used, as shown
in examples 1 and 3 below. Otherwise, the target CR field must be specified as the first operand. The
following examples use word compare mnemonics:

1. Compare rA with immediate value 100 as signed 32-bit integers and place result in CR0.
e_cmpwi rA,100 equivalent to e_cmp16i rA,100

2. Same as (1), but place results in CR4.
e_cmpwi cr3,rA,100 equivalent to e_cmpi 3,rA,100

3. Compare rA and rB as unsigned 32-bit integers and place result in CR0.
cmplw rA,rB equivalent to cmpl 0,0,rA,rB

A.7 Trap Instructions Simplified Mnemonics
The codes in Table A-19 are for the most common combinations of trap conditions.

The mnemonics in Table A-20 are variations of trap instructions, with the most useful TO values
represented in the mnemonic rather than specified as a numeric operand.

Table A-19. Standard Codes for Trap Instructions

Code Description TO Encoding < > = <U1

1 The symbol ‘<U’ indicates an unsigned less-than evaluation is performed.

>U2

2 The symbol ‘>U’ indicates an unsigned greater-than evaluation is performed.

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-17

The following examples use the trap mnemonics shown in Table A-20:
1. Trap if rA is not equal to rB.

twne rA,rB equivalent to tw 24,rA,rB
2. Trap unconditionally.

trap equivalent to tw 31,0,0

Trap instructions evaluate a trap condition by comparing the contents of rA with the contents of rB. The
comparison results in five conditions that are ANDed with operand TO. If the result is not 0, the trap
exception handler is invoked. See Table A-21 for these conditions.

Table A-20. Trap Simplified Mnemonics

Trap Semantics tw Register

Trap unconditionally trap

Trap if less than twlt

Trap if less than or equal twle

Trap if equal tweq

Trap if greater than or equal twge

Trap if greater than twgt

Trap if not less than twnl

Trap if not equal twne

Trap if not greater than twng

Trap if logically less than twllt

Trap if logically less than or equal twlle

Trap if logically greater than or equal twlge

Trap if logically greater than twlgt

Trap if logically not less than twlnl

Trap if logically not greater than twlng

Table A-21. TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-18 Freescale Semiconductor

A.8 Simplified Mnemonics for Accessing SPRs
The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric operand.
Simplified mnemonics are provided that represent the SPR in the mnemonic rather than requiring it to be
coded as a numeric operand. The pattern for mtspr and mfspr simplified mnemonics is straightforward:
replace the -spr portion of the mnemonic with the abbreviation for the spr (for example XER, SRR0, or
LR), eliminate the SPRN operand, leaving the source or destination GPR operand, rS or rD.

Following are examples using the SPR simplified mnemonics:
1. Copy the contents of rS to the XER.

mtxer rS equivalent to mtspr 1,rS
2. Copy the contents of the LR to rS.

mflr rD equivalent to mfspr rD,8
3. Copy the contents of rS to the CTR.

mtctr rS equivalent to mtspr 9,rS

The examples above show simplified mnemonics for accessing SPRs defined by the AIM version of the
PowerPC architecture; however, the same formula is used for Book E, EIS, and implementation-specific
SPRs, as shown in the following examples:

1. Copy the contents of rS to CSRR0.
mtcsrr0 rS equivalent to mtspr 58,rS

2. Copy the contents of IVOR0 to rS.
mfivor0 rD equivalent to mfspr rD,400

3. Copy the contents of rS to the MAS1.
mtmas1 rS equivalent to mtspr 625,rS

There are additional simplified mnemonics for accessing SPRGs, which are not all supported by all
assemblers. These mnemonics are shown in Table A-22 along with the equivalent simplified mnemonic
using the formula described in this section.

A.9 Recommended Simplified Mnemonics
This section describes commonly-used operations (such as no-op, load immediate, load address, move
register, and complement register).

