

Document Number: ZRCAPRM
Rev. 1.2

2/2012

ZigBee Remote Control (ZRC)
Application Profile

Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008, 2009, 2010, 2011, 2012. All rights reserved.

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor iii

Contents
About This Book. v
Audience . v
Organization . v
Revision History . v
Conventions . v
Definitions, Acronyms, and Abbreviations . vi

Chapter 1
Freescale ZRC Application Profile Overview

1.1 Freescale ZRC Application Profile Introduction . 1-1
1.2 Freescale ZRC Application Profile Libraries . 1-3

Chapter 2
Freescale ZRC Application Profile Software Usage

2.1 Service Specifications. 2-1
2.1.1 PBP_IsIdle . 2-2
2.1.2 PBP_InitPushButtonPairOrig . 2-3
2.1.3 PBP_PushButtonPairOrigRequest . 2-4
2.1.4 Push-Button Pair Originator Continue Indication . 2-6
2.1.5 PBP_PushButtonPairOrigContinueResponse . 2-7
2.1.6 Push-Button Pair Originator Confirm. 2-9
2.1.7 PBP_InitPushButtonPairRecip . 2-10
2.1.8 PBP_PushButtonPairRecipRequest . 2-11
2.1.9 Push-Button Pair Recipient Continue Indication . 2-13
2.1.10 PBP_PushButtonPairRecipContinueResponse . 2-14
2.1.11 Push-Button Pair Recipient Confirm . 2-16
2.1.12 PBP_AbortProcess . 2-17
2.1.13 ZRCProfile_IsIdle. 2-18
2.1.14 ZRCProfile_InitCommandTxRx . 2-19
2.1.15 ZRCProfile_CommandRequest . 2-19
2.1.16 ZRC Command Indication . 2-23
2.1.17 ZRC Command Confirm . 2-24
2.1.18 ZRC Discovery Command Confirm . 2-25
2.1.19 ZRCProfile_AbortProcess . 2-26
2.2 ZRC Attributes . 2-27
2.2.1 ZRCProfile_GetRequest . 2-28
2.2.2 ZRCProfile_SetRequest . 2-29

ZRC Application Profile Reference Manual, Rev. 1.2

iv Freescale Semiconductor

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor v

About This Book

This reference manual describes the Freescale Zigbee Remote Control (ZRC) Application Profile
implementation which simplifies application development using the ZRC profile. This document replaces
the Consumer Electronics Remote Control Applications Profile Reference Manual (CERCAPRM).

The Freescale ZRC profile resides on top of the BeeStack Consumer layer.

Audience

This reference manual is intended for application designers and users of the BeeStack Consumer protocol
stack.

Organization
This document contains the following chapters:

Chapter 1 Freescale ZRC Application Profile Overview - Provides an introduction to the
Freescale ZRC Application Profile implementation.

Chapter 2 Freescale ZRC Application Profile Software Usage - Provides a description of the
Freescale ZRC Application Profile interfaces.

Revision History

The following table summarizes revisions to this manual since the previous release (Rev. 1.1).

Conventions

This document uses the following notational conventions:

• Courier monospaced type is used to identify commands, explicit command parameters, code
examples, expressions, data types, and directives.

• Italic type is used for emphasis, to identify new terms, and for replaceable command parameters.

Revision History

Date Description / Location of Changes

March 2012 Minor changes throughout to support March software release.

ZRC Application Profile Reference Manual, Rev. 1.2

vi Freescale Semiconductor

Definitions, Acronyms, and Abbreviations

The following list defines the abbreviations used in this document.

API Application Programming Interface

NWK Network Layer

NLDE Network Layer Data Entity

NLME Network Layer Management Entity

SAP Service Access Point

SAP Push Button Pair

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 1-1

Chapter 1
Freescale ZRC Application Profile Overview
This chapter presents a brief overview of the Freescale ZRC Application Profile software. This chapter
details the primary concept of the profile implementation and provides an overview of the available
libraries and the functionality each of them provide.

NOTE

This document refers only to HS08 platforms. For ARM platform legacy
refer to documents from \ Documentation \ BeeStack Consumer Documents
\ ARM Legacy Documents\.

1.1 Freescale ZRC Application Profile Introduction

To aid in the development of applications based on BeeStack Consumer, Freescale has developed an
implementation of the ZRC application profile. In the protocol stack, the profile resides between the
BeeStack Consumer layer and the application layer. The application can still access the network layer
directly.

The profile implements the following functionality, available as separate libraries:

1. Controller side push-button pairing.

2. Target side push-button pairing.

3. ZRC command transmission and reception.

The following figure shows the software architecture of an application using the Freescale ZRC
Application Profile Implementation.

Freescale ZRC Application Profile Overview

ZRC Application Profile Reference Manual, Rev. 1.2

1-2 Freescale Semiconductor

Figure 1-1. Application Software Protocol Stack

Freescale ZRC Application Profile Overview

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 1-3

1.2 Freescale ZRC Application Profile Libraries

This section describes the suite of profile libraries and the functionality they implement. To use the profile,
the application must link the profile framework library and the libraries implementing the desired
functionality.

Table 1-1. Profile Libraries

Library Description

RF4CE_PushButtonTask Contains the framework to support all push button pair functionality. Must be included
in all projects using the ZRC Profile.

RF4CE_PushButtonOrig Contains the controller side Push-Button Pairing functionality, as defined by the ZRC
specification. This library can be used to initiate the push button pair. A node using
this feature will start the discovery request followed by the pair request. It can be used
on both controller and target nodes.

RF4CE_PushButtonRecip Contains the target side Push-Button Pairing functionality, as defined by the ZRC
specification. A node using this feature will start the auto-discovery process followed
by the waiting for a pair request. This library can be used to initiate the push button
pair only from a target device.

RF4CE_ZRCProfile_CommandTxRx Contains ZRC command transmission and reception functionality.

Freescale ZRC Application Profile Overview

ZRC Application Profile Reference Manual, Rev. 1.2

1-4 Freescale Semiconductor

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-1

Chapter 2
Freescale ZRC Application Profile Software Usage
The profile implementation is able to perform the following tasks:

• Push Button Pairing (both controller and target side).

• ZRC command transmission and reception.

2.1 Service Specifications

The profile relies completely on the underlying network layer to perform its tasks. The ZRC profile uses
the BeeStack Consumer API calls to pass data to the network layer and depends on indication and confirm
messages to receive data from the network layer. The NLDE and NLME SAPs must be configured to
redirect messages intended for profile layer to the profile SAPs, so that these don’t erroneously reach the
application. Refer to the ZigBee Remote Control Application Profile User's Guide for a description on how
this is accomplished.

NOTE

The BeeStack Consumer network layer handles one request at a time,
whether it comes directly from the application or from the profile. Care
must be taken to ensure that the application and the profile never make a
request to the network layer simultaneously.

The profile system is shown in Figure 2-1.

Figure 2-1. Freescale ZRC Profile layer components and Interfaces

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-2 Freescale Semiconductor

NOTE

The Push-Button Pair (PBP) functionality is implemented as a separate
framework and can be used as a stand alone layer by other profiles, such as
ZID Profile. In this way, the ZRC profile layer is seen as being formed from
two small sublayers that run their own tasks: the ZRC Command Tx/Rx
sublayer and the Push Button Pair (PBP) sublayer. Note that this document
describes the PBP procedures in conjunction with the ZRC profile. The
ZRC applications should include the Push-Button Pair libraries and files
implementing the desired functionality.

The profile provides three services, accessed through the API calls, which are listed in Table 2-1 and have
the following characteristics:

• Profile API function calls configure or start the services

• The execution status is communicated to the application using confirm messages

• When information arrives over the network the profile layer informs the application layer using
indication messages

The profile layer SAPs provides the interface for confirm and indication messages.

The profile layer reuses the error codes from the network layer. For a detailed list of all the error codes
check the Freescale BeeStack Consumer Reference Manual. The description of each function call/message
also includes a list of the error codes it can return and their significance.

