

Document Number: ZCLRM
Rev. 1.2
12/2008

Freescale ZigBee™ Cluster
Library (ZCL)

Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006, 2007, 2008. All rights reserved.

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor i

Contents
About This Book. iii
Audience . iii
Organization . iii
Revision History . iii
Conventions . iii
Definitions, Acronyms, and Abbreviations . iv
Reference Materials . iv

Chapter 1
Introduction

1.1 ZigBee Cluster Library Concepts . 1-1
1.2 Home Automation and Smart Energy Devices. 1-2
1.3 ZCL Clusters and Attributes . 1-4

Chapter 2
ZigBee Cluster Library API

2.1 ZCL API Overview. 2-1
2.1.1 ZCL_Init . 2-1
2.1.2 ZCL_Reset . 2-1
2.1.3 ZCL_Register . 2-1
2.1.4 ZCL_InterpretFrame. 2-2
2.1.5 ZCL Requests . 2-2
2.1.6 Smart Energy (SE) Cluster Description . 2-8
2.2 ZCL Configurable Properties . 2-22

Chapter 3
Adding Custom Devices, Clusters and Attributes

3.1 Device Definitions . 3-1
3.2 Cluster Definitions . 3-2
3.3 Attribute Definitions . 3-2
3.4 Adding an Attribute . 3-3
3.5 Adding a Second Device Instance . 3-4

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

ii Freescale Semiconductor

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor iii

About This Book
The ZigBee Cluster Library Reference Manual describes the API to the ZigBee Cluster Library, an add-on
component used in many ZigBee Application Profiles, including Home Automation and Smart Energy.

Audience
This document is intended for software developers who write applications for BeeStack-based products
using Freescale development tools.

Organization
This document is organized into the following sections
Chapter 1 Introduction – provides an overview of the ZigBee Cluster Library, as well as its

purpose and use in Home Automation. It also contains a concise list of devices,
clusters and attributes and commands supported by BeeStack.

Chapter 2 ZigBee Cluster Library API – describes the API and compile-time options for the
ZigBee Cluster Library.

Chapter 3 Adding Custom Devices, Clusters and Attributes – introduces the function calls,
macros, and APIs available in the Application Framework (AF).

Revision History
The following table summarizes revisions to this document since the previous release (Rev. 1.1).

Conventions
The ZigBee Cluster Library Reference Manual uses the following formatting conventions when detailing
commands, parameters, and sample code:

Courier mono-space type indicates commands, command parameters, and code examples.
Bold style indicates the command line elements, which must be entered exactly as written.
Italic type indicates command parameters that the user must type in or replace, as well as
emphasizes concepts or foreign phrases and words.

Revision History

Location Revision

TBD Update for MC1322x silicon revision.

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

iv Freescale Semiconductor

Definitions, Acronyms, and Abbreviations
AF Application framework
API Application programming interface
APSME APS management entity
ASL Application support library, a set of common user interface and application

callable routines used across multiple sample applications.
Cluster A collection of attributes associated with a specific cluster-identifier
Cluster identifier An enumeration that uniquely identifies a cluster within an application profile
Device/Node ZigBee network component containing a single IEEE 802.15.4 radio.
Endpoint Component within a unit; a single IEEE 802.15.4 radio may support up to 240

independent endpoints
IEEE Institute of Electrical and Electronics Engineers, a standards body
MAC Medium access control sub-layer
NVM Non-volatile memory
Octet Eight bits of data, or one byte
Profile Set of options in a stack or an application
ZCL ZigBee cluster library, a set of common clusters and attributes used across

multiple application profiles
ZDP ZigBee device profile
802.15.4 An IEEE standard radio specification that underlies the ZigBee Specification

Reference Materials
This following served as references for this manual:

1. Document 053474r17, ZigBee Specification, ZigBee Alliance, October 2007
2. Document 075123r02, ZigBee Cluster Library Specification, ZigBee Alliance, May 2008
3. Document 053520r25, Home Automation Profile Specification, ZigBee Alliance, October 2007
4. Document 075356r14ZB_AMI_PTG-AMI_Profile_Specification.pdf, ZigBee Alliance, May 2008

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 1-1

Chapter 1
Introduction
This manual describes the API and how to use the ZigBee Cluster Library (ZCL), an add-on component
used in many ZigBee Application Profiles, including Home Automation.

This manual assumes that the reader is already familiar with the concept of a cluster and a ZigBee node.

1.1 ZigBee Cluster Library Concepts
The ZigBee Cluster Library is a collection of clusters and attributes that have specific meaning, even
across profiles. For example, there is an OnOff cluster that defines how to turn something off, on, or toggle
it. This cluster works for light switches, pumps, garage door openers and any other device that can be
turned on or off.

The concepts of nodes, endpoints, devices, clusters and attributes are briefly outlined on the following list.
For a more complete explanation, see the Freescale BeeStack Application Development Guide or the
ZigBee Specification.

• A ZigBee node contains an 802.15.4 radio, and is a single addressable entity on the ZigBee
network

• ZigBee nodes contain one or more application endpoints (applications)
• A device, in ZCL terms, resides on an endpoint. Examples of a devices are an OnOffLight or a

Thermostat. A single ZigBee node may contain multiple devices. For example, a single ZigBee
node could control 4 separate lights, all individually controllable. An endpoint’s simple descriptor
describes the device on that endpoint, including the list of input and output clusters.

• Each cluster is a collection of commands and attributes. In programming terms, a cluster is an
object. For example, a DimmableLight contains a level-control cluster. This cluster contains
attributes that describe it’s current level and another attribute that describes the transition time
when going to a new level. There are commands on that cluster to turn the light off, turn the light
fully on, or to step or move to any light level over time.

• Attributes are the state of the cluster, or the data. An example of an attribute for the OnOff cluster
is whether the device is presently on or off. Attributes have types, may be a single byte, a 16-bit
word, or even a length encoded string.

The ZigBee Cluster Library contains clusters defining many functional domains. The BeeStack
implementation of the ZigBee Cluster Library contains a data and code driven way of generically defining
devices, clusters and attributes, and providing multiple instantiations of a given device within a single node
if desired.

Introduction

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

1-2 Freescale Semiconductor

Figure 1-1. ZigBee Cluster Library

The ZigBee Cluster Library defines
• functional domains
• cluster sets for that functional domain
• mandatory and optional clusters, attributes, commands and functional descriptions
• cluster identifiers
• explicit device descriptions are not defined

Application Profiles (e.g. HA) defines
• application domains
• related elements from the cluster library collected into application domains
• device descriptions for each required device
• any specialized or deviated use of ZCL cluster

BeeStack implements the Home Automation application profile, and contains the mandatory and many of
the optional clusters from that specification.

1.2 Home Automation and Smart Energy Devices
The ZigBee Home Automation and Smart Energy specification defines a set of wireless devices
appropriate for a home environment. That specification is not repeated here. Instead, only the devices,
clusters and attributes supported by the BeeStack ZigBee Cluster Library sample implementation are listed
and described here.

NOTE
The implementation of the Home Automation and Smart Energy devices are
for demonstration purposes only and should not be considered ready for
production. The ZCL clusters adhere to the specification, but other system
issues, such as the IEEE address, exact contents of NVM storage and other
issues are left up to the OEM.

The following is a list of Home Automation and Smart Energy devices supported by BeeStack. All these
applications are available as templates from the BeeKit Wireless Connectivity Toolkit software.

Introduction

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 1-3

Table 1-1. Table 1-1.Home Automation and Smart Energy Devices

Name Device ID Functional Description

HaConfigurationTool 0x0005 Set up groups and reporting.

HaCombinedInterfaceDevice 0x0007 Common node used as a gateway into a network of devices. For example, this
node might be attached to a PC so the PC or internet can control or detect the
state of the lights in a home.

HaRangeExtender 0x0008 No special function other than routing packets.

HaOnOffLight 0x0100 Simple on/off light.

HaDimmableLight 0x0101 Dimmable light, can be controlled by on/off or dimmable switch.

HaOnOffLightSwitch 0x0103 Simple on/off light switch.

HaDimmerSwitch 0x0104 Dimmer switch can control light level on dimmable light..

HaThermostat 0x0301 Thermostat. Supports receiving temperature reports from Temperature Sensor.
Can display temperatures on NCB in both Celsius and Fahrenheit.

HaTemperatureSensor 0x0302 Temperature sensor. Can send temperature reports. Uses the hardware
temperature sensor on the SRB and simulated temperatures on other boards.

HaConfigurationTool 0x0005 Set up groups and reporting.

SeEnergyServicePortal 0x0500 The Energy Service Portal acts as a gateway to ZigBee network and optionally
as a Metering Device. It connects the energy supply company network to the
metering and energy management devices within the home.