Table A-22. Additional Simplified Mnemonics for Accessing SPRGs

SPR
Move to SPR Move from SPR

Simplified Mnemonic Equivalent to Simplified Mnemonic Equivalent to

SPRGs mtsprg n,rS mtspr 272 + n,rS mfsprg rD,n mfspr rD,272 + n

mtsprgn,rS mfsprgn rD

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-19

A.9.1 No-Op (nop)

Many instructions can be coded in such a way that, effectively, no operation is performed. Additional
mnemonics are provided for the preferred forms of no-op. If an implementation performs any type of
run-time optimization related to no-ops, the preferred forms are the following:

e_nop equivalent to e_ori 0,0,0
se_nop equivalent to se_or 0,0

A.9.2 Load Address (la)

The la mnemonic permits computing the value of a base-displacement operand, using the e_add16i
instruction that normally requires a separate register and immediate operands.

e_la rD,d(rA) equivalent to e_add16i rD,rA,d

The e_la mnemonic is useful for obtaining the address of a variable specified by name, allowing the
assembler to supply the base register number and compute the displacement. If the variable V is located at
offset dV bytes from the address in rV, and the assembler is directed to use rV as a base for references to
the data structure containing V, the following line causes the address of V to be loaded into rD:

e_la rD,V equivalent to e_add16i rD,rV,dV

A.9.3 Move Register (mr)

Several instructions can be coded to copy the contents of one register to another. A simplified mnemonic
is provided to signify that no computation is being performed, but merely that data is being moved from
one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded with a dot (.)
suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS equivalent to or rA,rS,rS

A.9.4 Complement Register (not)

Several instructions can be coded to complement the contents of one register and place the result into
another register. A simplified mnemonic allows this operation to be coded easily.

The following instruction complements the contents of rS and places the result into rA. This mnemonic
can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

not rA,rS equivalent to nor rA,rS,rS

A.9.5 Move to Condition Register (mtcr)

The mtcr mnemonic permits copying the contents of a GPR to the CR, using the same syntax as the mfcr
instruction.

mtcr rS equivalent to mtcrf 0xFF,rS

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-20 Freescale Semiconductor

A.10 EIS-Specific Simplified Mnemonics
This section describes simplified mnemonics used by auxiliary processing units (APUs) defined as part of
the Freescale Book E implementation standards (EIS).

A.10.1 Integer Select (isel)

The following mnemonics simplify the most common variants of the isel instruction that access CR0:

Integer Select Less Than
isellt rD,rA,rB equivalent to isel rD,rA,rB,0

Integer Select Greater Than
iselgt rD,rA,rB equivalent to isel rD,rA,rB,1

Integer Select Equal
iseleq rD,rA,rB equivalent to isel rD,rA,rB,2

A.11 Comprehensive List of Simplified Mnemonics
Table A-23 lists simplified mnemonics. Note that compiler designers may implement additional simplified
mnemonics not listed here.

Table A-23. Simplified Mnemonics

Simplified Mnemonic Mnemonic Instruction

e_bdnz target1 e_bc 2,0,target Decrement CTR, branch if CTR ≠ 0 (e_bc without LR
update)

e_bdnzl target 1 e_bcl 2,0,target Decrement CTR, branch if CTR ≠ 0 (e_bcl with LR
update)

e_bdz target 1 e_bc 3,0,target Decrement CTR, branch if CTR = 0 (e_bc without LR
update)

e_bdzl target 1 e_bcl 3,BI32,target Decrement CTR, branch if CTR = 0 (e_bcl with LR
update)

e_beq crS,target e_bc 1,BI322,target Branch if equal (e_bc without LR updating)

se_beq target se_bc 1,BI162,target Branch if equal (se_bc)

e_beql crS,target e_bcl 1,BI32 2,target Branch if equal (e_bcl with LR updating)

e_bf BI32,target e_bc 0,BI32,target Branch if condition false 3 (e_bc without LR update)

se_bf BI16,target se_bc 0,BI16,target Branch if condition false3 (se_bc)

e_bfl BI32,target e_bcl 0,BI32,target Branch if condition false 3 (e_bcl with LR update)

e_bge crS,target e_bc 0,BI324,target Branch if greater than or equal (e_bc without LR
updating)

se_bge target se_bc 0,BI164,target Branch if greater than or equal (se_bc)

e_bgel crS,target e_bcl 0,BI324,target Branch if greater than or equal (e_bcl with LR updating)

