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About This Book 
The primary objective of this reference manual is to define the processor for software and hardware 
developers. The information in this book is subject to change without notice, as described in the 
disclaimers on the title page. As with any technical documentation, the reader must use the most recent 
version of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at 
http://www.nxp.com/coldfire.

Portions of Chapter 23, “Universal Serial Bus Interface – Host Module,” and Chapter 24, “Universal Serial 
Bus Interface – On-The-Go Module,”relating to the EHCI specification are Copyright © Intel Corporation 
1999-2001. The EHCI specification is provided “As Is” with no warranties whatsoever, including any 
warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty 
otherwise arising out of any proposal, specification or sample. Intel disclaims all liability, including 
liability for infringement of any proprietary rights, relating to use of information in the EHCI specification. 
Intel may make changes to the EHCI specifications at any time, without notice. 

Audience

This manual is intended for system software and hardware developers and applications programmers who 
want to develop products with this ColdFire processor. It is assumed that the reader understands operating 
systems, microprocessor system design, basic principles of software and hardware, and basic details of the 
ColdFire® architecture.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as 
general information about ColdFire architecture. 

General Information

Useful information about the ColdFire architecture and computer architecture in general:

• ColdFire Programmers Reference Manual (MCF5200PRM/AD)

• Using Microprocessors and Microcomputers: The Motorola Family, William C. Wray, Ross 
Bannatyne, Joseph D. Greenfield 

• Computer Architecture: A Quantitative Approach, Second Edition, by John L. Hennessy and David 
A. Patterson.

• Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A. 
Patterson and John L. Hennessy.

http://www.freescale.com/coldfire
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ColdFire Documentation

ColdFire documentation is available from the sources listed on the back cover of this manual, as well as 
our web site, http://www.nxp.com/coldfire.

• Reference manuals — These books provide details about individual ColdFire implementations and 
are intended to be used in conjunction with the ColdFire Programmers Reference Manual.

• Data sheets — Data sheets provide specific data regarding pin-out diagrams, bus timing, signal 
behavior, and AC, DC, and thermal characteristics, as well as other design considerations.

• Product briefs — Each device has a product brief that provides an overview of its features. This 
document is roughly equivalent to the overview (Chapter 1) of an device’s reference manual.

• Application notes — These short documents address specific design issues useful to programmers 
and engineers working with NXP Semiconductor processors.

Additional literature is published as new processors become available. For a current list of ColdFire 
documentation, refer to http://www.nxp.com/coldfire.

Conventions

This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of 
one, it is said to be set.

MNEMONICS In text, instruction mnemonics are shown in uppercase. 

mnemonics In code and tables, instruction mnemonics are shown in lowercase. 

italics Italics indicate variable command parameters.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

REG[FIELD] Abbreviations for registers are shown in uppercase. Specific bits, fields, or ranges 
appear in brackets. For example, RAMBAR[BA] identifies the base address field 
in the RAM base address register. 

nibble A 4-bit data unit

byte An 8-bit data unit

word A 16-bit data unit1

longword A 32-bit data unit

x In some contexts, such as signal encodings, x indicates a don’t care.

n Used to express an undefined numerical value

~ NOT logical operator

& AND logical operator

| OR logical operator
1The only exceptions to this appear in the discussion of serial communication modules that support variable-length data 

transmission units. To simplify the discussion these units are referred to as words regardless of length.

http://www.freescale.com/coldfire/
http://www.freescale.com/coldfire/
http://www.freescale.com/coldfire/
http://www.freescale.com/coldfire/
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|| Field concatenation operator

OVERBAR An overbar indicates that a signal is active-low.

Register Figure Conventions

This document uses the following conventions for the register reset values:

— Undefined at reset.

u Unaffected by reset.

[signal_name] Reset value is determined by the polarity of the indicated signal.

The following register fields are used:

R 0 Indicates a reserved bit field in a memory-mapped register. These bits are always read as zeros.

W

R 1 Indicates a reserved bit field in a memory-mapped register. These bits are always read as ones.

W

R FIELDNAME Indicates a read/write bit.

W

R FIELDNAME Indicates a read-only bit field in a memory-mapped register.

W

R Indicates a write-only bit field in a memory-mapped register.

W FIELDNAME

R FIELDNAME Write 1 to clear: indicates that writing a 1 to this bit field clears it.

W w1c

R 0 Indicates a self-clearing bit.

W FIELDNAME
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Chapter 1  
Overview

1.1 Introduction
The MCF5441x devices are a family of highly-integrated 32-bit microprocessors based on the Version 4m 
ColdFire microarchitecture, comprising of the V4 integer core, memory management unit (MMU) and 
enhanced multiply-accumulate unit (EMAC). This product line is well-suited for processing data from and 
moving data between a variety of common serial interfaces (CAN, I2C, SSI, SPI, UART, and USB) and 
Ethernet networks, especially for factory automation, process control, and motor control applications. 
Support for low-cost memory and connectivity options also make this family ideal for a range of consumer 
digital lifestyle products.

All MCF5441x devices operate at up to 250 MHz and include 64 Kbytes of single-cycle SRAM, memory 
controllers for DDR2 SDRAM and NAND flash, the highly configurable FlexBus for interfacing 
components like NOR flash, SRAM, and programmable logic devices (FPGAs and CPLDs), a 64-channel 
DMA controller, and serial memory boot and configuration support.

Communications peripheral interfaces include: USB host and On-the-Go controllers with integrated 
full-speed/low-speed transceivers and a switchable port for an external ULPI high-speed PHY, dual smart 
card ports, an enhanced controller for MMC, MMCplus, SD, and SDHC memory cards, dual CAN 
modules, a pair of synchronous serial interfaces, a 1-wire interface for low speed communication to 
devices (thermostats, batteries, etc.) and a maximum of ten UARTs, six I2C controllers, and four DMA 
serial peripheral interfaces.

Unique to the MCF5441x family is a flexible 10/100 Mbps Ethernet subsystem configurable as: a single 
media access controller (MAC) with a media independent interface (MII) or reduced MII (RMII), a pair 
of MACs with dual RMIIs, or, on specific devices, as a 3-port switch with two external ports and the third 
port internally connected to the processor. The Ethernet MACs incorporate hardware CRC 
checking/generation and Magic Packet power management. The entire Ethernet subsystem supports the 
IEEE 1588-2002 standard, a precision clock synchronization protocol for networked measurement and 
control systems. Certain MCF5441x family members also include the cryptographic acceleration unit 
(CAU), a CPU coprocessor for the DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms 
implemented in network security protocols like SSL and IPsec.

Additional features include four 32-bit timers that can optionally be linked to the Ethernet subsystem's 
IEEE 1588 timestamp logic for network-triggered event recognition and generation, a flexible 
multi-channel pulse width modulation timer suitable for motor control which can also be linked to the 
IEEE 1588 timestamp logic for synchronizing motors through Ethernet, a fast, 12-bit analog-to-digital 
converter (ADC) with 8-shared input channels capable of simultaneous parallel conversions, and two 
12-bit digital-to-analog converters (DACs). The standard 17 mm 17 mm 256-ball MAPBGA package 
has a 1 mm ball pitch and can be escape-routed on 4-layer printed circuit boards.
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1.2 MCF5441x Family Comparison
The following table compares the various device derivatives available within the MCF5441x family.

Table 1-1. MCF5441x family configurations

Module MCF54410 MCF54415 MCF54416 MCF54417 MCF54418

Version 4 ColdFire core with EMAC (enhanced 
multiply-accumulate unit) and MMU (memory 
management unit)

    

Cryptography acceleration unit (CAU) — —  — 

Core (system) and SDRAM clock up to 250 MHz

Peripheral clock
(Core clock  2)

up to 125 MHz

External bus (FlexBus) clock up to 100 MHz

Performance (Dhrystone 2.1 MIPS) up to 385

Static RAM (SRAM) 64 Kbytes

Independent data/instruction cache 8 Kbytes each

USB 2.0 Host controller —    

USB 2.0 Host/Device/On-the-Go controller     

UTMI+ Low Pin Interface (ULPI) for external 
high-speed USB PHY

—    

10/100 Mbps Ethernet controller with IEEE 1588 
support

1 2 2 2 2

Level 2 IEEE 1588-compliant 3-port Ethernet 
switch

— — —  

Enhanced Secure Digital host controller (eSDHC)     

Smart card/Subscriber Identity Module (SIM) — 2 ports 2 ports 2 ports 2 ports

UARTs 6 10 10 10 10

DSPI 3 4 4 4 4

CAN 2.0B controllers 1 2 2 2 2

I2C 4 6 6 6 6

Synchronous serial interface (SSI) 1 2 2 2 2

12-bit ADC —    

12-bit DAC — 2 2 2 2

32-bit DMA timers 4 4 4 4 4

Periodic interrupt timers (PIT) 4 4 4 4 4

Motor control PWM timer (mcPWM) — 8 channel 8 channel 8 channel 8 channel

64-channel DMA controller     
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Real-time clock with 2 KB standby RAM and 
battery back-up input

    

DDR2 SDRAM controller     

FlexBus external memory controller     

NAND flash controller     

1-Wire® interface     

Serial boot facility     

Watchdog timer     

Interrupt controllers (INTC) 3 3 3 3 3

Edge port module (EPORT) 3 IRQs 5 IRQs 5 IRQs 5 IRQs 5 IRQs

Rapid GPIO pins 9 16 16 16 16

General-purpose I/O (GPIO) pins 48 87 87 87 87

JTAG - IEEE® 1149.1 Test Access Port     

Package 196
MAPBGA

256
MAPBGA

Table 1-1. MCF5441x family configurations (continued)

Module MCF54410 MCF54415 MCF54416 MCF54417 MCF54418
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1.3 Block Diagram
Figure 1 shows a top-level block diagram of the MCF5441x superset device.

Figure 1. MCF5441x Block Diagram

Peripheral Bus Controller 1

mcPWM

GPIO

4 I2Cs

1 Wire

Version 4 ColdFire Core

PLL PLL

ADC – Analog-to-digital converter
BDM – Background debug module
CAU – Cryptography acceleration unit
DAC – Digital-to-analog
DSPI – DMA serial peripheral interface
eDMA – Enhanced direct memory access module
eSDHC – Enhanced Secure Digital host controller
EMAC – Enchanced multiply-accumulate unit
EPORT – Edge port module
GPIO – General purpose input/output module
I2C – Inter-Integrated Circuit

INTC – Interrupt controller
JTAG – Joint Test Action Group interface
mcPWM – Motor control pulse width modulator
PIT – Programmable interrupt timers
PLL – Phase locked loop module
RGPIO – Rapid GPIO
RNG – Random number generator
RTC – Real time clock
SSI – Synchronous serial interface
USB OTG – Universal Serial Bus On-the-Go controller
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Divide
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1.4 Operating Parameters
• –40ºC to 85ºC ambient temperature

• 1.2V Core, 3.3V I/O, 1.8–3.3V external memory bus

1.5 Packages
Depending on device, the MCF5441x family is available in the following packages:

• 196-pin molded array process ball grid array (MAPBGA)

• 256-pin molded array process ball grid array (MAPBGA)

1.6 Chip Level Features
• Version 4 ColdFire® Core with EMAC and MMU

• Up to 385 Dhrystone 2.1 MIPS @ 250 MHz

• 8 Kbytes instruction cache and 8 Kbytes data cache

• 64 Kbytes internal SRAM dual-ported to processor local bus and other crossbar switch masters

• System boot from NOR, NAND, SPI flash, EEPROM, or FRAM

• Crossbar switch technology (XBS) for concurrent access to peripherals or RAM from multiple bus 
masters

• 64-channel DMA controller

• SDRAM controller supporting full-speed operation from a single x8 DDR2 component up to 
250 MHz

• 32-bit FlexBus external memory interface for RAM, ROM, MRAM, and programmable logic

• USB 2.0 host controller

• USB 2.0 host/device/On-the-Go controller

• 8-bit single data rate ULPI port usable by the dedicated USB host module or the USB 
host/device/OTG module

• Dual 10/100 Ethernet MACs with hardware CRC checking/genration, IEEE 1588-2002 support 
support, and optional Ethernet switch

• CPU direct-attached hardware accelerator for DES, 3DES, AES, MD5, SHA-1, and SHA-256 
algorithms

• Random number generator

• Enhanced Secure Digital host controller for SD, SDHC, SDIO, MMC, and MMCplus cards

• Two ISO7816 smart card interfaces

• Two FlexCAN modules

• Six I2C bus interfaces with DMA support in master mode

• Two synchronous serial interfaces

• Four 32-bit timers with DMA support

• Four programmable interrupt timers

• 8-channel, 16-bit motor control PWM timer
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• Dual 12-bit ADCs with shared input channels and multiple conversion trigger sources

• Dual 12-bit DACs with DMA support

• 1-wire module with DMA support

• NAND flash controller

• Real-time clock with 32-kHz oscillator, 2 KB standby SRAM, and battery backup supply input

• Up to four DMA-supported serial peripheral interfaces (DSPI)

• Up to ten UARTs with single-wire mode support

• Up to five external IRQ interrupts and 2 external DMA request/acknowledge pairs

• Up to 16 processor local bus Rapid GPIO pins

• Up to 87 standard GPIO pins

1.7 Module-by-Module Feature List
The following is a brief summary of the functional blocks in the MCF54418 superset device. For more 
details refer to the MCF54418 ColdFire Microprocessor Reference Manual (MCF54418RM).

1.7.1 Version 4 ColdFire Variable-Length RISC Processor
• Static CMOS operation

• 32-bit address and data path on-chip

• Maximum 250 MHz processor core and 125 MHz bus frequency

• Sixteen total general-purpose 32-bit address and data registers

• Enhanced multiply-accumulate unit (EMAC) for DSP and fast multiply operations

• Hardware divide execution unit supporting various 32-bit operations

• Virtual memory management unit (MMU) providing virtual-to-physical address translation and 
memory access control

• Implements the ColdFire Instruction Set Architecture, ISA_C

1.7.2 On-chip Memories

• 64 Kbyte dual-ported SRAM on CPU internal bus

— Accessible to non-core bus masters (e.g. DMA, USB modules, and Ethernet subsystem) via the 
crossbar switch

• Non-blocking, independent 8-KB data and instruction caches organized as 4-way set associative 
with 16 bytes per cache line and 512 cache lines, supporting copy-back and write-through modes

1.7.3 Phase Locked Loop (PLL) and Crystal Oscillator
• 14–50 MHz input clock

• Programmable frequency multiplication factor settings generating voltage-controlled oscillator 
(VCO) frequencies from 240–500 MHz, resulting in a core frequency of 7.5 MHz (fvco  32) to 
250 MHz (maximum rated frequency).
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• Loss-of-lock and loss-of-clock detection and reset

• Direct clocking of system by input clock, bypassing the PLL

1.7.4 Power Management
• Fully static operation with processor sleep and whole chip stop modes

• Limp mode for very low frequency operation while major peripherals are disabled

• Rapid response to interrupts from the low-power sleep mode (wake-up feature)

• Peripheral power management register to enable/disable clocks to most modules

• Software controlled disable of external clock input for low power consumption

• Battery backup supply for RTC and 2 KB standby SRAM for when main processor supply is 
removed

1.7.5 Chip Configuration Module (CCM)
• System configuration during reset

• Bus monitor, abort monitor

• Part identification number and part revision number

• Serial boot and configuration capability

— Supports SPI-compatible EEPROM, flash, and FRAM

— Pre-boot control of multiple chip configuration options

1.7.6 Reset Controller

• Separate reset in and reset out signals

• Seven sources of reset: power-on reset (POR), external, software, watchdog timer, loss of lock, loss 
of clock, JTAG instruction

• Status flag indication of source of last reset

1.7.7 System Control Module

• Access control registers

• Watchdog timer with 2n (where n = 8–31) clock cycle selectable timeout period

• On-chip watchdog timer sourced from RTC or system clock

• Core fault reporting

1.7.8 Crossbar Switch
• Concurrent access from different masters to different slaves

• Slave arbitration attributes configured on a per basis

• Fixed or round-robin arbitration
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1.7.9 Universal Serial Bus (USB) Host Controller
• Fully compliant with the Universal Serial Bus Specification, Revision 2.0

• Support for full speed (FS = 12 Mbps) and low speed (LS = 1.5 Mbps) with on-chip FS/LS 
transceiver

• Compatible with the Enhanced Host Controller Interface (EHCI) Specification for Universal 
Serial Bus, Revision 1.0

• Connects to external 5V power control chip for downstream power

• Optional UTMI+ Low Pin Interface (ULPI) to support high speed (HS = 480 Mbps) transfers with 
external PHY, shared with USB OTG module

• Uses 60 MHz reference clock based off of the system clock or from an external pin

1.7.10 Universal Serial Bus (USB) 2.0 On-The-Go (OTG) Controller
• Fully compliant with the Universal Serial Bus Specification, Revision 2.0 and On-The-Go 

Supplement to the USB 2.0 Specification, Revision 1.0a

• Support for full speed (FS) and low speed (LS) via on-chip FS/LS transceiver in host mode

• Compatible with the Enhanced Host Controller Interface (EHCI) Specification for Universal 
Serial Bus, Revision 1.0 (host mode)

• Connects to external 5V power control chip for downstream power (host mode)

• Support for full speed with on-chip transceiver in device mode

• Optional UTMI+ Low Pin Interface (ULPI) to support high speed (HS = 480 Mbps) transfers with 
external PHY, shared with USB host module

• Connects to external OTG charge pump and resistor chip via I2C bus

• Uses 60 MHz reference clock based off of the system clock or from an external pin

1.7.11 DDR SDRAM Controller
• Supports glueless interface to DDR2 SDRAM devices

• 8-bit wide memory port runs at the CPU clock frequency to deliver up to 500 MBps of memory 
bandwith at 250 MHz

• Unique interface design reduces memory subsystem cost to the cost of a single x8 commodity 
DDR2 component while delivering performance equivalent to a 32-bit wide single data rate 
SDRAM subsystem running at up to 125 MHz and requiring two x16 or four x8 components

• Innovative controller uses two crossbar switch slave ports, multiple read/write queues, and 
intelligent transfer ordering to maximize memory channel utilization and reduce multi-master 
access latency

• 16 bytes critical word first burst transfer

• Up to 15 lines of row address, up to 12 column address lines, 8 banks (3-bits), and one chip select

• Supports 16, 32, 64, 128, or 256 MB of memory using a single 16M  8 (128 Mb), 32M  8 
(256 Mb), 64M  8 (512 Mb), 128M  8 (1 Gb), or 256M  8 (2 Gb) component

• Supports page mode to maximize the data rate
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• Supports sleep mode and self-refresh mode

1.7.12 FlexBus (External Interface)

• 32-bit external bidirectional multiplexed address/data bus

• Glueless connections to 8-, 16-, and 32-bit external memory devices (SRAM, flash, ROM, etc.)

• Support for independent primary and secondary wait states per chip select

• Programmable address setup and hold time with respect to chip-select assertion, per transfer 
direction

• Glueless interface to SRAM devices with or without byte strobe inputs

• Supports asynchronous and synchronous memories with a dedicated address latch signal available

• Programmable wait state generator

• Up to six chip selects available

• Byte/write enables (byte strobes)

• Ability to boot from external memories that are 8, 16, or 32 bits wide

1.7.13 Ethernet Assembly
• On-chip layer 2 (L2) Ethernet switch

— 3-port switch (one port internal to the switch core)

— IEEE 1588 support

— Fast cut-through mode

— QoS with 8 queues per port

— Port mirroring

— Level 3 IP snooping

— Link aggregation

• Two Ethernet controllers with 10/100 BaseT/TX capability; half duplex or full duplex

— Hardware support for IEEE Standard for a Precision Clock Synchronization Protocol for 
Networked Measurement and Control Systems, IEEE 1588

— Media independent interface (MII) and reduced media independent interface (RMII) support

• Built-in unified DMA

— On-chip transmit and receive FIFOs

— Supports legacy buffer descriptor programming models and functionality

— Enhanced buffer descriptor programming model for new Ethernet functionality

• Supports wake-up from low power mode through magic packets

• During chip reset, ability to route traffic from one port to another

• Multiple clock source options for time-stamping clock
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1.7.14 Cryptography Acceleration Unit (CAU)
• Instruction-level coprocessor

• Supports DES, 3DES, AES, MD5, SHA-1, and SHA-256

1.7.15 Random Number Generator

• National Institute of Standards and Technology (NIST)-approved pseudo-random number 
generator

• Supports the key generation algorithm defined in the Digital Signature Standard

• Integrated entropy sources capable of providing the PRNG with entropy for its seed.

1.7.16 Secure Digital Host Controller (SDHC)

• Compatible with the following specifications:

— SD Host Controller Standard Specification, Version 2.0 (www.sdcard.org)

— MultiMediaCard System Specification, Version 4.2 (www.mmca.org)

— SD Memory Card Specification, Version 2.0 (www.sdcard.org)

— SDIO Card Specification, Version 2.0 (www.sdcard.org)

— CE-ATA Card Specification, Version 1.0 (www.sdcard.org)

• Designed to work with CE-ATA, SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, 
MMC, MMC plus, MMC 4x, and MMC RS cards

• SD bus clock up to 52 MHz

• Supports 1- and 4-bit SD and SDIO modes, 1-, 4-, and 8-bit MMC modes, and 1-, 4-, and 8-bit 
CE-ATA devices

• Contains a fully configurable 128 x 32-bit FIFO for read/write data 

1.7.17 Subscriber Identity Module (SIM) 
• Two ISO7816 smart card interfaces

• Internal one-wire interface

• Programmable clock divisor

• Fourteen total interrupt sources (six transmit, six receive, two control functions)

1.7.18 Synchronous Serial Interfaces (SSI)
• Two SSIs each support shared (synchronous) transmit and receive sections

• Normal mode operation using frame sync

• Network mode operation allowing multiple devices to share the port with as many as 32 time slots

• Gated clock mode operation requiring no frame sync

• Programmable data interface modes such as I2S, LSB aligned, and MSB aligned

• Programmable word length up to 24 bits
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• AC97 support

1.7.19 FlexCAN Modules

• Two FlexCAN modules support the full implementation of the CAN Specification Version 2.0, Part 
B

— Standard data and remote frames (up to 109 bits long)

— Extended data and remote frames (up to 127 bits long)

— 0–8 bytes data length

— Programmable bit rate up to 1 Mbit/sec

• Flexible message buffers (MBs), totalling up to 16 message buffers of 0–8 bytes data length each, 
configurable as Rx or Tx, all supporting standard and extended messages

• Unused MB space can be used as general purpose RAM space

• Listen-only mode capability

• Content-related addressing

• Three programmable mask registers: global (MBs 0–13), special for MB14 and special for MB15

• Programmable transmit-first scheme: lowest ID or lowest buffer number

• Time stamp based on 16-bit free-running timer

• Global network time, synchronized by a specific message

1.7.20 Analog-Digital Converters (ADC)
• Two 4-channel, 12-bit ADCs with sequential and parallel sampling

• Software, external, and on-chip (such as mcPWM and DMA timers) triggered conversions

• DMA interface to the on-chip 64 channel DMA controller

• Supports multiple low power modes, including auto-power down

1.7.21 Digital-Analog Converters (DAC)
• Dual 12-bit DACs

• DMA interface to the on-chip 64 channel DMA controller

• High-/low-speed programmable operation

• Software, external, and on-chip (such as mcPWM and DMA timers) triggered conversions

• Automatic waveform generation, including square, triangle, and sawtooth

• DAC output connected to the on-chip ADC for digital to digital comparison for debug

1.7.22 NAND Flash Controller
• 8- or 16-bit NAND flash interface

• Internal 9-KByte RAM buffer configurable as boot RAM

• Supports all NAND flash products regardless of density/organization
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• Automatic write protection during power-up

• Handshaking to indicate ready/busy status

• Supports time division multiplexing external memory interface (FlexBus) cycles with long access 
times of NAND flash devices

• Integrated DMA engine to support self-initiated data transfer from NAND flash to system memory 
or any slave devices on crossbar switch

1.7.23 1-Wire Interface
• Communicates with an external 1-Wire device as defined by Maxim

• Clock divider to generate the bus reference clock from the peripheral bus clock

• DMA interface to the on-chip 64 channel DMA controller

1.7.24 Robust Real Time Clock
• Full clock: hours, minutes, and seconds with storing option

• Calendar: day, month, year, and day of the week with storing option

• Automatic adjustment for daylight savings with user-defined parameters

• Automatic month and leap year adjustment

• Programmable alarm with interrupt

• Eight periodic interrupts

• Minute stopwatch

• Once-per-day, once-per-hour, once-per-minute, and once-per-second interrupts

• Operation determined by reference input oscillator clock frequency and value programmed into 
user-accessible registers

• Ability to wake the processor from low-power modes (wait, doze, and stop) via the RTC interrupts

— The RTC is enabled during stop mode

• Battery operation (standby mode) ensures seamless operation when processor power is removed

• Protection against tampering and spurious memory/register updates

• Supports hardware compensation to improve accuracy against crystal frequency variations

• Dedicated 2 KB RAM for storing the system contents during standby operation when processor 
power is removed

• Built-in write protection prevents tampering

1.7.25 Programmable Interrupt Timers (PIT)
• Four programmable interrupt timers each with a 16-bit counter

• Configurable as a down counter or free-running counter
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1.7.26 DMA Timers
• Four 32-bit timers with DMA and interrupt request trigger capability

• Input capture and reference compare modes

• Support for the Ethernet assembly’s IEEE 1588 timebase and count values

• Programmable delay support

1.7.27 DMA Serial Peripheral Interfaces (DSPI)
• Four DSPIs with up to four chip selects available per DSPI module

• Full-duplex, three-wire synchronous transfer

• Master and slave modes with programmable master bit-rates

• Up to 16 pre-programmed transfers

1.7.28 Motor Control Pulse Width Modulation (mcPWM) Module
• 16-bit resolution for center-aligned, edge-aligned, and asymmetrical PWMs

• Four PWM output pairs (8 total outputs) that can operate as complementary pairs or independent 
channels

• Synchronization to external hardware, other PWM channels, or the IEEE 1588 timestamp via the 
on-chip DMA timer

• Can accept signed numbers for PWM generation

• Independent control of both edges of each PWM output

• Multiple output trigger events can be generated per PWM cycle via hardware

• Support for double-switching PWM outputs

• Fault inputs can be assigned to control multiple PWM outputs

• Programmable filters for fault inputs

• Independently programmable PWM output polarity

• Independent top and bottom deadtime insertion

• Each complementary pair can operate with its own PWM frequency and deadtime values

• Individual software-control for each PWM output

• All outputs can be programmed to change simultaneously via a force-out event

• Channels not used for PWM generation can be used for buffered output compare functions

• Channels not used for PWM generation can be used for input capture functions

• Enhanced dual-edge capture functionality

• Enhanced triggering capability

— Multiple ADC trigger events can be generated per PWM cycle

1.7.29 Universal Asynchronous Receiver Transmitters (UARTs)
• Ten UARTs each with a 16-bit divider for clock generation
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• DMA support with separate transmit and receive requests

• Support for single wire and wired-OR mode

• Programmable clock-rate generator

• Data formats can be 5, 6, 7 or 8 bits with even, odd or no parity

• Up to 2 stop bits in 1/16 increments

• Error-detection capabilities

1.7.30 I2C Modules
• Six interchip bus interfaces for EEPROMs, LCD controllers, A/D converters, and keypads

• DMA support in master mode

• Fully compatible with industry-standard I2C bus

• Master or slave modes support multiple masters

• Automatic interrupt generation with programmable level

1.7.31 Interrupt Controllers

• Three interrupt controllers, supporting up to 64 interrupt sources each, organized as seven 
programmable levels

• Unique vector number for each interrupt source

• Ability to mask any individual interrupt source plus a global mask-all capability

• Support for service routine software interrupt acknowledge (IACK) cycles

• Combinational path to provide wake-up from low power modes

1.7.32 Edge Port Module
• Each pin can be individually configured as low level sensistive interrupt pin or edge-detecting 

interrupt pin (rising, falling, or both)

• Exit stop mode via level-detect function

1.7.33 DMA Controller
• 64 fully programmable channels with 32-byte transfer control descriptors

• Data movement via dual-address transfers for 8-, 16-, 32- and 128-bit data values

• Programmable source, destination addresses, transfer size, support for enhanced address modes

• Support for major and minor nested counters with one request and one interrupt per channel

• Support for channel-to-channel linking and scatter/gather for continuous transfers with fixed 
priority and round-robin channel arbitration

• External request/acknowledge pins
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1.7.34 Rapid GPIO Interface
• 16 bits of high-speed GPIO functionality connected to the processor’s local bus

• Pin toggle rates typically 1.5–3.5x faster than traditional GPIO pin connected to the peripheral bus

• Unused Rapid GPIO pins can be used as traditional GPIO

1.7.35 General Purpose I/O Interface
• Up to 48 bits of GPIO for the 196 MAPBGA device

• Up to 71 bits of GPIO for the 256 MAPBGA device

• Bit manipulation supported via set/clear functions

• Various unused peripheral pins may be used as GPIO

• Drive strength and slew rate control

1.7.36 System Debug Support
• Background debug mode (BDM) Revision D+

• Real time debug support, with four PC breakpoint registers and a pair of address breakpoint 
registers with optional data

• Compressed processor status and debug data captured into on-chip trace buffer

1.7.37 JTAG Support
• JTAG part identification and part revision numbers
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1.8 Memory Map Overview
Table 1-2 illustrates the overall memory map of the device, which depends on the selected boot mode.

Table 1-2. System Memory Map per Boot Mode

Address Range1
Boot Source

FlexBus Flash Controller Serial Boot

0x0000_0000
0x0000_FFFF

FlexBus

NAND flash 
controller2

Internal SRAM2

0x0001_0000
0x00FF_FFFF

FlexBus0x1000_0000

FlexBus

0x3FFF_FFFF

0x4000_0000

SDRAM controller

0x7FFF_FFFF

0x8000_0000
0x8BFF_FFFF3 Internal SRAM backdoor3

0x8C00_0000
0x8FFF_FFFF

Rapid GPIO

0x9000_0000

Reserved

0xBFFF_FFFF

0xC000_0000
FlexBus

0xDFFF_FFFF

0xE000_0000
0xEFFF_FFFF

Peripheral bus controller 14

0xF000_0000
0xFFFF_FFFF

Peripheral bus controller 04

1 See the various peripheral chapters for their memory maps. Any unused 
space by these peripherals within this memory range is reserved and must 
not be accessed.

2 After NFC or serial boot completes, this space is available to the FlexBus.
3 The SRAM backdoor is used by the non-core crossbar switch masters 

(DMA, USB, etc.) to access the internal SRAM. The 64 KByte SRAM wraps 
around in this 192 MByte address space.

4 See Section 1.8.1, “Internal Peripheral Space” for a list of which modules 
are connected to each peripheral bus controller.
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NOTE
This memory map provides two disjoint regions mapped to the FlexBus 
controller to support glueless connections to external memories (e.g., flash 
and SRAM), and a second space with one (or more) unique chip-selects that 
can be used for non-cacheable, non-memory devices (addresses 
0xC000_0000–0xDFFF_FFFF). Additionally, this mapping is selected 
since it easily maps into the ColdFire access control registers, which provide 
a coarse association between memory addresses and their attributes (e.g., 
cacheable, non-cacheable). For this device, one possible configuration 
defines the default memory attribute as non-chacheable, and one ACR is 
then used to identify cacheable addresses, e.g., ADDR[31] equals 0 
identifies the cacheable space.

1.8.1 Internal Peripheral Space

The internal peripheral space contains locations for all internal registers used to program and control the 
device’s functional blocks and external interfaces. Table 1-3 and Table 1-4 summarize the various register 
spaces and their base addresses for each of the peripheral bus controllers. Each slot is 16 kB in size, which 
is not necessarily taken up entirely by the functional blocks. Any slot not illustrated is reserved. See the 
corresponding chapter for details on their individual memory maps.

Table 1-3. Peripheral Bus Controller 0 Memory Map

Base Address Slot Number Peripheral

0xFC00_4000 1 Crossbar switch

0xFC00_8000 2 FlexBus

0xFC02_0000 8 FlexCAN 0

0xFC02_4000 9 FlexCAN 1

0xFC03_8000 14 I2C 1

0xFC03_C000 15 DSPI 1

0xFC04_0000 16 SCM

0xFC04_4000 17 eDMA controller

0xFC04_8000 18 Interrupt controller 0

0xFC04_C000 19 Interrupt controller 1

0xFC05_0000 20 Interrupt controller 2

0xFC05_4000 21 Interrupt controller IACK

0xFC05_8000 22 I2C 0

0xFC05_C000 23 DSPI 0

0xFC06_0000 24 UART0

0xFC06_4000 25 UART1

0xFC06_8000 26 UART2
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0xFC06_C000 27 UART3

0xFC07_0000 28 DMA timer 0

0xFC07_4000 29 DMA timer 1

0xFC07_8000 30 DMA timer 2

0xFC07_C000 31 DMA timer 3

0xFC08_0000 32 PIT 0

0xFC08_4000 33 PIT 1

0xFC08_8000 34 PIT 2

0xFC08_C000 35 PIT 3

0xFC09_0000 36 Edge port 0

0xFC09_4000 37 ADC

0xFC09_8000 38 DAC 0

0xFC09_C000 39 DAC 1

0xFC0A_8000 42 Robust real-time clock

0xFC0A_C000 43 SIM

0xFC0B_0000 44 USB On-the-Go

0xFC0B_4000 45 USB host

0xFC0B_8000 46 DDR controller

0xFC0B_C000 47 SSI 0

0xFC0C_0000 48 PLL

0xFC0C_4000 49 Random number generator (RNG)

0xFC0C_8000 50 SSI 1

0xFC0C_C000 51 eSDHC

0xFC0D_4000 53 MAC-NET0

0xFC0D_8000 54 MAC-NET1

0xFC0D_C000 55 L2 Ethernet switch 0

0xFC0E_0000 56 L2 Ethernet switch 1

0xFC0F_C000 63 NAND flash controller

Table 1-4.  Peripheral Bus Controller 1 Memory Map

Base Address Slot Number Peripheral

0xEC00_8000 2 1-Wire

0xEC01_0000 4 I2C 2

Table 1-3. Peripheral Bus Controller 0 Memory Map (continued)

Base Address Slot Number Peripheral
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1.9 Documentation
Documentation is available from a local NXP distributor, a NXP sales office, the NXP Literature 
Distribution Center, or through the NXP world-wide web address at http://www.nxp.com/coldfire.

0xEC01_4000 5 I2C 3

0xEC01_8000 6 I2C 4

0xEC01_C000 7 I2C 5

0xEC03_8000 14 DSPI 2

0xEC03_C000 15 DSPI 3

0xEC06_0000 24 UART4

0xEC06_4000 25 UART5

0xEC06_8000 26 UART6

0xEC06_C000 27 UART7

0xEC07_0000 28 UART8

0xEC07_4000 29 UART9

0xEC08_8000 34 mcPWM

0xEC09_0000 36 CCM, reset controller, power management

0xEC09_4000 37 Pin multiplexing and control (GPIO)

Table 1-4.  Peripheral Bus Controller 1 Memory Map (continued)

Base Address Slot Number Peripheral

http://www.freescale.com/coldfire
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Chapter 2  
Signal Descriptions

2.1 Introduction
This chapter describes the external signals on the device. It includes an alphabetical signal listing of signals 
that characterizes each signal as an input or output, defines its state at reset, and identifies whether a 
pull-up resistor should be used.

NOTE
The terms assertion and negation are used to avoid confusion when dealing 
with a mixture of active-low and active-high signals. The term asserted 
indicates that a signal is active, independent of the voltage level. The term 
negated indicates that a signal is inactive.

Active-low signals, such as SD_RAS and FB_TA, are indicated with an 
overbar.

2.2 Signal Properties Summary
The below table lists the signals grouped by functionality.

NOTE
In this table and throughout this document a single signal within a group is 
designated without square brackets (i.e., FB_AD23), while designations for 
multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is 
meant to include all signals within the two bracketed numbers when these 
numbers are separated by a colon.

NOTE
The primary functionality of a pin is not necessarily its default functionality. 
Most pins that are muxed with GPIO default to their GPIO functionality. See 
Table 2-1 for a list of the exceptions.

Table 2-1. Special-case default signal functionality

Pin Default signal

FB_CLK, FB_OE, FB_R/W, 
FB_BE/BWE[1:0], 

FB_CS[5:4]

FB_CLK, FB_OE, FB_R/W, 
FB_BE/BWE[1:0], FB_CS[5:4]

FB_ALE FB_ALE or FB_TS
(depending on RCON[3])
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NOTE
While most modules and functionalities between the 196 and 256 
MAPBGA package are the same, the following modules have been removed 
from 196 MAPBGA for pin space:

UART2, UART6, UART9, PWM, SSI1, SIM0, USB HOST, IRQ6, IRQ3, 
IRQ2, FLEXCAN1, I2C1, ADC, DAC.

Other modifications to the 196 MAPBGA package are:

• SDRAMC — One address line, SD_A14, is removed.

• SDHC — Number of data lines for eSDHC have been reduced to 4 
(SDHC_DAT[3:0]) instead of 8.

• MAC — Only MAC0_RMII mode is implemented.

• FB_CS4 and FB_C55 are removed.

• PST[3:0] and DDATA[3:0] are removed.

FB_BE/BWE3 Boot from NFC, NF_ALE.
Otherwise, FB_BE/BWE3.

FB_BE/BWE2 Boot from NFC, NF_CLE.
Otherwise, FB_BE/BWE2.

FB_CS1 Boot from NFC, NFC_CE.
Otherwise, GPIO.

FB_CS0 Boot from FlexBus, FB_CS0.
Otherwise, GPIO.

FB_TA Boot from NFC, NFC_R/B.
Otherwise, FB_TA.

ALLPST, PST[3:0], 
DDATA[3:0]

ALLPST, PST[3:0], DDATA[3:0]

Table 2-2. MCF5441x Signal information and muxing

Signal name GPIO Alternate 1 Alternate 2

P
u

llu
p

 (
U

)1

P
u

lld
o

w
n

 (
D

)

D
ir

ec
ti

o
n

2

V
o

lta
g

e 
d

o
m

ai
n

P
ad

 t
yp

e3

19
6 

M
A

P
B

G
A

25
6 

M
A

P
B

G
A

Reset

RESET — — — U I EVDD ssr K14 K15

RSTOUT — — — — O EVDD msr P12 L16

Table 2-1. Special-case default signal functionality (continued)

Pin Default signal
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Clock

EXTAL/
RMII_REF_CLK

— — — — I4 EVDD ae G14 G16

XTAL — — — — O EVDD ae H14 H16

Mode selection

BOOTMOD[1:0] — — — — I EVDD msr G5,H5 K5, L5

FlexBus

FB_AD[31:24]/
NFC_IO[15:8]5

— — — — I/O FBVDD fsr A10, A9, 

B9, C9, A8, 

B8, C8, A7

B9, C8, A9, 

B8, D8, A8, 

D7, B7

FB_AD[23:16]/
NFC_IO[7:0]5

— — — — I/O FBVDD fsr B7, C7, C6, 

B6, A6, A5, 

B5, A4

C7, A7, D6, 

A6, B6, D5, 

C6, A5

FB_AD[15:10] — — — —6, 7 I/O FBVDD fsr C5, A3, B4, 

C4, B3, A2

B5, A4, A3, 

D4, B4, C5

FB_AD[9:8] — — — U7, 8 I/O FBVDD fsr B2, C3 C4, B3

FB_AD[7:0] — — — — 7 I/O FBVDD fsr D4, B1, C2, 

D3, C1, D2, 

E3, D1

C3, E4, D3, 

E3, A2, B2, 

C2, F3

FB_ALE PA7 FB_TS — — O FBVDD fsr E2 D2

FB_OE/
NFC_RE5

PA6 FB_TBST/
NFC_RE5

— — O FBVDD fsr H1 F1

FB_R/W/
NFC_WE5

PA5 — — — O FBVDD fsr H2 G2

FB_TA PA4 — NFC_R/B U9 O FBVDD fsr H3 H3

FB_BE/BWE3 PA3 FB_CS3 FB_A1/
NFC_ALE10

— O FBVDD fsr F3 C1

FB_BE/BWE2 PA2 FB_CS2 FB_A0/
NFC_CLE11

— O FBVDD fsr E1 E2

FB_BE/BWE[1:0] PA[1:0] FB_TSIZ[1:0] — — O FBVDD fsr F2, F1 D1, F4

FB_CLK PB7 — — — O FBVDD fsr G1 G1

FB_CS5 PB6 DACK1 — — O FBVDD fsr — F2

FB_CS4 PB5 DREQ1 — — O FBVDD fsr — B1

FB_CS1 PB4 — NFC_CE — O FBVDD fsr G3 E1

Table 2-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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FB_CS0 PB3 — — — O FBVDD fsr G2 G3

I2C 0

I2C0_SCL PB2 UART8_TXD CAN0_TX — I/O EVDD ssr H12 G15

I2C0_SDA PB1 UART8_RXD CAN0_RX — I/O EVDD ssr G12 G14

FlexCAN 1

CAN1_TX PB0 UART9_TXD I2C1_SCL — I/O EVDD ssr — D14

CAN1_RX PC7 UART9_RXD I2C1_SDA — I/O EVDD ssr — D15

SDRAM controller

SD_A14 — — — — O SDVDD st_dec

ap

— P6

SD_A[13:0] — — — — O SDVDD st_dec

ap

P3, M1, 

M3, L2, L1, 

N4, M2, P2, 

L3, L4, N1, 

N2, K1, N3

R4, R1, R3, 

N4, P3, T4, 

R2, T2, N3, 

P5, P4, N5, 

P2, T3

SD_BA[2:0] — — — — O SDVDD st_dec

ap

M6, J4, P4 P7, N6, R5

SD_CAS — — — — O SDVDD st_dec

ap

K4 N8

SD_CKE — — — — O SDVDD st_dec

ap

N6 R7

SD_CLK — — — — O SDVDD st_ck P6 T5

SD_CLK — — — — O SDVDD st_ck P7 T6

SD_CS — — — — O SDVDD st_dec

ap

M5 N7

SD_D[7:0] — — — — I/O SDVDD st_odt P11, M10, 

N10, M9, 

P10, M8, 

N8, M7

T12, R11, 

T11, R10, 

N9, T10, 

P9, R9

SD_DM — — — — O SDVDD st_odt N7 T7

SD_DQS — — — — I/O SDVDD st_dqs P8 T8

SD_DQS — — — — I/O SDVDD st_dqs P9 T9

SD_ODT — — — — O SDVDD st_dec

ap

P5 P8

Table 2-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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SD_RAS — — — — O SDVDD st_dec

ap

M4 R6

SD_WE — — — — O SDVDD st_dec

ap

N5 R8

SD_VREF — — — — — SDVDD st_vref N9 P10

SD_VTT — — — — — SDVDD st_vtt L8 N10

External interrupts port

IRQ7 PC6 — — — I EVDD ssr G10 F12

IRQ6 PC5 — USB_CLKIN12 — I EVDD ssr — N1

IRQ4 PC4 DREQ0 — — I EVDD ssr E11 F14

IRQ3 PC3 DSPI0_PCS3 USBH_VBUS_EN — I EVDD ssr — M1

IRQ2 PC2 DSPI0_PCS2 USBH_VBUS_OC —13 I EVDD ssr — M2

IRQ1 PC1 — — — I EVDD ssr E13 F13

USB On-the-Go

USBO_DM — — — — I/O VDD_

USB0

ae B13 A14

USBO_DP — — — — I/O VDD_

USB0

ae A13 B14

USB host

USBH_DM — — — — I/O VDD_

USBH

ae — A15

USBH_DP — — — — I/O VDD_

USBH

ae — B15

ADC

ADC_IN7/
DAC1_OUT

— — — — I VDDA_

DAC_

ADC

ae — K3

ADC_IN[6:4] — — — — I VDDA_

ADC

ae — H2, J3, G4

ADC_IN3/
DAC0_OUT

— — — — I VDDA_

DAC_

ADC

ae — K4

ADC_IN[2:0] — — — — I VDDA_

ADC

ae — J2, J1, H1

Table 2-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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Real time clock

RTC_EXTAL — — — — I4 VSTBY ae B14 C16

RTC_XTAL — — — — O VSTBY ae C14 B16

DSPI0/SBF14

DSPI0_PCS1/
SBF_CS

PC0 — — — I/O EVDD msr K3 L1

DSPI0_PCS0/SS PD7 I2C3_SDA SDHC_DAT3 — I/O EVDD msr J1 K2

DSPI0_SCK/
SBF_CK

PD6 I2C3_SCL SDHC_CLK — I/O EVDD msr J3 L2

DSPI0_SIN/
SBF_DI

PD5 UART3_RXD SDHC_CMD U15 I EVDD msr K2 L3

DSPI0_SOUT/
SBF_DO

PD4 UART3_TXD SDHC_DAT0 — O EVDD msr J2 K1

One wire

OW_DAT RGPIO0/PD3 DACK0 — — I/O EVDD ssr M11 N11

DMA timers

T3IN/PWM_EXTA3 RGPIO1/PD2 T3OUT USBO_VBUS_EN/
ULPI_DIR16

— I EVDD msr G13 G13

T2IN/PWM_EXTA2 RGPIO2/PD1 T2OUT SDHC_DAT2 — I EVDD msr J12 H14

T1IN/PWM_EXTA1 RGPIO3/PD0 T1OUT SDHC_DAT1 — I EVDD msr H13 H13

T0IN/PWM_EXTA0 RGPIO4/PE7 T0OUT USBO_VBUS_OC/
ULPI_NXT17

—18 I EVDD msr J13 H15

UART 2

UART2_CTS RGPIO14/PE6 UART6_TXD SSI1_BCLK — I EVDD msr — M4

UART2_RTS RGPIO15/PE5 UART6_RXD SSI1_FS — O EVDD msr — M3

UART2_RXD PE4 PWM_A3 SSI1_RXD — I EVDD msr — P1

UART2_TXD PE3 PWM_B3 SSI1_TXD — I/O
19

EVDD msr — N2

UART 1

UART1_CTS RGPIO7/PE2 UART5_TXD DSPI3_SCK — I EVDD msr D12 C10

UART1_RTS RGPIO8/PE1 UART5_RXD DSPI3_PCS0 — O EVDD msr D11 D10

Table 2-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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UART1_RXD PE0 I2C5_SDA DSPI3_SIN — I EVDD msr B10 C9

UART1_TXD PF7 I2C5_SCL DSPI3_SOUT — I/O19 EVDD msr C10 D9

UART 0

UART0_CTS RGPIO5/PF6 UART4_TXD DSPI2_SCK — I EVDD msr E12 E13

UART0_RTS RGPIO6/PF5 UART4_RXD DSPI2_PCS0 — O EVDD msr C12 B11

UART0_RXD PF4 I2C4_SDA DSPI2_SIN — I EVDD msr C11 B10

UART0_TXD PF3 I2C4_SCL DSPI2_SOUT — I/O19 EVDD msr B11 D11

Enhanced secure digital host controller

SDHC_DAT3 PF2 PWM_A1 DSPI1_PCS0 — I/O EVDD msr — B13

SDHC_DAT2 PF1 PWM_B1 DSPI1_PCS2 — I/O EVDD msr — E14

SDHC_DAT1 PF0 PWM_A2 DSPI1_PCS1 — I/O EVDD msr — D12

SDHC_DAT0 PG7 PWM_B2 DSPI1_SOUT — I/O EVDD msr — B12

SDHC_CMD PG6 PWM_B0 DSPI1_SIN — I/O EVDD msr — C11

SDHC_CLK PG5 PWM_A0 DSPI1_SCK — O EVDD msr — A10

Smart card interface 020

SIM0_DATA RGPIO13/PG4 PWM_FAULT2 SDHC_DAT7 — I/O EVDD msr — E12

SIM0_VEN RGPIO12/PG3 PWM_FAULT0 — — O EVDD msr — D13

SIM0_RST RGPIO11/PG2 PWM_FORCE SDHC_DAT6 — O EVDD msr — C15

SIM0_PD RGPIO10/PG1 PWM_SYNC SDHC_DAT5 — I EVDD msr — C14

SIM0_CLK RGPIO9/PG0 PWM_FAULT1 SDHC_DAT4 — O EVDD msr — A11

Synchronous serial interface 0

SSI0_RXD PH7 I2C2_SDA SIM1_VEN — I EVDD msr B12 C12

SSI0_TXD PH6 I2C2_SCL SIM1_DATA — O EVDD msr A11 C13

SSI0_FS PH5 UART7_TXD SIM1_RST — I/O EVDD msr C13 E15

SSI0_MCLK PH4 SSI_CLKIN SIM1_CLK — O EVDD msr A12 A12

SSI0_BCLK PH3 UART7_RXD SIM1_PD — I/O EVDD msr D13 A13

Ethernet subsystem

MII0_MDC PI1 RMII0_MDC21 — — O EVDD fsr N14 P16

MII0_MDIO PI0 RMII0_MDIO21 — — I/O EVDD fsr M14 N16

Table 2-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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MII0_RXDV PJ7 RMII0_CRS_DV21 — — I EVDD fsr M13 P14

MII0_RXD[1:0] PJ[6:5] RMII0_RXD[1:0]21 — — I EVDD fsr P13, N13 R15, T15

MII0_RXER PJ4 RMII0_RXER21 — — I EVDD fsr M12 N14

MII0_TXD[1:0] PJ[3:2] RMII0_TXD[1:0]21 — — O EVDD fsr L12, L11 R13, P13

MII0_TXEN PJ1 RMII0_TXEN21 — D22 O EVDD fsr N12 P12

MII0_COL PJ0 RMII1_MDC ULPI_STP — I EVDD fsr — R12

MII0_TXER PK7 RMII1_MDIO ULPI_DATA4 — O EVDD fsr — R14

MII0_CRS PK6 RMII1_CRS_DV ULPI_DATA5 — I EVDD fsr — P11

MII0_RXD[3:2] PK[5:4] RMII1_RXD[1:0] ULPI_DATA[1:0] — I EVDD fsr — P15, N13

MII0_RXCLK PK3 RMII1_RXER ULPI_DATA6 — I EVDD fsr — M14

MII0_TXD[3:2] PK[2:1] RMII1_TXD[1:0] ULPI_DATA[3:2] — O EVDD fsr — T13, N12

MII0_TXCLK PK0 RMII1_TXEN ULPI_DATA7 D22 I EVDD fsr — T14

BDM/JTAG

ALLPST23 PH2 — — — O EVDD fsr K12 —

DDATA[3:2] PH[1:0] — — — O EVDD fsr — L15, M13

DDATA[1:0] PI[7:6] — — — O EVDD fsr — M15, L14

PST[3:0] PI[5:2] — — — O EVDD fsr — J13, J16, 

J15, J14

JTAG_EN — — — D I EVDD msr N11 N15

PSTCLK — TCLK24 — — I EVDD fsr L14 M16

DSI — TDI24 — U I EVDD msr L10 L13

DSO — TDO24 — — O EVDD msr L13 K14

BKPT — TMS24 — U I EVDD msr K13 K16

DSCLK — TRST24 — U I EVDD msr L9 K13

Table 2-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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Test
(this signal must be grounded)

TEST — — — D I EVDD ssr K10 R16

Power supplies

IVDD — — — — — — — D9, D10, 

E9, E10, 

F9, F10, 

F12

E9–E11, 

F9–F11

EVDD — — — — — — — F4–F7, G6, 

G7, H6, H7, 

J5, J6

H8, 

J7–J10, 

K6–K11, L6

FB_VDD — — — — — — — D5–D7, 

E4–E7

E5–E7, F5, 

F6, G5

SD_VDD — — — — — — — K7–K9, 

L5–L7

M7–M12

VDD_OSC_A_PLL — — — — — — vddint F14 F15

VSS_OSC_A_PLL — — — — — — vddint F13 F16

VDD_USBO — — — — — — vdde F11 G12

VDD_USBH — — — — — — vdde — H12

VDDA_ADC — — — — — — — — H4

VSSA_ADC — — — — — — vssint — H5

VDDA_DAC_ADC — — — — — — vddint — J4

VSSA_DAC_ADC — — — — — — vssint — J5

VSTBY25 — — — — — — vddint E14 E16

VSS — — — — — — — A1, A14, 

D8, D14, 

E8, F8, G4, 

G8, G9, 

G11, H4, 

H8–11, 

J7–11, J14, 

K5, K6, 

K11, P1, 

P14

A1, A16, 

D16, E8, 

F7, F8, 

G6–G11, 

H6, H7, 

H9–H11, 

J6, J11, 

J12, K12, 

L4, 

L7–L12, 

M5, M6, 

T1, T16

Table 2-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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1 All pins available with GPIO contain a configurable pull-up/down. This column indicates the pull devices that are enabled 
automatically at reset. Pull-ups are generally only enabled on pins with their primary function, except as noted.

2 Refers to pin’s primary function.
3 For details on the available slew rates of the various pad types see section “Output Pad Loading and Slew Rate” of the MCF5441x 

Data Sheet or section “Slew Rate Control Registers (SRCR_x)” in chapter “Pin-Multiplexing and Control” of the MCF5441x Reference 
Manual.

4 Enabled as input only in oscillator bypass mode (internal crystal oscillator is disabled).
5 These pins are time-division multiplexed between the FlexBus and NFC. An arbitration mechanism determines which module drives 

these pins at any point in time.
6 An internal pulldown circuit is enabled during system reset for FB_AD[10].
7 FB_AD[11:8] must be pulled-up by external logic to prevent entering test mode.
8 An internal pullup circuit is enabled when the system is in reset state.
9 Configurable pull that is enabled and pulled up after reset.
10 When configured for FB_A1, this pin is time-division multiplexed between the FlexBus and NFC. An arbitration mechanism 

determines which module drives the pin at any point in time. When not configured as FB_A1, NFC_ALE cannot be used.
11 When configured for FB_A0, this pin is time-division multiplexed between the FlexBus and NFC. An arbitration mechanism 

determines which module drives the pin at any point in time. When not configured as FB_A0, NFC_CLE cannot be used.
12 Since USB_CLKIN is a clock signal, it must be dedicated to the USB system. Do not implement this pin as dual-use.
13 When Alternate 2 is selected, then internal pullup/pulldown control will come from the MISCCR[3] register of CIM.
14 When booting from serial boot flash, the SBF function is enabled automatically. After the SBF function completes its reset sequence, 

the signals are returned to GPIO functionality.
15 Automatic pull-up when SBF controls the pin during reset only. Configurable pull when UART, DSPI, or SDHC control the pin.
16 If ULPI is enabled, ULPI_DIR is available as the Alternate 2 function. If ULPI is disabled, USBO_VBUS_EN is available.
17 If ULPI is enabled, ULPI_NXT is available as the Alternate 2 function. If ULPI is disabled, USBO_VBUS_OC is available.
18 When Alternate 2 is selected, then internal pullup/pulldown control will come from the MISCCR[2] register of CIM.
19 UARTx_TXD pad can act as RXD(input) pad when UART One Wire mode is enabled.
20 The SIM0 signals are available with 256 MAPBGA but are not available with 196 MAPBGA.
21 These RMII functions are selected by the mode chosen by the MAC-NET, not by the pin-multiplexing and control (GPIO) module.
22 Configurable pull that is enabled and pulled down after reset.
23 The ALLPST signal is available only on the 196 MAPBGA package and allows limited debug trace functionality compared to the 256 

MAPBGA package.
24 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning 

these pins.
25 VSTBY is for optional standby lithium battery. If not used, connect to EVDD.
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2.3 Signal Primary Functions

2.3.1 Reset Signals

Table 2-3 describes signals used to reset the chip or to indicate a reset.

2.3.2 PLL and Clock Signals

Table 2-4 describes signals that are used to support the on-chip clock generation circuitry.

NOTE
Throughout this manual, fsys refers to the core frequency and fsys/2 refers to 
the internal bus frequency.

Table 2-3. Reset Signals

Signal Name Abbreviation Function I/O

Reset in RESET Primary reset input to the device. Asserting RESET resets the core and 
peripherals after four FB_CLK cycles. Asserting RESET also causes 
RSTOUT to be asserted. 

I

Reset out RSTOUT Reset output (RSTOUT) is an indicator that the chip is in reset. 
RSTOUT is asserted at least 512 internal system bus clock (FB_CLK) 
cycles in response to any internal or external reset. (The exact time 
depends on how long it takes for the PLL to lock and/or the serial boot 
sequence to complete.)

O

Table 2-4. PLL and Clock Signals

Signal Name Abbreviation Function I/O

External clock in EXTAL Always driven by an external clock input except when used as a 
connection to the external crystal if the internal oscillator circuit is 
used. Clock source may be configured during reset. See Chapter 10, 
“Chip Configuration Module (CCM),” for more details.

I

Crystal XTAL Used as a connection to the external crystal when the internal 
oscillator circuit is used to drive the crystal.
To enable oscillator bypass mode, an external pull-up resistor on 
XTAL is required.

O

RTC external clock in RTC_EXTAL Crystal input clock for the real-time clock module. I

RTC crystal RTC_XTAL Oscillator output to EXTAL RTC crystal. O

FlexBus clock out FB_CLK Reflects the internal bus clock (or one-half the core/system clock). 
(fsys/2)

O

USB clock in USB_CLKIN This pin allows the user to drive the reference clock to the USB 
module as an alternate method of generating the USB reference clock 
during ULPI operation. This pin should be driven only with a 60 MHz 
clock. The 60 MHz input can also be used without ULPI (in case the 
PLL system setup prevents 60 MHz generation for the USB systems).

I

SSI clock in SSI_CLKIN This pin allows the user to drive a specific clock frequency to the SSI 
module.

I
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2.3.3 Mode Selection

2.3.4 Enhanced Secure Digital Host Controller

2.3.5 SmartCard Interface Ports

Table 2-5. Mode Selection Signals

Signal Name Abbreviation Function I/O

Boot mode BOOTMOD[1:0] Selects the device’s boot mode and chip configuration at reset. See 
Chapter 10, “Chip Configuration Module (CCM),” for the signal 
encodings.

I

Table 2-6. eSDHC Signals

Signal Name Abbreviation Function I/O

SDHC data bus SDHC_DAT[7:0
]

Data lines. SDHC_DAT3 can be used as card-detection input. I/O

SDHC command SDHC_CMD Command line I/O

SDHC clock SDHC_CLK Clock for MMC/SD/SDIO card O

Table 2-7. SIM Port Signals

Signal Name Abbreviation Function I/O

SIM data SIMn_DATA Bidirectional transmit/receive data signal I/O

SIM supply enable SIMn_VEN Power supply enable signal O

SIM reset SIMn_RST Reset signal O

SIM card detection SIMn_PD Card insertion detect signal O

SIM clock SIMn_CLK Clock for the smart card. Typical frequencies are 1–5 MHz. This clock 
is 372 times the data rate that is on SIM_DATA. There is no required 
timing relationship between this clock signal and any of the other data 
signals. This is because of the asynchronous nature of the protocol.

O
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2.3.6 FlexBus Signals

Table 2-8 describes signals that are used for performing transactions on the external bus.

2.3.7 SDRAM Controller Signals

Table 2-9 describes signals used for SDRAM accesses.

Table 2-8. FlexBus Signals

Signal Name Abbreviation Function I/O

Address/Data Bus FB_AD[31:0] Defines address and data of external byte, word, and longword 
accesses. This three-state, bi-directional bus is the general-purpose 
address/data path to external SRAM and flash devices.

I/O

Byte enables FB_BE/BWE[3:0] Defines flow of data on data bus. During peripheral accesses, these 
output signals indicate that data is to be latched or driven onto a byte 
of the data bus when driven low. The BE/BWE[3:0] signals are 
asserted only to the memory bytes used during a read or write access. 
BE/BWE0 controls access to the most significant byte lane of data, 
and BE/BWE3 controls access to the least significant byte lane of 
data.

For SRAM or Flash devices, the BE/BWEn outputs should be 
connected to individual byte strobe signals.

The BE/BWEn signals are asserted during accesses to on-chip 
peripherals, but not to on-chip SRAM or cache.

O

Output enable FB_OE Indicates when an external device can drive data during external read 
cycles.

O

Transfer acknowledge FB_TA Indicates external data transfer is complete. During a read cycle, 
when the processor recognizes TA, it latches the data and then 
terminates the bus cycle. During a write cycle, when the processor 
recognizes TA, the bus cycle is terminated.

I

Read/Write FB_R/W Indicates direction of the data transfer on the bus for SRAM (R/W) 
accesses. A logic 1 indicates a read from a slave device and a logic 0 
indicates a write to a slave device.

O

Transfer start FB_TS Bus control output signal indicating the start of a transfer. O

Address Latch Enable FB_ALE Indicates device has begun a bus transaction and the address and 
attributes are valid. FB_ALE is asserted for one bus clock cycle. In 
multiplexed mode, ALE is used externally as an address latch enable 
to capture the address phase of the bus transfer.

O

Chip selects FB_CS[5:0] Select external devices for external bus transactions. O

Table 2-9. SDRAM Controller Signals

Signal Name Abbreviation Function I/O

SDRAM address bus SD_A[14:0] Address bus used for multiplexed row and column addresses 
during SDRAM bus cycles

O

SDRAM data bus SD_D[7:0] Bidirectional, non-multiplexed data bus for SDRAM accesses I/O
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2.3.8 Serial Boot Facility Signals

2.3.9 External Interrupt Signals

SDRAM bank address SD_BA[2:0] Selects one of the SDRAM row banks O

SDRAM clock enable SD_CKE SDRAM clock enable O

DDR SDRAM clock SD_CLK Output clock for DDR SDRAM O

DDR SDRAM clock SD_CLK Inverted output clock for DDR SDRAM O

SDRAM chip selects SD_CS SDRAM chip select O

SDRAM data strobes SD_DQS
SD_DQS

Read: input, edge-aligned with read data
Write: output, center-aligned with write data

I/O

SDRAM write data byte mask SD_DM Determines which data beat of the burst should be latched during a 
write cycle

O

SDRAM column address strobe SD_CAS SDRAM column address strobe. O

SDRAM row address strobe SD_RAS SDRAM row address strobe. O

SDRAM write enable SD_WE Indicates direction of data transfer on bus for SDRAM accesses. A 
logic 1 indicates a read from a slave device and a logic 0 indicates 
a write to a slave device.

O

SDRAM on-die termination SD_ODT On-die-termination O

Voltage reference SD_VREF Voltage supply reference —

Termination supply SD_VTT Voltage supply for termination resistors —

Table 2-10. SBF Signals

Signal Name Abbreviation Function I/O

SBF Chip Select SBF_CS Chip select used to access external SPI memory. O

SBF Clock SBF_CK Clock source for external SPI memory. O

SBF Data In SBF_DI Data being driven by SPI memory. I

SBF Data Out SBF_DO Data out to SPI memory. SBF uses this output solely for the purpose 
of issuing the SPI memory READ command. SBF does not write data 
to SPI memory.

O

Table 2-11. External Interrupt Signals

Signal Name Abbreviation Function I/O

Edge port IRQ[7,6,4:1] External interrupt sources. I

Table 2-9. SDRAM Controller Signals (continued)

Signal Name Abbreviation Function I/O
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2.3.10 DMA Signals

2.3.11 Ethernet Controllers (MACNET0–1) Signals

The processor contains two Ethernet controllers. However, due to external pin limitations, if MII mode is 
used, only FEC0 can be used. In RMII mode, both Ethernet controllers are available.

Table 2-12. DMA Signals

Signal Name Abbreviation Function I/O

DMA request DREQ[1:0] Asserted by an external device to request a DMA transfer. I

DMA acknowledge DACK[1:0] Asserted by processor to indicate DMA request has been recognized. O

Table 2-13. ENET Signal Descriptions

Signal
Description

MII RMII

MII_COL — Asserted upon detection of a collision and remains asserted while the collision persists. This 
signal is not defined for full-duplex mode.

MII_CRS — Carrier sense. When asserted, indicates transmit or receive medium is not idle.
In RMII mode, this signal is present on the RMII_CRS_DV pin.

MII_MDC RMII_MDC Output clock provides a timing reference to the PHY for data transfers on the MDIO signal.

MII_MDIO RMII_MDIO Transfers control information between the external PHY and the media-access controller. 
Data is synchronous to MDC. This signal is an input after reset.

MII_RXCLK — Provides a timing reference for RXDV, RXD[3:0], and RXER.

MII_RXDV RMII_CRS_DV Asserting this input indicates the PHY has valid nibbles present on the MII. RXDV must 
remain asserted from the first recovered nibble of the frame through to the last nibble. 
Asserting RXDV must start no later than the SFD and exclude any EOF.
In RMII mode, this pin also generates the CRS signal.

MII_RXD0 RMII_RXD0 Contains the Ethernet input data transferred from PHY to the media-access controller when 
RXDV is asserted.MII_RXD1 RMII_RXD1

MII_RXD[3:2] —

MII_RXER RMII_RXER When asserted with RXDV, indicates the PHY detects an error in the current frame. When 
RXDV is negated, RXER has no effect.

MII_TXCLK — Input clock which provides a timing reference for TXEN, TXD[3:0], and TXER.

MII_TXD0 RMII_TXD0 The serial output Ethernet data and only valid during the assertion of TXEN.

MII_TXD1 RMII_TXD1

MII_TXD[3:2] —

MII_TXEN RMII_TXEN Indicates when valid nibbles are present on the MII. This signal is asserted with the first 
nibble of a preamble and is negated before the first TXCLK following the final nibble of the 
frame.

MII_TXER — When asserted for one or more clock cycles while TXEN is also asserted, PHY sends one or 
more illegal symbols. TXER has no effect at 10 Mbps or when TXEN is negated.

— RMII_REF_CLK In RMII mode, this signal is the reference clock for receive, transmit, and the control 
interface.
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2.3.12 NAND Flash Controller Signals

2.3.13 Analog-to-Digital Converter Signals

Table 2-15 shows the ADC signal interface.

2.3.14 Digital-to-Analog Converter Signals

This device contains two DACs.

2.3.15 Rapid GPIO Signals

Table 2-14. NFC Signal Properties

Name Function I/O

NFC_ALE Flash address latch enable O

NFC_CE Flash chip enable O

NFC_CLE Flash command latch enable O

NFC_R/B Flash ready/busy I

NFC_RE Flash read enable O

NFC_WE Flash write enable O

NFC_IO[15:0] Flash data bus I/O

Table 2-15. ADC Signal Description

Signal I/O Function

ADC_IN[7:0] I Analog input to be converted.

Table 2-16. External Signal Properties

Name I/O Function

DACn_OUT O Analog output. Each DAC has a single current mode analog output pin. The digital words to be 
converted are 12 bits long with an lsb representing 0.806 mV. Analog output ranges from ~VSSA+40 
mV to ~VDDA40 mV (actual output range can be found in the device’s data sheet) and can drive a 
3-k load.

Table 2-17. RGPIO Module External I/O Signals

Signal Name Description Type

RGPIO[15:0] RGPIO data input/output I/O
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2.3.16 1-Wire Signals

2.3.17 PWM I/O Signals

2.3.18 FlexCAN Signals

This device contains two FlexCAN modules.

Table 2-18. 1-Wire Module Signal Descriptions

Signal I/O Function

OW_DAT I/O One-Wire bus Requires an external pull-up resistor. The recommended 
resistor value is specified by the generic 1-Wire device used in a given 
system.

Table 2-19. PWM Signal Descriptions

Signal Description I/O

PWM_A[3:0]
PWM_B[3:0]

External PWM pair. They can be independent output PWM signals or a complementary pair. 
When not needed as an output, they can be used for input capture.

I/O

PWM_FAULT[2:0] Fault inputs for disabling selected PWM outputs I

PWM_SYNC External synchronization signal. Allows a source external to the PWM to initialize the PWM 
counter.

I

PWM_FORCE External output force signal. Allows a source external to the PWM to force an update of the 
PWM outputs.
For example, simultaneously switching all PWM outputs on a commutation boundary for 
trapezoidal control of a BLDC motor. The boundary can be established by external logic or an 
on-chip timer.

I

PWM_EXTA[3:0] Alternate PWM control signals. These pins allow an alternate source to control the PWMA 
outputs. Although typically, the PWM_EXTAn input is used for the generation of a 
complementary pair. Typical connections include ADC results registers, timer outputs, GPIO 
inputs, and comparator outputs.

I

Table 2-20. FlexCAN Signals

Signal Name Abbreviation Function I/O

FlexCAN Transmit CANn_TX Controller area network transmit data output. O

FlexCAN Receive CANn_RX Controller area network receive data input. I
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2.3.19 I2C I/O Signals

This device contains six identical I2C modules.

2.3.20 DMA Serial Peripheral Interface (DSPI) Signals

This device contains four DSPI modules.

Table 2-21. I2C I/O Signals

Signal Name Abbreviation Function I/O

Serial clock I2Cn_SCL Open-drain clock signal for I2C interface. It is driven by the I2C module 
when the bus is in master mode, or it becomes the clock input when 
the I2C is in slave mode. 

I/O

Serial data I2Cn_SDA Open-drain signal serving as the data input/output for the I2C 
interface.

I/O

Table 2-22. DMA Serial Peripheral Interface (DSPI) Signals

Signal Name Abbreviation Function I/O

DSPI synchronous serial 
output

DSPIn_SOUT Provides the serial data from the DSPI and can be programmed to be 
driven on the rising or falling edge of DSPI_SCK.

O

DSPI synchronous serial 
data input

DSPIn_SIN Provides the serial data to the DSPI and can be programmed to be 
sampled on the rising or falling edge of DSPI_SCK.

I

DSPI serial clock DSPIn_SCK Provides the serial clock from the DSPI. In master mode, the 
processor generates DSPI_SCK, while in slave mode, DSPI_SCK is 
an input from an external bus master.

I/O

DSPI peripheral chip 
selects

DSPIn_PCS[3:1] Provide DSPI peripheral chip selects that can be programmed to be 
active high or low.
Note: There are no DSPI1_PCS3, DSPI2_PCS[3:1], 

DSPI3_PCS[3:1] signals on this device.

O

DSPI peripheral chip 
select 0/slave select

DSPIn_PCS0/
DSPIn_SS

In master mode, DSPI_PCS0 is a peripheral chip select output that 
selects which slave device the current transmission is intended.
In slave mode, the SS signal is a slave select input that allows an SPI 
master to select the processor as the target for transmission.

I/O
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2.3.21 Synchronous Serial Interface (SSI) Signals

This device contains two SSI modules.

2.3.22 Universal Serial Bus (USB) Signals

Table 2-23. SSI Module Signals

Signal Name Abbreviation Function I/O

Serial bit clock SSIn_BCLK Used by the receive and transmit blocks. In gated clock mode, 
SSI_BCLK is only valid during transmission of data, otherwise it is 
pulled to an inactive state.

I/O

Serial master clock SSIn_MCLK This clock signal is output from the device when it is the master. When 
in I2S master mode, this signal is referred to as the oversampling 
clock. The frequency of SSI_MCLK is a multiple of the frame clock.
Note: There is no SSI1_MCLK signal on this device.

O

Serial frame sync SSIn_FS Used by transmitter/receiver to synchronize the transfer of data. In 
gated clock mode, this signal is not used. When configured as an 
input, the external device should drive SSI_FS during the rising edge 
of SSI_BCLK.

I/O

Serial receive data SSIn_RXD Receives data into the receive data shift register I

Serial transmit data SSIn_TXD Transmits data from the serial transmit shift register. O

Table 2-24. USB Module Signals

Signal Name Abbreviation Function I/O

USB On-the-Go D- USBO_DM D- output of the dual-speed transceiver for the On-the-Go module. O

USB On-the-Go D+ USBO_DP D+ output of the dual-speed transceiver for the On-the-Go module. O

USB OTG VBUS 
enable

USBO_VBUS_EN Enables the off-chip VBUS charge pump when USB OTG module is 
configured as a host.

O

USB OTG VBUS 
over-current

USBO_VBUS_OC Indicates to the processor that a short has occurred on USB data 
bus.

I

USB host D- USBH_DM D- output of the dual-speed transceiver for the host module. O

USB host D+ USBH_DP D+ output of the dual-speed transceiver for the host module. O

USB host VBUS enable USBH_VBUS_EN Enables the off-chip VBUS charge pump when USB host module is 
configured as a host.

O

USB host VBUS 
over-current

USBH_VBUS_OC Indicates to the processor that a short has occurred on USB data 
bus.

I

ULPI Data Bus ULPI_DATA[7:0] These bi-directional signals are ULPI data bus. Synchronous to 
USB_CLKIN.

I/O

ULPI Next Data ULPI_NXT This input is the ULPI next data. Synchronous to USB_CLKIN. I

ULPI Stop Data ULPI_STP This output is the ULPI stop data. Synchronous to USB_CLKIN. O

ULPI Data Bus 
Direction

ULPI_DIR This input is the ULPI data bus direction. Synchronous to 
USB_CLKIN.

I
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2.3.23 UART Module Signals

Table 2-25 describes the signals of the ten UART modules, where n equals 0–9 and m equals 0–2. 
Baud-rate clock inputs are not supported.

2.3.24 DMA Timer Signals

Table 2-26 describes the signals of the four DMA timer modules, where n equals 0–3.

2.3.25 Debug Support Signals

These signals are used as the interface to the on-chip JTAG controller and the BDM logic. Pin functionality 
between JTAG and BDM is dependent upon the JTAG_EN pin.

Table 2-25. UART Module Signals

Signal Name Abbreviation Function I/O

Transmit serial data 
output

UnTXD Data is shifted out lsb first at the falling edge of the serial clock source. 
Output is held high when transmitter is disabled, idle, or in local 
loopback mode.

O

Receive serial data 
input

UnRXD Data is sampled Isb first at the serial clock source’s rising edge. When 
the UART clock is stopped for power-down mode, any transition on this 
pin restarts it.

I

Clear-to-send UmCTS Indicates UART modules can begin data transmission
Note: There are no U3CTS–U9CTS signals on this device.

I

Request-to-send UmRTS Automatic request-to-send outputs from UART modules. They may 
also be asserted and negated as a function of the received FIFO level.
Note: There are no U3RTS–U9RTS signals on this device.

O

Table 2-26. DMA Timer Signals

Signal Name Abbreviation Function I/O

DMA timer n input DTnIN Can be programmed to cause events in the respective timer. It can 
clock the event counter or provide a trigger to the timer value capture 
logic.

I

DMA timer n output DTnOUT Output from respective timer. O

Table 2-27. Debug Support Signals

Signal Name Abbreviation Function I/O

JTAG enable JTAG_EN Enables JTAG (asserted) or BDM (negated) operation. I

JTAG Signals

Test reset TRST Active-low signal used to initialize the JTAG logic asynchronously. I

Test clock TCLK Used to synchronize the JTAG logic. I

Test mode select TMS Used to sequence the JTAG state machine. TMS is sampled on the 
rising edge of TCLK.

I
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Test data input TDI Serial input for test instructions and data. TDI is sampled on the rising 
edge of TCLK.

I

Test data output TDO Serial output for test instructions and data. TDO is three-stateable and 
actively driven in the shift-IR and shift-DR controller states. TDO 
changes on the falling edge of TCLK.

O

BDM Signals

Development serial 
clock

DSCLK Clocks the serial communication port to the BDM module during 
packet transfers.