2.1.1 PBP_IsIdle

PBP_IsIdle informs the application whether the PBP sublayer is idle. This function is included in the
RF4CE_PushButtonTask library.

2.1.1.1 Prototype

PBP_IsIdle has the following prototype:

bool_t PBP_IsIdle(void);

PBP_IsIdle has no parameters.

The possible return values for the PBP_IsIdle API call are shown in the following table.

Table 2-1. Freescale ZRC Profile Services List

Freescale Profile Service Initialization Request Indication Response Confirm

Originator side push-button pairing Section 2.1.2 Section 2.1.3 Section 2.1.4 Section 2.1.5 Section 2.1.6

Recipient side push-button pairing Section 2.1.7 Section 2.1.8 Section 2.1.9 Section 2.1.10 Section 2.1.11

Command transmission and reception Section 2.1.14 Section 2.1.15 Section 2.1.17 - Section 2.1.19

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-3

2.1.1.2 Functionality

PBP_IsIdle is used to test whether the PBP sublayer is idle.

2.1.1.3 Effect on Receipt

On receipt of the PBP_IsIdle function call the PBPlayer checks its internal state to see whether it is idle.
If it is idle, the function returns TRUE, otherwise it returns FALSE.

2.1.2 PBP_InitPushButtonPairOrig

PBP_InitPushButtonPairOrig initializes the push button pairing originator functionality in the PBP
sublayer. To use this function the application must link to the RF4CE_PushButtonOrig library.

2.1.2.1 Prototype

PBP_InitPushButtonPairOrig has the following prototype:

uint8_t PBP_InitPushButtonPairOrig(void);

PBP_InitPushButtonPairOrig has no parameters.

The possible return values for the PBP_InitPushButtonPairOrig API call are shown in the following table.

2.1.2.2 Functionality

PBP_InitPushButtonPairOrig is used to enable the originator push-button pairing functionality in the PBP
sublayer, so that the application can initiate originator side push-button pairing.

2.1.2.3 Effect on Receipt

On receipt of the PBP_InitPushButtonPairOrig function call the PBP sublayer configures itself to handle
the push button pairing originator procedure (controller side push-button pairing as described in the ZRC
profile specification). The function also tries to allocate a timer needed by the feature. If the timer could

Table 2-2. PBP_IsIdle Parameters

Type Possible Values Description

bool_t {FALSE;TRUE} All possible return values are fully described in Section 2.1.13.3, “Effect on Receipt”.

Table 2-3. PBP_InitPushButtonPairOrig API Call Return Values

Type Possible Values Description

uint8_t gNWSuccess_c
gNWNoTimers_c

All possible return values are fully described in Section 2.1.2.3, “Effect on Receipt”.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-4 Freescale Semiconductor

not be allocated, the function exits with gNWNoTimers_c and configuration is aborted. Otherwise the
function returns gNWSuccess_c and the originator push-button pairing functionality is now ready to be
used.

2.1.3 PBP_PushButtonPairOrigRequest

PBP_PushButtonPairOrigRequest instructs the PBP sublayer to initiate the controller-side push-button
pairing procedure. To use this function the application must link to the RF4CE_PushButtonOrig library.

2.1.3.1 Prototype

PBP_PushButtonPairOrigRequest has the following prototype:
uint8_t PBP_PushButtonPairOrigRequest(
 uint16_t recipPanId,
 uint16_t recipShortAddress,
 uint8_t recipDeviceType,
 appCapabilities_t origAppCapabilities,
 uint8_t* origDeviceTypeList,
 uint8_t* origProfileIdList,
 uint8_t discProfileIdListSize,
 uint8_t* discProfileIdList,
 uint8_t keyExTransferCount,
 bool_t bRequestAppAcceptToPair,
 uint16_t timeToWaitAppAcceptToPair
);

The following table specifies the parameters for PBP_PushButtonPairOrigRequest.

Table 2-4. PBP_PushButtonPairOrigRequest Parameters

Name Type Valid Range Description

recipPanId uint16_t 0x0000 –
0xFFFF

The PAN ID of the target

recipShortAddress uint16_t 0x0000 –
0xFFFF

The target’s short address

recipDeviceType uint8_t - The requested device type to discover

origAppCapabilities appCapabilities_t - The current node’s application capabilities

origDeviceTypeList uint8_t* - The current node’s device type list

origProfileIdList uint8_t* - The current node’s profile Id list

discProfileIdListSize uint8_t - The size of the profile Id list to use in the discovery process

discProfileIdList uint8_t* - The profile Id list to use in the discovery process

keyExTransferCount uint8_t aplcMinKeyE
xchangeTran

sferCount
(0x03) – 0xff

The number of transfers to use for exchanging the encryption key.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-5

These are the parameters used both for the NLME discovery request and for the subsequent pair request.

The possible return values for the PBP_PushButtonPairOrigRequest API call are shown in the following
table.

2.1.3.2 Functionality

PBP_PushButtonPairOrigRequest is used to initiate the originator side push-button pairing procedure.

2.1.3.3 Effect on Receipt

On receipt of PBP_PushButtonPairOrigRequest, the PBP sublayer first verifies if all the conditions to
begin a push-button pairing process are met.

If the push-button pairing originator functionality is uninitialized the function exits with
gNWNotPermitted_c. If the PBP sublayer is busy with another request, the function returns gNWDenied_c.
If the keyExTransferCount parameter is not in the specified range, this function returns
gNWInvalidParam_c.

Otherwise the controller-side push-button pairing procedure is initiated and the function returns
gNWSuccess_c. The RF4CE network discovery related NIBs (the maximum reported node descriptors, the
maximum number of discovery repetitions and the discovery repetition interval) are set according to the
ZRC profile specification. This will overwrite any configuration of the discovery process done by the
application. These NIBs are NOT restored at the end of the push-button pairing process.

NOTE

After a push-button pairing sequence, when the application wishes to start a
discovery process of its own, it must re-configure the discovery related
NIBs (as desired) as these have been overwritten by the PBP sublayer.

bRequestApp
AcceptToPair

bool_t TRUE,
FALSE

The application’s option for requesting (or not) to accept pairing
with a successfully discovered device

timeToWaitAppAccept
ToPair

uint16_t 0x0000 –
0xFFFF

Time (in ms) to wait for the application to respond if it accepts to
start the pair process after the discovery process of the Push
Button Pair Originator procedure was successfully completed.
Ignored if the bRequestAppAcceptToPair is set to FALSE

Table 2-5. PBP_PushButtonPairOrigRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.3.3, “Effect on Receipt”.

Table 2-4. PBP_PushButtonPairOrigRequest Parameters (continued)

Name Type Valid Range Description

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-6 Freescale Semiconductor

If a request is sent to the application that it wants to accept and start the pair process with a successfully
discovered device (bRequestAppAcceptToPair set to TRUE), a Push-Button Pair Originator Continue
Indication is sent by the profile to the application during the Push Button Pair process. The application
must respond with a PBP_PushButtonPairOrigContinueResponse call within
timeToWaitAppAcceptToPair ms whether it wants to continue with the pair or abort the Push Button Pair
procedure. Otherwise (if the application does not request to accept and start the pair process) the PBP
sublayer automatically starts the pair process without requesting application approval.

The application is notified about the completion of the controller-side push-button pairing process through
a Push-Button Pair Originator Confirm message.

NOTE

The application must not modify the parameters that have been passed by
pointer (i.e. origDeviceTypeList, origProfileIdList and discProfileIdList)
until the push-button pairing process has ended.

2.1.4 Push-Button Pair Originator Continue Indication

The Push-Button Pair Originator Continue Indication message informs the application about the
successful completion of the Discovery process of the Push-Button Pair Originator procedure, providing
in the same time complete information about the discovered device. The scope of this message is to let the
application decide whether it wants to continue the Push Button Pair procedure by pairing with the
discovered device or not. This message is received only when the application starts the Push-Button Pair
Originator procedure with the bRequestAppAcceptToPair parameter set to TRUE.