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-21

e_bgt crS,target e_bc 1,BI325,target Branch if greater than (e_bc without LR updating)

se_bgt target se_bc 1,BI165,target Branch if greater than (se_bc)

e_bgtl crS,target e_bcl 1,BI325,target Branch if greater than (e_bcl with LR updating)

e_ble crS,target e_bc 0,BI325,target Branch if less than or equal (e_bc without LR updating)

se_ble target se_bc 0,BI165,target Branch if less than or equal (se_bc)

e_blel crS,target e_bcl 0,BI325,target Branch if less than or equal (e_bcl with LR updating)

e_blt crS,target e_bc 1,BI324,target Branch if less than (e_bc without LR updating)

se_blt target se_bc 1,BI164,target Branch if less than (se_bc)

e_bltl crS,target e_bcl 1,BI324,target Branch if less than (e_bcl with LR updating)

e_bne crS,target e_bc 0,BI323,target Branch if not equal (e_bc without LR updating)

se_bne target se_bc 0,BI163,target Branch if not equal (se_bc)

e_bnel crS,target e_bcl 0,BI323,target Branch if not equal (e_bcl with LR updating)

e_bng crS,target e_bc 0,BI325,target Branch if not greater than (e_bc without LR updating)

se_bng target se_bc 0,BI165,target Branch if not greater than (se_bc)

e_bngl crS,target e_bcl 0,BI325,target Branch if not greater than (e_bcl with LR updating)

e_bnl crS,target e_bc 0,BI324,target Branch if not less than (e_bc without LR updating)

se_bnl target se_bc 0,BI164,target Branch if not less than (se_bc)

e_bnll crS,target e_bcl 0,BI324,target Branch if not less than (e_bcl with LR updating)

e_bns crS,target e_bc 0,BI326,target Branch if not summary overflow (e_bc without LR
updating)

se_bns target se_bc 0,BI166,target Branch if not summary overflow (se_bc)

e_bnsl crS,target e_bcl 0,BI326,target Branch if not summary overflow (e_bcl with LR updating)

e_bnu crS,target e_bc 0,BI326,target Branch if not unordered (e_bc without LR updating)

se_bnu target se_bc 0,BI166,target Branch if not unordered (se_bc)

e_bnul crS,target e_bcl 0,BI326,target Branch if not unordered (e_bcl with LR updating)

e_bso crS,target e_bc 1,BI326,target Branch if summary overflow (e_bc without LR updating)

se_bso target se_bso 1,BI166,target Branch if summary overflow (se_bc)

e_bsol crS,target e_bcl 1,BI326,target Branch if summary overflow (e_bcl with LR updating)

e_bt BI32,target e_bc 1,BI32,target Branch if condition true3 (e_bc without LR update)

se_bt BI16,target se_bc 1,BI16,target Branch if condition true3 (se_bc)

e_btl BI32,target e_bcl 1,BI32,target Branch if condition true 3 (e_bcl with LR update)

e_bun crS,target e_bc 1,BI326,target Branch if unordered (e_bc without LR updating)

se_bun target se_bc 1,BI166,target Branch if unordered (se_bc)

Table A-23. Simplified Mnemonics (continued)

Simplified Mnemonic Mnemonic Instruction

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-22 Freescale Semiconductor

e_bunl crS,target e_bcl 1,BI326,target Branch if unordered (e_bcl with LR updating)

e_clrlslwi rA,rS,b,n (n ≤ b ≤
31)

e_rlwinm rA,rS,n,b – n,31 – n Clear left and shift left word immediate

e_clrlwi rA,rS,n (n < 32) e_rlwinm rA,rS,0,n,31 Clear left word immediate

e_clrrwi rA,rS,n (n < 32) e_rlwinm rA,rS,0,0,31 – n Clear right word immediate

cmplw crD,rA,rB cmpl crD,0,rA,rB Compare logical word

e_cmplwi crD,rA,UIMM e_cmpli crD,rA,UIMM Compare logical word immediate

e_cmplwi cr0,rA,UIMM e_cmpl16i rA,UIMM Compare logical word immediate

cmpw crD,rA,rB cmp crD,0,rA,rB Compare word

e_cmpwi crD,rA,SIMM e_cmpi crD,rA,SIMM Compare word immediate

e_cmpwi cr0,rA,SIMM e_cmp16i rA,SIMM Compare word immediate

e_extlwi rA,rS,n,b (n > 0) e_rlwinm rA,rS,b,0,n – 1 Extract and left justify word immediate

e_extrwi rA,rS,n,b (n > 0) e_rlwinm rA,rS,b + n,32 – n,31 Extract and right justify word immediate

e_inslwi rA,rS,n,b (n > 0) e_rlwimi rA,rS,32 – b,b,(b + n) – 1 Insert from left word immediate