I

Breakpoint BKPT Used to request a manual breakpoint. I

Development serial 
input

DSI Internally-synchronized signal provides data input for the serial 
communication port to the BDM module.

I

Development serial 
output

DSO Internally-registered signal provides serial output communication for 
BDM module responses.

O

Processor status clock PSTCLK Used by the development system to know when to sample DDATA 
and PST signals.

O

Debug data DDATA[3:0] Display captured processor data and breakpoint status. The PSTCLK 
signal can be used by the development system to know when to 
sample DDATA[3:0].
Note: Only present on the BGA devices.

O

Processor status 
outputs

PST[3:0] Indicate core status, as shown in Table 2-28. Debug mode timing is 
synchronous with the processor clock; status is unrelated to the 
current bus transfer. The PSTCLK signal can be used by the 
development system to know when to sample PST[3:0].
Note: Only present on the BGA devices.

O

All processor status 
outputs

ALLPST ALLPST is a logical AND of the four PST signals and is present in 
place of PST[3:0] and DDATA[3:0] on the QFP devices. When 
asserted, reflects that the core is halted.

O

Table 2-28. Processor Status

PST[3:0]
(BGA Devices)

ALLPST
(QFP Devices)

Processor Status

0000 0 Continue execution

0001 0 Begin execution of one instruction

0010 0 Reserved

0011 0 Entry into user mode

0100 0 Begin execution of PULSE and WDDATA instructions

0101 0 Begin execution of taken branch

0110 0 Reserved

0111 0 Begin execution of RTE instruction

Table 2-27. Debug Support Signals (continued)

Signal Name Abbreviation Function I/O
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2.3.26 Test Signals

Table 2-29 describes test signals reserved for factory testing.

2.3.27 Power and Ground Pins

The pins described in Table 2-30 provide system power and ground to the device. Multiple pins are 
provided for adequate current capability. All power supply pins must have adequate bypass capacitance 
for high-frequency noise suppression.

1000 0 Begin one-byte transfer on PSTDDATA

1001 0 Begin two-byte transfer on PSTDDATA

1010 0 Begin three-byte transfer on PSTDDATA

1011 0 Begin four-byte transfer on PSTDDATA

1100 0 Exception processing

1101 0 Reserved

1110 0 Processor is stopped

1111 1 Processor is halted

Table 2-29. Test Signals

Signal Name Abbreviation Function I/O

Test TEST Reserved for factory testing only and in normal modes of operation 
should be connected to VSS to prevent unintentional activation of test 
functions.

I

FB_AD[11:8] TEST Reserved for factory testing only and in normal modes of operation 
should be pulled to VDD to prevent unintentional activation of test 
functions.

I1

1 During reset

Table 2-30. Power and Ground Pins

Signal Name Abbreviation Function I/O

PLL and oscillator 
analog supply

VDD_OSC_A_PLL Dedicated power supply signal to isolate the sensitive oscillator and 
PLL analog (VCO) circuitry from the normal levels of noise present on 
the digital power supply.

—

Positive I/O supply EVDD These pins supply positive power to the I/O pads. —

Positive core supply IVDD These pins supply positive power to the core logic. —

SDRAM supply SD_VDD These pins supply positive power to the DDR controller. —

FlexBus supply FB_VDD These pins supply positive power to the FlexBus controller. —

Table 2-28. Processor Status (continued)

PST[3:0]
(BGA Devices)

ALLPST
(QFP Devices)

Processor Status
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2.4 External Boot Mode
After reset the address bus, data bus, FlexBus control signals, and SDRAM control signals default to their 
bus functionalities. All other signals default to GPIO inputs (if applicable).

USB On-the-Go supply VDD_USBO This pin supplies positive power to the USB OTG controller. —

USB host supply VDD_USBH This pin supplies positive power to the USB host controller. —

Ground VSS These pins are the negative supply (ground) for the device. —

RTC standby supply VSTBY_RTC Standby voltage for the real-time clock module —

DAC/ADC supply VDDA_DAC_ADC
VSSA_DAC_ADC

These pins supply power to the DAC and also the shared ADC 
signals, ADC_IN3 and ADC_IN7

—

ADC supply VDDA_ADC Dedicated power supply pins to reduce noise coupling and to improve 
accuracy. The power provided to these pins is suggested to come 
from a low noise filtered source. Connect uncoupling capacitors 
between VDDA_ADC and VSSA_ADC. VSSA_ADC is shared among 
the analog and digital circuitry.

—

VSSA_ADC —

Table 2-30. Power and Ground Pins (continued)

Signal Name Abbreviation Function I/O
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Chapter 3  
ColdFire Core

3.1 Introduction
This section describes the organization of the Version 4 (V4) ColdFire® processor core and an overview 
of the program-visible registers. For detailed information on instructions, see the ISA_C definition in the 
ColdFire Family Programmer’s Reference Manual. The V4 ColdFire core includes the  enhanced 
multiply-accumulate unit (EMAC), and memory management unit (MMU), which are explained in detail 
in their own chapters. This chapter also includes a full description of exception handling, data formats, an 
instruction set summary, and a table of instruction timings.

3.1.1 Overview

As with all ColdFire cores, the V4 ColdFire core is comprised of two separate pipelines decoupled by an 
instruction buffer.
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Figure 3-1. V4 ColdFire Core Pipelines

The instruction fetch pipeline (IFP) is a four-stage pipeline for prefetching instructions. The prefetched 
instruction stream is then gated into the five-stage operand execution pipeline (OEP), that decodes the 
instruction, fetches the required operands, and then executes the required function. Because the IFP and 
OEP pipelines are decoupled by an instruction buffer serving as a FIFO queue, the IFP is able to prefetch 
instructions in advance of their actual use by the OEP thereby minimizing time stalled waiting for 
instructions.
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The V4 ColdFire core pipeline stages include the following:

• Four-stage instruction fetch pipeline (IFP) (plus optional instruction buffer stage)

— Instruction address generation (IAG) — Calculates the next prefetch address

— Instruction fetch cycle 1 (IC1) — Prefetch on the processor’s local bus

— Instruction fetch cycle 2 (IC2) — Completes prefetch on the processor’s local bus

— Instruction early decode (IED) — Generates time-critical decode signals needed for the OEP

— Instruction buffer (IB) — Optional buffer stage minimizes fetch latency effects using FIFO 
queue

• Five-stage operand execution pipeline (OEP) with two optional processor bus write cycles

— Decode and select (DS/secDS) — Decodes and selects two sequential instructions and selects 
operands for effective address calculation

— Operand address generation (OAG) — Generates the effective (logical) address

— Operand fetch cycle 1 (OC1) — Initiates memory operand fetch on the processor’s local bus

— Operand fetch cycle 2 (OC2) — Completes memory operand fetch on the processor’s local bus, 
as well as immediate and/or register operand fetches

— Execute (EX) — Performs prescribed operations on previously fetched data operands

— Write data available (DA) — Makes data available for operand write operations only

— Store data (ST) — Updates memory element for operand write operations only

When the instruction buffer is empty, opcodes are loaded directly from the IED cycle into the operand 
execution pipeline. If the buffer is not empty, the IFP stores the contents of the fetched instruction and its 
early decode information in the IB until it is required by the OEP.

The five stage operand execution pipeline structure is a key factor in the performance of the Version 4 
ColdFire design. The pipeline structure is termed a limited superscalar design because there are certain, 
heavily-used instruction constructs that support multiple-instruction dispatch. In particular, folding two 
consecutive instructions into a single pipeline issue effectively creates zero-cycle execution times for 
certain instructions.

With the increased performance, the bandwidth needed to support operand references requires a split bus 
(or Harvard architecture) where there are separate instruction and operand memory connections. These 
connections may be accessed concurrently to double the amount of available bandwidth to the processor's 
pipelines.

The resulting pipeline and local bus structure allow the V4 ColdFire core to deliver sustained high 
performance across a variety of demanding embedded applications.

3.1.1.1 Change-of-Flow Acceleration

To maximize the performance of conditional branch instructions, the IFP implements a sophisticated 
two-level acceleration mechanism. The first level is an 8-entry, direct-mapped branch cache with 2 bits for 
indicating four prediction states (strongly or weakly; taken or not-taken) for each entry. The branch cache 
also provides the association between instruction addresses and the corresponding target address. In the 
event of a branch cache hit, if the branch is predicted as taken, the branch cache sources the target address 
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from the IC1 stage back into the IAG to redirect the prefetch stream to the new location as shown in 
Figure 3-1.

The branch cache implements instruction folding, so conditional branch instructions correctly predicted as 
taken can execute in zero cycles. For conditional branches with no information in the branch cache, a 
second-level, direct-mapped prediction table is accessed. Each of its 128 entries uses the same 2-bit 
prediction mechanism as the branch cache.

If a branch is predicted as taken, branch acceleration logic in the IED stage generates the target address. 
Other change-of-flow instructions, including unconditional branches, jumps, and subroutine calls, use a 
similar mechanism where the IFP calculates the target address. The performance of the subroutine return 
instruction (RTS) is improved through the use of a four-entry, LIFO hardware return stack. In all cases, 
these mechanisms allow the IFP to redirect the fetch stream down the predicted path ahead of instruction 
execution.

3.1.1.2 Operand Execution Pipeline (OEP)

The two instruction registers in the decode stage (DS) of the OEP are loaded from the FIFO instruction 
buffer or are bypassed directly from the instruction early decode (IED). The OEP consists of two 
traditional, two-stage RISC compute engines with a dual-ported register file access feeding an arithmetic 
logic unit (ALU). 

The compute engine at the top of the OEP (the address ALU) is used typically for operand address 
calculations; the execution ALU at the bottom is used for instruction execution. The resulting structure 
provides almost 4 GB/s read operand bandwidth (at 250 MHz) to the two compute engines and supports 
single-cycle execution speeds for most instructions, including all load and store operations and most 
embedded-load operations. The V4 OEP supports the ColdFire instruction set architecture (ISA) 
revision C.

Advanced performance features implemented by the OEP:

• Stalls are minimized by dynamically basing the choice between the address ALU or execution 
ALU for instruction execution on the pipeline state. 

• The address ALU and register renaming resources together can execute heavily used opcodes and 
forward results to subsequent instructions with no pipeline stalls. 

• Instruction folding involving MOVE instructions allows two instructions to be issued in one cycle. 
The resulting microarchitecture approaches full superscalar performance at a much lower silicon 
cost.

3.2 Memory Map/Register Description
The following sections describe the processor registers in the user and supervisor programming models. 
The programming model is selected based on the processor privilege level (user mode or supervisor mode) 
as defined by the S bit of the status register (SR). Table 3-1 lists the processor registers.

The user-programming model consists of the following registers:

• 16 general-purpose 32-bit registers (D0–D7, A0–A7)

• 32-bit program counter (PC)
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• 8-bit condition code register (CCR)

• EMAC registers

— Four 48-bit accumulator  registers partitioned as follows:

– Four 32-bit accumulators (ACC0–ACC3)

– Eight 8-bit accumulator extension bytes (two per accumulator). These are grouped into two 
32-bit values for load and store operations (ACCEXT01 and ACCEXT23). 

Accumulators and extension bytes can be loaded, copied, and stored; results from EMAC 
arithmetic operations generally affect the entire 48-bit destination.

— One 16-bit mask register (MASK)

— One 32-bit Status register (MACSR) including four indicator bits signaling product or 
accumulation overflow (one for each accumulator: PAV0–PAV3)

The supervisor programming model is to be used only by system control software to implement restricted 
operating system functions, I/O control, and memory management. All accesses that affect the control 
features of ColdFire processors are in the supervisor programming model, that consists of registers 
available in user mode as well as the following control registers:

• 16-bit status register (SR)

• 32-bit supervisor stack pointer (SSP)

• 32-bit vector base register (VBR)

• 32-bit cache control register (CACR)

• 32-bit access control registers (ACR0, ACR1, ... ACR7)

• 32-bit address space ID register (ASID)

• 32-bit MMU base address register (MMUBAR)

Table 3-1. ColdFire Core Programming Model

BDM1 Register
Width
(bits)

Access Reset Value
Written with

MOVEC
Section/Page

Supervisor/User Access Registers

Load: 0x080
Store: 0x180

Data Register 0 (D0) 32 R/W 0xCF40_6C2F No 3.2.1/3-6

Load: 0x081
Store: 0x181

Data Register 1 (D1) 32 R/W 0x0500_2580 No 3.2.1/3-6

Load: 0x082–7
Store: 0x182–7

Data Register 2–7 (D2–D7) 32 R/W Undefined No 3.2.1/3-6

Load: 0x088–8E
Store: 0x188–8E

Address Register 0–6 (A0–A6) 32 R/W Undefined No 3.2.2/3-7

Load: 0x08F
Store: 0x18F

Supervisor/User A7 Stack Pointer (A7) 32 R/W Undefined No 3.2.3/3-7

0x804 MAC Status Register (MACSR) 32 R/W 0x0000_0000 No 5.2.1/5-3

(described fully in Chapter 5, “Enhanced Multiply-Accumulate Unit (EMAC)”)

• One 32-bit memory base address register (RAMBAR)
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3.2.1 Data Registers (D0–D7)

D0–D7 data registers are for bit (1-bit), byte (8-bit), word (16-bit) and longword (32-bit) operations; they 
can also be used as index registers.

NOTE
Registers D0 and D1 contain hardware configuration details after reset. See 
Section 3.3.4.15, “Reset Exception” for more details.

0x805 MAC Address Mask Register (MASK) 32 R/W 0xFFFF_FFFF No 5.2.2/5-5

0x806, 0x809,
0x80A, 0x80B

MAC Accumulators 0–3 (ACC0–3) 32 R/W Undefined No 5.2.3/5-7

0x807 MAC Accumulator 0,1 Extension Bytes 
(ACCext01)

32 R/W Undefined No 5.2.4/5-7

0x808 MAC Accumulator 2,3 Extension Bytes 
(ACCext23)

32 R/W Undefined No 5.2.4/5-7

0x80E Condition Code Register (CCR) 8 R/W Undefined No 3.2.4/3-8

0x80F Program Counter (PC) 32 R/W Contents of 
location 

0x0000_0004

No 3.2.5/3-9

Supervisor Access Only Registers

0x002 Cache Control Register (CACR) 32 R/W 0x0000_0000 Yes 3.2.6/3-9

0x003 Address Space Identifier (ASID) 8 R/W 0x00 Yes 4.2.1/4-4

0x004–7 Access Control Register 0–3 (ACR0–3) 32 R/W See Section Yes 6.3.2/6-8

0x008 MMU Base Address Register (MMUBAR) 32 R/W 0x0000_0000 Yes 4.2.2/4-4

0x009 RGPIO Base Address Register 
(RGPIOBAR)

32 R/W 0x8C00_0034 Yes 16.3.1/16-5

0x00C–F Access Control Register 4–7 (ACR4–7) 32 R/W See Section Yes 6.3.2/6-8

0x800 User/Supervisor A7 Stack Pointer 
(OTHER_A7)

32 R/W Contents of 
location 

0x0000_0000

No 3.2.3/3-7

0x801 Vector Base Register (VBR) 32 R/W 0x0000_0000 Yes 3.2.8/3-9

0x80E Status Register (SR) 16 R/W 0x27-- No 3.2.9/3-10

0xC05 RAM Base Address Register (RAMBAR) 32 R/W See Section Yes 3.2.10/3-11

1 The values listed in this column represent the Rc field used when accessing the core registers via the BDM port. For more 
information see Chapter 43, “Debug Module”.

Table 3-1. ColdFire Core Programming Model (continued)

BDM1 Register
Width
(bits)

Access Reset Value
Written with

MOVEC
Section/Page



ColdFire Core

NXP Semiconductors 3-7

3.2.2 Address Registers (A0–A6)

These registers can be used as software stack pointers, index registers, or base address registers. They can 
also be used for word and longword operations.

3.2.3 Supervisor/User Stack Pointers (A7 and OTHER_A7)

The ColdFire architecture supports two independent stack pointer (A7) registers—the supervisor stack 
pointer (SSP) and the user stack pointer (USP). The hardware implementation of these two 
program-visible 32-bit registers does not identify one as the SSP and the other as the USP. Instead, the 
hardware uses one 32-bit register as the active A7 and the other as OTHER_A7. Thus, the register contents 
are a function of the processor operation mode, as shown in the following:
if SR[S] = 1

then A7 = Supervisor Stack Pointer

OTHER_A7 = User Stack Pointer

else A7 = User Stack Pointer

OTHER_A7 = Supervisor Stack Pointer

The BDM programming model supports direct reads and writes to the (active) A7 and OTHER_A7. It is 
the responsibility of the external development system to determine, based on the setting of SR[S], the 
mapping of A7 and OTHER_A7 to the two program-visible definitions (SSP and USP). This functionality 
is enabled by setting the enable user stack pointer bit, CACR[EUSP]. If this bit is cleared, only a single 
stack pointer (A7), originally defined for ColdFire ISA_A, is available. EUSP is cleared at reset.

To support dual stack pointers, the following two supervisor instructions are included in the ColdFire 
instruction set architecture to load/store the USP:

move.l Ay,USP;move to USP

BDM: Load: 0x080 + n; n = 0-7 (Dn)
Store: 0x180 + n; n = 0-7 (Dn)

Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data

W

Reset
(D2-D7)

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Reset
(D0, D1)

See Section 3.3.4.15, “Reset Exception”

Figure 3-2. Data Registers (D0–D7)

BDM: Load: 0x088 + n; n = 0–6 (An) 
Store: 0x188 + n; n = 0–6 (An)

Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Address

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 3-3. Address Registers (A0–A6)
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move.l USP,Ax;move from USP

These instructions are described in the ColdFire Family Programmer’s Reference Manual. All other 
instruction references to the stack pointer, explicit or implicit, access the active A7 register.

NOTE
The SSP is loaded during reset exception processing with the contents of 
location 0x0000_0000.

3.2.4 Condition Code Register (CCR)

The CCR is the LSB of the processor status register (SR). Bits 4–0 act as indicator flags for results 
generated by processor operations. The extend bit (X) is also an input operand during multiprecision 
arithmetic computations.

NOTE
The CCR register must be explicitly loaded after reset and before any 
compare (CMP), Bcc, or Scc instructions are executed.

BDM: Load: 0x08F (A7) 
Store: 0x18F (A7)
0x800 (OTHER_A7)

Access: A7: User or BDM read/write
OTHER_A7: Supervisor or BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Address

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 3-4. Stack Pointer Registers (A7 and OTHER_A7)

BDM: LSB of Status Register (SR) Access: User read/write
BDM read/write

7 6 5 4 3 2 1 0

R 0 0 0
X N Z V C

W

Reset: 0 0 0 — — — — —

Figure 3-5. Condition Code Register (CCR)

Table 3-2. CCR Field Descriptions

Field Description

7–5 Reserved, must be cleared.

4
X

Extend condition code bit. Set to the C-bit value for arithmetic operations; otherwise not affected or set to a specified 
result.

3
N

Negative condition code bit. Set if most significant bit of the result is set; otherwise cleared.
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3.2.5 Program Counter (PC)

The PC contains the currently executing instruction address. During instruction execution and exception 
processing, the processor automatically increments PC contents or places a new value in the PC. The PC 
is a base address for PC-relative operand addressing.

The PC is initially loaded during reset exception processing with the contents at location 0x0000_0004.

3.2.6 Cache Programming Model

The registers in the cache portion of the programming model are described in Chapter 6, “Cache.”

3.2.7 MMU Programming Model

The registers in the MMU portion of the programming model are described in Chapter 4, “Memory 
Management Unit (MMU).”

3.2.8 Vector Base Register (VBR)

The VBR contains the base address of the exception vector table in the memory. To access the vector table, 
the displacement of an exception vector is added to the value in VBR. The lower 20 bits of the VBR are 
not implemented by ColdFire processors. They are assumed to be zero, forcing the table to be aligned on 
a 1 MB boundary.

2
Z

Zero condition code bit. Set if result equals zero; otherwise cleared.

1
V

Overflow condition code bit. Set if an arithmetic overflow occurs implying the result cannot be represented in operand 
size; otherwise cleared.

0
C

Carry condition code bit. Set if a carry out of the operand msb occurs for an addition or if a borrow occurs in a 
subtraction; otherwise cleared.

BDM: 0x80F (PC) Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Address

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 3-6. Program Counter Register (PC)

Table 3-2. CCR Field Descriptions (continued)

Field Description



ColdFire Core

3-10 NXP Semiconductors

3.2.9 Status Register (SR)

The SR stores the processor status and includes the CCR, the interrupt priority mask, and other control 
bits. In supervisor mode, software can access the entire SR. In user mode, only the lower 8 bits (CCR) are 
accessible. The control bits indicate the following states for the processor: trace mode (T bit), supervisor 
or user mode (S bit), and master or interrupt state (M bit). All defined bits in the SR have read/write access 
when in supervisor mode.

NOTE
The lower byte of the SR (the CCR) must be loaded explicitly after reset and 
before any compare (CMP), Bcc, or Scc instructions execute.

BDM: 0x801 (VBR) Access: Supervisor read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Base Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3-7. Vector Base Register (VBR)

BDM: 0x80E (SR) Access: Supervisor read/write
BDM read/write

System Byte Condition Code Register (CCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
T

0
S M

0
I

0 0 0
X N Z V C

W

Reset 0 0 1 0 0 1 1 1 0 0 0 — — — — —

Figure 3-8. Status Register (SR)

Table 3-3. SR Field Descriptions

Field Description

15
T

Trace enable. When set, the processor performs a trace exception after every instruction.

14 Reserved, must be cleared.

13
S

Supervisor/user state. 
0 User mode
1 Supervisor mode

12
M

Master/interrupt state. Bit is cleared by an interrupt exception and software can set it during execution of the RTE or 
move to SR instructions.

11 Reserved, must be cleared.
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3.3 Functional Description

3.3.1 Version 4 ColdFire Microarchitecture

As previously discussed, the unrolling of the operand execution pipeline into a five-stage structure is a key 
factor in the improved performance of the Version 4 ColdFire design. The resulting pipeline structure is 
termed a limited superscalar design because there are certain, heavily-used instruction constructs that 
support multiple-instruction dispatch. The following figure presents the top-level spatial block diagram of 
the Version 4 ColdFire operand execution pipeline, where the major hardware structures associated with 
each pipeline stage are clearly visible.

10–8
I

Interrupt level mask. Defines current interrupt level. Interrupt requests are inhibited for all priority levels less than or 
equal to current level, except edge-sensitive level 7 requests, which cannot be masked.

7–0
CCR

Refer to Section 3.2.4, “Condition Code Register (CCR)”.

Table 3-3. SR Field Descriptions (continued)

Field Description

3.2.10 Memory Base Address Register (RAMBAR)

The memory base address register is used to specify the base address of the internal SRAM module and 
indicates the types of references mapped to it. The base address register includes a base address, 
write-protect bit, address space mask bits, and an enable bit. RAMBAR determines the base address of 
the on-chip RAM. For more information, refer to Section 7.2.1, “SRAM Base Address Register 
(RAMBAR)”.
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Figure 3-9. Version 4 ColdFire Processor Operand Execution Pipeline Diagram

OAG

OC1

OC2

EX

DS

IndexBase

Register File

EMAC BSU DIV

Operand
Memory

Opword Extension 1
Extension 2Extended

Opword



ColdFire Core

NXP Semiconductors 3-13

3.3.2 Instruction Set Architecture (ISA_C)

The original ColdFire instruction set architecture (ISA_A) was derived from the M68000 family opcodes 
based on extensive analysis of embedded application code. The ISA was optimized for code compiled 
from high-level languages where the dominant operand size was the 32-bit integer declaration. This 
approach minimized processor complexity and cost, while providing excellent performance for compiled 
applications.

After the initial ColdFire compilers were created, developers noted there were certain ISA additions that 
would enhance code density and overall performance. Additionally, as users implemented ColdFire-based 
designs into a wide range of embedded systems, they found certain frequently-used instruction sequences 
that could be improved by the creation of additional instructions.

The original ISA definition minimized support for instructions referencing byte- and word-sized operands. 
Full support for the move byte and move word instructions was provided, but the only other opcodes 
supporting these data types are CLR (clear) and TST (test). A set of instruction enhancements has been 
implemented in subsequent ISA revisions, ISA_B and ISA_C. The added opcodes primarily addressed 
three areas: 

1. Enhanced support for byte and word-sized operands

2. Enhanced support for position-independent code

3. Miscellaneous instruction additions to address new functionality

Table 3-4 summarizes the instructions added to revision ISA_A to form revision ISA_C. For more details 
see the ColdFire Family Programmer’s Reference Manual.

Table 3-4. Instruction Enhancements over Revision ISA_A

Instruction Description

BITREV The contents of the destination data register are bit-reversed; that is, new Dn[31] equals old 
Dn[0], new Dn[30] equals old Dn[1], ..., new Dn[0] equals old Dn[31].

BYTEREV The contents of the destination data register are byte-reversed; that is, new Dn[31:24] equals 
old Dn[7:0], ..., new Dn[7:0] equals old Dn[31:24].

FF1 The data register, Dn, is scanned, beginning from the most-significant bit (Dn[31]) and ending 
with the least-significant bit (Dn[0]), searching for the first set bit. The data register is then 
loaded with the offset count from bit 31 where the first set bit appears.

INTOUCH Loads blocks of instructions to be locked in the instruction cache.

MOV3Q.L Moves 3-bit immediate data to the destination location.

Move from USP User Stack Pointer  Destination register

Move to USP Source register  User Stack Pointer

MVS.{B,W} Sign-extends source operand and moves it to destination register.

MVZ.{B,W} Zero-fills source operand and moves it to destination register.

SATS.L Performs saturation operation for signed arithmetic and updates destination register, 
depending on CCR[V] and bit 31 of the register.

TAS.B Performs indivisible read-modify-write cycle to test and set addressed memory byte.

Bcc.L Branch conditionally, longword
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3.3.3 Exception Processing Overview

Exception processing for ColdFire processors is streamlined for performance. The ColdFire processors 
differ from the M68000 family because they include:

• A simplified exception vector table

• Reduced relocation capabilities using the vector-base register

• A single exception stack frame format

• A precise instruction restart model for translation (TLB miss) and access faults. This functionality 
extends the existing ColdFire access error fault vector in the exception stack frames. 

All ColdFire processors use an instruction restart exception model. Exception processing includes all 
actions from fault condition detection to the initiation of fetch for first handler instruction. Exception 
processing is comprised of four major steps:

1. The processor makes an internal copy of the SR and then enters supervisor mode by setting the S 
bit and disabling trace mode by clearing the T bit. The interrupt exception also forces the M bit to 
be cleared and the interrupt priority mask to set to current interrupt request level.

3. The processor saves the current context by creating an exception stack frame on the system stack. 
The exception stack frame is created at a 0-modulo-4 address on top of the system stack pointed to 
by the supervisor stack pointer (SSP). As shown in Figure 3-10, the processor uses a simplified 
fixed-length stack frame for all exceptions with additional fault status (FS) encodings to support 
the MMU. The exception type determines whether the program counter placed in the exception 
stack frame defines the location of the faulting instruction (fault) or the address of the next 
instruction to be executed (next).

4. The processor calculates the address of the first instruction of the exception handler. By definition, 
the exception vector table is aligned on a 1 MB boundary. This instruction address is generated by 
fetching an exception vector from the table located at the address defined in the vector base register. 

BSR.L Branch to sub-routine, longword

CMP.{B,W} Compare, byte and word

CMPA.W Compare address, word

CMPI.{B,W} Compare immediate, byte and word

MOVEI Move immediate, byte and word to memory using Ax with displacement

Table 3-4. Instruction Enhancements over Revision ISA_A (continued)

Instruction Description

2. The processor determines the exception vector number. For all faults except interrupts, the 
processor performs this calculation based on exception type. For interrupts, the processor 
performs an interrupt-acknowledge (IACK) bus cycle to obtain the vector number from the 
interrupt controller. The IACK cycle is mapped to special locations within the interrupt 
controller’s address space with the interrupt level encoded in the address.
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The index into the exception table is calculated as (4  vector number). After the exception vector 
has been fetched, the vector contents determine the address of the first instruction of the desired 
handler. After the instruction fetch for the first opcode of the handler has initiated, exception 
processing terminates and normal instruction processing continues in the handler.

The table contains 256 exception vectors; the first 64 are defined for the core and the remaining 192 are 
device-specific peripheral interrupt vectors. See Chapter 17, “Interrupt Controller Modules (INTC)” for 
details on the device-specific interrupt sources.

Table 3-5. Exception Vector Assignments

Vector
Number(s)

Vector
Offset (Hex)

Stacked
Program
Counter

Assignment

0 0x000 — Initial supervisor stack pointer

1 0x004 — Initial program counter

2 0x008 Fault Access error

3 0x00C Fault Address error

4 0x010 Fault Illegal instruction

5 0x014 Fault Divide by zero

6–7 0x018–0x01C — Reserved

8 0x020 Fault Privilege violation

9 0x024 Next Trace

10 0x028 Fault Unimplemented line-A opcode

11 0x02C Fault Unimplemented line-F opcode

12 0x030 Next Non-PC breakpoint debug interrupt

13 0x034 Next PC breakpoint debug interrupt

14 0x038 Fault Format error

15 0x03C Next Uninitialized interrupt

16–23 0x040–0x05C — Reserved

24 0x060 Next Spurious interrupt

25–31 0x064–0x07C Next Level 1–7 autovectored interrupts

32–47 0x080–0x0BC Next Trap # 0-15 instructions

48–60 0x0C0–0x0F0 — Reserved

61 0x0F4 Fault Unsupported instruction

62–63 0x0F8–0x0FC — Reserved

64–255 0x100–0x3FC Next Device-specific interrupts

1 Fault refers to the PC of the instruction that caused the exception. Next refers to the PC 
of the instruction that follows the instruction that caused the fault.

All ColdFire processors support a 1024-byte vector table aligned on any 1 Mbyte address boundary (see 
Table 3-5).
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All ColdFire processors inhibit interrupt sampling during the first instruction of all exception handlers. 
This allows any handler to disable interrupts effectively, if necessary, by raising the interrupt mask level 
contained in the status register. For more details, see ColdFire Family Programmer’s Reference Manual.

3.3.3.1 Exception Stack Frame Definition

Figure 3-10 shows exception stack frame. The first longword contains the 16-bit format/vector word (F/V) 
and the 16-bit status register, and the second longword contains the 32-bit program counter address.

The 16-bit format/vector word contains three unique fields:

• A 4-bit format field at the top of the system stack is always written with a value of 4, 5, 6, or 7 by 
the processor, indicating a two-longword frame format. See Table 3-6.

• There is a 4-bit fault status field, FS[3:0], at the top of the system stack. This field is defined for 
access and address errors only and written as zeros for all other exceptions. See Table 3-7.

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSP  Format FS[3:2] Vector FS[1:0] Status Register

+ 0x4 Program Counter

Figure 3-10. Exception Stack Frame Form

Table 3-6. Format Field Encodings

Original SSP @ Time 
of Exception, Bits 1:0

SSP @ 1st 
Instruction of 

Handler
Format Field

00 Original SSP - 8 0100

01 Original SSP - 9 0101

10 Original SSP - 10 0110

11 Original SSP - 11 0111

Table 3-7. Fault Status Encodings

FS[3:0] Definition

0000 Not an access or address error nor an interrupted debug service routine

0001 Reserved

0010 Interrupt during a debug service routine for faults other than access errors1

0011 Reserved

0100 Error on instruction fetch

0101 TLB miss on opword of instruction fetch

0110 TLB miss on extension word of instruction fetch

0111 IFP access error while executing in emulator mode

1000 Error on operand write

1001 Attempted write to write-protected space
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• The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the processor 
for all internal faults and represents the value supplied by the interrupt controller in case of an 
interrupt. See Table 3-5.

3.3.4 Processor Exceptions

3.3.4.1 Access Error Exception

The exact processor response to an access error depends on the memory reference being performed. For 
an instruction fetch, the processor postpones the error reporting until the faulted reference is needed by an 
instruction for execution. Therefore, faults during instruction prefetches followed by a change of 
instruction flow do not generate an exception. When the processor attempts to execute an instruction with 
a faulted opword and/or extension words, the access error is signaled and the instruction is aborted. For 
this type of exception, the programming model has not been altered by the instruction generating the access 
error.

If the access error occurs on an operand read, the processor immediately aborts the current instruction’s 
execution and initiates exception processing. The operand execution pipeline includes logic to fully 
recover program-visible register updates in the event of a bus transfer error acknowledge on an operand 
memory reference. This allows for a precise instruction restart from this class of exceptions. See 
Section 3.3.4.16, “Precise Faults”, for additional information.

If the MMU is disabled, access errors are reported only with an attempted store to write-protected memory. 
Therefore, access errors associated with instruction fetch or operand read accesses are not possible. The 
Version 4 ColdFire processor, unlike the Version 2 and 3 ColdFire processors, updates the condition code 
register if a write-protect error occurs during a CLR or MOV3Q operation to memory. 

Internal memory accesses that fault (terminate with an internal memory transfer error acknowledge) 
generate an access error exception. MMU TLB misses and access violations use the same fault. If the 
MMU is enabled, all TLB misses and protection violations generate an access error exception. To 
determine if a fault is due to a TLB miss or another type of access error, new FS encodings (described in 
Table 3-7) signal TLB misses on instruction fetch, instruction extension fetch, and data read and writes.

1010 TLB miss on data write

1011 Reserved

1100 Error on operand read

1101 Attempted read, read-modify-write of protected space

1110 TLB miss on data read, or read-modify-write

1111 OEP access error while executing in emulator mode

1 This  refers to taking an I/O interrupt during a debug service routine. If an access error occurs 
during a debug service routine, FS is set to 0111 if it is due to an instruction fetch or to 1111 
for a data access. 

Table 3-7. Fault Status Encodings (continued)

FS[3:0] Definition



ColdFire Core

3-18 NXP Semiconductors

3.3.4.2 Address Error Exception

Any attempted execution transferring control to an odd instruction address (if bit 0 of the target address is 
set) results in an address error exception.

Any attempted use of a word-sized index register (Xn.w) or a scale factor of eight on an indexed effective 
addressing mode generates an address error, as does an attempted execution of a full-format indexed 
addressing mode, which is defined by bit 8 of extension word 1 being set.

If an address error occurs on a JSR instruction, the Version 4 ColdFire processor first pushes the return 
address onto the stack and then calculates the target address. If an address error occurs on an RTS 
instruction, the Version 4 ColdFire processor preserves the original return PC and writes the exception 
stack frame above this value.

3.3.4.3 Illegal Instruction Exception

The ColdFire variable-length instruction set architecture supports three instruction sizes: 16, 32, or 48 bits. 
The first instruction word is known as the operation word (or opword), while the optional words are known 
as extension word 1 and extension word 2. The opword is further subdivided into three sections: the upper 
four bits segment the entire ISA into 16 instruction lines, the next 6 bits define the operation mode 
(opmode), and the low-order 6 bits define the effective address. See Figure 3-11. The opword line 
definition is shown in Table 3-8.

Figure 3-11. ColdFire Instruction Operation Word (Opword) Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Line OpMode Effective Address

Mode Register

Table 3-8. ColdFire Opword Line Definition

Opword[Line] Instruction Class

0x0 Bit manipulation, Arithmetic and Logical Immediate

0x1 Move Byte

0x2 Move Long

0x3 Move Word

0x4 Miscellaneous

0x5 Add (ADDQ) and Subtract Quick (SUBQ), Set according to Condition Codes (Scc)

0x6 PC-relative change-of-flow instructions
Conditional (Bcc) and unconditional (BRA) branches, subroutine calls (BSR)

0x7 Move Quick (MOVEQ), Move with sign extension (MVS) and zero fill (MVZ)

0x8 Logical OR (OR)

0x9 Subtract (SUB), Subtract Extended (SUBX)

0xA EMAC, Move 3-bit Quick (MOV3Q)

0xB Compare (CMP), Exclusive-OR (EOR)
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In the original M68000 ISA definition, lines A and F were effectively reserved for user-defined operations 
(line A) and co-processor instructions (line F). Accordingly, there are two unique exception vectors 
associated with illegal opwords in these two lines.

Any attempted execution of an illegal 16-bit opcode (except for line-A and line-F opcodes) generates an 
illegal instruction exception (vector 4). Additionally, any attempted execution of any non-MAC line-A and 
most line-F opcodes generate their unique exception types, vector numbers 10 and 11, respectively. 
ColdFire cores do not provide illegal instruction detection on the extension words on any instruction, 
including MOVEC.

3.3.4.4 Divide-By-Zero

Attempting to divide by zero causes an exception (vector 5, offset equal 0x014).

3.3.4.5 Privilege Violation

The attempted execution of a supervisor mode instruction while in user mode generates a privilege 
violation exception. See ColdFire Programmer’s Reference Manual for a list of supervisor-mode 
instructions.

There is one special case involving the HALT instruction. Normally, this opcode is a supervisor mode 
instruction, but if the debug module's CSR[UHE] is set, then this instruction can be also be executed in 
user mode for debugging purposes.

3.3.4.6 Trace Exception

To aid in program development, all ColdFire processors provide an instruction-by-instruction tracing 
capability. While in trace mode, indicated by setting of the SR[T] bit, the completion of an instruction 
execution (for all but the stop instruction) signals a trace exception. This functionality allows a debugger 
to monitor program execution.

The stop instruction has the following effects:

1. The instruction before the stop executes and then generates a trace exception. In the exception stack 
frame, the PC points to the stop opcode.

2. When the trace handler is exited, the stop instruction executes, loading the SR with the immediate 
operand from the instruction.

3. The processor then generates a trace exception. The PC in the exception stack frame points to the 
instruction after the stop, and the SR reflects the value loaded in the previous step.

0xC Logical AND (AND), Multiply Word (MUL)

0xD Add (ADD), Add Extended (ADDX)

0xE Arithmetic and logical shifts (ASL, ASR, LSL, LSR)

0xF Cache Push (CPUSHL), Write DDATA (WDDATA), Write Debug (WDEBUG)

Table 3-8. ColdFire Opword Line Definition (continued)

Opword[Line] Instruction Class
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If the processor is not in trace mode and executes a stop instruction where the immediate operand sets 
SR[T], hardware loads the SR and generates a trace exception. The PC in the exception stack frame points 
to the instruction after the stop, and the SR reflects the value loaded in step 2. 

Because ColdFire processors do not support any hardware stacking of multiple exceptions, it is the 
responsibility of the operating system to check for trace mode after processing other exception types. As 
an example, consider a TRAP instruction execution while in trace mode. The processor initiates the trap 
exception and then passes control to the corresponding handler. If the system requires that a trace exception 
be processed, it is the responsibility of the trap exception handler to check for this condition (SR[T] in the 
exception stack frame set) and pass control to the trace handler before returning from the original 
exception.

3.3.4.7 Unimplemented Line-A Opcode

A line-A opcode is defined when bits 15-12 of the opword are 0b1010. This exception is generated by the 
attempted execution of an undefined line-A opcode.

3.3.4.8 Unimplemented Line-F Opcode

A line-F opcode is defined when bits 15-12 of the opword are 0b1111. This exception is generated when 
attempting to execute an undefined line-F opcode.

3.3.4.9 Debug Interrupts

See Chapter 43, “Debug Module,” for a detailed explanation of these exceptions, which are generated in 
response to hardware breakpoint register triggers. The processor does not generate an IACK cycle, but 
rather calculates the vector number internally (vector number 12 or 13, depending on the type of 
breakpoint trigger). Additionally, SR[M,I] are unaffected by the interrupt.

Separate exception vectors are provided for PC breakpoints and for address/data breakpoints. In the case 
of a two-level trigger, the last breakpoint determines the vector. There are two unique vectors for these 
exceptions: vector 0x030 corresponds to non-PC breakpoints and vector 0x034 corresponds to PC 
breakpoints.

3.3.4.10 RTE and Format Error Exception

When an RTE instruction is executed, the processor first examines the 4-bit format field to validate the 
frame type. For a ColdFire core, any attempted RTE execution (where the format is not equal to {4,5,6,7}) 
generates a format error. The exception stack frame for the format error is created without disturbing the 
original RTE frame and the stacked PC pointing to the RTE instruction.

The selection of the format value provides some limited debug support for porting code from M68000 
applications. On M68000 family processors, the SR was located at the top of the stack. On those 
processors, bit 30 of the longword addressed by the system stack pointer is typically zero. Thus, if an RTE 
is attempted using this old format, it generates a format error on a ColdFire processor.

If the format field defines a valid type, the processor: (1) reloads the SR operand, (2) fetches the second 
longword operand, (3) adjusts the stack pointer by adding the format value to the auto-incremented address 
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after the fetch of the first longword, and then (4) transfers control to the instruction address defined by the 
second longword operand within the stack frame.

3.3.4.11 TRAP Instruction Exception

The TRAP #n instruction always forces an exception as part of its execution and is useful for implementing 
system calls. The TRAP instruction may be used to change from user to supervisor mode.

3.3.4.12 Unsupported Instruction Exception

If execution of a valid instruction is attempted but the required hardware is not present in the processor, an 
unsupported instruction exception is generated. The instruction functionality can then be emulated in the 
exception handler, if desired.

All ColdFire cores record the processor hardware configuration in the D0 register immediately after the 
negation of RESET. See Section 3.3.4.15, “Reset Exception,” for details.

3.3.4.13 Interrupt Exception

Interrupt exception processing includes interrupt recognition and the fetch of the appropriate vector from 
the interrupt controller using an IACK cycle. See Chapter 17, “Interrupt Controller Modules (INTC),” for 
details on the interrupt controller.

3.3.4.14 Fault-on-Fault Halt

If a ColdFire processor encounters any type of fault during the exception processing of another fault, the 
processor immediately halts execution with the catastrophic fault-on-fault condition. A reset is required to 
to exit this state.

3.3.4.15 Reset Exception

Asserting the reset input signal (RESET) to the processor causes a reset exception. The reset exception has 
the highest priority of any exception; it provides for system initialization and recovery from catastrophic 
failure. Reset also aborts any processing in progress when the reset input is recognized. Processing cannot 
be recovered.

The reset exception places the processor in the supervisor mode by setting the SR[S] bit and disables 
tracing by clearing the SR[T] bit. This exception also clears the SR[M] bit and sets the processor’s SR[I] 
field to the highest level (level 7, 0b111). Next, the VBR is initialized to zero (0x0000_0000). The control 
registers specifying the operation of any memories (e.g., cache and/or RAM modules) connected directly 
to the processor are disabled.

NOTE
Other implementation-specific registers are also affected. Refer to each 
module in this reference manual for details on these registers.

After the processor is granted the bus, it performs two longword read-bus cycles. The first longword at 
address 0x0000_0000 is loaded into the supervisor stack pointer and the second longword at address 
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0x0000_0004 is loaded into the program counter. After the initial instruction is fetched from memory, 
program execution begins at the address in the PC. If an access error or address error occurs before the first 
instruction is executed, the processor enters the fault-on-fault state.

ColdFire processors load hardware configuration information into the D0 and D1 general-purpose 
registers after system reset. The hardware configuration information is loaded immediately after the 
reset-in signal is negated. This allows an emulator to read out the contents of these registers via the BDM 
to determine the hardware configuration.

Information loaded into D0 defines the processor hardware configuration as shown in Figure 3-12.

BDM: Load: 0x080 (D0)
Store: 0x180 (D0)

Access: User read-only
BDM read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PF VER REV

W

Reset 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MAC DIV EMAC FPU MMU CAU 0 0 ISA DEBUG

W

Reset 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1

Figure 3-12. D0 Hardware Configuration Info

Table 3-9. D0 Hardware Configuration Info Field Description

Field Description

31–24
PF

Processor family. This field is fixed to a hex value of 0xCF indicating a ColdFire core is present.

23–20
VER

ColdFire core version number. Defines the hardware microarchitecture version of ColdFire core.
0001 V1 ColdFire core 
0010 V2 ColdFire core 
0011 V3 ColdFire core 
0100 V4 ColdFire core (This is the value used for this device.)
0101 V5 ColdFire core
Else Reserved for future use

19–16
REV

Processor revision number. The default is 0b0000.

15
MAC

MAC present. This bit signals if the optional multiply-accumulate (MAC) execution engine is present in processor 
core.
0 MAC execute engine not present in core. (This is the value used for this device.)
1 MAC execute engine is present in core.

14
DIV

Divide present. This bit signals if the hardware divider (DIV) is present in the processor core.
0 Divide execute engine not present in core. 
1 Divide execute engine is present in core. (This is the value used for this device.)
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13
EMAC

EMAC present. This bit signals if the optional enhanced multiply-accumulate (EMAC) execution engine is present in 
processor core.
0 EMAC execute engine not present in core. 
1 EMAC execute engine is present in core. (This is the value used for this device.)

12
FPU

FPU present. This bit signals if the optional floating-point (FPU) execution engine is present in processor core.
0 FPU execute engine not present in core. (This is the value used for this device.)
1 FPU execute engine is present in core. 

11
MMU

MMU present. This bit signals if the optional virtual memory management unit (MMU) is present in processor core.
0 MMU execute engine not present in core.
1 MMU execute engine is present in core. (This is the value used for this device.)

10
CAU

Cryptographic acceleration unit present. This bit signals if the optional cryptographic acceleration unit (CAU) is 
present in the processor core.
0 CAU coprocessor engine not present in core.
1 CAU coprocessor engine is present in core. (This is the value used for this device.)

9–8 Reserved.

7–4
ISA

ISA revision. Defines the instruction-set architecture (ISA) revision level implemented in ColdFire processor core.
0000 ISA_A
0001 ISA_B
0010 ISA_C (This is the value used for this device.)
1000 ISA_A+
Else Reserved

3–0
DEBUG

Debug module revision number. Defines revision level of the debug module used in the ColdFire processor core.
0000 DEBUG_A
0001 DEBUG_B
0010 DEBUG_C
0011 DEBUG_D
0100 DEBUG_E
1001 DEBUG_B+
1011 DEBUG_D+
1111 DEBUG_D+PST Buffer (This is the value used for this device.)
Else Reserved

Table 3-9. D0 Hardware Configuration Info Field Description (continued)

Field Description
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Information loaded into D1 defines the local memory hardware configuration as shown in the figure below.

BDM: Load: 0x081 (D1)
Store: 0x181 (D1)

Access: User read-only
BDM read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CLSZ ICAS ICSZ 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MBSZ CPES DCAS DCSZ SRAMSZ 0 0 0

W

Reset 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0

Figure 3-13. D1 Hardware Configuration Info

Table 3-10. D1 Hardware Configuration Information Field Description

Field Description

31–30
CLSZ

Cache line size. This field is fixed to a hex value of 0x0 indicating a 16-byte cache line size.

29–28
ICAS

Instruction cache associativity.
00 Four-way (This is the value used for this device)
01 Direct mapped 
Else Reserved for future use

27–24
ICSZ

Instruction cache size. Indicates the amount of instruction cache. 
0000  No instruction cache
0001  512 B instruction cache
0010  1 KB instruction cache
0011  2 KB instruction cache
0100  4 KB instruction cache
0101  8 KB instruction cache (This is the value used for this device)
0110  16 KB instruction cache
0111  32 KB instruction cache
1000  64 KB instruction cache
Else  Reserved

23–16 Reserved.

15–14
MBSZ

Bus size. Defines the width of the ColdFire master bus datapath.
00 32-bit system bus datapath (This is the value used for this device)
01 64-bit system bus datapath
Else Reserved

13
CPES

CPUSHL enhancements supported. Specifies whether the enhancements to the CPUSHL instructions are 
supported by the processor core. See Section 6.4.8, “CPUSHL Enhancements,” for details.
0 CPUSHL instruction enhancements are not supported
1 CPUSHL instruction enhancements are supported (This is the value used for this device)



ColdFire Core

NXP Semiconductors 3-25

3.3.4.16 Precise Faults

To support a demand-paged virtual-memory environment, all memory references require precise, 
recoverable faults. The ColdFire instruction restart mechanism ensures that a faulted instruction restarts 
from the execution beginning. No internal state information is saved when an exception occurs nor is any 
restored when the handler ends. Given the PC address defined in the exception stack frame, the processor 
re-establishes program execution by transferring control to the given location as part of the RTE (return 
from exception) instruction.

The instruction restart recovery model requires program-visible register changes made during execution 
to be undone if that instruction subsequently faults. 

The Version 4 (and later) ColdFire OEP structure naturally supports this concept for most instructions; 
program-visible registers are updated only in the final OEP stage when fault collection is complete. If any 
exception occurs, pending register updates are discarded.

12
DCAS

Data cache associativity. Defines the data cache set-associativity.
0 Four-way (This is the value used for this device)
1 Direct mapped

11–8
DCSZ

Data cache size. Indicates the size of the unified cache.
0000 No data cache
0001 512 bytes
0010 1 KB
0011 2 KB
0100 4 KB
0101 8 KB (This is the value used for this device)
0110 16 KB
0111 32 KB
Else Reserved for future use

7–3
SRAMSZ

SRAM bank size.
00000 No SRAM
00010 512 bytes
00100 1 KB
00110 2 KB
01000 4 KB
01010 8 KB
01100 16 KB
01111 24 KB 
01110 32 KB
10000 64 KB (This is the value used for this device)
10010 128 KB
Else Reserved for future use

2–0 Reserved.

Table 3-10. D1 Hardware Configuration Information Field Description (continued)

Field Description
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For V4 ColdFire cores and later, most single-cycle instructions naturally support precise faults and 
instruction restart, while complex instruction do not. Consider the following memory-to-memory move:

move.l (Ay)+,(Ax)+ # copy 4 bytes from source to destination

This instruction takes one cycle to read the source operand (Ay) and one to write the data into Ax. Source 
and destination address pointers are updated as part of execution. Table 3-11 lists the operations performed 
in execute stage (EX).

A fault detected with the destination memory write is reported during the second cycle. At this point, 
operations performed in the first cycle are complete, so if the destination write takes any type of access 
error, Ay is updated. After the access error handler executes and the faulting instruction restarts, the 
processor’s operation would be incorrect (without the special register recovery hardware) because the 
source-address register has an incorrect (post-incremented) value.

To recover the original state of the programming model for all instructions, the Version 4 ColdFire core 
adds the needed hardware to support full-register recovery. This hardware allows program-visible registers 
to be restored to their original state for multi-cycle instructions so that the instruction restart mechanism 
is supported. Memory-to-memory moves and move-multiple loads are representative of the complex 
instructions needing the special recovery support.

Recall the IFP and OEP are decoupled by a FIFO instruction buffer. In the V4 ColdFire IFP, each buffer 
entry includes 48 bits of instruction data fetched from memory and 64 bits of early decode and branch 
prediction information. This datapath also includes IFP fault-status information. Therefore, every IFP 
access can be tagged if an instruction fetch terminates with an error acknowledge. IFP access errors are 
recognized after the buffered instruction enters the OEP.

NOTE
For access errors signaled on instruction prefetches, an access error 
exception is generated only if instruction execution is attempted. If an 
instruction fetch access error exception is generated and the FS field 
indicates the fault occurred on an extension word, it may be necessary for 
the exception PC to be rounded-up to the next page address to determine the 
faulting instruction fetch address.

3.3.5 Instruction Execution Timing

This section presents processor instruction execution times in terms of processor-core clock cycles. The 
number of operand references for each instruction is enclosed in parentheses following the number of 
processor clock cycles. Each timing entry is presented as C(R/W) where:

• C is the number of processor clock cycles, including all applicable operand fetches and writes, and 
all internal core cycles required to complete the instruction execution.

Table 3-11. OEP EX Cycle Operations

EX Cycle Operations

1 Read source operand from memory @ (Ay), update Ay, new Ay = old Ay + 4

2 Write operand into destination memory @ (Ax), update Ax, new Ax = old Ax + 4, update CCR
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• R/W is the number of operand reads (R) and writes (W) required by the instruction. An operation 
performing a read-modify-write function is denoted as (1/1).

This section includes the assumptions concerning the timing values and the execution time details.

3.3.5.1 Timing Assumptions

For the timing data presented in this section, these assumptions apply:

1. The OEP is loaded with the opword and all required extension words at the beginning of each 
instruction execution. This implies that the OEP does not wait for the IFP to supply opwords and/or 
extension words.

2. Execution times for individual instructions make no assumptions concerning the OEP’s ability to 
dispatch multiple instructions in one machine cycle. For sequences where instruction pairs are 
issued, the execution time of the first instruction defines the execution time of pair; the second 
instruction effectively executes in zero cycles.

3. The OEP does not experience any sequence-related pipeline stalls. The most common example of 
stall occurs when a register is modified in the EX engine and a subsequent instruction generates an 
address that uses the previously modified register. The second instruction stalls in the OEP until 
the previous instruction updates the register. For example, in the following code:

muls.l #<data>,d0
move.l (a0,d0.l*4),d1

the move.l instruction waits three cycles for the muls.l to update D0. If consecutive instructions 
update a register and use that register as a base of index value with a scale factor of 1 (Xi.l*1) in 
an address calculation, a 2-cycle pipeline stall occurs. If the destination register is used as an index 
register with any other scale factor (Xi.l*2, Xi.l*4), a 3-cycle stall occurs.

NOTE
Address register results from post-increment and pre-decrement modes are 
available to subsequent instructions without stalls.

4. The OEP completes all memory accesses without any stall conditions caused by the memory itself. 
Thus, the timing details provided in this section assume that an infinite zero-wait state memory is 
attached to the processor core.

5. All operand data accesses are aligned on the same byte boundary as the operand size; for example, 
16-bit operands aligned on 0-modulo-2 addresses, 32-bit operands aligned on 0-modulo-4 
addresses.

The processor core decomposes misaligned operand references into a series of aligned accesses as 
shown in Table 3-12.

Table 3-12. Misaligned Operand References

address[1:0] Size
Bus 

Operations
Additional 

C(R/W)

01 or 11 Word Byte, Byte 2(1/0) if read
1(0/1) if write
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3.3.5.2 MOVE Instruction Execution Times

Table 3-13 lists execution times for MOVE.{B,W} instructions; Table 3-14 lists timings for MOVE.L. 

NOTE
For all tables in this section, the execution time of any instruction using the 
PC-relative effective addressing modes is the same for the comparable 
An-relative mode.

The nomenclature xxx.wl refers to both forms of absolute addressing, xxx.w 
and xxx.l.

01 or 11 Long Byte, Word, 
Byte

3(2/0) if read
2(0/2) if write

10 Long Word, Word 2(1/0) if read
1(0/1) if write

ET with {<ea> = (d16,PC)} equals ET with {<ea> = (d16,An)} 

ET with {<ea> = (d8,PC,Xi*SF)} equals ET with {<ea> = (d8,An,Xi*SF)}

Table 3-13. MOVE Byte and Word Execution Times

Source
Destination 

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1)) 2(1/1)

(Ay)+ 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1)) 2(1/1)

-(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1)) 2(1/1)

(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,Ay,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

xxx.w 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

xxx.l 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

(d16,PC) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,PC,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1)) — — —

#xxx 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) — —

Table 3-12. Misaligned Operand References (continued)

address[1:0] Size
Bus 

Operations
Additional 

C(R/W)
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3.3.5.3 Standard One Operand Instruction Execution Times

Table 3-14. MOVE Long Execution Times

Source
Destination

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(Ay)+ 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

-(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,Ay,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

xxx.w 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

xxx.l 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

(d16,PC) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,PC,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

#xxx 1(0/0) 1(0/1) 1(0/1) 1(0/1) — — —

Table 3-15. One Operand Instruction Execution Times

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

BITREV Dx 1(0/0) — — — — — — —

BYTEREV Dx 1(0/0) — — — — — — —

CLR.B <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

CLR.W <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

CLR.L <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

EXT.W Dx 1(0/0) — — — — — — —

EXT.L Dx 1(0/0) — — — — — — —

EXTB.L Dx 1(0/0) — — — — — — —

FF1 Dx 1(0/0) — — — — — — —

NEG.L Dx 1(0/0) — — — — — — —

NEGX.L Dx 1(0/0) — — — — — — —

NOT.L Dx 1(0/0) — — — — — — —

SATS.L Dx 1(0/0) — — — — — — —

SCC Dx 1(0/0) — — — — — — —

SWAP Dx 1(0/0) — — — — — — —



ColdFire Core

3-30 NXP Semiconductors

3.3.5.4 Standard Two Operand Instruction Execution Times

TAS.B <ea> — 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

TST.B <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

TST.W <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

TST.L <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

Table 3-16. Two Operand Instruction Execution Times

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx

ADD.L <ea>,Rx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

ADD.L Dy,<ea> — 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

ADDI.L #imm,Dx 1(0/0) — — — — — — —

ADDQ.L #imm,<ea> 1(0/0) 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

ADDX.L Dy,Dx 1(0/0) — — — — — — —

AND.L <ea>,Rx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

AND.L Dy,<ea> — 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

ANDI.L #imm,Dx 1(0/0) — — — — — — —

ASL.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

ASR.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

BCHG Dy,<ea> 2(0/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1) —

BCHG #imm,<ea> 2(0/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — — —

BCLR Dy,<ea> 2(0/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1) —

BCLR #imm,<ea> 2(0/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — — —

BSET Dy,<ea> 2(0/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1) —

BSET #imm,<ea> 2(0/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — — —

BTST Dy,<ea> 2(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) —

BTST #imm,<ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) — — —

CMP.B <ea>,Rx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

CMP.W <ea>,Rx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

CMP.L <ea>,Rx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

CMPI.B #imm,Dx 1(0/0) — — — — — — —

CMPI.W #imm,Dx 1(0/0) — — — — — — —

CMPI.L #imm,Dx 1(0/0) — — — — — — —

Table 3-15. One Operand Instruction Execution Times (continued)

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx
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3.3.5.5 Miscellaneous Instruction Execution Times

DIVS.W <ea>,Dx 20(0/0) 20(1/0) 20(1/0) 20(1/0) 20(1/0) 21(1/0) 20(1/0) 20(0/0)

DIVU.W <ea>,Dx 20(0/0) 20(1/0) 20(1/0) 20(1/0) 20(1/0) 21(1/0) 20(1/0) 20(0/0)

DIVS.L <ea>,Dx 35(0/0) 35(1/0) 35(1/0) 35(1/0) 35(1/0) — — —

DIVU.L <ea>,Dx 35(0/0) 35(1/0) 35(1/0) 35(1/0) 35(1/0) — — —

EOR.L Dy,<ea> 1(0/0) 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

EORI.L #imm,Dx 1(0/0) — — — — — — —

LEA <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —

LSL.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

LSR.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

MOVEQ.L #imm,Dx — — — — — — — 1(0/0)

OR.L <ea>,Rx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

OR.L Dy,<ea> — 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

ORI.L #imm,Dx 1(0/0) — — — — — — —

REMS.L <ea>,Dx 35(0/0) 35(1/0) 35(1/0) 35(1/0) 35(1/0) — — —

REMU.L <ea>,Dx 35(0/0) 35(1/0) 35(1/0) 35(1/0) 35(1/0) — — —

SUB.L <ea>,Rx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

SUB.L Dy,<ea> — 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

SUBI.L #imm,Dx 1(0/0) — — — — — — —

SUBQ.L #imm,<ea> 1(0/0) 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —

SUBX.L Dy,Dx 1(0/0) — — — — — — —

Table 3-17. Miscellaneous Instruction Execution Times

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

CPUSHL (Ax) — 9(0/1) — — — — — —

CPUSHL bc,Ax — 18(0/1) — — — — — —

CPUSHL dc,Ax — 12(0/1) — — — — — —

CPUSHL ic,Ax — 18(0/1) — — — — — —

INTOUCH (Ay) — 19(1/0) — — — — — —

LINK.W Ay,#imm 2(0/1) — — — — — — —

MOV3Q.L #imm,<ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

MOVE.L Ay,USP 3(0/0) — — — — — — —

MOVE.L USP,Ax 3(0/0) — — — — — — —

Table 3-16. Two Operand Instruction Execution Times (continued)

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx
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3.3.5.6 EMAC Instruction Execution Times

MOVE.W CCR,Dx 1(0/0) — — — — — — —

MOVE.W <ea>,CCR 1(0/0) — — — — — — 1(0/0)

MOVE.W SR,Dx 1(0/0) — — — — — — —

MOVE.W <ea>,SR 4(0/0) — — — — — — 4(0/0) 2

MOVEC Ry,Rc 20(0/1) — — — — — — —

MOVEM.L <ea>, and 
list

— n(n/0) — — n(n/0) — — —

MOVEM.L and 
list,<ea>

— n(0/n) — — n(0/n) — — —

MVS <ea>,Dx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

MVZ <ea>,Dx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

NOP 6(0/0) — — — — — — —

PEA <ea> — 1(0/1) — — 1(0/1) 4 2(0/1) 5 1(0/1) —

PULSE 1(0/0) — — — — — — —

STOP #imm — — — — — — — 6(0/0) 3

TRAP #imm — — — — — — — 18(1/2)

TPF 1(0/0) — — — — — — —

TPF.W 1(0/0) — — — — — — —

TPF.L 1(0/0) — — — — — — —

UNLK Ax 1(1/0) — — — — — — —

WDDATA <ea> — 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) —

WDEBUG <ea> — 3(2/0) — — 3(2/0) — — —
1The n is the number of registers moved by the MOVEM opcode.
2If a MOVE.W #imm,SR instruction is executed and imm[13] equals 1, the execution time is 1(0/0).
3The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.
4PEA execution times are the same for (d16,PC).
5PEA execution times are the same for (d8,PC,Xn*SF).

Table 3-18. EMAC Instruction Execution Times

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An) (d16,An)
(d8,An,
Xn*SF)

xxx.wl #xxx

MAC.L Ry, Rx, Raccx 1(0/0) — — — — — — —

MAC.L Ry, Rx, <ea>, Rw, Raccx — 1(1/0) 1(1/0) 1(1/0) 1(1/0)1 — — —

Table 3-17. Miscellaneous Instruction Execution Times (continued)

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx
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NOTE
The execution times for moving the contents of the Racc, Raccext[01,23], 
MACSR, or Rmask into a destination location <ea>x shown in this table 
represent the best-case scenario when the store instruction is executed and 
there are no load or M{S}AC instructions in the EMAC execution pipeline. 
In general, these store operations require only a single cycle for execution, 
but if preceded immediately by a load, MAC, or MSAC instruction, the 
depth of the EMAC pipeline is exposed and the execution time is four 
cycles.

MAC.W Ry, Rx, Raccx 1(0/0) — — — — — — —

MAC.W Ry, Rx, <ea>, Rw, Raccx — 1(1/0) 1(1/0) 1(1/0) 1(1/0)1 — — —

MOVE.L <ea>y, Raccx 1(0/0) — — — — — — 1(0/0)

MOVE.L Raccy, Raccx 1(0/0) — — — — — — —

MOVE.L <ea>y, MACSR 8(0/0) — — — — — — 8(0/0)

MOVE.L <ea>y, Rmask 7(0/0) — — — — — — 7(0/0)

MOVE.L <ea>y,Raccext01 1(0/0) — — — — — — 1(0/0)

MOVE.L <ea>y,Raccext23 1(0/0) — — — — — — 1(0/0)

MOVE.L Raccx, <ea>x 1(0/0)2 — — — — — — —

MOVE.L MACSR, <ea>x 1(0/0) — — — — — — —

MOVE.L Rmask, <ea>x 1(0/0) — — — — — — —

MOVE.L Raccext01,<ea.x 1(0/0) — — — — — — —

MOVE.L Raccext23,<ea>x 1(0/0) — — — — — — —

MSAC.L Ry, Rx, Raccx 1(0/0) — — — — — — —

MSAC.W Ry, Rx, Raccx 1(0/0) — — — — — — —

MSAC.L Ry, Rx, <ea>, Rw, Raccx — 1(1/0) 1(1/0) 1(1/0) 1(1/0)1 — — —

MSAC.W Ry, Rx, <ea>, Rw, Raccx — 1(1/0) 1(1/0) 1(1/0) 1(1/0)1 — — —

MULS.L <ea>y, Dx 4(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) — — —

MULS.W <ea>y, Dx 4(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)

MULU.L <ea>y, Dx 4(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) — — —

MULU.W <ea>y, Dx 4(0/0) 4(1/0) 4(1/0) 4(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)

1 Effective address of (d16,PC) not supported
2 Storing an accumulator requires one additional processor clock cycle when saturation is enabled, or fractional 

rounding is performed (MACSR[7:4] equals 1---, -11-, --11)

Table 3-18. EMAC Instruction Execution Times (continued)

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An) (d16,An)
(d8,An,
Xn*SF)

xxx.wl #xxx
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3.3.5.7 Branch Instruction Execution Times

The following notes apply to the branch execution times:

1. For BRA and JMP <ea> instructions, where <ea> is (d16,PC) or xxx.wl, the branch acceleration 
logic of the IFP calculates the target address and begins prefetching the new path. Because the IFP 
and OEP are decoupled by the FIFO instruction buffer, the execution time can vary from one to 
three cycles, depending on the decoupling amount.

For all other <ea> values of the JMP instruction, the branch acceleration logic is not used, and the 
execution times are fixed.

2. For BSR and JSR xxx.wl opcodes, the same branch acceleration mechanism is used to initiate the 
fetch of the target instruction. Depending on the amount of decoupling between the IFP and OEP, 
the resulting execution times can vary from 1 to 3 cycles.

For the remaining <ea> values for the JSR instruction, the branch acceleration logic is not used, 
and the execution times are fixed.

3. For the RTS opcode, the timing depends on the prediction results of the hardware return stack:

a) If predicted correctly, 2(1/0).

b) If mispredicted, 9(1/0).

c) If not predicted, 8(1/0).

Table 3-19. General Branch Instruction Execution Times

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xi*SF)
(d8,PC,Xi*SF)

xxx.wl #xxx

BRA — — — — 1(0/1)1 — — —

BSR — — — — 1(0/1)2 — — —

JMP <ea> — 5(0/0) — — 5(0/0)1 6(0/0) 1(0/0)1 —

JSR <ea> — 5(0/1) — — 5(0/1) 6(0/1) 1(0/1)2 —

RTE — — 15(2/0) — — — — —

RTS — — 2(1/0)3

9(1/0)3

8(1/0)3

— — — — —

Table 3-20. Bcc Instruction Execution Times

Opcode
Branch Cache 

Correctly Predicts 
Taken

Prediction Table 
Correctly Predicts 

Taken

Predicted 
Correctly as Not 

Taken

Predicted 
Incorrectly

Bcc 0(0/0) 1(0/0) 1(0/0) 8(0/0) 
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Chapter 4  
Memory Management Unit (MMU)

4.1 Introduction
This chapter describes the ColdFire virtual memory management unit (MMU), which provides 
virtual-to-physical address translation and memory access control. The MMU consists of memory-mapped 
control, status, and fault registers that provide access to translation-lookaside buffers (TLBs). Software can 
control address translation and access attributes of a virtual address by configuring MMU control registers 
and loading TLBs. With software support, the MMU provides demand-paged, virtual addressing.

4.1.1 Block Diagram

Figure 4-1 shows the placement of the MMU/TLB hardware. It follows a traditional model closely coupled 
to the processor local-memory controllers.
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Figure 4-1. CF4 Processor Core Block with MMU

4.1.2 Features

The MMU has the following features:

• MMU memory-mapped control, status, and fault registers

— Supports a flexible, software-defined virtual environment
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— Provides control and maintenance of TLBs

— Provides fault status and recovery information functions

• Separate, 32-entry, fully associative instruction and data TLBs (Harvard TLBs)

— Resides in the processor local bus-controller

— Operates in parallel with internal memory

— Suffers no performance penalty on TLB hits

— Supports 4- and 8-Kbyte, and 1- and 16-Mbyte page sizes concurrently

— Contains register-based TLB entries

• Core extensions:

— User stack pointer

— All  access error exceptions are precise and recoverable

• Harvard TLB provides 97% of baseline performance on large embedded applications without 
MMU support

4.2 Memory Map/Register Definition
Access to the MMU memory-mapped region is controlled by MMUBAR, a 32-bit supervisor control 
register at 0x008 accessed using MOVEC or the serial BDM debug port. The ColdFire Programmers 
Reference Manual describes the MOVEC instruction.

MMUBAR holds the base address for the 64-Kbyte MMU memory map (Table 4-1). The MMU memory 
map area is not visible unless the MMUBAR is valid and must be referenced aligned. A large map portion 
is reserved for future use.

Table 4-1. MMU Memory Map

Address Register Width Access Reset Value Section/Page

Rc[11:0] =
0x0031

ASID—Address Space ID 8 R/W 0x00 4.2.1/4-4

Rc[11:0] =
0x0081

MMUBAR—MMU Base Address Register 32 R/W 0x0000_0000 4.2.2/4-4

MMUBAR
+ 0x0000

MMUCR—MMU control register 32 R/W 0x0000_0000 4.2.3/4-5

MMUBAR
+ 0x0004

MMUOR—MMU operation register 32 R/W 0x0000_0000 4.2.4/4-6

MMUBAR
+ 0x0008

MMUSR—MMU status register 32 R/W 0x0000_0000 4.2.5/4-7

MMUBAR
+ 0x0010

MMUAR—MMU fault, test, or TLB address register 32 R/W 0x0000_0000 4.2.6/4-8

MMUBAR
+ 0x0014

MMUTR—MMU read/write TLB tag register 32 R/W 0x0000_0000 4.2.7/4-9
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4.2.1 Address Space ID (ASID)

The address space ID (ASID) is located in a CPU space-control register. The 8-bit ASID value is mapped 
into CPU space at address 0x003 and is accessed using a MOVEC instruction. The ColdFire Family 
Programmer’s Reference Manual describes MOVEC.

4.2.2 MMU Base Address Register (MMUBAR)

The default reset state is an invalid MMUBAR; The MMU is disabled and the memory-mapped space is 
not visible.

MMUBAR
+ 0x0018

MMUDR—MMU read/write TLB data register 32 R/W 0x0000_0000 4.2.8/4-10

1 The address listed here represents the value of the Rc field used when accessing the core registers via the BDM port. For 
more information see Chapter 43, “Debug Module.”

Rc[11:0]: 0x003 (ASID) Access: Supervisor read/write

7 6 5 4 3 2 1 0

R
ID

W

Reset: 0 0 0 0 0 0 0 0

Figure 4-2. Address Space ID (ASID)

Table 4-2. ASID Field Descriptions

Field Description

7–0
ID

This 8-bit field is the current user ASID. The ASID is an extension to the virtual address. Address space 0x00 
may be reserved for supervisor mode. See address space mode functionality in Section 4.2.3, “MMU Control 
Register (MMUCR).” The other 255 address spaces are used to tag user processes. The TLB entry ASID 
values are compared to this value for user mode unless the TLB entry is marked shared (MMUTR[SG] is set). 
The TLB entry ASID value may be compared to 0x00 for supervisor accesses.

Rc[11:0] 0x008 (MMUBAR) Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-3. MMU Base Address Register (MMUBAR)

Table 4-1. MMU Memory Map (continued)

Address Register Width Access Reset Value Section/Page
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4.2.3 MMU Control Register (MMUCR)

MMUCR contains the address space mode and virtual mode enable bits. The user must force pipeline 
synchronization after writing to this register. Therefore, all writes to this register must be immediately 
followed by a NOP instruction.

Table 4-3. MMUBAR Field Descriptions

Field Description

31–16
BA

Base address. Defines the base address for the 64-Kbyte address space mapped to the MMU. 

15–1 Reserved, must be cleared.

0
V

Valid. Indicates when MMUMBAR contents are valid. BA is not used unless V is set.
0 MMUBAR contents are not valid.
1 MMUBAR contents are valid.

MMUBAR
Offset:

0x000 (MMUCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UVE SAL ASM EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-4. MMU Control Register (MMUCR)

Table 4-4. MMUCR Field Descriptions

Bits Description

31–4 Reserved, must be cleared.

3
UVE

User virtual mode enable. Controls whether virtual mode is automatically enabled and disabled when entering or 
exiting user mode as defined by SR[S]. The virtual mode qualification also requires that MMUCR[EN] be set.
0 Virtual mode is based solely on the state of MMUCR[EN]
1 Virtual mode is based on MMUCR[EN] and SR[S] being cleared
Virtual mode is defined by the boolean expression: MMUCR[EN] && (SR[S] || MMUCR[UVE])

2
SAL

Select ASID Location. Defines the source of the ASID value used for certain operations associated with the MMUOR, 
specifically those defined by MMUOR[STLB, CAS].
0 Address space identifier is defined by ASID register contents
1 Address space identifier is defined by MMUAR[9:2]
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4.2.4 MMU Operation Register (MMUOR)

1
ASM

Address space mode. Controls how the address space ID is used for TLB hits. 
0 TLB entry ASID values are compared to the ASID register value for user or supervisor mode unless the TLB entry 

is marked shared (MMUTR[SG] = 1). The address space ID register value is the effective address space for all 
requests, supervisor and user.

1 Address space 0x00 is reserved for supervisor mode, and the effective address space is forced to 0x00 for all 
supervisor accesses. The other 255 address spaces are used to tag user processes. The TLB entry ASID values 
are compared to the ASID register for user mode unless the TLB entry is marked shared (SG = 1). The TLB entry 
ASID value is always compared to 0x00 for supervisor accesses. This allows two levels of sharing. All users, but 
not the supervisor, share an entry if SG is set and ASID does not equal 0. All users and the supervisor share an 
entry if SG is set and ASID equals 0

0
EN

Virtual mode enable.
0 Virtual mode is disabled
1 Virtual mode is enabled

MMUBAR
Offset:

0x004 (MMUOR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0
ITLB ADR R/W

0 0

W CVA STLB CA CNL CAS ACC UAA

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-5. MMU Operation Register (MMUOR)

Table 4-5. MMUOR Field Descriptions

Field Description

31–16
AA

TLB allocation address. This read-only field is maintained by MMU hardware. Its range and format depend on 
the TLB implementation (specific TLB size in entries, associativity, and organization). The access TLB function 
can use AA to read or write the addressed TLB entry. The MMU loads AA on the following three events:
 • On DTLB access errors, it loads the TLB entry address that caused the error.
 • If MMUOR[UAA] is set, it loads the address of the TLB entry chosen by the MMU for replacement.
 • If MMUOR[STLB] is set, it uses the data in MMUAR to search the TLB. If the TLB hits, it loads the address of 

the TLB entry that hits; if the TLB misses, it loads the TLB entry chosen by the MMU for replacement.
The MMU never picks a locked entry for replacement, and TLB hits of locked entries do not update hardware 
replacement algorithm information. This is so access error handlers mapped with locked TLB entries do not 
influence the replacement algorithm. Further, TLB search operations do not update the hardware replacement 
algorithm information; TLB writes (loads) do update the hardware replacement algorithm information. The 
algorithm that chooses the allocation address depends on the TLB implementation (such as LRU, round-robin, 
pseudo-random).

15–10 Reserved, must be cleared.

Table 4-4. MMUCR Field Descriptions (continued)

Bits Description
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4.2.5 MMU Status Register (MMUSR)

MMUSR is updated on all data access faults and search TLB operations.

9
CVA

Clears a common virtual address entry from the TLB. CVA always reads as a zero.
0 No operation
1 Clear all non-locked and non-shared TLB entries matching the virtual address contained in the MMUAR. No 

address space identifier is included in the comparisons.
Note: The MMUOR[ADR, R/W] bits must also be set for correct operation.