2.1.4.1 Message Structure

The Push-Button Pair Originator Continue Indication message has the following structure:

typedef nodeDescriptor_t pushButtonPairOrigContinueInd_t
typedef struct nodeDescriptor_tag
{
 uint8_t status;
 uint8_t recipChannel;
 uint8_t recipPanId[2];
 uint8_t recipMacAddress[8];
 uint8_t recipCapabilities;
 uint8_t recipVendorId[2];
 uint8_t recipVendorString[gSizeOfVendorString_c];
 appCapabilities_t recipAppCapabilities;
 uint8_t recipUserString[gSizeOfUserString_c];
 uint8_t recipDeviceTypeList[gMaxNrOfNodeDeviceTypes_c];
 uint8_t recipProfilesList[gMaxNrOfNodeProfiles_c];
 uint8_t requestLQI;
}nodeDescriptor_t;

The PBP sublayer implementation uses for the Push-Button Pair Originator Continue Indication message
the same structure as the one used for storing the RF4CE Discovery confirm node descriptor information.

The following table specifies the fields available in the Push-Button Pair Originator Continue Indication
message.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-7

2.1.4.2 When Generated

The Push-Button Pair Originator Continue Indication message is generated by the PBP sublayer when the
discovery process of a previously started push-button pairing Originator process has successfully
completed, but only when the application explicitly requested this (bRequestAppAcceptToPair parameter
set to TRUE).

2.1.4.3 Effect on Receipt

On receipt of the Push-Button Pair Originator Continue Indication message, the application layer is
notified about the successful completion of the discovery process of the Push-Button Pairing Originator
procedure. It must call PBP_PushButtonPairOrigContinueResponse service to inform the PBP sublayer
whether it wants to continue the Push-Button Pair process by pairing with the discovered device or not.

2.1.5 PBP_PushButtonPairOrigContinueResponse

PBP_PushButtonPairOrigContinueResponse instructs the PBP sublayer to start or not the pair process of
the Push-Button Pair Originator procedure. If the application does not want to continue with the pair
process, the push-button pairing procedure is completed with the status gNWNotPermitted_c.

Table 2-6. Push-Button Pair Originator Continue Indication Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c Indicates the successful completion of the
discovery process.

recipChannel uint8_t 15, 20, 25 The expected channel of the discovered device.

recipPanId uint8_t array with 2
elements

A valid PAN identifier The PAN identifier of the discovered device.

recipMacAddress uint8_t array with 8
elements]

A valid 802.15.04 IEEE address The IEEE address of the discovered device..

recipCapabilities uint8_t - The node capabilities of the discovered device.

recipVendorId uint8_t array with 2
elements

A valid vendor identifier The vendor ID of the discovered device.

recipVendorString uint8_t array with 7
elements

A valid vendor string The vendor string of the discovered device.

recipAppCapabilities appCapabilities_t - The application capabilities of the discovered
device.

recipUserString uint8_t array with
15 elements

A valid user string The user defined identification string of the
discovered device.

recipDeviceTypeList uint8_t array with 3
elements

Each integer:
0x00 – 0xfe

The list of device types supported by the
discovered device

recipProfileIdList uint8_t array with 7
elements

Each integer:
0x00 – 0xfe

The list of profile IDs supported by the
discovered device

requestLQI uint8_t 0x00 -0xff The LQI of the discovery request command
frame reported by the discovered device.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-8 Freescale Semiconductor

2.1.5.1 Prototype

PBP_PushButtonPairOrigContinueResponse has the following prototype:

uint8_t PBP_PushButtonPairOrigContinueResponse(
bool_t bContinue

);

The following table specifies the parameter for PBP_PushButtonPairOrigContinueResponse.

The possible return values for the PBP_PushButtonPairOrigContinueResponse API call are shown in the
following table.

2.1.5.2 Functionality

PBP_PushButtonPairOrigContinueResponse is used by the application to inform the PBP sublayer if it
wants or not to begin the pair process of a previously started Push-Button Pair Originator procedure
(controller-side) .

2.1.5.3 Effect on Receipt

On receipt of PBP_PushButtonPairOrigContinueResponse, the PBP sublayer first verifies if all the
conditions to begin the pair process are met.

If the PBP sublayer is not expecting this kind of response (it is not in the situation when just finished with
success the discovery process of a Push-Button Pair Originator procedure), the function exits with
gNWDenied_c status.

Otherwise the function returns gNWSuccess_c and the profile either starts the pair process (if the
bContinue parameter is set to TRUE) or drops the controller-side Push-Button Pairing procedure (if the
bContinue parameter is set to FALSE) .

The application is notified of the completion of the controller-side push-button pairing process via a
Push-Button Pair Originator Confirm message.

Table 2-7. PBP_PushButtonPairOrigContinueResponse Parameter

Name Type Valid Range Description

bContinue uint8_t TRUE,
FALSE

This parameter must be set to TRUE if the application accepts to
pair with the successfully discovered device and must be set to
FALSE otherwise.

Table 2-8. PBP_PushButtonPairOrigContinueResponse API Call Return Values

Type Possible Values Description

uint8_t gNWDenied_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.4.3, “Effect on Receipt”.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-9

2.1.6 Push-Button Pair Originator Confirm

The Push-Button Pair Originator Confirm message informs the application about the completion of a
push-button pairing originator procedure.

2.1.6.1 Message Structure

The Push-Button Pair Originator Confirm message has the following structure:

typedef nwkNlmePairCnf_t pushButtonPairOrigCnf_t;
typedef struct nwkNlmePairCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t recipVendorId[2];
 uint8_t* recipVendorString;
 appCapabilities_t recipAppCapabilities;
 uint8_t* recipUserString;
 uint8_t* recipDeviceTypeList;
 uint8_t* recipProfilesList;
}nwkNlmePairCnf_t;

The PBP sublayer implementation reuses the RF4CE pair confirm message structure.

The following table specifies the fields available in the Push-Button Pair Originator Confirm message.

NOTE

If the status field has any value other than gNWSuccess_c than the
push-button pairing process has not been completed successfully and all the
other fields of the confirm message should be ignored.

Table 2-9. Push-Button Pair Originator Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
or the network layer error code

Indicates either the successful completion of the
push-button pairing process or identifies the
error that has occurred.

deviceId uint8_t 1–(gMaxPairTableEntries_c – 1) The index of the pair table entry of the new
pairing link

recipVendorId uin8_t[2] - The recipient’s vendor Id

recipVendorString uint8_t* - The recipient’s vendor string

recipAppCapabilities appCapabilities_t - The recipient’s application capabilities

recipUserString uint8_t* - The recipient’s user string

recipDeviceTypeList uint8_t* - The recipient’s list of supported device types

recipProfilesList uint8_t* - The recipient’s list of supported profiles

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-10 Freescale Semiconductor

2.1.6.2 When Generated

The Push-Button Pair Originator Confirm message is generated by the PBP sublayer when a previously
started originator side push-button pairing process is complete.

2.1.6.3 Effect on Receipt

On receipt of the Push-Button Pair Originator Confirm message, the application layer is notified about the
completion of the push-button pairing process.

2.1.7 PBP_InitPushButtonPairRecip

PBP_InitPushButtonPairRecip initializes the push button pairing recipient functionality in the PBP
sublayer. To use this function the application must link to the RF4CE_PushButtonRecip library.

2.1.7.1 Prototype

PBP_InitPushButtonPairRecip has the following prototype:

uint8_t PBP_InitPushButtonPairRecip(void);

PBP_InitPushButtonPairRecip has no parameters.

The possible return values for the PBP_InitPushButtonPairRecip API call are shown in the following
table.

2.1.7.2 Functionality

PBP_InitPushButtonPairRecip is used to enable the recipient push-button pairing functionality in the PBP
sublayer, so that the application can initiate target-side push button pairing.