e_insrwi rA,rS,n,b (n > 0) e_rlwimi rA,rS,32 – (b + n),b,(b + n)
– 1

Insert from right word immediate

iseleq rD,rA,rB isel rD,rA,rB,2 Integer Select Equal

iselgt rD,rA,rB isel rD,rA,rB,1 Integer Select Greater Than

isellt rD,rA,rB isel rD,rA,rB,0 Integer Select Less Than

e_la rD,d(rA) e_add16i rD,rA,d Load address

e_nop e_ori 0,0,0 No-op

se_nop se_or 0,0 No-op

not rA,rS nor rA,rS,rS NOT (Complement register)

e_rotlwi rA,rS,n e_rlwinm rA,rS,n,0,31 Rotate left word immediate

e_rotrwi rA,rS,n e_rlwinm rA,rS,32 – n,0,31 Rotate right word immediate

e_slwi rA,rS,n (n < 32) e_rlwinm rA,rS,n,0,31 – n Shift left word immediate

e_srwi rA,rS,n (n < 32) e_rlwinm rA,rS,32 – n,n,31 Shift right word immediate

sub rD,rA,rB subf rD,rB,rA Subtract from

sub. rD,rA,rB subf. rD,rB,rA Subtract from

subo rD,rA,rB subf rD,rB,rA Subtract from

subo. rD,rA,rB subf. rD,rB,rA Subtract from

subc rD,rA,rB subfc rD,rB,rA Subtract from carrying

subc. rD,rA,rB subfc. rD,rB,rA Subtract from carrying

Table A-23. Simplified Mnemonics (continued)

Simplified Mnemonic Mnemonic Instruction

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor A-23

subco rD,rA,rB subfco rD,rB,rA Subtract from carrying

subco. rD,rA,rB subfco. rD,rB,rA Subtract from carrying

e_sub16i rD,rA,value e_add16i rD,rA,–value Subtract immediate

e_sub2i. rA,value e_add2i. rA,–value Subtract 2 operand immediate and recorded

e_sub2is rA,value e_add2is rA,–value Subtract 2 operand shifted immediate

e_subi rD,rA,value e_addi rD,rA,–value Subtract immediate

e_subic rD,rA,value e_addic rD,rA,–value Subtract immediate carrying

e_subic. rD,rA,value e_addic. rD,rA,–value Subtract immediate carrying

trap tw 31,0,0 Trap unconditionally

tweq rA,rB tw 4,rA,rB Trap if equal

twge rA,rB tw 12,rA,rB Trap if greater than or equal

twgt rA,rB tw 8,rA,rB Trap if greater than

twle rA,rB tw 20,rA,rB Trap if less than or equal

twlge rA,rB tw 12,rA,rB Trap if logically greater than or equal

twlgt rA,rB tw 1,rA,rB Trap if logically greater than

twlle rA,rB tw 6,rA,rB Trap if logically less than or equal

twllt rA,rB tw 2,rA,rB Trap if logically less than

twlng rA,rB tw 6,rA,rB Trap if logically not greater than

twlnl rA,rB tw 5,rA,rB Trap if logically not less than

twlt rA,rB tw 16,rA,rB Trap if less than

twne rA,rB tw 24,rA,rB Trap if not equal

twng rA,rB tw 20,rA,rB Trap if not greater than

twnl rA,rB tw 12,rA,rB Trap if not less than

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may occur.
2 The value in the BI32 or BI16 operand selects CRn[2], the EQ bit.
3 Instructions for which B032 or BO16 is either 1 (branch if condition true) or 0 (branch if condition false) do not depend on the

CTR value and can be alternately coded by incorporating the condition specified by BI32 or BI16, as described in
Section A.5.2, “Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO32 and BO16 and Replaces BI32 with
crS).”

4 The value in the BI32 or BI16 operand selects CRn[0], the LT bit.
5 The value in the BI32 or BI16 operand selects CRn[1], the GT bit.
6 The value in the BI32 or BI16 operand selects CRn[3], the SO bit.

Table A-23. Simplified Mnemonics (continued)

Simplified Mnemonic Mnemonic Instruction

Simplified Mnemonics for VLE Instructions

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

A-24 Freescale Semiconductor

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor B-1

Appendix B
Revision History
Table B-1 provides a revision history for this document.

Table B-1. Document Revision History

Rev.
Number

Date
Editor/
Writer

Substantive Change(s)

1 02/21/2006 MC/JY Edited language and formats throughout.

0 12/22/2005 MC/JY Initial release.

Revision History

Variable-Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

B-2 Freescale Semiconductor

Varied Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor Glossary-1

Glossary
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book.
Some of the terms and definitions included in the glossary are reprinted from IEEE Std.
754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by the
Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Note that some terms are defined in the context of how they are used in this book.