8
STLB

Search TLB. STLB always reads as zero.
0 No operation
1 The MMU searches the TLB using the virtual address in MMUAR[31:10], address space identifier in 

MMUAR[9:2] if MMUCR[SAL] is set, else ASID[7:0], supervisor mode in MMUAR[0]. This operation updates 
the probe TLB hit bit in the status register plus loads the AA field as described above.

7
CA

Clear all TLB entries. CA always reads as zero.
0 No operation
1 Clear all TLB entries and all hardware TLB replacement algorithm information.

6
CNL

Clear all non-locked TLB entries. Setting CNL clears all TLB entries that do not have locked bits. CNL always 
reads as zero.
0 No operation
1 Clear all non-locked TLB entries

5
CAS

Clear all non-locked TLB entries that match ASID. If MMUCR[SAL] is set, then the address space identifier is
defined by MMUAR[9:2]; Else, ASID[7:0] is used in the match. CAS always reads as a zero.
0 No operation
1 Clear all non-locked TLB entries that match ASID register

4
ITLB

ITLB operation. Used by TLB search and access operations that use the TLB allocation address.
0 MMU uses DTLB to search or update allocation address
1 MMU uses ITLB for of the allocation address searches and updates

3
ADR

TLB address select. Indicates which address to use when accessing the TLB.
0 Use the TLB allocation address for the TLB address
1 Use MMUAR for the TLB address

2
R/W

TLB access read/write select. Indicates whether to perform a read or a write when accessing the TLB.
0 Write
1 Read

1
ACC

MMU TLB access. This bit always reads as a zero. STLB is used for search operations.
0 No operation. ACC must be a zero to search the TLB.
1 The MMU reads or writes the TLB depending on R/W. For TLB reads, TLB tag and data results are loaded into 

MMUTR and MMUDR. For TLB writes, the contents of these registers are written to the TLB. The TLB is 
accessed using the TLB allocation address if ADR is zero or using MMUAR if ADR is set. 

0
UAA

Update allocation address. UAA always reads as a zero.
0 No operation
1 MMU updates the allocation address field with the MMU’s choice for the allocation address in the ITLB or 

DTLB depending on the ITLB instruction operation bit.

Table 4-5. MMUOR Field Descriptions (continued)

Field Description
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4.2.6 MMU Fault, Test, or TLB Address Register (MMUAR)

The MMUAR format depends on how register is used.

MMUBAR
Offset:

0x008 (MMUSR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SPF RF WF

0
HIT

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-6. MMU Status Register (MMUSR)

Table 4-6. MMUSR Field Descriptions

Field Description

31–6 Reserved, must be cleared.

5
SPF

Supervisor-protect fault. Indicates if last data fault was a user-mode access that hit in a TLB entry with its 
supervisor protect bit set.
0 Last data access fault did not have a supervisor protect fault
1 Last data access fault had a supervisor protect fault

4
RF

Read-access fault. Indicates if last data fault was a data-read access that hit in a TLB entry without its read bit set.
0 Last data access fault did not have a read protect fault
1 Last data access fault had a read protect fault

3
WF

Write-access fault. Indicates if the last data fault was a data-write access that hit in a TLB entry without its write 
bit set.
0 Last data access fault did not have a write protect fault
1 Last data access fault had a write protect fault

2 Reserved, must be cleared.

1
HIT

Search TLB hit. Indicates if last data fault or last search TLB operation hit in the TLB.
0 Last data access fault or search TLB operation did not hit in the TLB
1 Last data access fault or search TLB operation hit in the TLB

0 Reserved, must be cleared.

MMUBAR
Offset:

0x010 (MMUAR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-7. MMU Fault, Test, or TLB Address Register (MMUAR)
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4.2.7 MMU Read/Write Tag Entry Registers (MMUTR)

Each TLB entry consists of a 32-bit TLB tag entry and a 32-bit TLB data entry. TLB entries are referenced 
through MMUTR and MMUDR registers. For read TLB accesses, the contents of the TLB tag and data 
entries referenced by the allocation address or MMUAR are loaded in MMUTR and MMUDR. TLB write 
accesses place MMUTR and MMUDR contents into the TLB tag and data entries defined by the allocation 
address or MMUAR.

The MMUTR register contains the virtual address tag, the address space ID (ASID), a shared page 
indicator, and the valid bit.

Table 4-7. MMUAR Field Descriptions

Field Description

31–0
FA

Form address. 
 • Written by the MMU with the virtual-address on DTLB misses and access faults. For this case, all 32 bits are 

address bits. 
 • This register may be written with a virtual address and (optionally) address space identifier information for 

searching the TLB (MMUOR[STLB]), globally clearing the TLB of a particular virtual address (MMUOR[CVA]), 
globally clearing a particular address space identifier (MMUOR[CAS]). For these cases, FA[31:10] is the virtual 
page number, FA[9:2] is the address space identifier if MMUCR[SAL] is set, and FA[0] is the supervisor bit.

 • For MMUOR[CVA], virtual address = MMUAR[31:10], address space identifier = MMUAR[9:2] if MMUCR[SAL] 
is set, else ASID[7:0], supervisor mode = MMUAR[0]

 • For MMUOR[STLB], virtual address = MMUAR[31:10], address space identifier = MMUAR[9:2] if 
MMUCR[SAL] is set, else ASID[7:0], supervisor mode = MMUAR[0]

 • For MMUOR[CAS], address space identifier = MMUAR[9–2] if MMUCR[SAL] is set, else ASID[7:0]
 • MMUAR can also be written with a TLB address for use with the access TLB function (using MMUCR[ACC]).

MMUBAR
Offset:

0x014 (MMUTR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
VA ID SG V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-8. MMU Read/Write TLB Tag Register (MMUTR)

Table 4-8. MMUTR Field Descriptions

Field Description

31–10
VA

Virtual address. Defines the virtual address mapped by this entry. The number of bits used in TLB hit 
determination depends on the page-size field in the corresponding TLB data entry.

9–2
ID

Address space ID (ASID). This extension to the virtual address marks this entry as part of 1 of 256 possible 
address spaces. Address space 0x00 can be reserved for supervisor mode. The other 255 address spaces are 
used to tag user processes. TLB entry ASID values are compared to the ASID register value for user mode 
unless the TLB entry is marked shared (SG = 1). The TLB entry ASID value may be compared to 0x00 for 
supervisor accesses or to the ASID. The description of MMUCR[ASM] in Table 4-4 gives details on supervisor 
mode and ASID compares.
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4.2.8 MMU Read/Write Data Entry Register (MMUDR)

The MMUDR register contains the physical address, page size, cache-mode field, supervisor-protect bit, 
read, write, execute permission bits, and lock-entry bit.

1
SG

Shared global. Indicates when the entry is shared among user address spaces. If an entry is shared, its ASID is 
not part of the TLB hit determination for user accesses.
0 This entry is not shared globally.
1 This entry is shared globally.
Note: The ASID can determine supervisor mode hits to allow two sharing levels. If SG and MMUCR[ASM] are 

set and the ASID is not zero, all users (but not the supervisor) share an entry. If SG and MMUCR[ASM] 
are set and the ASID is zero, all users and the supervisor share an entry. The ASM description in Table 4-4 
details supervisor mode and ASID compares.

0
V

Valid. Indicates when the entry is valid. Only valid entries generate a TLB hit.
0 Entry is not valid.
1 Entry is valid.

MMUBAR
Offset:

0x018 (MMUTR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PA SZ CM SP R W X LK

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-9. MMU Read/Write TLB Data Register (MMUDR)

Table 4-9. MMUDR Field Descriptions

Field Descriptions

31–10
PA

Physical address. Defines the physical address mapped by this entry. The number of bits used to build the 
effective physical address if this TLB entry hits depends on the page size field.

9–8
SZ

Page size. Page size for this entry:
00 1 Mbyte: VA[31–20] used for TLB hit
01 4 Kbytes: VA[31–12] used for TLB hit
10 8 Kbytes: VA[31–13] used for TLB hit
11 16 Mbytes: VA[31–24] used for TLB hit

7–6
CM

Cache mode.
Instruction cache modes:
1x Page is non-cacheable.
0x Page is cacheable.
Data cache modes:
00 Page is cacheable write-through.
01 Page is cacheable copy-back.
10 Page is non-cacheable precise.
11 Page is non-cacheable imprecise.

Table 4-8. MMUTR Field Descriptions (continued)

Field Description
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4.3 Functional Description
The ColdFire MMU provides a virtual address, demand-paged memory architecture. The MMU supports 
hardware address translation acceleration using software-managed TLBs. It enforces permission checking 
on a per-memory request basis, and has control, status, and fault registers for MMU operation.

This device adds the following new features that were not present in previous devices containing an MMU:

• Support to clear all non-locked and non-shared TLB entries that match a virtual address.

• Ability to clear TLB entries based on an arbitrary address space identifier (ASID). Previously, 
operations to clear TLB entries based on the ASID only use the ASID register contents. This 
improvement adds the ability to clear any address space identifier, regardless of the contents of the 
ASID register.

• Optional capabilities to automatically enable and disable virtual mode based on entry (enable) and 
exit (disable) into user mode.

• Four additional access control registers (ACRs): two for instruction fetches and two for operand 
references. These registers are accessible via the privileged MOVEC instruction.

The default configuration is fully backward compatible with the previous MMU definition. The above 
enhancements are explicitly enabled by new control and configuration register fields.

5
SP

Supervisor protect. Controls user mode access to the page mapped by this entry.
0 Entry is not supervisor protected.
1 Entry is supervisor protected. An attempted user mode access that matches this entry generates an access 

error exception.

4
R

Read access enable. Indicates if data read accesses to this entry are allowed. If a Harvard TLB implementation 
is used, this bit is a don’t care for the ITLB. This bit is ignored on writes and always reads as zero for the ITLB.
0 Do not allow data read accesses. Attempted data read accesses that match this entry generate an access error 

exception.
1 Allow data-read accesses.

3
W

Write access enable. Indicates if data write accesses are allowed to this entry. If separate ITLB and DTLBs are 
used, this bit is a don’t care for the ITLB. This bit is ignored on writes and always reads as zero for the ITLB.
0 Do not allow data write accesses. Attempted data write accesses that match this entry generate an access error 

exception.
1 Allow data-write accesses.

2
X

Execute access enable. Indicates if instruction fetches to this entry are allowed. If separate ITLB and DTLBs are 
used, this bit is a don’t care for the DTLB. This bit is ignored on writes and reads as zero for the DTLB.
0 Do not allow instruction fetches. Attempted instruction fetches that match this entry cause an access error 

exception.
1 Allow instruction-fetch accesses.

1
LK

Lock entry bit. Indicates if this entry is included in the replacement algorithm. TLB hits of locked entries do not 
update replacement algorithm information.
0 Include this entry when determining the best entry for a TLB allocation.
1 Do not allow this entry to be selected by the replacement algorithm.

0 Reserved, must be cleared.

Table 4-9. MMUDR Field Descriptions (continued)

Field Descriptions
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4.3.1 Virtual Memory Management Architecture

The ColdFire memory management architecture provides a demand-paged, virtual-address environment 
with hardware address translation acceleration. It supports supervisor/user, read, write, and execute 
permission checking on a per-memory request basis.

The architecture defines the MMU TLB, associated control logic, TLB hit/miss logic, address translation 
based on the TLB contents, and access faults due to TLB misses and access violations. It intentionally 
leaves some virtual environment details undefined to maximize the software-defined flexibility. These 
include the exact structure of the memory-resident pointer descriptor/page descriptor tables, the base 
registers for these tables, the exact information stored in the tables, the methodology (if any) for access 
maintenance, and written information on a per-page basis.

4.3.1.1 MMU Architecture Features

To add optional virtual-addressing support, demand-page support, permission checking, and hardware 
address translation acceleration to the ColdFire architecture, the MMU architecture features:

• Addresses from the core to the MMU are treated as physical or virtual addresses.

• The address access control logic, address attribute logic, internal memories, and internal to external 
memory bus controller function as in previous ColdFire versions with the addition of MMU.

• MMU, its TLB, and associated control reside in the processor local bus logic. 

• MMU appears as a memory-mapped device in the processor local bus space. Information for 
access error fault processing is stored in MMU.

• A precise processor local-bus fault (transfer-error acknowledge) signals the core on translation 
(TLB miss) and access faults. The core supports an instruction restart model for this fault class. 
This structure uses the existing ColdFire access error fault vector and needs no new ColdFire 
exception stack frames.

• New ACR bits improve address granularity, supervisor mode protection, and memory functionality 
for physical and virtual address environments.

4.3.1.2 MMU Architecture Implementation

This section describes ColdFire design additions and changes for the MMU architecture. It includes 
precise faults, MMU access, virtual mode, virtual memory references, instruction and data cache 
addresses, supervisor/user stack pointers, access error stack frame additions, expanded control register 
space, ACR address improvements, supervisor protection, and debugging in a virtual environment.

4.3.1.2.1 Precise Faults

The MMU architecture performs virtual-to-physical address translation and permission checking in the 
core. To support demand-paging, the core design provides a precise, recoverable fault for all processor 
local bus references. 
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4.3.1.2.2 MMU Access

The MMU TLB control registers are memory-mapped. The TLB entries are read and written indirectly 
through MMU control registers. Memory space for these resources is defined by a new supervisor program 
model register, the MMU base-address register (MMUBAR). This defines a supervisor-mode, data-only 
space. It has the highest priority for the data-processor local-bus address-mode determination.

4.3.1.2.3 Virtual Mode

Every processor local-bus instruction and data reference is a virtual or physical address mode access. The 
following are always physical accesses:

• All addresses for special mode (interrupt acknowledges, emulator mode operations, etc.) accesses

• All addresses if the MMU is not enabled

If the MMU is enabled, the address mode for normal accesses is determined by the MMUBAR, 
RAMBARs, and ACRs in the priority order listed:

• Addresses that hit in these registers are treated as physical references. These addresses are not 
translated and their address attributes are sourced from the highest priority mapping register they 
hit.

• If an address hits none of these mapping registers, it is a virtual address and is sent to the MMU. If 
the MMU is enabled, the default CACR information is not used.

Virtual mode can be automatically enabled/disabled based on entry (enable) and exit (disable) into user 
mode. See the MMUCR[UVE] bit description, in Section 4.2.3, “MMU Control Register (MMUCR)” for 
more details.

4.3.1.2.4 Virtual Memory References

The ColdFire MMU architecture references the MMU for all virtual mode accesses to the processor local 
bus. MMU, SRAM and ACR memory spaces are treated as physical address spaces and all permissions 
applying to these spaces are contained in the respective mapping register. The virtual mode access either 
hits or misses in the TLB of the MMU. A TLB miss generates an access fault in the processor, allowing 
software to either load the appropriate translation into the TLB and restart the faulting instruction or abort 
the process. Each TLB hit checks permissions based on the access control information in the referenced 
TLB entry.

4.3.1.2.5 Instruction and Data Cache Addresses

For a given page size, virtual address bits that reference within a page are called the in-page address. All 
bits above this are the virtual page number. Likewise, the physical address has a physical page number and 
in-page address bits. Virtual and physical in-page address bits are the same; the MMU translates the virtual 
page number to the physical page number.

Instruction and data caches are accessed with the untranslated processor local-bus address. The translated 
address is used for cache allocation. That is, caches are virtual-address accessed and physical-address 
tagged. If instruction and data cache addresses are not larger than the in-page address for the smallest 
active MMU page, the cache is physically accessed; if they are larger, the cache can have aliasing problems 
between virtual and cache addresses. Software handles these problems by forcing the virtual address to be 
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equal to the physical address for those bits addressing the cache, but above the in-page address of the 
smallest active page size. The number of these bits depends on cache and page sizes.

Caches are addressed with the virtual address (the cache uses synchronous memory elements), and an 
access starts at the rising-clock edge of the first processor local bus pipeline stage. The MMU provides a 
physical address midway through this cycle.

If the cache-set address has fewer bits than the in-page address, the cache is considered physically 
addressed because these bits are the same in the virtual and physical addresses. If the cache set address has 
more bits than the in-page address, one or more of the low-order virtual page number bits are used to 
address the cache. The MMU translates these bits; the resulting low-order physical page number bits are 
used to determine cache hits.

Address aliasing problems occur when two virtual addresses access one physical page. This is generally 
allowed and, if the page is cacheable, one coherent copy of the page image is mapped in the cache at any 
time. 

If multiple virtual addresses pointing to the same physical address differ only in the low-order virtual page 
number bits, conflicting copies can be allocated. For an 8-Kbyte, 4-way, set-associative cache with a 
16-byte line size, the cache set address uses address bits 10–4. If virtual addresses 0x0_1000 and 0x0_1400 
are mapped to physical address 0x0_1000, using virtual address 0x0_1000 loads cache set 0x00; using 
virtual address 0x0_1400 loads cache set 0x40. This puts two copies of the same physical address in the 
cache, making this memory space not coherent. To avoid this problem, software must force low-order 
virtual page number bits to be equal to low-order physical address bits for all bits used to address the cache 
set.

4.3.1.2.6 Supervisor/User Stack Pointers

To isolate supervisor and user modes, the Version 4 ColdFire core  implements two A7 register stack 
pointers: one for supervisor mode (SSP) and one for user mode (USP). Two former M68000 
family-privileged instructions to load and store the user stack pointer are restored in the instruction set 
architecture.

4.3.1.2.7 Access Error Stack Frame

Processor local bus accesses that fault (that is, terminate with a  transfer error acknowledge) to generate 
an access error exception. MMU TLB misses and access violations use the same fault. New fault status 
field (FS) encodings in the exception stack frame signal TLB misses on the following to quickly determine 
if a fault was due to a TLB miss or another type of access error:

• Instruction fetch

• Instruction extension fetch

• Data read

• Data write

See Section 4.3.3.3, “Access Error Stack Frame Additions,” for more information.
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4.3.1.2.8 Expanded Control Register Space

The MMU base-address register (MMUBAR) is added for ColdFire virtual mode. Like other control 
registers, it can be accessed from the debug module or written using the privileged MOVEC instruction. 
See Section 4.2.2, “MMU Base Address Register (MMUBAR).” 

4.3.1.2.9 Changes to ACRs and CACR

Four access control registers (ACRs) are added; two for instruction fetches and two for operand fetches. 
These registers are accessible via the privileged MOVEC instruction.

New ACR and CACR bits improve address granularity and supervisor mode protection and memory 
functionality for physical- and virtual- address environments.

4.3.1.2.10 ACR Address Improvements

The ACR registers provide a 16-Mbyte address window. For a given request address, if the ACR is valid 
and the request mode matches the mode specified in the supervisor mode field (ACRn[S]), hit 
determination is specified as:
ACRx_Hit = 0;
if ((address[31:24] and  ~ACRn[23:16]) == (ACRn[31:24] and  ~ACRn[23:16]))

ACRx_Hit = 1;

With this hit function, ACRs can assign address attributes for user or supervisor requests to memory spaces 
of at least 16 Mbytes (through the address mask). With the MMU definition, the ACR hit function is 
improved by the address mask mode bit (ACRn[AMM]), which supports finer address granularity. See 
Table 4-10.

The revised hit determination becomes:

Table 4-10. New ACR and CACR Bits

Field Description

ACRn[10]
AMM

Address mask mode. Determines access to the associated address space.
0 The ACR hit function is the same as previous versions, allowing control of a 16-Mbyte or greater memory 

region.
1 The upper 8 bits of the address and ACR are compared without a mask function; bits 23–20 of the address 

and ACR are compared masked by ACR[19–16], allowing control of a 1- to 16-Mbyte region.
Reset value is 0.

ACRn[3]
SP

Supervisor protect. Determines access to the associated address space.
0 Supervisor and user access allowed.
1 Only supervisor access allowed. Attempted user access causes an access error exception.
Reset value is 0.

CACR[23]
DDSP

Default data supervisor protect. Determines access to the associated data space.
0 Supervisor and user access allowed.
1 Only supervisor access allowed. Attempted user access causes an access error exception.
Reset value is 0.

CACR[7]
DISP

Default instruction supervisor protect. Determines access to the associated instruction space. 
0 Supervisor and user access allowed.
1 Only supervisor access allowed. Attempted user access causes access error exception
Reset value is 0.
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ACRx_Hit = 0;
if (ACRn[10] == 1)

if ((address[31–24] == ACRn[31–24])) &&
((address[23–20] and  ~ACRn[19–16]) == (ACRn[23–20] and  ~ACRn[19–16])))

ACRx_Hit = 1;
else if (address[31–24] and  ~ACRn[23–16]) == (ACRn[31–24] and  ~ACRn[23–16]))

ACRx_Hit = 1;

4.3.1.2.11 Supervisor Protection

Each instruction or data reference is a supervisor or user access. The CPU’s status register supervisor bit 
(SR[S]) determines the operating mode. New ACR and CACR bits protect supervisor space. See 
Table 4-10. 

4.3.2 Debugging in a Virtual Environment

To support debugging in a virtual environment, numerous enhancements are implemented in the ColdFire 
debug architecture. These enhancements are collectively called debug revision D and primarily relate to 
the addition of an 8-bit address space identifier (ASID) to yield a 40-bit virtual address. This expansion 
affects two major debug functions:

• The ASID is optionally included in the hardware breakpoint registers specification. For example, 
the four PC breakpoint registers are expanded by 8 bits each, so that a specific ASID value can be 
part of the breakpoint instruction address. Likewise, data address/data breakpoint registers are 
expanded to include an ASID value. The new control registers define if and how the ASID is 
included in the breakpoint comparison trigger logic.

• The debug module implements the concept of ownership trace in which an ASID value can be 
optionally displayed as part of real-time trace. When enabled, real-time trace displays instruction 
addresses on any change-of-flow instruction that is not absolute or PC-relative. For debug 
revision D architecture, the address display is expanded to include ASID contents optionally, thus 
providing the complete instruction virtual address on these instructions. Additionally, when a 
SYNC_PC serial BDM command is loaded from the external development system, the processor 
displays the complete virtual-instruction address, including the 8-bit ASID value.

The MMU control registers are accessible through serial BDM commands. See Chapter 43, “Debug 
Module.”

4.3.3 Virtual Memory Architecture Processor Support

To support the MMU, enhancements have been made to the exception model, the stack pointers, and the 
access error stack frame. 

4.3.3.1 Precise Faults

To support demand-paging, all memory references require precise, recoverable faults. The ColdFire 
instruction-restart mechanism ensures a faulted instruction restarts from the beginning of execution; in 
other words, no internal state information is saved when an exception occurs and none is restored when 
the handler ends. Given the PC address defined in the exception stack frame, the processor reestablishes 
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program execution by transferring control to the given location as part of the RTE (return from exception) 
instruction.

For a detailed description, see Section 3.3.4.16, “Precise Faults.”

4.3.3.2 Supervisor/User Stack Pointers

To provide the required isolation among these operating modes as dictated by a virtual memory 
management scheme, a user stack pointer (A7–USP) is added. The appropriate stack pointer register (SSP, 
USP) is accessed as a function of the processor’s operating mode. 

In addition, the following two privileged M68000 family instructions to load/store the USP are added to 
the ColdFire instruction set architecture:

move.l Ay,USP # move to USP: opcode = 0x4E6{0-7}
move.l USP,Ax # move from USP: opcode = 0x4E6{8–F}

The address register number is encoded in the three low-order bits of the opcode.

These instructions are described in detail in Section 4.3.9, “MMU Instructions.”

4.3.3.3 Access Error Stack Frame Additions

ColdFire exceptions generate a standard 2-longword stack frame, signaling the contents of the SR and PC 
at the time of the exception, the exception type, and a 4-bit fault status field (FS). The first longword 
contains the 16-bit format/vector word (F/V) and the 16-bit status register. The second contains the 32-bit 
program counter address of the faulted instruction. For more information, see Section 3.3.3.1, “Exception 
Stack Frame Definition.”

The FS field is used for access and address errors. To optimize TLB miss-exception handling, new FS 
encodings (as shown in Table 4-11) allow quick error classification.

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSP  Format FS[3:2] Vector FS[1:0] Status Register

+ 0x4 Program Counter

Figure 4-10. Exception Stack Frame Form

Table 4-11. Fault Status Encodings

FS[3:0] Definition

0000 Not an access or address error

0001 – 0011 Reserved

0100 Error (for example, protection fault) on instruction fetch

0101 TLB miss on opword of instruction fetch (New for MMU)

0110 TLB miss on extension word of instruction fetch (New for MMU)

0111 IFP access error while executing in emulator mode (New for MMU)

1000 Error on data write

1001 Attempted write of protected space
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4.3.4 Effective Address Attribute Determination

The ColdFire core generates an effective memory address for all instruction fetches and data read and write 
memory accesses. The previous ColdFire memory access control model was based strictly on physical 
addresses. Every memory request address is a physical address analyzed by this memory access control 
logic and assigned address attributes, including: 

• Cache mode

•  SRAM enable information

• Write protect information

• Write mode information

These attributes control processing of the memory request. The address itself is not affected by memory 
access control logic.

Instruction and data references base effective address attributes and access mode on the instruction type 
and the effective address. There are two types of accesses:

• Special mode accesses, including interrupt acknowledges, reads/writes to program-visible control 
registers (CACR, RAMBARs, and ACRs), cache-control commands (CPUSHL and INTOUCH), 
and emulator-mode operations. These accesses have the following attributes:

— Non-cacheable

— Precise

— No write protection

Unless the CPU space/IACK mask bit is set, interrupt acknowledge cycles and emulator mode 
operations are allowed to hit in RAMBAR. All other operations are normal mode accesses.

• Normal mode accesses. For these accesses, an effective cache mode, precision, and 
write-protection are calculated for each request.

For data, a normal mode access address is compared with the following priority, from highest to lowest: 
RAMBAR, ACR0, ACR1, ACR4, and ACR5. If no match is found, default attributes in the CACR are 
used. The priority for instruction accesses is RAMBAR, ACR2, ACR3, ACR6, and ACR7. Again, if no 
match is found, default CACR attributes are used.

1010 TLB miss on data write (New for MMU)

1011 Reserved

1100 Error on data read

1101 Attempted read, read-modify-write of protected space (New for MMU)

1110 TLB miss on data read, or read-modify-write (New for MMU)

1111 OEP access error while executing in emulator mode (New for MMU)

Table 4-11. Fault Status Encodings (continued)

FS[3:0] Definition
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Only the test-and-set (TAS) instruction generates a normal mode access with implied cache mode and 
precision. TAS is a special, byte-sized, read-modify-write instruction used in synchronization routines. A 
TAS data access that does not hit in the RAMBAR is non-cacheable and precise. TAS uses the normal 
effective write protection.

If the MMU is enabled, it adds two factors for calculating effective address attributes: 

• MMUBAR defines a memory-mapped, privileged data-only space with the highest priority in 
effective address attribute calculation for the data bus (that is, the MMUBAR has priority over 
RAMBAR). 

• If virtual mode is enabled, any normal mode access that does not hit in the MMUBAR, RAMBAR 
or ACRs is considered a normal mode virtual address request and generates its access attributes 
from the MMU. For this case, the default CACR address attributes are not used.

The MMU also uses TLB contents to perform virtual-to-physical address translation.

4.3.5 MMU Functionality

The MMU provides virtual-to-physical address translation and memory access control. The MMU consists 
of memory-mapped, control, status, and fault registers, and a TLB that can be accessed through MMU 
registers. Supervisor software can access these resources through MMUBAR. Software can control 
address translation and virtual address access attributes by configuring MMU control registers and loading 
the MMU’s TLB, which functions as a cache, associating virtual addresses to corresponding physical 
addresses and providing access attributes. Each TLB entry maps a virtual page. Several page sizes are 
supported. Features such as clear-all and probe-for-hit help maintain TLBs.

Fault-free, virtual address accesses that hit in the TLB incur no pipeline delay. Accesses that miss the TLB 
or hit the TLB but violate an access attribute generate an access-error exception. On an access error, 
software can reference address and information registers in the MMU to retrieve data. Depending on the 
fault source, software can obtain and load a new TLB entry, modify the attributes of an existing entry, or 
abort the faulting process.

4.3.6 MMU TLB

Each TLB entry consists of two 32-bit fields. The first is the TLB tag entry, and the second is the TLB data 
entry. TLB entries can be read and written through MMU registers. TLB contents are unaffected by reset.

4.3.7 MMU Operation

The processor sends instruction-fetch requests and data read/write requests to the MMU internal bus in the 
instruction- and operand-address generation cycles (IAG and OAG). The processor local bus controller 
and memories occupy the next two pipeline stages, instruction fetch cycles 1 and 2 (IC1 and IC2) and 
operand fetch cycles 1 and 2 (OC1 and OC2). For late writes, optional data pipeline stages are added to 
the processor local bus controller as well as any writable memories.

Table 4-12 shows the association between internal memory pipeline stages and the processor’s pipeline 
structures (Figure 4-1).
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.

Version 4 ColdFire processor local buses use the same 2-cycle read pipeline developed for Version 3 
ColdFire cores. Each processor local bus has 32-bit address and 32-bit read data paths. Version 4 ColdFire 
cores use synchronous memory elements for all memory-control units. To support this, certain control 
information and all address bits are sent on the processor local buses at the end of the cycle before the 
initial bus access cycle (J cycle). The data processor local bus has an additional 32-bit write data path. For 
processor-store operations, Version 4 ColdFire uses a late-write strategy, which can require two additional 
data processor local bus cycles. This strategy yields the processor local bus pipeline behavior described in 
Table 4-13.

The processor core contains two independent memory unit access controllers and two independent 
processor local bus controllers. Each instruction and data processor local bus request is analyzed to see 
which, if any, memory controller is referenced. This information, along with cache mode, store precision, 
and fault information, is sourced during KC1.

The  MMU is referenced concurrently with the memory unit access controllers. It has two independent 
control sections to process simultaneously an instruction and data processor local bus request. Figure 4-1 
shows how the MMU and memory unit access controllers fit in the processor local bus pipeline. As the 
diagram shows, core address and attributes access the mapping registers and the MMU. By the middle of 
the KC1 cycle, the physical-memory address is available along with its corresponding access control.

Figure 4-11 shows more details of the MMU structure. At the beginning of the KC1 pipeline stage, the 
TLB is accessed so the resulting physical address can be sourced to the cache controllers to factor into the 
cache hit/miss determination. This is required because caches are virtually indexed but physically mapped.

Table 4-12. Version 4 Processor Local Bus Memory Pipelines

Processor Local Bus Memory Pipeline Stage Instruction Fetch Pipeline Operand Execution Pipeline

J stage IAG OAG

KC1 stage IC1 OC1

KC2 stage IC2 OC2

Operand-execute stage n/a EX

Late-write stage n/a DA

Table 4-13. Processor Local Bus Pipeline Cycles

Cycle Description

J Control and partial address broadcast (to start synchronous memories)

KC1 Complete address and control broadcast plus MMU information. During this cycle, all memory element 
read operations are performed; memory arrays are accessed.

KC2 Select appropriate memory as source, return data to processor, handle cache misses or hold 
processor local bus pipeline as needed.

EX Optional write stage, pipeline address and control for store operations.

DA Data available for stores from processor; memory element update occurs in the next cycle.



Memory Management Unit (MMU)

NXP Semiconductors 4-21

Figure 4-11. Processor Local Bus Address and Attributes Generation

4.3.8 MMU Implementation

The MMU implements a 64-entry full-associative Harvard TLB architecture with 32-entry ITLB and 
DTLB. This section details the operation and looks at the size, frequency, miss rate, and miss recovery time 
of this TLB implementation.

4.3.8.1 TLB Address Fields

Because the TLB has a total of 64 entries (32 each for the instruction and data TLBs), a 6-bit address field 
is necessary. TLB addresses 0–31 reference the ITLB; TLB addresses 32–63 reference the DTLB.

In the MMUOR register, bits 0–5 of the TLB allocation address (AA[5–0]) have this address format. The 
remaining TLB allocation address bits (AA[15–6]) are ignored on updates and always read as zero.

When the MMUAR register is used for a TLB address, bits FA[5–0] also have this address format. The 
remaining form address bits (FA[31–6]) are ignored when this register is used for a TLB address.
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4.3.8.2 TLB Replacement Algorithm

The instruction and data TLBs provide low-latency access to recently used instruction and operand 
translation information. The ITLBs and DTLBs are 32-entry fully associative caches. The 32 ITLB entries 
are searched on each instruction  reference; the 32 DTLB entries are searched on each operand  reference.

The TLBs are software controlled. The TLB clear-all function clears valid bits on every TLB entry and 
resets the replacement logic. A new valid entry loaded in the TLBs may be designated as locked and 
unavailable for allocation. TLB hits to locked entries do not update replacement algorithm information.

When a new TLB entry needs to be allocated, the user can specify the exact TLB entry to be updated 
(through MMUOR[ADR] and MMUAR) or let TLB hardware pick the entry to update based on the 
replacement algorithm. A pseudo least recently used (PLRU) algorithm picks the entry to replace on a TLB 
miss. The algorithm works as follows:

• If any element is empty (non-valid), use the lowest empty element as the allocate entry (entry 0 
before 1, 2, 3, and so on).

• If all entries are valid, use the entry indicated by the PLRU as the allocate entry.

The PLRU algorithm uses 31 most recently used state bits per TLB to track the TLB hit history. Table 4-14 
lists these state bits.

Table 4-14. PLRU State Bits

State Bits Meaning

rdRecent31To16 A 1 indicates 31To16 is more recent than 15To00

rdRecent31To24 A 1 indicates 31To24 is more recent than 23To16

rdRecent15To08 A 1 indicates 15To08 is more recent than 07To00

rdRecent31To28 A 1 indicates 31To28 is more recent than 27To24

rdRecent23To20 A 1 indicates 23To20 is more recent than 19To16

rdRecent15To12 A 1 indicates 15To12 is more recent than 11To08

rdRecent07To04 A 1 indicates 07To04 is more recent than 03To00

rdRecent31To30 A 1 indicates 31To30 is more recent than 29To28

rdRecent27To26 A 1 indicates 27To26 is more recent than 25To24

rdRecent23To22 A 1 indicates 23To22 is more recent than 21To20

rdRecent19To18 A 1 indicates 19To18 is more recent than 17To16

rdRecent15To14 A 1 indicates 15To14 is more recent than 13To12

rdRecent11To10 A 1 indicates 11To10 is more recent than 09To08

rdRecent07To06 A 1 indicates 07To06 is more recent than 05To04

rdRecent03To02 A 1 indicates 03To02 is more recent than 01To00

rdRecent31 A 1 indicates 31 is more recent than 30

rdRecent29 A 1 indicates 29 is more recent than 28

rdRecent27 A 1 indicates 27 is more recent than 26
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Binary state bits are updated on all TLB write (load) operations, as well as normal non-locked entries ITLB 
and DTLB hits. Also, if all entries in a binary state are locked, then that state is always set. That is, if entries 
15, 14, 13, and 12 were locked, LRU state bit rdRecent15To14 is forced to 1.

For a completely valid TLB, binary state information determines the LRU entry. The  replacement 
algorithm is deterministic and, for the case of a full TLB (with no locked entries and always touching new 
pages), the replacement entry repeats every 32 TLB loads.

4.3.8.3 TLB Locked Entries

Figure 4-12 is a ColdFire MMU Harvard TLB block diagram. 

For TLB miss faults, the instruction restart model re-executes an instruction on returning from the 
exception handler. An instruction can touch two instruction pages (a 32- or 48-bit instruction can straddle 
two pages) or four data pages (a memory-to-memory word or longword move where misaligned source 
and destination operands straddle two pages). Therefore, one instruction may take two ITLB misses and 
allocate two ITLB pages before completion. Likewise, one instruction may require four DTLB misses and 
allocate four DTLB pages. Because of this, a pool of unlocked TLB entries must be available if virtual 
memory is used.

The above examples show the fewest entries needed to guarantee an instruction can complete execution. 
For good MMU performance, more unlocked TLB entries should be available.

rdRecent25 A 1 indicates 25 is more recent than 24

rdRecent23 A 1 indicates 23 is more recent than 22

rdRecent21 A 1 indicates 21 is more recent than 20

rdRecent19 A 1 indicates 19 is more recent than 18

rdRecent17 A 1 indicates 17 is more recent than 16

rdRecent15 A 1 indicates 15 is more recent than 14

rdRecent13 A 1 indicates 13 is more recent than 12

rdRecent11 A 1 indicates 11 is more recent than 10

rdRecent09 A 1 indicates 09 is more recent than 08

rdRecent07 A 1 indicates 07 is more recent than 06

rdRecent05 A 1 indicates 05 is more recent than 04

rdRecent03 A 1 indicates 03 is more recent than 02

rdRecent01 A 1 indicates 01 is more recent than 00

Table 4-14. PLRU State Bits (continued)

State Bits Meaning
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Figure 4-12. Version 4 ColdFire MMU Harvard TLB

4.3.9 MMU Instructions

The MOVE to USP and MOVE from USP instructions are added for accessing the USP. Refer to the 
ColdFire Programmer’s Reference Manual for more information.

KC1

J
Current address space ID (ASID)

Compare

IC1 or OC1 translated address
IC1 or OC1 access control

TLB Tag
Entry 31

TLB Tag
Entry 0

TLB Tag
Entry 31

TLB Tag
Entry 0

To processor local bus control for
instruction or DTLB miss logic

Instruction or data  hit select

Instruction or data processor local bus address and attributes

Compare
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Chapter 5  
Enhanced Multiply-Accumulate Unit (EMAC)

5.1 Introduction
This chapter describes the functionality, microarchitecture, and performance of the enhanced 
multiply-accumulate (EMAC) unit in the ColdFire family of processors.

5.1.1 Overview

The EMAC design provides a set of DSP operations that can improve the performance of embedded code 
while supporting the integer multiply instructions of the baseline ColdFire architecture.

The MAC provides functionality in three related areas:

1. Signed and unsigned integer multiplication

2. Multiply-accumulate operations supporting signed and unsigned integer operands as well as 
signed, fixed-point, and fractional operands

3. Miscellaneous register operations

The ColdFire family supports two MAC implementations with different performance levels and 
capabilities. The original MAC features a three-stage execution pipeline optimized for 16-bit operands, 
with a 16x16 multiply array and a single 32-bit accumulator. The EMAC features a four-stage pipeline 
optimized for 32-bit operands, with a fully pipelined 32  32 multiply array and four 48-bit accumulators.

The first ColdFire MAC supported signed and unsigned integer operands and was optimized for 16x16 
operations, such as those found in applications including servo control and image compression. As 
ColdFire-based systems proliferated, the desire for more precision on input operands increased. The result 
was an improved ColdFire MAC with user-programmable control to optionally enable use of fractional 
input operands. 

EMAC improvements target three primary areas:

• Improved performance of 32  32 multiply operation.

• Addition of three more accumulators to minimize MAC pipeline stalls caused by exchanges 
between the accumulator and the pipeline’s general-purpose registers

• A 48-bit accumulation data path to allow a 40-bit product, plus 8 extension bits increase the 
dynamic number range when implementing signal processing algorithms

The three areas of functionality are addressed in detail in following sections. The logic required to support 
this functionality is contained in a MAC module (Figure 5-1).
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Figure 5-1. Multiply-Accumulate Functionality Diagram

5.1.1.1 Introduction to the MAC

The MAC is an extension of the basic multiplier in most microprocessors. It is typically implemented in 
hardware within an architecture and supports rapid execution of signal processing algorithms in fewer 
cycles than comparable non-MAC architectures. For example, small digital filters can tolerate some 
variance in an algorithm’s execution time, but larger, more complicated algorithms such as orthogonal 
transforms may have more demanding speed requirements beyond scope of any processor architecture and 
may require full DSP implementation.

To balance speed, size, and functionality, the ColdFire MAC is optimized for a small set of operations that 
involve multiplication and cumulative additions. Specifically, the multiplier array is optimized for 
single-cycle pipelined operations with a possible accumulation after product generation. This functionality 
is common in many signal processing applications. The ColdFire core architecture is also modified to 
allow an operand to be fetched in parallel with a multiply, increasing overall performance for certain DSP 
operations.

Consider a typical filtering operation where the filter is defined as in Equation 5-1.

Eqn. 5-1

Here, the output y(i) is determined by past output values and past input values. This is the general form of 
an infinite impulse response (IIR) filter. A finite impulse response (FIR) filter can be obtained by setting 
coefficients a(k) to zero. In either case, the operations involved in computing such a filter are multiplies 
and product summing. To show this point, reduce Equation 5-1 to a simple, four-tap FIR filter, shown in 
Equation 5-2, in which the accumulated sum is a past data values and coefficients sum.

Eqn. 5-2

 

X

+/-

Operand Y Operand X

Shift 0,1,-1

Accumulator(s)

y i  a k y i k– 
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N 1–

 b k x i k– 
k 0=

N 1–

+=

y i  b k x i k– 
k 0=
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5.2 Memory Map/Register Definition
The following table and sections explain the MAC registers:

5.2.1 MAC Status Register (MACSR)

The MAC status register (MACSR) contains a 4-bit operational mode field and condition flags. 
Operational mode bits control whether operands are signed or unsigned and whether they are treated as 
integers or fractions. These bits also control the overflow/saturation mode and the way in which rounding 
is performed. Negative, zero, and multiple overflow condition flags are also provided.

Table 5-1. EMAC Memory Map

BDM1 Register
Width
(bits)

Access Reset Value Section/Page

0x804 MAC Status Register (MACSR) 32 R/W 0x0000_0000 5.2.1/5-3

0x805 MAC Address Mask Register (MASK) 32 R/W 0xFFFF_FFFF 5.2.2/5-5

0x806 MAC Accumulator 0 (ACC0) 32 R/W Undefined 5.2.3/5-7

0x807 MAC Accumulator 0,1 Extension Bytes (ACCext01) 32 R/W Undefined 5.2.4/5-7

0x808 MAC Accumulator 2,3 Extension Bytes (ACCext23) 32 R/W Undefined 5.2.4/5-7

0x809 MAC Accumulator 1 (ACC1) 32 R/W Undefined 5.2.3/5-7

0x80A MAC Accumulator 2 (ACC2) 32 R/W Undefined 5.2.3/5-7

0x80B MAC Accumulator 3 (ACC3) 32 R/W Undefined 5.2.3/5-7

1 The values listed in this column represent the Rc field used when accessing the core registers via the BDM port. For more 
information see Chapter 43, “Debug Module.”

BDM: 0x804 (MACSR) Access: Supervisor read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAVn OMC S/U F/I R/T N Z V EV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-2. MAC Status Register (MACSR)
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Table 5-2. MACSR Field Descriptions

Field Description

31–12 Reserved, must be cleared.

11–8
PAVn

Product/accumulation overflow flags. Contains four flags, one per accumulator, that indicate if past MAC or 
MSAC instructions generated an overflow during product calculation or the 48-bit accumulation. When a 
MAC or MSAC instruction is executed, the PAVn flag associated with the destination accumulator forms the 
general overflow flag, MACSR[V]. Once set, each flag remains set until V is cleared by a move.l, MACSR 
instruction or the accumulator is loaded directly.
Bit 11: Accumulator 3
...

Bit 8: Accumulator 0

7
OMC

Overflow saturation mode. Enables or disables saturation mode on overflow. If set, the accumulator is set 
to the appropriate constant (see S/U field description) on any operation that overflows the accumulator. 
After saturation, the accumulator remains unaffected by any other MAC or MSAC instructions until the 
overflow bit is cleared or the accumulator is directly loaded.

6
S/U

Signed/unsigned operations. 
In integer mode:
S/U determines whether operations performed are signed or unsigned. It also determines the accumulator 
value during saturation, if enabled.
0 Signed numbers. On overflow, if OMC is enabled, an accumulator saturates to the most positive 

(0x7FFF_FFFF) or the most negative (0x8000_0000) number, depending on the instruction and the 
product value that overflowed.

1 Unsigned numbers. On overflow, if OMC is enabled, an accumulator saturates to the smallest value 
(0x0000_0000) or the largest value (0xFFFF_FFFF), depending on the instruction.

In fractional mode:
S/U controls rounding while storing an accumulator to a general-purpose register.
0 Move accumulator without rounding to a 16-bit value. Accumulator is moved to a general-purpose 

register as a 32-bit value.
1 The accumulator is rounded to a 16-bit value using the round-to-nearest (even) method when moved to 

a general-purpose register. See Section 5.3.1.1, “Rounding”. The resulting 16-bit value is stored in the 
lower word of the destination register. The upper word is zero-filled. This rounding procedure does not 
affect the accumulator value.

5
F/I

Fractional/integer mode. Determines whether input operands are treated as fractions or integers.
0 Integers can be represented in signed or unsigned notation, depending on the value of S/U.
1 Fractions are represented in signed, fixed-point, two’s complement notation. Values range from -1 to 

1 - 2-15 for 16-bit fractions and -1 to 1 - 2-31 for 32-bit fractions. See Section 5.3.4, “Data 
Representation."

4
R/T

Round/truncate mode. Controls rounding procedure for move.l ACCx,Rx, or MSAC.L instructions when 
in fractional mode.
0 Truncate. The product’s lsbs are dropped before it is combined with the accumulator. Additionally, when 

a store accumulator instruction is executed (move.l ACCx,Rx), the 8 lsbs of the 48-bit accumulator 
logic are truncated.

1 Round-to-nearest (even). The 64-bit product of two 32-bit, fractional operands is rounded to the nearest 
40-bit value. If the low-order 24 bits equal 0x80_0000, the upper 40 bits are rounded to the nearest even 
(lsb = 0) value. See Section 5.3.1.1, “Rounding”. Additionally, when a store accumulator instruction is 
executed (move.l ACCx,Rx), the lsbs of the 48-bit accumulator logic round the resulting 16- or 32-bit 
value. If MACSR[S/U] is cleared and MACSR[R/T] is set, the low-order 8 bits are used to round the 
resulting 32-bit fraction. If MACSR[S/U] is set, the low-order 24 bits are used to round the resulting 16-bit 
fraction.
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Table 5-3 summarizes the interaction of the MACSR[S/U,F/I,R/T] control bits.

5.2.2 Mask Register (MASK)

The 32-bit MASK implements the low-order 16 bits to minimize the alignment complications involved 
with loading and storing only 16 bits. When the MASK is loaded, the low-order 16 bits of the source 
operand are actually loaded into the register. When it is stored, the upper 16 bits are all forced to ones.

This register performs a simple AND with the operand address for MAC instructions. The processor 
calculates the normal operand address and, if enabled, that address is then ANDed with {0xFFFF, 
MASK[15:0]} to form the final address. Therefore, with certain MASK bits cleared, the operand address 

3
N

Negative. Set if the msb of the result is set, otherwise cleared. N is affected only by MAC, MSAC, and load 
operations; it is not affected by MULS and MULU instructions.

2
Z

Zero. Set if the result equals zero, otherwise cleared. This bit is affected only by MAC, MSAC, and load 
operations; it is not affected by MULS and MULU instructions.

1
V

Overflow. Set if an arithmetic overflow occurs on a MAC or MSAC instruction, indicating that the result 
cannot be represented in the limited width of the EMAC. V is set only if a product overflow occurs or the 
accumulation overflows the 48-bit structure. V is evaluated on each MAC or MSAC operation and uses the 
appropriate PAVn flag in the next-state V evaluation.

0
EV

Extension overflow. Signals that the last MAC or MSAC instruction overflowed the 32 lsbs in integer mode 
or the 40 lsbs in fractional mode of the destination accumulator. However, the result remains accurately 
represented in the combined 48-bit accumulator structure. Although an overflow has occurred, the correct 
result, sign, and magnitude are contained in the 48-bit accumulator. Subsequent MAC or MSAC operations 
may return the accumulator to a valid 32/40-bit result.

Table 5-3. Summary of S/U, F/I, and R/T Control Bits

S/U F/I R/T Operational Modes

0 0 x Signed, integer

0 1 0 Signed, fractional
Truncate on MAC.L and MSAC.L
No round on accumulator stores

0 1 1 Signed, fractional
Round on MAC.L and MSAC.L

Round-to-32-bits on accumulator stores

1 0 x Unsigned, integer

1 1 0 Signed, fractional
Truncate on MAC.L and MSAC.L

Round-to-16-bits on accumulator stores

1 1 1 Signed, fractional

Round on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores

Table 5-2. MACSR Field Descriptions (continued)

Field Description
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can be constrained to a certain memory region. This is used primarily to implement circular queues with 
the (An)+ addressing mode.

This minimizes the addressing support required for filtering, convolution, or any routine that implements 
a data array as a circular queue. For MAC + MOVE operations, the MASK contents can optionally be 
included in all memory effective address calculations. The syntax is as follows:

mac.sz  Ry,RxSF,<ea>y&,Rw

The & operator enables the MASK use and causes bit 5 of the extension word to be set. The exact 
algorithm for the use of MASK is:
if extension word, bit [5] = 1, the MASK bit, then

if <ea> = (An)
oa  =  An & {0xFFFF, MASK}

if <ea> = (An)+
oa  =  An
An  = (An + 4) & {0xFFFF, MASK}

if <ea> =-(An)
oa  = (An - 4) & {0xFFFF, MASK}
An  = (An - 4) & {0xFFFF, MASK}

if <ea> = (d16,An)
oa  = (An + se_d16) & {0xFFFF0x, MASK}

Here, oa is the calculated operand address and se_d16 is a sign-extended 16-bit displacement. For 
auto-addressing modes of post-increment and pre-decrement, the updated An value calculation is also 
shown.

Use of the post-increment addressing mode, {(An)+} with the MASK is suggested for circular queue 
implementations.

BDM: 0x805 (MASK) Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MASK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5-3. Mask Register (MASK)

Table 5-4. MASK Field Descriptions

Field Description

31–16 Reserved, must be set.

15–0
MASK

Performs a simple AND with the operand address for MAC instructions.
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5.2.3 Accumulator Registers (ACC0–3)

The accumulator registers store 32-bits of the MAC operation result. The accumulator extension registers 
form the entire 48-bit result.

Figure 5-4. Accumulator Registers (ACC0–3)

5.2.4 Accumulator Extension Registers (ACCext01, ACCext23)

Each pair of 8-bit accumulator extension fields are concatenated with the corresponding 32-bit 
accumulator register to form the 48-bit accumulator. For more information, see Section 5.3, “Functional 
Description.”

Figure 5-5. Accumulator Extension Register (ACCext01)

BDM: 0x806 (ACC0)
0x809 (ACC1)

0x80A (ACC2)
0x80B (ACC3)

Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Accumulator

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Table 5-5. ACC0–3 Field Descriptions

Field Description

31–0
Accumulator

Store 32-bits of the result of the MAC operation.

BDM: 0x807 (ACCext01) Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ACC0U ACC0L ACC1U ACC1L

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Table 5-6. ACCext01 Field Descriptions

Field Description

31–24
ACC0U

Accumulator 0 upper extension byte

23–16
ACC0L

Accumulator 0 lower extension byte

15–8
ACC1U

Accumulator 1 upper extension byte

7–0
ACC1L

Accumulator 1 lower extension byte
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Figure 5-6. Accumulator Extension Register (ACCext23)

5.3 Functional Description
The MAC speeds execution of ColdFire integer-multiply instructions (MULS and MULU) and provides 
additional functionality for multiply-accumulate operations. By executing MULS and MULU in the MAC, 
execution times are minimized and deterministic compared to the 2-bit/cycle algorithm with early 
termination that the OEP normally uses if no MAC hardware is present.

The added MAC instructions to the ColdFire ISA provide for the multiplication of two numbers, followed 
by the addition or subtraction of the product to or from the value in an accumulator. Optionally, the product 
may be shifted left or right by 1 bit before addition or subtraction. Hardware support for saturation 
arithmetic can be enabled to minimize software overhead when dealing with potential overflow conditions. 
Multiply-accumulate operations support 16- or 32-bit input operands in these formats:

• Signed integers

• Unsigned integers

• Signed, fixed-point, fractional numbers

The EMAC is optimized for single-cycle, pipelined 32  32 multiplications. For word- and 
longword-sized integer input operands, the low-order 40 bits of the product are formed and used with the 
destination accumulator. For fractional operands, the entire 64-bit product is calculated and truncated or 
rounded to the most-significant 40-bit result using the round-to-nearest (even) method before it is 
combined with the destination accumulator.

For all operations, the resulting 40-bit product is extended to a 48-bit value (using sign-extension for 
signed integer and fractional operands, zero-fill for unsigned integer operands) before being combined 
with the 48-bit destination accumulator.

BDM: 0x808 (ACCext23) Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ACC2U ACC2L ACC3U ACC3L

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Table 5-7. ACCext23 Field Descriptions

Field Description

31–24
ACC2U

Accumulator 2 upper extension byte

23–16
ACC2L

Accumulator 2 lower extension byte

15–8
ACC3U

Accumulator 3 upper extension byte

7–0
ACC3L

Accumulator 3 lower extension byte
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Figure 5-7 and Figure 5-8 show relative alignment of input operands, the full 64-bit product, the resulting 
40-bit product used for accumulation, and 48-bit accumulator formats.

Figure 5-7. Fractional Alignment

Figure 5-8. Signed and Unsigned Integer Alignment

Therefore, the 48-bit accumulator definition is a function of the EMAC operating mode. Given that each 
48-bit accumulator is the concatenation of 16-bit accumulator extension register (ACCextn) contents and 
32-bit ACCn contents, the specific definitions are:
if MACSR[6:5] == 00 /* signed integer mode */

Complete Accumulator[47:0] = {ACCextn[15:0], ACCn[31:0]}
if MACSR[6:5] == 01 or 11 /* signed fractional mode */

Complete Accumulator [47:0] = {ACCextn[15:8], ACCn[31:0], ACCextn[7:0]}
if MACSR[6:5] == 10 /* unsigned integer mode */

Complete Accumulator[47:0] = {ACCextn[15:0], ACCn[31:0]}

The four accumulators are represented as an array, ACCn, where n selects the register. 

X

OperandY

OperandX

Product

Extended Product

Accumulator

8

Extension Byte Upper [7:0]

+

0

32

40

40

8 40

Extension Byte Lower [7:0]

32

23

8

Accumulator [31:0]

X

OperandY

OperandX

Product

Extended Product

Accumulator

32

32

32

32

32

8

8

8

24

8

8

+

Extension Byte Upper [7:0]

Extension Byte Lower [7:0]

Accumulator [31:0]
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Although the multiplier array is implemented in a four-stage pipeline, all arithmetic MAC instructions 
have an effective issue rate of 1 cycle, regardless of input operand size or type.

All arithmetic operations use register-based input operands, and summed values are stored in an 
accumulator. Therefore, an additional MOVE instruction is needed to store data in a general-purpose 
register. One new feature in EMAC instructions is the ability to choose the upper or lower word of a 
register as a 16-bit input operand. This is useful in filtering operations if one data register is loaded with 
the input data and another is loaded with the coefficient. Two 16-bit multiply accumulates can be 
performed without fetching additional operands between instructions by alternating word choice during 
calculations.

The EMAC has four accumulator registers versus the MAC’s single accumulator. The additional registers 
improve the performance of some algorithms by minimizing pipeline stalls needed to store an accumulator 
value back to general-purpose registers. Many algorithms require multiple calculations on a given data set. 
By applying different accumulators to these calculations, it is often possible to store one accumulator 
without any stalls while performing operations involving a different destination accumulator.

The need to move large amounts of data presents an obstacle to obtaining high throughput rates in DSP 
engines. Existing ColdFire instructions can accommodate these requirements. A MOVEM instruction can 
efficiently move large data blocks by generating line-sized burst references. The ability to load an operand 
simultaneously from memory into a register and execute a MAC instruction makes some DSP operations 
such as filtering and convolution more manageable. 

The programming model includes a mask register (MASK), which can optionally be used to generate an 
operand address during MAC + MOVE instructions. The register application with auto-increment 
addressing mode supports efficient implementation of circular data queues for memory operands.

5.3.1 Fractional Operation Mode

This section describes behavior when the fractional mode is used (MACSR[F/I] is set).

5.3.1.1 Rounding

When the processor is in fractional mode, there are two operations during which rounding can occur:

1. Execution of a store accumulator instruction (move.l ACCx,Rx). The lsbs of the 48-bit accumulator 
logic are used to round the resulting 16- or 32-bit value. If MACSR[S/U] is cleared, the low-order 
8 bits round the resulting 32-bit fraction. If MACSR[S/U] is set, the low-order 24 bits are used to 
round the resulting 16-bit fraction.

2. Execution of a MAC (or MSAC) instruction with 32-bit operands. If MACSR[R/T] is zero, 
multiplying two 32-bit numbers creates a 64-bit product truncated to the upper 40 bits; otherwise, 
it is rounded using round-to-nearest (even) method. 

To understand the round-to-nearest-even method, consider the following example involving the rounding 
of a 32-bit number, R0, to a 16-bit number. Using this method, the 32-bit number is rounded to the closest 
16-bit number possible. Let the high-order 16 bits of R0 be named R0.U and the low-order 16 bits be R0.L. 

• If R0.L is less than 0x8000, the result is truncated to the value of R0.U. 

• If R0.L is greater than 0x8000, the upper word is incremented (rounded up).
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• If R0.L is 0x8000, R0 is half-way between two 16-bit numbers. In this case, rounding is based on 
the lsb of R0.U, so the result is always even (lsb = 0). 

— If the lsb of R0.U equals 1 and R0.L equals 0x8000, the number is rounded up. 

— If the lsb of R0.U equals 0 and R0.L equals 0x8000, the number is rounded down. 

This method minimizes rounding bias and creates as statistically correct an answer as possible.

The rounding algorithm is summarized in the following pseudocode:
if R0.L < 0x8000

then Result = R0.U
else if R0.L > 0x8000

then Result = R0.U + 1
else if lsb of R0.U = 0 /* R0.L = 0x8000 */

then Result = R0.U
else Result = R0.U + 1

The round-to-nearest-even technique is also known as convergent rounding.

5.3.1.2 Saving and Restoring the EMAC Programming Model

The presence of rounding logic in the EMAC output datapath requires special care during the EMAC’s 
save/restore process. In particular, any result rounding modes must be disabled during the save/restore 
process so the exact bit-wise contents of the EMAC registers are accessed. Consider the memory structure 
containing the EMAC programming model:
struct macState {

int acc0;
int acc1;
int acc2;
int acc3;
int accext01; 
int accext02;
int mask; 
int macsr;

} macState;

The following assembly language routine shows the proper sequence for a correct EMAC state save. This 
code assumes all Dn and An registers are available for use, and the memory location of the state save is 
defined by A7.
EMAC_state_save:

move.l  macsr,d7 ; save the macsr
clr.l   d0 ; zero the register to ... 
move.l  d0,macsr ; disable rounding in the macsr
move.l  acc0,d0 ; save the accumulators
move.l  acc1,d1
move.l  acc2,d2
move.l  acc3,d3
move.l  accext01,d4 ; save the accumulator extensions
move.l  accext23,d5
move.l  mask,d6 ; save the address mask
movem.l #0x00ff,(a7) ; move the state to memory

This code performs the EMAC state restore:
EMAC_state_restore:
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movem.l (a7),#0x00ff ; restore the state from memory
move.l  #0,macsr ; disable rounding in the macsr
move.l  d0,acc0 ; restore the accumulators
move.l  d1,acc1
move.l  d2,acc2
move.l  d3,acc3 
move.l  d4,accext01 ; restore the accumulator extensions
move.l  d5,accext23
move.l  d6,mask ; restore the address mask
move.l  d7,macsr ; restore the macsr

Executing this sequence type can correctly save and restore the exact state of the EMAC programming 
model.

5.3.1.3 MULS/MULU

MULS and MULU are unaffected by fractional-mode operation; operands remain assumed to be integers.

5.3.1.4 Scale Factor in MAC or MSAC Instructions

The scale factor is ignored while the MAC is in fractional mode.

5.3.2 EMAC Instruction Set Summary

Table 5-8 summarizes EMAC unit instructions.

Table 5-8. EMAC Instruction Summary

Command Mnemonic Description

Multiply Signed muls <ea>y,Dx Multiplies two signed operands yielding a signed result

Multiply Unsigned mulu <ea>y,Dx Multiplies two unsigned operands yielding an unsigned result

Multiply Accumulate mac Ry,RxSF,ACCx
msac Ry,RxSF,ACCx

Multiplies two operands and adds/subtracts the product 
to/from an accumulator

Multiply Accumulate 
with Load

mac  Ry,Rx,<ea>y,Rw,ACCx
msac Ry,Rx,<ea>y,Rw,ACCx

Multiplies two operands and combines the product to an 
accumulator while loading a register with the memory operand

Load Accumulator move.l {Ry,#imm},ACCx Loads an accumulator with a 32-bit operand

Store Accumulator move.l ACCx,Rx Writes the contents of an accumulator to a CPU register

Copy Accumulator move.l ACCy,ACCx Copies a 48-bit accumulator

Load MACSR move.l {Ry,#imm},MACSR Writes a value to MACSR

Store MACSR move.l MACSR,Rx Write the contents of MACSR to a CPU register

Store MACSR to CCR move.l MACSR,CCR Write the contents of MACSR to the CCR 

Load MAC Mask Reg move.l {Ry,#imm},MASK Writes a value to the MASK register

Store MAC Mask Reg move.l MASK,Rx Writes the contents of the MASK to a CPU register

Load Accumulator 
Extensions 01

move.l {Ry,#imm},ACCext01 Loads the accumulator 0,1 extension bytes with a 32-bit 
operand
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5.3.3 EMAC Instruction Execution Times

The instruction execution times for the EMAC can be found in Section 3.3.5.6, “EMAC Instruction 
Execution Times”.

The MOVE.L instruction that stores the accumulator to an integer register (Rz) stalls until the 
program-visible copy of the accumulator is available. Figure 5-9 shows EMAC timing.

Figure 5-9. EMAC-Specific OEP Sequence Stall

Load Accumulator 
Extensions 23

move.l {Ry,#imm},ACCext23 Loads the accumulator 2,3 extension bytes with a 32-bit 
operand

Store Accumulator 
Extensions 01

move.l ACCext01,Rx Writes the contents of accumulator 0,1 extension bytes into a 
CPU register

Store Accumulator 
Extensions 23

move.l ACCext23,Rx Writes the contents of accumulator 2,3 extension bytes into a 
CPU register

Table 5-8. EMAC Instruction Summary (continued)

Command Mnemonic Description

The EMAC execution pipeline overlaps the EX stage of the OEP (the first stage of the EMAC pipeline 
is the last stage of the basic OEP). EMAC units are designed for sustained, fully-pipelined operation on 
accumulator load, copy, and multiply-accumulate instructions. However, instructions that store contents 
of the multiply-accumulate programming model can generate OEP stalls that expose the EMAC 
execution pipeline depth:

mac.w Ry, Rx, Acc0
move.l Acc0, Rz

DS

OAG

mac

mac

EMAC EX1

EMAC EX2

EMAC EX3

EMAC EX4

mac

mac

mac

move

move

movemove

Three-cycle
regBusy stall

Accumulator 0 old new

mac

mac move

mac move

movemac

OC1

OC2

EX
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As with change or use stalls between accumulators and general-purpose registers, introducing intervening 
instructions that do not reference the busy register can reduce or eliminate sequence-related store-MAC 
instruction stalls. A major benefit of the EMAC is the addition of three accumulators to minimize stalls 
caused by exchanges between accumulator(s) and general-purpose registers.

5.3.4 Data Representation

MACSR[S/U,F/I] selects one of the following three modes, where each mode defines a unique operand 
type:

1. Two’s complement signed integer: In this format, an N-bit operand value lies in the range -2(N-1) 
< operand < 2(N-1) - 1. The binary point is right of the lsb.

2. Unsigned integer: In this format, an N-bit operand value lies in the range 0 < operand < 2N - 1. The 
binary point is right of the lsb.

3. Two’s complement, signed fractional: In an N-bit number, the first bit is the sign bit. The remaining 
bits signify the first N-1 bits after the binary point. Given an N-bit number, aN-1aN-2aN-3... a2a1a0, 
its value is given by the equation in Equation 5-3.

Eqn. 5-3

This format can represent numbers in the range -1 < operand < 1 - 2-(N-1).

For words and longwords, the largest negative number that can be represented is -1, whose internal 
representation is 0x8000 and 0x8000_0000, respectively. The largest positive word is 0x7FFF or (1 - 2-15); 
the most positive longword is 0x7FFF_FFFF or (1 - 2-31). Thus, the number range for these signed 
fractional numbers is [-1.0, ..., 1.0].

5.3.5 MAC Opcodes

MAC opcodes are described in the ColdFire Programmer’s Reference Manual. 

Remember the following:

• Unless otherwise noted, the value of MACSR[N,Z] is based on the result of the final operation that 
involves the product and the accumulator.

• The overflow (V) flag is managed differently. It is set if the complete product cannot be represented 
as a 40-bit value (this applies to 32  32 integer operations only) or if the combination of the 
product with an accumulator cannot be represented in the given number of bits. The EMAC design 
includes an additional product/accumulation overflow bit for each accumulator that are treated as 
sticky indicators and are used to calculate the V bit on each MAC or MSAC instruction. See 
Section 5.2.1, “MAC Status Register (MACSR)”.

In Figure 5-9, the OEP stalls the store-accumulator instruction for three cycles: the EMAC pipeline depth 
minus 1. The minus 1 factor is needed because the OEP and EMAC pipelines overlap by a cycle, the EX 
stage. As the store-accumulator instruction reaches the EX stage where the operation is performed, the 
recently-updated accumulator 0 value is available.

value 1 aN 1– – 2 i 1 N–+ – ai
i 0=

N 2–

+=



Enhanced Multiply-Accumulate Unit (EMAC)

NXP Semiconductors 5-15
 

• For the MAC design, the assembler syntax of the MAC (multiply and add to accumulator) and 
MSAC (multiply and subtract from accumulator) instructions does not include a reference to the 
single accumulator. For the EMAC, assemblers support this syntax and no explicit reference to an 
accumulator is interpreted as a reference to ACC0. Assemblers also support syntaxes where the 
destination accumulator is explicitly defined.

• The optional 1-bit shift of the product is specified using the notation {<< | >>} SF, where <<1 
indicates a left shift and >>1 indicates a right shift. The shift is performed before the product is 
added to or subtracted from the accumulator. Without this operator, the product is not shifted. If the 
EMAC is in fractional mode (MACSR[F/I] is set), SF is ignored and no shift is performed. Because 
a product can overflow, the following guidelines are implemented:

— For unsigned word and longword operations, a zero is shifted into the product on right shifts.

— For signed, word operations, the sign bit is shifted into the product on right shifts unless the 
product is zero. For signed, longword operations, the sign bit is shifted into the product unless 
an overflow occurs or the product is zero, in which case a zero is shifted in. 

— For all left shifts, a zero is inserted into the lsb position.

The following pseudocode explains basic MAC or MSAC instruction functionality. This example is 
presented as a case statement covering the three basic operating modes with signed integers, unsigned 
integers, and signed fractionals. Throughout this example, a comma-separated list in curly brackets, {}, 
indicates a concatenation operation.
switch (MACSR[6:5]) /* MACSR[S/U, F/I] */
{

case 0: /* signed integers */
if (MACSR.OMC == 0 || MACSR.PAVn == 0)

then {
MACSR.PAVn = 0
/* select the input operands */
if (sz == word)

then {if (U/Ly == 1)
then operandY[31:0] = {sign-extended Ry[31], Ry[31:16]}
else operandY[31:0] = {sign-extended Ry[15], Ry[15:0]}
if (U/Lx == 1)
then operandX[31:0] = {sign-extended Rx[31], Rx[31:16]}
else operandX[31:0] = {sign-extended Rx[15], Rx[15:0]}

}
else {operandY[31:0] = Ry[31:0]

operandX[31:0] = Rx[31:0]
}

/* perform the multiply */
product[63:0] = operandY[31:0] * operandX[31:0]

/* check for product overflow */
if ((product[63:39] != 0x0000_00_0) && (product[63:39] != 0xffff_ff_1))

then { /* product overflow */
MACSR.PAVn = 1
MACSR.V = 1
if (inst == MSAC && MACSR.OMC == 1)

then if (product[63] == 1)
then result[47:0] = 0x0000_7fff_ffff
else result[47:0] = 0xffff_8000_0000



Enhanced Multiply-Accumulate Unit (EMAC)

5-16 NXP Semiconductors
 

else if (MACSR.OMC == 1)
then /* overflowed MAC,

saturationMode enabled */
if (product[63] == 1)

then result[47:0] = 0xffff_8000_0000
else result[47:0] = 0x0000_7fff_ffff

}

/* sign-extend to 48 bits before performing any scaling */
product[47:40] = {8{product[39]}} /* sign-extend */

/* scale product before combining with accumulator */
switch (SF) /* 2-bit scale factor */
{

case 0: /* no scaling specified */
break;

case 1: /* SF = “<< 1” */
product[40:0] = {product[39:0], 0}
break;

case 2: /* reserved encoding */
break;

case 3: /* SF = “>> 1” */
product[39:0] = {product[39], product[39:1]}
break;

}

if (MACSR.PAVn == 0)
then {if (inst == MSAC)

then result[47:0] = ACCx[47:0] - product[47:0]
else result[47:0] = ACCx[47:0] + product[47:0]

}

/* check for accumulation overflow */
if (accumulationOverflow == 1)

then {MACSR.PAVn = 1
MACSR.V = 1
if (MACSR.OMC == 1)

then /* accumulation overflow,
saturationMode enabled */

if (result[47] == 1)
then result[47:0] = 0x0000_7fff_ffff
else result[47:0] = 0xffff_8000_0000

}
/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]

}
MACSR.V = MACSR.PAVn
MACSR.N = ACCx[47]
if (ACCx[47:0] == 0x0000_0000_0000)

then MACSR.Z = 1
else MACSR.Z = 0

if ((ACCx[47:31] == 0x0000_0) || (ACCx[47:31] == 0xffff_1))
then MACSR.EV = 0
else MACSR.EV = 1

break;
case 1,3: /* signed fractionals */
if (MACSR.OMC == 0 || MACSR.PAVn == 0)
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then {
MACSR.PAVn = 0
if (sz == word)

then {if (U/Ly == 1)
then operandY[31:0] = {Ry[31:16], 0x0000}
else operandY[31:0] = {Ry[15:0], 0x0000}

if (U/Lx == 1)
then operandX[31:0] = {Rx[31:16], 0x0000}
else operandX[31:0] = {Rx[15:0], 0x0000}

}
else {operandY[31:0] = Ry[31:0]

operandX[31:0] = Rx[31:0]
}

/* perform the multiply */
product[63:0] = (operandY[31:0] * operandX[31:0]) << 1
/* check for product rounding */
if (MACSR.R/T == 1)

then { /* perform convergent rounding */
if (product[23:0] > 0x80_0000)

then product[63:24] = product[63:24] + 1
else if ((product[23:0] == 0x80_0000) && (product[24] == 1))

then product[63:24] = product[63:24] + 1
}

/* sign-extend to 48 bits and combine with accumulator */
/* check for the -1 * -1 overflow case */

if ((operandY[31:0] == 0x8000_0000) && (operandX[31:0] == 0x8000_0000))
then product[71:64] = 0x00 /* zero-fill */
else product[71:64] = {8{product[63]}} /* sign-extend */

if (inst == MSAC)
then result[47:0] = ACCx[47:0] - product[71:24]
else result[47:0] = ACCx[47:0] + product[71:24]

/* check for accumulation overflow */
if (accumulationOverflow == 1)

then {MACSR.PAVn = 1
MACSR.V = 1
if (MACSR.OMC == 1)

then /* accumulation overflow,
saturationMode enabled */

if (result[47] == 1)
then result[47:0] = 0x007f_ffff_ff00
else result[47:0] = 0xff80_0000_0000

}
/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]

}
MACSR.V = MACSR.PAVn
MACSR.N = ACCx[47]
if (ACCx[47:0] == 0x0000_0000_0000)

then MACSR.Z = 1
else MACSR.Z = 0

if ((ACCx[47:39] == 0x00_0) || (ACCx[47:39] == 0xff_1))
then MACSR.EV = 0
else MACSR.EV = 1

break;
case 2: /* unsigned integers */

if (MACSR.OMC == 0 || MACSR.PAVn == 0)
then {
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MACSR.PAVn = 0
/* select the input operands */
if (sz == word)

then {if (U/Ly == 1)
then operandY[31:0] = {0x0000, Ry[31:16]}
else operandY[31:0] = {0x0000, Ry[15:0]}

if (U/Lx == 1)
then operandX[31:0] = {0x0000, Rx[31:16]}
else operandX[31:0] = {0x0000, Rx[15:0]}

}
else {operandY[31:0] = Ry[31:0]

operandX[31:0] = Rx[31:0]
}

/* perform the multiply */
product[63:0] = operandY[31:0] * operandX[31:0]

/* check for product overflow */
if (product[63:40] != 0x0000_00)

then { /* product overflow */
MACSR.PAVn = 1
MACSR.V = 1
if (inst == MSAC && MACSR.OMC == 1)

then result[47:0] = 0x0000_0000_0000
else if (MACSR.OMC == 1)

then /* overflowed MAC,
saturationMode enabled */

result[47:0] = 0xffff_ffff_ffff
}

/* zero-fill to 48 bits before performing any scaling */
product[47:40] = 0 /* zero-fill upper byte */

/* scale product before combining with accumulator */
switch (SF) /* 2-bit scale factor */
{

case 0: /* no scaling specified */
break;

case 1: /* SF = “<< 1” */
product[40:0] = {product[39:0], 0}
break;

case 2: /* reserved encoding */
break;

case 3: /* SF = “>> 1” */
product[39:0] = {0, product[39:1]}
break;

}

/* combine with accumulator */
if (MACSR.PAVn == 0)

then {if (inst == MSAC)
then result[47:0] = ACCx[47:0] - product[47:0]
else result[47:0] = ACCx[47:0] + product[47:0]

}

/* check for accumulation overflow */
if (accumulationOverflow == 1)
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then {MACSR.PAVn = 1
MACSR.V = 1
if (inst == MSAC && MACSR.OMC == 1)

then result[47:0] = 0x0000_0000_0000
else if (MACSR.OMC == 1)

then /* overflowed MAC,
saturationMode enabled */

result[47:0] = 0xffff_ffff_ffff
}

/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]

}
MACSR.V = MACSR.PAVn
MACSR.N = ACCx[47]
if (ACCx[47:0] == 0x0000_0000_0000)

then MACSR.Z = 1
else MACSR.Z = 0

if (ACCx[47:32] == 0x0000)
then MACSR.EV = 0
else MACSR.EV = 1

break;
}
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Chapter 6  
Cache

6.1 Introduction
This section describes the cache module, including organization, configuration, and coherency. It 
describes cache operations and how the cache interacts with other memory structures.

6.1.1 Block Diagram

Figure 6-1 shows the organization and integration of the data cache.

Figure 6-1. Data Cache Organization

6.1.2 Overview

The processor’s memory structure includes a 8-Kbyte data cache and a 8-Kbyte instruction cache. Both 
are non-blocking and four-way set-associative with a 16-byte line size. The cache improves system 
performance by providing single-cycle access to the instruction and data pipelines. This decouples 
processor performance from system-memory performance, increasing bus availability for on-chip DMA 
or external devices.