SeInpremiseDisplay 0x0502 The In-Premise Display demo application will relay the data to the user by way
of a text display. The display shows simple text messages or price information
to inform the user about the utility company actions or the current price.

SeMeteringDevice 0x0501 The Metering Device demo application utilize a timer based scheme in order to
demonstrate continuous energy consumption, so that metering data read
through read attribute or reporting will show an increasing consumption.

SePCT
SeLoadControlDevice

0x0503
0x0504

The Programmable Communicating Thermostat and Load Control demo
applications show how received Demand Response and Load Control (DRLC)
and Price events can be manage by a device that supports load control and
price.

SeRangeExtender 0x0008 The Range Extender is a simple device that acts as a router for other devices
from the network.

SeSmartAppliance
SePrepaymentTerminal

0x0505,
0x0506

The Load Control, Smart Appliance, Prepayment Terminal are sample
applications that have no functionality in the run mode of the application.

Introduction

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

1-4 Freescale Semiconductor

1.3 ZCL Clusters and Attributes
The ZigBee cluster Library supports a set of commands that work across all clusters. These commands
include:

• Read attributes – read one or more attributes from a remote node
• Write attributes – write one or more attributes to a remote node
• Write attributes undivided – write one or more attributes, but only if all attributes can be written.
• Write attributes no response – write one or more attributes, but don’t generate a response.
• Configure reporting – configure one or more attributes for reporting in a remote node
• Read reporting configuration – determine the attribute reporting in a remote node
• Report attributes – report one or more attributes
• Default response – sent when a command failed or there is not a specific response for a certain

command
• Discover attributes - requests the list of attributes that are available for a certain cluster defined on

an endpoint of the receiving device

Read attribute can be used to detect the state of a node, for example to read whether the an HaOnOffLight
is currently on or off. Alternately, that data can be “pushed” from the light itself using the configure
reporting command.

Writing to an attribute is usually used for configuring the node. For example, the Identify Cluster contains
an attribute IdentifyTime, that can be written to causing the node to go into identify mode for that number
of seconds.

The command error is used if a node tries to access a cluster, attribute or command that does not exist.

The following table lists the clusters and their attributes supported by the BeeStack ZigBee Cluster Library
Table 1-2. ZCL Clusters and Attributes

Cluster Name Cluster
ID Description Attributes

Basic 0x0000 Basic information common to all devices ZCLVersion
ApplicationVersion
StackVersion
HWVersion
ManufacturerName
ModelIdentifier
DateCode
PowerSource
LocationDescription
PhysicalEnvironment
DeviceEnabled
AlarmMask

Identify 0x0003 Services to visually identify remote nodes IdentifyTime

Groups 0x0004 Services to add/remove groups on remote nodes
(complements the APS local group services)

NameSupport

Introduction

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 1-5

Scenes 0x0005 Services to save and restore scenes. SceneCount
CurrentScene
CurrentGroup
SceneValid
NameSupport
LastConfiguredBy

OnOff 0x0006 Turn a device on or off OnOff

OnOffSwitchCfg 0x0007 Configure how a switch turns a device on, off or toggle SwitchType
SwitchActions

LevelControl 0x0008 Control a device with a range, rather than simple on/off.
Applies to dimmable lights, shades, etc..

CurrentLevel
RemainingTime
OnOffTransitionTime
OnLevel

Thermostat 0x0201 Thermostat device LocalTemperature Occupancy
AbsMinHeatSetpointLimit
AbsMaxHeatSetpointLimit
AbsMinCoolSetpointLimit
AbsMaxCoolSetpointLimit
PICoolingDemand
PIHeatingDemand
OccupiedCoolingSetpoint
OccupiedHeatingSetpoint
MinHeatSetpointLimit
MaxHeatSetpointLimit
MinCoolSetpointLimit
MaxCoolSetpointLimit
MinSetpointDeadBand
ControlSequenceOfOperation
SystemMode
LocalTemperatureCalibration
UnoccupiedCoolingSetpoint
UnoccupiedHeatingSetpoint
RemoteSensing
AlarmMask

FanControl 0x0202 Controls speed of a fan part of an HVAC system FanMode
FanModeSequence

ThermostatUiCfg 0x0204 Configure level of access to a thermostat keypad and if
degrees displayed are in Celsius or Fahrenheit

TempDisplayMode
KeypadLockout

TemperatureMeasu
rement

0x0402 Temperature sensor, outputs to thermostat MeasuredValue
MinMeasuredValued
MaxMeasuredValued
Tolerance

Table 1-2. ZCL Clusters and Attributes

Introduction

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

1-6 Freescale Semiconductor

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-1

Chapter 2
ZigBee Cluster Library API
The ZigBee Cluster Library is implemented in BeeStack to be extensible and flexible. Choose any of the
Home Automation templates in BeeKit as a starting point to enable the ZigBee Cluster Library framework.

2.1 ZCL API Overview
This section describes the ZCL functions available to the application. The section ZCL Requests describes
all of the cluster command requests that can be made from an application. See the section ZCL_Register
for a description of how to receive the results of the requests in the application.

2.1.1 ZCL_Init

Prototype
void ZCL_Init(void);

Description

Initialize the ZigBee Cluster Library. This function must be called after endpoints are registered, usually
in BeeAppInit().

2.1.2 ZCL_Reset

Prototype
void ZCL_Reset(void);

Description

This will reset the ZCL engine to the original, including turning off timers and clear all scene tables, etc..
This will not reset the contents of NVM that store ZCL data.

2.1.3 ZCL_Register

Prototype
void ZCL_Register
 (
 fnZclResponseHandler_t fnResponseHandler /* IN response handler */
);

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-2 Freescale Semiconductor

Description

This function registers a callback function to receive the responses from a ZCL request. Usually called in
the applications BeeAppInit() function. See the BeeApp.c file in the HaThermostat for an example of the
use of this function.

2.1.4 ZCL_InterpretFrame

Prototype
zbStatus_t ZCL_InterpretFrame
 (
 zbApsdeDataIndication_t *pIndication /* IN: from application */
);

Description

This function is typically called from BeeAppDataIndication() in the application. This function will
automatically handle ZCL requests to read or write attributes, and will pass requests to the proper cluster
handler if the endpoint supports a device definition. See Chapter 3, “ Adding Custom Devices, Clusters
and Attributes” for more details on device definitions.

This function returns gZbSuccess_c if it handled the request and no further action is required on the part
of the application. Returns gZclMfgSpecific_c if this was a manufacturer specific cluster or if the endpoint
does not have a device or cluster definition. In the latter case, the application must process the data
indication.

WARNING
ZCL_InterpretFrame() does NOT free the message buffer from the data
indication. It is up to the application’s BeeAppDataIndication() function to
do so.

2.1.5 ZCL Requests
The following is a list of ZCL requests that can be made of remote nodes, or the local node.

The requests generally follow the same format. The request structure begins with an afAddrInfo_t
structure which describes the source and destination nodes, endpoints and cluster ID, followed by a request
specific structure.
typedef struct afAddrInfo_tag
{
 zbAddrMode_t dstAddrMode; /* indirect, group, direct-16, direct-64 */
 zbApsAddr_t dstAddr; /* short address, long address or group */
 zbEndPoint_t dstEndPoint; /* destination endpoint */
 zbClusterId_t aClusterId; /* what cluster to send from/to? */
 zbEndPoint_t srcEndPoint; /* what source endpoint to send from? */
 zbApsTxOption_t txOptions; /* ACK, security options */
 uint8_t radiusCounter; /* radius */
} afAddrInfo_t;

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-3

A code-snippet example of using a request would be
void AppSendAddGroupIfIdentifying(void)
{
 zclGroupAddGroupIfIdentifyingReq_t request;

 /* set up destination address to broadcast this command */
 /* to all nodes, all endpoints */
 request.addrInfo.dstAddrMode = gZbAddrMode16Bit_c;
 Copy2Bytes(request.addrInfo.dstAddr, gaBroadcastAddress);
 request.addrInfo.dstEndPoint = gZbBroadcastEndPoint_c;
 Set2Bytes(request.addrInfo.aClusterId, gZclClusterGroups_c);
 request.addrInfo.srcEndPoint = appEndPoint;
 request.addrInfo.txOptions = afTxOptionsDefault_c;
 request.addrInfo.radiusCountr = afDefaultRadius_c;

 /* add group 5 if the destination node(s) are in identify mode */
 Set2Bytes(request.cmdFrame.aGroupId, 0x0500); /* group 5, little endian */
 request.cmdFrame. szGroupName = 0; / no group name */
ASL_ZclGroupAddGroupIfIdentifypReq(&request);
 }

NOTE
All multi-byte fields, such as group ID, cluster ID, attribute ID, etc.. are set
up in the structures as an array, little endian (low-byte first), because the in
ZigBee specification all multi-byte fields are little endian over the air. The
HCS08 is a big endian processor, so care must be taken with values that have
mathematical meaning such as time.