A Architecture. A detailed specification of requirements for a processor or computer
system. It does not specify details of how the processor or computer
system must be implemented; instead it provides a template for a family of
compatible implementations.

B Biased exponent. An exponent whose range of values is shifted by a constant
(bias). Typically a bias is provided to allow a range of positive values to
express a range that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most-significant byte. See Little-endian.

C Cache . High-speed memory component containing recently-accessed data
and/or instructions (subset of main memory).

D Denormalized number. A nonzero floating-point number whose exponent has a
reserved value, usually the format's minimum, and whose explicit or
implicit leading significand bit is zero.

E Effective address (EA). The 32- or 64-bit address specified for a load, store, or an
instruction fetch. This address is then submitted to the MMU for
translation to either a physical memory address or an I/O address.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Varied Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Glossary-2 Freescale Semiconductor

G General-purpose register (GPR). Any of the 32 registers in the general-purpose register
file. These registers provide the source operands and destination results for all
integer data manipulation instructions. Integer load instructions move data from
memory to GPRs and store instructions move data from GPRs to memory.

I IEEE 754. A standard written by the Institute of Electrical and Electronics Engineers that
defines operations and representations of binary floating-point arithmetic.

Inexact. Loss of accuracy in an arithmetic operation when the rounded result differs
from the infinitely precise value with unbounded range.

L Least-significant bit (lsb). The bit of least value in an address, register, data element, or
instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a word
corresponds to the least-significant byte. In an addressed memory word, the
bytes are ordered (left to right) 3, 2, 1, 0, with 3 being the most-significant
byte. See Big-endian.

M Mnemonic. The abbreviated name of an instruction used for coding.

Modulo. A value v which lies outside the range of numbers representable by an n-bit
wide destination type is replaced by the low-order n bits of the two’s
complement representation of v.

Most-significant bit (msb). The highest-order bit in an address, registers, data
element, or instruction encoding.

N NaN . An abbreviation for ‘Not a Number’; a symbolic entity encoded in floating-point
format. There are two types of NaNs—signaling NaNs (SNaNs) and quiet NaNs
(QNaNs).

Normalization. A process by which a floating-point value is manipulated such that
it can be represented in the format for the appropriate precision (single- or
double-precision). For a floating-point value to be representable in the
single- or double-precision format, the leading implied bit must be a 1.

O Overflow. An error condition that occurs during arithmetic operations when the result
cannot be stored accurately in the destination register(s). For example, if two
32-bit numbers are multiplied, the result may not be representable in 32 bits.

Varied Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Freescale Semiconductor Glossary-3

R Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the
condition register (CR) to reflect the result of the operation. Its presence is denoted
by a “.” following the mnemonic.

Reserved field. In a register, a reserved field is one that is not assigned a function.
A reserved field may be a single bit. The handling of reserved bits is
implementation-dependent. Software is permitted to write any value to such
a bit. A subsequent reading of the bit returns 0 if the value last written to the
bit was 0 and returns an undefined value (0 or 1) otherwise.

RISC (reduced instruction set computing). An architecture characterized by
fixed-length instructions with nonoverlapping functionality and by a
separate set of load and store instructions that perform memory accesses.

S Saturate. A value v which lies outside the range of numbers representable by a destination
type is replaced by the representable number closest to v.

Signaling NaN. A type of NaN that generates an invalid operation program
exception when it is specified as arithmetic operands. See Quiet NaN.

Significand. The component of a binary floating-point number that consists of an
explicit or implicit leading bit to the left of its implied binary point and a
fraction field to the right.

Sticky bit. A bit that when set must be cleared explicitly.

Supervisor mode. The privileged operation state of a processor. In supervisor mode,
software, typically the operating system, can access all control registers and
can access the supervisor memory space, among other privileged
operations.

T Tiny. A floating-point value that is too small to be represented for a particular precision
format, including denormalized numbers; they do not include ±0.

U Underflow. An error condition that occurs during arithmetic operations when the result
cannot be represented accurately in the destination register. For example,
underflow can happen if two floating-point fractions are multiplied and the result
requires a smaller exponent and/or mantissa than the single-precision format can
provide. In other words, the result is too small to be represented accurately.

Varied Length Encoding (VLE) Extension Programming Interface Manual, Rev. 1

Glossary-4 Freescale Semiconductor

User mode. The unprivileged operating state of a processor used typically by
application software. In user mode, software can only access certain control
registers and can access only user memory space. No privileged operations
can be performed. Also referred to as problem state.