This device implements a special branch instruction cache for accelerating branches, enabled by a bit in 
the cache access control register (CACR[BEC]). The branch cache is described in Section 3.1.1.1, 
“Change-of-Flow Acceleration.”
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Instruction and data caches implement line-fill buffers to optimize line-sized burst accesses. The data 
cache supports operation of copyback, write-through, or cache-inhibited modes. A four-entry, 32-bit buffer 
supports cache line-push operations, and can be configured to defer write buffering in write-through or 
cache-inhibited modes. The cache lock feature can be used to guarantee deterministic response for critical 
code or data areas.

A non-blocking cache services read or write hits from the processor while a fill (caused by a cache 
allocation) is in progress. As Figure 6-1 shows, accesses use a single bus connected to the cache.

All addresses from the processor to the cache are physical addresses. A cache hit occurs when an address 
matches a cache entry. For a read, the cache supplies data to the processor. For a write, which is permitted 
to the data cache only, the processor updates the cache. If an access does not match a cache entry (misses 
the cache) or if a write access must be written through to memory, the cache performs a bus cycle on the 
internal bus and correspondingly on the external bus.

The cache module does not implement bus snooping; cache coherency with other possible bus masters 
must be maintained in software.

6.2 Cache Organization
A four-way set-associative cache is organized as four ways (levels). There are 128 sets in the 8-Kbyte data 
cache with each set defined as the grouping of four lines (one from each level, or way), corresponding to 
the same index into the cache array. Each line contains 16 bytes (4 longwords). The 8-Kbyte instruction 
cache has 128 sets as well. Entire cache lines are loaded from memory by burst-mode accesses that cache 
four longwords of data or instructions. All four longwords must be loaded for the cache line to be valid.

Figure 6-2 shows data cache organization, as well as terminology used.

Figure 6-2. Data Cache Organization and Line Format

Way 0 Way 1 Way 2 Way 3

Line

Set 0
Set 1

•
•
•

•
•
•

•
•
•

•
•
•

TAG V M Longword 0 Longword 1 Longword 2 Longword 3

Where:
TAG—20-bit address tag
V—Valid bit for line
M—Modified bit for line (data cache only)

Cache Line Format

Set 127
Set 126
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6.2.1 Cache Line States: Invalid, Valid-Unmodified, and Valid-Modified

As shown in Table 6-1, a data cache line is always in one of three states: invalid, valid-unmodified (often 
referred to as exclusive), or valid-modified. An instruction cache line can be valid or invalid. A valid line 
can be explicitly invalidated by executing a CPUSHL instruction.

6.2.2 The Cache at Start-Up

As Figure 6-3 (A) shows, after power-up, cache contents are undefined; V and M may be set on some lines 
even though the cache may not contain the appropriate data for start up. Because reset and power-up do 
not invalidate cache lines automatically, the cache should be cleared explicitly by setting 
CACR[DCINVA,ICINVA] before the cache is enabled (B).

After the entire cache is flushed, cacheable entries are loaded first in way 0. If way 0 is occupied, the 
cacheable entry is loaded into the same set in way 1, as shown in Figure 6-3 (D). This process is described 
in detail in Section 6.4, “Functional Description.”

Table 6-1. Valid and Modified Bit Settings

V M Description

0 x Invalid. Ignored during lookups.

1 0 Valid, unmodified. Cache line has valid data that matches system memory.

1 1 Valid, modified. Cache line contains most recent data, data at system memory location is stale.
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Figure 6-3. Data Cache: A) at Reset; B) after Invalidation; C and D) Loading Pattern

A: Cache population at 
start-up

B: Cache after invalidation, 
before it is enabled

C: Cache after loads in Way 0 D: First load in Way 1

Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3

Invalid (V = 0) Valid, not modified (V = 1, M = 0) Valid, modified (V = 1, M = 1)

At reset, cache contents are 
indeterminate; V and M may 
be set. The cache should be 
cleared explicitly by setting 
CACR[DCINVA] before the 
cache is enabled.

Setting CACR[DCINVA] 
invalidates the entire 
cache.

Set 0

Initial cacheable accesses 
to memory-fill positions in 
way 0.

A line is loaded in way 1 
only if that set is full in 
way 0.

Set 127
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6.3 Memory Map/Register Definition
This section describes the implementation of the cache registers.

6.3.1 Cache Control Register (CACR)

The CACR register contains bits for configuring the cache. It can be written by the MOVEC register 
instruction and can be read or written from the debug facility. A hardware reset clears CACR, which 
disables the cache; however, reset does not affect tags, state information, or data in the cache.

NOTE
It is not recommended to set the CACR register to cache the entire memory. 
The ACRn register must be used for enabling cacheable areas such as DDR.

Table 6-2. Cache Memory Map

BDM1 Register
Width
(bits)

Access Reset Value
Written with

MOVEC
Section/Page

0x002 Cache Control Register (CACR) 32 R/W 0x0000_0000 Yes 6.3.1/6-5

0x004 Access Control Register 0 (ACR0) 32 R/W Undefined Yes 6.3.2/6-8

0x005 Access Control Register 1 (ACR1) 32 R/W Undefined Yes 6.3.2/6-8

0x006 Access Control Register 2 (ACR2) 32 R/W Undefined Yes 6.3.2/6-8

0x007 Access Control Register 3 (ACR3) 32 R/W Undefined Yes 6.3.2/6-8

0x00C Access Control Register 4 (ACR4) 32 R/W Undefined Yes 6.3.2/6-8

0x00D Access Control Register 5 (ACR5) 32 R/W Undefined Yes 6.3.2/6-8

0x00E Access Control Register 6 (ACR6) 32 R/W Undefined Yes 6.3.2/6-8

0x00F Access Control Register 7 (ACR7) 32 R/W Undefined Yes 6.3.2/6-8

1 The values listed in this column represent the Rc field used when accessing the core registers via the BDM port. For more 
information see Chapter 43, “Debug Module”.

BDM: 0x002 Access: MOVEC write-only
Debug read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DEC DW DESB DDPI DHLCK DDCM

DC
INVA

DDSP
0 0

IVO BEC
BC

INVA
0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IEC SPA DNFB IDPI IHLCK IDCM

0 IC
INVA

IDSP
0

EUSP
0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-4. Cache-Control Register (CACR)
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Table 6-3. CACR Field Descriptions

Field Description

31
DEC

Enable data cache.
0 Cache disabled. The data cache is not operational, but data and tags are preserved.
1 Cache enabled.

30
DW

Data default write-protect. For normal operations that do not hit in the RAMBARs or ACRs, this field defines 
write-protection. See Section 6.4.1, “Caching Modes.”
0 Not write protected. 
1 Write protected. Write operations cause an access error exception.

29
DESB

Enable data store buffer. Affects the precision of transfers.
0 Imprecise-mode, write-through or cache-inhibited writes bypass the store buffer and generate bus cycles 

directly. Section 6.4.4.2.1, “Push and Store Buffers,” describes the associated performance penalty.
1 The four-entry FIFO store buffer is enabled; to maximize performance, this buffer defers pending 

imprecise-mode, write-through or cache-inhibited writes.
Precise-mode, cache-inhibited accesses always bypass the store buffer. Precise and imprecise modes are 
described in Section 6.4.1.2, “Cache-Inhibited Accesses.”

28
DDPI

Data disable CPUSHL invalidate.
0 Normal operation. A CPUSHL instruction causes the selected line to be pushed if modified, then invalidated.
1 No clear operation. A CPUSHL instruction causes the selected line to be pushed if modified, then left valid.

27
DHLCK

Data cache half-data lock.
0 Normal operation. The cache allocates the lowest invalid way. If all ways are valid, the cache allocates the 

way pointed at by the round-robin counter and then increments this counter.
1 Half-cache operation. The cache allocates to the lower invalid way of levels 2 and 3; if both are valid, the 

cache allocates to Way 2 if the high-order bit of the round-robin counter is zero; otherwise, it allocates Way 3 
and increments the round-robin counter. This locks the contents of ways 0 and 1. Ways 0 and 1 are still 
updated on write hits and may be pushed or cleared by specific cache push/invalidate instructions. 

26–25
DDCM

Default data-cache mode. For normal operations that do not hit in the RAMBARs or ACRs, this field defines the 
effective cache mode.
00 Cacheable write-through imprecise
01 Cacheable copyback
10 Cache-inhibited precise
11 Cache-inhibited imprecise 
Precise and imprecise accesses are described in Section 6.4.1.2, “Cache-Inhibited Accesses.”

24
DCINVA

Data cache invalidate all. Setting this bit initiates entire cache invalidation. After invalidation is complete, this bit 
automatically clears; it is not necessary to clear it explicitly. The caches are not cleared on power-up or normal 
reset, as shown in Figure 6-3.
0 No invalidation is performed.
1 Initiate invalidation of the entire data cache. The cache controller sequentially clears V and M bits in all sets. 

Subsequent data accesses stall until the invalidation is finished, at which point, this bit is automatically 
cleared. In copyback mode, the cache should be flushed using a CPUSHL instruction before setting this bit. 

23
DDSP

Data default supervisor-protect. For normal operations that do not hit in the RAMBAR or ACRs, this field defines 
supervisor-protection
0 Not supervisor protected
1 Supervisor protected. User operations cause a fault

22–21 Reserved, must be cleared.

20
IVO

Invalidate only. Setting this bit forces the invalidation of only the referenced cache line when a CPUSHL 
instruction executes. See Section 6.4.8, “CPUSHL Enhancements,” for more information.
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19
BEC

Enable branch cache.
0 Branch cache disabled. This may be useful if code is unlikely to be reused.
1 Branch cache enabled.

18
BCINVA

Branch cache invalidate all. Invalidation occurs when this bit is set. Branch caches are not cleared on power-up 
or normal reset.
0 No invalidation is performed.
1 Initiate an invalidation of the entire branch cache.

17–16 Reserved, must be cleared.

15
IEC

Enable instruction cache
0 Instruction cache disabled. All instructions and tags in the cache are preserved. 
1 Instruction cache enabled. 

14
SPA

Search by physical address. Setting this bit forces the cache to search the accessed set with the supplied 
physical cache address when a CPUSHL instruction is executed. See Section 6.4.8, “CPUSHL Enhancements,” 
for more information.

13
DNFB

Default cache-inhibited fill buffer
0 Fill buffer does not store cache-inhibited instruction accesses (16 or 32 bits). 
1 Fill buffer can store cache-inhibited accesses. The buffer is used only for normal (TT = 0) instruction reads of 

a cache-inhibited region. Instructions are loaded into the buffer by a burst access (line fill). They stay in the 
buffer until they are displaced; subsequent accesses may not appear on the external bus. 

Setting DNFB can cause a coherency problem for self-modifying code. If a cache-inhibited access uses the 
buffer while DNFB is set, instructions remain valid in the buffer until a cache-invalidate-all instruction, another 
cache-inhibited burst, or a miss that initiates a fill. A write to the line in the fill goes to the external bus without 
updating or invalidating the buffer. Subsequent reads are serviced by the fill buffer and receive stale information.
Note: NXP discourages the use of self-modifying code.

12
IDPI

Instruction CPUSHL invalidate disable.
0 Normal operation. A CPUSHL instruction invalidates the selected line.
1 No clear operation. A CPUSHL instruction causes the selected line to remain valid.

11
IHLCK

Instruction cache half-lock.
0 Normal operation. The cache allocates to the lowest invalid way; if all ways are valid, the cache allocates to 

the way pointed at by the round-robin counter and then increments this counter.
1 Half cache operation. The cache allocates to the lowest invalid way of ways 2 and 3; if both of these ways are 

valid, the cache allocates to way 2 if the high-order bit of the round-robin counter is zero; otherwise, it allocates 
way 3 and then increments the round-robin counter. This locks the contents of ways 0 and 1. Ways 0 and 1 
are still updated on write hits and may be pushed or cleared by specific cache push/invalidate instructions. 

10
IDCM

Instruction default cache mode. For normal operations that do not hit in the RAMBARs or ACRs, this field defines 
the effective cache mode.
0 Cacheable
1 Cache-inhibited

9 Reserved, must be cleared.

8
ICINVA

Instruction cache invalidate. Invalidation occurs when this bit is set. Caches are not cleared on power-up or 
normal reset.
0 No invalidation is performed.
1 Initiate instruction cache invalidation. The cache controller clears all V bits sequentially. Subsequent local 

memory bus accesses stall until invalidation completes, at which point ICINVA is cleared automatically without 
software intervention. For copyback mode, use CPUSHL before setting ICINVA.

Table 6-3. CACR Field Descriptions (continued)

Field Description
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6.3.2 Access Control Registers (ACRn)

The ACRn registers assign control attributes, such as cache mode and write protection, to specified 
memory regions. ACR0, ACR1, ACR4, and ACR5 control data attributes; ACR2, ACR3, ACR6, and 
ACR7 control instruction attributes. Registers are accessed with the MOVEC instruction with the Rc 
encodings in Figure 6-5.

For overlapping regions, the lower ACR number takes priority. Data transfers to and from these registers 
are longword transfers.

NOTE
ACR0–7 are read/write by the debug module.

I

7
IDSP

Instruction default supervisor-protect. For normal operations that do not hit in the RAMBAR or ACRs, this field 
defines supervisor-protection.
0 Not supervisor protected
1 Supervisor protected. User operations cause a fault

6 Reserved, must be cleared.

5
EUSP

Enable USP. Enables user stack pointer.
0 USP disabled. Core uses a single stack pointer.
1 USP enabled. Core uses separate supervisor and user stack pointers.

4–0 Reserved, must be cleared.

BDM: 0x004 (ACR0)
0x005 (ACR1)
0x006 (ACR2)
0x007 (ACR3)

0x00C (ACR4)
0x00D (ACR5)
0x00E (ACR6)
0x00F (ACR7)

Access: MOVEC write-only
Debug read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA ADMSK E S

0 0
AMM

0 0 0
CM

0 0
W1 0 0

W SP

Reset – – – – – – – – – – – – – – – – 0 – – 0 0 0 0 0 0 – – 0 0 – 0 0
1 Reserved in ACR2, ACR3, ACR6, and ACR7

Figure 6-5. Access Control Register Format (ACRn)

Table 6-4. ACRn Field Descriptions

Field Description

31–24
BA

Base address. Compared with address bits A[31:24]. Eligible addresses that match are assigned the access 
control attributes.

23–16
ADMSK

Address mask. Setting a mask bit causes the corresponding address base bit to be ignored. The low-order mask 
bits can be set to define contiguous regions larger than 16 Mbytes. The mask can define multiple non-contiguous 
regions of memory.

Table 6-3. CACR Field Descriptions (continued)

Field Description
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6.4 Functional Description
Figure 6-6 shows the general flow of a caching operation using the 8-Kbyte data cache as an example. This 
chapter assumes a data cache. Instruction cache operations are similar except for writing to the cache has 
no support; therefore, such notions of modified cache lines and write allocation do not apply.

15
E

Enable. Enables or disables the other ACRn bits.
0 Access control attributes disabled
1 Access control attributes enabled 

14–13
S

Supervisor mode. Specifies whether only user or supervisor accesses are allowed in this address range or if the 
type of access is a don’t care.
00 Match addresses only in user mode
01 Match addresses only in supervisor mode
1x Execute cache matching on all accesses

12–11 Reserved, must be cleared.

10
AMM

Address mask mode.
0 The ACR hit function allows control of a 16 Mbytes or greater memory region.
1 The upper 8 bits of the address and ACR are compared without a mask function. Address bits [23:20] of the 

address and ACR are compared using ACR[19:16] as a mask, allowing control of a 1–16 Mbyte memory 
region.

9–7 Reserved, must be cleared.

6–5
CM

Cache mode. Selects the cache mode and access precision. Precise and imprecise modes are described in 
Section 6.4.1.2, “Cache-Inhibited Accesses.”
00 Cacheable, write-through
01 Cacheable, copyback
10 Cache-inhibited, precise
11 Cache-inhibited, imprecise

4 Reserved, must be cleared.

3
SP

Supervisor protect.
0 Indicates supervisor and user mode access allowed
1 Indicates only supervisor access is allowed to this address space and attempted user mode accesses 

generate an access error exception

2
W

Write protect. Selects the write privilege of the memory region. This field is reserved in the instruction attribute 
ACRs (ACR2–3, ACR6–7).
0 Read and write accesses permitted
1 Write accesses not permitted

1–0 Reserved, must be cleared.

Table 6-4. ACRn Field Descriptions (continued)

Field Description
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Figure 6-6. Data-Caching Operation

The following steps determine if a data-cache line for a given address is allocated:

1. The cache set index, A[10:4], selects one cache set.

2. A[31:11] and the cache set index are used as a tag reference or to update the cache line tag field. 
A[31:11] can specify 19 possible address lines that can be mapped to one of the four ways.

3. The four tags from the selected cache set are compared with the tag reference. A cache hit occurs 
if a tag matches the tag reference and the V bit is set, indicating that the cache line contains valid 
data. If a cacheable write access hits in a valid cache line, the write can occur to the cache line 
without loading it from memory.

If the memory space is copyback, the updated cache line is marked modified (M = 1), because the 
new data made the data in memory stale. If the memory location is write-through, the write is 
passed to system memory and the M bit is not used. The tag does not have TT or TM bits.

To allocate a cache entry, the cache set index selects one of the cache’s 128 sets. The cache control logic 
looks for an invalid cache line to use for the new entry. If none are available, the cache controller uses a 
pseudo-round-robin replacement algorithm to choose the line to be deallocated and replaced. First, the 
cache controller looks for an invalid line, with way 0 the highest priority. If all lines have valid data, a 2-bit 
replacement counter chooses the way. After a line is allocated, the pointer increments to point to the next 
way.

Cache lines from ways 0 and 1 can be protected from deallocation by enabling half-cache locking. If 
CACR[DHLCK,IHLCK] are set, the replacement pointer is restricted to way 2 or 3.

03431

IndexTag Data/Tag Reference

MUX

Comparator
0

1
2

3

Logical OR

Hit 3
Hit 2
Hit 1
Hit 0

Hit

Line Select

Set 0

Set 1

•••

Address 

A[31:11]

Way 0
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Way 2
Way 3

TAG STATUS LW0 LW1 LW2 LW3

TAG STATUS LW0 LW1 LW2 LW3

•••
•••

•••
•••

•••
•••

Address

Set Select 
A[10:4]

Data

Set 127
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As part of deallocation, a valid, unmodified cache line is invalidated. It is consistent with system memory, 
so memory does not need to be updated. To deallocate a modified cache line, data is placed in a push buffer 
(for an external cache line push) before being invalidated. After invalidation, the new entry can replace it. 
The old cache line may be written after the new line is read.

When a cache line is selected to host a new cache entry, three things happen:

1. The new address tag bits A[31:11] are written to the tag.

2. The cache line is updated with the new memory data.

3. The cache line status changes to a valid state (V = 1).

Read cycles that miss in the cache allocate normally as previously described. Write cycles that miss in the 
cache do not allocate on a cacheable write-through region but do allocate for addresses in a cacheable 
copyback region.

A copyback byte, word, longword, or line write miss causes the following:

1. The cache initiates a line fill or flush.

2. Space is allocated for a new line.

3. V and M are set to indicate valid and modified.

4. Data is written in the allocated space. No write to memory occurs.

NOTE
Read hits cannot change the status bits and no deallocation or replacement 
occurs; the data or instructions are read from the cache. If the cache hits on 
a write access, data is written to the appropriate portion of the accessed 
cache line. Write hits in cacheable, write-through regions generate an 
external write cycle and the cache line is marked valid, but is never marked 
modified. Write hits in cacheable copyback regions do not perform an 
external write cycle; the cache line is marked valid and modified (V and M 
are set). Misaligned accesses are broken into at least two cache accesses. 
Validity is provided only on a line basis. Unless a whole line is loaded on a 
cache miss, the cache controller does not validate data in the cache line.

Write accesses designated as cache-inhibited by the CACR or ACR bypass the cache and perform a 
corresponding external write.

Normally, cache-inhibited reads bypass the cache and are performed on the external bus. The exception 
occurs when all of the following conditions are true during a cache-inhibited read:

• The cache-inhibited fill buffer bit, CACR[DNFB], is set.

• The access is an instruction read.

• The access is normal (TT = 0).

In this case, an entire line is fetched and stored in the fill buffer. It remains valid there, and the cache can 
service additional read accesses from this buffer until either another fill or a cache-invalidate-all operation 
occurs.



Cache

6-12 NXP Semiconductors

Valid cache entries that match during cache-inhibited address accesses are neither pushed nor invalidated. 
Such a scenario suggests that the associated cache mode for this address space was changed. To avoid this, 
use the CPUSHL instruction to push or invalidate the cache entry or set CACR[DCINVA] to invalidate the 
data cache before switching cache modes.

6.4.1 Caching Modes

For every memory reference the processor or debug module generates, a set of effective attributes is 
determined based on the address and ACRs. Caching modes determine how the cache handles an access. 
A data access can be cacheable in write-through or copyback mode; it can be cache-inhibited in precise or 
imprecise modes. For normal accesses, the ACRn[CM] bit corresponding to the address of the access 
specifies the caching modes. If an address does not match an ACR, the default caching mode is defined by 
CACR[DDCM,IDCM]. The specific algorithm is as follows:
if (address == ACR0-address including mask)

effective attributes = ACR0 attributes
else if (address == ACR1-address including mask)

effective attributes = ACR1 attributes
else if (address == ACR4-address including mask)

effective attributes = ACR4 attributes
else if (address == ACR5-address including mask)

effective attributes = ACR5 attributes
else effective attributes = CACR default attributes

Addresses matching an ACR can also be write-protected using ACR[W]. Addresses that do not match 
either ACR can be write-protected using CACR[DW].

Reset disables the cache and clears all CACR bits. As shown in Figure 6-3, reset does not automatically 
invalidate cache entries; the software invalidates them.

The ACRs allow the defaults selected in the CACR to be overridden. In addition, some instructions (for 
example, CPUSHL) and processor core operations perform accesses that have an implicit caching mode 
associated with them. The following sections discuss the different caching accesses and their associated 
cache modes.

6.4.1.1 Cacheable Accesses

If ACRn[CM] or the default field of the CACR indicates write-through or copyback, the access is 
cacheable. If matching data is found, a read access to a write-through or copyback region is read from the 
cache. Otherwise, the data is read from memory, and the cache is updated. When a line is read from 
memory for either a write-through or copyback read miss, the longword within the line that contains the 
core-requested data is loaded first, and the requested data is given immediately to the processor, without 
waiting for the three remaining longwords to reach the cache.

The following sections describe write-through and copyback modes in detail. Some of this information 
applies to data caches only.

6.4.1.1.1 Write-Through Mode (Data Cache Only) 

Write accesses to regions specified as write-through are always passed on to the external bus; although the 
cycle can be buffered, depending on the state of CACR[DESB]. Writes in write-through mode are handled 
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with a no-write-allocate policy—that is, writes that miss in the cache are written to the external bus but do 
not cause the corresponding line in memory to load into the cache. Write accesses that hit always write 
through to memory and update matching cache lines. The cache supplies data to data-read accesses that 
hit in the cache; read misses cause a new cache line to load into the cache.

6.4.1.1.2 Copyback Mode (Data Cache Only)

Copyback regions are typically used for local data structures or stacks to minimize external bus use and 
reduce write-access latency. Write accesses to regions specified as copyback that hit in the cache update 
the cache line and set the corresponding M bit without an external bus access. 

The cache should be flushed using the CPUSHL instruction before invalidating the cache in copyback 
mode using the CINV bits. Modified cache data is written to memory only if the line is replaced because 
of a miss or a CPUSHL instruction pushes the line. If a byte, word, longword, or line write access misses 
in the cache, the required cache line is read from memory, thereby updating the cache. When a miss selects 
a modified cache line for replacement, the modified cache data moves to the push buffer. The replacement 
line is read into the cache, and the push buffer contents are then written to memory.

6.4.1.2 Cache-Inhibited Accesses

Memory regions can be designated as cache-inhibited, which is useful for memory containing targets such 
as I/O devices and shared data structures in multiprocessing systems. It is also important to not cache the 
processor’s memory-mapped registers. If the corresponding ACRn[CM] or CACR[DDCM] indicates 
cache-inhibited, precise or imprecise, the access is cache-inhibited. The caching operation is identical for 
both cache-inhibited modes, which differ only regarding recovery from an external bus error.

In determining whether a memory location is cacheable or cache-inhibited, the CPU checks 
memory-control registers in the following order:

1. RAMBARs

2. ACR0 and ACR2

3. ACR1 and ACR3

4. ACR4 and ACR6

5. ACR5 and ACR7

6. If an access does not hit in the RAMBARs or the ACRs, the default is provided for all accesses in 
CACR. 

Cache-inhibited write accesses bypass the cache, and a corresponding external write is performed. 
Cache-inhibited reads bypass the cache and are performed on the external bus, except when all of the 
following conditions are true:

• The cache-inhibited fill buffer bit, CACR[DNFB], is set.

• The access is an instruction read.

• The access is normal (TT = 0).

In this case, a fetched line is stored in the fill buffer and remains valid there; the cache can service 
additional read accesses from this buffer until another fill occurs or a cache-invalidate-all operation occurs.
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If ACRn[CM] indicates cache-inhibited mode, precise or imprecise, the controller bypasses the cache and 
performs an external transfer. If a line in the cache matches the address and the mode is cache-inhibited, 
the cache does not automatically push the line if it is modified, nor does it invalidate the line if it is valid. 
Before switching cache mode, execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] to 
invalidate the entire cache.

If ACRn[CM] indicates precise mode, the sequence of read and write accesses to the region is guaranteed 
to match the instruction sequence. In imprecise mode, the processor core allows read accesses that hit to 
occur before completion of a pending write from a previous instruction. Writes are not deferred past 
data-read accesses that miss the cache (they must be read from the bus).

Precise operation forces data-read accesses for an instruction to occur only once by preventing the 
instruction from being interrupted after data is fetched. Otherwise, if the processor is not in precise mode, 
an exception aborts the instruction and the data may be accessed again when the instruction is restarted. 
These guarantees apply only when ACRn[CM] indicates precise mode and aligned accesses.

All CPU space-register accesses, such as MOVEC, are treated as cache-inhibited and precise.

6.4.2 Cache Protocol

The following sections describe the cache protocol for processor accesses and assumes that the data is 
cacheable (that is, write-through or copyback). The discussion of write operations applies to the data cache 
only.

6.4.2.1 Read Miss

A processor read that misses in the cache requests the cache controller to generate a bus transaction. This 
bus transaction reads the needed line from memory and supplies the required data to the processor core. 
The line is placed in the cache in the valid state. 

6.4.2.2 Write Miss (Data Cache Only)

The cache controller handles processor writes that miss in the data cache differently for write-through and 
copyback regions. Write misses to copyback regions cause the cache line to be read from system memory, 
as shown in Figure 6-7.
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Figure 6-7. Write-Miss in Copyback Mode

The new cache line is then updated with write data and the M bit is set for the line, leaving it in modified 
state. Write misses to write-through regions write directly to memory without loading the corresponding 
cache line into the cache. 

6.4.2.3 Read Hit

On a read hit, the cache provides the data to the processor core and the cache line state remains unchanged. 
If the cache mode changes for a specific region of address space, lines in the cache corresponding to that 
region that contain modified data are not pushed out to memory when a read hit occurs within that line. 
First, execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching the cache mode.

6.4.2.4 Write Hit (Data Cache Only)

The cache controller handles processor writes that hit in the data cache differently for write-through and 
copyback regions. For write hits to a write-through region, portions of cache lines corresponding to the 
size of the access are updated with the data. The data is also written to external memory. The cache line 
state is unchanged. For copyback accesses, the cache controller updates the cache line and sets the M bit 
for the line. An external write is not performed and the cache line state changes to (or remains in) the 
modified state.

Cache Line

SystemV = 1
M = 0

1. Writing character X to 0x0B generates a write miss. Data cannot be written to an invalid line. 

Memory

V = 0
M = 0

0x0C 0x000x08 0x04

2. The cache line (characters A–P) is updated from system memory, and the line is marked valid.

X

ABCD EFGH IJKL MNOP

3. After the cache line is filled, the write that initiated the write miss (the character X) completes to 0x0B. 

V = 1
M = 1

0x0C 0x000x08 0x04

0x0C 0x000x08 0x04

ABCD EXGH IJKL MNOP

ColdFire
processor

ColdFire
processor



Cache

6-16 NXP Semiconductors

6.4.3 Cache Coherency (Data Cache Only)

The processor provides limited support for maintaining cache coherency in multiple-master environments. 
Write-through and copyback memory update techniques are supported to maintain coherency between the 
cache and memory.

The cache does not support snooping (cache coherency is not supported while external or DMA masters 
use the bus). Therefore, on-chip DMA channels should not access cached local memory locations because 
coherency is not maintained with the data cache.

6.4.4 Memory Accesses for Cache Maintenance

The cache controller performs all maintenance activities that supply data from the cache to the core, 
including requests for reading new cache lines and writing modified cache lines to memory. The following 
sections describe memory accesses resulting from cache fill and push operations.

6.4.4.1 Cache Filling

When a new cache line is required, a line read is requested, which generates a burst-read transfer by 
indicating a line access with the size signals, SIZ[1:0].

The responding device supplies four consecutive longwords of data. Line accesses implicitly request 
burst-mode operations from memory, but burst operations can be inhibited or enabled through the burst 
read/write enable bits (CSCRn[BSTR, BSTW]). For more information regarding external bus burst-mode 
accesses, see Chapter 20, “FlexBus.”

The first cycle of a cache-line read loads the longword entry corresponding to the requested address. 
Subsequent transfers load the remaining longword entries.

A burst operation aborts by a write-protection fault, which is the only possible access error. Exception 
processing proceeds immediately. Unlike Version 2 and Version 3 access errors, the program counter 
stored on the exception stack frame points to the faulting instruction. See Section 3.3.4.1, “Access Error 
Exception.”

6.4.4.2 Cache Pushes

Cache pushes occur for line replacement and as required for the execution of the CPUSHL instruction. To 
reduce the requested data’s latency in the new line, the modified line being replaced is temporarily placed 
in the push buffer while the new line is fetched from memory. After the bus transfer for the new line 
completes, the modified cache line writes back to memory and the push buffer invalidates.

6.4.4.2.1 Push and Store Buffers

The 16-byte push buffer reduces latency for requested new data on a cache miss by holding a displaced 
modified data cache line while the new data is read from memory. 

If a cache miss displaces a modified line, a miss read reference is immediately generated. While waiting 
for the response, the current contents of the cache location load into the push buffer. When the burst-read 
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bus transaction completes, the cache controller can generate the appropriate line-write bus transaction to 
write the push buffer contents into memory.

In imprecise mode, the FIFO store buffer can defer pending writes to maximize performance. The store 
buffer can support as many as four entries (16 bytes maximum) for this purpose.

Data writes destined for the store buffer cannot stall the core. The store buffer effectively provides a 
measure of decoupling between the pipeline’s ability to generate writes (one per cycle maximum) and the 
external bus’s ability to retire those writes. In imprecise mode, writes stall only if the store buffer is full 
and a write operation is on the internal bus. The internal write cycle is held, stalling the data execution 
pipeline.

If the store buffer is not used (store buffer disabled or cache-inhibited precise mode), external bus cycles 
generate directly for each pipeline-write operation. The instruction is held in the pipeline until external bus 
transfer termination is received. Therefore, each write is stalled for five cycles, making the minimum write 
time equal to six cycles when the store buffer is not used. See Section 3.1.1.2, “Operand Execution 
Pipeline (OEP).”

The data store buffer enable bit, CACR[DESB], controls the enabling of the data-store buffer. The 
MOVEC instruction can set and clear this bit. At reset, this bit is cleared and all writes perform in order 
(precise mode). ACRn[CM] or CACR[DDCM] generates the mode used when DESB is set. Cacheable 
write-through and cache-inhibited imprecise modes use the store buffer.

The store buffer can queue data as much as four bytes wide per entry. Each entry matches the 
corresponding bus cycle it generates; therefore, a misaligned longword write to a write-through region 
creates two entries if the address is to an odd-word boundary. It creates three entries if the address is to an 
odd-byte boundary—one per bus cycle.

6.4.4.2.2 Push and Store Buffer Bus Operation

As soon as the push or store buffer has valid data, the internal bus controller uses the next available external 
bus cycle to generate the appropriate write cycles. In the event another cache fill is required (for example, 
cache miss to process) during the continued instruction execution by the processor pipeline, the pipeline 
stalls until the push and store buffers empty, before generating the required external bus transaction.

Supervisor instructions, the NOP instruction, and exception processing synchronize the processor core and 
guarantee the push and store buffers are empty before proceeding. The NOP instruction should be used 
only to synchronize the pipeline. The preferred no-op function is the TPF instruction. See the ColdFire 
Programmer’s Reference Manual for more information on the TPF instruction.

6.4.5 Cache Locking

Ways 0 and 1 of the data cache can lock by setting CACR[DHLCK]; likewise, ways 0 and 1 of the 
instruction cache can lock by setting CACR[IHLCK]. If a cache locks, cache lines in ways 0 and 1 are not 
subject to deallocation by normal cache operations.

As Figure 6-8 (B and C) shows, the algorithm for updating the cache and for identifying cache lines for 
deallocation does not change. If ways 2 and 3 are entirely invalid, cacheable accesses are first allocated in 
way 2. Way 3 is not used until the location in way 2 is occupied. 
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Ways 0 and 1 are still updated on write hits (D in Figure 6-8) and may be pushed or cleared only explicitly 
by using specific cache push/invalidate instructions. However, new cache lines cannot be allocated in ways 
0 and 1.

Figure 6-8. Data Cache Locking

A: Ways 0 and 1 are filled. 
Ways 2 and 3 are invalid.

B: CACR[DHLCK] is set, 
locking ways 0 and 1.

C: When a set in Way 2 is 
occupied, the set in way 3 is 
used for a cacheable access.

Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3

Invalid (V = 0) Valid, not modified (V = 1, M = 0) Valid, modified (V = 1, M = 1)

After reset, the cache is 
invalidated, ways 0 and 1 are 
then written with data that 
should not be deallocated. 
Ways 0 and 1 can be filled 
systematically by using the 
INTOUCH instruction.

After CACR[DHLCK] is set, 
subsequent cache accesses 
go to ways 2 and 3.

Set 0

While the cache is locked 
and after a position in ways 
2 is full, the set in Way 3 is 
updated.

D: Write hits to ways 0 and 1
update cache lines.

Way 0 Way 1 Way 2 Way 3

While the cache is locked, 
ways 0 and 1 can be updated
by write hits. In this example, 
memory is configured as 
copyback, so updated cache 
lines are marked modified.

Set 127
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6.4.6 Cache Management

The cache can be enabled and configured by using a MOVEC instruction to access CACR. A hardware 
reset clears CACR, disabling the cache and removing all configuration information; however, reset does 
not affect the tags, state information, and data in the cache.

Set CACR[DCINVA,ICINVA] to invalidate the caches before enabling them.

The privileged CPUSHL instruction supports cache management by selectively pushing and invalidating 
cache lines. The address register used with CPUSHL directly addresses the cache’s directory array. The 
CPUSHL instruction flushes a cache line.

The value of CACR[DDPI,IDPI] determines whether CPUSHL invalidates a cache line after it is pushed. 
To push the entire cache, implement a software loop to index through all sets and each of the four lines 
within each set (for a total of 512 lines for the data cache and 1024 lines for the instruction cache). The 
state of CACR[DEC,IEC] does not affect the operation of CPUSHL or CACR[DCINVA,ICINVA]. 
Disabling a cache by clearing CACR[IEC] or CACR[DEC] makes the cache non-operational without 
affecting tags, state information, or contents.

The contents of Ax used with CPUSHL specify cache row and line indexes. This differs from the 
MC68040 family where a physical address is specified. Figure 6-9 shows the Ax format for the data and 
instruction cache.

The following code example flushes the entire data cache:
_cache_disable:

nop
move.w #0x2700,SR ;mask off IRQs
jsr _cache_flush ;flush the cache completely
clr.l d0
movec d0,ACR0 ;ACR0 off
movec d0,ACR1 ;ACR1 off
movec d0,ACR4 ;ACR4 off
movec d0,ACR5 ;ACR5 off
move.l #0x01000000,d0 ;Invalidate and disable cache
movec d0,CACR
rts

_cache_flush:
nop ;synchronize—flush store buffer
moveq.l #0,d0 ;initialize way counter
moveq.l #0,d1 ;initialize set counter
move.l d0,a0 ;initialize cpushl pointer

setloop:
cpushl dc,(a0) ;push cache line a0
add.l #0x0010,a0 ;increment set index by 1
addq.l #1,d1 ;increment set counter
cmpi.l #128,d1 ;are sets for this way done?
bne setloop

moveq.l #0,d1 ;set counter to zero again

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Set Index Way Index

Figure 6-9. Ax Format



Cache

6-20 NXP Semiconductors

addq.l #1,d0 ;increment to next way
move.l d0,a0 ;set = 0, way = d0
cmpi.l #4,d0 ;flushed all the ways?
bne setloop
rts

The following CACR loads assume: the instruction cache has been invalidated, the default instruction 
cache mode is cacheable, the default data cache mode is copyback. 
dataCacheLoadAndLock:

move.l #0xa3080800,d0 ; enable and invalidate data cache ...
movec d0,cacr ; ... in the CACR

The following code segments preload half of the data cache (4 Kbytes). It assumes a contiguous block of 
data is to be mapped into the data cache, starting at a 0-modulo-4K address.

move.l #256,d0 ; 256 16-byte lines in 4K space
lea data_,a0 ; load pointer defining data area

dataCacheLoop:
tst.b (a0) ; touch location + load into data cache
lea 16(a0),a0 ; increment address to next line
subq.l #1,d0 ; decrement loop counter
bne.b dataCacheLoop ; if done, then exit, else continue

; A 4K region has been loaded into ways 0 and 1 of the 8K data cache. lock it!
move.l #0xaa088000,d0 ; set the data cache lock bit ...
movec d0,cacr ; ... in the CACR
rts

align 16

The following CACR loads assume the data cache has been previously invalidated, the default instruction 
cache mode is cacheable, and the default operand cache mode is copyback.

This function must be mapped into a cache-inhibited or SRAM space or these text lines are to be 
prefetched into the instruction cache. This may displace some of the 4-Kbyte space being explicitly 
fetched.
instructionCacheLoadAndLock:

move.l #0xa2088100,d0 ; enable and invalidate the instruction 
movec d0,cacr ; cache in the CACR

The following code segments preload half of the instruction cache (4 Kbytes). It assumes a contiguous 
block of data is to be mapped into the cache, starting at a 0-modulo-4K address

move.l #256,d0 ; 256 16-byte lines in 4K space
lea code_,a0 ; load pointer defining code area

instCacheLoop:
intouch (a0) ; touch location + load into instruction cache

; Note in the assembler we use, there is no INTOUCH opcode. The following
; is used to produce the required binary representation

cpushl #nc,(a0) ;touch location + load into 
;instruction cache

lea 16(a0),a0 ;increment address to next line
subq.l #1,d0 ;decrement loop counter
bne.b instCacheLoop ;if done, then exit, else continue

; A 4K region was loaded into levels 0 and 1 of the 8-Kbyte instruction cache. lock it!
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move.l #0xa2088800,d0 ;set the instruction cache lock bit 
movec d0,cacr ;in the CACR
rts

6.4.7 Cache Operation Summary

This section gives operational details for the cache and presents instruction and data cache-line state 
diagrams.

6.4.7.1 Instruction Cache State Transitions

Because the instruction cache does not support writes, it supports fewer operations than the data cache. As 
Figure 6-10 shows, an instruction cache line can be in one of two states: valid or invalid. Modified state is 
not supported. Transitions are labeled with a capital letter (indicating the previous state) and a number 
(indicating the specific case listed in Table 6-5). These numbers correspond to the equivalent operations 
on data caches as described in Section 6.4.7.2, “Data Cache-State Transitions.”

Figure 6-10. Instruction Cache Line State Diagram

Table 6-5 describes the instruction cache-state transitions shown in Figure 6-10.

Table 6-5. Instruction Cache Line State Transitions

Access
Current State

Invalid (V = 0) Valid (V = 1)

Read miss II1 Read line from memory and update cache;
supply data to processor; 
go to valid state.

IV1 Read new line from memory and update cache; 
supply data to processor; stay in valid state.

Read hit II2 Not possible IV2 Supply data to processor; 
stay in valid state.

Write miss II3 Not possible IV3 Not possible

Write hit II4 Not possible IV4 Not possible

Cache 
invalidate

II5 No action;
stay in invalid state.

IV5 No action;
go to invalid state.

Valid
V = 1

II5—ICINVA
II6—CPUSHL and  IDPI
II7—CPUSHL and  IDPI

IV1—CPU read miss
IV2—CPU read hit
IV7—CPUSHL and  IDPI

IV5—ICINVA
IV6—CPUSHL and  IDPI

Invalid
V = 0

II1—CPU read miss
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6.4.7.2 Data Cache-State Transitions

Using the V and M bits, the data cache supports a line-based protocol allowing individual cache lines to 
be invalid, valid, or modified. To maintain coherency with memory, the data cache supports write-through 
and copyback modes, specified by the corresponding ACR[CM], or CACR[DDCM] if no ACR matches.

Read or write misses to copyback regions cause the cache controller to read a cache line from memory into 
the cache. If available, tag and data from memory update an invalid line in the selected set. The line state 
then changes from invalid to valid by setting the V bit for the line. If all lines in the row are already valid 
or modified, the pseudo-round-robin replacement algorithm selects one of the four lines and replaces the 
tag and data. Before replacement, modified lines are buffered temporarily and later copied back to memory 
after the new line has been read from memory.

Figure 6-11 shows the three possible data-cache line states and possible processor-initiated transitions for 
memory configured as copyback. Transitions are labeled with a capital letter indicating the previous state 
and a number indicating the specific case listed in Table 6-6.

Figure 6-11. Data Cache Line State Diagram—Copyback Mode

Figure 6-12 shows the two possible states for a cache line in write-through mode.

Cache 
push

II6
II7

No action;
stay in invalid state.

IV6 No action;
go to invalid state.

IV7 No action;
stay in valid state.

Table 6-5. Instruction Cache Line State Transitions (continued)

Access
Current State

Invalid (V = 0) Valid (V = 1)

Invalid

CD1—CPU

CI3—CPU 

Valid
V = 1

Modified

read miss 

write miss

CI5—DCINVA
CI6—CPUSHL and

DDPI
CI7—CPUSHL and

DDPI

CV1—CPU read miss
CV2—CPU read hit
CV7—CPUSHL and  
DDPI

CD2—CPU read hit
CD3—CPU write miss
CD4—CPU write hit

CD5—DCINVA
CD6—CPUSHL and  DDPI

CV3—CPU write miss
CV4—CPU write hit

CI1—CPU read miss

CV5—DCINVA
CV6—CPUSHL and  
DDPI

V = 0 M = 0

V = 1
M = 1

 
CD7—CPUSHL 
and  DDPI 
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Figure 6-12. Data-Cache Line State Diagram—Write-Through Mode

Table 6-6 describes data-cache line transitions and what accesses cause them.
 

Table 6-6. Data Cache Line State Transitions

Access
Current State

Invalid (V = 0) Valid (V = 1, M = 0) Modified (V = 1, M = 1)

Read 
miss

(C,W)I1 Read line from memory and 
update cache;
supply data to processor;
go to valid state.

(C,W)V1 Read new line from memory 
and update cache;
supply data to processor; 
stay in valid state.

CD1 Push modified line to buffer; 
read new line from memory 
and update cache;
supply data to processor;
write push buffer contents to 
memory;
go to valid state.

Read hit (C,W)I2 Not possible. (C,W)V2 Supply data to processor; 
stay in valid state.

CD2 Supply data to processor;
stay in modified state.

Write 
miss 
(copy-
back)

CI3 Read line from memory and 
update cache; 
write data to cache;
go to modified state.

CV3 Read new line from memory 
and update cache;
write data to cache;
go to modified state.

CD3 Push modified line to buffer;
read new line from memory 
and update cache;
write push buffer contents to 
memory;
stay in modified state.

Write 
miss 
(write-
through)

WI3 Write data to memory;
stay in invalid state.

WV3 Write data to memory;
stay in valid state.

WD3 Write data to memory;
stay in modified state.
Cache mode changed for 
the region corresponding to 
this line. To avoid this state, 
execute a CPUSHL 
instruction or set 
CACR[DCINVA,ICINVA] 
before switching modes.

Write hit 
(copy-
back)

CI4 Not possible. CV4 Write data to cache;
go to modified state.

CD4 Write data to cache;
stay in modified state.

WI1—CPU read miss

Invalid Valid

WI3—CPU write miss
WI5—DCINVA

WI6—CPUSHL and  DDPI
WI7—CPUSHL and  DDPI

WV1—CPU read miss
WV2—CPU read hit
WV3—CPU write miss
WV4—CPU write hit
WV7—CPUSHL and  
DDPI

WV5—DCINVA
WV6—CPUSHL and  
DDPI

V = 0 V = 1
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The following tables present the same information as Table 6-6, organized by the current state of the cache 
line. In Table 6-7 the current state is invalid.

Write hit 
(write-
through)

WI4 Not possible. WV4 Write data to memory and to 
cache;
stay in valid state.

WD4 Write data to memory and to 
cache;
go to valid state.
Cache mode changed for 
the region corresponding to 
this line. To avoid this state, 
execute a CPUSHL 
instruction or set 
CACR[DCINVA,ICINVA] 
before switching modes.

Cache 
invalidate

(C,W)I5 No action;
stay in invalid state.

(C,W)V5 No action;
go to invalid state.

CD5 No action (modified data 
lost);
go to invalid state.

Cache 
push

(C,W)I6(
C,W)I7

No action;
stay in invalid state.

(C,W)V6 No action;
go to invalid state.

CD6 Push modified line to 
memory;
go to invalid state.

(C,W)V7 No action;
stay in valid state.

CD7 Push modified line to 
memory; 
go to valid state.

Table 6-7. Data Cache Line State Transitions (Current State Invalid)

Access Response

Read miss (C,W)I1 Read line from memory and update cache;
supply data to processor;
go to valid state.

Read hit (C,W)I2 Not possible

Write miss (copyback) CI3 Read line from memory and update cache;
write data to cache;
go to modified state.

Write miss (write-through) WI3 Write data to memory;
stay in invalid state.

Write hit (copyback) CI4 Not possible

Write hit (write-through) WI4 Not possible

Cache invalidate (C,W)I5 No action;
stay in invalid state.

Cache push (C,W)I6 No action;
stay in invalid state.

Cache push (C,W)I7 No action;
stay in invalid state.

Table 6-6. Data Cache Line State Transitions (continued)

Access
Current State

Invalid (V = 0) Valid (V = 1, M = 0) Modified (V = 1, M = 1)
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In Table 6-8 the current state is valid.

In Table 6-9 the current state is modified.

Table 6-8. Data Cache Line State Transitions (Current State Valid)

Access Response

Read miss (C,W)V1 Read new line from memory and update cache;
supply data to processor; stay in valid state.

Read hit (C,W)V2 Supply data to processor;
stay in valid state.

Write miss (copyback) CV3 Read new line from memory and update cache;
write data to cache;
go to modified state.

Write miss (write-through) WV3 Write data to memory;
stay in valid state.

Write hit (copyback) CV4 Write data to cache;
go to modified state.

Write hit (write-through) WV4 Write data to memory and to cache;
stay in valid state.

Cache invalidate (C,W)V5 No action;
go to invalid state.

Cache push (C,W)V6 No action;
go to invalid state.

Cache push (C,W)V7 No action;
stay in valid state.

Table 6-9. Data Cache Line State Transitions (Current State Modified)

Access Response

Read miss CD1 Push modified line to buffer;
read new line from memory and update cache;
supply data to processor;
write push buffer contents to memory;
go to valid state.

Read hit CD2 Supply data to processor;
stay in modified state.

Write miss 
(copyback)

CD3 Push modified line to buffer;
read new line from memory and update cache;
write push buffer contents to memory;
stay in modified state.

Write miss 
(write-through)

WD3 Write data to memory;
stay in modified state.
Cache mode changed for the region corresponding to this line. To avoid this state, 
execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching modes.

Write hit 
(copyback)

CD4 Write data to cache;
stay in modified state.
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6.4.8 CPUSHL Enhancements

The extended CPUSHL functionality adds two new bits in the cache control register (CACR) to support a 
set search using a physical address. In particular, the added CACR bits are defined as:

cacr[14] = cacr[SPA] cpushl Search by physical address
cacr[20] = cacr[IVO] cpushl Invalidate only

In many applications where data is shared among bus masters, the performance of the software function 
to push and/or clear specific lines from the data cache is important. Previously, this function was 
implemented using a CPUSHL loop that explicitly referenced all four ways in each cache set. By 
referencing all possible cache entries that might contain the targeted address range, it is guaranteed that 
the cache data of interest is referenced. It also has the unfortunate side-effect of potentially 
pushing/clearing other data that happened to be mapped into the targeted cache entries.

For the enhanced CPUSHL functionality, a higher-performance version of this function is possible using 
a physical address range and a simpler search loop. The enhanced CPUSHL instruction also affects only 
the specific cache lines being referenced and does not change the state of any other cache entries.

The specific variation of the CPUSHL instruction used to operate only on the data cache:
cpushl dc, (ax)

where dc specifies the data cache, and ax is the cache set address and way number for the baseline 
CPUSHL functionality or ax is the physical address for the enhanced CPUSHL.

For the enhanced implementations, the specific operation performed by the CPUSHL instruction is defined 
by the state of four CACR bits. See Table 6-10.

Write hit 
(write-through)

WD4 Write data to memory and to cache;
go to valid state.
Cache mode changed for the region corresponding to this line. To avoid this state, 
execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching modes.

Cache invalidate CD5 No action (modified data lost);
go to invalid state.

Cache push CD6 Push modified line to memory;
go to invalid state.

Cache push CD7 Push modified line to memory;
go to valid state.

Table 6-10. Enhanced CPUSHL Functionality

Instruction 

CACR Bits Description

[14]
SPA

 [20]
IVO

[28]
DDPI

[12]
IDPI

Search by... Action

cpushl bc,(ax) 0 0 0 0 Cache address/way Clear both

cpushl bc,(ax) 0 0 0 1 Cache address/way Clear data

Table 6-9. Data Cache Line State Transitions (Current State Modified) (continued)

Access Response
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6.5 Initialization/Application Information
The following example sets up the cache for flash or ROM space only.

move.l #0xA70C8100,D0 //enable cache, invalidate it,
//default mode is cache-inhibited imprecise

movec D0, CACR

move.l #0xFF00C000,D0 //cache flash space, enable,
//ignore supervisor/user, cacheable, writethrough

movec D0,ACR0

cpushl bc,(ax) 0 0 1 0 Cache address/way Push data, clear instruction

cpushl bc,(ax) 0 0 1 1 Cache address/way Push data

cpushl bc,(ax) 0 1 – – Cache address/way Invalidate both

cpushl bc,(ax) 1 0 0 0 Physical address Clear both

cpushl bc,(ax) 1 0 0 1 Physical address Clear data

cpushl bc,(ax) 1 0 1 0 Physical address Push data, clear instruction

cpushl bc,(ax) 1 0 1 1 Physical address Push data

cpushl bc,(ax) 1 1 – – Physical address Invalidate both

cpushl dc,(ax) 0 0 0 – Cache address/way Clear data

cpushl dc,(ax) 0 0 1 – Cache address/way Push data

cpushl dc,(ax) 0 1 – – Cache address/way Invalidate data

cpushl dc,(ax) 1 0 0 – Physical address Clear data

cpushl dc,(ax) 1 0 1 – Physical address Push data

cpushl dc,(ax) 1 1 – – Physical address Invalidate data

cpushl ic,(ax) 0 0 – 0 Cache address/way Clear instruction

cpushl ic,(ax) 0 0 – 1 Cache address/way No operation

cpushl ic,(ax) 0 1 – – Cache address/way Invalidate inst

cpushl ic,(ax) 1 0 – 0 Physical address Clear instruction

cpushl ic,(ax) 1 0 – 1 Physical address No operation

cpushl ic,(ax) 1 1 – – Physical address Invalidate instruction

cpushl nc,(ax) – – – – Address intouch instruction

Table 6-10. Enhanced CPUSHL Functionality (continued)

Instruction 

CACR Bits Description

[14]
SPA

 [20]
IVO

[28]
DDPI

[12]
IDPI

Search by... Action
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Chapter 7  
Static RAM (SRAM)

7.1 Introduction
This chapter describes the on-chip static RAM (SRAM) implementation, including general operations, 
configuration, and initialization. It also provides information and examples showing how to minimize 
power consumption when using the SRAM.

7.1.1 Overview

The SRAM module provides a general-purpose memory block that the ColdFire processor can access in a 
single cycle. The location of the memory block can be specified to any 0-modulo-64K address within the 
256-Mbyte address space (0x8000_0000 – 0x8FFF_FFFF). The memory is ideal for storing critical code 
or data structures or for use as the system stack. Because the SRAM module is physically connected to the 
processor's high-speed local bus, it can service processor-initiated accesses or memory-referencing 
commands from the debug module.

Depending on configuration information, processor references may be sent to the cache and the SRAM 
block simultaneously. If the reference maps into the region defined by the SRAM, the SRAM provides the 
data back to the processor, and the cache data is discarded. Accesses from the SRAM module are not 
cached.

The SRAM is dual-ported to provide access for any of the bus masters via the SRAM backdoor on the 
crossbar switch. The SRAM is partitioned into two physical memory arrays to allow simultaneous access 
to arrays by the processor core and another bus master. For more information on arbitration between 
multiple masters accessing the SRAM, see Chapter 13, “System Control Module (SCM).”

7.1.2 Features

The major features includes:

• One 64 Kbyte SRAM

• Single-cycle access

• Physically located on the processor's high-speed local bus

• Memory location programmable on any 0-modulo-64 Kbyte address

• Byte, word, and longword address capabilities

• Backdoor access by crossbar switch masters is clocked separate from the core. If the core is 
stopped, other masters in the system can still access the SRAM.
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7.2 Memory Map/Register Description
The SRAM programming model shown in Table 7-1 includes a description of the SRAM base address 
register (RAMBAR), SRAM initialization, and power management. 

7.2.1 SRAM Base Address Register (RAMBAR)

The configuration information in the SRAM base-address register (RAMBAR) controls the operation of 
the SRAM module. 

• The RAMBAR holds the SRAM base address. The MOVEC instruction provides write-only access 
to this register. 

• The RAMBAR can be read or written from the debug module. 

• All undefined bits in the register are reserved. These bits are ignored during writes to the 
RAMBAR and return zeroes when read from the debug module.

• A reset clears the RAMBAR’s priority, backdoor write-protect, and valid bits, and sets the 
backdoor enable bit. This enables the backdoor port and invalidates the processor port to the 
SRAM (The RAMBAR must be initialized before the core can access the SRAM.) All other bits 
are unaffected.

NOTE
The only applicable address ranges for the SRAM module’s base address are 
0x8000_0000 – 0x8FFF_0000. The address must be 0-modulo-64 K. Set the 
RAMBAR register appropriately.

By default, the RAMBAR is invalid, but the backdoor is enabled. In this 
state, any core accesses to the SRAM are routed through the backdoor. 
Therefore, the SRAM is accessible by the core, but it does not have a 
single-cycle access time. To ensure that the core has single-cycle access to 
the SRAM, set the RAMBAR[V] bit.

Any access within the memory range allocated for the on-chip SRAM 
(0x8000_0000-0x8FFF_FFFF) hits in the SRAM even if the address is 
beyond the defined size for the SRAM. This creates address aliasing for the 
on-chip SRAM memory. For example, writes to addresses 0x8000_0000 
and 0x8001_0000 modify the same memory location. System software 
should ensure SRAM address pointers do not exceed the SRAM size to 
prevent unwanted overwriting of SRAM.

Table 7-1. SRAM Programming Model

Rc[11:0]1

1 The values listed in this column represent the Rc field used when accessing the core registers via the BDM port. For more 
information see Chapter 43, “Debug Module.”

Register
Width
(bits)

Access Reset Value
Written

w/ MOVEC
Section/Page

Supervisor Access Only Registers

0xC05 RAM Base Address Register (RAMBAR) 32 R/W See Section Yes 7.2.1/7-2
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The RAMBAR contains several control fields. These fields are shown in Figure 7-1.

Rc[11:0]: 0x0C05 (RAMBAR) Access: User write-only
Debug read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA

0 0 0 0
PRIU PRIL BDE WP D/I BWP C/I SC SD UC UD V

W

Reset U U U U U U U U U U U U U U U U 0 0 0 0 0 0 1 U 0 0 U U U U U 0

Figure 7-1. SRAM Base Address Register (RAMBAR)

Table 7-2. RAMBAR Field Descriptions

Field Description

31–16
BA

Base Address. Defines the 0-modulo-64K base address of the SRAM module. By programming this field, 
the SRAM may be located on any 64-Kbyte boundary within the processor’s 256-Mbyte address space. For 
proper operation, the base address must be set to between 0x8000_0000 and 0x8FFF_0000. 

15–12 Reserved, must be cleared.

11–10
PRIU
PRIL

Priority Bit. PRIU determines if the SRAM backdoor or CPU has priority in the upper 32K bank of memory. 
PRIL determines if the SRAM backdoor or CPU has priority in the lower 32K bank of memory. If a bit is set, 
the CPU has priority. If a bit is cleared, the SRAM backdoor has priority. Priority is determined according to 
the following table:

Note: The recommended setting (maximum performance) for the priority bits is 00.

9
BDE

Backdoor Enable. Allows access by non-core bus masters via the SRAM backdoor on the crossbar switch
0 Non-core crossbar switch master access to memory is disabled. 
1 Non-core crossbar switch master access to memory is enabled.

8
WP

Write Protect. Allows only read accesses to the SRAM. When this bit is set, any attempted write access 
from the core generates an access error exception to the ColdFire processor core. 
0 Allows core read and write accesses to the SRAM module
1 Allows only core read accesses to the SRAM module
Note: This bit does not affect non-core write accesses.

7
D/I

Data/instruction bus. Determines if the SRAM is connected to the internal data or instruction bus.
0 Data bus
1 Instruction bus

6
BWP

Backdoor Write Protect. Allows only read accesses from the non-core bus masters. When this bit is set, 
any attempted write access from the non-core bus masters on the backdoor terminates the bus transfer 
with an access error.
0 Allows read and write accesses to the SRAM module from non-core masters.
1 Allows only read accesses to the SRAM module from non-core masters.

PRIU,PRIL Upper Bank Priority Lower Bank Priority

00 SRAM Backdoor SRAM Backdoor

01 SRAM Backdoor CPU

10 CPU SRAM Backdoor

11 CPU CPU
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7.3 Initialization/Application Information
After a hardware reset, the SRAM module contents are undefined. The valid bit of the RAMBAR is 
cleared, disabling the processor port into the memory. RAMBAR[BDE] is set, enabling the system 
backdoor port into the memory. If the SRAM requires initialization with instructions or data, perform the 
following steps:

1. Load the RAMBAR, mapping the SRAM module to the desired location within the address space.

2. Read the source data and write it to the SRAM. Various instructions support this function, 
including memory-to-memory move instructions, or the MOVEM opcode. The MOVEM 
instruction is optimized to generate line-sized burst fetches on 0-modulo-16 addresses, so this 
opcode generally provides maximum performance.

3. After the data loads into the SRAM, it may be appropriate to load a revised value into the 
RAMBAR with a new set of attributes. These attributes consist of the write-protect and address 
space mask fields.

The ColdFire processor or an external debugger using the debug module can perform these initialization 
functions.

7.3.1 SRAM Initialization Code

The following code segment describes how to initialize the SRAM. The code sets the base address of the 
SRAM at 0x8000_0000 and initializes the SRAM to zeros.

RAMBASE EQU 0x80000000 ;set this variable to 0x80000000

RAMVALID EQU 0x00000001

5–1
C/I, SC, SD, UC, 

UD

Address Space Masks (ASn). These five bit fields allow types of accesses to be masked or inhibited from 
accessing the SRAM module. The address space mask bits are:
C/I = CPU space/interrupt acknowledge cycle mask
SC = Supervisor code address space mask
SD = Supervisor data address space mask
UC = User code address space mask
UD = User data address space mask

For each address space bit:
0 An access to the SRAM module can occur for this address space
1 Disable this address space from the SRAM module. If a reference using this address space is made, it 

is inhibited from accessing the SRAM module and is processed like any other non-SRAM reference.

These bits do not affect accesses by non-core bus masters using the SRAM backdoor port in any manner.
These bits are useful for power management as detailed in Section 7.3.2, “Power Management.” In most 
applications, the C/I bit is set

0
V

Valid. When set, this bit enables the SRAM module; otherwise, the module is disabled. A hardware reset 
clears this bit.

0 Processor accesses of the SRAM are masked
1 Processor accesses of the SRAM are enabled

Table 7-2. RAMBAR Field Descriptions (continued)

Field Description
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move.l #RAMBASE+RAMVALID,D0 ;load RAMBASE + valid bit into D0.

movec.l D0, RAMBAR ;load RAMBAR and enable SRAM

The following loop initializes the entire SRAM to zero:
lea.l RAMBASE,A0 ;load pointer to SRAM

move.l #16384,D0 ;load loop counter into D0 (SRAM size/4)

SRAM_INIT_LOOP:

clr.l (A0)+     ;clear 4 bytes of SRAM

clr.l (A0)+     ;clear 4 bytes of SRAM

clr.l (A0)+     ;clear 4 bytes of SRAM

clr.l (A0)+     ;clear 4 bytes of SRAM

subq.l #4,D0 ;decrement loop counter

bne.b SRAM_INIT_LOOP ;if done, then exit; else continue looping

7.3.2 Power Management

As noted previously, depending on the RAMBAR-defined configuration, instruction fetch and operand 
read accesses may be sent to the SRAM and cache simultaneously. If the access maps to the SRAM 
module, it sources the read data and the cache access is discarded. If the SRAM is used only for data 
operands, setting the ASn bits associated with instruction fetches can decrease power dissipation. 
Additionally, if the SRAM contains only instructions, masking operand accesses can reduce power 
dissipation. Table 7-3 shows examples of typical RAMBAR settings.

Table 7-3. Typical RAMBAR Setting Examples

Data Contained in SRAM RAMBAR[7:0]

Instruction Only 0x2B

Data Only 0x35

Instructions and Data 0x21
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Chapter 8  
Clock Module

8.1 Introduction
The clock module allows the device to be configured for one of several clocking methods. Clocking modes 
include internal phase-locked loop (PLL) clocking with an external clock reference or an external crystal 
reference supported by an internal crystal amplifier. The PLL can also be disabled, and an external 
oscillator can directly clock the device. The clock module contains:

• Crystal amplifier and oscillator (OSC)

• Phase-locked loop (PLL)

• Status and control registers

• Control logic

Figure 8-1 is a high-level representation of clock connections. The exact functionality of the blocks is not 
illustrated (clocks to individual modules may be disabled via the peripheral power management registers 
as described in Chapter 9, “Power Management”).
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Figure 8-1. Device Clock Connections
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Notes:
1 The DDR controller is disabled in limp mode. The USB controllers are essentially disabled, as they are able to capture a wake-up 
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2 The DDR controller, flash controller, eSDHC, SSIs, USB, and real time clock contain some logic that uses the fsys/2 clock, in 

addition to the module-specific clock.
3 The OUTDIVn fields are bypassed when in limp mode.
4 The OUTDIV2 field controls the divider for the peripheral bus clock (fsys/2), which must be half the core clock (fsys) frequency.
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8.1.1 Block Diagram

Figure 8-2 shows the clock module block diagram.

Figure 8-2. Clock Module Diagram

8.1.2 Features

Features of the clock module include:

• 14–50 MHz input clock

• Programmable frequency multiplication factor settings generating voltage-controlled oscillator 
(VCO) frequencies from 240–500 MHz, resulting in a core frequency of 7.5 MHz (fvco  32) to 
250 MHz (maximum rated frequency).

• Five user-programmable output dividers to produce the following clocks

— Core clock (fsys)

— Bus (fsys/2)

— eSDHC clock (40 MHz max)

— NAND flash controller clock (80 MHz max)

— USB clock (60 MHz)

• Loss-of-lock detection and reset

• Loss-of-clock detection and reset

• Support for low-power modes

• Direct clocking of system by input clock, bypassing the PLL

• Reference crystal oscillator for the real time clock (RTC) module. Input clock used is 
programmable within the RTC.
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• USB clock can be provided from ULIPI high speed PHY. Also, if there are no RMII interfaces, the 
core can be set to generate this clock.

8.1.3 Modes of Operation

The PLL operational mode must be configured during reset. The reset configuration pins must be driven 
to the appropriate state for the desired mode from the time RSTOUT asserts until it negates. Refer to 
Chapter 10, “Chip Configuration Module (CCM)”, for more details.

The clock module can operate in normal PLL mode with crystal reference, normal PLL mode with external 
reference, and input-clock limp mode.

8.1.3.1 Normal PLL Mode with Crystal Reference

In normal mode with a crystal reference, the PLL receives an input clock frequency (14–50 MHz) from 
the crystal oscillator circuit and multiplies the frequency to create the PLL output clock. It can synthesize 
frequencies ranging from 240–500 MHz. In serial boot mode, this range is programmable and supports a 
larger range of synthesized frequencies.

You must supply a crystal oscillator within the appropriate input frequency range, the crystal 
manufacturer’s recommended external support circuitry, and short signal route from the device to the 
crystal.

8.1.3.2 Normal PLL Mode with External Reference

This second mode is the same as Section 8.1.3.1, “Normal PLL Mode with Crystal Reference,” except 
EXTAL is driven by an external clock generator rather than a crystal oscillator. However, the input 
frequency range is the same as the crystal reference. In this mode, an internal pull-up resistor is enabled 
on XTAL.

To enter normal mode with external clock generator reference, the PLL configuration must be set at reset 
by overriding the default reset configuration. See Chapter 10, “Chip Configuration Module (CCM)”, for 
details on setting the device for external reference (oscillator bypass mode).

8.1.3.3 Input Clock (Limp) Mode

Depending on the reset configuration (see Chapter 10, “Chip Configuration Module (CCM)”) or by setting 
MISCCR[LIMP] bit, the device is placed into a low-frequency limp mode, in which the PLL is placed in 
reset and the device runs from a factor of the input clock (EXTAL). In this mode, EXTAL feeds a 5-bit 
programmable counter that divides the input clock by 2n, where n is the value of the programmable counter 
field, CDR[LPDIV]. For more information on programming the divider, see Chapter 10, “Chip 
Configuration Module (CCM)”. The programmed value of the divider may be changed without glitches or 
otherwise negative affects to the system.

While in this mode, the PLL is placed in reset mode to reduce overall system power consumption. A 2:1 
ratio is still maintained between the core and the primary bus clock. Because they do not function at speeds 
as low as the minimum input-clock frequency, the SDRAM controller is not functional in limp mode. Also, 
the USB controllers must source their system clocks through alternate, external sources.
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When switching from limp mode to normal functional mode, you must ensure that any peripheral 
transactions in progress (Ethernet frame reception/transmission) are allowed to complete to avoid data loss 
or corruption.

Entering limp mode via the MISCCR[LIMP] bit requires a special procedure for the SDRAM module. As 
noted above, the SDRAM controller is disabled in limp mode, so follow these two critical steps before 
setting the MISCCR[LIMP] bit:

1. Code execution must be transferred to another memory resource. Primary options are:

— Memory device attached to the FlexBus boot chip-select

— On-chip SRAM (but not the CPU cache, as it may have to be flushed upon limp mode entrance 
or exit)

2. The SDRAM controller must be placed in self-refresh mode to avoid data loss while the SDRAMC 
shuts down.

8.1.3.4 Low-power Mode Operation

This subsection describes the clock module operation in low-power and halted modes of operation. 
Low-power modes are described in Chapter 9, “Power Management”. Table 8-1 shows the clock module 
operation in low-power modes.

In wait and doze modes, the system clocks to the peripherals are enabled, and the clocks to the core are 
stopped. Each module can disable its clock locally at the module level. The SRAM clock is not gated in 
wait and doze modes. This allows other masters (like the Ethernet assembly) to access the SRAM if they 
are operating in wait and doze modes.

In stop mode, all system clocks are disabled (except the real-time clock which continues to run via its 
external clock). There are several options for enabling or disabling the PLL or crystal oscillator in stop 
mode, compromising between stop mode current and wake-up recovery time. The PLL can be disabled in 
stop mode, but requires a wake-up period before it relocks. The oscillator can also be disabled during stop 
mode, but it requires a wake-up period to restart.

When the PLL is enabled in stop mode (LPCR[STPMD] = 00), the external FB_CLK signal can support 
systems using FB_CLK as the clock source. For more information about operating the PLL in stop mode, 
see Section 9.2.5, “Low-Power Control Register (LPCR)”.

Table 8-1. Clock Module Operation in Low-power Modes

Low-power Mode Clock Operation Mode Exit

Wait
Clocks sent to peripheral modules only.

CPU is stopped.
Clock module does not cause exit, but normal 

clocking resumes upon mode exit

Doze
Clocks sent to peripheral modules only.

CPU is stopped.
Clock module does not cause exit, but normal 

clocking resumes upon mode exit

Stop All system clocks disabled
Clock module does not cause exit, but clock 
sources are re-enabled and normal clocking 

resumes upon mode exit

Halted Normal Clock module does not cause exit
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There is also a fast wake-up option for quickly enabling the system clocks during stop recovery 
(LPCR[FWKUP]). This eliminates the wake-up recovery time but at the risk of sending a potentially 
unstable clock to the system.

8.2 Memory Map/Register Definition
The PLL programming model consists of the following:

8.2.1 PLL Control Register (PLL_CR)

The PLL_CR register controls the feedback and reference dividers for generating the core and bus clocks. 
For details on altering these values after reset, see Section 8.3.1, “PLL Frequency Multiplication Factor 
Select.” PLL_CR also contains control bits for loss-of-clock and loss-of-lock detection.

NOTE
Only alter the PLL_CR[LOLEN] bit when the device is in limp mode.

Table 8-2. PLL Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xFC0C_0000 PLL Control Register (PLL_CR) 32 R/W See section 8.2.1/8-6

0xFC0C_0004 PLL Divider register (PLL_DR) 32 R/W See section 8.2.2/8-8

0xFC0C_0008 PLL Status Register (PLL_SR) 32 R/W 0x0000_0000 8.2.3/8-9

Address: 0xFC0C_0000 (PLL_CR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 LOC
IRQ

LOC
RE

LOC
ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 LOL
IRQ

LOL
RE

LOL
EN

0
REFDIV

0 0
FBKDIV

W

Reset 0 0 0 1 0 See note 0 0 See note

Note: The reset values of REFDIV and FBKDIV depend on the reset configuration:
If default configuration (RCON), REFDIV = 000 and FBKDIV = 0x09.
If serial boot, REFDIV = {0,SBF_RCON[23:22]} and FBKDIV = SBF_RCON[21:16].
If parallel configuration, REFDIV = 000 and FBKDIV depends on the value of FB_AD[7:6] (See 
Chapter 10, “Chip Configuration Module (CCM).

Figure 8-3. PLL Control Register (PLL_CR)
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Table 8-3. PLL_CR Field Descriptions

Field Description

31–19 Reserved, must be cleared.

18
LOCIRQ

Loss of clock interrupt request. Determines how the processor handles a loss-of-clock condition when LOCEN is set. 
If LOCEN is cleared, this bit has no effect.
If PLL_SR[LOCF] is set, setting LOCIRQ causes an immediate interrupt request.
0 Ignore loss of clock, interrupt not requested
1 Request interrupt on loss of clock

17
LOCRE

Loss of clock reset enable. If LOCEN is set, determines how the processor handles a loss-of-clock condition. If 
LOCEN is cleared, this bit has no effect.
Setting LOCRE causes an immediate reset request upon detection of loss of clock.
0 Ignore loss of clock, reset not requested
1 Request reset on loss of clock

16
LOCEN

Loss of clock enable. Enables the loss-of-clock feature.
0 Loss of clock disabled
1 Loss of clock enabled

15 Reserved, must be cleared.

14
LOLIRQ

Loss of lock interrupt request. If LOLEN is set, determines how the processor handles a loss-of-lock condition. If 
LOLEN is cleared, this bit has no effect.
The PLL must be locked when LOLIR is enabled to avoid an immediate interrupt request.
0 Ignore loss of lock, interrupt not requested
1 Request interrupt on loss of lock

13
LOLRE

Loss of lock reset enable. If LOLEN is set, determines how the processor handles a loss-of-lock condition. If LOLEN 
is cleared, this bit has no effect.
The PLL must be locked when LOLRE is enabled to avoid an immediate reset request.
0 Ignore loss of lock, reset not requested
1 Request reset on loss of lock

12
LOLEN

Loss of lock enable. Enables the loss-of-lock feature.
0 Loss of lock disabled
1 Loss of lock enabled
Note: Only change this bit when the device is in limp mode.

11 Reserved, must be cleared.

10–8
REFDIV

Reference divider setting. Along with FBKDIV, determines the VCO clock frequency. See the FBKDIV field for details.
000 1
001 2
010 Reserved
011 Reserved
100 Reserved
Else Reserved. A divider value of one is used.

7–6 Reserved, must be cleared.

5–0
FBKDIV

Feedback divider setting. Along with REFDIV, determines the VCO clock frequency. The feedback divider is the 
value of this bit field plus 1. The resulting VCO frequency is shown below:

Eqn. 8-1fVCO

fREF FBKDIV 1+ 
2REFDIV

--------------------------------------------------=
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8.2.2 PLL Divider Register (PLL_DR)

The PLL_DR register controls the output dividers for generating the core, bus, eSDHC, NAND flash 
controller, and USB clocks. For details on altering these values after reset, see Section 8.3.1, “PLL 
Frequency Multiplication Factor Select”.

NOTE
A single longword (32-bit) write to the PLL_DR register is required. If 
back-to-back word or longword writes are attempted, some of the clocks in 
the system change frequency before others, which can cause the device to 
hang.

Address: 0xFC0C_0004 (PLL_DR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
OUTDIV5 OUTDIV4

0
OUTDIV3 OUTDIV2 OUTDIV1

W

Reset 0 0 0 0 0 0 See Note 0 0 1 1 1 0 0 1 0 0 1 See Note See Note

Note: The reset values of OUTDIV5, OUTDIV2, and OUTDIV1 depend on the reset configuration:
If default or parallel configuration, OUTDIV5 = 0x1F, OUTDIV2 = 3, and OUTDIV1 = 1.
If serial boot, OUTDIV5 = SBF_RCON[14:10], OUTDIV2 = SBF_RCON[9:5], and OUTDIV1 = SBF_RCON[4:0].

Figure 8-4. PLL Divider Register (PLL_DR)

Table 8-4. PLL_DR Field Descriptions

Field Description

31–26 Reserved, must be cleared.

25–21
OUTDIV5

Output divider for generating the NAND flash controller clock frequency. The divider is the value of this bit field plus 
1. A value of zero disables this clock.

Eqn. 8-2

Note: The OUTDIV5 resulting frequency must not be greater than 80 MHz.