The rest of this section describes the individual request functions, use and prototypes.

Prototype
zclStatus_t ASL_ZclIdentifyReq(zclIdentifyReq_t *pReq);

Description

Indicates that the receiving device should enter identify mode for instance by blinking a led. The parameter
structure contains a 16-bit identifier containing the number of seconds the device should identify itself.

Prototype
zclStatus_t ASL_ZclIdentifyQueryReq(zclIdentifyQueryReq_t *pReq);

Description

This command queries a device to determine if it is currently in identify mode. The response also contains
the number of seconds the device will still be in this mode.

The stucture indicated in the parameter does not contain a payload except for the afAddrInfo_t addressing
information.

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-4 Freescale Semiconductor

Prototype
zclStatus_t ASL_ZclGroupAddGroupReq(zclGroupAddGroupReq_t *pReq);

Description

Adds a group to an endpoint on a remote node. Equivalent to local call APSME_AddGroupRequest(), but
for remote nodes.

Prototype
zclStatus_t ASL_ZclGroupAddGroupIfIdentifyReq
(
zclGroupAddGroupIfIdentifyingReq_t *pReq
);

Description

The same as ASL_ZclGroupAddGroupReq(), but only adds nodes if they are currently in identify mode.

Prototype
zclStatus_t ASL_ZclGroupViewGroupReq(zclGroupViewGroupReq_t *pReq);

Description

Returns the group information of a remote node. Make sure to use ZCL_Register() to set up a function to
receive the data.

Used to determine if the remote node is a member of that group. Returns the following structure:
typedef struct zclCmdGroup_ViewGroupRsp_tag
{
 zclStatus_t status;
 zbGroupId_t aGroupId;
 char szName[1];/* variable length name, length encoded */
} zclCmdGroup_ViewGroupRsp_t;

Prototype
zclStatus_t ASL_ZclGetGroupMembershipReq
(
zclGroupGetGroupMembershipReq_t *pReq
);

Description

Returns the group membership of a particular endpoint. The results are a list of group IDs that come back
through the applications data indication callback.

Returns the following structure from the remote node if successful (and the node exists):
typedef struct zclCmdGroup_GetGroupMembershipRsp_tag
{
 haCapacity_t capacity; /* # of groups total */
 uint8_t count; /* */

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-5

 zbGroupId_t aGroupId[1];
} zclCmdGroup_GetGroupMembershipRsp_t;

Prototype
zclStatus_t ASL_ZclRemoveGroupReq(zclGroupRemoveGroupReq_t *pReq);

Description

Remove one particular group from a remote node. Only removes it from the one endpoint, unless the
broadcast endpoint is used.

Prototype
zclStatus_t ASL_ZclRemoveAllGroupsReq(zclGroupRemoveAllGroupsReq_t *pReq);

Description

Remove all groups from a particular node. Only removes it from on endpoint, unless the broadcast
endpoint is used.

Prototype
zclStatus_t ASL_ZclSceneAddSceneReq(zclSceneAddSceneReq_t *pReq,uint8_t len);

Description

Adds a scene. Scenes are a method for setting a node in a particular state. One way to think of this is the
buttons on a car radio. Press the button, and the radio goes to a particular channel. That button can be
reprogrammed to go to a different channel at the users request.

The add scene request structure is as follows
typedef struct zclCmdScene_AddScene_tag
{
 zbGroupId_t aGroupId; /* group ID */
 zclSceneId_t sceneId; /* scene ID */
 uint16_t transitionTime; /* in seconds */
 char szSceneName[16]; /* length-encoded string */
 zclSceneOtaData_t aData[1]; /* variable scene length data */
} zclCmdScene_AddScene_t;

The following example shows setting up a scene in an HaOnOffLight, to turn the light on when this scene
is recalled.
void ExampleAddScene(void)
{
 zclSceneAddSceneReq_t request;

 /* fill in destination address info here… */
/* … */

/* indicate scene should turn light on after 4 seconds */
Set2Bytes(request.cmdFrame, Native2OTA16(5)); /* group 5, little endian */
request.cmdFrame.sceneId = 8; /* scene 8 */
request.cmdFrame.transitionTime = Native2OTA16(0); /* no transition time */

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-6 Freescale Semiconductor

request.cmdFrame.szSceneName = 0; / no scene name */
request.cmdFrame.aData[0].clusterId = gZclClusterOnOff_c;
request.cmdFrame.aData[0].length = 1;
request.cmdFrame.aData[0].aData[0] = 1; /* turn light on */

ASL_ZclSceneAddSceneReq(&request, sizeof(zclCmdScene_AddScene_t));
}

Prototype
zclStatus_t ASL_ZclViewSceneReq(zclSceneViewSceneReq_t *pReq);

Description

Retrieves the scene information for a particular group and scene ID. The returned structure is
typedef struct zclCmdScene_ViewSceneRsp_tag
{
 zbGroupId_t aGroupId; /* group ID */
 zclSceneId_t sceneId; /* scene ID */
 char szSceneName[16]; /* scene name */
 uint16_t transitionTime; /* in seconds, little endian */
 zclSceneOtaData_t aData[1]; /* variable scene length data */
} zclCmdScene_ViewSceneRsp_t;

Prototype
zclStatus_t ASL_ZclRemoveSceneReq(zclSceneRemoveSceneReq_t *pReq);

Description

Removes a single scene as identified by group and scene ID.

Prototype
zclStatus_t ASL_ZclRemoveAllScenesReq(zclSceneRemoveAllScenesReq_t *pReq);

Description

Remove all scenes eliminates all scenes on specified group.

Prototype
zbStatus_t ASL_ZclStoreSceneReq(zclSceneStoreSceneReq_t *pReq);

Description

Stores a scene in the remote node with the current settings. This command can be used with a variety of
devices. For example, the lights may be on and the shades down for a “night-time” scene. The lights off
and the shades up for a “day-time” scene. A scene is just the state of the device stored for later retrieval.

For example, set the HaDimmableLight to 33% brightness (1 bar on the LEDs). Then issue an
ASL_ZclStoreSceneReq() call to that node from another node. That scene can later be recalled by another
device.

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-7

The HaDimmerSwitch application (a BeeKit template) uses SW4 and LSW4 (long switch 4) to do this
store scene and recall scene behavior.

Prototype
zbStatus_t ASL_ZclRecallSceneReq(zclSceneRecallSceneReq_t *pReq);

Description

Recalls a previously added or stored scene in a remote node.

Prototype
zclStatus_t ASL_ZclGetSceneMembershipReq
(
zclSceneGetSceneMembershipReq_t *pReq
);

Description

Retrieves the scene membership for a given group, a list of scene IDs in the remote node that belong to
this group. The membership structure returned looks like
typedef struct zclCmdScene_GetSceneMembershipRsp_tag
{
 zclStatus_t status; /* status */
 haCapacity_t capacity; /* # of scenes available (capacity) */
 zbGroupId_t aGroupId; /* group */
 uint8_t sceneCount; /* scenes that belong to the group */
 zclSceneId_t scenes[1]; /* list of scenes IDs */
} zclCmdScene_GetSceneMembershipRsp_t;

Prototype
zbStatus_t ASL_ZclOnOffReq(zclOnOffReq_t *pReq);

Description

Turns a remote device on or off, for example an on/off light.

Prototype
zbStatus_t ASL_ZclLevelControlReq
(
zclLevelControlReq_t *pReq,
uint8_t command
);

Description

Sends a command that changes the level (for example the light level on a dimmable light) of a remote
device.

Level control commands must be one of

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-8 Freescale Semiconductor

• gZclCmdLevelControl_MoveToLevel_c
• gZclCmdLevelControl_Move_c
• gZclCmdLevelControl_Step_c
• gZclCmdLevelControl_Stop_c
• gZclCmdLevelControl_MoveToLevelOnOff_c
• gZclCmdLevelControl_MoveOnOff_c
• gZclCmdLevelControl_StepOnOff_c
• gZclCmdLevelControl_StopOnOff_c

2.1.6 Smart Energy (SE) Cluster Description
This section covers the Smart Energy Zigbee Cluster Library (ZCL) functions and data type available to
the application.

The SE functional domain includes the following ZCL clusters:
• Demand Response and Load Control
• Price
• Messaging
• Simple Metering

The Key Establishment cluster is added to the General functional domain. All SE clusters are implemented
in SeProfile.h, ZclSe.h, ZclSe.c and are explained in the following sections.

All the SE requests follow the same format as it shows in the section 2.1.5 ZCL Requests.