2.1.7.3 Effect on Receipt

On receipt of the PBP_InitPushButtonPairRecip function call the PBP sublayer configures itself to be able
to handle the push button pairing recipient procedure (target side push-button pairing as described in the
ZRC profile specification). The function also tries to allocate a timer needed by the feature. If the timer
could not be allocated the function exits with gNWNoTimers_c and configuration is aborted. Otherwise the
function returns gNWSuccess_c and the recipient push-button pairing functionality is now ready to be
used.

Table 2-10. PBP_InitPushButtonPairRecip API Call Return Values

Type Possible Values Description

uint8_t gNWSuccess_c
gNWNoTimers_c

All possible return values are fully described in Section 2.1.7.3, “Effect on Receipt”.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-11

2.1.8 PBP_PushButtonPairRecipRequest

PBP_PushButtonPairRecipRequest instructs the PBP sublayer to initiate the target-side push-button
pairing procedure. To use this function the application must link to the RF4CE_PushButtonRecip library.

2.1.8.1 Prototype

PBP_PushButtonPairRecipRequest has the following prototype:
uint8_t PBP_PushButtonPairRecipRequest(
 appCapabilities_t origAppCapabilities,
 uint8_t* origDeviceTypeList,
 uint8_t* origProfileIdList,
 uint8_t discLQIThreshold,
 bool_t bRequestAppAcceptToPair,
 uint16_t timeToWaitPairInd,
 uint16_t timeToWaitAppAcceptToPair
)

The following table specifies the parameters for PBP_PushButtonPairRecipRequest.

These are the parameters used for the NLME auto-discovery request primitive.

The possible return values for the PBP_PushButtonPairRecipRequest API call are shown in the following
table.

Table 2-11. PBP_PushButtonPairRecipRequest Parameters

Name Type Valid Range Description

origAppCapabilities appCapabilities_t - The current node’s application capabilities.

origDeviceTypeList uint8_t* - The current node’s device type list.

origProfileIdList uint8_t* - The current node’s profile Id list.

discLQIThreshold uint8_t - This is the minimum LQI that the received discovery frames
should have to be processed and not dropped by the layer.

bRequestAppAccep
tToPair

bool_t TRUE, FALSE The application’s option whether or not to request to accept the
pair process

timeToWaitPairInd uint16_t aplcMaxPairIn
dicationWaitTi
me (1000 ms)
– 65535 ms

Time (in ms) that the profile will wait for a pair indication from the
device that successfully discovered the current node.

timeToWaitAppAcc
eptToPair

uint16_t 0x0000 -
0xFFFF

Time (in ms) that the profile will wait for the application to respond
if it accepts the pair process with the device that sent the pair
request. Ignored if bRequestAppAcceptToPair is set to FALSE

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-12 Freescale Semiconductor

2.1.8.2 Functionality

PBP_PushButtonPairRecipRequest is used to initiate the target side push-button pairing procedure.

2.1.8.3 Effect on Receipt

On receipt of PBP_PushButtonPairRecipRequest, the PBP sublayer first verifies if all the conditions to
begin a push-button pairing process are met.

If the push-button pairing recipient functionality is uninitialized the function exits with
gNWNotPermitted_c. If the PBP sublayer is busy with another request the function returns gNWDenied_c.

If the value of the timeToWaitPairInd parameter is less than aplcMaxPairIndicationWaitTime (1000 ms)
this function sets the timeToWaitPairInd parameter to aplcMaxPairIndicationWaitTime. The parameter
offers the possibility to wait for the Pair Indication longer than aplcMaxPairIndicationWaitTime (1000
ms).

Otherwise the target-side push-button pairing procedure is initiated and the function returns
gNWSuccess_c. The activePeriod NIB is stored in an internal variable and the receiver is enabled
indefinitely. The RF4CE discovery LQI threshold NIB is set to the value of discLQIThreshold required by
the RF4CE ZRC profile specification. It is not restored at the end of the process.

NOTE

After a push-button pairing sequence, if the application needs to use another
discovery process with a different value for the discovery LQI threshold, it
must reconfigure the NIB because it is overwritten by the PBP sublayer.

If the application requires a request to accept and start the pair process with a device that was successfully
discovered by the node, a Push-Button Pair Recipient Continue Indication is received and the application
must respond with a PBP_PushButtonPairOrigContinueResponse call within
timeToWaitAppAcceptToPair ms. Otherwise (if the application does not request to accept and start the pair
process) the pair process is accepted without requesting application approval.

The application is notified of the completion of the target-side push-button pairing process through a
Push-Button Pair Recipient Confirm message.

NOTE

The application must not modify the parameters that have been passed by
pointer (i.e. origDeviceTypeList and origProfileIdList) until the
push-button pairing process has ended.

Table 2-12. PBP_PushButtonPairRecipRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.8.3, “Effect on Receipt”.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-13

2.1.9 Push-Button Pair Recipient Continue Indication

The Push-Button Pair Recipient Continue Indication message informs the application about the reception
of a pair indication message coming from the same device that successfully discovered the current node
while in the Push-Button Pair Recipient (target-side) procedure. This message is received only if the
bRequestAppAcceptToPair parameter was set to TRUE.

2.1.9.1 Message Structure

The Push-Button Pair Recipient Continue Indication message has the following structure:
typedef nwkNlmePairInd_t pushButtonPairRecipContinueInd_t;
typedef struct nwkNlmePairInd_tag
{

uint8_t status;
uint8_t origPanId[2];
uint8_t origMacAddress[8];
uint8_t origCapabilities;
uint8_t origVendorId[2];
uint8_t* origVendorString;
appCapabilities_t origAppCapabilities;
uint8_t* origUserString;
uint8_t* origDeviceTypeList;
uint8_t* origProfilesList;
uint8_t keyExTransferCount;
uint8_t deviceId;

}nwkNlmePairInd_t;

The PBP implementation uses for the Push-Button Pair Recipient Continue Indication message the same
structure as the one used for the RF4CE Pair Indication message.

The following table specifies the fields available in the Push-Button Pair Recipient Continue Indication
message.

Table 2-13. Push-Button Pair Recipient Continue Indication Message Structure

Field Type Possible Values Description

Status uint8_t gNWSuccess_c, The status of the pair indication message
received by the PBP sublayer. Can only have
one of 2 values:
 • gNWSuccess_c
 • gNWDuplicatePairing_c
If the pairIndication was received by the PBP
sublayer profile with the status set to
gNWNoRecipCapacity_c, the profile will
automatically send a pair response with the
status set to gNWNoRecipCapacity_c to the
device requesting the pair. In this case the
application will not receive any Push-Button Pair
Recipient Continue message, but only the
Push-Button Pair Recipient Confirm message
with the status set to gNWNoRecipCapacity_c
after the pair response is sent.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-14 Freescale Semiconductor

2.1.9.2 When Generated

The Push-Button Pair Recipient Continue Indication message is generated by the PBP sublayer when the
pair process of a previously started push-button pairing process (on target-side) begins (a successfully pair
indication is received).

2.1.9.3 Effect on Receipt

On receipt of the Push-Button Pair Recipient Continue Indication message, the application layer is notified
about the reception of a successful pair indication in the push-button pairing process and must call the
PBP_PushButtonPairRecipContinueResponse function to accept or to not pair.

2.1.10 PBP_PushButtonPairRecipContinueResponse

PBP_PushButtonPairRecipContinueResponse instructs the PBP sublayer whether or not to accept the pair
process of the target-side push-button pairing procedure (if the application does not want to accept the pair
process, the push-button pairing procedure finishes with the gNWNotPermitted_c status).

origPanId uint8_t array with 2
elements

The PAN identifier of the device requesting the
pair

origMacAddress uint8_t array with 8
elements

A valid IEEE address The IEEE address of the device requesting the
pair

origCapabilities uint8_t - The node capabilities of the device requesting
the pair

origVendorId uint8_t array with 2
elements

A valid Vendor ID The Vendor Id of the device requesting the pair

origVendorString uint8_t* 7 octets The Vendor string of the device requesting the
pair

origAppCapabilities appCapabilities_t - The application capabilities of the device
requesting the pair

origUserString uint8_t* NULL or 15 characters The user defined identification string of the
device requesting the pair

origDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by the device
requesting the pair

origProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile IDs supported by the device
requesting the pair.

keyExTransferCount uint8_t 0x00 – 0xff The number of transfers the target should use to
exchange the link key with the pairing originator.

deviceId uint8_t 0x00 –
(nwkcMaxPairingTableEntries –
1), 0xff

Next free pairing reference that is used if this
pairing process is successful.