20–16
OUTDIV4

Output divider for generating the USB controllers clock frequency. The divider is the value of this bit field plus 1. A 
value of zero disables this clock.

Eqn. 8-3

Note: If used as the USB clock source, the OUTDIV4 resulting frequency must be 60 MHz. This may require that 
fVCO be less than the maximum.

15 Reserved, must be cleared.

14–10
OUTDIV3

Output divider for generating the eSDHC clock frequency. The divider is the value of this bit field plus 1. A value of 
zero disables this clock.

Eqn. 8-4

Note: The OUTDIV3 resulting frequency must not be greater than 250 MHz.

fNFC

fVCO

OUTDIV5 1+
----------------------------------=

fUSB

fVCO

OUTDIV4 1+
----------------------------------=

feSDHC

fVCO

OUTDIV3 1+
--------------------------------=
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8.2.3 PLL Status Register (PLL_SR)

The PLL status register provides indicators for PLL operating mode, loss-of-lock, and loss-of-clock status. 
You must write a one to the loss-of-lock and loss-of-clock flag bits to clear them. All other bits in the 
PLL_SR are read-only.

9–5
OUTDIV2

Output divider for generating the internal bus clock frequency, including the FlexBus clock (FB_CLK). The divider is 
the value of this bit field plus 1. A value of zero disables this clock.

Eqn. 8-5

Note: If the core clock is enabled (OUTDIV1  0), the internal bus clock frequency must be half the core clock 
frequency. Therefore, the valid OUTDIV2 settings are limited to 0, 3, 5, 7, 9, 11, 13, and 15. See OUTDIV1 bit 
description for more details.

4–0
OUTDIV1

Output divider for generating the core clock frequency. The divider is the value of this bit field plus 1. A value of zero 
disables this clock.

Eqn. 8-6

Note: If the internal bus clock is enabled, the core clock frequency must be two times the internal bus clock 
frequency. Therefore, the valid OUTDIV1 values are limited to 0x0–0x7.

Address: 0xFC0C_0008 (PLL_SR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 LOCF LOC 0 LOLF LOCKS LOCK 0 MODE

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-5. PLL Status Register (PLL_SR)

Table 8-5. PLL_SR Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9
LOCF

Loss-of-clock flag.
If PLL_CR[LOCIRQ, LOCEN] are set, LOCF is set upon loss-of-clock detection and is subsequently used to 
generate the interrupt request.
To clear LOCF, assert reset or write a one to this bit. Writing zero has no effect. This bit is sticky; if clocks are restored, 
the bit remains set until writing a one or asserting reset.
0 Interrupt service not requested
1 Interrupt service requested

Table 8-4. PLL_DR Field Descriptions (continued)

Field Description

fSYS/2

fSYS

2
----------

fVCO

OUTDIV2 1+
----------------------------------= =

fSYS

fVCO

OUTDIV1 1+
----------------------------------=
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8.3 Functional Description
This subsection provides a functional description of the clock module.

8.3.1 PLL Frequency Multiplication Factor Select

The frequency multiplication factor of the PLL is defined by the feedback, reference, and output dividers 
specified in the PLL_CR and PLL_DR registers. An example equation for the core frequency is given 
below:

Eqn. 8-7

where fsys is the clock frequency of the ColdFire core and fREF is the PLL clock source as shown in 
Figure 8-1. The allowable range of values for OUTDIVn is 1–15. The other clocks on the processor are 

8
LOC

Loss-of-clock status. Indicates whether the PLL has lost its reference clock.
If you read this bit at the same time the loss-of-clock condition occurs, the bit does not reflect the current loss-of-clock 
condition. If a loss-of-clock condition occurs which sets this bit and the clocks later return to normal, this bit is cleared. 
A loss-of-clock condition can only be detected if PLL_CR[LOCEN] is set.
0 Clocks are operating normally
1 Clocks have failed due to a reference failure

7 Reserved, must be cleared.

6
LOLF

Loss-of-lock flag.
If PLL_CR[LOLIR, LOLEN] are set, LOLF is set upon loss of lock and is subsequently used to generate the interrupt 
request. To clear LOLF, assert reset or write a one to this bit. Writing 0 has no effect. This bit is sticky; if lock is 
reacquired, the bit remains set until writing a one or asserting reset.
0 Interrupt service not requested
1 Interrupt service requested

5
LOCKS

Sticky PLL lock status bit. Set by the lock-detect circuitry when the PLL acquires lock. If the PLL loses lock, this bit 
is cleared and remains cleared even after the PLL re-locks. If you read this bit when the PLL simultaneously loses 
lock, the bit does not reflect the current loss-of-lock condition.
0 PLL has lost lock since last reset
1 PLL has not lost lock since last reset

4
LOCK

PLL lock status bit. Indicates if the PLL has acquired lock.
If PLL_CR[LOLEN] is set, PLL lock occurs when the synthesized frequency matches to within 0.75% of the 

programmed frequency. The PLL loses lock when a frequency deviation of greater than ~1.5% occurs.
If PLL_CR[LOLEN] is cleared, PLL lock is declared following 2000 reference clock cycles after negation of reset. The 

LOCK bit remains set until reset is asserted.
In functional mode, LOCK is asserted following 16 reference clock cycles after negation of reset. The LOCK bit 

remains set until reset is asserted.
If you read this bit when the PLL simultaneously loses lock, the bit does not reflect the current loss-of-lock condition.
0 PLL is unlocked
1 PLL is locked

3 Reserved, must be cleared.

2–0
MODE

PLL mode setting. Read-only bit indicating the current PLL mode.
000 PLL functional mode
Else Reserved

Table 8-5. PLL_SR Field Descriptions (continued)

Field Description

fSYS

fVCO

PLL_DR[OUTDIV1] 1+
-------------------------------------------------------=
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configurable in a similar fashion. However, there are various dependencies. See Section 8.2.2, “PLL 
Divider Register (PLL_DR),” for details.

The PLL_DR[OUTDIVn] fields can be changed during normal operation or when the device is in limp 
mode. After a new value is written to the PLL_DR, the PLL synchronizes the new value of the PLL_DR 
with the VCO clock domain. Then, the transition from the old divider value to the new divider value takes 
place, such that the PLL output clocks remain glitch-free. During the adjustment to the new divider value, 
a PLL output clock may experience an intermediate transition while the divider values are being 
synchronized. Following the transition period, all output clocks begin toggling at the new divider values 
simultaneously. The transition from the old divider value to the new divider value takes no more than 
100 ns. Because the output divider transition takes a period of time to change, the PLL_CR may not be 
written back-to-back without waiting 100 ns between writes.

8.3.2 PLL Frequency Synthesis

The frequency synthesis of the PLL is defined by the feedback divider (P-divider) and reference divider 
(Q-divider) in Equation 8-8:

Eqn. 8-8

The allowable range of values for FBKDIV is 8–63 and REFDIV is 0–1. The following constraints must 
be met:

• fVCO must be in the range 240–500 MHz.

• fREF must be in the range 14–50 MHz.

•  must be in the range 14–50 MHz.

The PLL_CR can be modified during normal operation or while the device is in limp mode. See 
Section 8.2.1, “PLL Control Register (PLL_CR)”, for further information about FBKDIV and REFDIV.

8.3.3 Lock Conditions

When PLL_CR[LOLEN] is set, the lock-detect logic monitors the PFD reference clock and the feedback 
clock to determine when frequency lock has been achieved. Phase lock is inferred by the frequency 
relationship, but is not guaranteed. The PLL lock status is reflected in PLL_SR[LOCK].

The lock-detect function uses two counters that are clocked by the divided reference and feedback clocks 
respectively. When the reference counter has counted N cycles, the feedback counter’s count is compared. 
If the feedback counter has also counted N cycles, the process is repeated for N + K counts. Then, if the 
two counters still match, the lock criteria is relaxed by one count, and the system is notified that the PLL 
has achieved frequency lock.

After lock is detected, the lock circuitry continues to monitor the reference and feedback clocks using the 
alternate count-and-compare process. If the counters do not match at any comparison time, then 
PLL_SR[LOCK] is cleared to indicate that the PLL has lost lock. At this point, the lock criteria is tightened 
and the lock-detect process is repeated. The alternate count sequences prevent false lock detects due to 
frequency aliasing while the PLL tries to lock. Alternating between a tight and relaxed lock criteria 

fVCO fREF
P
Q
---- fREF

PLL_CR[FBKDIV] 1+
2PLL_CR[REFDIV]

--------------------------------------------------------- 
 = =

fREF

2PLL_CR[REFDIV]
------------------------------------
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prevents the lock-detect function from randomly toggling between locked and not locked status due to 
phase sensitivities.

When PLL_CR[LOLEN] is cleared, PLL_SR[LOCK] is set following a count of 2000 reference clock 
cycles, indicating sufficient time has elapsed for the PLL to reach a locked state. PLL_SR[LOCK] is 
cleared by asserting system reset.

In limp mode, since the PLL is disabled, there is no PLL lock status.

8.3.4 Loss-of-Lock Detection

When the PLL achieves lock following a system reset, PLL_SR[LOCK, LOCKS] are set. When the PLL 
loses lock, both bits are cleared. While the PLL is in an unlocked condition, the system clocks continue to 
be sourced from the PLL as the PLL attempts to re-lock. Therefore, during the re-locking process, the 
system clock frequency is not well defined and may exceed the maximum system frequency. This violates 
the system clock timing specifications. Due to this condition, we recommend using the loss-of-lock reset 
functionality as described in Section 8.3.4.1, “Loss-of-Lock Reset Request”.

When the PLL has re-locked, the PLL does not update the PLL_SR[LOCKS] bit indicating lock has been 
lost since a system reset. This bit is sticky and must be cleared by writing a one to it before the PLL writes 
the register again.

8.3.4.1 Loss-of-Lock Reset Request

The PLL can assert reset when a loss-of-lock condition occurs by programming the PLL_SR[LOLRE] bit. 
Because the PLL_SR[LOCK, LOCKS] bits are cleared after reset, the reset status register (RSR) must be 
read to determine a loss-of-lock condition occurred. See Section 12.3.2, “Reset Status Register (RSR)”, 
for more information on the RSR register. To exit reset in PLL mode, the reference must be present and 
the PLL must acquire lock. 

8.3.4.2 Loss-of-Lock Interrupt Request

The PLL can request an interrupt when a loss-of-lock condition occurs by programming the 
PLL_SR[LOLIRQ] bit. If this bit is set and a loss of lock is detected, PLL_SR[LOLF] is set, requesting 
an interrupt to the processor. The LOLF bit is sticky and remains set until it is cleared by a system reset or 
by writing a one to it. LOLIRQ provides information to the lock-detect logic to let it know if an interrupt 
should be generated upon loss of lock.

8.3.5 Loss-of-Clock Detection

When PLL_CR[LOCEN] is set, the loss-of-reference logic monitors the PFD reference clock for a 
loss-of-clock condition. For every rising edge of the PFD reference clock, a logic 1 is written to a register, 
which is reset every eight feedback clocks. This register is read just before being reset. If found to be a 
logic 0, a loss-of-clock condition is declared. The reset cycle of eight feedback clocks was chosen to 
prevent minor phase variations between the PFD reference and feedback clocks triggering loss of clock. 
When loss of reference is detected, PLL_SR[LOC] is set. After the reference clock is restored, 
PLL_SR[LOC] is cleared.
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When PLL_CR[LOCEN] is cleared, the loss-of-reference logic is disabled.

8.3.5.1 Loss-of-Clock Reset Request

When you set PLL_SR[LOCRE, LOCEN], the PLL requests a reset when a loss-of-clock condition occurs. 
Since the PLL_SR[LOC] bit is cleared after reset, the reset controller’s RSR register must be read to 
determine that a loss-of-clock condition occurred. See Section 12.3.2, “Reset Status Register (RSR)”, for 
more information on the RSR register. To exit reset in PLL mode, the reference must be present and the 
PLL must acquire lock. PLL_SR[LOCRE] is ignored when PLL_SR[LOCEN] is cleared.

8.3.5.2 Loss-of-Clock Interrupt Request

When you set PLL_CR[LOCIRQ, LOCEN], the PLL requests an interrupt when a loss-of-clock condition 
occurs. If this bit is set and loss of lock is detected, the PLL sets PLL_SR[LOCF] and asserts an interrupt 
request to the processor. The LOCF bit is sticky and remains set until it is cleared by writing a one to it or 
by asserting a system reset. PLL_SR[LOCIRQ] is ignored when PLL_SR[LOCEN] is cleared.

8.3.6 System Clock Modes

Table 8-6 shows the clock-out to clock-in frequency relationships for the possible system clock modes.

8.3.7 Clock Operation During Reset

This section describes the PLL reset operation. Power-on reset and normal reset are described.

8.3.7.1 Power-On Reset (POR)

After VDD_PLL and the input clock are within specification, the PLL is held in reset for at least ten input 
clock cycles to initialize the PLL. The reset configuration signals are used to select the multiply factor of 
the PLL and the reset state of the PLL registers. While in reset, the PLL input clock is output to the device. 
After RESET de-asserts, PLL output clocks generate; however, until the PLL_SR[LOCK] bit is set, the 
PLL output clock frequencies are not stable and within specification. When this bit is set, the PLL is in 
frequency lock.

Table 8-6. System Clock And Reference Clock Relationship

Clock Mode PLL option1

1 fref = input reference frequency, fVCO = VCO frequency
MISCCR[LPDIV] ranges from 0 to 15

Reference

Normal PLL 
mode

Section 8.1.3.1, “Normal PLL Mode 
with Crystal Reference” and 
Section 8.1.3.2, “Normal PLL Mode 
with External Reference”

Limp mode Section 8.1.3.3, “Input Clock (Limp) 
Mode”

fSYS

fVCO

PLL_DR[OUTDIV1] 1+
-------------------------------------------------------=

fSYS
fREF

2MISCCR LPDIV 
------------------------------------------=
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8.3.7.2 External Reset

When RESET asserts, the PLL input clock outputs to the device, and the PLL does not begin acquiring 
lock until RESET is negated. The PLL_SR[LOCK] bit is cleared and remains cleared while the PLL is 
acquiring lock.

CAUTION
When running in an unlocked state, the clocks the PLL generate are not 
guaranteed to be stable and may exceed the maximum specified frequency.
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Chapter 9  
Power Management

9.1 Introduction
This chapter explains the low-power operation of the device.

9.1.1 Features

These features support low-power operation:

• Four operation modes: run, wait, doze, and stop

• Ability to shut down most peripherals independently

• Ability to shut down clocks to most peripherals independently

• Ability to run the device in low-frequency limp mode

• Ability to shut down the external FB_CLK pin

9.2 Memory Map/Register Definition
The power management programming model consists of registers from the SCM and CCM memory space:

Table 9-1. Power Management Memory Map

Address Register
Width 
(bits)

Access Reset Value Section/Page

Supervisor Access Only Registers1

0xFC04_0013 Wakeup Control Register (WCR) 8 R/W 0x00 9.2.1/9-2

0xFC04_002C Peripheral Power Management Set Register 0 (PPMSR0) 8 W 0x00 9.2.2/9-3

0xFC04_002D Peripheral Power Management Clear Register 0 
(PPMCR0)

8 W 0x00 9.2.3/9-4

0xFC04_002E Peripheral Power Management Set Register 1 (PPMSR1) 8 W 0x00 9.2.2/9-3

0xFC04_002F Peripheral Power Management Clear Register 1 
(PPMCR1)

8 W 0x00 9.2.3/9-4

0xFC04_0030 Peripheral Power Management High Register 0 (PPMHR0) 32 R/W 0x7E1E_FBFF 9.2.4/9-5

0xFC04_0034 Peripheral Power Management Low Register 0 (PPMLR0) 32 R/W 0xFFDE_F300 9.2.4/9-5

0xFC04_0038 Peripheral Power Management High Register 1 (PPMHR1) 32 R/W 0xFFFF_FFCF 9.2.4/9-5

0xFC04_003C Peripheral Power Management Low Register 1 (PPMLR1) 32 R/W 0x3F00_C0F4 9.2.4/9-5

0xEC09_0007 Low-Power Control Register (LPCR) 8 R/W 0x00 9.2.5/9-9
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9.2.1 Wake-up Control Register (WCR)

Implementation of low-power stop mode and exit from a low-power mode via an interrupt requires 
communication between the core and logic associated with the interrupt controller. The WCR enables 
entry into low-power modes and includes the interrupt level setting needed to exit a low-power mode.

NOTE
The setting of the low-power mode select field, WCR[LPMD], determines 
which low-power mode the device enters when a STOP instruction is issued.

Sequence of operations generally needed to enable this functionality:

1. The WCR register is programmed, setting the ENBWCR bit and the desired interrupt priority level.

2. At the appropriate time, the processor executes the privileged STOP instruction. After the 
processor stops execution, it asserts a specific processor status (PST) encoding. Issuing the STOP 
instruction when the WCR[ENBWCR] is set causes the SCM to enter the mode specified in 
WCR[LPMD].

3. The low power mode control logic processes the entry into a low power mode, and the appropriate 
clocks (usually those related to the high-speed processor core) are disabled.

4. After entering the low-power mode, the interrupt controller enables a combinational logic path 
which evaluates any unmasked interrupt requests. The device waits for an event to generate an 
interrupt request with a priority level greater than the value programmed in WCR[PRILVL].

5. After an appropriately high interrupt request level arrives, the interrupt controller signals its 
presence, and the SCM responds by asserting the request to exit low-power mode.

6. The low-power mode control logic senses the request signal and re-enables the appropriate clocks.

7. With the processor clocks enabled, the core processes the pending interrupt request.

0xEC09_000E Miscellaneous control register (MISCCR)2 16 R/W 0x183D 10.3.4/10-5

0xEC09_0010 Clock divider register high (CDRH)2 16 R/W 0x0101 10.3.5/10-7

0xEC09_0012 Clock divider register low (CDRL)2 16 R/W 0x0000 10.3.6/10-8

1 User access to supervisor only address locations have no effect and result in a bus error
2 The MISCCR and CDR{H,L} registers are described in Chapter 10, “Chip Configuration Module (CCM).”

Address: 0xFC04_0013 (WCR) Access: Supervisor read/write

7 6 5 4 3 2 1 0

R
ENBWCR

0
LPMD

0
PRILVL

W

Reset: 0 0 0 0 0 0 0 0

Figure 9-1. Wake-up Control Register (WCR)

Table 9-1. Power Management Memory Map (continued)

Address Register
Width 
(bits)

Access Reset Value Section/Page
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9.2.2 Peripheral Power Management Set Registers (PPMSR0, PPMSR1)

The PPMSRn registers provide a simple mechanism to set a given bit in the PPM{H,L}Rn registers to 
disable the clock for a given peripheral module without needing to perform a read-modify write on the 
PPMR. The data value on a register write causes the corresponding bit in the PPM{H,L}Rn to set. The 
SAMCD bit provides a global set function forcing the entire contents of the PPMR to set, disabling all 
peripheral module clocks. Reads of these registers return all zeroes.

• PPMSR0 affects PPMHR0 and PPMLR0

• PPMSR1 affects PPMHR1 and PPMLR1

Table 9-2. WCR Field Descriptions

Field Description

7
ENBWCR

Enable low-power mode entry. The mode entered is specified in WCR[LPMD].
0 Low-power mode entry is disabled
1 Low-power mode entry is enabled.

6 Reserved, must be cleared.

5–4
LPMD

Low-power mode select. Used to select the low-power mode the chip enters after the ColdFire core executes the 
STOP instruction. To take effect, write these bits prior to instruction execution. The LPMD bits are readable and 
writable in all modes.
00 Run
01 Doze
10 Wait
11 Stop
Note: If WCR[LPMD] is cleared, the device stops executing code upon a STOP instruction. However, no clocks are 

disabled.

3 Reserved, must be cleared.

2–0
PRILVL

Exit low-power mode interrupt priority level. This field defines the interrupt priority level to exit the low-power mode:

PRILVL Interrupt Level Needed to Exit Low-Power Mode

000 Any interrupt request exits low-power mode

001 Interrupt request levels [2-7] exit low-power mode

010 Interrupt request levels [3-7] exit low-power mode

011 Interrupt request levels [4-7] exit low-power mode

100 Interrupt request levels [5-7] exit low-power mode

101 Interrupt request levels [6-7] exit low-power mode

11x Interrupt request level [7] exits low-power mode
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9.2.3 Peripheral Power Management Clear Register (PPMCR0, PPMCR1)

The PPMCRn registers provide a simple mechanism to clear a given bit in the PPM{H,L}Rn registers, 
enabling the clock for a given peripheral module without needing to perform a read-modify write on the 
PPMR. The data value on a register write causes the corresponding bit in the PPM{H,L}Rn to clear. The 
CAMCD bit provides a global clear function, forcing the entire PPMR contents to clear, enabling all 
peripheral module clocks. Reads of these registers return all zeroes.

• PPMCR0 affects PPMHR0 and PPMLR0

• PPMCR1 affects PPMHR1 and PPMLR1

Address: 0xFC04_002C (PPMSR0)
0xFC04_002E (PPMSR1)

Access: Supervisor Write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W SAMCD SMCD

Reset: 0 0 0 0 0 0 0 0

Figure 9-2. Peripheral Power Management Set Registers (PPMSRn)

Table 9-3. PPMSRn Field Descriptions

Field Description

7 Reserved, must be cleared.

6
SAMCD

Set all module clock disables.
0 Set only those bits specified in the SMCD field
1 Set all bits in PPMRH and PPMRL, disabling all peripheral clocks

5–0
SMCD

Set module clock disable. Set the corresponding bit in PPM{H,L}R, disabling the peripheral clock.

Address: 0xFC04_002D (PPMCR0)
0xFC04_002F (PPMCR1)

Access: Supervisor Write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W CAMCD CMCD

Reset: 0 0 0 0 0 0 0 0

Figure 9-3. Peripheral Power Management Clear Registers (PPMCRn)

Table 9-4. PPMCRn Field Descriptions

Field Description

7 Reserved, must be cleared.
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9.2.4 Peripheral Power Management Registers (PPMHR{1,0}, 
PPMLR{1,0})

The PPMR registers provide a bit map for controlling the generation of the peripheral clocks for each 
decoded address space. Recall each peripheral module is mapped into 16 kByte slots within the memory 
map. The PPMR registers provide a unique control bit for each address space that defines whether the 
module clock for the given space is enabled or disabled.

Because the operation of the crossbar switch and the system control module (SCM) are fundamental to the 
operation of the device, the clocks for these modules cannot be disabled.

Using a read-modify-write to this register directly or indirectly through writes to the PPMSR and PPMCR 
registers to set/clear individual bits can modify the PPMR individual bits.

CAUTION
Take extreme caution when setting PPMHR1[CD36] to disable clocking of 
the CCM, reset controller, and power management modules. This may 
disable logic to reset the chip and disable the external bus monitor or other 
logic contained within these blocks.

6
CAMCD

Clear all module clock disables.
0 Clear only those bits specified in the CMCD field
1 Clear all bits in PPMRH and PPMRL, enabling all peripheral clocks

5–0
CMCD

Clear module clock disable. Clear the corresponding bit in PPMR{H,L}, enabling the peripheral clock.

Address: 0xFC04_0030 (PPMHR0) Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CD63

1 1 1 1 1 1
CD56 CD55 CD54 CD53

1
CD51 CD50 CD49 CD48

W

Reset 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CD47 CD46 CD45 CD44 CD43 CD42

1 1
CD39 CD38 CD37 CD36 CD35 CD34 CD33 CD32

W

Reset 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

Figure 9-4. Peripheral Power Management High Register 0 (PPMHR0)

Table 9-5. PPMHR0[CDn] Assignments

Slot Number CDn Peripheral

32 CD32 PIT 0

33 CD33 PIT 1

Table 9-4. PPMCRn Field Descriptions (continued)

Field Description
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34 CD34 PIT 2

35 CD35 PIT 3

36 CD36 Edge Port

37 CD37 ADC

38 CD38 DAC0

39 CD39 DAC1

42 CD42 Robust RTC

43 CD43 SIM

44 CD44 USB OTG

45 CD45 USB Host

46 CD46 DDR SDRAM Controller

47 CD47 SSI0

48 CD48 PLL

49 CD49 RNG

50 CD50 SSI1

51 CD51 eSDHC

53 CD53 MACNET0

54 CD54 MACNET1

55 CD55 Ethernet Switch

56 CD56 Ethernet Switch

63 CD63 NAND Flash Controller

Address: 0xFC04_0034 (PPMLR0) Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CD31 CD30 CD29 CD28 CD27 CD26 CD25 CD24 CD23 CD22

0
CD20 CD19 CD18 CD17

0

W

Reset 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CD15 CD14

1 1 0 0
CD9 CD8

0 0 0 0 0
CD2

0 0

W

Reset 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0

Figure 9-5. Peripheral Power Management Low Register 0 (PPMLR0)

Table 9-5. PPMHR0[CDn] Assignments (continued)

Slot Number CDn Peripheral
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Table 9-6. PPMLR0[CDn] Assignments

Slot Number CDn Peripheral

2 CD2 FlexBus

8 CD8 FlexCAN0

9 CD9 FlexCAN1

14 CD14 I2C1

15 CD15 DSPI1

17 CD17 eDMA Controller

18 CD18 Interrupt Controller 0

19 CD19 Interrupt Controller 1

20 CD20 Interrupt Controller 2

22 CD22 I2C0

23 CD23 DSPI0

24 CD24 UART0

25 CD25 UART1

26 CD26 UART2

27 CD27 UART3

28 CD28 DMA Timer 0

29 CD29 DMA Timer 1

30 CD30 DMA Timer 2

31 CD31 DMA Timer 3

Address: 0xFC04_0038 (PPMHR1) Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 1 1 1 1 1 1 1 1 1 1
CD37 CD36

1
CD34

1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

Figure 9-6. Peripheral Power Management High Register 1 (PPMHR1)
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Table 9-7. PPMHR1[CDn] Assignments

Slot Number CDn Peripheral

34 CD34 mcPWM

36 CD36 CCM, Reset Controller, Power Management

37 CD37 GPIO Module

Address: 0xFC04_003C (PPMLR1) Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0
CD29 CD28 CD27 CD26 CD25 CD24

0 0 0 0 0 0 0 0

W

Reset 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CD15 CD14

0 0 0 0 0 0
CD7 CD6 CD5 CD4

0
CD2

0 0

W

Reset 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0

Figure 9-7. Peripheral Power Management Low Register 1 (PPMLR1)

Table 9-8. PPMLR1[CDn] Assignments

Slot Number CDn Peripheral

2 CD2 1-Wire

4 CD4 I2C2

5 CD5 I2C3

6 CD6 I2C4

7 CD7 I2C5

14 CD14 DSPI2

15 CD15 DSPI3

24 CD24 UART4

25 CD25 UART5

26 CD26 UART6

27 CD27 UART7

28 CD28 UART8

29 CD29 UART9
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9.2.5 Low-Power Control Register (LPCR)

The LPCR register controls chip operation and module operation during low-power modes.

9.3 Functional Description
This section discusses the functions and characteristics of the low-power modes, and how each module is 
affected by, or affects these modes.

Table 9-9. PPMHR and PPMLR Field Descriptions

Field Description

CDn Module slot n clock disable.
0 The clock for this module is enabled.
1 The clock for this module is disabled.

Address: 0xEC09_0007 (LPCR) Access: Supervisor read/write

7 6 5 4 3 2 1 0

R 0 0
FWKUP STPMD

0 0 0

W

Reset: 0 0 0 0 0 0 0 0

Figure 9-8. Low-Power Control Register (LPCR)

Table 9-10. LPCR Field Descriptions

Field Description

7–6 Reserved, should be cleared.

5
FWKUP

Fast wake-up. Determines whether the system clocks are enabled upon wake-up from stop mode. This bit must be 
written before execution of the STOP instruction for it to take effect.
0 System clocks enabled only when PLL is locked or operating normally.
1 System clocks enabled upon wake-up from stop mode, regardless of PLL lock status.
Note: Setting this bit is potentially dangerous and unreliable. The system may behave unpredictably when using an 

unlocked clock, because the clock frequency could overshoot the maximum frequency of the device.
Note: If FWKUP is set before entering stop mode, it should not be cleared upon wake-up from stop mode until after 

the PLL has actually acquired lock. Lock status may be obtained by reading PLL status register. Because the 
PLL never locks in limp mode, the FWKUP is ineffective. The system clocks are always enabled upon wake-up 
from stop mode, regardless of the value of FWKUP.

4–3
STPMD

FB_CLK stop mode bits. Controls the operation of the clocks, PLL, and oscillator in stop mode:

2–0 Reserved, must be cleared.

STPMD System Clocks FB_CLK PLL Oscillator

00 Disabled Enabled Enabled Enabled

01 Disabled Disabled Enabled Enabled

10 Disabled Disabled Disabled Enabled

11 Disabled Disabled Disabled Disabled
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9.3.1 Peripheral Shut Down

All peripherals, except for the SCM and crossbar switch, may have the software remove their input clocks 
individually to reduce power consumption. See Section 9.2.4, “Peripheral Power Management Registers 
(PPMHR{1,0}, PPMLR{1,0}),” for more information. A peripheral may be disabled at any time and 
remains disabled during any low-power mode of operation.

9.3.2 Limp mode

The device may also boot into a low-frequency limp mode, in which the PLL is bypassed and the device 
runs from a factor of the input clock (EXTAL). In this mode, EXTAL feeds a counter that divides the input 
clock by 2n, where n is the value of the programmable counter field, CDR[LPDIV]. The programmed 
value of the divider may be changed without glitches or otherwise negative affects to the system. While in 
this mode, the PLL is placed in bypass mode to reduce overall system-power consumption.

Limp mode may be entered and exited by writing to MISCCR[LIMP].

While in this mode, a 2:1 ratio maintains between the core and the primary bus clock. Because they cannot 
function at speeds as low as the minimum input clock frequency, the DDR SDRAM controller is not 
functional in limp mode.

Entering limp mode also requires a special procedure for the DDR module. As noted above the DDR 
controller is disabled in limp mode, so two critical steps must be followed before setting MISCCR[LIMP].

1. Transfer code execution to another memory resource. Primary options are the memory device is 
attached to the FlexBus boot chip select or on-chip SRAM (but not the CPU cache, as it may have 
to be flushed upon entering or exiting limp mode).

2. Place the DDR controller in self-refresh mode to avoid data loss while the controller is shut down.

After exiting limp mode, wait 256 clock cycles before writing to any DDR controller registers.

Since the USB controllers require a 60 MHz clock, during limp mode you must clear MISCCR[USBSRC] 
before entering limp mode to source their system clocks through alternate, off-chip sources 
(USB_CLKIN). This also allows the USB modules to wake the device from limp mode.

9.3.3 Low-Power Modes

The system enters a low-power mode by executing a STOP instruction. The low-power mode the device 
actually enters (stop, wait, or doze) depends on the setting of the WCR[LPMD] bits. Entry into any of these 
modes idles the CPU with no cycles active, powers down the system, and stops all internal clocks 
appropriately. During stop mode, the system clock is stopped low.

A wake-up event is required to exit a low-power mode and return to run mode. Wake-up events consist of 
any of these conditions:

• Any type of reset

• Any valid, enabled interrupt request

Exiting from low-power mode via an interrupt request requires:

• An interrupt request whose priority is higher than the value programmed in the WCR[PRILVL].
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• An interrupt request whose priority is higher than the value programmed in the interrupt priority 
mask (I) field of the core’s status register.

• An interrupt request from a source not masked in the interrupt controller’s interrupt mask register.

• An interrupt request which has been enabled at the module of the interrupt’s origin.

9.3.3.1 Run Mode

Run mode is the normal system operating mode. Current consumption in this mode is related directly to 
the system clock frequency.

9.3.3.2 Wait Mode

Wait mode is intended to stop only the CPU and memory clocks until a wake-up event is detected. In this 
mode, peripherals may be programmed to continue operating and can generate interrupts, causing the CPU 
to exit from wait mode.

9.3.3.3 Doze Mode

Doze mode affects the processor in the same manner as wait mode, except that some peripherals define 
individual operational characteristics in doze mode. Peripherals continuing to run and having the 
capability of producing interrupts may cause the CPU to exit the doze mode and return to run mode. 
Stopped peripherals restart operation on exit from doze mode, as defined for each peripheral.

9.3.3.4 Stop Mode

Stop mode affects the processor the same as the wait and doze modes, except that all clocks to the system 
are stopped and the peripherals cease operation.

Stop mode must be entered in a controlled manner to ensure that any current operation is properly 
terminated. When exiting stop mode, most peripherals retain their pre-stop status and resume operation.

NOTE
Entering stop mode disables the DDRMC, including the refresh counter. If 
SDRAM is used, code is required to ensure proper entry and exit from stop 
mode. See Chapter 21, “DDR SDRAM Memory Controller (DDRMC),” for 
more information.

9.3.4 Peripheral Behavior in Low-Power Modes

The following subsections specify the operation of each module while in and when exiting low-power 
modes.

9.3.4.1 ColdFire Core

The ColdFire core disables during any low-power mode. No recovery time is required when exiting any 
low-power mode.
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9.3.4.2 Internal SRAM

The SRAM is disabled only in stop mode. In wait and doze mode a non-core crossbar switch master can 
access SRAM. No recovery time is required when exiting any low-power mode.

9.3.4.3 Clock Module

In wait and doze modes, the clocks to the CPU stop and the system clocks to the peripherals enable. Each 
module may disable the module clocks locally at the module level, or the module clocks may be 
individually disabled by the PPMR registers (refer to Section 9.2.4, “Peripheral Power Management 
Registers (PPMHR{1,0}, PPMLR{1,0})”). In stop mode, all clocks to the system stop.

There are several options for enabling or disabling the PLL or crystal oscillator in stop mode, 
compromising between stop mode current and wake-up recovery time. The PLL can be disabled in stop 
mode, but requires a wake-up period before it can relock. The oscillator can also be disabled during stop 
mode, but requires a wake-up period to restart.

When the PLL is enabled in stop mode (LPCR[STPMD] = 00), the external FB_CLK signal can support 
systems using FB_CLK as the clock source. See Section 9.2.5, “Low-Power Control Register (LPCR),” 
for more information about operating the PLL in stop mode.

There is also a fast wake-up option for quickly enabling the system clocks during stop recovery 
(LPCR[FWKUP]). This eliminates the wake-up recovery time but at the risk of sending a potentially 
unstable clock to the system. This is also explained in Section 9.2.5, “Low-Power Control Register 
(LPCR).”

9.3.4.4 Chip Configuration Module

The chip configuration module is unaffected by entry into a low-power mode, but register access is 
disabled. If a reset exits low-power mode, chip configuration may execute if configured to do so.

9.3.4.5 Reset Controller

A power-on reset (POR) always causes a chip to reset and exit from any low-power mode.

In wait and doze modes, asserting the external RESET pin for at least four clocks causes an external reset 
that resets the chip and exits any low-power modes. 

In stop mode, the RESET pin synchronization disables and asserting the external RESET pin 
asynchronously generates an internal reset and exit any low-power modes. Registers lose current values 
and must be reconfigured from reset state if needed.

If the core watchdog timer is still enabled during wait or doze modes, a watchdog timer timeout may 
generate a reset to exit these low-power modes.

When the CPU is inactive, a software reset cannot generate to exit any low-power mode.
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9.3.4.6 System Control Module (SCM)

The SCM’s core watchdog timer can bring the device out of all low-power modes except stop mode. In 
stop mode, all clocks stop, and the core watchdog timer does not operate.

When enabled, the core watchdog can bring the device out of low-power mode in one of two ways. 
Depending on the setting of the CWCR[CWRI] field, a core watchdog timeout may reset the device. Other 
settings of the CWRI field may enable a core watchdog interrupt and upon a watchdog timeout, this 
interrupt can bring the device out of low-power mode. This system setup must meet the conditions 
specified in Section 9.3.3, “Low-Power Modes,” for the core watchdog interrupt to bring the part out of 
low-power mode.

9.3.4.7 Crossbar Switch

The crossbar switch is disabled in stop mode. It is enabled in other low power modes.

9.3.4.8 GPIO Ports

The GPIO ports are unaffected by entry into a low-power mode. These pins may impact low-power current 
draw if they are configured as outputs and are sourcing current to an external load. If low-power mode is 
exited by a reset, the state of the I/O pins reverts to their default direction settings.

9.3.4.9 Interrupt Controllers (INTC0–2)

The interrupt controller is not affected by any of the low-power modes. All logic between the input sources 
and generating the interrupt to the processor is combinational to allow the ability to wake up the core 
during low-power stop mode when all system clocks stop.

An interrupt request causes the processor to exit a low-power mode only if that interrupt’s priority level is 
at or above the level programmed in the interrupt priority mask field of the CPU’s status register (SR) and 
above the level programmed in the WCR[PRILVL]. The interrupt must also be enabled in the interrupt 
controller’s interrupt mask register as well as at the module from which the interrupt request would 
originate.

9.3.4.10 Edge Port

In wait and doze modes, the edge port continues to operate normally and may be configured to generate 
interrupts (either an edge transition or low level on an external pin) to exit the low-power modes.

In stop mode, no system clock is available to perform the edge detect function. Therefore, only the level 
detect logic is active (if configured) to allow any low level on the external interrupt pin to generate an 
interrupt (if enabled) to exit stop mode.

9.3.4.11 eDMA Controller

In wait and doze modes, the eDMA controller can bring the device out of a low-power mode by generating 
an interrupt upon completion of a transfer or upon an error condition. The completion of transfer interrupt 
generates when DMA interrupts are enabled by the setting of a EDMA_INTR[INTn], and an interrupt is 
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generated when TCDn[DONE] is set. The interrupt upon error condition is generated when 
EDMA_EEIR[EEIn] is set, and an interrupt generates when any of the EDMA_ESR bits become set.

The eDMA controller is stopped in stop mode and thus cannot cause an exit from this low-power mode.

9.3.4.12 FlexBus Module

In wait and doze modes, the FlexBus module continues operation but does not generate interrupts; 
therefore, it cannot bring a device out of a low-power mode. This module is stopped in STOP mode.

9.3.4.13 Ethernet Assembly

The Ethernet (ENET) assembly includes two MACNET modules and an Ethernet switch. In wait and doze 
modes, since the clocks to the ENET Assembly are on, the ENET is unaffected and may generate an 
interrupt to exit these low-power modes. Any activity on the Ethernet bus (RMII/MII interface) wakes the 
system and exits from the low power mode.

In stop mode, the ENET stops immediately and freezes operation, register values, state machines, and 
external pins. During this mode, the ENET clocks are shut down. Coming out of stop mode returns the 
ENET to operation from the state prior to stop mode entry. Any activity on the Ethernet bus (RMII/MII 
interface) wakes the system and exits from the low power mode.

NOTE
Only enter stop mode when there is no activity on the Ethernet bus or no 
packets to forward to the other port.

9.3.4.14 ADC

In wait mode, ADC register read/write access is disabled. In doze modes, the ADC is unaffected. In both 
modes the ADC may generate an interrupt to exit these low-power modes.

In stop mode, the ADC stops immediately and freeze its operation. During this mode, the ADC clocks are 
shut down.

9.3.4.15 DAC

In wait and doze modes, the DAC is unaffected and may generate an interrupt to exit these low-power 
modes.

In stop mode, the DAC stop immediately and freeze its operation. During this mode, the DAC clocks are 
shut down.

9.3.4.16 NAND Flash Controller (NFC)

In wait and doze modes, the NFC is unaffected and may generate an interrupt to exit these low-power 
modes.

In stop mode, since the system/bus clock is stopped, NFC goes into an inactive state.
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9.3.4.17 1-Wire Interface

The 1-Wire module automatically enters low power mode when it is not communicating with a generic 
1-Wire device. The main clock is gated off in low power mode. As soon as software writes to any register, 
the 1-Wire module exits low power mode.

In wait and doze modes, this module operates normally. In stop mode all the clocks going to the 1-Wire 
module are disabled.

9.3.4.18 mcPWM

Take care when using this module in certain chip operating modes. Some motors (such as 3-phase AC 
motors) require regular software updates for proper operation. Failure to do so could result in destroying 
the motor or inverter. Because of this, PWM outputs are placed in their inactive states in stop mode, and 
optionally under wait and debug modes. PWM outputs are reactivated (assuming they were active to begin 
with) when these modes are exited.

In stop mode, since peripheral and CPU clocks are stopped, the PWM outputs are inactive.

In wait and doze modes, since CPU clocks are stopped while peripheral clocks continue to run during this 
mode, PWM outputs are inactive as a function of the WAITEN bit.

The PWM also supports a debug mode where the PWM outputs are inactive as a function of the DEBUG 
bit.

9.3.4.19 FlexCAN

FlexCAN is enabled in wait mode and works normally.

Doze mode is entered when the CAN_MCR[DOZE] bit is set and the processor is in doze mode. When in 
doze mode, the module shuts down the clocks to the CAN protocol interface and the message buffer 
management sub-modules. The module exits this mode when CAN_MCR[DOZE] is cleared, the MCU is 
removed from doze mode, or when activity is detected on the CAN bus and the self wake-up mechanism 
is enabled.

In stop mode, the module puts itself in an inactive state and then informs the CPU that the clocks can be 
shut down globally. The module exist this mode when the stop mode request is removed or when activity 
is detected on the CAN bus and the self wake-up mechanism is enabled.

9.3.4.20 Robust Real Time Clock

In stop mode, the external clock driving EXTAL32K/XTAL32K continues to clock the RTC module. 
Therefore, the device can update the RTC counters, alarms, etc. while in stop mode. An RTC 
interrupt/wake-up can be generated while in stop mode to wake the device if the RTC alarms are triggered.

9.3.4.21 Rapid GPIO

Since RGPIO is memory mapped device located on the processor’s high-speed platform bus and works on 
divided processor clock, it is disabled during any low-power mode. No recovery time is required when 
exiting any low-power mode.
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9.3.4.22 Serial Boot Facility

The clock going to serial boot facility (SBF) is disabled in stop mode. No other low power mode feature 
is implemented in SBF.

9.3.4.23 DDR SDRAM Controller (DDRMC)

SDRAM controller operation is unaffected either the wait or doze modes; however, the DDRMC is 
disabled by stop mode. Because the STOP mode disables all clocks to the DDRMC, the DDRMC does not 
generate refresh cycles.

The DDRMC supports the following low-power modes:

• Memory power down — The memory controller sets the memory devices into power-down, which 
reduces the overall power consumption of the system, but has the least effect of all the low power 
modes. In this mode, the memory controller and memory clocks are fully operational, but the CKE 
input bit to the memory devices is deasserted. The memory controller continues to monitor 
memory refresh needs and automatically brings the memory out of power-down to perform these 
refreshes. When a refresh is required, the CKE input bit to the memory devices is reenabled. This 
action brings the memory devices out of power-down. Once the refresh completes, the memory 
devices are returned to power-down by deasserting the CKE input bit.

• Memory power down with memory clock gating — The memory controller sets the memory 
devices into power-down and gates off the clock to the memory devices. Refreshes are handled as 
in the memory power-down mode, with the exception that gating on the memory clock is removed 
before asserting the CKE pin. After the refresh completes, the memory devices are returned to 
power-down with the clock gated. Before the memory devices are removed from power-down, the 
clock is gated on again.

NOTE
Do not use this mode for memory devices that do not support memory clock 
gating. Clock gating is not supported for standard DDR2 devices.

When set into this mode, the memory controller attempts to place the memory devices in 
power-down and gate off the memory clock. The memory functions unpredictably and may hang.

• Memory self refresh — In this mode, the memory controller and memory clocks are fully 
operational and the CKE input bit to the memory devices is deasserted. Since the memory 
automatically refreshes its contents, the memory controller does not need to send explicit refreshes 
to the memory

• Memory self refresh with memory clock gating — The memory controller sets the memory devices 
into self-refresh and gates off the clock to the memory devices. Before the memory devices are 
removed from self-refresh, the clock is gated on again.

• Memory self refresh with memory and controller clock gating — This is the deepest low-power 
mode of the memory controller. The memory controller sets the memory devices into self-refresh 
and gates off the clock to the memory devices. In addition, the clock to the memory controller and 
the programming parameters are gated off, except to a small portion of the DLL, which must 
remain active to maintain lock. Before the memory devices are removed from self-refresh, the 
memory controller and memory clocks are gated on.
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9.3.4.24 eSDHC 

When the clocks to the eSDHC are disabled or when the system is in a low power mode, the eSDHC can 
generate the following three wake-up interrupts:

• Card removal interrupt

• Card insertion interrupt

• SDIO card interrupt

The eSDHC offers a power management feature. By clearing the clock-enabled bits in the clock control 
register, the clocks are gated low to the eSDHC. For maximum power saving, the user can disable all the 
clocks to eSDHC when there is no operation in progress.

9.3.4.25 Cryptography Acceleration Unit (CAU)

The CAU is disabled during any low-power mode. No recovery time is required when exiting any 
low-power mode.

9.3.4.26 Random Number Generator (RNG)

Since the clocks to the RNGB are enabled, the RNGB is functional during the doze and wait modes. 
During the stop mode, the RNGB is not functional. The RNG entry into stop mode is delayed until it 
completes the current seed generation.

9.3.4.27 Subscriber Interface Module (SIM)

The SIM is enabled in wait mode. In doze mode SIM operation is configurable with the SIM_RCR[DOZE] 
bit. If this bit is set, the SIM gates its clocks when the transmit FIFO is empty. If cleared, doze mode has 
no effect on the SIM.

In stop mode the SIM can be disabled completely or partially disabled. If SIM_RCR[STOP] is set, only 
the SIM card baud clock runs. If cleared, all clocks are disabled.

9.3.4.28 USB On-the-Go Module

If the USB On-the-Go module is clocked externally, it operates normally in wait and doze. It is capable of 
generating an interrupt to wake up the core from the wait and doze modes. In stop mode, the USB module 
is disabled.

The USB block contains an automatic low power mode in which the module enters suspend mode after a 
6.0 ms minimum period of inactivity. When the module receives a wake-up from the USB host, the 
transceiver is re-enabled for normal USB operations.

9.3.4.29 USB Host Module

In wait mode the clocks to the USB host module continue to run. In doze mode, the processor stops the 
clocks to the USB host module, but the 60 Mhz transceiver clock remains active. In doze mode, detection 
of resume signaling initiates a restart of the module clocks.
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In stop mode, the processor stops the clock to the USB host module. In this state, the module ignores traffic 
on the USB and does not generate any interrupts or wake-up events. The on-chip transceiver is disabled to 
save power.

9.3.4.30 Programmable Interrupt Timers (PIT0–3)

In stop mode (or doze mode, if so programmed in the PCSRn register), the programmable interrupt timer 
(PIT) ceases operation, and freezes at the current value. When exiting these modes, the PIT resumes 
operation from the stopped value. It is the responsibility of software to avoid erroneous operation. 

When not stopped, the PIT may generate an interrupt to exit the low-power modes. 

9.3.4.31 DMA Timers (DTIM0–3)

In wait and doze modes, the DMA timers may generate an interrupt to exit a low-power mode. This 
interrupt can generate when the DMA timer is in input capture mode or reference compare mode.

In input capture mode, where the capture enable (CE) field of the timer mode register (DTMR) has a 
non-zero value and the DTXMR[DMAEN] is cleared, an interrupt issues upon a captured input. In 
reference compare mode, where the output reference requests interrupt enable (ORRI) bit of DTMR is set 
and DTXMR[DMAEN] is cleared, an interrupt issues when the timer counter reaches the reference value.

DMA timer operation disables in stop mode. Upon exiting stop mode, the timer resumes operation unless 
stop mode was exited by reset.

9.3.4.32 DMA Serial Peripheral Interface (DSPI)

In wait mode, the DSPI module is unaffected and may generate an interrupt to exit this low-power mode.

In stop and doze modes, the DSPI first completes transfer of the current frame. It then freezes operation, 
register values, state machines, and external pins. During this mode, the DSPI clocks shut down. Coming 
out of stop mode returns the DSPI to operation from the state prior to stop mode entry.

9.3.4.33 UART Modules

In wait and doze modes, the UARTs are unaffected and may generate an interrupt to exit these low-power 
modes.

In stop mode, the UARTs stop immediately and freeze their operation, register values, state machines, and 
external pins. During this mode, the UART clocks shut down. Exiting stop mode returns the UARTs to the 
operation of the state prior to stop-mode entry.

9.3.4.34 I2C Modules

When the I2C modules are enabled by the setting of the I2CR[IEN] bit and the device is not in stop mode, 
the I2C module is operable and may generate an interrupt to bring the device out of a low-power mode. 
For an interrupt to occur, the I2CR[IIE] bit must be set to enable interrupts, and the setting of the I2SR[IIF] 
generates the interrupt signal to the CPU and interrupt controller. The setting of I2SR[IIF] signifies the 
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completion of one byte transfer or the reception of a calling address matching its own specified address 
when in slave-receive mode.

In stop mode, the I2C module stops immediately and freezes operation, register values, and external pins. 
Upon exiting stop mode, the I2C resumes operation unless stop mode was exited by reset.

9.3.4.35 BDM

Entering halt (debug) mode via the BDM port (by asserting the external BKPT pin) causes the processor 
to exit any low-power mode.

9.3.4.36 JTAG

The JTAG (Joint Test Action Group) controller logic is clocked using the TCLK input and not affected by 
the system clock. The JTAG cannot generate an event to cause the processor to exit any low-power mode. 
Toggling TCLK during any low-power mode increases the system current consumption.

9.3.5 Summary of Peripheral State During Low-power Modes

The functionality of each of the peripherals and CPU during the various low-power modes is summarized 
in Table 9-11. The status of each peripheral during a given mode refers to the condition the peripheral 
automatically assumes when the STOP instruction is executed and the WCR[LPMD] field is set for the 
particular low-power mode. Individual peripherals may be disabled by programming its dedicated control 
bits. The wake-up capability field refers to the ability of an interrupt or reset by that peripheral to force the 
CPU into run mode.

Table 9-11. CPU and Peripherals in Low-Power Modes

Module
Peripheral Status1 / Wake-up Procedure

Wait Mode Doze Mode Stop Mode

ColdFire Core Stopped N/A Stopped N/A Stopped N/A

SRAM Enabled N/A Enabled N/A Stopped N/A

Clock Module Enabled N/A Enabled N/A Program N/A

Power Management Enabled N/A Enabled N/A Stopped N/A

Chip Configuration Module Enabled N/A Enabled N/A Stopped N/A

Reset Controller Enabled Reset Enabled Reset Enabled Reset

System Control Module Enabled N/A Enabled N/A Stopped N/A

GPIO Enabled N/A Enabled N/A Stopped N/A

Interrupt controller Enabled Interrupt Enabled Interrupt Enabled Interrupt

Edge port Enabled Interrupt Enabled Interrupt Stopped Interrupt

eDMA Controller Enabled N/A Enabled N/A Stopped N/A

FlexBus Module Enabled N/A Enabled N/A Stopped N/A

DDR Controller Enabled N/A Enabled N/A Stopped N/A



Power Management

9-20 NXP Semiconductors

Ethernet Assembly Enabled Interrupt Enabled Interrupt Enabled Interrupt

USB OTG Enabled Interrupt Stopped Interrupt Stopped N/A

USB Host Enabled Interrupt Stopped Interrupt Stopped N/A

SSI Enabled Interrupt Enabled Interrupt Stopped N/A

Robust Real Time Clock Enabled Interrupt Enabled Interrupt Enabled Interrupt

Programmable Interrupt Timers Enabled Interrupt Program Interrupt Stopped N/A

DMA Timers Enabled Interrupt Enabled Interrupt Stopped N/A

DSPI Enabled Interrupt Enabled Interrupt Stopped N/A

UARTs Enabled Interrupt Enabled Interrupt Stopped N/A

I2C Modules Enabled Interrupt Enabled Interrupt Stopped N/A

RNG Enabled N/A Stopped N/A Stopped N/A

eSDHC Enabled Interrupt Enabled Interrupt Stopped Interrupt

SIM Enabled Interrupt Program Interrupt Stopped Interrupt

ADC Enabled Interrupt Enabled Interrupt Stopped N/A

DAC Enabled Interrupt Enabled Interrupt Stopped N/A

NAND Flash Controller Enabled Interrupt Enabled Interrupt Stopped N/A

1-Wire Enabled Interrupt Enabled Interrupt Stopped N/A

mcPWM Program Interrupt Program Interrupt Stopped N/A

FlexCAN Enabled Interrupt Program Interrupt Stopped N/A

Rapid GPIO Stopped N/A Stopped N/A Stopped N/A

Serial Boot Facility Enabled N/A Enabled N/A Stopped N/A

JTAG2 Enabled N/A Enabled N/A Enabled N/A

BDM3 Enabled Yes Enabled Yes Enabled Yes

1 Program indicates that the peripheral function during the low-power mode is dependent on programmable bits in the 
peripheral register map.

2 The JTAG logic is clocked by a separate TCLK clock. 
3 Entering halt mode via the BDM port exits any lower-power mode. Upon exit from halt mode, the previous low-power mode 

is re-entered, and changes made in halt mode remain in effect.

Table 9-11. CPU and Peripherals in Low-Power Modes (continued)

Module
Peripheral Status1 / Wake-up Procedure

Wait Mode Doze Mode Stop Mode
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Chapter 10  
Chip Configuration Module (CCM)

10.1 Introduction
The chip-configuration module (CCM) configures the device to operate in one of multiple functional 
modes.

10.1.1 Block Diagram

Figure 10-1. Chip-Configuration Module Block Diagram

10.1.2 Features

The CCM performs these operations:

• Configures device based on chosen reset configuration options

• Selects bus-monitor configuration

• Selects low-power configuration

10.1.3 Modes of Operation

The only chip operating mode available on this device is master mode. In master mode, the ColdFire core 
can access external memories and peripherals.The external bus consists of a 32-bit data and address buses. 
The available bus control signals include FB_R/W, FB_TS, FB_TA, FB_OE, FB_TBST, and 
FB_BE/BWE[3:0]. Up to six chip selects can be programmed to select and control external devices and to 
provide bus cycle termination.

Reset Low-power
configuration

Bus monitor
configuration

configuration

Chip configuration module
registers

Module
configuration
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10.2 External Signal Descriptions
Table 10-1 provides an overview of the CCM signals.

10.2.1 BOOTMOD[1:0]

These signals determine the boot performed at reset. See the table below for BOOTMOD[1:0] usage.

10.2.2 FB_AD[7:0] (Reset Configuration Override)

If the external BOOTMOD[1:0] pins are driven to 01 during reset, the states of the FB_AD[7:0] pins 
during reset determine the boot device, clock mode, and certain module configurations after reset. See 
Table 10-17, for details of the function of each FB_AD[7:0] pin during reset.

NOTE
The logic levels for reset configuration on FB_AD[11:0] must be actively 
driven when BOOTMOD equals 01. FB_AD[31:12] should float or be 
pulled high, while FB_AD[11:8] are factory pins and must be pulled high.

10.3 Memory Map/Register Definition
The CCM programming model consists of the registers listed in the below table.

Table 10-1.  Signal Properties

Name Function

BOOTMOD[1:0] Reset configuration select

FB_AD[7:0] Reset configuration override pins

FB_AD[11:8] Factory test modes

Table 10-2. BOOTMOD[1:0] Values

BOOTMOD[1:0] Meaning

00 Boot from FlexBus with defaults

01 Override defaults and RCON decides boot source (FlexBus or NAND flash)

10 Override defaults and boot from serial boot facility with optional load to and 
boot from RAM. If not booting from RAM, SBF_RCON decides the boot 
source (FlexBus or NAND flash).11

Table 10-3. CCM Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

Supervisor Access Only Registers1

0xEC09_0004 Chip configuration register (CCR) 16 R See Section 10.3.1/10-3

0xEC09_0008 Reset configuration register (RCON) 16 R 0x1259 10.3.2/10-4
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10.3.1 Chip Configuration Register (CCR)

The CCR is a read-only register; writing to it has no effect. At reset, the CCR reflects the chosen operation 
of certain device functions. These functions may be set to the defaults defined by the RCON values or 
overridden during reset configuration using the external BOOTMOD[1:0] and the FB_AD[7:0] pins. (See 
Figure 10-3 for the RCON register definition.)

0xEC09_000A Chip identification register (CIR) 16 R See Section 10.3.3/10-5

0xEC09_000E Miscellaneous control register (MISCCR) 16 R/W 0x183D 10.3.4/10-5

0xEC09_0010 Clock divider register high (CDRH) 16 R/W 0x0101 10.3.5/10-7

0xEC09_0012 Clock divider register low (CDRL) 16 R/W 0x0000 10.3.5/10-7

0xEC09_0014 USB On-the-Go controller status register (UOCSR) 16 R/W 0x0010 10.3.7/10-8

0xEC09_0016 USB host controller status register (UHCSR) 16 R/W 0x0000 10.3.8/10-10

0xEC09_0018 Miscellaneous control register 3 (MISCCR3) 16 R/W 0x0001 10.3.9/10-11

0xEC09_001A Miscellaneous control register 2 (MISCCR2) 16 R/W 0xA89F 10.3.10/10-11

0xEC09_001C ADC trigger select register (ADCTSR) 16 R/W 0x0000 10.3.11/10-13

0xEC09_001E DAC trigger select register (DACTSR) 16 R/W 0x0000 10.3.12/10-14

0xEC09_0020 Serial boot facility status register (SBFSR)2 16 R See Section 11.3.1/11-3

0xEC09_0022 Serial boot facility control register (SBFCR)2 16 R/W See Section 11.3.2/11-3

0xEC09_0024 FlexBus/NAND flash arbiter control register (FNACR) 32 R/W 0x0000_0000 10.3.13/10-15

1 User access to supervisor-only address locations have no effect and result in a bus error.
2 The SBFSR and SBFCR registers are described in Chapter 11, “Serial Boot Facility (SBF).”

Address: 0xEC09_0004 (CCR) Access: Supervisor read-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BOOTMOD 0 1 PLLMULT BOOTPS

ALE
SEL

OSC
MODE

PLL
MODE

BOOT
MEM

W

Reset BOOTMOD[1:0] 0 See Note

Note: Reset value depends upon chosen reset configuration. Default reset value (BOOTMOD = 00) is the value of RCON.

Figure 10-2. Chip Configuration Register (CCR)

Table 10-3. CCM Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page
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10.3.2 Reset Configuration Register (RCON)

At reset, the RCON register determines the default operation of certain chip functions. All default 
functions defined by the RCON values can be overridden only during reset configuration (see 
Section 10.4.1, “Reset Configuration”). RCON is a read-only register and contains the same fields as the 
CCR register, minus the BOOTMOD field.

Table 10-4. CCR Field Descriptions

Field Description

15–14
BOOTMOD

BOOTMOD configuration. Captures the boot mode configuration from the BOOTMOD[1:0] pins.
00 Boot from FlexBus with defaults
01 Override defaults and RCON decides boot source (FlexBus or NAND flash)
1x Override defaults and boot from serial boot facility with optional load to and boot from RAM. If not booting from 

RAM, SBF_RCON decides the boot source (FlexBus or NAND flash).

13 Reserved, must be cleared.

12 Reserved, must be set.

11–6
PLLMULT

PLL multiplier. Reflects the multiplying factor of the PLL.

In RCON this field reflects the decoded value of the 2-bit RCON field:
00 fVCO = 10  fref
01 fVCO = 15  fref
10 fVCO = 16  fref
11 fVCO = 20  fref

In SBF_RCON, this field reflects the actual SBF_RCON setting for the PLL multiplier. See Section 10.4.1.3, 
“Reset Configuration (BOOTMOD[1:0] = 1x)”

5–4
BOOTPS

Boot port size. Reflects the chosen port size of the boot memory.
00 32-bit (32-bit muxed address)
01 8-bit (24-bit non-muxed address)
1x 16-bit (16-bit non-muxed address)

3
ALESEL

Reflects if the FB_ALE and FB_TS signal is present on the FB_ALE pin.
0 FB_TS
1 FB_ALE

2
OSCMODE

Oscillator clock mode.
0 Crystal oscillator mode
1 Oscillator bypass mode

1
PLLMODE

PLL mode. Reflects if the PLL is enabled upon boot.
0 Disabled
1 Enabled

0
BOOTMEM

Boot memory. Reflects the source of the boot memory
0 NAND flash
1 FlexBus
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10.3.3 Chip Identification Register (CIR)

CIR is a read-only register; writing to it has no effect.

10.3.4 Miscellaneous Control Register (MISCCR)

The MISCCR register provides various configuration options for limp mode, bus monitor, USB pull 
selection, and SDHC/SSI/USB clocks.

Address: 0xEC09_0008 (RCON) Access: Supervisor read-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 1 PLLMULT BOOTPS

ALE
SEL

OSC
MODE

PLL
MODE

BOOT
MEM

W

Reset 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1

Figure 10-3. Reset Configuration Register (RCON)

Address: 0xEC09_000A (CIR) Access: Supervisor read-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PIN PRN

W

Reset Device Dependent Mask Set Dependent

Figure 10-4. Chip Identification Register (CIR)

Table 10-5. CIR Field Descriptions

Field Description

15–6
PIN

Part identification number. Contains a unique identification number for the device. See the IDCODE[PIN] bit field 
description in Section 44.3.2, “IDCODE Register” for valid encodings.

5–0
PRN

Part revision number. This number increases by one for each new full-layer mask set of this part. The revision 
numbers are assigned in chronological order.

Address: 0xEC09_000E (MISCCR) Access: Supervisor
read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PWM

EXTCLK

PLL
LOCK LIMP BME BMT

0 SDHC
SRC

SSI1
SRC

SSI0
SRC

USBH
OC

USBO
OC

USB
PUE

USB
SRC

W

Reset 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1

Figure 10-5. Miscellaneous Control Register (MISCCR)
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Table 10-6. MISCCR Field Descriptions

Field Description

15
PWM

EXTCLK

Selects the clock source for the PWM’s clock input.
00 Timer 0 output (T0OUT)
01 Timer 1 output (T1OUT)
10 Timer 2 output (T2OUT)
11 Timer 3 output (T3OUT)

13
PLLLOCK

PLL lock status. Indicates the PLL is locked.
0 PLL is not locked
1 PLL is locked

12
LIMP

Limp mode enable. Selects between the PLL and the low-power clock divider as the source of all system clocks.
0 Normal operation; PLL drives system clocks.
1 Limp mode; low-power clock divider drives system clocks.
Note: The transient behavior of the system when writing this bit cannot be predicted. When any USB wake-up 

event is detected, this bit is cleared, limp mode is exited, and the PLL begins the process of relocking and 
driving the system clocks.

11
BME

Bus monitor external enable bit. Enables the bus monitor to operate during external FlexBus cycles
0 Bus monitor disabled on external FlexBus cycles
1 Bus monitor enabled on external FlexBus cycles

10–8
BMT

Bus monitor timing field. Selects the timeout period in FlexBus clock cycles for the bus monitor:
Timeout period for external bus cycles equals 2(16–BMT) FB_CLK cycles

000 65536
001 32768
010 16384
011 8192
100 4096
101 2048
110 1024
111 512
Note: When TA is used in NAND implementation, to ensure that the debugger can regain control, set this field 

in the debugger script. 

7 Reserved, must be cleared.

6
SDHCSRC

eSDHC clock source. Selects the source of the SDHC card clock.
0 Oscillator output
1 PLL divider output

5
SSI1SRC

SSI1 clock source. Selects between the PLL and the external SSI_CLKIN pin as the source of the SSI1 baud 
clock.
0 SSI_CLKIN pin
1 PLL output

4
SSI0SRC

SSI0 clock source. Selects between the PLL and the external SSI_CLKIN pin as the source of the SSI0 baud 
clock.
0 SSI_CLKIN pin
1 PLL output

3
USBHOC

USB host VBUS over-current sense polarity. Selects the polarity of the USB host controller’s VBUS over-current 
sense signal driven off-chip.
0 Active low
1 Active high
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10.3.5 Clock-Divider Register High (CDRH)

The CDRH register provides clock division factors for limp mode and the SSI master clock when the PLL 
is used to drive the SSI clock.

2
USBOC

USB On-the-Go VBUS over-current sense polarity. Selects the polarity of the USB OTG controller’s VBUS 
over-current sense signal driven off-chip.
0 Active low
1 Active high

1
USBPUE

USB transceiver pull-up enable. Enables the on-chip USB OTG controller to drive the internal transceiver pull-up.
0 Internal transceiver pull-up is disabled. The USB_PULLUP signal triggers the external pull-up.
1 USB OTG drives the internal transceiver pull-up

0
USBSRC

USB clock source. Selects between the PLL and the external USB_CLKIN external pin as the clock source for 
the serial interface of the USB module.
0 USB_CLKIN pin drives USB serial interface clocks
1 PLL drives USB serial interface clocks

Address: 0xEC09_0010 (CDRH) Access: Supervisor read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SSI0DIV SSI1DIV

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Figure 10-6. Clock-Divider Register High (CDRH)

Table 10-7. CDRH Field Descriptions

Field Description

15–8
SSI0DIV

SSI0 oversampling clock divider. Specifies the divide value that produces the SSI0 oversampling clock. This field 
is used only when MISCCR[SSI0SRC] is set (PLL is the source).

Eqn. 10-1

Note: A value of 0 or 1 for SSI0DIV represents a divide-by-254. SSI0DIV must not be set to any value that sets 
the SSI oversampling clock frequency over the bus clock frequency (fsys/2), because incorrect SSI 
operation could result.

7–0
SSI1DIV

SSI1 oversampling clock divider. Specifies the divide value that produces the SSI1 oversampling clock. This field 
is used only when MISCCR[SSI1SRC] is set (PLL is the source).

Eqn. 10-2

Note: A value of 0 or 1 for SSI1DIV represents a divide-by-254. SSI1DIV must not be set to any value that sets 
the SSI oversampling clock frequency over the bus clock frequency (fsys/2), because incorrect SSI 
operation could result.

Table 10-6. MISCCR Field Descriptions (continued)

Field Description

SSI0 Baud Clock
fsys

SSI0DIV 2
--------------------------------=

SSI1 Baud Clock
fsys

SSI1DIV 2
--------------------------------=
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10.3.6 Clock-Divider Register Low (CDRL)

The CDRL register provides the clock division factor for limp mode.

10.3.7 USB On-the-Go Controller Status Register (UOCSR)

The UOCSR register controls and reflects various features of the USB OTG module. When any bit of this 
register generates an interrupt, that interrupt is cleared by reading the UOCSR register. The read-only bits 
of this register are set by the USB OTG module.

Address: 0xEC09_0012 (CDRL) Access: Supervisor read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
LPDIV

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10-7. Clock-Divider Register Low (CDRL)

Table 10-8. CDRL Field Descriptions

Field Description

15–12 Reserved, must be cleared.

11–8
LPDIV

Low power clock divider. Specifies the divide value used to produce the system clocks during limp mode. A 2:1 
ratio is maintained between the core and the internal bus.This field is used only when MISCCR[LIMP] is set.

Eqn. 10-3

Note: When LPDIV is cleared (divide by 1), the internal bus clock and FB_CLK does not have a 50/50 duty cycle.

Note: Do not change the LPDIV value from 0 to non-zero or non-zero to 0 in limp mode. Else, the output clocks 
glitch. To avoid this behavior, only change these settings during PLL mode.

Note: Wait for at least five reference clock cycles to switch from PLL to limp mode from the time where the LPDIV 
is modified (during PLL mode).

7–0 Reserved, must be cleared.

Address: 0xEC09_0014 (UOCSR) Access: Supervisor read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 DPPD DMPD DRV

VBUS

CRG
VBUS

DCR
VBUS

DPPU
AVLD BVLD VVLD SEND

PWR
FLT

WKUP
UOMIE XPDE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 10-8. USB On-the-Go Controller Status Register (UOCSR)

System Clocks
fEXTAL

2LPDIV
------------------=
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Table 10-9. UOCSR Field Descriptions

Field Description

15–14 Reserved, must be cleared.

13
DPPD

D+ 15 k pull-down. Indicates the 15-k pull-down on the OTG D+ line is active. When set, asserts an interrupt 
if UOMIE is set.
0 Pull-down disabled
1 Pull-down enabled

12
DMPD

D- 15 k pull-down. Indicates the 15-k pull-down on the OTG D- line is active. When set, asserts an interrupt 
if UOMIE is set.
0 Pull-down disabled
1 Pull-down enabled

11
DRVVBUS

Drive VBUS.
0 Disable the drive of 5 V power on VBUS
1 Enable the drive of 5 V power on VBUS

10
CRGVBUS

Charge VBUS. Indicates a charge resistor to pull-up VBUS is enabled. When set, asserts an interrupt if UOMIE 
is set.
0 Charge resistor to pull-up VBUS disabled
1 Charge resistor to pull-up VBUS enabled

9
DCRVBUS

Discharge VBUS. Indicates a discharge resistor to pull-down VBUS is enabled. When set, asserts an interrupt if 
UOMIE is set.
0 Discharge resistor to pull-down VBUS disabled
1 Discharge resistor to pull-down VBUS enabled

8
DPPU

D+ pull-up control. Indicates pull-up on D+ for FS-only applications is enabled. When set, asserts an interrupt if 
UOMIE is set.
0 D+ pull-up for FS-only applications disabled
1 D+ pull-up for FS-only applications enabled

7
AVLD

A-peripheral is valid. Indicates if the session for an A-peripheral is valid.
0 Session is not valid for an A-peripheral
1 Session is valid for an A-peripheral

6
BVLD

B-peripheral is valid. Indicates if the session for a B-peripheral is valid.
0 Session is not valid for a B-peripheral
1 Session is valid for a B-peripheral

5
VVLD

VBUS valid. Indicates if voltage on VBUS is at a valid level for operation.
0 Voltage level on VBUS is not valid for operation
1 Voltage level on VBUS is valid for operation

4
SEND

Session end. Indicates if voltage on VBUS has dropped below the session end threshold.
0 Voltage on VBUS has not dropped below the session end threshold
1 Voltage on VBUS has dropped below the session end threshold

3
PWRFLT

VBUS power fault. Indicates a power fault has occurred on VBUS (e.g. overcurrent).
0 No power fault has occurred
1 Power fault has occurred

2
WKUP

USB OTG controller wake-up event. Reflects if a wake-up event has occurred on the USB OTG controller bus. 
When set, asserts an interrupt if UOMIE is set.
0 No outstanding wake-up event
1 Wake-up event has occurred
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10.3.8 USB Host Controller Status Register (UHCSR)

The UHCSR register controls and reflects various features of the USB host module. When any bit of this 
register generates an interrupt, that interrupt is cleared by reading the UHCSR register. The read-only bits 
of this register are set by the USB host module.

1
UOMIE

USB OTG miscellaneous interrupt enable. Enables an interrupt to generate from any of the following UOCSR 
bits: DPPD, DMPD, CRGVBUS, DCRVBUS, DPPU, and WKUP
0 Interrupt sources are disabled
1 Interrupt sources are enabled

0
XPDE

On-chip transceiver pull-down enable.
0 50 k pull-downs disabled on OTG D+ and D- pins of on-chip transceiver
1 On-chip 50 k pull-downs enabled on OTG D+ and D- transceiver pins of on-chip transceiver

Address: 0xEC09_0016 (UHCSR) Access: Supervisor read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PIC 0 0 0 0 0 0 0 0 0 DRV
VBUS

PWR
FLT

WKUP
UHMIE XPDE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10-9. USB Host Controller Status Register (UHCSR)

Table 10-10. UHCSR Field Descriptions

Field Description

15–14
PIC

Port indicator. Reflects the state of the USB host controller port indicator signals.

13–5 Reserved, must be cleared.

4
DRVVBUS

Drive VBUS.
0 Disable the drive of 5 V power on VBUS
1 Enable the drive of 5 V power on VBUS

3
PWRFLT

VBUS power fault. Indicates a power fault has occurred on VBUS (e.g. overcurrent).
0 No power fault has occurred
1 Power fault has occurred

2
WKUP

USB host controller wake-up event. Reflects if a wake-up event has occurred on the USB host controller bus. 
When set, asserts an interrupt if UHMIE is set.
0 No outstanding wake-up event
1 Wake-up event has occurred

1
UHMIE

USB host miscellaneous interrupt enable. Enables an interrupt to generate if WKUP sets.
0 Interrupt sources are disabled
1 Interrupt sources are enabled

0
XPDE

On-chip transceiver pull-down enable.
0 50 k pull-downs disabled on host D+ and D- pins of on-chip transceiver
1 On-chip 50 k pull-downs enabled on host D+ and D- transceiver pins of on-chip transceiver

Table 10-9. UOCSR Field Descriptions (continued)

Field Description
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10.3.9 Miscellaneous Control Register 3 (MISCCR3)

10.3.10 Miscellaneous Control Register 2 (MISCCR2)

MISCCR2 configures the PLL mode, various clock options, ADC/DAC enables, and ULPI select.

Address: 0xEC09_0018 (MISCCR3) Access: Supervisor
read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 TMR
ENET

0
ENETCLK

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10-10. Miscellaneous Control Register 3 (MISCCR3)

Table 10-11. MISCCR3 Field Descriptions

Field Description

15–13 Reserved, must be cleared.

12
TMRENET

Selects between the 1588 timebase counter outputs of the two MACs as the counter input to the 32-bit DMA 
timers.
0 MAC0 1588 timebase counter
1 MAC1 1588 timebase counter

11 Reserved, must be cleared.

10–8
ENETCLK

Selects the time-stamping clock for the Ethernet assembly.
000 Internal bus clock
001 Timer 0 in (T0IN)
010 Timer 1 in (T1IN)
011 Timer 2 in (T2IN)
100 Timer 3 in (T3IN)
101 USB_CLKIN
110 OSC_CLK
111 MII_TXCLK

7–0 Reserved, must be cleared.

Address: 0xEC09_001A (MISCCR2) Access: Supervisor read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R EXTCLK
BYP

DDR2
CLK

RGPIO
HALF

SWT
SCR

0
PLLMODE

DCC
BYP

DAC1
SEL

DAC0
SEL

ADC
EN

ADC7
EN

ADC3
EN

FB
HALF

ULPI
W

Reset
1 0 1 0 1 0 0 0 1 0 0 1 1 1

See 
note

1

Note: Depends on SBF_RCON[15]. Else, 1.

Figure 10-11. Miscellaneous Control Register 2 (MISCCR2)
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Table 10-12. MISCCR2 Field Descriptions

Field Description

15
EXTCLKBYP

Bypass the mcPWM’s EXT_CLK input synchronizer. If the mcPWM EXT_CLK is sourced from the ENET’s 
timestamping clock then the synchronizer should only be bypassed when the source for the timestamping clock 
is the internal bus clock.
0 Do not bypass input synchronizer
1 Bypass input synchronizer

14
DDR2CLK

Selects the source of the 2x clock for the DDR controller.
0 Core clock drives DDR 2x clock
1 PLL VCO drives DDR 2x clock

13
RGPIOHALF

Enables half-speed RGPIO operation. 
0 RGPIO data registers run at core clock. Max toggle rate is fsys/2.
1 RGPIO data registers run at half core clock. Max toggle rate is fsys/4.

12
SWTSCR

Selects the clock source for the software watchdog timer. This bit is write-once and is cleared only by a power-on 
reset.
0 System bus clock
1 On-chip 32-kHz RTC oscillator

11 Reserved, must be cleared.

10–8
PLLMODE

PLL mode.
000 Function mode
Else Reserved
Note: This bit should never be altered.