A code-snippet example of Inter-Pan and In-Pan requests definition type would be as follows:

/* Cancel All Load Control Events command payload */
typedef struct zclCmdDmndRspLdCtrl_CancelAllLdCtrlEvtsReq_tag
{
 uint8_t CancelCtrl;
} zclCmdDmndRspLdCtrl_CancelAllLdCtrlEvtsReq_t;

/* Cancel All Load Control Events command request */
typedef struct zclDmndRspLdCtrl_CancelAllLdCtrlEvtsReq_tag
{
 afAddrInfo_t addrInfo;
 uint8_t zclTransactionId;
 zclCmdDmndRspLdCtrl_CancelAllLdCtrlEvtsReq_t cmdFrame;
} zclDmndRspLdCtrl_CancelAllLdCtrlEvtsReq_t;

typedef struct zclCmdMsg_DisplayMsgReq_tag
{
 MsgId_t MsgID;
 uint8_t MsgCtrl;
 ZCLTime_t StartTime;
 Duration_t DurationInMinutes;
 zclStr32_t Msg;
} zclCmdMsg_DisplayMsgReq_t;

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-9

typedef struct zclInterPanDisplayMsgReq_tag
{
 InterPanAddrInfo_t addrInfo;
 uint8_t zclTransactionId;
 zclCmdMsg_DisplayMsgReq_t cmdFrame;
} zclInterPanDisplayMsgReq_t;

typedef struct InterPanAddrInfo_tag
{
 zbAddrMode_t srcAddrMode; /* indirect, group, direct-16, direct-64 */
 zbAddrMode_t dstAddrMode; /* indirect, group, direct-16, direct-64 */
 zbPanId_t dstPanId;
 zbApsAddr_t dstAddr; /* short address, long address or group (ignored on indirect
mode)*/
 zbProfileId_t aProfileId; /* application profile (either private or public) */
 zbClusterId_t aClusterId; /* cluster identifier */
} InterPanAddrInfo_t;

All devices, attributes, clusters IDs, macro definitions and data type definitions for all SE requests are in
the SeProfile.h file.

The following code example shows how to form and send (over the air) a Get Current Price request. All
Cluster requests are formed and sent in the same manner. They call the specific functions that are covered
in the following sections.

void BeeAppGetCurrentPrice(void)
{
 zclPrice_GetCurrPriceReq_t req;

 req.addrInfo.dstAddrMode = 0x02; /*short address*/
 Copy2Bytes(req.addrInfo.dstAddr.aNwkAddr, ESPAddr);
 req.addrInfo.dstEndPoint = gSendingNwkData.endPoint;
 Set2Bytes(req.addrInfo.aClusterId, gZclClusterPrice_c);
 req.addrInfo.srcEndPoint = appEndPoint;
 req.addrInfo.txOptions = afTxOptionsDefault_c;
 req.addrInfo.radiusCounter = afDefaultRadius_c;
 req.zclTransactionId = gZclTransactionId++;
 // receive price updates from ESP
 req.cmdFrame.CmdOptions = gGetCurrPrice_RequestorRxOnWhenIdle_c;

 (void)zclPrice_GetCurrPriceReq (&req);
}

2.1.6.1 Demand Response and Load Control Cluster
The Demand Response and Load Control Cluster handles the Client and Server Load Control events.

• The Server Load Control Cluster passes the received load control events from the utility company
to the devices from Zigbee Smart Energy network that supports load control.

• The Client Load Control Cluster implements the rules and guidelines for overlapping events and
signals the application when a load control event occurs. For this, the application function

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-10 Freescale Semiconductor

BeeAppUpdateDevice() is called with the gZclUI_LdCtrlEvt_c application event (specifies that a
load control event occurs) and the corresponding information fields of the load control event.

The Client Load Control Cluster maintains a table of load control events with the following fields:

typedef struct zclLdCtrl_EventsTableEntry_tag
{
 afAddrInfo_t addrInfo; /*where to send the Reports Event Status for this event */
 zclCmdDmndRspLdCtrl_LdCtrlEvtReq_t cmdFrame; /* keep the Event */
 uint8_t CurrentStatus; /* the current event status; can be modify by the user */
 uint8_t NextStatus; /* keep track of next status which depend of current
status (almost all the time) */
 uint8_t IsSuccessiveEvent; /* TRUE - is a "back to back" event; else FAlSE */
 ZCLTime_t CancelTime; /* When the event should be canceled; 0Xffffffff meens event
not canceled; apply the random time stop if needed */
 uint8_t CancelCtrl; /* to check if the cancelling on CancelTime use the randomization
information from cmdFrame */
 LCDRDevCls_t CancelClass; /* 0xffff meens not used */
 LCDRDevCls_t NotSupersededClass; /* used for supressing events; 0xffff - not used yet;
0x0000 - event is seperseded */
 ZCLTime_t SupersededTime;
 uint8_t EntryStatus; /* the tabel entry is in use (0xFF) or not (0x00) */
}zclLdCtrl_EventsTableEntry_t;

Every time the “CurrentStatus” field of an entry from Load Control Table is changing, the function
BeeAppUpdateDevice() is called with the following parameters: source end point, application event,
attribute ID if need, cluster ID and the Load Control entry.

Here is a code example of how the application is signaled by the Load Control Cluster:
BeeAppUpdateDevice(pAddrInfo->srcEndPoint, gZclUI_LdCtrlEvt_c, 0, pAddrInfo->aClusterId,
&gaEventsTable[mReportStatusEntryIndex]);

The application should check the “CurrentStatus” field to handle the load control event every time the
function BeeAppUpdateDevice() is called. The following Status of the load control events can occur:
/* Event Status Field Values */
#define gSELCDR_LdCtrlEvtCode_CmdRcvd_c 0x01
#define gSELCDR_LdCtrlEvtCode_Started_c 0x02
#define gSELCDR_LdCtrlEvtCode_Completed_c 0x03
#define gSELCDR_LdCtrlEvtCode_UserHaveToChooseOptOut_c 0x04
#define gSELCDR_LdCtrlEvtCode_UserHaveToChooseOptIn_c 0x05
#define gSELCDR_LdCtrlEvtCode_EvtCancelled_c 0x06
#define gSELCDR_LdCtrlEvtCode_EvtSuperseded_c 0x07
#define gSELCDR_LdCtrlEvtCode_EvtPrtlCompletedWithUserOptOut_c 0x08
#define gSELCDR_LdCtrlEvtCode_EvtPrtlCompletedWithUserOptIn_c 0x09
#define gSELCDR_LdCtrlEvtCode_EvtCompletedWithNoUser_c 0x0A
#define gSELCDR_LdCtrlEvtCode_EvtInvalidCancelCmdDefault_c 0xF8
#define gSELCDR_LdCtrlEvtCode_EvtInvalidEffectiveTime_c 0xF9
#define gSELCDR_LdCtrlEvtCode_EvtReserved_c 0xFA
#define gSELCDR_LdCtrlEvtCode_EvtHadExpired_c 0xFB
#define gSELCDR_LdCtrlEvtCode_EvtUndef_c 0xFD
#define gSELCDR_LdCtrlEvtCode_LdCtrlEvtCmdRjctd_c 0xFE

A code-snippet example of how the application should handle the load control events would be:
void BeeAppUpdateDevice
 (

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-11

 zbEndPoint_t endPoint, /* IN: endpoint update happend on */
 zclUIEvent_t event, /* IN: state to update */
 zclAttrId_t attrId,
 zbClusterId_t clusterId,
 void *pData
)
{
 (void) attrId;
 (void) clusterId;
 (void) pData;
 /* no application specific events, let ASL handle all of them */

 switch(event)
 {
 case gZclUI_LdCtrlEvt_c:
 BeeAppHandleLdCtrlEvt(pData);
 break;
 }
}

void BeeAppHandleLdCtrlEvt(void *pData)
{
 zclLdCtrl_EventsTableEntry_t *pEvtData;
 zclCmdDmndRspLdCtrl_LdCtrlEvtReq_t *pEvt;
 /* get the entry data */
 pEvtData = (zclLdCtrl_EventsTableEntry_t *)pData;
 /* get the load control event */
 pEvt = &pEvtData->cmdFrame;
 /* user should process the load control event */
 (void)pEvt;
 switch(pEvtData->CurrentStatus)
 {
 case gSELCDR_LdCtrlEvtCode_CmdRcvd_c:
 break;
 case gSELCDR_LdCtrlEvtCode_Started_c:
 break;
 case gSELCDR_LdCtrlEvtCode_UserHaveToChooseOptOut_c:
 break;
 case gSELCDR_LdCtrlEvtCode_UserHaveToChooseOptIn_c:
 break;
 case gSELCDR_LdCtrlEvtCode_EvtCancelled_c:
 break;
 case gSELCDR_LdCtrlEvtCode_EvtSuperseded_c:
 break;
 case gSELCDR_LdCtrlEvtCode_Completed_c:
 break;
 case gSELCDR_LdCtrlEvtCode_EvtPrtlCompletedWithUserOptOut_c:
 break;
 case gSELCDR_LdCtrlEvtCode_EvtPrtlCompletedWithUserOptIn_c:
 break;
 case gSELCDR_LdCtrlEvtCode_EvtCompletedWithNoUser_c:
 break;
 default:
 break;

 }

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-12 Freescale Semiconductor

}

The following section describes the individual request and process functions, use and prototypes.

