
1 Read Me
These are the release notes for the Freescale MQX™ RTOS
for Kinetis SDK.

1.1 Development Tools
Requirements

The Freescale MQX RTOS was compiled and tested with
these development tools:

• Kinetis Design Studio version 3.0
• See build projects in kdssubdirectories

• IAR Embedded Workbench for ARM® version 7.40.3
• See build projects in iar subdirectories

• MDK ARM - Keil® μVision® version 5.15
• MDK ARM Legacy Pack add-in - extending

MDK with MQX RTOS Task Aware Debugger
plugin

• See build projects in the uv4 subdirectories
• Atollic® TrueSTUDIO® for ARM version 5.3.1

• See build projects in the atl subdirectories
• Cmake version 3.0 support for GCC compiler revision

4.9-2015-q1-update from ARM Embedded
• See Cmake definition files in the armgcc

subdirectories

Freescale Semiconductor Document Number: MQXKSDK130RN

Release Notes Rev. 0, 09/2015

MQX™ RTOS for Kinetis SDK 1.3.0
Release Notes

© 2015 Freescale Semiconductor, Inc.

Contents

1 Read Me...1

2 What is New..................................3

3 Release Content... 4

4 MQX RTOS Release Overview.................................4

5 Known issues and limitations............. 8

6 Change log................................. 9

1.2 System Requirements
System requirements are based on the requirements for the development tools. There are no special host system requirements
for hosting the Freescale MQX RTOS distribution itself. The code was tested in the Windows 7® operating system and
Ubuntu 14.04 64-bit host environment.

The minimum PC configuration is determined by the development tools. The recommended PC configuration is 2 GHz
processor, 2 GB RAM and 2 GB free disk space.

1.3 Target Requirements
Freescale MQX RTOS supports the evaluation boards and device families mentioned below. There are no special
requirements for the target hardware other than what each board requires for its operation (power supply, cabling, jumper
settings, etc). For more details about the board-specific setup for MQX RTOS applications, see Kinetis Software
Development Kit (KSDK) board-related documentation.

Table 1. Device family and evaluation boards supported

Boards Device Family

TWR-K22F120M, FRDM-K22F MK22F51212, MK22F25612, MK22F12810

TWR-KV31F120M MKV31F51212, MKV31F25612, MKV31F12810

TWR-K24F120M MK24F25612

TWR-K64F120M, FRDM-K64F MK64F12, MK63F12, MK24F12

TWR-KV10Z32 MKV10Z7

TWR-K60D100M MK10D10, MK20D10, MK30D10, MK40D10,
MK50D10, MK51D10, MK52D10, MK53D10,
MK60D10

FRDM-KL46Z MKL34Z4, MKL36Z4, MKL46Z4

TWR-K21D50M MK11DA5, MK21DA5

TWR-K21F120M MK21FA12

TWR-KW24D512, USB-KW24D512, FRDM-KW24 MKW21D5, MKW22D5, MKW24D5

FRDM-KL43Z, TWR-KL43Z48M MKL17Z4, MKL27Z4, MKL33Z4, MKL43Z4

FRDM-KL27Z MKL17Z644, MKL27Z644

TWR-K65F180M MK66F18, MK26F18, MK65F18

FRDM-KL25Z MKL14Z4, MKL15Z4, MKL24Z4, MKL25Z4

MRB-KW019032NA, MRB-KW019030JA, MRB-KW019032EU MKW01Z4

FRDM-KL26Z MKL16Z4, MKL26Z4

NOTE
These processor families are included in the KSDK but not supported by the MQX RTOS
release because these processors do not meet the minimal RAM requirements:
MK02F12810, MKL02Z4, MKL03Z4, MK11Z75M, and MKV30F12810

Read Me

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

2 Freescale Semiconductor, Inc.

1.4 Set up installation instructions and technical support
MQX RTOS source code and build projects are distributed as part of the Kinetis SDK package. To install MQX RTOS, select
the corresponding option during the Kinetis SDK installation.

It is recommended that you install Kinetis SDK to a path without spaces to avoid build problems with certain tool chains.

For a description of available support including premium support options, visit the MQX RTOS support site on
www.freescale.com/mqx/support.