Table 2-13. Push-Button Pair Recipient Continue Indication Message Structure

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-15

Prototype

PBP_PushButtonPairRecipContinueResponse has the following prototype:
uint8_t PBP_PushButtonPairRecipContinueResponse(

bool_t bContinue
);

The following table specifies the parameter for PBP_PushButtonPairRecipContinueResponse.

The possible return values for the PBP_PushButtonPairRecipContinueResponse API call are shown in the
following table.

2.1.10.1 Functionality

PBP_PushButtonPairRecipContinueResponse is used by the application to inform the PBP sublayer
whether or not to accept the pair process of a previously started push-button pairing procedure (on
target-side) .

2.1.10.2 Effect on Receipt

On receipt of the PBP_PushButtonPairRecipContinueResponse, the PBP sublayer first verifies if all the
conditions are met.

If the PBP sublayer does not expect this response (it has not received a successful pair indication in the
push-button pairing procedure), the function exits with gNWDenied_c status.

Otherwise the function returns gNWSuccess_c and the profile either starts the pair process (if the
bContinue parameter is set to TRUE) or drops the target-side Push-Button Pairing procedure (if the
bContinue parameter is set to FALSE) .

The application is notified of the completion of the target-side push-button pairing process through a
Push-Button Pair Recipient Confirm message.

Table 2-14. PBP_PushButtonPairRecipContinueResponse Parameter

Name Type Valid Range Description

bContinue uint8_t TRUE,
FALSE

This parameter must be set to TRUE if the application accepts
the pair and must be set to FALSE otherwise.

Table 2-15. PBP_PushButtonPairOrigContinueResponse API Call Return Values

Type Possible Values Description

uint8_t gNWDenied_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.8.3, “Effect on Receipt”.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-16 Freescale Semiconductor

2.1.11 Push-Button Pair Recipient Confirm

The Push-Button Pair Recipient Confirm message informs the application about the completion of a
push-button pairing recipient procedure.

2.1.11.1 Message Structure

The Push-Button Pair Recipient Confirm message has the following structure:
typedef nwkNlmePairInd_t pushButtonPairRecipCnf_t;
typedef struct nwkNlmePairInd_tag
{

uint8_t status;
uint8_t origPanId[2];
uint8_t origMacAddress[8];
uint8_t origCapabilities;
uint8_t origVendorId[2];
uint8_t* origVendorString;
appCapabilities_t origAppCapabilities;
uint8_t* origUserString;
uint8_t* origDeviceTypeList;
uint8_t* origProfilesList;
uint8_t keyExTransferCount;
uint8_t deviceId;

}nwkNlmePairInd_t;

The PBP implementation reuses the RF4CE pair indication message structure

The following table specifies the fields available in the Push-Button Pair Recipient Confirm message.

Table 2-16. Push-Button Pair Recipient Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
or the network layer error code

Indicates either the successful completion of
the push-button pairing process or identifies the
error that has occured.

origPanId uin8_t[2] - The originator’s PanId

origMacAddress uin8_t[8] - The originator’s MAC address

origCapabilities uint8_t - The originator’s capabilities

origVendorId uin8_t[2] - The originator’s vendor Id

origVendorString uint8_t* - The originator’s vendor string

origAppCapabilities appCapabilities_t - The originator’s application capabilities

origUserString uint8_t* - The originator’s user string

origDeviceTypeList uint8_t* - The originator’s list of supported device types

origProfilesList uint8_t* - The originator’s list of supported profiles

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-17

NOTE

If the status field has any value other than gNWSuccess_c than the
push-button pairing process has not been completed successfully and all the
other fields of the confirm message should be ignored.

2.1.11.2 When Generated

The Push-Button Pair Recipient Confirm message is generated by the PBP sublayer when a previously
started controller-side push-button pairing process is complete.

2.1.11.3 Effect on Receipt

On receipt of the Push-Button Pair Recipient Confirm message, the application layer is notified about the
completion of the push-button pairing process. The activePeriod NIB is restored to the initial value and the
PBP sublayer is ready to accept new requests.

2.1.12 PBP_AbortProcess

The PBP_AbortProcess function call instructs the PBP sublayer to abort any ongoing process. This
function is included in the RF4CE_PushButtonTask library.

2.1.12.1 Function Prototype

PBP_AbortProcess has the following prototype:

uint8_t PBP_AbortProcess(void);

PBP_AbortProcess has no parameters

The possible return values for the PBP_AbortProcess API call are shown in the following table.

keyExTransferCount uint8_t 0x00 – 0xff The number of transfers the target should use
to exchange the link key with the pairing
originator.

deviceId uint8_t 1–(gMaxPairTableEntries_c – 1) The index of the pair table entry of the new
pairing link

Table 2-17. PBP_AbortProcess API Call Return Values

Type Possible Values Description

uint8_t gNWDenied_c
gNWNotPermitted_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.19.3, “Effect on Receipt”.

Table 2-16. Push-Button Pair Recipient Confirm Message Structure

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-18 Freescale Semiconductor

2.1.12.2 Functionality

PBP_AbortProcess allows the application to terminate any ongoing PBP process (i.e. push-button pairing,
both target and originator side).

2.1.12.3 Effect on Receipt

Upon receipt of PBP_AbortProcess the PBP sublayer first checks whether a process is currently running.
If the PBP sublayer is idle the function exits with gNWDenied_c.

Otherwise, if the network is in a pair request process (for the originator) or in a pair response process (for
the recipient) the function exits with gNWNotPermitted_c status because the pair process can not be
aborted.

Otherwise an event is sent to the PBP task to abort its current process and the function returns
gNWSuccess_c. The process is aborted the next time the PBP task is run by the task scheduler.

2.1.13 ZRCProfile_IsIdle

ZRCProfile_IsIdle informs the application whether the ZRC Command Tx/Rx sublayer is idle. This
function is included in the RF4CE_ZRCProfile_CommandTxRx library.

2.1.13.1 Prototype

ZRCProfile_IsIdle has the following prototype:

bool_t ZRCProfile_IsIdle(void);

ZRCProfile_IsIdle has no parameters.

The possible return values for the ZRCProfile_IsIdle API call are shown in the following table.

2.1.13.2 Functionality

ZRCProfile_IsIdle is used to test whether the ZRC Command Tx/Rx sublayer is idle.

2.1.13.3 Effect on Receipt

On receipt of the ZRCProfile_IsIdle function call the ZRC Command Tx/Rx sublayer checks its internal
state to see whether it is idle. If it is idle, the function returns TRUE, otherwise it returns FALSE.

Table 2-18. ZRCProfile_IsIdle Parameters

Type Possible Values Description

bool_t {FALSE;TRUE} All possible return values are fully described in Section 2.1.13.3, “Effect on Receipt”.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-19

2.1.14 ZRCProfile_InitCommandTxRx

ZRCProfile_InitCommandTxRx initializes the ZRC command transmission functionality in the ZRC
profile. To use this function the application must link to the RF4CE_ZRCProfile_CommandTxRx library.

2.1.14.1 Prototype

ZRCProfile_InitCommandTxRx has the following prototype:

void ZRCProfile_InitCommandTxRx(void);

ZRCProfile_InitCommandTxRx has no parameters.

ZRCProfile_InitCommandTxRx does not return any value.

2.1.14.2 Functionality

ZRCProfile_InitCommandTxRx is used to enable the command transmission and reception functionality
in the ZRC Command Tx/Rx sublayer, so that the application can send ZRC profile data commands
without having to create a ZRC compliant NLDE_DataRequest payload itself.