Prototype
void ZCL_LdCtrlClientInit(void);

Description

This function initializes the Client Load Control Cluster. This function should be called in the Init function
(BeeAppInit()) if the device support load control.

Prototype
uint8_t FindEventInEventsTable(uint8_t *pEvtId);

Description

This function finds an existing event in the Load Control Table Events (for Client Load Control).

Prototype
extern zbStatus_t ZCL_SendReportEvtStatus
(
afAddrInfo_t *pAddrInfo,
zclCmdDmndRspLdCtrl_LdCtrlEvtReq_t *pMsg,
uint8_t eventStatus,
bool_t invalidValueFlag /* if TRUE sent RES with invalid values for fields */
);

Description

This function sends over the air (to the ESP) a status report of a Load Control event; when an event is
changing its “Current Status”, the Status is signaled to the application and also send to the ESP (from the
Client to Server).

Prototype
void ZCL_AcceptVoluntaryLdCrtlEvt(bool_t flag);

Description

This function accepts (TRUE or FALSE) voluntary load control events and is specific for the Client Load
Control Cluster.

Prototype
uint8_t ZCL_SetOptStatusOnEvent(uint8_t *pEvtId, uint8_t optStatus);

Description

Sends an “Opt” Status for a specify Load Control Event ID.

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-13

Prototype
zbStatus_t ZCL_DmndRspLdCtrlClusterServer(zbApsdeDataIndication_t *pIndication, afDeviceDef_t
*pDev);

Description

It is empty function that is called each time a request is received from the Client (the application should
handle the Client requests in this function).

Prototype
zbStatus_t ZCL_DmndRspLdCtrlClusterClient(zbApsdeDataIndication_t *pIndication, afDeviceDef_t
*pDev);

Description

This function is processing the requests received from the ESP (requests like “Load Control Event
request”, “Cancel Load Control Event request” etc.). If the device support load control commands should
have this function included in the table that defines the list of clusters and functions handlers as follow:
/* list of clusters and function handlers */
afClusterDef_t const gaSEPCTClusterList[] =
{
 { { gaZclClusterBasic_c }, (pfnIndication_t)ZCL_BasicClusterServer, NULL, (void
*)(&gZclBasicClusterAttrDefList) },
 { { gaZclClusterIdentify_c }, (pfnIndication_t)ZCL_IdentifyClusterServer, NULL, (void
*)(&gZclIdentifyClusterAttrDefList) },
 { { gaKeyEstabCluster_c}, (pfnIndication_t)ZCL_KeyEstabClusterServer,(pfnIndication_t)
ZCL_KeyEstabClusterClient, (void *)(&gZclKeyEstabServerAttrDefList) },
 { { gaZclClusterDmndRspLdCtrl_c}, NULL, (pfnIndication_t)ZCL_DmndRspLdCtrlClusterClient,
(void *)(&gZclDRLCClientServerClusterAttrDefList)},
 { { gaZclClusterTime_c}, NULL, NULL, (void *)(&gZcltimeServerClusterAttrDefList)}
};

Prototype
zbStatus_t ZclDmndRspLdCtrl_ReportEvtStatus(zclDmndRspLdCtrl_ReportEvtStatus_t *pReq);

Description

This function sends over the air (to the ESP) a status report of a Load Control event; when an event is
changing its “Current Status”, the Status is signaled to the application and also is sent over the air to the
ESP (from Client to Server).

Prototype
zbStatus_t ZclDmndRspLdCtrl_LdCtrlEvtReq(zclDmndRspLdCtrl_LdCtrlEvtReq_t *pReq);

Description

This function sends over the air a Load Control Event request; the utility company can send Load Control
requests via the ESP to devices that support load control (from Server to Client).

Prototype
zbStatus_t ZclDmndRspLdCtrl_CancelLdCtrlEvtReq (zclDmndRspLdCtrl_CancelLdCtrlEvtReq_t *pReq);

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-14 Freescale Semiconductor

Description

This function sends over the air a Cancel Load Control Event request; the utility company can send Cancel
Load Control requests via the ESP to devices that support load control (from Server to Client).

Prototype
zbStatus_t ZclDmndRspLdCtrl_CancelAllLdCtrlEvtReq (zclDmndRspLdCtrl_CancelAllLdCtrlEvtsReq_t
*pReq);

Description

This function sends over the air a Cancel All Load Control Event request; the utility company can send
Cancel All Load Control requests via the ESP to devices that support load control (from Server to Client).

Prototype
zbStatus_t ZclDmndRspLdCtrl_GetScheduledEvtsReq (zclDmndRspLdCtrl_GetScheduledEvts_t *pReq);

Description

This function sends over the air a Get Scheduled Events request; a device that supports load control can
get the scheduled events from utility company through the ESP (from Client to Server).

2.1.6.2 Price Cluster
The Price Cluster provides the API functions to communicate the price information to Zigbee Smart
Energy or non-Smart Energy devices. This price information is distributed from the utility company to the
devices via the ESP.

The Server Price Cluster just stores and updates the received price information events from the utility
company (the Server Price Cluster is typically implemented by the ESP). If a price update occurs, that price
is sent to all devices that support price updates. A device supports price updates if it has once before sent
a “Get Current Price request” to signal to the ESP that it has the Rx On when Idle. A device that supports
the Server Price Cluster has the capability to respond at the Client requests (“Get Current Price request”
and “Get Scheduled Prices request”).

The Client Price Cluster is implemented by the devices that have the capability to receive and handle the
price information. This devices could be in a a Zigbee Smart Energy or non-Smart Energy network (Home
Automation Profile) and maintain a table of price events with the following fields:

typedef struct publishPriceEntry_tag
{
 zclCmdPrice_PublishPriceRsp_t Price;
 ZCLTime_t EffectiveStartTime;
 uint8_t EntryStatus;
} publishPriceEntry_t;

typedef struct zclCmdPrice_PublishPriceRsp_tag
{
 ProviderID_t ProviderID;
 zclStr12_t RateLabel;
 SEEvtId_t IssuerEvt;

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-15

 ZCLTime_t CurrTime;
 uint8_t UnitOfMeasure;
 Currency_t Currency;
 uint8_t PriceTrailingDigitAndPriceTier;
 uint8_t NumOfPriceTiersAndRgstrTier;
 ZCLTime_t StartTime;
 Duration_t DurationInMinutes;
 Price_t Price;
 uint8_t PriceRatio; /* O */
 Price_t GenerationPrice; /* O */
 uint8_t GenerationPriceRatio; /* O */
} zclCmdPrice_PublishPriceRsp_t;

The Client Price Cluster signals the application when “EntryStatus“ field of a price entry is changing. For
this, the function BeeAppUpdateDevice() is called, passing to the application the corresponding entry
from Price table and issuing the application event gZclUI_PriceEvt_c. The following status of the price
event can occur:
#define gPriceReceivedStatus_c 0x01
#define gPriceStartedStatus_c 0x02
#define gPriceUpdateStatus_c 0x03
#define gPriceCompletedStatus_c 0x04

The following code example shows how to handle the price events in the application:
void BeeAppUpdateDevice
 (
 zbEndPoint_t endPoint, /* IN: endpoint update happend on */
 zclUIEvent_t event, /* IN: state to update */
 zclAttrId_t attrId,
 zbClusterId_t clusterId,
 void *pData
)
{
 (void) attrId;
 (void) clusterId;
 (void) pData;
 /* no application specific events, let ASL handle all of them */

 switch(event)
 {
 case gZclUI_PriceEvt_c:
 BeeAppHandlePrice(pData);
 break;

 }
}

void BeeAppHandlePrice(void *pData)
{
 publishPriceEntry_t *pPriceData;

 pPriceData = (publishPriceEntry_t *)pData;
 /* Print Price Information */
#if gTargetMC1322xNCB
 ASL_PrintPrice(pPriceData);
#endif
 switch(pPriceData->EntryStatus)

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-16 Freescale Semiconductor

 {
 case gPriceReceivedStatus_c:
 break;
 case gPriceStartedStatus_c:
 FLib_MemCpy(¤tPrice, pData, sizeof(publishPriceEntry_t));
 break;
 case gPriceUpdateStatus_c:
 break;
 case gPriceCompletedStatus_c:
 currentPrice.EntryStatus = 0xff;//current price expired (not available)
 BeeAppGetCurrentPrice();//get new price from ESP
 break;
 default:
 break;
 }

The following section describes the individual request and process functions, use and prototypes.