7
DCCBYP

Enables bypass of the DCC input clock to its output, without any duty cycle correction.
0 DCC output is a duty-cycle corrected version of its input clock
1 DCC in bypass mode. Input clock passed directly to output

6
DAC1SEL

Controls if DAC1 actively drives its analog output or tristates it for sharing with other logic.
0 DAC1 tristates its analog output
1 DAC1 actively drives it’s analog output

5
DAC0SEL

Controls if DAC0 actively drives its analog output or tristates it for sharing with other logic.
0 DAC0 tristates its analog output
1 DAC0 actively drives it’s analog output

4
ADCEN

Enables the ADC channels 6–4 and 2–0
0 Disabled
1 Enabled

3
ADC7EN

Enables ADC channel 7.
0 Disabled
1 Enabled

2
ADC3EN

Enables ADC channel 3.
0 Disabled
1 Enabled

1
FBHALF

FlexBus half clock enable
0 FlexBus runs at fsys/2
1 FlexBus runs at fsys/4

0
ULPI

ULPI select bit.
0 USB OTG uses the external ULPI interface
1 USB host uses the external ULPI interface
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10.3.11 ADC Trigger Select Register (ADCTSR)

ADCTSR selects the triggers for the ADCs.

Address: 0xEC09_001C (ADCTSR) Access: Supervisor read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0
ADC1CH ADC1SRC

0 0 0
ADC0CH ADC0SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10-12. ADC Trigger Select Register (ADCTSR)

Table 10-13. ADCTSR Field Descriptions

Field Description

15–13 Reserved, must be cleared.

12–11
ADC1CH

ADC1 trigger source channel select. Selects a particular channel of the trigger source for ADC1.
00 Channel 0
01 Channel 1
10 Channel 2
11 Channel 3

10–8
ADC1SRC

ADC1 trigger source select.
000 PWM_A[3:0]
001 PWM_B[3:0]
010 PWM_X[3:0]
011 PWM_TRIG1[3:0]
100 PWM_TRIG0[3:0]
101 TnOUT
110 TnIN
111 mcPWM’s local reload (ADC1CH = 11) or IRQn, where n = 6 (ADC1CH = 10), 3 (ADC1CH = 01), 1 

(ADC1CH = 00)

7–5 Reserved, must be cleared.

4–3
ADC0CH

ADC0 trigger source channel select. Selects a particular channel of the trigger source for ADC0.
00 Channel 0
01 Channel 1
10 Channel 2
11 Channel 3

2–0
ADC0SRC

ADC0 trigger source select.
000 PWM_A[3:0]
001 PWM_B[3:0]
010 PWM_X[3:0]
011 PWM_TRIG1[3:0]
100 PWM_TRIG0[3:0]
101 TnOUT
110 TnIN
111 mcPWM’s local reload (ADC1CH = 11) or IRQn, where n = 6 (ADC1CH = 10), 3 (ADC1CH = 01), 1 

(ADC1CH = 00)
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10.3.12 DAC Trigger Select Register (DACTSR)

DACTSR selects the triggers for the DACs.

Address: 0xEC09_001E (DACTSR) Access: Supervisor read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0
DAC1CH DAC1SRC

0 0 0
DAC0CH DAC0SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10-13. DAC Trigger Select Register (DACTSR)

Table 10-14. DACTSR Field Descriptions

Field Description

15–13 Reserved, must be cleared.

12–11
DAC1CH

DAC1 trigger source channel select. Selects a particular channel of the trigger source for DAC1.
00 Channel 0
01 Channel 1
10 Channel 2
11 Channel 3

10–8
DAC1SRC

DAC1 trigger source select.
000 PWM_A[3:0]
001 PWM_B[3:0]
010 PWM_X[3:0]
011 PWM_TRIG1[3:0]
100 PWM_TRIG0[3:0]
101 TnOUT
110 TnIN
111 mcPWM’s local reload (ADC1CH = 11) or IRQn, where n = 6 (ADC1CH = 10), 3 (ADC1CH = 01), 1 

(ADC1CH = 00)

7–5 Reserved, must be cleared.

4–3
DAC0CH

DAC0 trigger source channel select. Selects a particular channel of the trigger source for DAC0.
00 Channel 0
01 Channel 1
10 Channel 2
11 Channel 3

2–0
DAC0SRC

DAC0 trigger source select.
000 PWM_A[3:0]
001 PWM_B[3:0]
010 PWM_X[3:0]
011 PWM_TRIG1[3:0]
100 PWM_TRIG0[3:0]
101 TnOUT
110 TnIN
111 mcPWM’s local reload (ADC1CH = 11) or IRQn, where n = 6 (ADC1CH = 10), 3 (ADC1CH = 01), 1 

(ADC1CH = 00)
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10.3.13 FlexBus/NAND Flash Arbiter Control Register (FNACR)

The FlexBus-NFC arbiter control register (FNACR) has a pair of bit fields (PCR and MCC), that specify 
the FlexBus post-cycle reservation period and NAND flash consecutive cycle count in internal bus clock 
cycles.

10.4 Functional Description

10.4.1 Reset Configuration

During reset, the pins for the reset override functions are immediately configured to known states. 
Table 10-16 shows the states of the external pins while in reset.

Address: 0xEC09_0024 (FNACR) Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
PCR

0 0 0 0 0 0 0 0
MCC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10-14. FlexBus/NAND Flash Arbiter Control Register (FNACR)

Table 10-15. UHPCR & UOPCR Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
PCR

Post-cycle reservation. Specifies the length of the FlexBus post-cycle reservation period in internal bus clock 
cycles. 
0x0 or 0x1 No post-cycle reservation, and the arbiter returns to the idle loop as soon as the FlexBus is no longer 

busy.
0x2 or more Enables post-cycle reservation

23–16 Reserved, must be cleared.

15–0
MCC

Minimum consecutive cycles. Specifies the minimum amount of time in internal bus clock cycles provided by the 
arbiter for NAND flash activity. At least MCC internal bus clock cycles must elapse before a FlexBus request is 
recognized, and the NFC may, in fact, use the shared pins for more than MCC internal bus clock cycles absent 
such a request. A value of 0 makes the arbiter respond immediately to a FlexBus request and pause the NFC 
as soon as possible.

Table 10-16. Reset Configuration Pin States During Reset

Pin Pin Function I/O Input State

BOOTMOD[1:0] BOOTMOD function for all modes I Must be driven by external logic

FB_AD[7:0]

Flexbus address/data functions 
(BOOTMOD  01)

I N/A

Reset configuration data functions 
during reset (BOOTMOD = 01)

I Must be driven by external logic

FB_AD[11:8] Factory test pins I Must be driven by external logic



Chip Configuration Module (CCM)

10-16 NXP Semiconductors

10.4.1.1 Reset Configuration (BOOTMOD[1:0] = 00)

If the BOOTMOD pins are 00 during reset, the RCON register determines the chip configuration after 
reset, regardless of the states of the external address/data pins. The internal configuration signals are driven 
to levels specified by the RCON register’s reset state for default module configuration.

10.4.1.2 Reset Configuration (BOOTMOD[1:0] = 01)

If the BOOTMOD pins are 01 during reset, the chip configuration after reset is determined according to 
the levels driven onto the FB_AD[7:0] pins. (See Table 10-17.) The internal configuration signals are 
driven to reflect the levels on the external configuration pins to allow for module configuration.

NOTE
The logic levels for reset configuration on FB_AD[11:0] must be actively 
driven when BOOTMOD is 01. The FB_AD[31:12] pins must float or be 
pulled high, while FB_AD[11:8] are factory pins and must be pulled high.

Table 10-17. Parallel Configuration During Reset1

Pin(s) Affected
Default 

Configuration
Override Pins 

in Reset,2
Function

FlexBus/NFC signals See RCON[0]

FB_AD0 Boot memory

0 NAND flash

1 FlexBus

(none) See RCON[1]

FB_AD1 PLL mode

0 Disabled

1 Enabled

(none) See RCON[2]

FB_AD2
Oscillator mode

Note: Only takes affect on a POR-initiated parallel 
RCON fetch

0 Crystal oscillator mode

1 Oscillator bypass mode

FB_ALE See RCON[3]

FB_AD3 FB_ALE select

0 FB_TS

1 FB_ALE

FB_AD[31:0] See RCON[5:4]

FB_AD[5:4] Boot port size

00 32-bit (32-bit muxed address)

01 8-bit (24-bit non-muxed address)

10 16-bit (16-bit non-muxed address)

11 Reserved
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10.4.1.3 Reset Configuration (BOOTMOD[1:0] = 1x)

If the BOOTMOD pins are 11 during reset, then the chip configuration after reset is determined by data 
obtained from external SPI memory through serial boot using the SBF_DI, SBF_DO, SBF_CS, and 
SBF_CK signals. (See Table 10-18.) The internal configuration signals are driven to reflect the data being 
received from the external SPI memory to allow for module configuration. See Chapter 11, “Serial Boot 
Facility (SBF),” for more details on serial boot.

(none) See RCON[7:6]

FB_AD[7:6] PLL multiplier

00 fVCO = 10  fref

01 fVCO = 15  fref

10 fVCO = 16  fref

11 fVCO = 20  fref

(none) (none)

FB_AD[11:8]

0000 Factory test modes

1111 Normal

1 Modifying the default configurations through the FB_AD[7:0] pins is possible only if the external BOOTMOD[1:0] pins are 01 
while RSTOUT is asserted.

2 The external reset override circuitry drives the address bus pins with the override values while RSTOUT is asserted. It must 
stop driving the address bus pins within one FB_CLK cycle after RSTOUT is negated. To prevent contention with the external 
reset override circuitry, the reset override pins are forced to inputs during reset and do not become outputs until at least one 
FB_CLK cycle after RSTOUT is negated.

Table 10-18. Serial Configuration During Reset

Pin(s) Affected
Default 

Configuration
Override Serial

RCON Bits
Function

(none) See RCON[5:4]

SBF_RCON[31:30] Boot Port Size

00 32-bit (32-bit muxed address)

01 8-bit (24-bit non-muxed address)

10 16-bit (16-bit non-muxed address)

11 16-bit (16-bit non-muxed address)

FlexBus/NFC signals See RCON[0]

SBF_RCON[29] Boot memory

0 NAND flash

1 FlexBus

(none) — SBF_RCON[28] Reserved

(none) — SBF_RCON[27] Reserved

Table 10-17. Parallel Configuration During Reset1 (continued)

Pin(s) Affected
Default 

Configuration
Override Pins 

in Reset,2
Function
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10.4.2 Boot Configuration

During reset configuration, the FB_CS0 chip select pin is always configured to select an external boot 
device. The valid (V) bit in the CSMR0 register is ignored and FB_CS0 is enabled after reset. FB_CS0 is 
asserted for the initial boot fetch accessed from address 0x0000_0000 for the stack pointer and address 

FB_ALE See RCON[3]

SBF_RCON[26] FB_ALE select

0 FB_TS

1 FB_ALE

(none) See RCON[2]

SBF_RCON[25]
Oscillator mode

Note: Only takes affect on a POR-initiated serial 
RCON fetch

0 Crystal oscillator mode

1 Oscillator bypass mode

(none) See RCON[1]

SBF_RCON[24] PLL mode

0 Disabled

1 Enabled

(none) See PLL_CR

SBF_RCON[23:22]
PLL reference divider

(lower 2 bits of PLL_CR[REFDIV])

00 1

01 2

10 Reserved

11 Reserved

(none) See PLL_CR SBF_RCON[21:16]
PLL reference clock multiplier

This value is loaded into PLL_CR[FBKDIV].

FB_CLK 1

SBF_RCON[15] FlexBus half clock enable

0 FlexBus runs at fsys/2

1 FlexBus runs at fsys/4

(none) See PLL_DR SBF_RCON[14:10]
NFC clock frequency divider

This value is loaded into PLL_DR[OUTDIV5].

(none) See PLL_DR SBF_RCON[9:5]
Internal bus clock frequency divider

This value is loaded into PLL_DR[OUTDIV2].

(none) See PLL_DR SBF_RCON[4:0]
Core bus clock frequency divider

This value is loaded into PLL_DR[OUTDIV1].

Table 10-18. Serial Configuration During Reset (continued)

Pin(s) Affected
Default 

Configuration
Override Serial

RCON Bits
Function
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0x0000_0004 for the program counter (PC). It is assumed the reset vector loaded from address 
0x0000_0004 causes the processor to start executing from external memory space decoded by FB_CS0.

10.4.3 Low Power Configuration

After reset, the device can be configured for operation during the low power modes using the low power 
control register (LPCR). For more information on this register, see Chapter 9, “Power Management.”
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Chapter 11  
Serial Boot Facility (SBF)

11.1 Introduction
It is nearly impossible to dedicate and very impractical to share pins for the numerous available power-up 
options on today’s complex, highly-integrated processors. The serial boot facility (SBF), shown in 
Figure 11-1, solves this problem by providing the user with the capability to store and load all device reset 
configuration data and user code from an external SPI memory. This method requires only a minimal 
number of I/O pins.

Figure 11-1. SBF Block Diagram

11.1.1 Overview

The SBF interfaces to an external SPI memory to read configuration data and boot code during the 
processor reset sequence if BOOTMOD[1:0] equals 1x. By reading data stored in the SPI memory, the SBF 
adjusts the SPI memory clock frequency, configures an extended set of power-up options for the processor, 
and optionally loads code into the on-chip SRAM. Through interaction with the reset controller, the SBF 
performs these actions so that the chip is properly configured after exiting the reset state.

SBF

SBF_CK

SBF_CS

SBF_DO

SBF_DI

Reset
Controller

Chip
Configuration

Module

Processor
Memory

Clock
Control

Control

RAM
Interface

Registers

Read
Command

Deserializer/
Debounce

On-chip
Modules
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11.1.2 Features

The SBF includes these distinctive features:

• Support for many different SPI memory devices

— EEPROM

— Flash

— FRAM

— Embedded FPGA memory

• External interface maps directly to (and can be multiplexed with) the DMA serial peripheral 
interface (DSPI) pins

• Self-adjusting shift clock frequency for maximum throughput supported by SPI memory

• Optionally load boot code into processor’s memory space

11.2 External Signal Description
Listed below are the SBF module external signals.

11.3 Memory Map/Register Definition
The SBF programming model consists of the registers listed below.

Table 11-1. Signal Properties

Signal I/O Description Reset Pull Up

SBF_CK O Shift clock. Alternate edges of this signal cause the SPI memory to accept 
data from and drive data to the processor

— —

SBF_CS O Chip select. This signal enables the SPI memory and places it into an 
active state, ready to accept commands.

— —

SBF_DI I Data in. The SPI memory drives and the processor accepts read data on 
this signal.

— Active1

1 Disabled by the SBF when the SPI memory begins shifting out data.

SBF_DO O Data out. The SBF drives the read command and address on this signal. — —

Table 11-2. SBF Memory Map

Address Register
Width 
(bits)

Access Reset Value Section/Page

0xEC09_0020 Serial boot facility status register (SBFSR) 16 R See Section 11.3.1/11-3

0xEC09_0022 Serial boot facility control register (SBFCR) 16 R/W See Section 11.3.2/11-3
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11.3.1 Serial Boot Facility Status Register (SBFSR)

The read-only SBFSR register reflects the amount of boot code loaded through the external SPI memory.

11.3.2 Serial Boot Facility Control Register (SBFCR)

The read-always/write-once SBFCR register controls SBF operation following subsequent warm resets.

Address: 0xEC09_0020 (SBFSR) Access: User read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BLL

W

Reset See Note

Note: Reset value is user-defined (loaded from SPI memory during serial boot following any reset type)

Figure 11-2. Serial Boot Facility Status Register (SBFSR)

Table 11-3. SBFSR Field Descriptions

Field Description

15–0
BLL

Boot load length. Reflects the number of longwords of boot code loaded from external SPI memory during serial boot. 
No boot code was loaded if BLL equals 0x0000. Otherwise, BLL plus 1 longwords were loaded.

Address: 0xEC09_0022 (SBFCR) Access: User read/write-once

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0
FR BLDIV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 01 See Note
1 Reset value is 0 and is reset only by power-on reset (remains unchanged for other reset types)
Note: The reset value is loaded from SPI memory during serial boot following power-on reset. It remains unchanged 

for other reset types. Prior to this register being loaded from SPI memory, a divisor of 67 is used to begin the 
serial boot sequence.

Figure 11-3. Serial Boot Facility Control Register (SBFCR)

Table 11-4. SBFCR Field Descriptions

Field Description

15–5 Reserved, must be cleared.

4
FR

Fast read. Determines whether the SBF uses the standard READ command or flash FAST_READ command on 
reboot following any reset other than power-on reset. Because this register is write-once, the application must write 
the value for this bit in the same write that the BLDIV field is written. Any subsequent writes to this field prior to a 
power-on reset event terminate without effect.
0 SBF uses the standard READ command
1 SBF uses the FAST_READ command
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11.4 Functional Description
When enabled, the SBF inserts three additional steps into the normal system boot process:

• Serial initialization and shift clock frequency adjustment

• Reset configuration and optional boot load

• Execution transfer

11.4.1 Serial Initialization and Shift Clock Frequency Adjustment

The following sequence is followed during a serial boot sequence:

1. The SBF is engaged when BOOTMOD[1:0] = 1x concurrent with the release of a pending source 
of reset (power-on, software watchdog, RESET pin, etc.).

2. Boot-up is paused.

3. The weak internal pull-up on SBF_DI is enabled. This allows a 1-to-0 transition to register when 
the SPI memory output switches from high-impedance to logic 0.

4. The SBF shifts the standard SPI memory read command (0x03) followed by repeated 0x00 address 
bytes to the SPI memory at fREF  60.

3–0
BLDIV

Boot loader clock divider. Determines the SBF clock (PLL input reference clock) divisor that generates the serial shift 
clock output on SBF_CK. Prior to the serial boot sequence, a divisor of 67 is used.
During the serial boot sequence, this field is loaded with the value read from the SPI memory. The application may 
write to this register to change the divisor for any subsequent serial boot that follows a soft-reset condition.
Because this register is write-once, the application must write the value for this field in the same write that the FR bit 
is written (regardless of the value written to the FR bit). Any subsequent writes to this field prior to a power-on reset 
event terminate without effect.

Table 11-4. SBFCR Field Descriptions (continued)

Field Description

BLDIV
Ideal

Divisor

Shift Clock

BLDIV
Ideal

Divisor

Shift Clock

High Time
(fref Ticks)

Low Time
(fref Ticks)

High Time
(fref Ticks)

Low Time
(fref Ticks)

0000 1 Bypass Bypass 1000 14 7 7

0001 2 1 1 1001 17 9 8

0010 3 2 1 1010 25 13 12

0011 4 2 2 1011 27 14 13

0100 5 3 2 1100 33 17 16

0101 7 4 3 1101 34 17 17

0110 10 5 5 1110 50 25 25

0111 13 7 6 1111 60 30 30
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5. After the SPI memory accepts however many shift clock edges are necessary to respond to the 
READ command, it turns on its previously tri-stated output and begins driving the msb of the byte 
at address 0.
Bits [7:4] of this byte must be 0000, so that the required 1-to-0 transition can be detected on 
SBF_DI to synchronize the SBF state machine. If bits [7:4] of this byte are not 0000, bits[3:0] are 
ignored, another byte is clocked out of the SPI memory (SBF_DO remains at logic 0), and the SBF 
state machine again tests for a 1-to-0 transition followed by four consecutive zero bits.

6. After the necessary 1-to-0 transition and reception of a byte with bits [7:4] equal to 0000, the SBF 
pauses and bits [3:0] of the received byte select a new shift clock divider according to Table 11-4.

7. The weak internal pull-up on SBF_DI is disabled.

8. The shift clock begins toggling at the new frequency, resuming the READ command already in 
progress.

NOTE
Shift clock frequency adjustment follows a power-on/hard reset only. After 
the new divisor is known, it is stored in the sticky SBFCR[BLDIV] field and 
used for subsequent soft resets. This speeds reboot for systems that do not 
benefit from the optional FAST_READ on soft reset feature (e.g., the SPI 
memory does not support FAST_READ, or the input reference clock does 
not exceed the maximum allowable frequency for the READ command).

11.4.2 Reset Configuration and Optional Boot Load

After the steps in Section 11.4.1, “Serial Initialization and Shift Clock Frequency Adjustment”, are 
executed, the following is performed to load configuration data and optional boot code.

1. Next, the SBF shifts two bytes (16 bits) out of the SPI memory that indicate how many longwords, 
if any, are to be read during the optional boot load sequence. These bytes are software-visible in 
the SBFSR[BLL] field.

2. The read operation continues with one longwords (32 bits) of reset configuration data, formatted 
in the order presented in Section 10.4.1.3, “Reset Configuration (BOOTMOD[1:0] = 1x)”.

3. At this point, the SBF determines whether or not to read boot code. If SBFSR[BLL] is non-zero, 
BLL plus one longwords (4  (BLL + 1) bytes) are consecutively loaded into the SRAM.

NOTE
Although the SBF permits up to 65,536 longwords (262,144 bytes) to be 
loaded, the maximum practical number that can be read is limited by the size 
of the device’s internal SRAM (16,384 longwords (65,536 bytes) for this 
device). This is 64 KB device.

11.4.3 Execution Transfer

After boot load is complete or if no boot load is requested (SBFSR[BLL] = 0), the following steps 
complete the serial boot process:

1. The acquired configuration data is driven to the appropriate modules.
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2. The system is released from reset.

3. The ColdFire processor initiates its normal reset vector fetch at address 0.

4. The actual memory that responds to the reset vector fetch depends on whether serial boot load is 
requested:

— If SBFSR[BLL] is cleared, the reset vector fetch is handled by the FlexBus module or NAND 
flash controller, and whatever external memory is mapped at address 0, governed by the 
user-provided setting of RCON/CCR[BOOTPS,BOOTMEM].

— If SBFSR[BLL] is set, the reset vector and boot code are read from the on-chip SRAM. (The 
SBF enables the SRAM and maps it to address 0 via the RAMBAR before control of the 
processor is restored to the ColdFire core.) The reset vector (initial stack pointer and program 
counter) should point to locations in the on-chip SRAM, so that boot code can initialize the 
device and load the application software from the SPI memory or via some other mechanism 
(e.g. a network server responding to a TFTP client).

11.5 Initialization Information

11.5.1 SPI Memory Initialization

The SBF requires that, prior to device power-up, the SPI memory is loaded with data organized according 
to Table 11-5. See Section 10.4.1.3, “Reset Configuration (BOOTMOD[1:0] = 1x),” for the reset 
configuration (SBF_RCON) data definition.

Table 11-5. SPI Memory Organization

Byte Address Data Contents

0x0 {0000,BLDIV[3:0]}

0x1 BLL[7:0]

0x2 BLL[15:8]

0x3 RCON[7:0]

0x4 RCON[15:8]

0x5 RCON[23:16]

0x6 RCON[31:24]

0x71

1 This assumes SBFSR[PLL] is non-zero. If PLL is zero, the SBF 
does not access data at these addresses.

CODE_BYTE_02

2 Start of user code copied into the on-chip SRAM. 
CODE_BYTE_0–3 is the supervisor stack pointer (SP) when 
loading completes. CODE_BYTE_4–7 is the program counter 
(PC) when loading completes.

0x81 CODE_BYTE_1

... ...

0x6 + 4  (BLL + 1)1 CODE_BYTE_[4  (BLL + 1) - 1]
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11.5.2 FAST_READ Feature Initialization

Many SPI flash memories implement a FAST_READ command that allows for a substantially higher 
shift-clock frequency. The SBF always uses the normal read command when coming out of a 
power-on/hard reset. However, when coming out of a soft reset, it is possible to use FAST_READ because 
the SBF machine state is not lost.

For this reason, the SBFCR[FR] sticky bit may be set, causing the FAST_READ command to be issued 
instead of the read command in the event of a soft reset. To enable the FAST_READ feature, set 
SBFCR[FR] in the same write that sets the SBFCR[BLDIV] field. The value written to SBFCR[BLDIV] 
should correspond to the frequency the SPI memory supports in FAST_READ mode. After a soft reset, 
SBFCR[BLDIV] is not overwritten with the BLDIV[3:0] value read from the SPI memory. Instead, the 
SBF uses the SBFCR[BLDIV] value to determine the SPI memory clock.

NOTE
The ability to use the FAST_READ command is limited by the SBF 
electrical specifications. Specifically, delays present throughout the system 
(including those between the SBF, the pin multiplexing logic, and the actual 
I/O pads) effectively limit the maximum frequency at which the SBF 
operates and can preclude use of the FAST_READ feature altogether. Even 
when the delays within the processor itself are minimized, the actual SPI 
memories may have similarly untenable electrical specifications (data input 
setup and output valid times).



Serial Boot Facility (SBF)

11-8 NXP Semiconductors



NXP Semiconductors 12-1

Chapter 12  
Reset Controller Module

12.1 Introduction
The reset controller determines the cause of reset, asserts the appropriate reset signals to the system, and 
keeps a history of what caused the reset.

12.1.1 Block Diagram

Figure 12-1 illustrates the reset controller and is explained in these:

Figure 12-1. Reset Controller Block Diagram

12.1.2 Features

Module features include the following:

• Six sources of reset:

— External reset

— Power-on reset (POR)

— Watchdog timer

— Phase locked-loop (PLL) loss of lock

— Phase locked-loop (PLL) loss of reference clock

— Software

• Software-assertable RSTOUT pin independent of chip-reset state

• Software-readable status flags indicating the cause of the last reset

Power-On
Reset

Core Watchdog
Timer Timeout

PLL
Loss of Lock

Software
Reset

RESET
Pin

Reset
Controller

RSTOUT
Pin

To Internal Resets
PLL

Loss of Clock
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12.2 External Signal Description
Table 12-1 provides a summary of the reset-controller signal properties. The signals are described in the 
following paragraphs.

12.2.1 RESET

Asserting the external RESET for at least four rising FB_CLK edges (if MISCCR2[FBHALF] is cleared; 
eight FB_CLK edges if FBHALF is set) causes the external reset request to be recognized and latched.

12.2.2 RSTOUT

This active-low output signal is driven low when the internal reset controller resets the device. It may take 
up to six FB_CLK edges after RESET assertion for RSTOUT to assert, due to an internal synchronizer on 
RESET. When RSTOUT is active, the user can drive override options on the data bus. See Chapter 10, 
“Chip Configuration Module (CCM),” for more details on these override options.

12.3 Memory Map/Register Definition
See Table 12-2 for the memory map and the following sections for register descriptions.

Table 12-1.  Reset Controller Signal Properties

Name I/O Pull-up
Input

Hysteresis
Input

Synchronization

RESET I Active Y Y1

1 RESET is always synchronized except when in low-power stop mode.

RSTOUT O — — —

Table 12-2. Reset Controller Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xEC09_0000 Reset Control Register (RCR) 8 R/W 0x00 12.3.1/12-3

0xEC09_0001 Reset Status Register (RSR) 8 R See Section 12.3.2/12-3
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12.3.1 Reset Control Register (RCR)

The RCR allows software control for requesting a reset and for independently asserting the external 
RSTOUT pin.

12.3.2 Reset Status Register (RSR)

The RSR contains a status bit for every reset source. When reset is entered, the cause of the reset condition 
is latched, along with a value of 0 for the other reset sources that were not pending at the time of the reset 
condition. These values are then reflected in RSR. One or more status bits may be set at the same time. 
The cause of any subsequent reset is also recorded in the register, overwriting status from the previous reset 
condition.

RSR can be read at any time. Writing to RSR has no effect.

Address: 0xEC09_0000 (RCR) Access: User read/write

7 6 5 4 3 2 1 0

R
SOFTRST FRCRSTOUT

0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0

Figure 12-2. Reset Control Register (RCR)

Table 12-3. RCR Field Descriptions

Field Description

7
SOFTRST

Allows software to request a reset. The reset caused by setting this bit clears this bit.
0 No software reset request
1 Software reset request

6
FRCRSTOUT

Allows software to assert or negate the external RSTOUT pin.
0 Negate RSTOUT pin
1 Assert RSTOUT pin
Note: External logic driving reset configuration data during reset needs to be considered when asserting the 

RSTOUT pin by setting FRCRSTOUT.

5–0 Reserved, must be cleared.

Address: 0xEC09_0001 (RSR) Access: User read-only

7 6 5 4 3 2 1 0

R
0 0 SOFT LOC POR EXT

WDR
CORE

LOL

W

Reset: 0 0 Reset 
Dependent

Reset 
Dependent

Reset 
Dependent

Reset 
Dependent

Reset 
Dependent

Reset 
Dependent

Figure 12-3. Reset Status Register (RSR)
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12.4 Functional Description

12.4.1 Reset Sources

Table 12-5 defines the reset sources and the signals driven by the reset controller.

Table 12-4. RSR Field Descriptions

Field Description

7–6 Reserved, must be cleared.

5
SOFT

Software reset flag. Indicates the software caused the last reset.
0 Last reset not caused by software
1 Last reset caused by software

4
LOC

Loss-of-clock reset flag. Indicates PLL loss of reference clock caused the last reset.
0 Last reset not caused by PLL loss-of-clock
1 Last reset caused by PLL loss-of-clock
Note: This bit is not set if a loss-of-clock occurs during stop mode.

3
POR

Power-on reset flag. Indicates power-on reset caused the last reset.
0 Last reset not caused by power-on reset
1 Last reset caused by power-on reset

2
EXT

External reset flag. Indicates that the last reset was caused by an external device or circuitry asserting the 
external RESET pin.
0 Last reset not caused by external reset
1 Last reset caused by external reset

1
WDRCORE

Core watchdog timer reset flag. Indicates the core watchdog timer timeout caused the last reset.
0 Last reset not caused by watchdog timer timeout
1 Last reset caused by watchdog timer timeout

0
LOL

Loss-of-lock reset flag. Indicates the last reset state was caused by a PLL loss of lock.
0 Last reset not caused by loss of lock
1 Last reset caused by a loss of lock
Note: This bit is not set if a loss-of-lock occurs during stop mode.

Table 12-5. Reset Source Summary

Source Type Description

Power on Asynchronous Power-on reset at the time of power-up

External RESET pin
(not stop mode)

Synchronous Asserting RESET for at least four rising FB_CLK edges (if 
MISCCR2[FBHALF] is cleared; eight FB_CLK edges if 
FBHALF is set) causes the device to recognize and latch the 
external reset request.

External RESET pin
(during stop mode)

Asynchronous Asserting RESET in stop mode causes an external reset to be 
recognized asynchronously.

Watchdog timer Synchronous A watchdog timer timeout causes the timer reset request to be 
recognized and latched.

PLL loss of clock Asynchronous When the PLL detects a loss of reference clock, the system is 
reset if programmed to do so. This event also results in a loss 
of lock for the PLL and a loss of lock reset is also generated.
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To protect data integrity, a synchronous reset source is not acted upon by the reset control logic until the 
end of the current bus cycle. Reset is then asserted on the next rising edge of the system clock after the 
cycle is terminated. Internal byte, word, or longword writes are guaranteed to complete without data 
corruption when a synchronous reset occurs. External writes, including longword writes to 16-bit ports, 
are also guaranteed to complete.

Asynchronous reset sources usually indicate a catastrophic failure. Therefore, the reset control logic does 
not wait for the current bus cycle to complete. Reset is immediately asserted to the system.

12.4.2 Reset Control Flow

The reset logic control flow depends on if the serial boot facility is enabled through the BOOTMOD pins 
during reset.

PLL loss of lock Asynchronous When the PLL loses lock, the system is reset if programmed to do 
so. In limp and stop modes, this source of reset is gated off.

Software Synchronous A software reset occurs when the RCR[SOFTRST] bit is set.

Table 12-5. Reset Source Summary (continued)

Source Type Description
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12.4.2.1 Non-SBF Reset Sequence

The non-SBF reset sequence is shown in Figure 12-4.

Figure 12-4. Non-SBF Reset Sequence

When a reset condition occurs, the global resets and RESET output are asserted and the reset status is 
updated in relevant registers in reset controller. During an external reset, the RESET pin must be asserted 
for more than four bus clock cycles for it to be recognized. RSTOUT might take a further two clock cycles 
before asserting. If BOOTMOD = 01, the RCON values on the designated pins are observed, but not 

N
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negated?

BOOTMOD[1:0] == 01?

PLL locked

Latch configuration

Negate RSTOUT

Assert RSTOUT and latch reset status

N

Y

Y

Y

N

Y

(Parallel RCON) from FB_AD[7:0] pins

Reset source assertion

N

duration?

(PoR, RESET, LOL, LOC
WDT, SW reset)

Reset sources

or limp mode?

Count = 512?

Y

Count bus clocks

N
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latched at this point. This means that a change in the RCON pins are reflected in the reset configuration 
logic.

The next step is to wait for the source of reset to negate. For a reset source which resets the PLL too, the 
logic waits for a power-on-reset or loss-of-lock, the next step is to wait for the PLL to lock, whereas for a 
loss-of-clock, the system waits for reference clock and then lock to be regained. After that happens, the 
reset controller waits for 512 bus clock cycles, and then latches the RCON values (whether default or 
overridden, depending on BOOTMOD) samples the RCON pin. If the PLL loses lock during this 512 
count, the logic waits for the PLL to lock and the count is started again. If it is active (low), the chip 
configuration override values on the data pins are latched. Thereafter the global resets and RSTOUT are 
de-asserted and the system is brought out of reset. Note that up until this point the system continues to be 
in reset, even though the original reset source may have negated.

For an external reset, the sequence has an additional step of waiting for RESET to negate. The watchdog 
timer timeout reset and software reset flows are similar.

While waiting for the PLL to lock, or during the 512 bus clock cycle wait, assertion of any of the reset 
sources results in the sequence starting again. The reset sources which are recognized during these two 
stages are:

1. PLL lock stage — POR, RESET, PLL loss of clock

2. 512 FB_CLK wait stage – POR, RESET, PLL loss of lock, PLL loss of clock.

NOTE
The watchdog timeout and software reset cannot interrupt this sequence, 
since the registers implementing their logic are in a reset state during the 
reset sequence and their associated resets aren’t be asserted during this 
period.
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12.4.2.2 SBF Reset Sequence

The SBF reset sequence proceeds differently and is shown in Figure 12-4. The 512 bus clock cycle count 
from the non-SBF reset sequence is held at 32 for this sequence.

Figure 12-5. SBF Reset Sequence

The reset sequence for the SBF-enabled case recognizes the same reset sources as the non-SBF case. The 
initial part of the sequence is same, with the same constraints applicable as earlier, on recognition of a reset 
source.

With negation of the reset source, while the global resets are kept asserted, the SBF is brought out of reset. 
The SBF starts fetching the SBF_RCON words from the external, SPI memory and when finished, signals 
to the CCM that SBF_RCON is valid.

At this point, SBF_RCON is loaded and the PLL is reset for a short duration. This is done to ensure that 
if not in limp mode, the PLL obtains the reset configuration values.
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SBF_RCON loaded. PLL reset for

 reset values.
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After the PLL locks or if in limp mode, a bus clock counter is started. After completing a count of 32 bus 
clock cycles, the reset to the core (CPU) is negated. If the PLL loses lock at any time during the count, the 
counter is reset and started only when the PLL regains lock. At this point, the boot load length (BLL) is 
checked to see if code fetch from the serial memory is required.

• If BLL is non-zero, the core is halted and the internal SRAM is loaded with code from the serial 
memory. When this boot-code loading completes, the reset to the rest of the system is negated and 
the core is brought out of its halted state.

• If BLL is zero, the resets to the core and the rest of the system are lifted at the same time.
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Chapter 13  
System Control Module (SCM)

13.1 Introduction
This system control module (SCM) provides a software core watchdog timer and generic access error 
information for the processor core.

13.1.1 Overview

The SCM’s core watchdog timer (CWT) provides a means of preventing system lockup due to 
uncontrolled software loops via a special software service sequence. If periodic software servicing action 
does not occur, the CWT times out with a programmed response (system reset or interrupt) to allow 
recovery or corrective action to be taken.

Fault access reporting is also available within the SCM. The user can use these registers during the 
resulting interrupt service routine and perform an appropriate recovery. 

13.1.2 Features

The SCM includes these distinctive features:

• System control registers

— Core watchdog control register (CWCR) for watchdog timer control

— Core watchdog service register (CWSR) to service watchdog timer

— Watchdog can be clocked by the internal bus clock or the 32 kHz RTC clock

— SCM interrupt status register (SCMISR) to service a bus fault or watchdog interrupt

— Bus monitor timeout register (BMT)

• Core fault reporting registers

13.2 Memory Map/Register Definition
The memory map for the SCM registers is shown in Table 13-1.

Attempted accesses to reserved addresses result in a bus error, while attempted writes to read-only registers 
are ignored and do not terminate with an error. Unless noted otherwise, writes to the programming model 
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must match the size of the register, e.g., an 8-bit register supports only 8-bit writes, etc. Attempted writes 
of a different size than the register width produce a bus error and no change to the targeted register.

13.2.1 Core Watchdog Control Register (CWCR)

The CWCR controls the software watchdog timer, time-out periods, and software watchdog timer 
interrupt. The register can be read or written at any time. At power on reset, the software watchdog timer 
is disabled.

Table 13-1. SCM Memory Map

Address Register
Width 
(bits)

Access Reset Value Section/Page

Supervisor Access Only Registers

0xFC04_0013 Wakeup control register (WCR)1

1 The WCR register is described in Chapter 9, “Power Management.”

8 R/W 0x00 9.2.1/9-2

0xFC04_0016 Core watchdog control register (CWCR) 16 R/W 0x0000 13.2.1/13-2

0xFC04_001B Core watchdog service register (CWSR) 8 R/W Undefined 13.2.2/13-3

0xFC04_001F SCM interrupt status register (SCMISR) 8 R/W 0x00 13.2.3/13-4

0xFC04_0024 Burst configuration register (BCR) 32 R/W 0x0000_0000 13.2.4/13-5

0xFC04_0070 Core fault address register (CFADR) 32 R Undefined 13.2.5/13-5

0xFC04_0075 Core fault interrupt enable register (CFIER) 8 R/W 0x00 13.2.6/13-6

0xFC04_0076 Core fault location register (CFLOC) 8 R Undefined 13.2.7/13-6

0xFC04_0077 Core fault attributes register (CFATR) 8 R Undefined 13.2.8/13-7

0xFC04_007C Core fault data register (CFDTR) 32 R Undefined 13.2.9/13-7

Address: 0xFC04_0016 (CWCR) Access: Supervisor read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RO

0 0 0 0 0 0 CW
RWH

CWE CWRI CWT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-1. Core Watchdog Control Register (CWCR)

Table 13-2. CWCR Field Descriptions

Field Description

15
RO

Read-only control bit.
0 CWCR can be read or written.
1 CWCR is read-only. A power on reset is required to clear this register. The setting of this bit is intended to prevent 
accidental writes of the CWCR from changing the defined core watchdog configuration. This means that the WDT is 
halted during SBF booting because the core is halted.

14–9 Reserved, must be cleared.
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13.2.2 Core Watchdog Service Register (CWSR)

The software watchdog service sequence must be performed using the CWSR as a data register to prevent 
a CWT time-out. The service sequence requires two writes to this data register: a write of 0x55 followed 
by a write of 0xAA. Both writes must be performed in this order prior to the CWT time-out, but any 
number of instructions can be executed between the two writes. If the CWT has already timed out, writing 
to this register has no effect in negating the CWT interrupt or reset. Figure 13-2 illustrates the CWSR. At 
system reset, the contents of CWSR are uninitialized.

NOTE
If the CWT is enabled and has not timed out, then any write of a data value 
other than 0x55 or 0xAA causes an immediate system reset, regardless of 
the value in the CWCR[CWRI] field.

8
CWRWH

Core watchdog run while halted.
0 Core watchdog timer stops counting if the core is halted.
1 Core watchdog timer continues to count even while the core is halted.

7
CWE

Core watchdog timer enable.
0 CWT is disabled.
1 CWT is enabled.

6–5
CWRI

Core watchdog reset/interrupt.
00 If a time-out occurs, the CWT generates an interrupt to the core. Refer to Chapter 17, “Interrupt Controller 

Modules (INTC),” for details on setting its priority level.
01 The first time-out generates an interrupt to the processor, and if not serviced, a second time-out generates a 

system reset and sets the RSR[WDRCORE] flag in the reset controller.
10 If a time-out occurs, the CWT generates a system reset and RSR[WDRCORE] in the reset controller is set.
11 The CWT functions in a window mode of operation. For this mode, the servicing of the CWSR must occur during 

the last 25% of the time-out period. Any writes to the CWSR during the first 75% of the time-out period generate 
an immediate system reset. Likewise, if the CWSR is not serviced during the last 25% of the time-out period, a 
system reset is generated. For any type of reset response, the RSR[WDRCORE] flag is set.

4–0
CWT

Core watchdog time-out period. Selects the time-out period for the CWT. At reset, this field is cleared selecting the 
minimum time-out period, but the CWT is disabled because CWCR[CWE] is cleared at reset.

If CWCR[CWT] is n, the time-out period equals 2n system clock cycles. However, if n is less than 8, the time-out 
period is forced to 28.
0x00 28

...
0x08 28

0x09 29

...
0x1F 231

Table 13-2. CWCR Field Descriptions (continued)

Field Description
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13.2.3 SCM Interrupt Status Register (SCMISR)

For certain values in the CWCR[CWRI] field, the CWT generates an interrupt response to a time-out. For 
these configurations, the SCMISR provides a program visible interrupt request from the watchdog timer. 
During the interrupt service routine which handles this interrupt, the source must be explicitly cleared by 
writing a 0x01 to the SCMISR.

The SCMISR also indicates system bus fault errors. An interrupt is sent only to the interrupt controller 
when the CFIER[ECFEI] bit is set. The SCMISR[CFEI] bit flags fault errors independent of the 
CFIER[ECFEI] setting. Therefore, if CFEI is set prior to setting ECFEI, an interrupt is requested 
immediately after ECFEI is set.

Address: 0xFC04_001B (CWSR) Access: Supervisor read/write

7 6 5 4 3 2 1 0

R
CWSR

W

Reset: — — — — — — — —

Figure 13-2. Core Watchdog Service Register (CWSR)

Address: 0xFC04_001F (SCMISR) Access: Supervisor read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 CFEI CWIC

W w1c w1c

Reset: 0 0 0 0 0 0 0 0

Figure 13-3. SCM Interrupt Status Register (SCMISR)

Table 13-3. SCMISR Field Descriptions

Field Description

7–2 Reserved, must be cleared.

1
CFEI

Core fault error interrupt flag. Indicates if a bus fault has occurred. Writing a 1 clears this bit and negates the interrupt 
request. Writing a 0 has no effect.
0 No bus error.
1 A bus error has occurred. The faulting address, attributes (and possibly write data) are captured in the CFADR, 

CFATR, and CFDTR registers. The error interrupt is enabled only if CFLOC[ECFEI] is set.
Note: This bit reports core faults regardless of the setting of CFIER[ECFEI]. Therefore, if the error interrupt is 

disabled and a core fault occurs, this bit is set. Then, if the error interrupt is subsequently enabled, an interrupt 
is immediately requested. To prevent an undesired interrupt, clear the captured error by writing one to CFEI 
before enabling the interrupt.

0
CWIC

Core watchdog interrupt flag. Indicates whether an CWT interrupt has occurred. Writing a 1 clears this bit and 
negates the interrupt request. Writing a 0 has no effect.
0 No CWT interrupt has occurred.
1 CWT interrupt has occurred.
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13.2.4 Burst Configuration Register (BCR)

The BCR register enables or disables the eSDHC, USB host, and USB On-the-Go modules for bursting 
to/from the crossbar switch slave modules. There is an enable field for the slaves, and either direction (read 
and write) is supported via the GBR and GBW bits.

13.2.5 Core Fault Address Register (CFADR)

The CFADR is a read-only register indicating the address of the last core access terminated with an error 
response.

Address: 0xFC04_0024 (BCR) Access: Supervisor read-write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GBR GBW SBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-4. Burst Configuration Register (BCR)

Table 13-4. BCR Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9
GBR

Global burst enable for reads. Allows bursts to happen on read transactions from the crossbar switch slaves to the 
eSDHC, USB host, and USB On-the-Go modules.
0 Read bursts are disabled
1 Read bursts are enabled
Note: If GBR and GBW are cleared, then SBE is ignored.

8
GBW

Global burst enable for writes. Allows bursts to happen on write transactions to the crossbar switch slaves from the 
eSDHC, USB host, and USB On-the-Go modules.
0 Write bursts are disabled
1 Write bursts are enabled
Note: If GBR and GBW are cleared, then SBE is ignored.

7–0
SBE

Slave burst enable. Allows bursts to happen to/from the crossbar switch slaves. The only valid settings for this field 
are 0x00 or 0xFF.
0x00 Bursts disabled
0xFF Bursts enabled. The GBR and GBW bits determine the burst direction. If neither is set, then this bit has no 

effect.
Else Reserved

Address: 0xFC04_0070 (CFADR) Access: Supervisor read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ADDR

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 13-5. Core Fault Address Register (CFADR)
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13.2.6 Core Fault Interrupt Enable Register (CFIER)

The CFIER register enables the system bus-error interrupt. See Chapter 17, “Interrupt Controller Modules 
(INTC),” for more information of the interrupt controller.

13.2.7 Core Fault Location Register (CFLOC)

The read-only CFLOC register indicates the location of the last captured fault.

Table 13-5. CFADR Field Descriptions

Field Description

31–0
ADDR

Indicates the faulting address of the last core access terminated with an error response.

Address: 0xFC04_0075 (CFIER) Access: Supervisor read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
ECFEI

W

Reset: 0 0 0 0 0 0 0 0

Figure 13-6. Core Fault Interrupt Enable Register (CFIER)

Table 13-6. CFIER Field Descriptions

Field Description

7–1 Reserved, must be cleared.

0
ECFEI

Enable core fault error interrupt.
0 Do not generate an error interrupt on a faulted system bus cycle.
1 Generate an error interrupt to the interrupt controller on a faulted system bus cycle.

Address: 0xFC04_0076 (CFLOC) Access: Supervisor read-only

7 6 5 4 3 2 1 0

R LOC 0 0 0 0 0 0 0

W

Reset: – 0 0 0 0 0 0 0

Figure 13-7. Core Fault Location Register (CFLOC)

Table 13-7. CFLOC Field Descriptions

Field Description

7
LOC

The location of the last captured fault.
0 Error occurred on a data reference
1 Error occurred on an instruction fetch

6–0 Reserved, must be cleared.
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13.2.8 Core Fault Attributes Register (CFATR)

The read-only CFATR register captures the processor’s attributes of the last faulted core access to the 
system bus.

13.2.9 Core Fault Data Register (CFDTR)

The CFDTR is a read-only register for capturing the data associated with the last faulted processor write 
data access from the device’s internal bus. The CFDTR is valid only for faulted internal bus-write accesses, 
CFLOC[LOC] is cleared.

Address: 0xFC04_0077 (CFATR) Access: Supervisor read-only

7 6 5 4 3 2 1 0

R WRITE SIZE CACHE 0 MODE TYPE

W

Reset: – – – – – – – –

Figure 13-8. Core Fault Attributes Register (CFATR)

Table 13-8. CFATR Field Descriptions

Field Description

7
WRITE

Indicates the direction of the last faulted core access.
0 Core read access.
1 Core write access.

6–4
SIZE

Indicates the size of the last faulted core access.
000 8-bit core access.
001 16-bit core access.
010 32-bit core access.
Else Reserved.

3
CACHE

Indicates if last faulted core access was cacheable.
0 Non-cacheable
1 Cacheable

2 Reserved, must be cleared.

1
MODE

Indicates the mode the device was in during the last faulted core access.
0 User mode
1 Supervisor mode

0
TYPE

Defines the type of last faulted core access.
0 Instruction
1 Data

Address: 0xFC04_007C (CFDTR) Access: Supervisor read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CFDTR

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 13-9. Core Fault Data Register (CFDTR)
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13.3 Functional Description

13.3.1 Core Watchdog Timer

The core watchdog timer (CWT) prevents system lockup if the software becomes trapped in a loop with 
no controlled exit or if a bus transaction becomes hung. The core watchdog timer can be enabled through 
CWCR[CWE]; it is disabled at reset. If enabled, the CWT requires the periodic execution of a core 
watchdog servicing sequence. If this periodic servicing action does not occur, the timer expires and, 
depending on the setting of CWCR[CWRI], different events may occur: 

• An interrupt may be generated to the core.

• An immediate system reset.

• Upon the first time-out, a watchdog timer interrupt is asserted. If this time-out condition is not 
serviced before a second time-out occurs, the CWT asserts a system reset. This configuration 
supports a more graceful response to watchdog time-outs. 

In addition to these three basic modes of operation, the CWT also supports a windowed mode of operation. 
In this mode, the time-out period is divided into four equal segments and the entire service sequence of the 
CWT must occur during the last segment (last 25% of the time-out period). If the timer is serviced anytime 
(any write to the CWSR register) in the first 75% of the time-out period, an immediate system reset occurs.

To prevent the core watchdog timer from interrupting or resetting, the CWSR register must be serviced by 
performing the following sequence: 

1. Write 0x55 to CWSR. 

2. Write 0xAA to CWSR.

Both writes must occur in order before the time-out, but any number of instructions can execute between 
the two writes. This allows interrupts and exceptions to occur, if necessary, between the two writes. 

NOTE
If the CWT is enabled and has not timed out, any write of a data value other 
than 0x55 or 0xAA causes an immediate system reset, regardless of the 
value in the CWCR[CWRI] field. Reading a data value of the CWT does not 
have any impact.

The timer value is constantly compared with the time-out period specified by CWCR[CWT], and any write 
to the CWCR register resets the watchdog timer. In addition, a write-once control bit in the CWCR sets 
the CWCR to read-only to prevent accidental updates to this control register from changing the desired 
system configuration. After this bit, CWCR[RO], is set, a system reset is required to clear it.

Table 13-9. CFDTR Field Descriptions

Field Description

31–0
CFDTR

Contains data associated with the faulting access of the last internal bus write access. Contains the data value taken 
directly from the write data bus.
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For certain values in the CWCR[CWRI] field, the CWT generates an interrupt response to a time-out. For 
these configurations, the SCMISR register provides a program visible interrupt request from the watchdog 
timer. During the interrupt service routine which handles this interrupt, the source must be explicitly 
cleared by writing a 0x01 to the SCMISR.

13.3.1.1 Watchdog Timer Clock Source

The watchdog timer clock source is configurable via the write-once MISCCR2[SWTSCR] field in the 
CCM. You can choose the system bus clock or the 32 kHz RTC clock. Using the RTC clock allows the 
SWT to operate during battery standby mode.

See Section 10.3.10, “Miscellaneous Control Register 2 (MISCCR2)” for more information.

13.3.2 Core Data Fault Recovery Registers

To aid in recovery from certain types of access errors, the SCM module supports a number of registers that 
capture access address, attribute, and data information on bus cycles terminated with an error response. 
These registers can then be read during the resulting exception service routine and the appropriate recovery 
performed.

The details on the core fault recovery registers are provided in the above sections. It is important to note 
these registers are used to capture fault recovery information on any processor-initiated system bus cycle 
terminated with an error.
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Chapter 14  
Crossbar Switch (XBS)

14.1 Overview
This section provides information on the layout, configuration, and programming of the crossbar switch. 
The crossbar switch connects the bus masters and bus slaves using a crossbar switch structure. This 
structure allows bus masters to access different bus slaves simultaneously with no interference while 
providing arbitration among the bus masters when they access the same slave. A variety of bus arbitration 
methods and attributes may be programmed on a slave by slave basis.

The MCF5441x devices have up to eight masters and six slaves (8Mx6S) connected to the crossbar switch. 
The eight masters are the ColdFire core/serial boot facility, eDMA controller, USB host, USB OTG 
modules, eSDHC, NAND flash controller, and the Ethernet assembly. The slaves are DDR SDRAM 
controller, FlexBus, SRAM controller backdoor, and the two peripheral bus controllers.The DDR SDRAM 
controller has two different slave ports. All CPU and eDMA accesses to the DDR controller use port 
S0,while the other masters (USB/ENET/eSDHC/NFC) always use port S2.

Figure 14-1 is a block diagram of the MCF5441x family bus architecture showing the crossbar switch 
configuration.

Figure 14-1. Bus Architecture Block Diagram

eDMA
Controller

ColdFire
Core/SBF

Crossbar Switch

SRAM
Backdoor

Master Modules

Slave Modules

USB HosteSDHC

Peripheral Bus
Controller 0

M0 M1 M2 M3 M5 M6

S1 S4 S7

Ethernet Assembly

M4

USB OTG

FlexBus
Interface

Peripheral Bus
Controller 1

S6S0

DDR SDRAM
Controller

NAND Flash
Controller

M7

S2
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The modules are assigned to the numbered ports on the crossbar switch in the below table.

The system memory map differs in the lower address range (0x0000_0000–0x3FFF_FFFF) depending on 
the boot method you choose:

• Booting from FlexBus — FlexBus accesses are valid for the entire range

• Booting from the NAND flash controller — maps the flash controller’s base (normally at 
0xFC0F_C000) to 0x0000_0000. After booting, clear the NFC’s boot mode configuration flag to 
disable this remapping.

• Serial boot — maps the internal SRAM base to 0x0000_0000 so it can serve as the boot device

Table 14-1. Crossbar Switch Master/Slave Assignments

Master Modules

Crossbar Port Module

Master 0 (M0) ColdFire core/Serial boot facility

Master 1 (M1) eDMA controller

Master 2 (M2) USB On-the-Go

Master 3 (M3) Ethernet assembly

Master 4 (M4) Ethernet assembly

Master 5 (M5) eSDHC

Master 6 (M6) USB host

Master 7 (M7) NAND flash controller

Slave Modules

Crossbar Port Module

Slave 0 (S0) DDR SDRAM Controller
(eDMA controller, CPU)

Slave 1 (S1) FlexBus

Slave 2 (S2) DDR SDRAM Controller
(USB, ENET, eSDHC, NFC)

Slave 4 (S4) Internal SRAM Backdoor

Slave 6 (S6) Peripheral Bus Controller 12

Slave 7 (S7) Peripheral Bus Controller 02

2 See the memory map section within Chapter 1, “Overview” for a list of which 
modules are connected to which peripheral bus controller.
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Table 14-2. System Memory Map per Boot Mode

Address Range1 FlexBus Flash Controller Serial Boot

0x0000_0000
0x0000_FFFF

FlexBus

NAND flash 
controller 2

Internal SRAM 2

0x0001_0000
0x00FF_FFFF

FlexBus0x1000_0000

FlexBus

0x3FFF_FFFF

0x4000_0000

SDRAM controller

0x7FFF_FFFF

0x8000_0000
0x8FFF_0000

Internal SRAM backdoor

0x9000_0000

Reserved

0xBFFF_FFFF

0xC000_0000
FlexBus

0xDFFF_FFFF

0xE000_0000
0xEFFF_FFFF

Peripheral bus controller 12

0xF000_0000
0xFFFF_FFFF

Peripheral bus controller 02

1 See the various peripheral chapters for their memory maps. Any unused 
space by these peripherals within this memory range is reserved and must 
not be accessed.

2 See the memory map section within Chapter 1, “Overview” for a list of 
which modules are connected to each peripheral bus controller.
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NOTE
This memory map provides two disjoint regions mapped to the FlexBus 
controller to support glueless connections to external memories (e.g., flash 
and SRAM) and a second space with one (or more) unique chip-selects that 
can be used for non-cacheable, non-memory devices (addresses 
0xC000_0000–0xDFFF_FFFF). Additionally, this mapping is easily maps 
into the ColdFire access control registers, which provide a coarse 
association between memory addresses and their attributes (e.g., cacheable, 
non-cacheable). For this device, one possible configuration defines the 
default memory attribute as non-cacheable, and one ACR then identifies 
cacheable addresses, e.g., ADDR[31] equals 0 identifies the cacheable 
space.

14.2 Features
The crossbar switch includes these distinctive features:

• Symmetric crossbar bus switch implementation

— Allows concurrent accesses from different masters to different slaves

— Slave arbitration attributes configured on a slave by slave basis

• 32 bits wide and supports byte, word (2 byte), longword (4 byte), and 16 byte burst transfers

• Operates at a 1-to-1 clock frequency with the bus masters

14.3 Modes of Operation
The crossbar switch supports two arbitration modes (fixed or round-robin), which may be set on a slave 
by slave basis. Slaves configured for fixed arbitration mode have a unique arbitration level assigned to 
each bus master.

In fixed priority mode, the highest priority active master accessing a particular slave is granted the master 
bus path to that slave. A higher priority master blocks access to a given slave from a lower priority master 
if the higher priority master continuously requests that slave. See Section 14.5.1.1, “Fixed-Priority 
Operation.”

In round-robin arbitration, active masters accessing a particular slave are initially granted the slave based 
on their master port number. Master priority is then modified in a wrap-around manner to give all masters 
fair access to the slave. See Section 14.5.1.2, “Round-Robin Priority Operation.”

14.4 Memory Map / Register Definition
Two registers reside in each slave port of the crossbar switch. Read- and write-transfers require two bus 
clock cycles. The registers can only be read from and written to in supervisor mode. Additionally, these 
registers can only be read from or written to by 32-bit accesses. 

A bus error response is returned if an unimplemented location is accessed within the crossbar switch. See 
Section 13.2.3, “SCM Interrupt Status Register (SCMISR).”
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The slave registers also feature a bit that, when set, prevents the registers from being written. The registers 
remain readable, but future write attempts have no effect on the registers and are terminated with a bus 
error response to the master initiating the write. The core, for example, takes a bus error interrupt.

Table 14-3 shows the memory map for the crossbar switch program-visible registers.

14.4.1 XBS Priority Registers (XBS_PRSn)

The priority registers (XBS_PRSn) set the priority of each master port on a per slave port basis and reside 
in each slave port. The priority register can be accessed only with 32-bit accesses. After the 
XBS_CRSn[RO] bit is set, the XBS_PRSn register can only be read; attempts to write to it have no effect 
on XBS_PRSn and result in a bus-error response to the master initiating the write.

Additionally, no two available master ports may be programmed with the same priority level, including 
reserved masters. Attempts to program two or more masters with the same priority level result in a 
bus-error response (see Section 13.2.3, “SCM Interrupt Status Register (SCMISR)”) and the XBS_PRSn 
is not updated.

Table 14-3. XBS Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xFC00_4000 Priority Register Slave 0 (XBS_PRS0) 32 R/W 0x7654_3210 14.4.1/14-5

0xFC00_4010 Control Register Slave 0 (XBS_CRS0) 32 R/W 0x0000_0000 14.4.2/14-7

0xFC00_4100 Priority Register Slave 1 (XBS_PRS1) 32 R/W 0x7654_3210 14.4.1/14-5

0xFC00_4110 Control Register Slave 1 (XBS_CRS1) 32 R/W 0x0000_0000 14.4.2/14-7

0xFC00_4200 Priority Register Slave 2 (XBS_PRS2) 32 R/W 0x7654_3210 14.4.1/14-5

0xFC00_4210 Control Register Slave 2 (XBS_CRS2) 32 R/W 0x0000_0000 14.4.2/14-7

0xFC00_4400 Priority Register Slave 4 (XBS_PRS4) 32 R/W 0x7654_3210 14.4.1/14-5

0xFC00_4410 Control Register Slave 4 (XBS_CRS4) 32 R/W 0x0000_0000 14.4.2/14-7

0xFC00_4600 Priority Register Slave 6 (XBS_PRS6) 32 R/W 0x7654_3210 14.4.1/14-5

0xFC00_4610 Control Register Slave 6 (XBS_CRS6) 32 R/W 0x0000_0000 14.4.2/14-7

0xFC00_4700 Priority Register Slave 7 (XBS_PRS7) 32 R/W 0x7654_3210 14.4.1/14-5

0xFC00_4710 Control Register Slave 7 (XBS_CRS7) 32 R/W 0x0000_0000 14.4.2/14-7
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Address: 0xFC00_4000 (XBS_PRS0)
0xFC00_4100 (XBS_PRS1)
0xFC00_4200 (XBS_PRS2)
0xFC00_4400 (XBS_PRS4)
0xFC00_4600 (XBS_PRS6)
0xFC00_4700 (XBS_PRS7)

Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
M7

0
M6

0
M5

0
M4

0
M3

0
M2

0
M1

0
M0

W

Reset 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0

Figure 14-2. XBS Priority Registers Slave n (XBS_PRSn)

Table 14-4. XBS_PRSn Field Descriptions

Field Description

31 Reserved, must be cleared.

30–28
M7

Master 7 (NAND flash controller) priority. Sets the arbitration priority for this port on the associated slave port.
000 This master has level 1 (highest) priority when accessing the slave port.
001 This master has level 2 priority when accessing the slave port.
010 This master has level 3 priority when accessing the slave port.
011 This master has level 4 priority when accessing the slave port.
100 This master has level 5 priority when accessing the slave port.
101 This master has level 6 priority when accessing the slave port.
110 This master has level 7 priority when accessing the slave port.
111 This master has level 8 (lowest) priority when accessing the slave port.

27 Reserved, must be cleared.

26–24
M6

Master 6 (USB Host) priority. See M7 description.

23 Reserved, must be cleared.

22–20
M5

Master 5 (eSDHC) priority. See M7 description.

19 Reserved, must be cleared.

18–16
M4

Master 4 (Ethernet assembly) priority. See M7 description.

15 Reserved, must be cleared.

14–12
M3

Master 3 (Ethernet assembly) priority. See M7 description.

11 Reserved, must be cleared.

10–8
M2

Master 2 (USB OTG) priority. See M7 description.

7 Reserved, must be cleared.

6–4
M1

Master 1 (eDMA) priority. See M7 description.
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14.4.2 XBS Control Registers (XBS_CRSn)

The XBS control registers (XBS_CRSn) control several features of each slave port and must be accessed 
using 32-bit accesses. After XBS_CRSn[RO] is set, the XBS_CRSn can only be read; attempts to write to 
it have no effect and result in an error response.

3 Reserved, must be cleared.

2–0
M0

Master 0 (ColdFire core/serial boot) priority. See M7 description.

Address: 0xFC00_4010 (XBS_PRS0)
0xFC00_4110 (XBS_PRS1)
0xFC00_4210 (XBS_PRS2)
0xFC00_4410 (XBS_PRS4)
0xFC00_4610 (XBS_PRS6)
0xFC00_4710 (XBS_PRS7)

Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RO1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARB
0 0

PCTL
0

PARK
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 After this bit is set, only a hardware reset clears it.

Figure 14-3. XBS Control Registers Slave n (XBS_CRSn)

Table 14-5. XBS_CRSn Field Descriptions

Field Description

31
RO

Read only. Forces both of the slave port’s registers (XBS_CRSn and XBS_PRSn) to be read-only. After set, only a 
hardware reset clears it.
0 Both of the slave port’s registers are writable.
1 Both of the slave port’s registers are read-only and cannot be written (attempted writes have no effect on the 

registers and result in a bus error response).

30–9 Reserved, must be cleared.

8
ARB

Arbitration Mode. Selects the arbitration policy for the slave port.
0 Fixed priority
1 Round robin (rotating) priority

7–6 Reserved, must be cleared.

Table 14-4. XBS_PRSn Field Descriptions (continued)

Field Description
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14.5 Functional Description

14.5.1 Arbitration

The crossbar switch supports two arbitration schemes: a simple fixed-priority comparison algorithm and 
a simple round-robin fairness algorithm. The arbitration scheme is independently programmable for each 
slave port.

14.5.1.1 Fixed-Priority Operation

When operating in fixed-priority mode, each master is assigned a unique priority level in the XBS_PRSn 
(priority registers). If two masters request access to a slave port, the master with the highest priority in the 
selected priority register gains control over the slave port.

When a master makes a request to a slave port, the slave port checks if the new requesting master’s priority 
level is higher than that of the master that currently has control over the slave port (unless the slave port is 
in a parked state). The slave port does an arbitration check at every bus transfer boundary makes certain 
that the proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently has control of 
the slave port, the new requesting master is granted control over the slave port at the next clock edge. The 
exception to this rule is if the master that currently has control over the slave port is running a fixed length 
burst transfer or a locked transfer. In this case, the new requesting master must wait until the end of the 
burst transfer or locked transfer before it is granted control of the slave port.

5–4
PCTL

Parking control. Determines the slave port’s parking control. The low-power park feature results in an overall power 
savings if the slave port is not saturated; however, this forces an extra latency clock when any master tries to access 
the slave port while not in use because it is not parked on any master.
00 When no master makes a request, the arbiter parks the slave port on the master port defined by the PARK bit 

field.
01 When no master makes a request, the arbiter parks the slave port on the last master to be in control of the slave 

port.
10 When no master makes a request, the slave port is not parked on a master and the arbiter drives all outputs to 

a constant safe state.
11 Reserved.

3 Reserved, must be cleared.

2–0
PARK

Park. Determines which master port the current slave port parks on when no masters are actively making requests 
and the PCTL bits are cleared.
000 Park on master port M0 (ColdFire Core)
001 Park on master port M1 (eDMA Controller)
010 Park on master port M2 (USB OTG)
011 Park on master port M3 (Ethernet assembly)
100 Park on master port M4 (Ethernet assembly)
101 Park on master port M5 (eSDHC)
110 Park on master port M6 (USB Host)
111 Park on master port M7 (NAND flash controller)

Table 14-5. XBS_CRSn Field Descriptions (continued)

Field Description
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If the new requesting master’s priority level is lower than the master that currently has control of the slave 
port, the new requesting master is forced to wait until the current master runs one of the following cycles:

• An IDLE cycle

• A non-IDLE cycle to a location other than the current slave port.

14.5.1.2 Round-Robin Priority Operation

When operating in round-robin mode, each master is assigned a relative priority based on the master port 
number. This priority is based on how far ahead the master port number of the requesting master is to the 
master port number of the current bus master for this slave. Master port numbers are compared modulo the 
total number of bus masters, i.e. take the requesting master port number minus the current bus master’s 
port number modulo the total number of bus masters. The master port with the highest priority based on 
this comparison is granted control over the slave port at the next bus transfer boundary.

After granted access to a slave port, a master may perform as many transfers as desired to that port until 
another master makes a request to the same slave port. The next master in line is granted access to the slave 
port at the next transfer boundary.

Parking may continue to be used in a round-robin mode, but does not affect the round-robin pointer unless 
the parked master actually performs a transfer. Handoff occurs to the next master in line after one cycle of 
arbitration. If the slave port is put into low-power park mode, the round-robin pointer is reset to point at 
master port 0, giving it the highest priority.

14.5.1.3 Priority Assignment

Each master port needs to be assigned a unique 3-bit priority level. If an attempt is made to program 
multiple master ports with the same priority level within the priority registers (XBS_PRSn) the crossbar 
switch responds with a bus error (refer to Section 13.2.3, “SCM Interrupt Status Register (SCMISR)”) and 
the registers are not updated.

14.6 Initialization/Application Information
No initialization is required by or for the crossbar switch. Hardware reset ensures all the register bits used 
by the crossbar switch are properly initialized to a valid state. Settings and priorities should be 
programmed to achieve maximum system performance.
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Chapter 15  
Pin-Multiplexing and Control

15.1 Introduction
Many of the pins associated with the device may be used for several different functions. Their primary 
functions are to provide external interfaces to access off-chip resources. When not used for their primary 
function, many of the pins may be used as general-purpose digital I/O (GPIO) pins. In some cases, the pin 
function is set by the operating mode, and the alternate pin functions are not supported.

Each GPIO port has registers that configure, monitor, and control the port pins. Figure 15-1 is a block 
diagram of the device ports.

This chapter also includes registers for controlling the drive strengths, hysteresis, and slew rates of the 
external pins.
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Figure 15-1. Pin Multiplexing and Control Block Diagram

15.1.1 Overview

The external pin-muxing and control module configures various external pins, including those used for:

• External bus accesses

• External device selection

• eSDHC

• SIM ports

• Ethernet data and control

• CAN

• I2C

• DSPI

FB_BE/BWE3 / FB_CS3 / FB_A1/NF_ALE / PA3

Port

Port

Port
A F

H

FB_ALE / FB_TS / PA7
FB_OE/NF_RE / FB_TBST / PA6
FB_R/W/NF_WE / PA5

SIM0_VEN / PWM_FAULT0 / RGPIO12 / PG3
SIM0_RST / PWM_FORCE / SDHC_DAT6 / RGPIO11 / PG2
SIM0_PD / PWM_SYNC / SDHC_DAT5 / RGPIO10 / PG1
SIM0_CLK / PWM_FAULT1 / SDHC_DAT4 / RGPIO9 / PG0

SSI0_MCLK / SSI_CLKIN / SIM1_CLK / PH4
SSI0_BCLK / UART7_RXD / SIM1_PD / PH3
ALLPST / PH2

UART0_RTS / UART4_RXD / DSPI2_PCS0 / RGPIO6 / PF5
UART0_RXD / I2C4_SDA / DSPI2_SIN / PF4
UART0_TXD / I2C4_SCL / DSPI2_SOUT / PF3
SDHC_DAT3 / PWM_A1 / DSPI1_PCS0 / PF2

Internal Bus

FB_TA / NF_R/B / PA4

FB_CLK / PB7

Port

I2C0_SCL / UART8_TXD / CAN0_TX / PB2
I2C0_SDA / UART8_RXD / CAN0_RX / PB1
CAN1_TX / UART9_TXD / I2C1_SCL / PB0

CAN1_RX / UART9_RXD / I2C1_SDA / PC7

B

IRQ4 / DREQ0 / PC4
IRQ3 / DSPI0_PCS3 / USB1_VBUS_EN / PC3
IRQ2 / DSPI0_PCS2 / USB1_VBUS_OC / PC2
IRQ1 / PC1

IRQ6 / USB_CLKIN / PC5

SDHC_DAT2 / PWM_B1 / DSPI1_PCS2 / PF1
SDHC_DAT1 / PWM_A2 / DSPI1_PCS1 / PF0

SDHC_DAT0 / PWM_B2 / DSPI1_SOUT / PG7
SDHC_CMD / PWM_B0 / DSPI1_SIN / PG6

SIM0_DATA / PWM_FAULT2 / SDHC_DAT7 / RGPIO13 / PG

IRQ7 / PC6

UART1_TXD / I2C5_SCL / DSPI3_SOUT / PF7
UART0_CTS / UART4_TXD / DSPI2_SCK / RGPIO5 / PF6

Port
G

Port
C

Pin Assignment

FB_CS1 / NF_CE / PB4
FB_CS0 / PB3

MII0_TXER / RMII1_MDIO / ULPI_DATA4 / PK7

Port
K

DDATA[3:2] / PH[1:0]

FB_CS5 / DACK1 / PB6
FB_CS4 / DREQ1 / PB5

MII0_TXD[1:0] / RMII0_TXD[1:0] / PJ[3:2]
Port

J

MII0_COL / RMII1_MDC / ULPI_STP / PJ0

MII0_CRS / RMII1_CRS_DV / ULPI_DATA5 / PK6
MII0_RXD[3:2] / RMII1_RXD[1:0] / ULPI_DATA[1:0] / PK[5:4]
MII0_RXCLK / RMII1_RXER / ULPI_DATA6 / PK3

DDATA[1:0] / PI[7:6]
Port

I
PST[3:0] / PI[5:2]
MII0_MDC / RMII0_MDC / PI1
MII0_MDIO / RMII0_MDIO / PI0
MII_RXDV / PJ7
MII0_RXD[1:0] / RMII0_RXD[1:0] / PJ[6:5]

Port
D

DSPI0_PCS0/SS / I2C3_SDA / SDHC_DAT3 / PD7
DSPI0_SCK/SBF_CK / I2C3_SCL / SDHC_CLK / PD6
DSPI0_SIN/SBF_DI / UART3_RXD / SDHC_CMD / PD5
DSPI0_SOUT/SBF_DO / UART3_TXD / SDHC_DAT0 / PD4
OW_DAT / DACK0 / RGPIO0 / PD3
T3IN/PWM_EXTA3 / T3OUT / USBO_VBUS_EN/ULPI_DIR / 

T2IN/PWM_EXTA2 / T2OUT / SDHC_DAT2 / RGPIO2 / PD1

UART2_CTS / UART6_TXD / SSI1_BCLK / RGPIO14 / PE6
Port

E
UART2_TXD / PWM_B3 / SSI1_TXD / PE3
UART1_CTS / UART5_TXD / DSPI3_SCK / RGPIO7 / PE2
UART1_RTS / UART5_RXD / DSPI3_PCS0 / RGPIO8 / PE1
UART1_RXD / I2C5_SDA / DSPI3_SIN / PE0

UART2_RTS / UART6_RXD / SSI1_FS / RGPIO15 / PE5
UART2_RXD / PWM_A3 / SSI1_RXD / PE4

DSPI0_PCS1/SBF_CS / PC0

FB_BE/BWE2 / FB_CS2 / FB_A0/NF_CLE / PA2
FB_BE/BWE[1:0] / FS_TSIZ[1:0] / PA[1:0]

T1IN/PWM_EXTA1 / T1OUT / SDHC_DAT1 / RGPIO3 / PD0

T0IN/PWM_EXTA0 / T0OUT / USBO_VBUS_OC/ULPI_NXT /

SDHC_CLK / PWM_A0 / DSPI1_SCK / PG5

SSI0_RXD / I2C2_SDA / SIM1_VEN / PH7
SSI0_TXD / I2C2_SCL / SIM1_DATA / PH6
SSI0_FS / UART7_TXD / SIM1_RST / PH5

MII0_RXER / RMII0_RXER / PJ4

MII0_TXEN / RMII0_TXEN / PJ1

MII0_TXD[3:2] / RMII1_TXD[1:0] / ULPI_DATA[3:2] / PK[2:1]
MII0_TXCLK / RMII1_TXEN / ULPI_DATA7 / PK0

RGPIO1 / PD2

RGPIO4 / PE7
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• UART

• Edge ports

• 32-bit DMA timers

15.1.2 Features

The module includes these distinctive features:

• Control of primary function use

— On all supported GPIO ports

• General purpose I/O support for all ports

— Registers for storing output pin data

— Registers for controlling pin data direction

— Registers for reading current pin state

— Registers for setting and clearing output pin data registers

• Control of functional pad drive strengths 

• Slew rate control

• Hysteresis control

• Pull-up/down control

15.2 External Signal Description
The external pins that are controllable by this module are listed in the below table under the GPIO column.

NOTE
In this table and throughout this document a single signal within a group is 
designated without square brackets (i.e., FB_AD23), while designations for 
multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is 
meant to include all signals within the two bracketed numbers when these 
numbers are separated by a colon.

NOTE
The primary functionality of a pin is not necessarily its default functionality. 
Most pins that are muxed with GPIO default to their GPIO functionality. See 
Table 15-1 for a list of the exceptions.

Table 15-1. Special-case default signal functionality

Pin Default signal

FB_CLK, FB_OE, FB_R/W, 
FB_BE/BWE[1:0], 

FB_CS[5:4]

FB_CLK, FB_OE, FB_R/W, 
FB_BE/BWE[1:0], FB_CS[5:4]

FB_ALE FB_ALE or FB_TS
(depending on RCON[3])
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NOTE
While most modules and functionalities between the 196 and 256 
MAPBGA package are the same, the following modules have been removed 
from 196 MAPBGA for pin space:

UART2, UART6, UART9, PWM, SSI1, SIM0, USB HOST, IRQ6, IRQ3, 
IRQ2, FLEXCAN1, I2C1, ADC, DAC.