2 What is New
This section describes the major changes and new features implemented in this release.

Resolved issues

• MQX-5572 When MQX RTOS is started from the bootloader, it stops in a hard fault. This is fixed by reading the
vector table address from the VTOR register instead of address 0x0.

• MQX-5569 Warning “A1581W: Added 2 bytes of padding at address 0x282” in dispatch.S. This is fixed with a
padding correction at dispatch.S by ASM_ALIGN(4).

• MQX-5560 Telnet_Client cannot login. The login blocking is prevented by ignoring the redundant line feed symbol
('\n') from client.

• MQX-5537
• MFS “dir” command does not display correctly long file names. A broken internal descriptor was repaired and

files are displayed correctly.
• A directory in the root can have the same name as the volume label.

• MQX-5535 The stack is shifted after the task restart. Calling the _task_restart() function causes a stack pointer shift.
The misinterpretation of the TASK_STACKSIZE in _task_restart() function has been fixed by subtracting the task
template size and the task descriptor size.

• MQX-5513 Missing MKTFS Tool in KSDK. The MKTFS is added to \tools\tfs_generator\.
• MQX-5496

• A component cleanup function _timer_cleanup is registered in the KERNEL_EVENTS instead of in the
KERNEL_TIMER in function _timer_create_component() in timer.c. This is fixed by an index change to the
KERNEL_TIMER.

• A macro MAX_KERNEL_COMPONENTS, which keeps a maximum number of kernel components is corrected
from 16 to 12 in the mqx_prv.h file.

MQX RTOS - version 5.0.3

• MQX RTOS Kernel has been updated to address several issues related to the task restart and the timer component
functionality.

RTCS TCP/IPv4 - version 4.2.0

• The CyaSSL 3.3.0 was upgraded to the WolfSSL version 3.4.6. The location of the library was changed from the
middleware/tcpip/rtcs/source/ssl to the middleware/security/wolfssl. The library usage is demonstrated in the
middleware/tcpip/rtcs/examples/httpsrv example application.

Other

• Added two example applications demonstrating the Kinetis cryptography capabilities - WolfSSL crypto library
benchmark : \examples\<board>\demo_apps\security\benchmark_wolfssl

What is New

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 3

http://www.freescale.com/mqx/support

3 Release Content
MQX RTOS for KSDK 1.3.0 consists of components in the following versions:

Table 2. Component Versions

MQX RTOS Kernel components version: 5.0.3

RTCS TCP/IP4 stack version: 4.2.0

RTCS TCP/IP6 stack (optional) version: 4.2.0

MFS FAT file system version: 4.2.1

nShell command line interpreter version: 1.0.2

MQX RTOS Standard Library version: 1.0.2

This table describes the release contents:

Table 3. Release Contents

Deliverable Location

Configuration Files <install_dir>/rtos/mqx/config/...

Mass-build project for all supported boards <MQX_DIR>/build/<tool>/workspace_<board>

MQX RTOS PSP, and Examples <install_dir>/rtos/mqx/...

MQX RTOS PSP source code for Kinetis ARM® Cortex®-M
core

.../mqx/source/psp/cortex_m

MQX RTOS BSP source code .../mqx/source/bsp/...

RTCS source code and examples <install_dir>/middleware/tcpip/rtcs/...

MFS source code and examples <install_dir>/middleware/filesystem/mfs/...

NShell Library Source Code <install_dir>/rtos/mqx/nshell/...

Keil Task Aware Debugging plugin (TAD) <install_dir>/tools/mqx_plugins/
keil_extensions/...

IAR Task Aware Debugging plugin (TAD) <install_dir>/tools/mqx_plugins/
iar_extensions/...

KDS Task Aware Debugging plugin (TAD) <install_dir>/tools/mqx_plugins/
kds_extensions/...

Documentation <install_dir>/doc/rtos/mqx

4 MQX RTOS Release Overview
The Freescale MQX RTOS for Kinetis SDK consists of these components:

• MQX RTOS real-time kernel
• TCP/IP networking stack (RTCS)
• FAT file system (MFS)
• Platform and board support packages

Release Content

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

4 Freescale Semiconductor, Inc.

4.1 MQX RTOS kernel
The Freescale MQX RTOS for KSDK release contains ARM Cortex-M Platform Support only. Contact MQX RTOS support
on www.freescale.com for other Freescale platforms.