W Word. A 32-bit data element.

	Contents
	Figures
	Tables
	About this Book
	Chapter 1 Overview
	1.1 Application Binary Interface (ABI)
	1.2 Assembly Language Interface
	1.3 Simplified Mnemonics Assembly Language Interface

	Chapter 2 Application Binary Interface (ABI)
	2.1 Instruction and Data Representation
	2.2 Executable and Linking Format (ELF) Object Files
	2.2.1 VLE Information Section
	Figure 2-1. Typical Elf Note Section Format
	Table 2-1. VLE Identifier

	2.2.2 VLE Identification
	2.2.3 Relocation Types
	Figure 2-2. VLE Relocation Fields
	Table 2-2. VLE Relocation Field Descriptions
	Table 2-3. Notation Conventions
	Table 2-4. VLE Relocation Types
	Table 2-5. Relocation Types with Special Semantics

	Chapter 3 Instruction Set
	Appendix A Simplified Mnemonics for VLE Instructions
	A.1 Overview
	A.2 Subtract Simplified Mnemonics
	A.2.1 Subtract Immediate
	Table A-1. Subtract Immediate Simplified Mnemonics

	A.2.2 Subtract
	Table A-2. Subtract Simplified Mnemonics

	A.3 Rotate and Shift Simplified Mnemonics
	A.3.1 Operations on Words
	Table A-3. Word Rotate and Shift Simplified Mnemonics

	A.4 Branch Instruction Simplified Mnemonics
	Table A-4. Branch Instructions
	Figure A-1. Branch Conditional (e_bc, se_bc) Instruction Formats
	A.4.1 Key Facts about Simplified Branch Mnemonics
	A.4.2 Eliminating the BO32 and BO16 Operands
	Table A-5. BO32 and BO16 Operand Encodings

	A.4.3 The BI32 and BI16 Operand-CR Bit and Field Representations
	A.4.4 BI32 and BI16 Operand Instruction Encoding
	Figure A-2. BI32 and BI16 Fields
	A.4.4.1 Specifying a CR Bit
	Table A-6. CR0 and CR1 Fields as Updated by Integer and Floating-Point Instructions
	Table A-7. BI32 and BI16 Operand Settings for CR Fields for Branch Comparisons

	A.4.4.2 The crS Operand
	Table A-8. CR Field Identification Symbols

	A.5 Simplified Mnemonics that Incorporate the BO32 and BO16 Operands
	Table A-9. Branch Simplified Mnemonics
	Table A-10. Branch Instructions
	A.5.1 Examples that Eliminate the BO32 and BO16 Operands
	Table A-11. Simplified Mnemonics for e_bc and se_bc without LR Update
	Table A-12. Simplified Mnemonics for e_bcl with LR Update

	A.5.2 Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO32 and BO16 and Replaces BI32 with crS)
	Table A-13. Standard Coding for Branch Conditions
	Table A-14. Branch Instructions and Simplified Mnemonics that Incorporate CR Conditions
	Table A-15. Simplified Mnemonics with Comparison Conditions

	A.5.3 Branch Simplified Mnemonics that Incorporate CR Conditions: Examples
	A.5.4 Branch Simplified Mnemonics that Incorporate CR Conditions: Listings
	Table A-16. Simplified Mnemonics for e_bc and se_bc without Comparison Conditions or LR Updating
	Table A-17. Simplified Mnemonics for e_bcl with Comparison Conditions and LR Updating

	A.6 Compare Word Simplified Mnemonics
	Table A-18. Word Compare Simplified Mnemonics

	A.7 Trap Instructions Simplified Mnemonics
	Table A-19. Standard Codes for Trap Instructions
	Table A-20. Trap Simplified Mnemonics
	Table A-21. TO Operand Bit Encoding

	A.8 Simplified Mnemonics for Accessing SPRs
	Table A-22. Additional Simplified Mnemonics for Accessing SPRGs

	A.9 Recommended Simplified Mnemonics
	A.9.1 No-Op (nop)
	A.9.2 Load Address (la)
	A.9.3 Move Register (mr)
	A.9.4 Complement Register (not)
	A.9.5 Move to Condition Register (mtcr)

	A.10 EIS-Specific Simplified Mnemonics
	A.10.1 Integer Select (isel)

	A.11 Comprehensive List of Simplified Mnemonics
	Table A-23. Simplified Mnemonics

	Appendix B Revision History
	Table B-1. Document Revision History