Other modifications to the 196 MAPBGA package are:

• SDRAMC — One address line, SD_A14, is removed.

• SDHC — Number of data lines for eSDHC have been reduced to 4 
(SDHC_DAT[3:0]) instead of 8.

• MAC — Only MAC0_RMII mode is implemented.

• FB_CS4 and FB_C55 are removed.

• PST[3:0] and DDATA[3:0] are removed.

FB_BE/BWE3 Boot from NFC, NF_ALE.
Otherwise, FB_BE/BWE3.

FB_BE/BWE2 Boot from NFC, NF_CLE.
Otherwise, FB_BE/BWE2.

FB_CS1 Boot from NFC, NFC_CE.
Otherwise, GPIO.

FB_CS0 Boot from FlexBus, FB_CS0.
Otherwise, GPIO.

FB_TA Boot from NFC, NFC_R/B.
Otherwise, FB_TA.

ALLPST, PST[3:0], 
DDATA[3:0]

ALLPST, PST[3:0], DDATA[3:0]

Table 15-2. MCF5441x Signal information and muxing

Signal name GPIO Alternate 1 Alternate 2
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Reset

RESET — — — U I EVDD ssr K14 K15

RSTOUT — — — — O EVDD msr P12 L16

Table 15-1. Special-case default signal functionality (continued)

Pin Default signal
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Clock

EXTAL/
RMII_REF_CLK

— — — — I4 EVDD ae G14 G16

XTAL — — — — O EVDD ae H14 H16

Mode selection

BOOTMOD[1:0] — — — — I EVDD msr G5,H5 K5, L5

FlexBus

FB_AD[31:24]/
NFC_IO[15:8]5

— — — — I/O FBVDD fsr A10, A9, 
B9, C9, A8, 
B8, C8, A7

B9, C8, A9, 
B8, D8, A8, 

D7, B7

FB_AD[23:16]/
NFC_IO[7:0]5

— — — — I/O FBVDD fsr B7, C7, C6, 
B6, A6, A5, 

B5, A4

C7, A7, D6, 
A6, B6, D5, 

C6, A5

FB_AD[15:10] — — — —6,7 I/O FBVDD fsr C5, A3, B4, 
C4, B3, A2

B5, A4, A3, 
D4, B4, C5

FB_AD[9:8] — — — U7,8 I/O FBVDD fsr B2, C3 C4, B3

FB_AD[7:0] — — — —7 I/O FBVDD fsr D4, B1, C2, 
D3, C1, D2, 

E3, D1

C3, E4, D3, 
E3, A2, B2, 

C2, F3

FB_ALE PA7 FB_TS — — O FBVDD fsr E2 D2

FB_OE/
NFC_RE5

PA6 FB_TBST/
NFC_RE5

— — O FBVDD fsr H1 F1

FB_R/W/
NFC_WE5

PA5 — — — O FBVDD fsr H2 G2

FB_TA PA4 — NFC_R/B U9 O FBVDD fsr H3 H3

FB_BE/BWE3 PA3 FB_CS3 FB_A1/
NFC_ALE10

— O FBVDD fsr F3 C1

FB_BE/BWE2 PA2 FB_CS2 FB_A0/
NFC_CLE11

— O FBVDD fsr E1 E2

FB_BE/BWE[1:0] PA[1:0] FB_TSIZ[1:0] — — O FBVDD fsr F2, F1 D1, F4

FB_CLK PB7 — — — O FBVDD fsr G1 G1

FB_CS5 PB6 DACK1 — — O FBVDD fsr — F2

FB_CS4 PB5 DREQ1 — — O FBVDD fsr — B1

FB_CS1 PB4 — NFC_CE — O FBVDD fsr G3 E1

FB_CS0 PB3 — — — O FBVDD fsr G2 G3

Table 15-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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I2C 0

I2C0_SCL PB2 UART8_TXD CAN0_TX — I/O EVDD ssr H12 G15

I2C0_SDA PB1 UART8_RXD CAN0_RX — I/O EVDD ssr G12 G14

FlexCAN 1

CAN1_TX PB0 UART9_TXD I2C1_SCL — I/O EVDD ssr — D14

CAN1_RX PC7 UART9_RXD I2C1_SDA — I/O EVDD ssr — D15

SDRAM controller

SD_A14 — — — — O SDVDD st_dec
ap

— P6

SD_A[13:0] — — — — O SDVDD st_dec
ap

P3, M1, 
M3, L2, L1, 
N4, M2, P2, 
L3, L4, N1, 
N2, K1, N3

R4, R1, R3, 
N4, P3, T4, 
R2, T2, N3, 
P5, P4, N5, 

P2, T3

SD_BA[2:0] — — — — O SDVDD st_dec
ap

M6, J4, P4 P7, N6, R5

SD_CAS — — — — O SDVDD st_dec
ap

K4 N8

SD_CKE — — — — O SDVDD st_dec
ap

N6 R7

SD_CLK — — — — O SDVDD st_ck P6 T5

SD_CLK — — — — O SDVDD st_ck P7 T6

SD_CS — — — — O SDVDD st_dec
ap

M5 N7

SD_D[7:0] — — — — I/O SDVDD st_odt P11, M10, 
N10, M9, 
P10, M8, 
N8, M7

T12, R11, 
T11, R10, 
N9, T10, 
P9, R9

SD_DM — — — — O SDVDD st_odt N7 T7

SD_DQS — — — — I/O SDVDD st_dqs P8 T8

SD_DQS — — — — I/O SDVDD st_dqs P9 T9

SD_ODT — — — — O SDVDD st_dec
ap

P5 P8

SD_RAS — — — — O SDVDD st_dec
ap

M4 R6

SD_WE — — — — O SDVDD st_dec
ap

N5 R8

SD_VREF — — — — — SDVDD st_vref N9 P10

SD_VTT — — — — — SDVDD st_vtt L8 N10

Table 15-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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External interrupts port

IRQ7 PC6 — — — I EVDD ssr G10 F12

IRQ6 PC5 — USB_CLKIN12 — I EVDD ssr — N1

IRQ4 PC4 DREQ0 — — I EVDD ssr E11 F14

IRQ3 PC3 DSPI0_PCS3 USBH_VBUS_EN — I EVDD ssr — M1

IRQ2 PC2 DSPI0_PCS2 USBH_VBUS_OC —13 I EVDD ssr — M2

IRQ1 PC1 — — — I EVDD ssr E13 F13

USB On-the-Go

USBO_DM — — — — I/O VDD_
USB0

ae B13 A14

USBO_DP — — — — I/O VDD_
USB0

ae A13 B14

USB host

USBH_DM — — — — I/O VDD_
USBH

ae — A15

USBH_DP — — — — I/O VDD_
USBH

ae — B15

ADC

ADC_IN7/
DAC1_OUT

— — — — I VDDA_
DAC_
ADC

ae — K3

ADC_IN[6:4] — — — — I VDDA_
ADC

ae — H2, J3, G4

ADC_IN3/
DAC0_OUT

— — — — I VDDA_
DAC_
ADC

ae — K4

ADC_IN[2:0] — — — — I VDDA_
ADC

ae — J2, J1, H1

Real time clock

RTC_EXTAL — — — — I4 VSTBY ae B14 C16

RTC_XTAL — — — — O VSTBY ae C14 B16

DSPI0/SBF14

DSPI0_PCS1/
SBF_CS

PC0 — — — I/O EVDD msr K3 L1

DSPI0_PCS0/SS PD7 I2C3_SDA SDHC_DAT3 — I/O EVDD msr J1 K2

Table 15-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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DSPI0_SCK/
SBF_CK

PD6 I2C3_SCL SDHC_CLK — I/O EVDD msr J3 L2

DSPI0_SIN/
SBF_DI

PD5 UART3_RXD SDHC_CMD U15 I EVDD msr K2 L3

DSPI0_SOUT/
SBF_DO

PD4 UART3_TXD SDHC_DAT0 — O EVDD msr J2 K1

One wire

OW_DAT RGPIO0/PD3 DACK0 — — I/O EVDD ssr M11 N11

DMA timers

T3IN/PWM_EXTA3 RGPIO1/PD2 T3OUT USBO_VBUS_EN/
ULPI_DIR16

— I EVDD msr G13 G13

T2IN/PWM_EXTA2 RGPIO2/PD1 T2OUT SDHC_DAT2 — I EVDD msr J12 H14

T1IN/PWM_EXTA1 RGPIO3/PD0 T1OUT SDHC_DAT1 — I EVDD msr H13 H13

T0IN/PWM_EXTA0 RGPIO4/PE7 T0OUT USBO_VBUS_OC/
ULPI_NXT17

—18 I EVDD msr J13 H15

UART 2

UART2_CTS RGPIO14/PE6 UART6_TXD SSI1_BCLK — I EVDD msr — M4

UART2_RTS RGPIO15/PE5 UART6_RXD SSI1_FS — O EVDD msr — M3

UART2_RXD PE4 PWM_A3 SSI1_RXD — I EVDD msr — P1

UART2_TXD PE3 PWM_B3 SSI1_TXD — I/O19 EVDD msr — N2

UART 1

UART1_CTS RGPIO7/PE2 UART5_TXD DSPI3_SCK — I EVDD msr D12 C10

UART1_RTS RGPIO8/PE1 UART5_RXD DSPI3_PCS0 — O EVDD msr D11 D10

UART1_RXD PE0 I2C5_SDA DSPI3_SIN — I EVDD msr B10 C9

UART1_TXD PF7 I2C5_SCL DSPI3_SOUT — I/O19 EVDD msr C10 D9

UART 0

UART0_CTS RGPIO5/PF6 UART4_TXD DSPI2_SCK — I EVDD msr E12 E13

UART0_RTS RGPIO6/PF5 UART4_RXD DSPI2_PCS0 — O EVDD msr C12 B11

UART0_RXD PF4 I2C4_SDA DSPI2_SIN — I EVDD msr C11 B10

UART0_TXD PF3 I2C4_SCL DSPI2_SOUT — I/O19 EVDD msr B11 D11

Table 15-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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Enhanced secure digital host controller

SDHC_DAT3 PF2 PWM_A1 DSPI1_PCS0 — I/O EVDD msr — B13

SDHC_DAT2 PF1 PWM_B1 DSPI1_PCS2 — I/O EVDD msr — E14

SDHC_DAT1 PF0 PWM_A2 DSPI1_PCS1 — I/O EVDD msr — D12

SDHC_DAT0 PG7 PWM_B2 DSPI1_SOUT — I/O EVDD msr — B12

SDHC_CMD PG6 PWM_B0 DSPI1_SIN — I/O EVDD msr — C11

SDHC_CLK PG5 PWM_A0 DSPI1_SCK — O EVDD msr — A10

Smart card interface 020

SIM0_DATA RGPIO13/PG4 PWM_FAULT2 SDHC_DAT7 — I/O EVDD msr — E12

SIM0_VEN RGPIO12/PG3 PWM_FAULT0 — — O EVDD msr — D13

SIM0_RST RGPIO11/PG2 PWM_FORCE SDHC_DAT6 — O EVDD msr — C15

SIM0_PD RGPIO10/PG1 PWM_SYNC SDHC_DAT5 — I EVDD msr — C14

SIM0_CLK RGPIO9/PG0 PWM_FAULT1 SDHC_DAT4 — O EVDD msr — A11

Synchronous serial interface 0

SSI0_RXD PH7 I2C2_SDA SIM1_VEN — I EVDD msr B12 C12

SSI0_TXD PH6 I2C2_SCL SIM1_DATA — O EVDD msr A11 C13

SSI0_FS PH5 UART7_TXD SIM1_RST — I/O EVDD msr C13 E15

SSI0_MCLK PH4 SSI_CLKIN SIM1_CLK — O EVDD msr A12 A12

SSI0_BCLK PH3 UART7_RXD SIM1_PD — I/O EVDD msr D13 A13

Ethernet subsystem

MII0_MDC PI1 RMII0_MDC21 — — O EVDD fsr N14 P16

MII0_MDIO PI0 RMII0_MDIO21 — — I/O EVDD fsr M14 N16

MII0_RXDV PJ7 RMII0_CRS_DV21 — — I EVDD fsr M13 P14

MII0_RXD[1:0] PJ[6:5] RMII0_RXD[1:0]21 — — I EVDD fsr P13, N13 R15, T15

MII0_RXER PJ4 RMII0_RXER21 — — I EVDD fsr M12 N14

MII0_TXD[1:0] PJ[3:2] RMII0_TXD[1:0]21 — — O EVDD fsr L12, L11 R13, P13

MII0_TXEN PJ1 RMII0_TXEN21 — D22 O EVDD fsr N12 P12

MII0_COL PJ0 RMII1_MDC ULPI_STP — I EVDD fsr — R12

MII0_TXER PK7 RMII1_MDIO ULPI_DATA4 — O EVDD fsr — R14

Table 15-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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MII0_CRS PK6 RMII1_CRS_DV ULPI_DATA5 — I EVDD fsr — P11

MII0_RXD[3:2] PK[5:4] RMII1_RXD[1:0] ULPI_DATA[1:0] — I EVDD fsr — P15, N13

MII0_RXCLK PK3 RMII1_RXER ULPI_DATA6 — I EVDD fsr — M14

MII0_TXD[3:2] PK[2:1] RMII1_TXD[1:0] ULPI_DATA[3:2] — O EVDD fsr — T13, N12

MII0_TXCLK PK0 RMII1_TXEN ULPI_DATA7 D22 I EVDD fsr — T14

BDM/JTAG

ALLPST23 PH2 — — — O EVDD fsr K12 —

DDATA[3:2] PH[1:0] — — — O EVDD fsr — L15, M13

DDATA[1:0] PI[7:6] — — — O EVDD fsr — M15, L14

PST[3:0] PI[5:2] — — — O EVDD fsr — J13, J16, 
J15, J14

JTAG_EN — — — D I EVDD msr N11 N15

PSTCLK — TCLK24 — — I EVDD fsr L14 M16

DSI — TDI24 — U I EVDD msr L10 L13

DSO — TDO24 — — O EVDD msr L13 K14

BKPT — TMS24 — U I EVDD msr K13 K16

DSCLK — TRST24 — U I EVDD msr L9 K13

Test
(this signal must be grounded)

TEST — — — D I EVDD ssr K10 R16

Power supplies

IVDD — — — — — — — D9, D10, 
E9, E10, 
F9, F10, 

F12

E9–E11, 
F9–F11

EVDD — — — — — — — F4–F7, G6, 
G7, H6, H7, 

J5, J6

H8, 
J7–J10, 

K6–K11, L6

FB_VDD — — — — — — — D5–D7, 
E4–E7

E5–E7, F5, 
F6, G5

SD_VDD — — — — — — — K7–K9, 
L5–L7

M7–M12

VDD_OSC_A_PLL — — — — — — vddint F14 F15

VSS_OSC_A_PLL — — — — — — vddint F13 F16

VDD_USBO — — — — — — vdde F11 G12

Table 15-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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VDD_USBH — — — — — — vdde — H12

VDDA_ADC — — — — — — — — H4

VSSA_ADC — — — — — — vssint — H5

VDDA_DAC_ADC — — — — — — vddint — J4

VSSA_DAC_ADC — — — — — — vssint — J5

VSTBY25 — — — — — — vddint E14 E16

VSS — — — — — — — A1, A14, 
D8, D14, 

E8, F8, G4, 
G8, G9, 
G11, H4, 
H8–11, 

J7–11, J14, 
K5, K6, 
K11, P1, 

P14

A1, A16, 
D16, E8, 
F7, F8, 

G6–G11, 
H6, H7, 
H9–H11, 
J6, J11, 

J12, K12, 
L4, 

L7–L12, 
M5, M6, 
T1, T16

1 All pins available with GPIO contain a configurable pull-up/down. This column indicates the pull devices that are enabled 
automatically at reset. Pull-ups are generally only enabled on pins with their primary function, except as noted.

2 Refers to pin’s primary function.
3 For details on the available slew rates of the various pad types see section “Output Pad Loading and Slew Rate” of the MCF5441x 

Data Sheet or section “Slew Rate Control Registers (SRCR_x)” in chapter “Pin-Multiplexing and Control” of the MCF5441x Reference 
Manual.

4 Enabled as input only in oscillator bypass mode (internal crystal oscillator is disabled).
5 These pins are time-division multiplexed between the FlexBus and NFC. An arbitration mechanism determines which module drives 

these pins at any point in time.
6 An internal pulldown circuit is enabled during system reset for FB_AD[10].
7 FB_AD[11:8] must be pulled-up by external logic to prevent entering test mode.
8 An internal pullup circuit is enabled when the system is in reset state.
9 Configurable pull that is enabled and pulled up after reset.
10 When configured for FB_A1, this pin is time-division multiplexed between the FlexBus and NFC. An arbitration mechanism 

determines which module drives the pin at any point in time. When not configured as FB_A1, NFC_ALE cannot be used.
11 When configured for FB_A0, this pin is time-division multiplexed between the FlexBus and NFC. An arbitration mechanism 

determines which module drives the pin at any point in time. When not configured as FB_A0, NFC_CLE cannot be used.
12 Since USB_CLKIN is a clock signal, it must be dedicated to the USB system. Do not implement this pin as dual-use.
13 When Alternate 2 is selected, then internal pullup/pulldown control will come from the MISCCR[3] register of CIM.
14 When booting from serial boot flash, the SBF function is enabled automatically. After the SBF function completes its reset sequence, 

the signals are returned to GPIO functionality.
15 Automatic pull-up when SBF controls the pin during reset only. Configurable pull when UART, DSPI, or SDHC control the pin.
16 If ULPI is enabled, ULPI_DIR is available as the Alternate 2 function. If ULPI is disabled, USBO_VBUS_EN is available.
17 If ULPI is enabled, ULPI_NXT is available as the Alternate 2 function. If ULPI is disabled, USBO_VBUS_OC is available.
18 When Alternate 2 is selected, then internal pullup/pulldown control will come from the MISCCR[2] register of CIM.
19 UARTx_TXD pad can act as RXD(input) pad when UART One Wire mode is enabled.

Table 15-2. MCF5441x Signal information and muxing (continued)

Signal name GPIO Alternate 1 Alternate 2
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Refer to the Chapter 2, “Signal Descriptions,” for more detailed descriptions of these pins and other pins 
not controlled by this module. The function of most of the pins (primary function, GPIO, etc.) is 
determined by the pin assignment registers (PAR_x).

As shown in Table 15-3, there are several cases where a function is available on more than one pin. While 
it is possible to enable the function on more than one pin simultaneously, avoid this for input functions to 
prevent unexpected behavior. All multiple-pin functions are listed in Table 15-3.

15.3 Memory Map/Register Definition
Table 15-4 summarizes all the registers in the pin multiplexing and control address space.

20 The SIM0 signals are available with 256 MAPBGA but are not available with 196 MAPBGA.
21 These RMII functions are selected by the mode chosen by the MAC-NET, not by the pin-multiplexing and control (GPIO) module.
22 Configurable pull that is enabled and pulled down after reset.
23 The ALLPST signal is available only on the 196 MAPBGA package and allows limited debug trace functionality compared to the 256 

MAPBGA package.
24 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning 

these pins.
25 VSTBY is for optional standby lithium battery. If not used, connect to EVDD.

Table 15-3. Multiple-Pin Functions

Function Associated Pins

SDHC_CLK DSPI0_SCK/SBF_CK, SDHC_CLK

SDHC_CMD DSPI0_SIN/SBF_DI, SDHC_CMD

SDHC_DAT3 DSPI0_PCS0/SS, SDHC_DAT3

SDHC_DAT2 T2IN, SDHC_DAT2

SDHC_DAT1 T1IN, SDHC_DAT1

SDHC_DAT0 DSPI0_SOUT/SBF_DO, SDHC_DAT0

Table 15-4. Pin Multiplexing and Control Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xEC09_4000–
0xEC09_400A

Port output data registers (PODR_A – K) 8 R/W 0xFF 15.3.1/15-14

0xEC09_400C–
0xEC09_4016

Port data direction registers (PDDR_A – K) 8 R/W 0x00 15.3.2/15-15

0xEC09_4018–
0xEC09_4022

Port pin data/set data registers (PPDSDR_A – K) 8 R/W See Section 15.3.3/15-15

0xEC09_4024–
0xEC09_402E

Port clear output data registers (PCLRR_A – K) 8 W 0x00 15.3.4/15-16

0xEC09_4030–
0xEC09_4044

Pull control registers (PCR_A – K) 16 R/W See Section 15.3.5/15-17

Pin Assignment Registers
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0xEC09_4048 PAR_FBCTL 8 R/W See Section 15.3.6.1/15-18

0xEC09_4049 PAR_BE 8 R/W 0xFF 15.3.6.2/15-18

0xEC09_404A PAR_CS 8 R/W See Section 15.3.6.3/15-19

0xEC09_404B PAR_CANI2C 8 R/W 0x00 15.3.6.4/15-19

0xEC09_404C PAR_IRQ0H 8 R/W 0x00 15.3.6.5/15-19

0xEC09_404D PAR_IRQ0L 8 R/W 0x00 15.3.6.5/15-19

0xEC09_404E PAR_DSPIOWH 8 R/W 0x00 15.3.6.6/15-20

0xEC09_404F PAR_DSPIOWL 8 R/W 0x00 15.3.6.6/15-20

0xEC09_4050 PAR_TIMER 8 R/W 0x00 15.3.6.7/15-20

0xEC09_4051 PAR_UART2 8 R/W 0x00 15.3.6.8/15-20

0xEC09_4052 PAR_UART1 8 R/W 0x55 15.3.6.8/15-20

0xEC09_4053 PAR_UART0 8 R/W 0x00 15.3.6.8/15-20

0xEC09_4054 PAR_SDHCH 8 R/W 0x00 15.3.6.9/15-21

0xEC09_4055 PAR_SDHCL 8 R/W 0x00 15.3.6.9/15-21

0xEC09_4056 PAR_SIMP0H 8 R/W 0x00 15.3.6.10/15-21

0xEC09_4057 PAR_SIMP0L 8 R/W 0x00 15.3.6.10/15-21

0xEC09_4058 PAR_SSI0H 8 R/W 0x00 15.3.6.11/15-22

0xEC09_4059 PAR_SSI0L 8 R/W 0x00 15.3.6.11/15-22

0xEC09_405A PAR_DEBUGH1 8 R/W 0x55 15.3.6.12/15-22

0xEC09_405B PAR_DEBUGH0 8 R/W 0x55 15.3.6.12/15-22

0xEC09_405C PAR_DEBUGL 8 R/W 0x01 15.3.6.12/15-22

0xEC09_405E PAR_FEC 8 R/W 0x0D 15.3.6.13/15-23

Mode Select Control Registers

0xEC09_4060 MSCR_SDRAMC 8 R/W 0x03 15.3.7/15-24

Slew Rate Control Registers

0xEC09_4064 SRCR_FB1 8 R/W See Section 15.3.8/15-25

0xEC09_4065 SRCR_FB2 8 R/W See Section 15.3.8/15-25

0xEC09_4066 SRCR_FB3 8 R/W See Section 15.3.8/15-25

0xEC09_4067 SRCR_FB4 8 R/W See Section 15.3.8/15-25

0xEC09_4068 SRCR_DSPIOW 8 R/W 0x03 15.3.8/15-25

0xEC09_4069 SRCR_CANI2C 8 R/W 0x00 15.3.8/15-25

0xEC09_406A SRCR_IRQ0 8 R/W 0x00 15.3.8/15-25

Table 15-4. Pin Multiplexing and Control Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page



Pin-Multiplexing and Control

15-14 NXP Semiconductors

15.3.1 Port Output Data Registers (PODR_x)

The PODR_x registers store the data to be driven on the corresponding port pins when the pins are 
configured for general purpose output. The PODR_x registers are read/write. At reset, all PODR_x bits are 
set.

Reading a PODR_x register returns the current values in the register, not the port pin values. To set bits in 
a PODR_x register, set the PODR_x bits, or set the corresponding bits in PPDSDR_x. To clear bits in a 
PODR_x register, clear the PODR_x bits, or clear the corresponding bits in PCLRR_x.

0xEC09_406B SRCR_TIMER 8 R/W 0x00 15.3.8/15-25

0xEC09_406C SRCR_UART 8 R/W 0x00 15.3.8/15-25

0xEC09_406D SRCR_FEC 8 R/W 0x00 15.3.8/15-25

0xEC09_406E SRCR_SDHC 8 R/W 0x00 15.3.8/15-25

0xEC09_406F SRCR_SIMP0 8 R/W 0x00 15.3.8/15-25

0xEC09_4070 SRCR_SSI0 8 R/W 0x00 15.3.8/15-25

Miscellaneous UART Registers

0xEC09_4074 RTS polarity control register (URTS_POL) 16 R/W 0x0000 15.3.9/15-29

0xEC09_4076 CTS polarity control register (UCTS_POL) 16 R/W 0x0000 15.3.9/15-29

0xEC09_4078 Transmitter wired-or mode control register (UTXD_WOM) 16 R/W 0x0000 15.3.10/15-29

0xEC09_407C Receiver wired-or mode control register (URXD_WOM) 32 R/W 0x0000_0000 15.3.10/15-29

Hysteresis Control Registers

0xEC09_4080 Hysteresis control register 1 (HCR1) 32 R/W 0x0000_0000 15.3.9/15-29

0xEC09_4084 Hysteresis control register 2 (HCR0) 32 R/W 0x0000_0000 15.3.9/15-29

Address: 0xEC09_4000 (PODR_A)
0xEC09_4001 (PODR_B)
0xEC09_4002 (PODR_C)
0xEC09_4003 (PODR_D)
0xEC09_4004 (PODR_E)
0xEC09_4005 (PODR_F)

0xEC09_4006 (PODR_G)
0xEC09_4007 (PODR_H)
0xEC09_4008 (PODR_I)
0xEC09_4009 (PODR_J)
0xEC09_400A (PODR_K)

Access: User read/write

7 6 5 4 3 2 1 0

R
PODR_x

W

Reset: 1 1 1 1 1 1 1 1

Figure 15-2. Port x Output Data Registers (PODR_x)

Table 15-4. Pin Multiplexing and Control Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page
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15.3.2 Port Data Direction Registers (PDDR_x)

The PDDRs control the direction of the port pin drivers when the pins are configured for GPIO. The 
PDDR_x registers are each eight bits wide.

The PDDRs are read/write. At reset, all bits in the PDDRs are cleared. Setting any bit in a PDDR_x register 
configures the corresponding port pin as an output. Clearing any bit in a PDDR_x register configures the 
corresponding pin as an input.

15.3.3 Port Pin Data/Set Data Registers (PPDSDR_x)

The PPDSDR registers reflect the current pin states and control the setting of output pins when the pin is 
configured for GPIO. The PPDSDR_x registers are each eight bits wide.

The PPDSDR_x registers are read/write. At reset, the bits in the PPDSDR_x registers are set to the current 
pin states. Reading a PPDSDR_x register returns the current state of the port x pins. Setting a PPDSDR_x 
register sets the corresponding bits in the PODR_x register. Writing 0s has no effect.

Table 15-5. PODR_x Field Descriptions

Field Description

7–0
PODR_x

Port x output data bits.
0 Drives 0 when the port x pin is general purpose output
1 Drives 1 when the port x pin is general purpose output

Address: 0xEC09_400C (PDDR_A)
0xEC09_400D (PDDR_B)
0xEC09_400E (PDDR_C)
0xEC09_400F (PDDR_D)
0xEC09_4010 (PDDR_E)
0xEC09_4011 (PDDR_F)

0xEC09_4012 (PDDR_G)
0xEC09_4013 (PDDR_H)
0xEC09_4014 (PDDR_I)
0xEC09_4015 (PDDR_J)
0xEC09_4016 (PDDR_K)

Access: User read/write

7 6 5 4 3 2 1 0

R
PDDR_x

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-3. Port x Data Direction Registers (PDDR_x)

Table 15-6. PDDR_x Field Descriptions

Field Description

7–0
PDDR_x

Port x output data direction bits.
1 Port x pin configured as output
0 Port x pin configured as input
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15.3.4 Port Clear Output Data Registers (PCLRR_x)

Clearing a PCLRR_x register clears the corresponding bits in the PODR_x register. Setting it has no effect. 
Reading the PCLRR_x register returns 0s. The PCLRR_x registers are each eight bits wide.

Address: 0xEC09_4018 (PPDSDR_A)
0xEC09_4019 (PPDSDR_B)
0xEC09_401A (PPDSDR_C)
0xEC09_401B (PPDSDR_D)
0xEC09_401C (PPDSDR_E)
0xEC09_401D (PPDSDR_F)

0xEC09_401E (PPDSDR_G)
0xEC09_401F (PPDSDR_H)
0xEC09_4020 (PPDSDR_I)
0xEC09_4021 (PPDSDR_J)
0xEC09_4022 (PPDSDR_K)

Access: User read/write

7 6 5 4 3 2 1 0

R PPDR_x

W PSDR_x

Reset: [Px7] [Px6] [Px5] [Px4] [Px3] [Px2] [Px1] [Px0]

Figure 15-4.  Port x Pin Data/Set Data Registers (PPDSDR_x)

Table 15-7. PPDSDR_x Field Descriptions

Field Description

7–0
PPDR_x

(read)

Port x pin data bits.
0 Port x pin state is 0
1 Port x pin state is 1

7–0
PSDR_x
(write)

Port x set data bits.
0 No effect.
1 Set corresponding PODR_x bit.

Address: 0xEC09_4024 (PCLRR_A)
0xEC09_4025 (PCLRR_B)
0xEC09_4026 (PCLRR_C)
0xEC09_4027 (PCLRR_D)
0xEC09_4028 (PCLRR_E)
0xEC09_4029 (PCLRR_F)

0xEC09_402A (PCLRR_G)
0xEC09_402B (PCLRR_H)
0xEC09_402C (PCLRR_I)
0xEC09_402D (PCLRR_J)
0xEC09_402E (PCLRR_K)

Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W PCLRR_x

Reset: 0 0 0 0 0 0 0 0

Figure 15-5. Port x Clear Output Data Registers (PCLRR_x)

Table 15-8. PCLRR_x Field Descriptions

Field Description

7–0
PCLRR_x

Port x clear data bits.
0 Clears corresponding PODR_x bit
1 No effect
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15.3.5 Pull Control Registers (PCR_x)

Most pins on the device have configurable pull-ups/downs. The pull control registers select their direction 
and enable them.

NOTE
The reset values for PCR_J[PUE1] and PCR_K[PUE0] are 1. This ensures 
that the TXEN pins are pulled low after reset, which disables the Ethernet 
PHY from transmitting unknown data after reset.

The reset values for PCR_A[PUE4, PUS4] are 1. This ensures that after 
reset, a pull-up is enabled on FB_TA/NF_R/B.

PCR_C[PUS2] and PCR_E[PUS7] do not determine the direction of the 
pull when the USBn_VBUS_OC signals control these pins. See Chapter 10, 
“Chip Configuration Module (CCM)”, for a description of the MISCCR 
register which contains the pull direction controls (polarity select) for the 
USB controllers.

15.3.6 Pin Assignment Registers (PAR_x)

The pin assignment registers control which functions are currently active on the external pins. All pin 
assignment registers are read/write. The bit fields in the PAR_x registers are one or two bits wide, except 
for PAR_FEC. The encodings are shown in the tables below and correspond to the headings in Table 15-2.

Address: 0xEC09_4030 (PCR_A)
0xEC09_4032 (PCR_B)
0xEC09_4034 (PCR_C)
0xEC09_4036 (PCR_D)
0xEC09_4038 (PCR_E)
0xEC09_403A (PCR_F)

0xEC09_403C (PCR_G)
0xEC09_403E (PCR_H)
0xEC09_4040 (PCR_I)
0xEC09_4042 (PCR_J)
0xEC09_4044 (PCR_K)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PUE7 PUS7 PUE6 PUS6 PUE5 PUS5 PUE4 PUS4 PUE3 PUS3 PUE2 PUS2 PUE1 PUS1 PUE0 PUS0

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-6. Pull Control Registers (PCR_x)

Table 15-9. PCR_x Field Descriptions

Field Description

15, 13, 11, 9,
7, 5, 3, 1

PUEn

Enables the pull for the corresponding port pin.
0 Pull disabled
1 Pull enabled

14, 12, 10, 8,
6, 4, 2, 0

PUSn

Selects the direction of the pull on corresponding pin when PUEn is set. This bit is ignored if PUEn is cleared.
0 Pull-down
1 Pull-up
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NOTE
In many cases, not all four functions are available on a pin. Do not configure 
the PARs for unavailable functions. Refer to Figure 15-1 for the list of 
signals available on each pin.

15.3.6.1 FlexBus Control Pin Assignment Register (PAR_FBCTL)

15.3.6.2 Byte Enables Pin Assignment Register (PAR_BE)

Table 15-10. PAR_x Settings (Two Bit Field)

Value Function

00 GPIO

01 Alternate 2 Function

10 Alternate 1 Function

11 Primary Function

Table 15-11. PAR_x Settings (One Bit Field)

Value Function

0 GPIO

1 Primary Function

Address: 0xEC09_4048 (PAR_FBCTL) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_ALE PAR_OE

PAR_
FBCLK

PAR_RW PAR_TA
W

Reset: 1 See note #1 1 1 1 1 See note #2

1 Depends on RCON[3] (FB_AD3)
2 Depends on boot source. If booting from NAND flash, resets to 01. If booting from FlexBus, resets to 

11.

Figure 15-7. FlexBus Control Pin Assignment Register (PAR_FBCTL)

Address: 0xEC09_4049 (PAR_BE) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_BE3 PAR_BE2 PAR_BE1 PAR_BE0

W

Reset: See note See note 1 1 1 1

Note: Depends on boot source. If booting from NAND flash, resets to 01. If booting from FlexBus, resets 
to 11.

Figure 15-8. Byte Enable Pin Assignment Register (PAR_BE)
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15.3.6.3 Chip Selects Pin Assignment Register (PAR_CS)

15.3.6.4 CAN1 and I2C0 Pin Assignment Registers (PAR_CANI2C)

15.3.6.5 Edge Port 0 Pin Assignment Registers (PAR_IRQ0H & PAR_IRQ0L)

The PAR_IRQ0 registers control the functions of the edge port pins.

Address: 0xEC09_404A (PAR_CS) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_CS5 PAR_CS4 PAR_CS1

0
PAR_CS0

W

Reset: 1 1 See note #1 0 See note #2

1 Depends on boot source. If booting from NAND flash, resets to 01. Otherwise, resets to 00.
2 Depends on boot source. If booting from FlexBus, resets to 1. Otherwise, resets to 0.

Figure 15-9. Chip Select Pin Assignment Register (PAR_CS)

Address: 0xEC09_404B (PAR_CANI2C) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_I2C0_SCL PAR_I2C0_SDA PAR_CAN1_TX PAR_CAN1_RX

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-10. CAN1 and I2C0 Pin Assignment Register (PAR_CANI2C)

Address: 0xEC09_404C (PAR_IRQ0H) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0
PAR_IRQ07 PAR_IRQ04 PAR_IRQ01

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-11. IRQ0 Pin Assignment High (PAR_IRQ0H)

Address: 0xEC09_40D (PAR_IRQ0L) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_IRQ06 PAR_IRQ03 PAR_IRQ02

0 0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-12. IRQ0 Pin Assignment Low (PAR_IRQ0L)
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15.3.6.6 DSPI0 and One-Wire Pin Assignment Registers (PAR_DSPIOWH & 
PAR_DSPIOWL)

The PAR_DSPIOWH/L registers control the functions of the DSPI and one-wire pins.

15.3.6.7 Timer Pin Assignment Registers (PAR_TIMER)

15.3.6.8 UARTn Pin Assignment Registers (PAR_UARTn)

The PAR_UARTn registers control the functions of the UART2–0 pins.

Address: 0xEC09_404E (PAR_DSPIOWH) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_SIN PAR_SOUT PAR_SCK PAR_PCS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-13. DSPI0 & One-Wire Pin Assignment High (PAR_DSPIOWH)

Address: 0xEC09_404F (PAR_DSPIOWL) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_PCS1

0
PAR_OWDAT

0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-14. DSPI0 & One-Wire Pin Assignment Low (PAR_DSPIOWL)

Address: 0xEC09_4050 (PAR_TIMER) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_T3IN PAR_T2IN PAR_T1IN PAR_T0IN

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-15. Timer Pin Assignment (PAR_TIMER)

Address: 0xEC09_4051 (PAR_UART2)
0xEC09_4052 (PAR_UART1)
0xEC09_4053 (PAR_UART0)

Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_CTS PAR_RTS PAR_RXD PAR_TXD

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-16. UARTn Pin Assignment (PAR_UART2–0)
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15.3.6.9 eSDHC Pin Assignment Registers (PAR_SDHCH & PAR_SDHCL)

The PAR_SDHCH/L registers control the functions of the eSDHC pins.

15.3.6.10 SIM Port 0 Pin Assignment Registers (PAR_SIMP0H & PAR_SIMP0L)

The PAR_SIMP0H/L registers control the functions of the SIM port 1 pins.

Address: 0xEC09_4054 (PAR_SDHCH) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_DATA3 PAR_DATA2 PAR_DATA1 PAR_DATA0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-17. SDHC Pin Assignment High (PAR_SDHCH)

Address: 0xEC09_4055 (PAR_SDHCL) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0
PAR_CMD PAR_CLK

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-18. SDHC Pin Assignment High (PAR_SDHCL)

Address: 0xEC09_4056 (PAR_SIMP0H) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_DATA PAR_VEN PAR_RST PAR_PD

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-19. SIM Port 0 Pin Assignment High (PAR_SIMP0H)

Address: 0xEC09_4057 (PAR_SIMP0L) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
PAR_CLK

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-20. SIM Port 0 Pin Assignment Low (PAR_SIMP0L)
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15.3.6.11 SSI0 Pin Assignment Registers (PAR_SSI0H & PAR_SSI0L)

The PAR_SSI0H/L registers control the functions of the SSI0 pins.

15.3.6.12 Debug Pin Assignment Registers (PAR_DEBUGH1, PAR_DEBUGH0 & 
PAR_DEBUGL)

The PAR_DEBUGx registers control the functions of the debug pins.

Address: 0xEC09_4058 (PAR_SSI0H) Access: User read/write

7 6 5 4 3 2 1 0

R
PAR_RXD PAR_TXD PAR_FS PAR_MCLK

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-21. SSI0 Pin Assignment High (PAR_SSI0H)

Address: 0xEC09_4059 (PAR_SSI0L) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
PAR_BCLK

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-22. SSI0 Pin Assignment Low (PAR_SSI0L)

Address: 0xEC09_405A (PAR_DEBUGH1) Access: User read/write

7 6 5 4 3 2 1 0

R 0 PAR_
DDATA3

0 PAR_
DDATA2

0 PAR_
DDATA1

0 PAR_
DDATA0W

Reset: 0 1 0 1 0 1 0 1

Figure 15-23. Debug Pin Assignment High 1 (PAR_DEBUGH1)

Address: 0xEC09_405B (PAR_DEBUGH0) Access: User read/write

7 6 5 4 3 2 1 0

R 0 PAR_
PST3

0 PAR_
PST2

0 PAR_
PST1

0 PAR_
PST0W

Reset: 0 1 0 1 0 1 0 1

Figure 15-24. Debug Pin Assignment High 0 (PAR_DEBUGH0)
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15.3.6.13 FEC Pin Assignment Registers (PAR_FEC)

The PAR_FEC register configures the device’s pins for the various FEC functions, ULPI, or GPIO 
functions. This register resets only after a power-on-reset.

Address: 0xEC09_405C (PAR_DEBUGL) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 PAR_
ALLPSTW

Reset: 0 0 0 0 0 0 0 1

Figure 15-25. Debug Pin Assignment Low (PAR_DEBUGL)

Address: 0xEC09_405E (PAR_FEC) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0
PAR_FEC

W

Reset: 0 0 0 0 1 1 0 1

Figure 15-26. FEC Pin Assignment (PAR_FEC)
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15.3.7 SDRAM Mode Select Control Registers (MSCR_SDRAMC)

The MSCR_SDRAMC register selects the drive strength of the following SDRAM pins:

• SD_A[14:0], SD_BA[2:0], SD_CAS, SD_CKE, SD_CLK, SD_CLK, SD_CS, SD_D[7:0], 
SD_DQS, SD_DQS, SD_ODT, SD_RAS, and SD_WE

Table 15-12. PAR_FEC Field Descriptions

Field Description

7–3 Reserved, must be cleared.

2–0
PAR_
FEC

PAR_
FEC

Mode Description

0000 MII full mode All 18 MII0 pins function as MII0.
Note: RMII_MODE bit for MAC 0 must be cleared.

0001 MII non-full mode Same as MII full mode, except MII0_MDC and MII0_MDIO pins function as GPIO.
Note: RMII_MODE bit for MAC 0 must be cleared.

0010 — Reserved

0011 RMII0 & 1 full mode All 18 MII0 pins function as their respective RMII0 and RMII1 signals.
Note: RMII_MODE bits for MAC0 and MAC 1 must be set.

0100 RMII0 & 1 non-full 
mode

Same as RMII full mode, but MII0_MDC, MII0_MDIO, MII0_COL and MII0_TXER function 
as GPIO.

Note: RMII_MODE bits for MAC 0 and MAC 1 must be set.

0101 RMII0 full mode
RMII1 non-full mode

Same as RMII full mode, but MII0_COL and MII0_TXER pins function as GPIO.
Note: RMII_MODE bits for MAC 0 and MAC 1 must be set.

0110 RMII0 non-full mode
RMII1 full mode

Same as RMII full mode, except MII0_MDC and MII0_MDIO as GPIO.
Note: RMII_MODE bits for MAC 0 and MAC 1 must be set.

0111 RMII0 full mode All MII0 pins that have RMII0 functionality function as RMII0.
Other nine MII0 pins function as GPIO. 
Note: RMII_MODE bit for MAC 0 must be set.

1000 RMII0 full mode
ULPI mode

All MII0 pins that have RMII0 functionality function as RMII 0.
Other nine MII0 pins function as ULPI signals.
Note: RMII_MODE bit for MAC 0 must be set.

1001 RMII0 non-MI mode Same as RMII0 full mode, except MII0_MDC and MII0_MDIO function as GPIO.
Note: RMII_MODE bit for MAC 0 must be set.

1010 RMII non-MII mode
ULPI mode

Same as RMII0 full & ULPI mode except that MII0_MDC and MII0_MDIO function as GPIO.
Note: RMII_MODE bit for MAC 0 must be set.

1011 RMII1 full mode All MII0 pins that have RMII1 functionality function as RMII 1.
Other 9 MII0 pins function as GPIO.
Note: RMII_MODE bit for MAC 1 must be set.

1100 RMII1 non-MI mode Same as RMII1 full mode except that MII0_COL and MII0_TXER function as GPIO.
Note: RMII_MODE bit for MAC 1 must be set.

1101 All GPIO All MII0 pins function as GPIO.

1110 — Reserved

1111 — Reserved
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15.3.8 Slew Rate Control Registers (SRCR_x)

The SRCR_x registers control the slew rate of the some pins on the device. See Table 15-15 for a list of 
the affected pins.

NOTE
To allow the I/O interfaces to run at their maximum frequency, set their 
respective SRE_x bits to 11.

Address: 0xEC09_4060 (MSCR_SDRAMC) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
MSC

W

Reset: 0 0 0 0 0 0 1 1

Figure 15-27. SDRAMC Mode Select Control Register (MSCR_SDRAMC)

Table 15-13. MSCR_SDRAMC Field Descriptions

Field Description

7–2 Reserved, must be cleared.

1–0
MSC

Drive strength mode.
00 Half strength 1.8V DDR2
01 Full strength 1.8V DDR2
10 Reserved
11 Reserved

Address: 0xEC09_4064 (SRCR_FB1)
0xEC09_4065 (SRCR_FB2)
0xEC09_4066 (SRCR_FB3)

Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
SRE_FBn

W

Reset: 0 0 0 0 0 0 1 1

Figure 15-28. Flexbus Slew Rate Control Registers (SRCR_FB0–3)

Address: 0xEC09_4067 (SRCR_FB4) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0
SRE_FB5 SRE_FB4

W

Reset: 0 0 0 0 1 See Note 1 See Note

Note: Reset state is the value of CCR[LOAD].

Figure 15-29. Flexbus Slew Rate Control Registers (SRCR_FB4)
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Address: 0xEC09_4068 (SRCR_DSPIOW) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0
SRE_OWDAT

0 0
SRE_DSPI0

W

Reset: 0 0 0 0 0 0 1 1

Figure 15-30. DSPI0 & One-Wire Slew Rate Control Register (SRCR_DSPIOW)

Address: 0xEC09_4069 (SRCR_CANI2C) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0
SRE_CAN1 SRE_I2C0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-31. CAN & I2C Slew Rate Control Register (SRCR_CANI2C)

Address: 0xEC09_406A (SRCR_IRQ0) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
SRE_IRQ0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-32. Edge Port 0 Slew Rate Control Register (SRCR_IRQ0)

Address: 0xEC09_406B (SRCR_TIMER) Access: User read/write

7 6 5 4 3 2 1 0

R
SRE_TIMER3 SRE_TIMER2 SRE_TIMER1 SRE_TIMER0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-33. Timer Slew Rate Control Register (SRCR_TIMER)

Address: 0xEC09_406C (SRCR_UART) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0
SRE_UART2 SRE_UART1 SRE_UART0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-34. UART Slew Rate Control Register (SRCR_UART)
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Address: 0xEC09_406D (SRCR_FEC) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0
SRE_RMII0 SRE_RMII1

W

Reset: 0 0 0 0 0 0 0 0

Note: This register is reset only after a power-on-reset.

Figure 15-35. FEC Slew Rate Control Register (SRCR_FEC)

Address: 0xEC09_406E (SRCR_SDHC) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
SRE_SDHC

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-36. eSDHC Slew Rate Control Register (SRCR_SDHC)

Address: 0xEC09_406F (SRCR_SIM0) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
SRE_SIMP0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-37. SIM0 Slew Rate Control Register (SRCR_SIM0)

Address: 0xEC09_4070 (SRCR_SSI0) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
SRE_SSI0

W

Reset: 0 0 0 0 0 0 0 0

Figure 15-38. SSI0 Slew Rate Control Register (SRCR_SSI0)

Table 15-14. SRCR_x Field Descriptions

Field Description

SRE_x Slew rate control.
00 Lowest slew rate
01 Low slew rate
10 High slew rate
11 Highest slew rate

Note: See above figures for bit field positions.
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Table 15-15. SRCR_x Pins Affected

SRCR_x Signals Affected

SRE_FB1 FB_BE/BWE[1:0], FB_CS[5,4,0], FB_ALE, FB_CLK
(dedicated FlexBus clock and control signals)

SRE_FB2 FB_BE/BWE[3:2], FB_CS1, FB_OE, FB_R/W, FB_TA
(shared FlexBus/NFC signals)

SRE_FB3 FB_AD[15:0]

SRE_FB4 FB_AD[23:16]

SRE_FB5 FB_AD[31:24]

SRE_DSPI0 DSPI0_PCS[1:0], DSPI0_SIN, DSPI0_SOUT, DSPI0_SCK

SRE_OWDAT OW_DAT

SRE_CAN1 CAN1_TX, CAN1_RX

SRE_I2C0 I2C0_SDA, I2C_SCL

SRE_IRQ0 IRQ0[7,6,4:1]

SRE_TIMER3 T3IN

SRE_TIMER2 T2IN

SRE_TIMER1 T1IN

SRE_TIMER0 T0IN

SRE_UART2 UART2_TXD, UART2_RXD, UART2_CTS, UART2_RTS

SRE_UART1 UART1_TXD, UART1_RXD, UART1_CTS, UART1_RTS

SRE_UART0 UART0_TXD, UART0_RXD, UART0_CTS, UART0_RTS

SRE_SDHC SDHC_CLK, SDHC_CMD, SDHC_DAT[3:0]

SRE_SIM0 SIM0_CLK, SIM0_PD, SIM0_RST, SIM0_VEN, SIM0_DAT

SRE_SSI0 SSI0_BCLK, SSI0_FS, SSI0_MCLK, SSI0_RXD, SSI0_TXD

SRE_RMII0 MII0_COL, MII0_TXER, MII0_CRS, MII0_RXD[3:2], MII0_RXCLK, 
MII0_TXD[3:2], MII0_TXCLK

SRE_RMII1 MII0_MDC, MII0_MDIO, MII0_RXDV, MII0_RXD[1:0], MII0_RXER, 
MII0_TXD[1:0], MII0_TXEN
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15.3.9 UART RTS and CTS Polarity Control Register (URTS_POL & 
UCTS_POL)

Ux_POL controls the polarity of the UARTs’ RTS and CTS signals.

15.3.10 UART Transmitter & Receiver Wired-Or Mode Control Registers 
(UTXD_WOM & URXD_WOM)

Ux_WOM controls the wired-or mode of the UARTs’ TXD and RXD signals.

Address: 0xEC09_4074 (URTS_POL)
0xEC09_4076 (UCTS_POL)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 U2
INV

U1
INV

U0
INVW

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-39. UART RTS and CTS Polarity Control Register (URTS_POL & UCTS_POL)

Table 15-16. URTS_POL & UCTS_POL Field Descriptions

Field Description

15–3 Reserved, must be cleared.

2–0
UnINV

UARTn inverter enable
0 Disable; corresponding RTS/CTS signal is asserted low
1 Enable; corresponding RTS/CTS signal is asserted high

Address: 0xEC09_4078 (UTXD_WOM) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 U9
WOM

U8
WOM

U7
WOM

U6
WOM

U5
WOM

U4
WOM

U3
WOM

U2
WOM

U1
WOM

U0
WOMW

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-40. UART TXD Wired-Or Mode Control Register (UTXD_WOM)

Table 15-17. UTXD_WOM Field Descriptions

Field Description

15–10 Reserved, must be cleared.

9–0
UnWOM

UARTn_TXD wired-or enable.
0 Disable; corresponding UARTn_TXD not in wired-or mode.
1 Enable; corresponding UARTn_TXD in wired-or mode.
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15.4 Hysteresis Control Registers (HCR0–1)
Some of the pins on the device have hysteresis controls. The bit field names in the following figures 
correspond to the GPIO signal names in Table 15-2.

Address: 0xEC09_407C (URXD_WOM) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 U9
WOM

U8
WOMW

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R U7
WOM

U6
WOM

U5
WOM

U4
WOM

U3
WOM

U2
WOM

U1
WOM

U0
WOMW

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-41. UART RXD Wired-Or Mode Control Register (URXD_WOM)

Table 15-18. UTXD_WOM Field Descriptions

Field Description

31–20 Reserved, must be cleared.

19–0
UnWOM

UARTn_RXD wired-or control.
00 Disconnect UARTn_RXD from UARTn_TXD
01 Connect UARTn_RXD to UARTn_TXD
1x Automatic single-wire mode. UARTn_RTS controls when UARTn_RXD is connected to 

UARTn_TXD

Address: 0xEC09_4080 (HCR1) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PG[4:0] PF[7:3] PE[6:0] PD[7:3] PC[7:1] PB[2:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-42. Hysteresis Control Register 1 (HCR1)

Address: 0xEC09_4084 (HCR0) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PK
3

PK
0

PD[2:0]
PE
7

PH[7:3]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-43. Hysteresis Control Register 0 (HCR0)
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15.5 Functional Description

15.5.1 Overview

Initial pin function is determined during reset configuration. The pin assignment registers select among 
various primary functions and general purpose I/O after reset. Most pins are configured as GPIO by 
default. The notable exceptions are external bus control pins, address/data pins, chip select, and debug 
pins. These pins are configured for their primary functions after reset, allowing access to external boot 
memory and allowing dynamic debug information to appear on the pins after reset.

Every GPIO pin is individually configurable as an input or output via a data direction register (PDDR_x). 
Every GPIO port has an output data register (PODR_x) and a pin data register (PPDSDR_x) to monitor 
and control the state of its pins. Data written to a PODR_x register is stored and then driven to the 
corresponding port x pins configured as outputs.

Reading a PODR_x register returns the current state of the register regardless of the state of the 
corresponding pins. Reading a PPDSDR_x register returns the current state of the corresponding pins 
when configured as GPIO, regardless of whether the pins are inputs or outputs.

Every GPIO port has a PPDSDR_x register and a clear register (PCLRR_x) for setting or clearing 
individual bits in the PODR_x register.

15.5.2 Port Digital I/O Timing

Input data on all pins configured as general purpose input is synchronized to the rising edge of FB_CLK, 
as shown in Figure 15-44.

Figure 15-44. General Purpose Input Timing

Data written to the PODR_x register of any pin configured as a general purpose output is immediately 
driven to its respective pin, as shown in Figure 15-45.

Table 15-19. HCR0–1 Field Descriptions

Field Description

Pxn Hysteresis enable
0 Disable
1 Enable

FB_CLK

Pin Data

Input

Register

Pin
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Figure 15-45. General Purpose Output Timing

15.6 Initialization/Application Information
The initialization for the pin multiplexing and control is done during reset configuration. All registers are 
reset to a predetermined state. Refer to Section 15.3, “Memory Map/Register Definition,” for more details 
on reset and initialization.

FB_CLK

Output Data

Output Pin

Register
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Chapter 16  
Rapid GPIO (RGPIO)

16.1 Introduction
The Rapid GPIO (RGPIO) module provides a 16-bit general-purpose I/O module directly connected to the 
processor’s high-speed 32-bit local bus. This connection plus support for single-cycle, zero wait-state data 
transfers allows the RGPIO module to provide improved pin performance when compared to more 
traditional GPIO modules located on the internal slave peripheral bus.

Many of the pins associated with a device may be used for several different functions. Their primary 
functions are to provide external interfaces to access off-chip resources. When not used for their primary 
function, many of the pins may be used as general-purpose digital I/O (GPIO) pins. The definition of the 
exact pin functions and the affected signals is specific to each device. Every GPIO port, including the 
RGPIO module, has registers that configure, monitor, and control the port pins.

                  

16.1.1 Overview

The RGPIO module provides 16-bits of high-speed GPIO functionality, mapped to the processor’s bus. 
The key features of this module include:

• 16 bits of high-speed GPIO functionality connected to the processor’s local 32-bit bus

• Memory-mapped device connected to the ColdFire core’s local bus

— Support for all access sizes: byte, word, and longword

— All reads and writes complete in a single data phase cycle for zero wait-state response

• Data bits can be accessed directly or via alternate addresses to provide set, clear, and toggle 
functions

— Alternate addresses allow set, clear, toggle functions using simple store operations without the 
need for read-modify-write references

• Unique data direction and pin enable control registers

• Package pin toggle rates typically 1.5–3.5x faster than comparable pin mapped onto peripheral bus

A simplified block diagram of the RGPIO module is shown in Figure 16-1. The details of the pin muxing 
and pad logic are device-specific.
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Figure 16-1. RGPIO Block Diagram

16.1.2 Features

The major features of the RGPIO module providing 16 bits of high-speed general-purpose input/output 
are:

• Small memory-mapped device connected to the processor’s local bus

— All memory references complete in a single cycle to provide zero wait-state responses

— Located in processor’s high-speed clock domain

– Option to operate at the processor clock or half the processor clock frequency by a register 
located in the CCM. See Chapter 10, “Chip Configuration Module (CCM)”, for details.

• Simple programming model

— Four 16-bit registers, mapped as three program-visible locations

– Register for pin enables

– Register for controlling the pin data direction

– Register for storing output pin data

decode
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31

31

0

31 31 15
16 16 0

31 
16

15 
0
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rgpio_enable rgpio_direction rgpio_data_out rgpio_data_in

Control
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– Register for reading current pin state

– The two data registers (read, write) are mapped to a single program-visible location

— Alternate addresses to perform data set, clear, and toggle functions using simple writes

— Separate read and write programming model views enable simplified driver software

– Support for any access size (byte, word, or longword)

16.1.3 Modes of Operation

The RGPIO module does not support any special modes of operation. As a memory-mapped device 
located on the processor’s high-speed local bus, it responds based strictly on memory address and does not 
consider the operating mode (supervisor, user) of its references.

16.2 External Signal Description

16.2.1 Overview

As shown in Figure 16-1, the RGPIO module’s interface to external logic is indirect via the device 
pin-muxing and pad logic. For a list of the associated RGPIO input/output signals, see Table 16-1.

16.2.2 Detailed Signal Descriptions

Table 16-2 provides descriptions of the RGPIO module’s input and output signals.

Table 16-1. RGPIO Module External I/O Signals

Signal Name Type Description

RGPIO[15:0] I/O RGPIO Data Input/Output

Table 16-2. RGPIO Detailed Signal Descriptions

Signal I/O Description

RGPIO[15:0] I/O Data Input/Output. When configured as an input, the state of this signal is reflected in the read 
data register. When configured as an output, this signal is the output of the write data register.

State 
Meaning

Asserted—
Input: Indicates the RGPIO pin was sampled as a logic high at the time of 
the read.
Output: Indicates a properly-enabled RGPIO output pin is to be driven high.

Negated—
Input: Indicates the RGPIO pin was sampled as a logic low at the time of the 
read.
Output: Indicates a properly-enabled RGPIO output pin is to be driven low.

Timing Assertion/Negation—
Input: Anytime. The input signal is sampled at the rising-edge of the 
processor’s high-speed clock on the data phase cycle of a read transfer of 
this register.
Output: Occurs at the rising-edge of the processor’s high-speed clock on 
the data phase cycle of a write transfer to this register. This output is 
asynchronously cleared by system reset.
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16.3 Memory Map/Register Definition
The RGPIO module provides a compact 16-byte programming model based at a system memory address 
of 0x8C00_0000 (noted as RGPIO_BASE throughout the chapter). The RGPIOBAR register configures 
access to the RGPIO module. Program this register by using the privileged MOVEC instruction with an 
Rc address of 0x009. As previously noted, the programming model views are different between reads and 
writes as this enables simplified software for manipulation of the RGPIO pins.

Additionally, the RGPIO programming model is defined with a 32-bit organization. The basic size of each 
program-visible register is 16 bits, but the programming model may be referenced using byte (8-bit), word 
(16-bit) or longword (32-bit) accesses. Performance is typically maximized using 32-bit accesses.

NOTE
Writes to the two-byte fields at RGPIO_BASE + 0x8 and 
RGPIO_BASE + 0xC are allowed, but do not affect any program-visible 
register within the RGPIO module.

Table 16-3. RGPIO Write Memory Map

Address Register
Width 
(bits)

Access Reset Value Section/Page

0x8C00_0000 RGPIO Data Direction Register (RGPIO_DIR) 16 W 0x0000 16.3.2/16-5

0x8C00_0002 RGPIO Write Data Register (RGPIO_DATA) 16 W 0x0000 16.3.3/16-6

0x8C00_0004 RGPIO Pin Enable Register (RGPIO_ENB) 16 W 0x0000 16.3.4/16-6

0x8C00_0006 RGPIO Write Data Clear Register (RGPIO_CLR) 16 W N/A 16.3.5/16-7

0x8C00_000A RGPIO Write Data Set Register (RGPIO_SET) 16 W N/A 16.3.6/16-7

0x8C00_000E RGPIO Write Data Toggle Register (RGPIO_TOG) 16 W N/A 16.3.7/16-8

Table 16-4. RGPIO Read Memory Map

Address Register
Width 
(bits)

Access Reset Value Section/Page

0x8C00_0000 RGPIO Data Direction Register (RGPIO_DIR) 16 R 0x0000 16.3.2/16-5

0x8C00_0002 RGPIO Write Data Register (RGPIO_DATA) 16 R 0x0000 16.3.3/16-6

0x8C00_0004 RGPIO Pin Enable Register (RGPIO_ENB) 16 R 0x0000 16.3.4/16-6

0x8C00_0006 RGPIO Write Data Register (RGPIO_DATA) 16 R 0x0000 16.3.3/16-6

0x8C00_0008 RGPIO Data Direction Register (RGPIO_DIR) 16 R 0x0000 16.3.2/16-5

0x8C00_000A RGPIO Write Data Register (RGPIO_DATA) 16 R 0x0000 16.3.3/16-6

0x8C00_000C RGPIO Data Direction Register (RGPIO_DIR) 16 R 0x0000 16.3.2/16-5

0x8C00_000E RGPIO Write Data Register (RGPIO_DATA) 16 R 0x0000 16.3.3/16-6
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16.3.1 RGPIO Base Address Register (RGPIOBAR)

Figure 16-2. RGPIO Base Address Register (RGPIOBAR)

16.3.2 RGPIO Data Direction (RGPIO_DIR)

The read/write RGPIO_DIR register defines whether a properly-enabled RGPIO pin is configured as an 
input or output:

• Setting any bit in RGPIO_DIR configures a properly-enabled RGPIO port pin as an output

• Clearing any bit in RGPIO_DIR configures a properly-enabled RGPIO port pin as an input

At reset, all bits in the RGPIO_DIR are cleared.

Figure 16-3. RGPIO Data Direction Register (RGPIO_DIR)

Rc: 0x009 Access: Supervisor write-only
Debug read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
UD V

W

Reset 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

Table 16-5. 

Field Description

31–2 Reserved, must be set to 0b1000_1100_0000_0000_0000_0000_0011_01.

1
UD

User data address space mask.
0 Allows access to the RGPIO module
1 Disables the address space from the RGPIO module. If a reference using this address space is made, it is 

inhibited from accessing the RGPIO module, and is processed like any other memory reference.

0
V

Valid.
0 Processor accesses of the RGPIO are masked
1 Processor accesses of the RGPIO are enabled

Offset: RGPIO_Base + 0x0 (RGPIO_DIR)
RGPIO_Base + 0x8

RGPIO_Base + 0xC

Access: Read/write
Read-only
Read-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DIR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 16-6. RGPIO_DIR Field Descriptions

Field Description

15–0
DIR

Data direction.
0 A properly-enabled RGPIO pin is configured as an input
1 A properly-enabled RGPIO pin is configured as an output
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16.3.3 RGPIO Data (RGPIO_DATA)

The RGPIO_DATA register specifies the write data for a properly-enabled RGPIO output pin or the 
sampled read data value for a properly-enabled input pin. An attempted read of the RGPIO_DATA register 
returns undefined data for disabled pins, since the data value is dependent on the device-level pin muxing 
and pad implementation. The RGPIO_DATA register is read/write. At reset, all bits in the RGPIO_DATA 
registers are cleared.

To set bits in a RGPIO_DATA register, directly set the RGPIO_DATA bits or set the corresponding bits in 
the RGPIO_SET register. To clear bits in the RGPIO_DATA register, directly clear the RGPIO_DATA 
bits, or clear the corresponding bits in the RGPIO_CLR register. Setting a bit in the RGPIO_TOG register 
inverts (toggles) the state of the corresponding bit in the RGPIO_DATA register.

Figure 16-4. RGPIO Data Register (RGPIO_DATA)

16.3.4 RGPIO Pin Enable (RGPIO_ENB)

The RGPIO_ENB register configures the corresponding package pin as a RGPIO pin instead of the normal 
GPIO pin mapped onto the  peripheral bus.

The RGPIO_ENB register is read/write. At reset, all bits in the RGPIO_ENB are cleared, disabling the 
RGPIO functionality.

Figure 16-5. RGPIO Enable Register (RGPIO_ENB)

Offset: RGPIO_Base + 0x2 (RGPIO_DATA)
RGPIO_Base + 0x6

RGPIO_Base + 0xA
RGPIO_Base + 0xE

Access: Read/write
Read/Indirect Write
Read/Indirect Write
Read/Indirect Write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 16-7. RGPIO_DATA Field Descriptions

Field Description

15–0
DATA

RGPIO data.
0 A properly-enabled RGPIO output pin is driven with a logic 0, or a properly-enabled RGPIO input pin was read as 

a logic 0
1 A properly-enabled RGPIO output pin is driven with a logic 1, or a properly-enabled RGPIO input pin was read as 

a logic 1

Offset: RGPIO_Base + 0x4 (RGPIO_ENB) Access: Read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ENB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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16.3.5 RGPIO Clear Data (RGPIO_CLR)

The RGPIO_CLR register provides a mechanism to clear specific bits in the RGPIO_DATA by performing 
a simple write. Clearing a bit in RGPIO_CLR clears the corresponding bit in the RGPIO_DATA register. 
Setting it has no effect. The RGPIO_CLR register is write-only; reads of this address return the 
RGPIO_DATA register.

Figure 16-6. RGPIO Clear Data Register (RGPIO_CLR)

16.3.6 RGPIO Set Data (RGPIO_SET)

The RGPIO_SET register provides a mechanism to set specific bits in the RGPIO_DATA register by 
performing a simple write. Setting a bit in RGPIO_SET asserts the corresponding bit in the RGPIO_DATA 
register. Clearing it has no effect. The RGPIO_SET register is write-only; reads of this address return the 
RGPIO_DATA register.

Figure 16-7. RGPIO Set Data Register (RGPIO_SET)

Table 16-8. RGPIO_ENB Field Descriptions

Field Description

15–0
ENB

Enable pin for RGPIO
0 The corresponding package pin is configured for use as a normal GPIO pin, not a RGPIO
1 The corresponding package pin is configured for use as a RGPIO pin

Offset: RGPIO_Base + 0x6 (RGPIO_CLR) Access: Write-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W CLR

Reset — — — — — — — — — — — — — — — —

Table 16-9. RGPIO_CLR Field Descriptions

Field Description

15–0
CLR

Clear data bit
0 Clears the corresponding bit in the RGPIO_DATA register
1 No effect

Offset: RGPIO_Base + 0xA (RGPIO_SET) Access: Write-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W SET

Reset — — — — — — — — — — — — — — — —
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16.3.7 RGPIO Toggle Data (RGPIO_TOG)

The RGPIO_TOG register provides a mechanism to invert (toggle) specific bits in the RGPIO_DATA 
register by performing a simple write. Setting a bit in RGPIO_TOG inverts the corresponding bit in the 
RGPIO_DATA register. Clearing it has no effect. The RGPIO_TOG register is write-only; reads of this 
address return the RGPIO_DATA register.

Figure 16-8. RGPIO Toggle Data Register (RGPIO_TOG)

16.4 Functional Description
The RGPIO module is a relatively-simple design with its behavior controlled by the program-visible 
registers defined within its programming model.

The RGPIO module is connected to the processor’s local two-stage pipelined  bus with the stages of the 
ColdFire core’s operand execution pipeline (OEP) mapped directly onto the bus. This structure allows the 
processor access to the RGPIO module for single-cycle pipelined reads and writes with a zero wait-state 
response (as viewed in the system bus data phase stage). 

16.5 Initialization Information
The reset state of the RGPIO module disables the entire 16-bit data port. Prior to using the RGPIO port, 
software typically:

• Enables the appropriate pins in RGPIO_ENB

• Configures the pin direction in RGPIO_DIR

• Defines the contents of the data register (RGPIO_DATA)

Table 16-10. RGPIO_SET Field Descriptions

Field Description

15–0
SET

Set data bit
0 No effect
1 Sets the corresponding bit in the RGPIO_DATA register

Offset: RGPIO_Base + 0xE (RGPIO_TOG) Access: Write-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W TOG

Reset — — — — — — — — — — — — — — — —

Table 16-11. RGPIO_TOG Field Descriptions

Field Description

15–0
TOG

Toggle data.
0 No effect
1 Inverts the corresponding bit in RGPIO_DATA
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16.6 Application Information
This section examines the relative performance of the RGPIO output pins for two simple applications

• The processor executes a loop to toggle an output pin for a specific number of cycles, producing a 
square-wave output

• The processor transmits a 16-bit message using a three-pin SPI-like interface with a serial clock, 
serial chip select, and serial data bit.

In both applications, the relative speed of the GPIO output is presented as a function of the location of the 
output bit (RGPIO versus peripheral bus GPIO).

16.6.1 Application 1: Simple Square-Wave Generation

In this example, several different instruction loops are executed, each generating a square-wave output 
with a 50% duty cycle. For this analysis, the executed code is mapped into the processor’s RAM. The 
following instruction loops were studied:

• BCHG_LOOP — In this loop, a bit change instruction was executed using the GPIO data byte as 
the operand. This instruction performs a read-modify-write operation and inverts the addressed bit. 
A pulse counter is decremented until the appropriate number of square-wave pulses have been 
generated.

• SET+CLR_LOOP — For this construct, two store instructions are executed: one to set the GPIO 
data pin and another to clear it. Single-cycle NOP instructions (the tpf opcode) are included to 
maintain the 50% duty cycle of the generated square wave. The pulse counter is decremented until 
the appropriate number of square-wave pulse have been generated.

The square-wave output frequency was measured and the relative performance results are presented in 
Table 16-12. The relative performance is stated as a fraction of the processor’s operating frequency, 
defined as f MHz. The performance of the BCHG loop operating on a GPIO output is selected as the 
reference.

NOTE
The square-wave frequency is measured from rising-edge to rising-edge, 
where the output wave has a 50% duty cycle.

Table 16-12. Square-Wave Output Performance

Loop

Peripheral Bus-mapped GPIO RGPIO

Sq-Wave
Frequency

Frequency @
CPU f = 50 MHz

Relative
Speed

Sq-Wave
Frequency

Frequency @
CPU f = 50 MHz

Relative
Speed

bchg (1/24)  f MHz 2.083 MHz 1.00x (1/14)  f MHz 3.571 MHz 1.71x

set+clr (+toggle) (1/12)  f MHz 4.167 MHz 2.00x (1/8)  f MHz 6.250 MHz 3.00x
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16.6.2 Application 2: 16-bit Message Transmission using SPI Protocol

In this second example, a 16-bit message is transmitted using three programmable output pins. The output 
pins include a serial clock, an active-high chip select, and the serial data bit. The software is configured to 
sample the serial data bit at the rising-edge of the clock with the data sent in a most-significant to 
least-significant bit order. The resulting 3-bit output is shown in Figure 16-9.

Figure 16-9. GPIO SPI Example Timing Diagram

For this example, the processing of the SPI message is considerably more complex than the generation of 
a simple square wave of the previous example. The code snippet used to extract the data bit from the 
message and build the required GPIO data register writes is shown in Figure 16-10.
# subtest: send a 16-bit message via a SPI interface using a RGPIO

                      # the SPI protocol uses a 3-bit value: clock, chip-select, data
                      # the data is centered around the rising-edge of the clock
                         
                              align   16
                      send_16b_spi_message_rgpio:
00510: 4fef fff4              lea     -12(%sp),%sp        # allocate stack space
00514: 48d7 008c              movm.l  &0x8c,(%sp)         # save d2,d3,d7
00518: 3439 0080 0582         mov.w   RAM_BASE+message2,%d2   # get 16-bit message
0051e: 760f                   movq.l  &15,%d3             # static shift count
00520: 7e10                   movq.l  &16,%d7             # message bit length
00522: 207c 00c0 0003         mov.l   &RGPIO_DATA+1,%a0   # pointer to low-order data byte
00528: 203c 0000 ffff         mov.l   &0xffff,%d0         # data value for _ENB and _DIR regs
0052e: 3140 fffd              mov.w   %d0,-3(%a0)         # set RGPIO_DIR register
00532: 3140 0001              mov.w   %d0,1(%a0)          # set RGPIO_ENB register

00536: 223c 0001 0000         mov.l   &0x10000,%d1        # d1[17:16] = {clk, cs}
0053c: 2001                   mov.l   %d1,%d0             # copy into temp reg
0053e: e6a8                   lsr.l   %d3,%d0             # align in d0[2:0]
00540: 5880                   addq.l  &4,%d0              # set clk = 1
00542: 1080                   mov.b   %d0,(%a0)           # initialize data
00544: 6002                   bra.b   L%1
                              align   4
                      
                      L%1:
00548: 3202                   mov.w   %d2,%d1             # d1[17:15] = {clk, cs, data}
0054a: 2001                   mov.l   %d1,%d0             # copy into temp reg
0054c: e6a8                   lsr.l   %d3,%d0             # align in d0[2:0]
0054e: 1080                   mov.b   %d0,(%a0)           # transmit data with clk = 0
00550: 5880                   addq.l  &4,%d0              # force clk = 1
00552: e38a                   lsl.l   &1,%d2              # d2[15] = new message data bit
00554: 51fc                   tpf                         # preserve 50% duty cycle
00556: 51fc                   tpf
00558: 51fc                   tpf
0055a: 51fc                   tpf

15 14 13 2 1 0

gpio_cs

gpio_clk

gpio_data
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0055c: 1080                   mov.b   %d0,(%a0)           # transmit data with clk = 1
0055e: 5387                   subq.l  &1,%d7              # decrement loop counter
00560: 66e6                   bne.b   L%1
                      
00562: c0bc 0000 fff5         and.l   &0xfff5,%d0         # negate chip-select
00568: 1080                   mov.b   %d0,(%a0)           # update gpio
                      
0056a: 4cd7 008c              movm.l  (%sp),&0x8c         # restore d2,d3,d7
0056e: 4fef 000c              lea     12(%sp),%sp         # deallocate stack space
00572: 4e75                   rts

Figure 16-10. GPIO SPI Code Example

The resulting SPI performance, as measured in the effective Mbps transmission rate for the 16-bit message, 
is shown in Table 16-13.

Table 16-13. Emulated SPI Performance using GPIO Outputs

Peripheral Bus-mapped GPIO RGPIO

SPI Speed @
CPU f = 50 MHz

Relative
Speed

SPI Speed @
CPU f = 50 MHz

Relative
Speed

2.063 Mbps 1.00x 3.809 Mbps 1.29x
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Chapter 17  
Interrupt Controller Modules (INTC)

17.1 Introduction
This section details the functionality of the interrupt controllers (INTC0, INTC1, INTC2). The general 
features of the interrupt controller block include:

• 192 fully-programmable interrupt sources. Not all possible interrupt source locations are used on 
this device

• Each of the sources has a unique interrupt control register (ICR0n, ICR1n, ICR2n) to define the 
software-assigned levels

• Unique vector number for each interrupt source

• Ability to mask any individual interrupt source, plus global mask-all capability

• Supports hardware and software interrupt acknowledge cycles

• Wake-up signal from low-power stop modes

The 64, fully-programmable interrupt sources for the three interrupt controllers manage the complete set 
of interrupt sources from all of the modules on the device. This section describes how the interrupt sources 
are mapped to the interrupt controller logic and how interrupts are serviced.

17.1.1 68 K/ColdFire Interrupt Architecture Overview

Before continuing with the specifics of the interrupt controllers, a brief review of the interrupt architecture 
of the 68K/ColdFire family is appropriate. 

The interrupt architecture of ColdFire is exactly the same as the M68000 family, where there is a 3-bit 
encoded interrupt priority level sent from the interrupt controller to the core, providing 7 levels of interrupt 
requests. Level 7 represents the highest priority interrupt level, while level 1 is the lowest priority. The 
processor samples for active interrupt requests once-per-instruction by comparing the encoded priority 
level against a 3-bit interrupt mask value (I) contained in bits 10:8 of the machine’s status register (SR). If 
the priority level is greater than the SR[I] field at the sample point, the processor suspends normal 
instruction execution and initiates interrupt exception processing. Level 7 interrupts are treated as 
non-maskable and edge-sensitive within the processor, while levels 1-6 are treated as level-sensitive and 
may be masked depending on the value of the SR[I] field. For correct operation, the ColdFire device 
requires that, after asserted, the interrupt source remain asserted until explicitly disabled by the interrupt 
service routine.