The platform-specific code from /mqx/source/psp/<platform> is built together with the generic MQX RTOS core files.
These two parts form a static library generally referred to as "MQX RTOS Library" which enables the target application to
access RTOS features.

4.2 MQX RTOS BSPs
The board support library is no longer part of MQX RTOS. The peripheral drivers and board adaptation are provided by the
KSDK framework and are part of user applications. MQX RTOS still contains several board-specific files supporting board-
related configuration (<install_dir>/rtos/mqx/mqx/source/bsp directory):

• mqx_main.c - MQX initialization structure, for example heap size, interrupt settings, and task template.
• init_bsp.c - init_task code (installation of NIO drivers, custom MQX RTOS drivers, system tick initialization).
• bsp.h; bsp_config.h - default values for the MQX RTOS initialization.

4.3 I/O drivers supported
I/O drivers in MQX RTOS for Kinetis SDK are based on peripheral drivers and HAL layers provided as a part of the Kinetis
SDK framework. For some of these drivers, MQX RTOS provides POSIX-compliant API wrappers. MQX RTOS also
provides a set of platform independent drivers which simplify apps coding.

The driver code is located in <install_dir>/rtos/mqx/mqx/source/nio/drivers.

The following list describes POSIX based I/O drivers available in the latest MQX RTOS release. The full set of peripheral
I/O drivers (non POSIX based) can be found in the Kinetis SDK documentation.

nio_dummy

The dummy driver does very little. This driver internally keeps some information on how many bytes have been read or
written per file and per device.

nio_null

The null driver does nothing. This is the simplest possible driver, and is usually used as a template for new drivers.

nio_mem

This driver provides I/O operations on memory block. The memory block is specified by address and size.

nio_pipe

This driver provides a FIFO buffer where I/O operations are used to access the buffer.

nio_serial

This driver is a NIO subsystem wrapper built on top of the Kinetis SDK UART driver. This driver is mainly used by nio_tty
driver.

nio_tfs

Trivial Filesystem is used as a simple read-only file repository instead of the fully featured MFS. TFS is not installed in the
BSP startup code. Applications must initialize the TFS and pass a pointer to the filesystem data image. The mktfs tool is
available (both as executable and Perl script) to generate the image from the existing directory structure. The RTCS HTTP
example demonstrates the use of TFS.

MQX RTOS Release Overview

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 5

http://www.freescale.com

nio_tty

Tty driver is installed on top of driver used for standard input/output. This driver provides basic formatting for terminal such
as echo and end of line handling. When the MQX RTOS starts, nio_tty driver is installed on the top of nio_serial driver. It is
then opened for stdin, stdout, and stderr.

4.4 MQX RTOS Directory Structure
RTOS files are located in the /rtos/mqx subdirectory of the Freescale MQX RTOS installation.

4.5 MFS for MQX RTOS
MFS files from the /filesystem/mfs/source directory are built into a static library. When linked to the user application,
the MFS library enables the application to access FAT12, FAT16, or FAT32-formatted drives.

4.6 RTCS for MQX RTOS (with optional IPv6 add-in)
RTCS files from the /tcpip/rtcs/source directory are built into a static library. When linked to the user application, the
RTCS library enables the application to provide and consume network services of the TCP/IP protocol family.

The MQX RTOS for KSDK 1.3.0 RTCS stack is IPv6 ready with respect to IPv6 Ready Logo certification and has passed all
required tests. IPv6 support is available as a separate update package available from Freescale.

Visit www.freescale.com/mqx/ipv6 for information on how to evaluate and purchase.

4.7 USB Host and Device
USB Host and Device stack is provided as a part of the Kinetis SDK release. These stacks use an OS abstraction layer (OSA)
to adapt to MQX RTOS. See USB documentation for details.

4.8 MQX RTOS nShell
The shell and command-line handling code is implemented as a separate library called nShell.

4.9 Building the MQX RTOS libraries
When using MQX RTOS for the first time and making changes to the compile-time user configuration file or MQX RTOS
kernel source files, rebuild MQX RTOS libraries to ensure that the changes are propagated to the user applications.