2.1.14.3 Effect on Receipt

On receipt of the ZRCProfile_InitCommandTxRx function call the ZRC Command Tx/Rx sublayer
configures itself to be able to handle the ZRC command transmission.

2.1.15 ZRCProfile_CommandRequest

ZRCProfile_CommandRequest instructs the ZRC profile layer to transmit a ZRC command to a paired
device. To use this function the application must link to the RF4CE_ZRCProfile_CommandTxRx library.

2.1.15.1 Prototype

ZRCProfile_CommandRequest has the following prototype:
uint8_t ZRCProfile_CommandRequest(
 uint8_t deviceId,
 uint8_t commandCode,
 uint8_t command,
 uint8_t* vendorId,
 uint8_t payloadLength,
 uint8_t* payload,
 uint8_t txOptions
);

The following table specifies the parameters for ZRCProfile_CommandRequest.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-20 Freescale Semiconductor

The possible return values for the ZRCProfile_CommandRequest API call are shown in the following
table.

Table 2-19. ZRCProfile_CommandRequest Parameters

Name Type Valid Range Description

deviceId uint8_t - The pair table entry index of the command
recipient

commandCode uint8_t gZRC_CmdCode_UserCtrlPressed_c
gZRC_CmdCode_UserCtrlReleased_c
gZRC_CmdCode_DiscoveryRequest_c
gZRC_CmdCode_UserCtrlPressedAnd
Repeat_c

The ZRC command code.
IfgZRC_CmdCode_UserCtrlPressedAndRepeat_
c is used (e.g. when an RC button is held
down), the profile sends the User Control Pressed
command frame and starts the repetition of the
specified RC command ID (sending the User
Control Repeated command frames).
Otherwise, the function sends the specified user
control command code.

command uint8_t - The ZRC command ID (command code
dependent).
If the command code is:
- gZRC_CmdCode_UserCtrlPressed_c, specifies
the command Id of the pressed key.
- gZRC_CmdCode_UserCtrlReleased_c, specifies
the command Id of the released key.
- gZRC_CmdCode_DiscoveryRequest_c, this
parameter is ignored.
-gZRC_CmdCode_UserCtrlPressedAndRepeat_c
, specifies the command Id of the pressed and
repeated key.

vendorId uint8_t* - The vendor Id to put in the RF4CE data request
frame

payloadLength uint8_t - The ZRC command payload length

payload uint8_t* - The ZRC command payload

txOptions uint8_t - RF4CE Transmission options, as described by the
ZigBee RF4CE specification; these are passed to
the BeeStack Consumer layer

Table 2-20. ZRCProfile_CommandRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWNoMemory_c
gNWSuccess_c
gNWInvalidParam_c

All possible return values are fully described in Section 2.1.15.3, “Effect on Receipt”.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-21

2.1.15.2 Functionality

ZRCProfile_CommandRequest is used to transmit a ZRC command to a paired device.

2.1.15.3 Effect on Receipt

On receipt of ZRCProfile_CommandRequest, the ZRC Command Tx/Rx sublayer first verifies if all the
conditions to send a ZRC command are met.

If the ZRC command transmission functionality is uninitialized the function exits with
gNWNotPermitted_c. If the ZRC Command Tx/Rx sublayer is busy with another request the function
returns gNWDenied_c. If no memory buffer could be allocated to construct the NLDE data request payload
the function exits with gNWNoMemory_c.

If the data is not vendor specific (i.e. the vendor specific data bit in the TxOptions field is not set), the
function performs parameters validation (as described in the ZRCProfile_CommandRequest table). If the
parameters are not valid, the function exits with gNWInvalidParam_c.

Otherwise the profile layer constructs the NLDE data request payload from the provided parameters and
transmits it to the recipient through the network layer. If the application has requested a vendor specific
transmission by setting the corresponding bit in the txOptions parameter, the ZRC command code and
ZRC command ID are ignored and the NLDE Data Request payload consists entirely of the ZRC command
payload.

If the data is not vendor specific, the NLDE Data Request payload depends on the ZRC command code,
as shown in the following table:

Table 2-21. NLDE Data Request payload depending on the ZRC command code

ZRC Command Code NLDE Data Request payload (In addition to the ZRC command code)

gZRC_CmdCode_UserCtrlPressed_c The command ID, interpreted as the RC command code + the ZRC
command payload.
When receiving a ZRCProfile_CommandRequest with this ZRC
command code, the ZRC profile sends over the air the User Control
Pressed command frame.

gZRC_CmdCode_UserCtrlReleased_c The command ID; the rest of the parameters are ignored.
The command Id should match the command Id of a previous sent
gZRC_CmdCode_UserCtrlPressedAndRepeat_c request. If the ZRC
command ID to be released cannot be matched with none of the
gZRC_CmdCode_UserCtrlPressedAndRepeat_c commands currently in
transmission, the ZRCProfile_CommandRequest function exits
with gNWInvalidParam_c.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-22 Freescale Semiconductor

When the transmission of the ZRC command Discovery Request is completed (whether successful or not),
the application is notified through a ZRC Discovery Command Confirm message.

NOTE

Usually, the command Discovery Request is sent to the remote node when
the pairing process is successfully ended. On the remote node, the
application should keep the receiver open for a while, so that to receive the
Discovery Request command frame. When Discovery Request frame is
received, the ZRC profile of the remote node will respond by sending
automatically a Discovery Response frame which contains the ZRC
supported commands. The supported ZRC commands are taken from
gaZRCCmdSupportedBitMap bitmap which can be configured by the
application at compile time in the ZRCProfileCommands.h file.

When any command transmission except for the ZRC command Discovery Request is completed, the
application is notified by the profile through a ZRC command Confirm message. In the case of Discovery
Request, the application will get the Confirm message when the Discovery Response frame is received or
a timeout has occured. Note that each transmission of the User Control Repeated command frame is notified to the

application only if the Freescale specific attribute receiveKeyRepeatCnf is set TRUE.

gZRC_CmdCode_ DiscoveryRequest_c All the parameters are ignored.
The ZRC profile sends over the air the discovery request command
frame and waits the discovery response.

gZRC_CmdCode_UserCtrlPressedAndRepeat_c The command ID, interpreted as the RC command code + the ZRC
command payload.
The profile sends first a User Control Pressed command frame with the
RC command code and ZRC payload specified in parameters. After this
frame is sent, it starts to automatically repeat the RC command ID this
time inside a User Control Repeated command frame, at the interval
specified by the aplKeyRepeatInterval attribute (gZrcAttr.
keyRepeatInterval). Each transmission of the user control repeated
command frame is signaled to the application if the Freescale specific
attribute receiveKeyRepeatCnf is set to TRUE. Otherwise, the profile
repeats the RC command ID without notifying the application layer. The
RC command is repeated until the application sends a release command
(the commandCode parameter in the function should be set to
gZRC_CmdCode_UserCtrlReleased_c). The release command has to
specify the same RC command ID to end the repetitions. If the ZRC
command ID to be released is not matching any of the IDs of the frames
currently being repeated, then the function exits with
gNWInvalidParam_c and the profile will continue to repeat the RC
command ID.

Table 2-21. NLDE Data Request payload depending on the ZRC command code

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-23

NOTE

The ZRC profile can simultaneously process a maximum of two
transmission requests (requests for sending either vendor specific data or
ZRC commands) at a time. If more than two requests are sent at a time, the
profile will only process the first two requests and the rest will be denied.
On receive side, the ZRC profile can simultaneously handle the reception of
a maximum of two RC commands. (e.g. two RC buttons are simultaneously
held down).

2.1.16 ZRC Command Indication

The ZRC Command Indication message informs the application of a just arrived ZRC data packet.

2.1.16.1 Message Structure

The ZRC Command Indication message has the following structure:
typedef struct zrcProfileCommandInd_tag
{
 uint8_t deviceId;
 uint8_t dataLength;
 uint8_t vendorId[2];
 uint8_t LQI;
 uint8_t rxFlags;
 uint8_t commandAction;
 uint8_t commandId;
 uint8_t* pData;
}zrcProfileCommandInd_t;

The following table specifies the the fields available in the ZRC Command Indication message.