Prototype
void ZCL_PriceClientInit(void);

Description

This function initializes the Client Price Cluster. This function have to be called in the Init function
(BeeAppInit()) if the device support Client Price Cluster.

Prototype
zbStatus_t ZCL_ScheduleServerPriceEvents(zclCmdPrice_PublishPriceRsp_t *pMsg);

Description

This function is specific to the Server Price Cluster and stores and schedules the received price. The Server
Price Cluster doesn't keep track of the price status, only stores the received prices and take care that nested
and overlapping Publish Price commands not to occur. This function is called when prices are received
from the HOST (Test Tool Software) to be stores in the Server Price Cluster.

Prototype
zbStatus_t ZCL_UpdateServerPriceEvents(zclCmdPrice_PublishPriceRsp_t *pMsg);

Description

This function is specific to the Server Price Cluster and updates a store price from the Provider. When new
pricing information is provided that replaces older pricing information for the same time period,
“IssuerEvt” field allows devices to determine which information is newer. It is expected that the value
contained in this field is a unique number managed by upstream servers. Thus, newer pricing information
will have a value in the Issuer Event ID field that is larger than older pricing information.

Prototype
void ZCL_DeleteServerScheduledPrices(void);

Description

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-17

This function deletes all the stores prices from the Server Price Cluster.

Prototype
zbStatus_t ZCL_PriceClusterServer(zbApsdeDataIndication_t *pIndication, afDeviceDef_t *pDev);

Description

This function processes the price requests received from a Smart Energy Client device that support price
(process Smart Energy requests like “Get Current Price request” or “Get scheduled Price request”).

Prototype
zbStatus_t ZCL_PriceClusterClient(zbApsdeDataIndication_t *pIndication, afDeviceDef_t *pDev);

Description

This function processes the publish prices received from a Server device (ESP) that support prices (process
Publish Price response).

Prototype
zbStatus_t ZCL_InterPanPriceClusterServer (zbApsdeDataIndication_t *pIndication, afDeviceDef_t
*pDev);

Description

This function processes the Inter-Pan Price requests received from a Client device that support price
(processes requests like “Inter-Pan Get Current Price request” or “Inter-Pan Get scheduled Price request”).

Prototype
zbStatus_t ZCL_InterPanPriceClusterClient(zbApsdeDataIndication_t *pIndication,afDeviceDef_t
*pDev);

Description

This function processes the processes Inter-Pan Publish Price response received from a Server device
(ESP) that support price.

Prototype
zbStatus_t zclPrice_GetCurrPriceReq(zclPrice_GetCurrPriceReq_t *pReq);

Description

This function sends over the air a “Get Current Price request”. This request is sent by a device that supports
the Client Price Cluster to the ESP (the ESP have the prices stored from the utility company).

Prototype
zbStatus_t zclPrice_GetScheduledPricesReq(zclPrice_GetScheduledPricesReq_t *pReq);

Description

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-18 Freescale Semiconductor

This function sends over the air a “Get Scheduled Price request”. This request is sent by a device that
supports the Client Price Cluster to the ESP (the ESP have the prices stored from the utility company).

Prototype
zbStatus_t zclPrice_PublishPriceRsp(zclPrice_PublishPriceRsp_t *pReq);

Description

This function sends over the air a “Publish Price response”. This response is sent when an update price is
made by the ESP (Server Price Cluster) or as a response to a price request made by a device that supports
the Client Price Cluster.

Prototypes
zbStatus_t zclPrice_InterPanGetCurrPriceReq(zclPrice_InterPanGetCurrPriceReq_t *pReq);
zclPrice_t zclPrice_InterPanGetScheduledPricesReq(zclPrice_InterPanGetScheduledPricesReq_t
*pReq);
zbStatus_t zclPrice_InterPanPublishPriceRsp(zclPrice_InterPanPublishPriceRsp_t *pReq);

Description

These functions have the same functionality as the requests functions described before; only the
communication is between devices from different PANs (Inter-Pan communication).

If the application uses the Inter-Pan communication, the Init function (BeeAppInit()) have to register the
function that process the Inter-Pan messages as the following code example:
 #if gInterPanCommunicationEnabled_c
 ZCL_RegisterInterPanClient((pfnInterPanIndication_t)ZCL_InterPanClusterClient);
 #endif

2.1.6.3 Messaging Cluster
This cluster provides API functions for passing text messages between ZigBee devices. The utility
company delivers text messages to ZigBee devices that implement the Client Messaging Cluster via the
ESP that implements the Server Messaging Cluster.

The Server Messaging Cluster (ESP) just passes the text messages received from HOST (Test Tool
Software) to the devices from the network. Also the devices that support Server Messaging Cluster have
the capability to handle the received requests like “Get Last Message request” or “Message Confirmation
request”.

The Client Messaging Cluster process the requests received from the ESP (requests like “Display Message
request”, “Cancel Message request”).

When a text message is received by a device that has implemented the Client Messaging Custer, the
application is signaled calling BeeAppUpdateDevice() function. The application should check in this
function the received application events (gZclUI_MsgDisplayMessageReceived_c or
gZclUI_MsgCancelMessageReceived_c) and process the received message.

The following section describes the individual request and process functions, use and prototypes.

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-19

Prototype
void ZCL_MsgInit(void);

Description

This function have to be called in the Init function (BeeAppInit()) to initialize the messaging cluster.

Prototype
msgAddrInfo_t *ZCL_GetMsgSourceaddrForResponse(void);

Description

This function return the source address information of the device that sent the message so that to confirm
or respond to the sender (msgAddrInfo_t structure provides information that shows if the message was sent
from a different PAN or from the same PAN etc.).

Prototype
zbStatus_t ZCL_MsgClusterClient(zbApsdeDataIndication_t *pIndication, afDeviceDef_t *pDev);

Description

This function processes the requests sent from a Server device (ESP) that support messaging (process
“Display Message request”, “Cancel Message request”).

Prototype
zbStatus_t ZCL_MsgClusterServer(zbApsdeDataIndication_t *pIndication, afDeviceDef_t *pDev);

Description

This function processes the requests sent from a Client device that support messaging (process the
following requests: “Get Last Message request” and “Message Confirmation request”).

Prototype
zbStatus_t ZCL_InterPanMsgClusterClient(zbInterPanDataIndication_t *pIndication, afDeviceDef_t
*pDev);
zbStatus_t ZCL_InterPanMsgClusterServer(zbInterPanDataIndication_t *pIndication, afDeviceDef_t
*pDev);

Description

These functions have the same functionality as the Client and Server message functions described before;
only the communication is between devices from different PANs (Inter-Pan communication).

Prototype
zbStatus_t ZclMsg_DisplayMsgReq(zclDisplayMsgReq_t *pReq);

Description

This function sends over the air a “Display Message request” (from Server (ESP) to Client).

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-20 Freescale Semiconductor

Prototype
zbStatus_t ZclMsg_CancelMsgReq(zclCancelMsgReq_t *pReq);

Description

This function sends over the air a “Cancel Message request” to cancel a displayed message (from Server
(ESP) to Client).

Prototype
zbStatus_t ZclMsg_GetLastMsgReq(zclGetLastMsgReq_t *pReq);

Description

This function sends over the air a “Get Last Message request” (from Client To Server).

Prototype
zbStatus_t ZclMsg_MsgConf(zclMsgConfReq_t *pReq);

Description

This function sends over the air a “Message Confirmation request” (from Client to Server).

Prototype
zbStatus_t ZclMsg_InterPanDisplayMsgReq(zclInterPanDisplayMsgReq_t *pReq);
zbStatus_t ZclMsg_InterPanCancelMsgReq(zclInterPanCancelMsgReq_t *pReq);
zbStatus_t ZclMsg_InterPanGetLastMsgReq(zclInterPanGetLastMsgReq_t *pReq);
zbStatus_t ZclMsg_InterPanMsgConf(zclInterPanMsgConfReq_t *pReq);

Description

These functions have the same functionality as the requests functions described before; only the
communication is between devices from different PANs (Inter-Pan communication).

2.1.6.4 Key Establishment Cluster
This cluster provides attributes and commands to perform mutual authentication and establish keys
between two ZigBee devices.

NOTE
The Key Establishment Cluster requires that an Elliptic Curve
Cryptography (ECC) Library and certificate is acquired.

By default, the BeeStack codebase is NOT delivered with a working ECC library. A working ECC library
must be acquired and placed in the following project folder:
\SolutionName\ProjectName\BeeApps\se

The key establishment is NOT performed if this property is FALSE, and the trust center link key will be
used if available. A valid certificate must be added to the seprofile.c file.

Figure 2-1 shows a successful key establishment process which is handled by the cluster client and server
handler.