4.10 Example applications
The examples are written to demonstrate the most frequently used features of the Freescale MQX RTOS. In addition to these
demo applications, there are simpler example applications available in MQX RTOS, RTCS, MFS, and USB directories.

MQX RTOS Release Overview

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

6 Freescale Semiconductor, Inc.

http://www.freescale.com/mqx/ipv6

The tables summarize all demo and example applications provided in this release.

MQX RTOS Example Applications

Table 4. <install_dir>/rtos/mqx/mqx/examples

Name Description

demo Shows MQX RTOS multitasking and inter-process communication using standard objects like
semaphores, events, or messages. See lwdemo for the same example using the lightweight
objects.

demo_lite Same as the demo application, but for lite configuration.

dspi Simple demonstration of the SPI driver for MQX RTOS.

dspi_lite Same as the dspi application, but for lite configuration.

event Simple demonstration of MQX RTOS events.

event_lite Same as the event application, but for lite configuration.

hello A trivial Hello World application spread across two tasks.

hello_lite A trivial Hello World application spread across two tasks for lite configuration.

isr Shows how to install an interrupt service routine and how to chain it with the previous handler.

isr_lite Same as the isr application, but for lite configuration.

klog Shows kernel events being logged and later the log entries dumped on the console.

klog_lite Same as the klog application, but for lite configuration.

log Shows the application-specific logging feature.

log_lite Same as the log application, but for lite configuration.

lwdemo Same as the demo application, but implemented using lightweight components only.

lwdemo_lite Same as the lwdemo application, but for lite configuration.

lwevent Simple demonstration of MQX RTOS lightweight events.

lwevent_lite Same as the lwevent application, but for lite configuration.

lwlog Simple demonstration of MQX RTOS lightweight log feature.

lwlog_lite Same as the lwlog application, but for lite configuration.

lwmsgq Simple demonstration of MQX RTOS lightweight inter-process messaging.

lwmsgq_lite Same as the lwmsgq application, but for lite configuration.

lwsem Simple demonstration of MQX RTOS task synchronization using the lightweight semaphore
object.

lwsem_lite Same as the lwsem application, but for lite configuration.

msg Simple demonstration of MQX RTOS inter-process message passing.

msg_lite Same as the msg application, but for lite configuration.

mutex Simple demonstration of MQX RTOS task synchronization using the mutex object.

mutex_lite Same as the mutex application, but for lite configuration.

nill Even simpler than Hello World. A void application which may be used for copy/paste to start
custom application.

nill_lite Same as the nill application, but for lite configuration.

sem Simple demonstration of MQX RTOS task synchronization using the semaphore object.

sem_lite Same as the sem application, but for lite configuration.

taskat Shows how task can be created within statically allocated memory buffer (avoid heap
allocation for task stack and context).

Table continues on the next page...

MQX RTOS Release Overview

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 7

Table 4. <install_dir>/rtos/mqx/mqx/examples (continued)

Name Description

taskq Shows custom task queue and how the queue can be suspended and resumed.

taskq_lite Same as the taskq application, but for lite configuration.

test Shows the self-testing feature of each MQX RTOS component.

timer Simple demonstration of MQX RTOS timer component.

watchdog Simple demonstration of the MQX RTOS task timeout detection using the kernel (not to be
confused with watchdog) component.

watchdog_lite Same as the watchdog application, but for lite configuration.

RTCS Example Applications

Table 5. <install_dir>/middleware/tcpip/rtcs/examples/...

Name Description

eth_to_serial Simple character passing between the UART console and the telnet session. Shows custom
"lightweight" telnet.

httpsrv Simple web server with CGI-like scripts and web pages stored in internal flash.

shell Shell command line providing commands for network management.

snmp SNMP protocol example providing microprocessor state information.

MFS Example Applications

Table 6. <install_dir>/middleware/filesystem/mfs/examples/...

Name Description

ramdisk Shows use of MFS accessing the external RAM (or MRAM).

sdcard Shows use of MFS accessing an SDCARD.

sdbench Performance test of MFS using running on SDCARD.

usbdisk Shows use of MFS with USB.