Table 2-22. ZRC Send Command Indication Message Structure

Field Type Possible Values Description

deviceId uint8_t 1 – (gMaxPairTableEntries_c – 1) The index of the originator’s pair table entry

dataLength uint8_t - The length of the command payload

vendorId uint8_t - The originator’s vendor Id

LQI uint8_t - The link quality indicator of the received
command packet

rxFlags uint8_t - The rxFlags of the NLDE Data Indication
message. See the ZigBee RF4CE specification
for an exact description

commandCode uint8_t gZRC_CmdCode_UserCtrlPressed_c
gZRC_CmdCode_UserCtrlRepeated_c
gZRC_CmdCode_UserCtrlReleased_c

The ZRC command code

command uint8_t - The ID of the ZRC command (ZRC command
code dependent)

pData uint8_t* - The command payload

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-24 Freescale Semiconductor

2.1.16.2 When Generated

The ZRC Send Command Indication is generated by the arrival of a NLDE Data Indication message with
a ZRC profile ID (value 0x01).

2.1.16.3 Effect on Receipt

On receipt of the Command Indication message the application is informed of the arrival of a ZRC
command sent by the device indicated in the message. If the data is vendor specific (i.e. the vendor specific
data bit in the rxFlags field is set), the commandCode and command fields should be ignored and the ZRC
Command payload contains the full NLDE Data Indication payload. If the data is not vendor specific, then
the command and pData parameters have the following significance, depending on the ZRC command
code (i.e. depending on the value of the commandCode field):

2.1.17 ZRC Command Confirm

The ZRC Command Confirm message informs the application about the completion of a ZRC command
transmission process.There is however an exception: the ZRC Discovery Request command generates a
ZRC Discovery Command Confirm message when the transmission process is completed.

2.1.17.1 Message Structure

The ZRC Command Confirm message has the following structure:
typedef struct zrcProfileCommandCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t commandCode;
 uint8_t command;
}zrcProfileCommandCnf_t;

The following table specifies the fields available in the ZRC Command Confirm message.

Table 2-23. Significance of the command and pData parameters (Depending on the ZRC Command Code)

ZRC command code NLDE Data Request payload (in addition to the ZRC command code)

gZRC_CmdCode_UserCtrlPressed_c
gZRC_CmdCode_UserCtrlRepeated_c

command contains the RC command code and pData contains the RC
command payload (if any)

gZRC_CmdCode_UserCtrlReleased_c the pData parameter should be ignored

Table 2-24. ZRC Send Command Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
or the network layer error code

Indicates either the successful completion of the
command transmission process or identifies the error that
has occured.

deviceId uint8_t 1 – (gMaxPairTableEntries_c – 1) The index of the pair table entry of the command recipient

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-25

2.1.17.2 When Generated

The ZRC Command Confirm message is generated by the ZRC Command Tx/Rx sublayer when a
previously started command transmission process is complete (i.e. the NLDE Data Confirm message is
received).

2.1.17.3 Effect on Receipt

On receipt of the ZRC Command Confirm message, the application layer is notified about the completion
of the command transmission process.

2.1.18 ZRC Discovery Command Confirm

The ZRC Command Confirm message notifies the application about the completion of the transmission
process of a ZRC Discovery Request command .

2.1.18.1 Message Structure

The ZRC Discovery Command Confirm message has the following structure:
typedef struct zrcProfileDiscoveryCmdCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t cmdSupportedBitMap[gCmdsSupportedFieldLength_c];
}zrcProfileDiscoveryCmdCnf_t;

The following table specifies the fields available in the ZRC Discovery Command Confirm message
message.

comman
dcode

uint8_t gZRC_CmdCode_UserCtrlPressed_c
gZRC_CmdCode_UserCtrlRepeated_c
gZRC_CmdCode_UserCtrlReleased_c

The ZRC command code; will only be used if
txOptions does not indicate vendor specific
data.

comman
d

uint8_t - The command Id; its meaning depends on the
ZRC command code.

Table 2-25. ZRC Send Command Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
or the network layer error code

Indicates either the successful completion of the
command transmission process or identifies the error that
has occured.

deviceId uint8_t 1 – (gMaxPairTableEntries_c – 1) The index of the pair table entry of the command recipient

cmdSuppo
rtedBitMap

uint8_t - The bitmap containing the supported
commands of the remote note.

Table 2-24. ZRC Send Command Confirm Message Structure

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-26 Freescale Semiconductor

2.1.18.2 When Generated

The ZRC Command Confirm message is generated by the ZRC Command Tx/Rx sublayer when a
previously started transmission process of a ZRC Discovery Request command is complete (i.e. the NLDE
Data Confirm message is received).

2.1.18.3 Effect on Receipt

On receipt of the ZRC Command Confirm message, the application layer is notified of the completion of
the transmission process of a ZRC Discovery Request command.

2.1.19 ZRCProfile_AbortProcess

The ZRCProfile_AbortProcess function call instructs the ZRC Command Tx/Rx sublayer to abort any
ongoing process. This function is included in the RF4CE_ZRCProfile_CommandTxRx library.

2.1.19.1 Function Prototype

ZRCProfile_AbortProcess has the following prototype:

uint8_t ZRCProfile_AbortProcess(void);

ZRCProfile_AbortProcess has no parameters

The possible return values for the ZRCProfile_AbortProcess API call are shown in the following table.

2.1.19.2 Functionality

ZRCProfile_AbortProcess allows the application to terminate any ongoing ZRC process (i.e. push-button
pairing, both target and originator side, and command transmission).

2.1.19.3 Effect on Receipt

Upon receipt of ZRCProfile_AbortProcess the ZRC Command Tx/Rx sublayer first checks whether a
process is currently running. If the ZRC Command Tx/Rx sublayer is idle the function exits with
gNWDenied_c.

Table 2-26. ZRCProfile_AbortProcess API Call Return Values

Type Possible Values Description

uint8_t gNWDenied_c
gNWNotPermitted_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.19.3, “Effect on Receipt”.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-27

Otherwise an event is sent to the ZRC Command Tx/Rx sublayer task to abort its current process and the
function returns gNWSuccess_c. The process is aborted the next time the ZRC task is run by the task
scheduler.

2.2 ZRC Attributes

The ZRC attributes are declared and initialized in the ZRCProfileGlobals.c file as follows:
zrcAttrData_t gZrcAttr ={
 gDefaultKeyRepeatInterval_c,
 gDefaultKeyRepeatWaitTime_c,
 gDefaultExTransferCount_c,
 gDefaultReceiveKeyRepeatCnf_c
 };

typedef struct zrcAttrData_tag{
 uint8_t keyRepeatInterval;
 uint16_t keyRepeatWaitTime;
 uint8_t keyExTransferCount;
 uint8_t receiveKeyRepeatCnf;
}zrcAttrData_t;

Each attribute has the following meaning:

• keyRepeatInterval - The interval in milliseconds at which user command repeat frames will be
transmitted (a key pressed is followed by key repetitions – using
gZRC_CmdCode_UserCtrlPressedAndRepeat_c command code).

• keyRepeatWaitTime - The duration that a recipient of a user control repeated command frame waits
before terminating a repeated operation.

• keyExTransferCount - The value of the KeyExTransfer-Count parameter passed to the pair request
primitive during the push button pairing procedure.

• gDefaultReceiveKeyRepeatCnf_c – It is a Freescale specific attribute and when it is set (TRUE)
the profile signals the application (via a ZRC Command Confirm message) that an user control
repeated command frame was sent (whether successful or not) over the air.