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-21

Figure 2-1. Key Establishment Process

The Key Establishment cluster has the following properties that can be configured from BeeKit:
• gEccIncluded_d — Enable support for ECC library
• KeyEstab_DefaultWaitTime_c — The wait time sent in an Terminate Key Establishment request
• gKeyEstab_ConfirmKeyMessageTimeout_c — The Confirm key Time out
• gKeyEstab_EphemeralDataMessageTimeout_c — The Ephemeral Data Message time-out

The following sections describes the individual request and process functions, use and prototypes.

Prototype
bool_t ZCL_InitiateKeyEstab(zbEndPoint_t DstEndpoint,zbEndPoint_t SrcEndpoint, zbNwkAddr_t
DstAddr)

Description

The function initiates an Key establishment process. the Destination address and endpoint of an device
(typically the ESP) must be supplied.

Prototype
zbStatus_t ZCL_KeyEstabClusterServer(zbApsdeDataIndication_t *pIndication, afDeviceDef_t
*pDev)
zbStatus_t ZCL_KeyEstabClusterClient (zbApsdeDataIndication_t *pIndication, afDeviceDef_t
*pDev)

Description

These two functions contain the Key Establishment client and server function handlers. Both contain a
state for handling the client or server state machine of the key establishment exchange.

K ey E stab lism ent In itia te R equest

K ey E stab lism ent In itia te R esponse

E phem era l D ata R equest

E phem era l D ata R esponse

C onfirm K ey R equest

C onfirm K ey response

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-22 Freescale Semiconductor

2.2 ZCL Configurable Properties
The following table lists the configurable ZigBee Cluster Library properties (also called compile-time
options). These properties can be found in the ZclOptions.h file and are configurable through BeeKit.
Disabling some of the requests can make code size smaller.

Table 2-1. ZCL Configurable Properties

Option Description

gHaMaxScenes_c Set number of scenes. Default to 2

gHaMaxSceneSize_c Sets the maximum size in bytes for the storable scene. OnOff light scene require
needs 1 byte, Dimmer light scene requires 11 bytes, Thermostat scene requires
45 bytes.

gZclClusterOptionals_d Enables optional clusters and attributes, as defined by the Home Automation and
ZigBee Cluster Library specifications. Defaults to FALSE.

gZclEnableReporting_c Enable attribute reporting. Attribute read/write are always enabled. Defaults to
FALSE.

gZclEnableOver32BitAttrsReporting_c Enable/disable long attribute types reporting

gZclEnableLongStringTypes_c Enable/disable long string types handling

gZclDiscoverAttrReq_d Enable/disable DiscoverAttrReq

gZclDiscoverAttrRsp_d Enable/disable DiscoverAttrRsp

gASL_ZclIdentifyQueryReq_d Enable/disable IdentifyQueryReq

gASL_ZclIdentifyReq_d Enable/disable IdentifyReq

gASL_ZclGroupAddGroupReq_d Enable/disable GroupAddGroupReq

gASL_ZclGroupViewGroupReq_d Enable/disable GroupViewGroupReq

gASL_ZclGetGroupMembershipReq_d Enable/disable GetGroupMembershipReq

gASL_ZclRemoveGroupReq_d Enable/disable RemoveGroupReq

gASL_ZclRemoveAllGroupsReq_d Enable/disable RemoveAllGroupsReq

gASL_ZclStoreSceneReq_d Enable/disable StoreSceneReq

gASL_ZclRecallSceneReq_d Enable/disable RecallSceneReq

gASL_ZclGetSceneMembershipReq_d Enable/disable GetSceneMembershipReq

gASL_ZclOnOffReq_d Enable/disable OnOffReq

gASL_ZclLevelControlReq_d Enable/disable LevelControlReq

gASL_ZclSceneAddSceneReq_d Enable/disable SceneAddSceneReq

gASL_ZclViewSceneReq_d Enable/disable ViewSceneReq

gASL_ZclRemoveSceneReq_d Enable/disable RemoveSceneReq

gASL_ZclRemoveAllScenesReq_d Enable/disable RemoveAllScenesReq

gASL_ZclCommissioningRestartDeviceRe
quest_d

Enable/disable CommissioningRestartDeviceRequest

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 2-23

gASL_ZclCommissioningSaveStartupPara
metersRequest_d

Enable/disable CommissioningSaveStartupParametersRequest

gASL_ZclCommissioningRestoreStartupP
arametersRequest_d

Enable/disable CommissioningRestoreStartupParametersRequest

gASL_ZclCommissioningResetStartupPar
ametersRequest_d

Enable/disable CommissioningResetStartupParametersRequest

gASL_ZclDisplayMsgReq_d Enable/disable DisplayMsgReq

gASL_ZclCancelMsgReq_d Enable/disable CancelMsgReq

gASL_ZclMsgConfReq_d Enable/disable MsgConfReq

gASL_ZclGetLastMsgReq_d Enable/disable GetLastMsgReq

gASL_ZclInterPanDisplayMsgReq_d Enable/disable InterPanDisplayMsgReq

gASL_ZclInterPanCancelMsgReq_d Enable/disable InterPanCancelMsgReq

gASL_ZclInterPanMsgConfReq_d Enable/disable InterPanMsgConfReq

gASL_ZclInterPanGetLastMsgReq_d Enable/disable InterPanGetLastMsgReq

gASL_ZclRemoveSceneReq_d Enable/disable RemoveSceneReq

gASL_ZclSmplMet_GetProfReq_d Enable/disable GetProfReq

gASL_ZclSmplMet_GetProfRsp_d Enable/disable GetProfRsp

gASL_ZclDmndRspLdCtrl_ReportEvtStatu
s_d

Enable/disable ReportEvtStatus

gASL_ZclDmndRspLdCtrl_LdCtrlEvtReq_
d

Enable/disable LdCtrlEvtReq

gASL_ZclDmndRspLdCtrl_CancelLdCtrlE
vtReq_d

Enable/disable CancelLdCtrlEvtReq

gASL_ZclDmndRspLdCtrl_CancelAllLdCtr
lEvtsReq_d

Enable/disable CancelAllLdCtrlEvtsReq

gASL_ZclPrice_GetCurrPriceReq_d Enable/disable GetCurrPriceReq

gASL_ZclPrice_GetSheduledPricesReq_d Enable/disable GetSheduledPricesReq

gASL_ZclPrice_PublishPriceRsp_d Enable/disable PublishPriceRsp

gASL_ZclPrice_InterPanGetCurrPriceReq
_d

Enable/disable InterPanGetCurrPriceReq

gASL_ZclPrice_InterPanGetSheduledPric
esReq_d

Enable/disable InterPanGetSheduledPricesReq

gASL_ZclPrice_InterPanPublishPriceRsp
_d

Enable/disable InterPanPublishPriceRsp

gASL_ZclInterPanGetLastMsgReq_d Enable/disable InterPanGetLastMsgReq

gASL_ZclKeyEstab_InitKeyEstabReq_d Enable/disable InitKeyEstabReq

Table 2-1. ZCL Configurable Properties (continued)

Option Description

 ZigBee Cluster Library API

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

2-24 Freescale Semiconductor

gASL_ZclKeyEstab_EphemeralDataReq_
d

Enable/disable EphemeralDataReq

gASL_ZclKeyEstab_ConfirmKeyDataReq
_d

Enable/disable ConfirmKeyDataReq

gASL_ZclKeyEstab_TerminateKeyEstabS
erver_d

Enable/disable TerminateKeyEstabServer

gASL_ZclKeyEstab_InitKeyEstabRsp_d Enable/disable InitKeyEstabRsp

gASL_ZclKeyEstab_EphemeralDataRsp_
d

Enable/disable EphemeralDataRsp

gASL_ZclKeyEstab_ConfirmKeyDataRsp
_d

Enable/disable ConfirmKeyDataRsp

gASL_ZclKeyEstab_TerminateKeyEstabCl
ient_d

Enable/disable TerminateKeyEstabClient

gASL_ZclSE_RegisterDevice_d Enable/disableRegisterDevice

gASL_ZclSE_DeRegisterDevice_d Enable/disable DeRegisterDevice

gASL_ZclSE_InitTime_d Enable/disable InitTime

Table 2-1. ZCL Configurable Properties (continued)

Option Description

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 3-1

Chapter 3
Adding Custom Devices, Clusters and Attributes
The BeeStack ZigBee Cluster Library implementation is largely table driven. Only that code which is used,
as described by the device, cluster and attribute definitions is included in any given application. Key points
are

• Endpoints include device definitions
• Device definitions include cluster definitions
• Cluster definitions include attribute definitions
• The application endpoint code must have special handlers for adding, viewing and recalling scenes.

3.1 Device Definitions
The device definitions are referred to in the EndpointConfig.c file, but are actually defined in an
application specific endpoint files, such as HaOnOffLightEndPoint.c.

Device definitions include a pointer to an instance structure that defines the RAM data per instance of the
device. For example, if a node contained three separately controllable lights, there would be three device
definitions pointing to three separate instances of the light’s data. Cluster and attribute definitions are the
same for all instances.