5 Known issues and limitations
Missing legacy pack in MDK 5.14

Missing legacy pack in MDK 5.14 block MQX library build. This could be fixed by installing of proper legacy pack from
keil.com/mdk5/legacy. Installer name is MDKCM514.EXE.

Idle Task Required on Kinetis Platforms

The Kinetis kernel, by design, cannot operate without an idle task. The MQX_USE_IDLE_TASK configuration option must
be set to 1.

Interrupt handling and priorities

Known issues and limitations

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

8 Freescale Semiconductor, Inc.

http://www.keil.com/mdk5/legacy

The KSDK package allows the application developer to use the NVIC_* CMSIS functions. A set of functions handle the
NVIC interrupt priorities. The MQX RTOS scheduler, however, limits the usage of interrupt priorities. Follow these criteria
when using NVIC_SetPriority with MQX RTOS:

• priority level should be an even number
• priority level should be greater than or equal to 2 times the value of

MQX_HARDWARE_INTERRUPT_LEVEL_MAX value input in mqx_init structure if you want to use the MQX
RTOS services in the interrupt service handler

These limitations give the application developer a maximum of seven levels of interrupt priorities.

ISR name in the MQX RTOS application versus the ISR name defined in the KSDK drivers

The name of the ISR routine, installed as a native MQX RTOS interrupt, must be different than the name used in the KSDK
drivers. KSDK drivers are designed to ensure that the vector table contains weak symbols of the driver ISR and the user is
allowed to overload the weak vectors. This creates an issue because the MQX RTOS setup requires vector overloading with
the _default_kernel_isr() function only. The vectors are then dispatched from the common interrupt handler to the user-
specific handler with the MQX RTOS API.

To resolve this issue, keep the ISR name associated with MQX RTOS distinct and choose a different ISR name for the weak-
defined vectors in the KSDK. See <install_dir>/examples/<board>/demo_apps/i2c_rtos for an example implementation.

Automatic release of memory resources for an FPU task when full memory allocators are enabled.

Note that this problem is not related to Light Weight Memory configuration, which is used as a default setting for this
release.

Automatic releasing of the task memory resources of a parent to a floating point enabled task can result in a memory leak
under these conditions:

1. MQX RTOS is built with a full memory allocator option (MQX_USE_MEM set to 1 and
MQX_ALLOCATOR_GARBAGE_COLLECTING set to 1).

2. Task A creates a floating point-enabled task B.
3. Task A finishes or _task_destroy() is called referring to task A.

MQX-5493

Some DHCP servers can acknowledge a renew request from the DHCP client with a different IP than originally obtained.
Unfortunately, the new IP address is not propagated to all RTCS layers. Although the ipcfg_get_ip(...) function returns a new
address, ping still answers to the old IP.

MQX-5225

MQX examples for USBKW24D512 board are not extended by USB CDC virtual COM support. As a result virtual COM is
not supported and printing to terminal console cannot work properly.

MQX-5648

Some examples either cannot fit into the internal flash memory or data cannot fit into SRAM. An error is displayed with a
specific segment overflow after the linker.

6 Change log
This section describes the major changes and new features implemented in previous releases

1.2.0

• MQX RTOS Kernel Components - version 5.0.2
• Bare metal (boot) stack area is newly reused as an RTOS Interrupt stack frame during MQX RTOS startup. This

saves RAM space which is used only during application startup.

Change log

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 9

• Initialization task was disabled for MQX RTOS Lite configuration. All initialization is done as a part of a user
application. This feature reduces RAM footprint of MQX RTOS Lite applications.

• The new TLSF best-fit memory allocators were added.
• RTCS TCP/IPv4 and TCP/IPv6 (optional) stack - version 4.2.0

• LLMNR - RTCS newly support Link-Local Multicast Name Resolution (LLMNR) Server. This protocol allows
resolving simple label names on a local subnet without a DNS server.

• Added DHCP Client IPv6 client application protocol support (available in MQX RTOS IPv6 add-on for
purchase).

• Added Telnet Client IPv6 protocol support. The API of this component was changed (available in MQX RTOS
IPv6 add-on for purchase).