The ZRC attributes have the following identifiers assigned:
#define gKeyRepeatIntervalAttrId_c 0x80
#define gKeyRepeatWaitTimeAttrId_c 0x81
#define gKeyExTransferCountAttrId_c 0x82
#define gReceiveKeyRepeatCnfAttrId_c 0x90 /* This is a Freescale specific attribute Id */

To initialize these attributes, configure the following macros from the ZRCProfileGlobals.c file:
/* The interval in milliseconds at which
 user command repeat frames will be transmitted.
 Range: 0 - 100(aplcMaxKeyRepeatInterval) milliseconds */
#define gDefaultKeyRepeatInterval_c 50

/* The duration that a recipient of a user control repeated command frame
 waits before terminating a repeated operation.
 Range: 200 (2*aplcMaxKeyRepeatInterval) - 65535 (0xffff) */
#define gDefaultKeyRepeatWaitTime_c 200

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-28 Freescale Semiconductor

/* The number of seeds exchange transmissions used to generate a security key.
 Range: 0x03(aplcMinKeyExchangeTransferCount) - 0xff */
#define gDefaultExTransferCount_c 0x24

/* Receive confirm(on Application Layer) when a
 user control repeat command frame is sent; This is a Freescale specific attribute */
#define gDefaultReceiveKeyRepeatCnf_c FALSE

The following functions can be used to set/get a specific attribute:

2.2.1 ZRCProfile_GetRequest

The ZRCProfile_GetRequest function gets a specific attribute. This function is included in the
RF4CE_ZRCProfile_CommandTxRx library.

2.2.1.1 Function Prototype

ZRCProfile_GetRequest has the following prototype:

uint8_t ZRCProfile_GetRequest(
 uint8_t attrId, /* IN*/
 uint8_t* pAttrLength, /* OUT */
 uint8_t* pAttrValue /* OUT*/
);

The following table specifies the parameters for ZRCProfile_GetRequest.

The possible return values for the ZRCProfile_GetRequest API call are shown in the following table.

Table 2-27. ZRCProfile_GetRequest Parameters

Name Type Valid Range Description

attrId uint8_t gKeyRepeatIntervalAttrId_c
gKeyRepeatWaitTimeAttrId_c
gKeyExTransferCountAttrId_c
gReceiveKeyRepeatCnfAttrId_c

The attribute identifier

pAttrLength uint8_t* - The returned attribute length.

pAttrValue uint8_t* - The returned attribute value.

Table 2-28. ZRCProfile_GetRequest API Call Return Values

Type Possible Values Description

uint8_t gNWUnsupportedAttribute_c
gNWSuccess_c

All possible return values are fully described below.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-29

2.2.1.2 Functionality

This function searches the attribute after the attrId parameter. If the attribute is not found, the function
returns gNWUnsupportedAttribute_c status. Otherwise, the function exits with gNWSuccess_c status and
returns the attribute length and value.

2.2.2 ZRCProfile_SetRequest

The ZRCProfile_SetRequest function sets a specific attribute. This function is included in the
RF4CE_ZRCProfile_CommandTxRx library.

2.2.2.1 Function Prototype

ZRCProfile_SetRequest has the following prototype:

uint8_t ZRCProfile_SetRequest(
 uint8_t attrId, /* IN */
 uint8_t*pAttrValue /* IN */
);

The following table specifies the parameters for ZRCProfile_SetRequest.

The possible return values for the ZRCProfile_SetRequest API call are shown in the following table.

2.2.2.2 Functionality

This function searches the attribute after the attrId parameter. If the attribute is not found, the function
returns the gNWUnsupportedAttribute_c status. Next it will check if the pAttrValue parameter is valid (is
within range). If the parameter doesn’t have a valid value, it will exit with the gNWInvalidParam_c.
Otherwise, it will set the attribute and return the gNWSuccess_c status.

Table 2-29. ZRCProfile_SetRequest Parameters

Name Type Valid Range Description

attrId uint8_t gKeyRepeatIntervalAttrId_c
gKeyRepeatWaitTimeAttrId_c
gKeyExTransferCountAttrId_c
gReceiveKeyRepeatCnfAttrId_c

The attribute identifier

pAttrValue uint8_t* - The attribute value.

Table 2-30. ZRCProfile_SetRequest API Call Return Values

Type Possible Values Description

uint8_t gNWInvalidParam_c
gNWUnsupportedAttrib
ute_c
gNWSuccess_c

All possible return values are fully described below.

Freescale ZRC Application Profile Software Usage

ZRC Application Profile Reference Manual, Rev. 1.2

2-30 Freescale Semiconductor

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	Chapter 1 Freescale ZRC Application Profile Overview
	1.1 Freescale ZRC Application Profile Introduction
	1.2 Freescale ZRC Application Profile Libraries

	Chapter 2 Freescale ZRC Application Profile Software Usage
	2.1 Service Specifications
	2.1.1 PBP_IsIdle
	2.1.1.1 Prototype
	2.1.1.2 Functionality
	2.1.1.3 Effect on Receipt

	2.1.2 PBP_InitPushButtonPairOrig
	2.1.2.1 Prototype
	2.1.2.2 Functionality
	2.1.2.3 Effect on Receipt

	2.1.3 PBP_PushButtonPairOrigRequest
	2.1.3.1 Prototype
	2.1.3.2 Functionality
	2.1.3.3 Effect on Receipt

	2.1.4 Push-Button Pair Originator Continue Indication
	2.1.4.1 Message Structure
	2.1.4.2 When Generated
	2.1.4.3 Effect on Receipt

	2.1.5 PBP_PushButtonPairOrigContinueResponse
	2.1.5.1 Prototype
	2.1.5.2 Functionality
	2.1.5.3 Effect on Receipt

	2.1.6 Push-Button Pair Originator Confirm
	2.1.6.1 Message Structure
	2.1.6.2 When Generated
	2.1.6.3 Effect on Receipt

	2.1.7 PBP_InitPushButtonPairRecip
	2.1.7.1 Prototype
	2.1.7.2 Functionality
	2.1.7.3 Effect on Receipt

	2.1.8 PBP_PushButtonPairRecipRequest
	2.1.8.1 Prototype
	2.1.8.2 Functionality
	2.1.8.3 Effect on Receipt

	2.1.9 Push-Button Pair Recipient Continue Indication
	2.1.9.1 Message Structure
	2.1.9.2 When Generated
	2.1.9.3 Effect on Receipt

	2.1.10 PBP_PushButtonPairRecipContinueResponse
	2.1.10.1 Functionality
	2.1.10.2 Effect on Receipt

	2.1.11 Push-Button Pair Recipient Confirm
	2.1.11.1 Message Structure
	2.1.11.2 When Generated
	2.1.11.3 Effect on Receipt

	2.1.12 PBP_AbortProcess
	2.1.12.1 Function Prototype
	2.1.12.2 Functionality
	2.1.12.3 Effect on Receipt

	2.1.13 ZRCProfile_IsIdle
	2.1.13.1 Prototype
	2.1.13.2 Functionality
	2.1.13.3 Effect on Receipt

	2.1.14 ZRCProfile_InitCommandTxRx
	2.1.14.1 Prototype
	2.1.14.2 Functionality
	2.1.14.3 Effect on Receipt

	2.1.15 ZRCProfile_CommandRequest
	2.1.15.1 Prototype
	2.1.15.2 Functionality
	2.1.15.3 Effect on Receipt

	2.1.16 ZRC Command Indication
	2.1.16.1 Message Structure
	2.1.16.2 When Generated
	2.1.16.3 Effect on Receipt

	2.1.17 ZRC Command Confirm
	2.1.17.1 Message Structure
	2.1.17.2 When Generated
	2.1.17.3 Effect on Receipt

	2.1.18 ZRC Discovery Command Confirm
	2.1.18.1 Message Structure
	2.1.18.2 When Generated
	2.1.18.3 Effect on Receipt

	2.1.19 ZRCProfile_AbortProcess
	2.1.19.1 Function Prototype
	2.1.19.2 Functionality
	2.1.19.3 Effect on Receipt

	2.2 ZRC Attributes
	2.2.1 ZRCProfile_GetRequest
	2.2.1.1 Function Prototype
	2.2.1.2 Functionality

	2.2.2 ZRCProfile_SetRequest
	2.2.2.1 Function Prototype
	2.2.2.2 Functionality