The device definition includes the following fields:
typedef struct afDeviceDef_tag
{
 pfnIndication_t pfnZCL; /* ptr to handler to bring in code */
 uint8_t clusterCount; /* # of clusters in the list */
 afClusterDef_t *pClusterDef; /* a list of clusters */
 uint8_t reportCount; /* # of items in the report */
 void *pReportList; /* a list of reportable attributes */
 void *pData; /* instance data */
} afDeviceDef_t;

The device definition includes a count of clusters and the cluster definitions, a list of reportable attributes
(if any), and a pointer to the instance data.

NOTE
ZigBee does not specify device or cluster definition fields. This is an
implementation specific detail to implement the specified over-the-air
behavior of the ZigBee Cluster Library.

 Adding Custom Devices, Clusters and Attributes

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

3-2 Freescale Semiconductor

3.2 Cluster Definitions
Cluster definitions define a particular cluster and lead to its attribute list. The cluster definition looks as
follows:
typedef struct afClusterDef_tag
{
 zbClusterId_t aClusterId; /* cluster ID */
 pfnIndication_t pfnServerIndication; /* server indication handler for this cluster */
 pfnIndication_t pfnClientIndication; /* client indication handler for this cluster */
 void *pAttrList; /* ptr to attribute list (zclAttrDefList_t) */
 uint8_t dataOffset; /* offset of this cluster's data within instance data */
} afClusterDef_t;

The cluster ID is specified by the ZigBee Cluster Library and is always stored little-endian, the same as it
is over-the-air (that is, cluster 0x0001 would be stored as 0x01,0x00).

NOTE
The HCS08 is big-endian.

The indication function lists the handler that will handle data indications for this cluster (for example, the
scene cluster uses ZCL_SceneClusterServer().

3.3 Attribute Definitions
An attribute definition includes:
typedef struct zclAttrDef_tag
{
 zclAttrId_t id; /* attribute ID, cluster specific */
 zclAttrType_t type; /* attribute type (see 8.2 in ZCL Foundation) */
 zclAttrFlags_t flags; /* attribute flags */
 uint8_t maxLen; /* max length for strings */
 zclAttrData_t data; /* ptr to data, or the data itself or offset */
} zclAttrDef_t;

Attributes include an identifier and a type as defined by the ZigBee Cluster Library. The flags are unique
to BeeStack and allow BeeStack to be more efficient on RAM usage or indicate certain properties of the
attributes. The possible flags are:

• gZclAttrFlagsInROM_c - in ROM only (not in RAM) (implies RdOnly, strings are C encoded)
• gZclAttrFlagsInLine_c - attribute is in-line in ROM (not pointed to)
• gZclAttrFlagsCommon_c - in RAM, stared among endpoints
• gZclAttrFlagsInRAM_c - in the RAM data set (one per endpoint), not reportable
• gZclAttrFlagsReportable_c - Can this attribute be reported? (also add to reportable list)
• gZclAttrFlagsRdOnly_c - in RAM, but attribute is read only (defaults to RD/WR). This is a

modifier to the above flags.
• gZclAttrFlagsInSceneTable_c - the attribute is specified in the scene table extension
• gZclAttrFlagsWrOnly_c - the attribute is write only.
• gZclAttrFlagsDefinedOutOfBand_c - the attribute is defined using an out-of-band

method and not over the air.

 Adding Custom Devices, Clusters and Attributes

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

Freescale Semiconductor 3-3

• gZclAttrFlagsNwkSecurityRequired_c – needs security to access the attribute
• gZclAttrFlagsApsLinkKeySecurityRequired_c – needs Link Key to access the attribute
• gZclAttrFlagsAsynchronous_c - ZCL code will not read the attribute and send the response

automatically, it must be done by the application.

The maxLen field is used only for strings and specifies their maximum (as opposed to current) length.

The data is variable, but if the data is small (16-bits or less) and read-only, then it may be in-line using the
gZclAttrFlagsInLine_c flag.

3.4 Adding an Attribute
Adding an attribute takes a number of steps. This example shows how to add a new custom attribute to the
on/off cluster. The attribute indicates whether the light is working or not (or is non-functioning, such as a
burnt out bulb).

1. Add the attribute to the attribute definitions for the cluster. For example, to add an attribute to the
OnOff Cluster, the following code was added. This code can be found in ZclGeneral.c.

const zclAttrDef_t gaZclOnOffClusterAttrDef[] = {
{ gZclAttrOnOff_OnOffId_c, gZclDataTypeBool_c,
 ZclAttrFlagsInRAM_c|gZclAttrFlagsRdOnly_c| gZclAttrFlagsReportable_c,
 sizeof(uint8_t), (void *)MbrOfs(zclOnOffAttrsRAM_t, onOff) },
{ gZclAttrOnOff_Working_c, gZclDataTypeBool_c, gZclAttrFlagsInRAM_c,
 sizeof(uint8_t), (void *)MbrOfs(zclOnOffAttrsRAM_t, working) }
};

Notice that the type and size of the attribute are specified in addition to the attribute identifier. Also notice
the offset within the zclOnOffAttrsRAM_t structure. The ZigBee Cluster Library knows how to find the
data item by using the following formula:

Offset to variable = Pointer to instance data (in device definition) +
offset within instance data to cluster data (in cluster definition) +
offset within cluster data to attribute data (in attribute definition)

2. Update the clusters RAM data structure, adding in the new attribute field. This code can be found
in ZclGeneral.h.
typedef struct zclOnOffAttrsRAM_tag
{
 uint8_t onOff[zclReportableCopies_c];
 uint8_t working;
} zclOnOffAttrsRAM_t;

The field “working” was added to the structure, as specified in the attribute definition. However, unlike
the OnOff attribute, “working” only has one copy. The OnOff attribute requires three fields to represent
the attribute because it is reportable. The “working” field is not reportable and so needs only one field.

The reportable attributes need three copies because they can be reported on change in value, so there is one
field for the current value, one field for the old value, and one field for the difference required before a
report will be issued.

 Adding Custom Devices, Clusters and Attributes

ZigBee™ Cluster Library Reference Manual, Rev. 1.2

3-4 Freescale Semiconductor

3.5 Adding a Second Device Instance
This section describes adding a second device instance (a separate endpoint). For example, a single ZigBee
node may contain multiple lights.

This example will add a second light to an OnOffLight application. This example assumes the reader is
proficient in the C programming language.

1. Create a new project from the HaOnOffLight template.
2. Add the second endpoint (including simple descriptor).

For this step, open the file EndPointConfig.c.
• Make a copy of the Endpoint8_simpleDescriptor structure, and call it

Endpoint9_simpleDescriptor, changing the endpoint # (the first field) to 9.
• Make a copy of the Endpoint8_EndPointDesc and call it Endpoint9_EndPointDesc and make sure

the first field points to the Endpoint9_simpleDescriptor.
• Add a new entry in the endPointList structure that looks like the following

{&Endpoint9_EndPointDesc, &gHaOnOffLightDeviceDef9}
3. Update number of endpoints in EndPointConfig.h. This will ensure the application registers the

endpoint. See BeeAppInit()
• Set gNum_EndPoints_c to 2.
4. Add new data instance to HaOnOffLightEndPoint.
• Make a copy of the structure gHaOnOffLightData, and call it gHaOnOffLightData9
• Make a copy of the structure called gHaOnOffLightDeviceDef and call it

gHaOnOffLightDeviceDef9. Make sure the last field in field in gHaOnOffLightDeviceDef is
modified to point to gHaOnOffLightData9 (the new instance of the HaOnOffLight device).

5. Modify BeeApp.c for the HaOnOffLight to include code support for the new light.

Modify the function BeeAppUpdateDevice(). Within the template, the endpoint is ignored. Update the
case gZclUI_Off_c and the case gZclUI_On_c to use another LED (perhaps 4?) or some other
mechanism for the second endpoint.

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	Reference Materials
	Chapter 1 Introduction
	1.1 ZigBee Cluster Library Concepts
	1.2 Home Automation and Smart Energy Devices
	1.3 ZCL Clusters and Attributes

	Chapter 2 ZigBee Cluster Library API
	2.1 ZCL API Overview
	2.1.1 ZCL_Init
	2.1.2 ZCL_Reset
	2.1.3 ZCL_Register
	2.1.4 ZCL_InterpretFrame
	2.1.5 ZCL Requests
	2.1.6 Smart Energy (SE) Cluster Description

	2.2 ZCL Configurable Properties

	Chapter 3 Adding Custom Devices, Clusters and Attributes
	3.1 Device Definitions
	3.2 Cluster Definitions
	3.3 Attribute Definitions
	3.4 Adding an Attribute
	3.5 Adding a Second Device Instance