• Added TFTP Client/Server IPv6 protocol support. The API of this component was changed.
• Added support of WebSocket server as part of HTTP server code. The implementation was fully tested by

AutoBahn test suite.
• HTTP server was extended by the SSL support (available in WolfSSL add-on for evaluation).
• Socket code has been updated by various BSD compatible options and flags.
• ARP cache handling was modified to protect the RTCS against denial-of-service (DoS) attack.
• For more details see complete change log in the <KSDK>/middleware/rtcs/rtcs_changelog.txt file.

• MFS FAT file system - version 4.2.0
• Directory read in MFS was reworked to use sector cache and FAT chain abstraction.
• Find first/next API was updated to allow extraction of long filenames using the single directory chain traversal

(performance improvement).
• Path parsing was reworked to avoid allocation of path buffers (RAM footprint decreased).
• Operations which do not create or rename directory records now support Unicode characters for filenames

(UTF-8 encoding). In particular, this includes directory search and opening the existing files.
• CyaSSL evaluation package (Available in optional WolfSSL add-on for evaluation) - version 3.3.0

• The CyaSSL library support was updated to the version 3.3.0 .
• Resolved an issue with the memory leak in RTCS SSL wrapper. The memory resources were incorrectly de-

allocated if the underlying sockets report error conditions.
• Other

• Added examples demonstrating all MQX RTOS synchronization objects in the MQX RTOS Lite configuration -
see <KSDK>/rtos/mqx/mqx/examples/

1.1.0

• This is the first official release of MQX RTOS for Kinetis SDK. See Release Content for component version
information. Note that most components are based on version 4.1.2 while MQX RTOS kernel was updated by support
of the MQX RTOS Lite configuration and it is released under version 5.0.1

• Peripheral I/O drivers are fully based on the Kinetis SDK driver set. MQX RTOS provides POSIX wrappers for the I/O
console and filesystem only.

• The file API was updated to comply with POSIX standard (FILE* is used instead of legacy MQX_FILE)
• MQX RTOS provides POSIX-based I/O drivers for serial console (tty, UART), file system, Ramdisk and other MQX

RTOS native I/O drivers (TFS, NULL, PIPE ...)
• MQX RTOS provides its own re-entrant stdlib.h implementation.
• Support for MQX RTOS Lite configuration and new example application rtos/mqx/examples/. Options are provided to

create tasks from statically allocated memory. An application can define tasks before MQX RTOS starts (using
create_task() API).

• Optional support for RTCS IPv6 (available as separate package).
• Optional support for CyaSSL stack as demonstrated with the HTTPs example application.
• MFS is integrated with USB stack as demonstrated in the MFS example application.
• MQX RTOS Board Support Package library has been removed and board-related configuration is now directly taken

from the Kinetis SDK framework.

1.0.0 Beta

• Initial release

Change log

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

10 Freescale Semiconductor, Inc.

9 Revision History

This table summarizes revisions to this document.

Table 7. Revision history

Revision number Date Substantive changes

0 09/2015 Initial release

MQX™ RTOS for Kinetis SDK 1.3.0 Release Notes, Rev. 0, 09/2015

11 Freescale Semiconductor, Inc.

Change log

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and

software implementers to use Freescale products. There are no express

or implied copyright licenses granted hereunder to design or fabricate

any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to

any products herein. Freescale makes no warranty, representation, or

guarantee regarding the suitability of its products for any particular

purpose, nor does Freescale assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or

incidental damages. “Typical” parameters that may be provided in

Freescale data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer

application by customer's technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale

sells products pursuant to standard terms and conditions of sale, which

can be found at the following address: freescale.com/

SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of

Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. ARM, ARM Powered logo, Keil,

µVision, and Cortex are registered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

Document Number MQXKSDK130RN
Revision 0, 09/2015

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Read Me
	Development Tools Requirements
	System Requirements
	Target Requirements
	Set up installation instructions and technical support

	What is New
	Release Content
	MQX RTOS Release Overview
	MQX RTOS kernel
	MQX RTOS BSPs
	I/O drivers supported
	MQX RTOS Directory Structure
	MFS for MQX RTOS
	RTCS for MQX RTOS (with optional IPv6 add-in)
	USB Host and Device
	MQX RTOS nShell
	Building the MQX RTOS libraries
	Example applications

	Known issues and limitations
	Change log
	Blank Page