During the interrupt exception processing, the CPU enters supervisor mode, disables trace mode, and then 
fetches an 8-bit vector from the interrupt controller. This byte-sized operand fetch is known as the interrupt 
acknowledge (IACK) cycle with the ColdFire implementation using a special memory-mapped address 
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space within the interrupt controller. The fetched data provides an index into the exception vector table 
that contains 256 addresses, each pointing to the beginning of a specific exception service routine. In 
particular, vectors 64 - 255 of the exception vector table are reserved for user interrupt service routines. 
The first 64 exception vectors are reserved for the processor to manage reset, error conditions (access, 
address), arithmetic faults, system calls, etc. After the interrupt vector number has been retrieved, the 
processor continues by creating a stack frame in memory. For ColdFire, all exception stack frames are 2 
longwords in length, and contain 32 bits of vector and status register data, along with the 32-bit program 
counter value of the instruction that was interrupted (see Section 3.3.3.1, "Exception Stack Frame 
Definition",” for more information on the stack frame format). After the exception stack frame is stored in 
memory, the processor accesses the 32-bit pointer from the exception vector table using the vector number 
as the offset, and then jumps to that address to begin execution of the service routine. After the status 
register is stored in the exception stack frame, the SR[I] mask field is set to the level of the interrupt being 
acknowledged, effectively masking that level and all lower values while in the service routine.

The processing of the interrupt acknowledge cycle is fundamentally different than previous 68K/ColdFire 
cores. In this approach, all IACK cycles are directly managed by the interrupt controller, so the requesting 
peripheral device is not accessed during the IACK. As a result, the interrupt request must be explicitly 
cleared in the peripheral during the interrupt service routine. For more information, see Section 17.3.1.3, 
"Interrupt Vector Determination".”

ColdFire processors guarantee that the first instruction of the service routine is executed before sampling 
for interrupts is resumed. By making this initial instruction a load of the SR, interrupts can be safely 
disabled, if required.

For more information on exception processing, see the ColdFire Programmer’s Reference Manual at 
http://www.nxp.com/coldfire.

17.2 Memory Map/Register Definition
The register programming model for the interrupt controllers is memory-mapped to a 256-byte space. In 
the following discussion, there are a number of program-visible registers greater than 32 bits in size. For 
these control fields, the physical register is partitioned into two 32-bit values: a register high (the upper 
longword) and a register low (the lower longword). The nomenclature <reg_name>H and <reg_name>L 
is used to reference these values.

The registers and their locations are defined in Table 17-2. The base addresses for the interrupt controllers 
are listed below.

Table 17-1. Interrupt Controller Base Addresses

Interrupt Controller Number Base Address

INTC0 0xFC04_8000

INTC1 0xFC04_C000

INTC2 0xFC05_0000

Global IACK Registers Space1 0xFC05_4000

http://www.freescale.com/coldfire
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1 This address space only contains the global SWIACK and global L1ACK-L7IACK registers. See 
Section 17.2.10, "Software and Level 1–7 IACK Registers (SWIACKn, L1IACKn–L7IACKn)"” for more 
information

Table 17-2. Interrupt Controller Memory Map

Address Register
Width
(bits)

Access Reset Value
Section/

Page

Interrupt Controller 0

0xFC04_8000 Interrupt Pending Register High (IPRH0) 32 R 0x0000_0000 17.2.1/17-4

0xFC04_8004 Interrupt Pending Register Low (IPRL0) 32 R 0x0000_0000 17.2.1/17-4

0xFC04_8008 Interrupt Mask Register High (IMRH0) 32 R/W 0xFFFF_FFFF 17.2.2/17-5

0xFC04_800C Interrupt Mask Register Low (IMRL0) 32 R/W 0xFFFF_FFFF 17.2.2/17-5

0xFC04_8010 Interrupt Force Register High (INTFRCH0) 32 R/W 0x0000_0000 17.2.3/17-7

0xFC04_8014 Interrupt Force Register Low (INTFRCL0) 32 R/W 0x0000_0000 17.2.3/17-7

0xFC04_801A Interrupt Configuration Register (ICONFIG) 16 R/W 0x0000 17.2.4/17-8

0xFC04_801C Set Interrupt Mask (SIMR0) 8 W 0x00 17.2.5/17-8

0xFC04_801D Clear Interrupt Mask (CIMR0) 8 W 0x00 17.2.6/17-9

0xFC04_801E Current Level Mask (CLMASK) 8 R/W 0x0F 17.2.7/17-10

0xFC04_801F Saved Level Mask (SLMASK) 8 R/W 0x0F 17.2.8/17-11

0xFC04_8040 + n
(n=0:63)

Interrupt Control Registers (ICR0n) 8 R/W 0x00 17.2.9/17-12

0xFC04_80E0 Software Interrupt Acknowledge (SWIACK0) 8 R 0x00 17.2.10/17-19

0xFC04_80E0 + 4n
(n=1:7)

Level n Interrupt Acknowledge Registers (LnIACK0) 8 R 0x18 17.2.10/17-19

Interrupt Controller 1

0xFC04_C000 Interrupt Pending Register High (IPRH1) 32 R 0x0000_0000 17.2.1/17-4

0xFC04_C004 Interrupt Pending Register Low (IPRL1) 32 R 0x0000_0000 17.2.1/17-4

0xFC04_C008 Interrupt Mask Register High (IMRH1) 32 R/W 0xFFFF_FFFF 17.2.2/17-5

0xFC04_C00C Interrupt Mask Register Low (IMRL1) 32 R/W 0xFFFF_FFFF 17.2.2/17-5

0xFC04_C010 Interrupt Force Register High (INTFRCH1) 32 R/W 0x0000_0000 17.2.3/17-7

0xFC04_C014 Interrupt Force Register Low (INTFRCL1) 32 R/W 0x0000_0000 17.2.3/17-7

0xFC04_C01C Set Interrupt Mask (SIMR1) 8 W 0x00 17.2.5/17-8

0xFC04_C01D Clear Interrupt Mask (CIMR1) 8 W 0x00 17.2.5/17-8

0xFC04_C040 + n
(n=1:63)

Interrupt Control Registers (ICR1n) 8 R/W 0x00 17.2.9/17-12

0xFC04_C0E0 Software Interrupt Acknowledge (SWIACK1) 8 R 0x00 17.2.10/17-19
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17.2.1 Interrupt Pending Registers (IPRHn, IPRLn)

The IPRHn and IPRLn registers, Figure 17-1 and Figure 17-2, are each 32 bits in size, and provide a bit 
map for each interrupt request to indicate if there is an active request (1 equals active request, 0 equals no 
request) for the given source. The interrupt mask register state does not affect the IPRn. The IPRn is 
cleared by reset and is a read-only register, so any attempted write to this register is ignored.

0xFC04_C0E0 + 4n
(n=1:7)

Level n Interrupt Acknowledge Registers (LnIACK1) 8 R 0x18 17.2.10/17-19

Interrupt Controller 3

0xFC05_0000 Interrupt Pending Register High (IPRH2) 32 R 0x0000_0000 17.2.1/17-4

0xFC05_0004 Interrupt Pending Register Low (IPRL2) 32 R 0x0000_0000 17.2.1/17-4

0xFC05_0008 Interrupt Mask Register High (IMRH2) 32 R/W 0xFFFF_FFFF 17.2.2/17-5

0xFC05_000C Interrupt Mask Register Low (IMRL2) 32 R/W 0xFFFF_FFFF 17.2.2/17-5

0xFC05_0010 Interrupt Force Register High (INTFRCH2) 32 R/W 0x0000_0000 17.2.3/17-7

0xFC05_0014 Interrupt Force Register Low (INTFRCL2) 32 R/W 0x0000_0000 17.2.3/17-7

0xFC05_001C Set Interrupt Mask (SIMR2) 8 W 0x00 17.2.5/17-8

0xFC05_001D Clear Interrupt Mask (CIMR2) 8 W 0x00 17.2.5/17-8

0xFC05_0040 + n
(n=1:63)

Interrupt Control Registers (ICR2n) 8 R/W 0x00 17.2.9/17-12

0xFC05_00E0 Software Interrupt Acknowledge (SWIACK2) 8 R 0x00 17.2.10/17-19

0xFC05_00E0 + 4n
(n=1:7)

Level n Interrupt Acknowledge Registers (LnIACK2) 8 R 0x18 17.2.10/17-19

Global IACK Registers

0xFC05_40E0 Global Software Interrupt Acknowledge (GSWIACK) 8 R 0x00 17.2.10/17-19

0xFC05_40E0 + 4n
(n=1:7)

Global Level n Interrupt Acknowledge Registers 
(GLnIACK)

8 R 0x18 17.2.10/17-19

Address 0xFC04_8000 (IPRH0)
0xFC04_C000 (IPRH1)
0xFC05_0000 (IPRH2)

Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-1. Interrupt Pending Register High (IPRHn)

Table 17-2. Interrupt Controller Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value
Section/

Page
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17.2.2 Interrupt Mask Register (IMRHn, IMRLn)

The IMRHn and IMRLn registers are each 32 bits in size and provide a bit map for each interrupt to allow 
the request to be disabled (1 equals disable the request, 0 equals enable the request). The IMRL register is 
used for masking interrupt sources 0 to 31, while the IMRH register is used for masking interrupts 32 to 
63. The IMRn is set to all ones by reset, disabling all interrupt requests. The IMRn can be read and written.

Table 17-3. IPRHn Field Descriptions

Field Description

31–0
INT

Interrupt pending. Each bit corresponds to an interrupt source. The corresponding IMRHn bit determines whether 
an interrupt condition can generate an interrupt. At every system clock, the IPRHn samples the signal generated by 
the interrupting source. The corresponding IPRHn bit reflects the state of the interrupt signal even if the 
corresponding IMRHn bit is set.
0 The corresponding interrupt source does not have an interrupt pending
1 The corresponding interrupt source has an interrupt pending

Address 0xFC04_8004 (IPRL0)
0xFC04_C004 (IPRL1)
0xFC05_0004 (IPRL2)

Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-2. Interrupt Pending Register Low (IPRLn)

Table 17-4. IPRLn Field Descriptions

Field Description

31–0
INT

Interrupt Pending. Each bit corresponds to an interrupt source. The corresponding IMRLn bit determines whether an 
interrupt condition can generate an interrupt. At every system clock, the IPRLn samples the signal generated by the 
interrupting source. The corresponding IPRLn bit reflects the state of the interrupt signal even if the corresponding 
IMRLn bit is set.
0 The corresponding interrupt source does not have an interrupt pending
1 The corresponding interrupt source has an interrupt pending
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NOTE
A spurious interrupt may occur if an interrupt source is being masked in the 
interrupt controller mask register (IMR) or a module’s interrupt mask 
register while the interrupt mask in the status register (SR[I]) is set to a value 
lower than the interrupt’s level. This is because by the time the status 
register acknowledges this interrupt, the interrupt has been masked. A 
spurious interrupt is generated because the CPU cannot determine the 
interrupt source. To avoid this situation for interrupts sources with levels 
1-6, first write a higher level interrupt mask to the status register, before 
setting the mask in the IMR or the module’s interrupt mask register. After 
the mask is set, return the interrupt mask in the status register to its previous 
value. Because level 7 interrupts cannot be disabled in the status register 
prior to masking, use of the IMR or module interrupt mask registers to 
disable level 7 interrupts is not recommended.

Address 0xFC04_8008 (IMRH0)
0xFC04_C008 (IMRH1)
0xFC05_0008 (IMRH2)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INT_MASK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 17-3. Interrupt Mask Register High (IMRHn)

Table 17-5. IMRHn Field Descriptions

Field Description

31–0
INT_MASK

Interrupt mask. Each bit corresponds to an interrupt source. The corresponding IMRHn bit determines whether an 
interrupt condition can generate an interrupt. The corresponding IPRHn bit reflects the state of the interrupt signal 
even if the corresponding IMRHn bit is set.
0 The corresponding interrupt source is not masked
1 The corresponding interrupt source is masked

Address 0xFC04_800C (IMRL0)
0xFC04_C00C (IMRL1)
0xFC05_000C (IMRL2)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INT_MASK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 17-4. Interrupt Mask Register Low (IMRLn)
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17.2.3 Interrupt Force Registers (INTFRCHn, INTFRCLn)

The INTFRCHn and INTFRCLn registers are each 32 bits in size and provide a mechanism to allow 
software generation of interrupts for each possible source for functional or debug purposes. The system 
design may reserve one or more sources to allow software to self-schedule interrupts by forcing one or 
more of these bits (set to force request, clear to negate request) in the appropriate INTFRCn register. The 
INTFRCLn register forces interrupts for sources 0 to 31, while the INTFRCHn register forces interrupts 
for sources 32 to 63. The assertion of an interrupt request via the interrupt force register is not affected by 
the interrupt mask register. The INTFRCn registers are cleared by reset.

Table 17-6. IMRLn Field Descriptions

Field Description

31–0
INT_MASK

Interrupt mask. Each bit corresponds to an interrupt source. The corresponding IMRLn bit determines whether an 
interrupt condition can generate an interrupt. The corresponding IPRLn bit reflects the state of the interrupt signal 
even if the corresponding IMRLn bit is set.
0 The corresponding interrupt source is not masked
1 The corresponding interrupt source is masked

Address 0xFC04_8010 (INTFRCH0)
0xFC04_C010 (INTFRCH1)
0xFC05_0010 (INTFRCH2)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INTFRCH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-5. Interrupt Force Register High (INTFRCHn)

Table 17-7. INTFRCHn Field Descriptions

Field Description

31–0
INTFRCH

Interrupt force. Allows software generation of interrupts for each possible source for functional or debug purposes.
0 No interrupt forced on the corresponding interrupt source
1 Force an interrupt on the corresponding source

Address 0xFC04_8014 (INTFRCL0)
0xFC04_C014 (INTFRCL1)
0xFC05_0014 (INTFRCL2)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INTFRCL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-6. Interrupt Force Register Low (INTFRCLn)
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17.2.4 Interrupt Configuration Register (ICONFIG)

This 16-bit register defines the operating configuration for the interrupt controller module.

NOTE
Only one copy of this register exists among the 3 interrupt controller 
modules. All reads and writes to this register must be made to the INTC0 
memory space.

17.2.5 Set Interrupt Mask Register (SIMRn)

The SIMRn register provides a simple mechanism to set a given bit in the IMRn registers to mask the 
corresponding interrupt request. The value written to the SIMR field causes the corresponding bit in the 
IMRn register to be set. The SIMRn[SALL] bit provides a global set function, forcing the entire contents 

Table 17-8. INTFRCLn Field Descriptions

Field Description

31–0
INTFRCL

Interrupt force. Allows software generation of interrupts for each possible source for functional or debug purposes.
0 No interrupt forced on corresponding interrupt source
1 Force an interrupt on the corresponding source

Address: 0xFC04_801A (ICONFIG) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ELVLPRI

0 0 0
EMASK

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-7. Interrupt Configuration Register (ICONFIG) 

Table 17-9. ICONFIG Field Descriptions 

Field Description

15–9
ELVLPRI

Enable core’s priority elevation on priority levels. Each ELVLPRI[7:1] bit corresponds to the available priority 
levels 1 – 7. If set, the assertion of the corresponding level-n request to the core causes the processor’s bus 
master priority to be temporarily elevated in the device’s crossbar switch arbitration logic. The processor’s bus 
master arbitration priority remains elevated until the level-n request is negated. If round-robin arbitration is 
enabled, this bit has no effect.

If cleared, the assertion of a level-n request does not affect the processor’s bus master priority. 

8–6 Reserved, must be cleared.

5
EMASK

If set, the interrupt controller automatically loads the level of an interrupt request into the CLMASK (current level 
mask) when the acknowledge is performed. At the exact same cycle, the value of the current interrupt level mask is 
saved in the SLMASK (saved level mask) register.
This feature can be used to support software-managed nested interrupts, and is intended to complement the 
interrupt masking functions supported in the ColdFire processor. The value of SLMASK register should be read from 
the interrupt controller and saved in the interrupt stack frame in memory, and restored near the service routine’s exit.
If cleared, the INTC does not perform any automatic masking of interrupt levels. The state of this bit does not affect 
the ColdFire processor’s interrupt masking logic in any manner.

4–0 Reserved, must be cleared.
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of IMRn to be set, thus masking all interrupts. Reads of this register return all zeroes. This register is 
provided so interrupt service routines can easily mask the given interrupt request without the need to 
perform a read-modify-write sequence on the IMRn register.

17.2.6 Clear Interrupt Mask Register (CIMRn)

The CIMRn register provides a simple mechanism to clear a given bit in the IMRn registers to enable the 
corresponding interrupt request. The value written to the CIMR field causes the corresponding bit in the 
IMRn register to be cleared. The CIMRn[CALL] bit provides a global clear function, forcing the entire 
contents of IMRn to be cleared, thus enabling all interrupts. Reads of this register return all zeroes. This 
register is provided so interrupt service routines can easily enable the given interrupt request without the 
need to perform a read-modify-write sequence on the IMRn register.

In the event of a simultaneous write to the CIMRn and SIMRn, the SIMRn has priority and the resulting 
function would be a set of the interrupt mask register.

Address: 0xFC04_801C (SIMR0)
0xFC04_C01C (SIMR1)
0xFC05_001C (SIMR2)

Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W SALL SIMR

Reset: 0 0 0 0 0 0 0 0

Figure 17-8. Set Interrupt Mask Register (SIMRn)

Table 17-10. SIMRn Field Descriptions

Field Description

7 Reserved, must be cleared.

6
SALL

Set all bits in the IMRn register, masking all interrupt requests. 
0 Only set those bits specified in the SIMR field.
1 Set all bits in IMRn register. The SIMR field is ignored.

5–0
SIMR

Set the corresponding bit in the IMRn register, masking the interrupt request.

Address: 0xFC04_801D (CIMR0)
0xFC04_C01D (CIMR1)
0xFC05_001D (CIMR2)

Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W CALL CIMR

Reset: 0 0 0 0 0 0 0 0

Figure 17-9. Clear Interrupt Mask Register (CIMRn)
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17.2.7 Current Level Mask Register (CLMASK)

The CLMASK register is provided so the interrupt controller can optionally automatically manage 
masking of interrupt requests based on the programmed priority level. If enabled by ICONFIG[EMASK] 
bit being set, an interrupt acknowledge read cycle returns a vector number identifying the physical request 
source, and the CLMASK register is loaded with the level number associated with the request. After the 
CLMASK register is updated, then all interrupt requests with level numbers equal to or less than this value 
are masked by the controller and are not allowed to cause the assertion of the interrupt signal to the 
processor core. As the CLMASK register is updated during the IACK cycle read, the former value is saved 
in the SLMASK register.

Typically, after a level-n interrupt request is managed, the service routine restores the saved level mask 
value into the current level mask register to re-enable the lower priority requests. In addition, an interrupt 
service routine can explicitly load this register with a lower priority value to query for any pending 
interrupts via software interrupt acknowledge cycles.

NOTE
Only one copy of this register exists among the 3 interrupt controller 
modules. All reads and writes to this register must be made to the INTC0 
memory space.

Table 17-11. CIMRn Field Descriptions

Field Description

7 Reserved, must be cleared.

6
CALL

Clear all bits in the IMRn register, enabling all interrupt requests. 
0 Only set those bits specified in the CIMR field.
1 Clear all bits in IMRn register. The CIMR field is ignored.

5–0
CIMR

Clear the corresponding bit in the IMRn register, enabling the interrupt request.

Address: 0xFC04_801E (CLMASK) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0
CLMASK

W

Reset: 0 0 0 0 1 1 1 1

Figure 17-10. Current Level Mask Register (CLMASK)
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17.2.8 Saved Level Mask Register (SLMASK)

The SLMASK register is provided so the interrupt controller can optionally automatically manage 
masking of interrupt requests based on the programmed priority level. If enabled by ICONFIG[EMASK] 
bit being set, an interrupt acknowledge read cycle returns a vector number identifying the physical request 
source, and the CLMASK register is loaded with the level number associated with the request. After the 
CLMASK register is updated, then all interrupt requests with level numbers equal to or less than this value 
are masked by the controller and are not allowed to cause the assertion of the interrupt signal to the 
processor core. As the CLMASK register is updated during the IACK cycle read, the former value is saved 
in the SLMASK register.

Typically, after a level-n interrupt request is managed, the service routine restores the saved level mask 
value into the current level mask register to re-enable the lower priority requests.

NOTE
Only one copy of this register exists among the three interrupt controller 
modules. All reads and writes to this register must be made to the INTC0 
memory space.

Table 17-12. CLMASK Field Descriptions

Field Description

7–4 Reserved, must be cleared.

3–0
CLMASK

Current level mask. Defines the level mask, where only interrupt levels greater than the current value are processed 
by the controller

0000 Level 1 – 7 requests are processed.
0001 Level 2 – 7 requests are processed.
0010 Level 3 – 7 requests are processed.
0011 Level 4 – 7 requests are processed.
0100 Level 5 – 7 requests are processed.
0101 Level 6 – 7 requests are processed.
0110 Level 7 requests are processed.
0111 All requests are masked.
1000 – 1110 Reserved.
1111 Level 1 – 7 requests are processed.

Address: 0xFC04_801F (SLMASK) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0
SLMASK

W

Reset: 0 0 0 0 1 1 1 1

Figure 17-11. Saved Level Mask Register (SLMASK)
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17.2.9 Interrupt Control Register (ICR0n, ICR1n, ICR2n (n = 00, 01, 02, ..., 
63))

Each ICR register specifies the interrupt level (1–7) for the corresponding interrupt source. These registers 
are cleared by reset and should be programmed with the appropriate levels before interrupts are enabled. 

When multiple interrupt requests are programmed to the same level number, they are processed in a 
descending request number order. As an example, if requests 63, 62, 2, and 1 are programmed to a common 
level, request 63 is processed first, then request 62, then request 2, and finally request 1.

This definition allows software maximum flexibility in grouping interrupt request sources within any 
given priority level. The priority level in the ICRs directly corresponds to the interrupt level supported by 
the ColdFire processor.

17.2.9.1 Interrupt Sources

 list the interrupt sources for each interrupt request line for INTC0, INTC1, and INTC2.

Table 17-13. SLMASK Field Descriptions

Field Description

7–4 Reserved, must be cleared.

3–0
SLMASK

Saved level mask. Defines the saved level mask. See the CLMASK field definition for more information on the 
specific values.

Address: 0xFC04_8040 – 7F (ICR000 – ICR063)
0xFC04_C040 – 7F (ICR100 – ICR163)
0xFC05_0040–7F (ICR200–ICR263)

Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0
LEVEL

W

Reset: 0 0 0 0 0 0 0 0

Figure 17-12. Interrupt Control Registers (ICR0n, ICR1n, ICR2n) 

Table 17-14. ICRn Field Descriptions

Field Description

7–3 Reserved, must be cleared.

2–0
LEVEL

Interrupt level. Indicates the interrupt level assigned to each interrupt input. A level of 0 effectively disables the 
interrupt request, while a level 7 interrupt is given the highest priority.

If interrupt masking is enabled (ICONFIG[EMASK] = 1), the acknowledgment of a level-n request forces the 
controller to automatically mask all interrupt requests of level-n and lower.
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Table 17-15. Interrupt Source Assignment For INTC0

Source Module  Flag Source Description Flag Clearing Mechanism

0 Not Used

1

EPORT
0

EPFR0[EPF1] Edge port 0 flag 1 Write 1 to EPF1

2 EPFR0[EPF2] Edge port 0 flag 2 Write 1 to EPF2

3 EPFR0[EPF3] Edge port 0 flag 3 Write 1 to EPF3

4 EPFR0[EPF4] Edge port 0 flag 4 Write 1 to EPF4

5 EPFR0[EPF5] Edge port 0 flag 5 Write 1 to EPF5

6 EPFR0[EPF6] Edge port 0 flag 6 Write 1 to EPF6

7 EPFR0[EPF7] Edge port 0 flag 7 Write 1 to EPF7

8

DMA

EDMA_INTR[INT00] DMA Channel 0 transfer complete Write EDMA_CINTR[CINT] = 0

9 EDMA_INTR[INT01] DMA Channel 1 transfer complete Write EDMA_CINTR[CINT] = 1

10 EDMA_INTR[INT02] DMA Channel 2 transfer complete Write EDMA_CINTR[CINT] = 2

11 EDMA_INTR[INT03] DMA Channel 3 transfer complete Write EDMA_CINTR[CINT] = 3

12 EDMA_INTR[INT04] DMA Channel 4transfer complete Write EDMA_CINTR[CINT] = 4

13 EDMA_INTR[INT05] DMA Channel 5 transfer complete Write EDMA_CINTR[CINT] = 5

14 EDMA_INTR[INT06] DMA Channel 6 transfer complete Write EDMA_CINTR[CINT] = 6

15 EDMA_INTR[INT07] DMA Channel 7 transfer complete Write EDMA_CINTR[CINT] = 7

16 EDMA_INTR[INT08] DMA Channel 8 transfer complete Write EDMA_CINTR[CINT] = 8

17 EDMA_INTR[INT09] DMA Channel 9 transfer complete Write EDMA_CINTR[CINT] = 9

18 EDMA_INTR[INT10] DMA Channel 10 transfer complete Write EDMA_CINTR[CINT] = 10

19 EDMA_INTR[INT11] DMA Channel 11 transfer complete Write EDMA_CINTR[CINT] = 11

20 EDMA_INTR[INT12] DMA Channel 12 transfer complete Write EDMA_CINTR[CINT] = 12

21 EDMA_INTR[INT13] DMA Channel 13 transfer complete Write EDMA_CINTR[CINT] = 13

22 EDMA_INTR[INT14] DMA Channel 14 transfer complete Write EDMA_CINTR[CINT] = 14

23 EDMA_INTR[INT15] DMA Channel 15 transfer complete Write EDMA_CINTR[CINT] = 15

24 EDMA_ERR[ERRn] DMA Error Interrupt Write EDMA_CERR[CERR] = n

25 SCM SCMIR[CWIC] Core Watchdog Timeout Write 1 to SCMISR[CWIC]

26 UART0 UISR0 register UART0 Interrupt Request Automatically cleared

27 UART1 UISR1 register UART1 Interrupt Request Automatically cleared

28 UART2 UISR2 register UART2 Interrupt Request Automatically cleared

29 UART3 UISR3 register UART3 Interrupt Request Automatically cleared

30 I2C0 I20SR[IIF] I2C0 Interrupt Write 0 to I20SR[IIF]

31 DSPI0 DSPI0_SR register DSPI0 OR’d interrupt Write 1 to appropriate DSPI0_SR bit

32 DTIM0 DTER0 register Timer 0 interrupt Write 1 to appropriate DTER0 bit
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33 DTIM1 DTER1 register Timer 1 interrupt Write 1 to appropriate DTER1 bit

34 DTIM2 DTER2 register Timer 2 interrupt Write 1 to appropriate DTER2 bit

35 DTIM3 DTER3 register Timer 3 interrupt Write 1 to appropriate DTER3 bit

36

MAC-
NET0

ENET0_EIR[TXF] Transmit frame interrupt Write 1 to ENET0_EIR[TXF]

37 ENET0_EIR[TXB] Transmit buffer interrupt Write 1 to ENET0_EIR[TXB]

38 ENET0_EIR[UN] Transmit FIFO underrun Write 1 to ENET0_EIR[UN]

39 ENET0_EIR[RL] Collision retry limit Write 1 to ENET0_EIR[RL]

40 ENET0_EIR[RXF] Receive frame interrupt Write 1 to ENET0_EIR[RXF]

41 ENET0_EIR[RXB] Receive buffer interrupt Write 1 to ENET0_EIR[RXB]

42 ENET0_EIR[MII] MII interrupt Write 1 to ENET0_EIR[MII]

43 ENET0_EIR[LC] Late collision Write 1 to ENET0_EIR[LC]

44 Not used

45 ENET0_EIR[GRA] Graceful stop complete Write 1 to ENET0_EIR[GRA]

46 ENET0_EIR[EBERR] Ethernet bus error Write 1 to ENET0_EIR[EBERR]

47 ENET0_EIR[BABT] Babbling transmit error Write 1 to ENET0_EIR[BABT]

48 ENET0_EIR[BABR] Babbling receive error Write 1 to ENET0_EIR[BABR]

49

MAC-
NET1

ENET1_EIR[TXF] Transmit frame interrupt Write 1 to ENET1_EIR[TXF]

50 ENET1_EIR[TXB] Transmit buffer interrupt Write 1 to ENET1_EIR[TXB]

51 ENET1_EIR[UN] Transmit FIFO underrun Write 1 to ENET1_EIR[UN]

52 ENET1_EIR[RL] Collision retry limit Write 1 to ENET1_EIR[RL]

53 ENET1_EIR[RXF] Receive frame interrupt Write 1 to ENET1_EIR[RXF]

54 ENET1_EIR[RXB] Receive buffer interrupt Write 1 to ENET1_EIR[RXB]

55 ENET1_EIR[MII] MII interrupt Write 1 to ENET1_EIR[MII]

56 ENET1_EIR[LC] Late collision Write 1 to ENET1_EIR[LC]

57 Not used

58 ENET1_EIR[GRA] Graceful stop complete Write 1 to ENET1_EIR[GRA]

59 ENET1_EIR[EBERR] Ethernet bus error Write 1 to ENET1_EIR[EBERR]

60 ENET1_EIR[BABT] Babbling transmit error Write 1 to ENET1_EIR[BABT]

61 ENET1_EIR[BABR] Babbling receive error Write 1 to ENET1_EIR[BABR]

62 SCM SCMIR[CFEI] Core bus error interrupt Write 1 to SCMIR[CFEI]

63 1-Wire OW_ISR 1-Wire interrupt Reading OW_ISR

Table 17-15. Interrupt Source Assignment For INTC0 (continued)

Source Module  Flag Source Description Flag Clearing Mechanism
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Table 17-16. Interrupt Source Assignment for INTC1

Source Module  Flag Source Description Flag Clearing Mechanism

0

Flex
CAN0

IFLAG0[BUFnI] Logical OR of CAN0’s MB requests Write 1 to IFLAG0[BUFnI] after reading as 1

1
ERRSTAT0
[BOFFINT]

Bus-off interrupt Write 1 to ERRSTAT1[BOFFINT]

2 Not used

3
ERRSTAT0[TXWRN 

or RXWRN]
Error interrupt Write 1 to ERRSTAT0[TXWRN or RXWRN]

4

Flex
CAN1

IFLAG1[BUFnI] Logical OR of CAN1’s MB requests Write 1 to IFLAG0[BUFnI] after reading as 1

5
ERRSTAT1
[BOFFINT]

Bus-off interrupt Write 1 to ERRSTAT1[BOFFINT]

6 Not used

7
ERRSTAT1[TXWRN 

or RXWRN]
Error interrupt Write 1 to ERRSTAT1[TXWRN or RXWRN]

8

DMA
16–31

EDMA_INTR[INT16] DMA Channel 16 transfer complete Write EDMA_CINTR[CINT] = 16

9 EDMA_INTR[INT17] DMA Channel 17 transfer complete Write EDMA_CINTR[CINT] = 17

10 EDMA_INTR[INT18] DMA Channel 18 transfer complete Write EDMA_CINTR[CINT] = 18

11 EDMA_INTR[INT19] DMA Channel 19 transfer complete Write EDMA_CINTR[CINT] = 19

12 EDMA_INTR[INT20] DMA Channel 20 transfer complete Write EDMA_CINTR[CINT] = 20

13 EDMA_INTR[INT21] DMA Channel 21 transfer complete Write EDMA_CINTR[CINT] = 21

14 EDMA_INTR[INT22] DMA Channel 22 transfer complete Write EDMA_CINTR[CINT] = 22

15 EDMA_INTR[INT23] DMA Channel 23 transfer complete Write EDMA_CINTR[CINT] = 23

16 EDMA_INTR[INT24] DMA Channel 24 transfer complete Write EDMA_CINTR[CINT] = 24

17 EDMA_INTR[INT25] DMA Channel 25 transfer complete Write EDMA_CINTR[CINT] = 25

18 EDMA_INTR[INT26] DMA Channel 26 transfer complete Write EDMA_CINTR[CINT] = 26

19 EDMA_INTR[INT27] DMA Channel 27 transfer complete Write EDMA_CINTR[CINT] = 27

20 EDMA_INTR[INT28] DMA Channel 28 transfer complete Write EDMA_CINTR[CINT] = 28

21 EDMA_INTR[INT29] DMA Channel 29 transfer complete Write EDMA_CINTR[CINT] = 29

22 EDMA_INTR[INT30] DMA Channel 30 transfer complete Write EDMA_CINTR[CINT] = 30

23 EDMA_INTR[INT31] DMA Channel 31 transfer complete Write EDMA_CINTR[CINT] = 31
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24

DMA
32–47

EDMA_INTR[INT32] DMA Channel 32 transfer complete Write EDMA_CINTR[CINT] = 32

25 EDMA_INTR[INT33] DMA Channel 33 transfer complete Write EDMA_CINTR[CINT] = 33

26 EDMA_INTR[INT34] DMA Channel 34 transfer complete Write EDMA_CINTR[CINT] = 34

27 EDMA_INTR[INT35] DMA Channel 35 transfer complete Write EDMA_CINTR[CINT] = 35

28 EDMA_INTR[INT36] DMA Channel 36 transfer complete Write EDMA_CINTR[CINT] = 36

29 EDMA_INTR[INT37] DMA Channel 37 transfer complete Write EDMA_CINTR[CINT] = 37

30 EDMA_INTR[INT38] DMA Channel 38 transfer complete Write EDMA_CINTR[CINT] = 38

31 EDMA_INTR[INT39] DMA Channel 39 transfer complete Write EDMA_CINTR[CINT] = 39

32 EDMA_INTR[INT40] DMA Channel 40 transfer complete Write EDMA_CINTR[CINT] = 40

33 EDMA_INTR[INT41] DMA Channel 41 transfer complete Write EDMA_CINTR[CINT] = 41

34 EDMA_INTR[INT42] DMA Channel 42 transfer complete Write EDMA_CINTR[CINT] = 42

35 EDMA_INTR[INT43] DMA Channel 43 transfer complete Write EDMA_CINTR[CINT] = 43

36 EDMA_INTR[INT44] DMA Channel 44 transfer complete Write EDMA_CINTR[CINT] = 44

37 EDMA_INTR[INT45] DMA Channel 45 transfer complete Write EDMA_CINTR[CINT] = 45

38 EDMA_INTR[INT46] DMA Channel 46 transfer complete Write EDMA_CINTR[CINT] = 46

39 EDMA_INTR[INT47] DMA Channel 47 transfer complete Write EDMA_CINTR[CINT] = 47

40

DMA
48–55

EDMA_INTR[INT48] DMA Channel 48 transfer complete Write EDMA_CINTR[CINT] = 48

41 EDMA_INTR[INT49] DMA Channel 49 transfer complete Write EDMA_CINTR[CINT] = 49

42 EDMA_INTR[INT50] DMA Channel 50 transfer complete Write EDMA_CINTR[CINT] = 50

43 EDMA_INTR[INT51] DMA Channel 51 transfer complete Write EDMA_CINTR[CINT] = 51

44 EDMA_INTR[INT52] DMA Channel 52 transfer complete Write EDMA_CINTR[CINT] = 52

45 EDMA_INTR[INT53] DMA Channel 53 transfer complete Write EDMA_CINTR[CINT] = 53

46 EDMA_INTR[INT54] DMA Channel 54 transfer complete Write EDMA_CINTR[CINT] = 54

47 EDMA_INTR[INT55] DMA Channel 55 transfer complete Write EDMA_CINTR[CINT] = 55

48 UART4 UISR4 register UART4 Interrupt Request Automatically cleared

49 UART5 UISR5 register UART5 Interrupt Request Automatically cleared

50 UART6 UISR6 register UART6 Interrupt Request Automatically cleared

51 UART7 UISR7 register UART7 Interrupt Request Automatically cleared

52 UART8 UISR8 register UART8 Interrupt Request Automatically cleared

53 UART9 UISR9 register UART9 Interrupt Request Automatically cleared

54 DSPI1 DSPI1_SR register DSPI1 OR’d interrupt Write 1 to appropriate DSPI1_SR bit

55 DSPI2 DSPI2_SR register DSPI2 OR’d interrupt Write 1 to appropriate DSPI2_SR bit

56 DSPI3 DSPI3_SR register DSPI3 OR’d interrupt Write 1 to appropriate DSPI3_SR bit

57 I2C1 I21SR[IIF] I2C1 Interrupt Write 0 to I21SR[IIF]

Table 17-16. Interrupt Source Assignment for INTC1 (continued)

Source Module  Flag Source Description Flag Clearing Mechanism
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58 I2C2 I22SR[IIF] I2C2 Interrupt Write 0 to I22SR[IIF]

59 I2C3 I23SR[IIF] I2C3 Interrupt Write 0 to I23SR[IIF]

60 I2C4 I24SR[IIF] I2C4 Interrupt Write 0 to I24SR[IIF]

61 I2C5 I25SR[IIF] I2C5 Interrupt Write 0 to I25SR[IIF]

62 Not used

63 Not used

Table 17-17. Interrupt Source Assignment for INTC2

Source Module  Flag Source Description Flag Clearing Mechanism

0
DMA

56–63
EDMA_INTR
[INT56–63]

DMA Channel 55–63 OR’d transfer 
complete

Write EDMA_CINTR[CINT] = 56–63 to clear 
appropriate channel

1

mcPWM

PWM_SM0SR[CFxn] Submodule 0 OR’d input capture Write 1 to appropriate PWM_SM0SR[CFxn]

2 PWM_SM1SR[CFxn] Submodule 1 OR’d input capture Write 1 to appropriate PWM_SM1SR[CFxn]

3 PWM_SM2SR[CFxn] Submodule 2 OR’d input capture Write 1 to appropriate PWM_SM2SR[CFxn]

4 PWM_SM3SR[CFxn] Submodule 3 OR’d input capture Write 1 to appropriate PWM_SM3SR[CFxn]

5 PWM_SM0SR[RF] Submodule 0 reload Write 1 to PWM_SM0SR[RF]

6 PWM_SM1SR[RF] Submodule 1 reload Write 1 to PWM_SM1SR[RF]

7 PWM_SM2SR[RF] Submodule 2 reload Write 1 to PWM_SM2SR[RF]

8 PWM_SM3SR[RF] Submodule 3 reload Write 1 to PWM_SM3SR[RF]

9 PWM_FSR[FFLAG] OR’d fault input interrupt Write 1 to appropriate PWM_FSR[FFLAG]

10 PWM_SMnSR[REF] OR’d reload error interrupt Write 1 to appropriate PWM_SMnSR[REF]

11
PLL

PLL_SR[LOCF] Loss of clock interrupt Write 1 to LOCF

12 PLL_SR[LOLF] Loss of lock interrupt Write 1 to LOLF

13 PIT0 PCSR0[PIF] PIT interrupt flag Write 1 to PIF or write PMR

14 PIT1 PCSR1[PIF] PIT interrupt flag Write 1 to PIF or write PMR

15 PIT2 PCSR2[PIF] PIT interrupt flag Write 1 to PIF or write PMR

16 PIT3 PCSR3[PIF] PIT interrupt flag Write 1 to PIF or write PMR

17 USB 
OTG

USB_STS
USB OTG interrupt Write 1 to corresponding bit in the USB_STS

18 USB 
Host

USB_STS
USB host interrupt Write 1 to corresponding bit in the USB_STS

19

mcPWM

PWM_SM0SR[CMPF] Submodule 0 compare Write 1 to appropriate PWM_SM0SR[CMPF]

20 PWM_SM1SR[CMPF] Submodule 1 compare Write 1 to appropriate PWM_SM1SR[CMPF]

21 PWM_SM2SR[CMPF] Submodule 2 compare Write 1 to appropriate PWM_SM2SR[CMPF]

22 PWM_SM3SR[CMPF] Submodule 3 compare Write 1 to appropriate PWM_SM3SR[CMPF]

Table 17-16. Interrupt Source Assignment for INTC1 (continued)

Source Module  Flag Source Description Flag Clearing Mechanism
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23 SSI0 SSI0_ISR SSI0 interrupt Various, see chapter for details.

24 SSI1 SSI1_ISR SSI1 interrupt Various, see chapter for details.

25 Flash NFC_ISR NAND flash controller interrupt Write 1 to appropriate bit in NFC_ISR

26
Robust 

RTC
RTC_ISR RTC interrupt Write 1 to corresponding bit in the RTC_ISR

27 CCM UOCSR USB status Interrupt Read UOCSR.

28 RNG EI RNG interrupt flag Write 1 to RNGCR[CI]

29
SIM

SIM_TSR or 
SIM_RSR

SIM data interrupt (SIM_TSR) Various, see chapter for details

30 SIM general interrupt (SIM_RSR) Various, see chapter for details

31 SDHC IRQSTAT SDHC OR’d interrupt Write 1 to corresponding bit in IRQSTAT

32

ADC

ADC_SR[EOSI0] ADC subconverter A done Write 1 to ADC_SR[EOSI0]

33 ADC_SR[EOSI1] ADC subconverter B done Write 1 to ADC_SR[EOSI1]

34 ADC_LSR or 
ADC_ZCSR

Zero-crossing/limit-crossed Write 1 to appropriate bit in ADC_LSR or 
ADC_ZCSR

35 Not used

36 SDRAM DDR_CR27
[INTSTATUS]

SDRAM OR’d interrupt Write 1 to corresponding bit in 
DDR_CR25[INTACK]

37 Not used

38

L2
Ethernet
Switch

ESW_ISR[EBERR] Bus error interrupt Write 1 to ESW_ISR[EBERR]

39 ESW_ISR[RXB] Receive buffer interrupt Write 1 to ESW_ISR[RXB]

40 ESW_ISR[RXF] Receive frame interrupt Write 1 to ESW_ISR[RXF]

41 ESW_ISR[TXB] Transmit buffer interrupt Write 1 to ESW_ISR[TXB]

42 ESW_ISR[TXF] Transmit frame interrupt Write 1 to ESW_ISR[TXF]

43 ESW_ISR[QM] Low amount of free memory Write 1 to ESW_ISR[QM]

44 ESW_ISR[OD0] Port 0 output discard Write 1 to ESW_ISR[OD0]

45 ESW_ISR[OD1] Port 1 output discard Write 1 to ESW_ISR[OD1]

46 ESW_ISR[OD2] Port 2 output discard Write 1 to ESW_ISR[OD2]

47 ESW_ISR[LRN] Learning record available Write 1 to ESW_ISR[LRN]

48

MAC-
NET0

ENET0_EIR
[TS_AVAIL]

Timestamp available Write 1 to ENET0_EIR[TS_AVAIL]

49 ENET0_EIR
[WAKEUP]

Wake from sleep Write 1 to ENET0_EIR[WAKEUP]

50 ENET0_EIR[PLR] Payload receive error Write 1 to ENET0_EIR[PLR]

51–54 Not used

Table 17-17. Interrupt Source Assignment for INTC2 (continued)

Source Module  Flag Source Description Flag Clearing Mechanism
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17.2.10 Software and Level 1–7 IACK Registers (SWIACKn, 
L1IACKn–L7IACKn)

The eight IACK registers (per interrupt controller) can be explicitly addressed via the CPU, or implicitly 
addressed via a processor-generated interrupt acknowledge cycle during exception processing. In either 
case, the interrupt controller’s actions are very similar.

First, consider an IACK cycle to a specific level: a level-n IACK. When this type of IACK arrives in the 
interrupt controller, the controller examines all the currently-active level n interrupt requests, determines 
the highest priority within the level, and then responds with the unique vector number corresponding to 
that specific interrupt source. The vector number is supplied as the data for the byte-sized IACK read cycle. 
In addition to providing the vector number, the interrupt controller also loads the level into the CLMASK 
register, where it may be retrieved later.

This interrupt controller design also supports the concept of a software IACK. A software IACK allows 
an interrupt service routine to determine if there are other pending interrupts so that the overhead 
associated with interrupt exception processing (including machine state save/restore functions) can be 
minimized. In general, the software IACK is performed near the end of an interrupt service routine, and if 
there are additional active interrupt sources, the current interrupt service routine (ISR) passes control to 
the appropriate service routine, but without taking another interrupt exception.

When the interrupt controller receives a software IACK read, it returns the vector number associated with 
the highest unmasked interrupt source for that interrupt controller. If there are no active sources, the 
interrupt controller returns an all-zero vector as the operand for the SWIACK register. A read from the 
LnIACK registers when there are no active requests returns a value of 24 (0x18), signaling a spurious 
interrupt.

In addition to the software IACK registers in each interrupt controller, there are global software IACK 
registers. A read from the global SWIACK (GSWIACK) returns the vector number for the highest level 
and priority unmasked interrupt source from all interrupt controllers. A read from one of the global 
LnIACK (GLnIACK) registers returns the vector for the highest priority unmasked interrupt within a level 
for all interrupt controllers.

55

MAC-
NET1

ENET1_EIR
[TS_AVAIL]

Timestamp available Write 1 to ENET1_EIR[TS_AVAIL]

56 ENET1_EIR
[WAKEUP]

Wake from sleep Write 1 to ENET1_EIR[WAKEUP]

57 ENET1_EIR[PLR] Payload receive error Write 1 to ENET1_EIR[PLR]

58–63 Not used

Table 17-17. Interrupt Source Assignment for INTC2 (continued)

Source Module  Flag Source Description Flag Clearing Mechanism
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17.3 Functional Description

17.3.1 Interrupt Controller Theory of Operation

To support the interrupt architecture of the 68K/ColdFire programming model, the 64 interrupt sources are 
organized as 7 levels, with an arbitrary number of requests programmed to each level. The priority 
structure within a single interrupt level depends on the interrupt source number assignments (see 
Section 17.2.9.1, "Interrupt Sources"”). The higher numbered interrupt source has priority over the lower 
numbered interrupt source. See the below table for an example.

The level is fully programmable for all sources. The 3-bit level is defined in the interrupt control register 
(ICR0n, ICR1n, ICR2n).

The operation of the interrupt controller can be broadly partitioned into three activities:

Address: 0xFC04_80E0 (SWIACK0)
0xFC04_80E0+4n (LnIACK0) n=1:7
0xFC04_C0E0 (SWIACK1)
0xFC04_C0E0+4n (LnIACK1) n=1:7
0xFC05_40E0 (GSWIACK)
0xFC05_40E0+4n (GLnIACK) n=1:7

Access: User read-only

7 6 5 4 3 2 1 0

R VECTOR

W

Reset
(SWIACKn):

0 0 0 0 0 0 0 0

Reset
(LnIACKn):

0 0 0 1 1 0 0 0

Figure 17-13. Software and Level n IACK Registers (SWIACKn, L1IACKn – L7IACKn)

Table 17-18. SWIACKn and LxIACKn Field Descriptions

Field Description

7–0
VECTOR

Vector number. A read from the SWIACK register returns the vector number associated with the highest priority 
pending interrupt source. A read from one of the LnIACK registers returns the highest priority unmasked interrupt 
source within the level. 
A write to any IACK register causes an error termination.

Table 17-19. Example Interrupt Priority Within a Level

Interrupt Source ICR[2:0] Priority

40 011  Highest

22 011

8 011

2 011 Lowest
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• Recognition

• Prioritization

• Vector determination during IACK

17.3.1.1 Interrupt Recognition

The interrupt controller continuously examines the request sources (IPRn) and the interrupt mask register 
(IMRn) to determine if there are active requests. This is the recognition phase. The interrupt force register 
(INTFRCn) also factors into the generation of an active request.

17.3.1.2 Interrupt Prioritization

As an active request is detected, it is translated into the programmed interrupt level. Next, the appropriate 
level masking is performed if this feature is enabled. The level of the active request must be greater than 
the current mask level before it is signaled in the processor. The resulting unmasked decoded priority level 
is driven out of the interrupt controller. The decoded priority levels from the interrupt controllers are 
logically summed together, and the highest enabled interrupt request is sent to the processor core during 
this prioritization phase.

17.3.1.3 Interrupt Vector Determination

After the core has sampled for pending interrupts and begun interrupt exception processing, it generates 
an interrupt acknowledge cycle (IACK). The IACK transfer is treated as a memory-mapped byte read by 
the processor, and routed to the appropriate interrupt controller. Next, the interrupt controller extracts the 
level being acknowledged from address bits[4:2], and then determines the highest unmasked level for the 
type of interrupt being acknowledged, and returns the 8-bit interrupt vector for that request to complete the 
cycle. The 8-bit interrupt vector is formed using the following algorithm:
For INTC0, vector_number = 64 + interrupt source number

For INTC1, vector_number = 128 + interrupt source number

For INTC2, vector_number = 192 + interrupt source number

Recall vector_numbers 0-63 are reserved for the ColdFire processor and its internal exceptions. Thus, the 
following mapping of bit positions to vector numbers applies for INTC0:
if interrupt source 0 is active and acknowledged, then vector_number =  64

if interrupt source 1 is active and acknowledged, then vector_number =  65

if interrupt source 2 is active and acknowledged, then vector_number =  66

...

if interrupt source 63 is active and acknowledged, then vector_number = 127

The net effect is a fixed mapping between the bit position within the source to the actual interrupt vector 
number.

If there is no active interrupt source for the given level, a special spurious interrupt vector (vector_number 
equals 24) is returned and it is the responsibility of the service routine to manage this error situation.

This protocol implies the interrupting peripheral is not accessed during the acknowledge cycle because the 
interrupt controller completely services the acknowledge. This means the interrupt source must be 
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explicitly disabled in the interrupt service routine. This design provides unique vector capability for all 
interrupt requests, regardless of the complexity of the peripheral device.

In some applications, it is expected that the hardware masking of interrupt levels by the interrupt controller 
is enabled. This masking capability can be used with the processor’s masking logic to form a dual-mask 
capability. In this operation mode, the IACK read cycle also causes the current interrupt level mask to be 
saved in the SLMASK register, and the new level being acknowledged loaded into the CLMASK register. 
This operation then automatically masks the new level (and all lower levels) while in the service routine. 
Generally, as the service routine completes execution, and the initiating request source has been negated, 
the saved mask level is restored into the current mask level to re-enable the lower priority levels.

Finally, the vector number returned during the IACK cycle provides the association with the request and 
the physical interrupt signal. The CLMASK and SLMASK registers are all loaded (if properly enabled) 
during the interrupt acknowledge read cycle.

17.3.2 Prioritization Between Interrupt Controllers

The interrupt controllers have a fixed priority, where INTC0 has the highest priority, and INTC2 has the 
lowest priority. If all interrupt controllers have active interrupts at the same level, then the INTC0 interrupt 
is serviced first. If INTC1 has an active interrupt with a higher level than the highest INTC0 interrupt, then 
the INTC1 interrupt is serviced first.

17.3.3 Low-Power Wake-up Operation

The system control module (SCM) contains an 8-bit low-power control register (LPCR) to control the 
low-power stop mode. This register must be explicitly programmed by software to enter low-power mode. 
It also contains a wake-up control register (WCR) sets the priority level of the interrupt necessary to bring 
the device out of the specified low-power mode. Refer to Chapter 9, “Power Management,” for definitions 
of the LPCR and WCR registers, as well as more information on low-power modes.

Each interrupt controller provides a special combinatorial logic path to provide a special wake-up signal 
to exit from the low-power stop mode. This special mode of operation works as follows:

1. The WCR register is programmed, setting the ENBWCR bit and the desired interrupt priority level.

2. At the appropriate time, the processor executes the privileged STOP instruction. After the 
processor has stopped execution, it asserts a specific processor status (PST) encoding. Issuing the 
STOP instruction when the WCR[ENBWCR] bit is set causes the SCM to enter the mode specified 
in LPCR[LPMD].

3. The entry into a low-power mode is processed by the low-power mode control logic, and the 
appropriate clocks (usually those related to the high-speed processor core) are disabled.

4. After entering the low-power mode, the interrupt controller enables a combinational logic path 
which evaluates any unmasked interrupt requests. The device waits for an event to generate a level 
7 interrupt request or an interrupt request with a priority level greater than the value programmed 
in WCR[PRILVL].

5. After an appropriately high interrupt request level arrives, the interrupt controller signals its 
presence, and the SCM responds by asserting the request to exit low-power mode.
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6. The low-power mode control logic senses the request signal and re-enables the appropriate clocks.

7. With the processor clocks enabled, the core processes the pending interrupt request.

For more information, see Section 9.2.1, "Wake-up Control Register (WCR)".

17.4 Initialization/Application Information
The interrupt controller’s reset state has all requests masked via the IMR. Before any interrupt requests are 
enabled, the following steps must be taken:

1. Set the ICONFIG register to the desired system configuration.

2. Program the ICRn registers with the appropriate interrupt levels.

3. The reset value for the level mask registers (CLMASK and SLMASK) is 0xF (no levels masked). 
Typically, these registers do not need to be modified before interrupts are enabled.

4. Load the appropriate interrupt vector tables and interrupt service routines into memory.

5. Enable the interrupt requests, by clearing the appropriate bits in the IMR and lowering the interrupt 
mask level in the core’s status register (SR[I]) to an appropriate level.

17.4.1 Interrupt Service Routines

This section focuses on the interaction of the interrupt masking functionality with the service routine. 
Figure 17-14 presents a timing diagram showing various phases during the execution of an interrupt 
service routine with the controller level masking functionality enabled. The time scale in this diagram is 
not meant to be accurate.

Figure 17-14. Interrupt Service Routine and Masking

Consider the events depicted in each segment (A – F) of the above diagram.

In A, an interrupt request is asserted, which is then signaled to the core.

As B begins, the interrupt request is recognized, and the core begins interrupt exception processing. During 
the core’s exception processing, the IACK cycle performs and the interrupt controller returns the 
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appropriate vector number. As the interrupt acknowledge read performs, the vector number returns to the 
core. The contents of the CLMASK register load into the SLMASK register, and the CLMASK register 
updates to the level of the acknowledge interrupt. Additionally, the processor raises the interrupt mask in 
the status register (SR[I]) to match the level of the acknowledged request. At the end of the core’s 
exception processing, control passes to the interrupt service routine (ISR), shown as the beginning of 
segment C.

During C, the initial portion of the ISR executes. Near the end of this segment, the ISR accesses the 
peripheral to negate the interrupt request source. At the conclusion of segment C, the SR[I] field can be 
lowered to re-enable interrupts with a priority greater than the original request.

The bulk of the interrupt service routine executes in segment D, with interrupts enabled. Near the end of 
the service routine, the SR[I] field is again raised to the original acknowledged level, preparing to perform 
the context switch.

At the end of segment E, the original value in the saved level mask (SLMASK) is restored in the current 
level mask (CLMASK). Optionally, the service routine can directly load the CLMASK register with any 
value with pending interrupt requests of certain levels need to be examined.

In segment F, the interrupt service routine completes execution. During this period of time, it is possible 
to access the interrupt controller with a software IACK to see if there are any pending properly-enabled 
requests. Checking for any pending interrupt requests at this time provides ability to initiate processing of 
another interrupt without the need to return from the original and incur the overhead of another interrupt 
exception.

At the conclusion of segment G, the processor core returns to the original interrupted task or a different 
task ready to execute.

Obviously, there are many variations to the managing of the SR[I] and the CLMASK values to create a 
flexible, responsive system for managing interrupt requests within the device.
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Chapter 18  
Edge Port Module (EPORT)

18.1 Introduction
The edge port module (EPORT) has up to eight interrupt pins, IRQ7 – IRQ0. Each pin can be configured 
individually as a level-sensitive interrupt pin or an edge-detecting interrupt pin (rising edge, falling edge, 
or both).

NOTE
Not all EPORT signals may be output from the device. See Chapter 2, 
“Signal Descriptions,” to determine which signals are available.

Figure 18-1. EPORT Block Diagram

NOTE
The GPIO module must be configured to enable the peripheral function of 
the appropriate pins (refer to Chapter 15, “Pin-Multiplexing and Control”) 
prior to configuring the edge-port module.
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18.2 Low-Power Mode Operation
This section describes the operation of the EPORT module in low-power modes. For more information on 
low-power modes, see Chapter 9, “Power Management”. Table 18-1 shows EPORT-module operation in 
low-power modes and describes how this module may exit each mode.

NOTE
The wakeup control register (WCR) in the system control module specifies 
the interrupt level at or above what is needed to bring the device out of a 
low-power mode.

In wait and doze modes, the EPORT module continues to operate as it does in run mode. It may be 
configured to exit the low-power modes by generating an interrupt request on a selected edge or a low level 
on an external pin. In stop mode, no clocks are available to perform the edge-detect function. Only the 
level-detect logic is active (if configured) to allow any low level on the external interrupt pin to generate 
an interrupt (if enabled) to exit stop mode. 

NOTE
In stop mode, the input pin synchronizer is bypassed for the level-detect 
logic because no clocks are available.

18.3 Signal Descriptions
The values used in the edge/level detect logic are synchronized to the rising edge of FB_CLK. These pins 
use Schmitt-triggered input buffers with built-in hysteresis designed to decrease the probability of 
generating false, edge-triggered interrupts for slow rising and falling input signals.

18.4 Memory Map/Register Definition
This subsection describes the memory map and register structure. Refer to Table 18-2 for a description of 
the EPORT memory map.

NOTE
Longword accesses to any of the edge-port registers result in a bus error. 
Only byte and word accesses are allowed.

Table 18-1. Edge Port Module Operation in Low-Power Modes

Low-power Mode EPORT Operation Mode Exit

Wait Normal Any IRQn interrupt at or above level in WCR

Doze Normal Any IRQn interrupt at or above level in WCR

Stop Level-sensing only Any IRQn interrupt set for level-sensing at or 
above level in WCR. See note below.
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18.4.1 EPORT Pin Assignment Register (EPPAR)

The EPORT pin assignment register (EPPAR) controls the function of each pin individually.

Table 18-2. Edge Port Module Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

Supervisor Access Only Registers1

1 User access to supervisor-only address locations have no effect and result in a bus error.

0xFC09_0000 EPORT Pin Assignment Register (EPPAR) 16 R/W 0x0000 18.4.1/18-3

0xFC09_0003 EPORT Interrupt Enable Register (EPIER) 8 R/W 0x00 18.4.2/18-4

Supervisor/User Access Registers

0xFC09_0006 EPORT Flag Register (EPFR) 8 R/W 0x00 18.4.3/18-4

Address: 0xFC09_0000 (EPPAR) Access: Supervisor read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EPPA7 EPPA6 EPPA5 EPPA4 EPPA3 EPPA2 EPPA1 EPPA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-2. EPORT Pin Assignment Register (EPPAR)

Table 18-3. EPPAR Field Descriptions

Field Description

15–0
EPPAn

EPORT pin assignment select fields. The read/write EPPAn fields configure EPORT pins for level detection and 
rising and/or falling edge detection.
Pins configured as level-sensitive are active-low (logic 0 on the external pin represents a valid interrupt request). 
Level-sensitive interrupt inputs are not latched. To guarantee that a level-sensitive interrupt request is 
acknowledged, the interrupt source must keep the signal asserted until acknowledged by software. Level sensitivity 
must be selected to bring the device out of stop mode with an IRQn interrupt.
Pins configured as edge-triggered are latched and need not remain asserted for interrupt generation.
Interrupt requests generated in the EPORT module can be masked by the interrupt controller module.
Reset clears the EPPAn fields.
00 Pin IRQn level-sensitive
01 Pin IRQn rising edge triggered
10 Pin IRQn falling edge triggered
11 Pin IRQn falling edge and rising edge triggered
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18.4.2 Edge Port Interrupt Enable Register (EPIER)

The EPORT interrupt enable register (EPIER) enables interrupt requests for each pin individually.

18.4.3 Edge Port Flag Register (EPFR)

The EPORT flag register (EPFR) individually latches EPORT edge events.

Address: 0xFC09_0003 (EPIER) Access: User read/write

7 6 5 4 3 2 1 0

R
EPIE7 EPIE6 EPIE5 EPIE4 EPIE3 EPIE2 EPIE1 EPIE0

W

Reset: 0 0 0 0 0 0 0 0

Figure 18-3. EPORT Port Interrupt Enable Register (EPIER)

Table 18-4. EPIER Field Descriptions

Field Description

7–0
EPIEn

Edge port interrupt enable bits enable EPORT interrupt requests. If a bit in EPIER is set, EPORT generates an 
interrupt request when:
 • The corresponding bit in the EPORT flag register (EPFR) is set or later becomes set
 • The corresponding pin level is low and the pin is configured for level-sensitive operation
Clearing a bit in EPIER negates any interrupt request from the corresponding EPORT pin. Reset clears 
EPIE7–EPIE0.
0 Interrupt requests from corresponding EPORT pin disabled
1 Interrupt requests from corresponding EPORT pin enabled 

Address: 0xFC09_0006 (EPFR) Access: User read/write

7 6 5 4 3 2 1 0

R EPF7 EPF6 EPF5 EPF4 EPF3 EPF2 EPF1 EPF0

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset: 0 0 0 0 0 0 0 0

Figure 18-4. EPORT Port Flag Register (EPFR)

Table 18-5. EPFR Field Descriptions

Field Description

7–0
EPFn

Edge port flag bits. When an EPORT pin is configured for edge triggering, its corresponding read/write bit in EPFR 
indicates that the selected edge has been detected. Reset clears EPF7 – EPF0.
Bits in this register are set when the selected edge is detected on the corresponding pin. A bit remains set until 
cleared by writing a 1 to it. Writing 0 has no effect. If a pin is configured as level-sensitive (EPPARn = 00), pin 
transitions do not affect this register.
0 Selected edge for IRQn pin not detected
1 Selected edge for IRQn pin detected
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Chapter 19  
Enhanced Direct Memory Access (eDMA)

19.1 Overview
The enhanced direct memory access (eDMA) controller is a second-generation module capable of 
performing complex data transfers with minimal intervention from a host processor. The hardware 
microarchitecture includes a DMA engine that performs source- and destination-address calculations, and 
the actual data-movement operations, along with local memory containing transfer control descriptors for 
each channel.

19.1.1 Block Diagram

Figure 19-1 is a block diagram of the eDMA module.

Figure 19-1. eDMA Block Diagram
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19.1.2 Features

The eDMA is a highly-programmable data-transfer engine optimized to minimize the required 
intervention from the host processor. It is intended for use in applications where the data size to be 
transferred is statically known and not defined within the data packet itself. The eDMA module features:

• All data movement via dual-address transfers: read from source, write to destination

— Programmable source and destination addresses and transfer size, plus support for enhanced 
addressing modes

• 64-channel implementation that performs complex data transfers with minimal intervention from 
a host processor

— Internal data buffer, used as temporary storage to support 16-byte burst transfers

— Connections to the crossbar switch for bus mastering the data movement

• Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations

— 32-byte TCD stored in local memory for each channel

— An inner data transfer loop defined by a minor byte transfer count

— An outer data transfer loop defined by a major iteration count

• Channel activation via one of three methods:

— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continual transfers

— Peripheral-paced hardware requests (one per channel)

• Support for fixed-priority and round-robin channel arbitration

• Channel completion reported via optional interrupt requests

— One interrupt per channel, optionally asserted at completion of major iteration count

— Error terminations are optionally enabled per channel and logically summed together to form 
one error interrupt to the interrupt controller

• Optional support for scatter/gather DMA processing

• Support for complex data structures

• Support to cancel transfers via hardware or software

Throughout this chapter, n is used to reference the channel number.

19.2 Modes of Operation

19.2.1 Normal Mode

In normal mode, the eDMA transfers data between a source and a destination. The source and destination 
can be a memory block or an I/O block capable of operation with the eDMA.

A service request initiates a transfer of a specific number of bytes (NBYTES) as specified in the transfer 
control descriptor (TCD). The minor loop is the sequence of read-write operations that transfers these 
NBYTES per service request. A major loop is the number of minor loop iterations defining a task.
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19.2.2 Debug Mode

In debug mode, the eDMA stops transferring data. If debug mode is entered during the transfer of a data 
block described by a minor loop in the current active channel’s TCD, the eDMA continues operation until 
completion of the minor loop.

19.3 External Signal Description
This section describes the external signals of the eDMA controller.

19.3.1 External Signal Timing

Asserting the external DMA request signal, DREQn, initiates a service request for that channel. It must 
remain asserted until the corresponding DACKn signal indicates the channel’s data transfer has started. 
The DACKn output is asserted for one cycle during the address phase of the channel’s first internal read 
access.

• When no further requests are needed, the DREQn signal must negate after the DACKn assertion 
and on or before the second cycle following the data phase of the last internal bus write (see 
Figure 19-2).

• If another service request is needed, DREQn may simply remain asserted.

• To request continuous service, DREQn may remain continuously asserted.

Figure 19-2. DREQn and DACKn Timing

After a service request has been initiated, it cannot be canceled. Removing a service request after it has 
been asserted may result in one of three actions depending on the DMA engine’s status:

• The request is never recognized because another channel is executing.

Table 19-1. External Signal List

Signal Name I/O Description

DREQ0 I
Provides external requests from peripherals needing DMA service. When 
asserted, the device is requesting service. This request pin is tied to DMA 
channel 0.

DACK0 O Indicates when the external DMA request has been acknowledged. 

Internal

Internal

DACKn

DREQn

Internal

wr1rd1 rd2 wr2

wr1rd1 rd2 wr2

Address Phase

Data Phase

Bus Clock
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• The request is considered spurious and discarded, because the request is removed during arbitration 
for next channel selection.

• The channel is selected by arbitration and begins execution.

19.4 Memory Map/Register Definition
The eDMA’s programming model is partitioned into two regions: the first region defines a number of 
registers providing control functions, while the second region corresponds to the local transfer control 
descriptor memory.

Some registers are implemented as two 32-bit registers, and include an H and L suffix, signaling the high 
and low portions of the control function. Table 19-2 is a 32-bit view of the eDMA’s memory map.

Reading reserved bits in a register return the value of zero and writes to reserved bits in a register are 
ignored. Reading or writing to a reserved memory location generates a bus error.

Table 19-2. eDMA Controller Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xFC04_4000 eDMA Control Register (EDMA_CR) 32 R/W 0x0000_0000 19.4.1/19-5

0xFC04_4004 eDMA Error Status Register (EDMA_ES) 32 R 0x0000_0000 19.4.2/19-7

0xFC04_4008 eDMA Enable Request High Register (EDMA_ERQH, 
Channels 63-32)

32 R/W 0x0000_0000 19.4.3/19-10

0xFC04_400C eDMA Enable Request Low Register (EDMA_ERQL, 
Channels 31-00)

32 R/W 0x0000_0000 19.4.3/19-10

0xFC04_4010 eDMA Enable Error Interrupt High Register (EDMA_EEIH, 
Channels 63-32)

32 R/W 0x0000_0000 19.4.4/19-13

0xFC04_4014 eDMA Enable Error Interrupt Low Register (EDMA_EEIL, 
Channels 31-00)

32 R/W 0x0000_0000 19.4.4/19-13

0xFC04_4018 eDMA Set Enable Request (EDMA_SERQ) 8 W 0x00 19.4.5/19-14

0xFC04_4019 eDMA Clear Enable Request (EDMA_CERQ) 8 W 0x00 19.4.6/19-15

0xFC04_401A eDMA Set Enable Error Interrupt Register (EDMA_SEEI) 8 W 0x00 19.4.7/19-16

0xFC04_401B eDMA Clear Enable Error Interrupt Register (EDMA_CEEI) 8 W 0x00 19.4.8/19-16

0xFC04_401C eDMA Clear Interrupt Request Register (EDMA_CINT) 8 W 0x00 19.4.9/19-17

0xFC04_401D eDMA Clear Error Register (EDMA_CERR) 8 W 0x00 19.4.10/19-18

0xFC04_401E eDMA Set START Bit Register (EDMA_SSRT) 8 W 0x00 19.4.11/19-18

0xFC04_401F eDMA Clear DONE Status Bit Register (EDMA_CDNE) 8 W 0x00 19.4.12/19-19

0xFC04_4020 eDMA Interrupt Request High Register (EDMA_INTH, 
Channels 63-32)

32 R/W 0x0000_0000 19.4.13/19-20

0xFC04_4024 eDMA Interrupt Request Low Register (EDMA_INTL, 
Channels 31-00)

32 R/W 0x0000_0000 19.4.13/19-20

0xFC04_4028 eDMA Error High Register (EDMA_ERRH, Channels 63-32) 32 R/W 0x0000_0000 19.4.14/19-21
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19.4.1 eDMA Control Register (EDMA_CR)

The EDMA_CR defines the basic operating configuration of the eDMA. The eDMA arbitrates channel 
service requests in four groups (0, 1, 2, 3) of 16 channels each. Group 3 contains channels 63-48; group 2 
contains channels 47-32; group 1 contains channels 31-16; and group 0 contains channels 15-0.

Arbitration within a group can be configured to use a fixed-priority or a round-robin scheme. In 
fixed-priority arbitration, the highest priority channel requesting service is selected to execute. The 
channel priority registers assign the priorities (see Section 19.4.16, “eDMA Channel n Priority Registers 
(DCHPRIn)”). In round-robin arbitration mode, the channel priorities are ignored, and channels within 
each group are cycled through without regard to priority.

NOTE
For proper operation, writes to the EDMA_CR register must only be 
performed when the DMA channels are inactive (TCRn_CSR[ACTIVE] 
bits are cleared).

The group priorities operate in a similar fashion. In group fixed priority arbitration mode, channel service 
requests in the highest priority group are executed first where priority level 3 is the highest and priority 
level 0 is the lowest. The group priorities are assigned in the GRPnPRI fields of the eDMA control register 
(EDMA_CR). All group priorities must have unique values prior to any channel service requests occur, 
otherwise a configuration error will be reported. In group round robin mode, the group priorities are 
ignored and the groups are cycled through without regard to priority.

0xFC04_402C eDMA Error Low Register (EDMA_ERRL, Channels 31-00) 32 R/W 0x0000_0000 19.4.14/19-21

0xFC04_4030 eDMA Hardware Request Status High (EDMA_RSH, 
Channels 63–32)

32 R/W 0x0000 19.4.15/19-22

0xFC04_4034 eDMA Hardware Request Status Low (EDMA_RSL, Channels 
31–00)

32 R/W 0x0000 19.4.15/19-22

0xFC04_4100
+ hex(n)

eDMA Channel n Priority Register (DCHPRIn)
for n = 0 – 63

8 R/W See Section 19.4.16/19-23

0xFC04_5000
+ hex(32n)

Transfer Control Descriptor (TCDn)
for n = 0 – 63

256 R/W See Section 19.4.17/19-24

Table 19-2. eDMA Controller Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page
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Address: 0xFC04_4000 (EDMA_CR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CX ECX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GRP3PRI GRP2PRI GRP1PRI GRP0PRI EMLM CLM HALT HOE ERGA ERCA EDBG

0

W

Reset 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Figure 19-3. eDMA Control Register (EDMA_CR)

Table 19-3. EDMA_CR Field Descriptions

Field Description

31–17 Reserved, must be cleared.

17
CX

Cancel transfer
0 Normal operation
1 Cancel the remaining data transfer. Stop the executing channel and force the minor loop to finish. The cancel 

takes effect after the last write of the current read/write sequence. The CXFR bit clears itself after the cancel has 
been honored. This cancel retires the channel normally as if the minor loop was completed.

16
ECX

Error cancel transfer
0 Normal operation
1 Cancel the remaining data transfer in the same fashion as the CX bit. Stop the executing channel and force the 

minor loop to finish. The cancel takes effect after the last write of the current read/write sequence. The ECX bit 
clears itself after the cancel is honored. In addition to cancelling the transfer, ECX treats the cancel as an error 
condition; thus updating the EDMA_ES register and generating an optional error interrupt.

15–14
GRP3PRI

Channel group 3 priority. Group 3 priority level when fixed priority group arbitration is enabled.

13–12
GRP2PRI

Channel group 2 priority. Group 2 priority level when fixed priority group arbitration is enabled.

11–10
GRP1PRI

Channel group 1 priority. Group 1 priority level when fixed priority group arbitration is enabled.

9–8
GRP0PRI

Channel group 0 priority. Group 0 priority level when fixed priority group arbitration is enabled.

7
EMLM

Enable minor loop mapping.
0 Disabled. TCDn.word2 is defined as a 32-bit NBYTES field.
1 Enabled. TCDn.word2 is redefined to include individual enable fields, an offset field, and the NBYTES field. The 

individual enable fields allow the minor loop offset to be applied to the source address, the destination address, 
or both. The NBYTES field is reduced when either offset is enabled.

6
CLM

Continuous link mode.
0 A minor loop channel link made to itself goes through channel arbitration before being activated again.
1 A minor loop channel link made to itself does not go through channel arbitration before being activated again. 

Upon minor loop completion, the channel activates again if that channel has a minor loop channel link enabled 
and the link channel is itself. This effectively applies the minor loop offsets and restarts the next minor loop.
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19.4.2 eDMA Error Status Register (EDMA_ES)

The EDMA_ES provides information concerning the last recorded channel error. Channel errors can be 
caused by a configuration error (an illegal setting in the transfer-control descriptor or an illegal priority 
register setting in fixed-arbitration mode) or an error termination to a bus master read or write cycle.

A configuration error is reported when the starting source or destination address, source or destination 
offsets, minor loop byte count, or the transfer size represent an inconsistent state. Each of these possible 
causes are detailed in the below list:

• The addresses and offsets must be aligned on 0-modulo-transfer-size boundaries

• The minor loop byte count must be a multiple of the source and destination transfer sizes. 

• All source reads and destination writes must be configured to the natural boundary of the 
programmed transfer size respectively. 

• In fixed arbitration mode, a configuration error is caused by any two channel priorities being equal 
within a group, or any group priority levels being equal among the groups. All channel priority 
levels within a group must be unique and all group priority levels among the groups must be unique 
when fixed arbitration mode is enabled. 

• If a scatter/gather operation is enabled upon channel completion, a configuration error is reported 
if the scatter/gather address (DLAST_SGA) is not aligned on a 32-byte boundary. 

• If minor loop channel linking is enabled upon channel completion, a configuration error is reported 
when the link is attempted if the TCDn_CITER[E_LINK] bit does not equal the 
TCDn_BITER[E_LINK] bit. 

5
HALT

Halt DMA operations.
0 Normal operation
1 Stall the start of any new channels. Executing channels are allowed to complete. Channel execution resumes 

when this bit is cleared.

4
HOE

Halt on error.
0 Normal operation
1 Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.

3
ERGA

Enable round robin group arbitration.
0 Fixed priority arbitration is used for selection among the groups.
1 Round robin arbitration is used for selection among the groups.

2
ERCA

Enable round robin channel arbitration.
0 Fixed priority arbitration is used for channel selection within each group.
1 Round robin arbitration is used for channel selection within each group.

1
EDBG

Enable debug.
0 When in debug mode the DMA continues to operate.
1 When in debug mode, the eDMA stalls the start of a new channel. Executing channels are allowed to complete. 

Channel execution resumes when the system exits debug mode or the EDBG bit is cleared.

0 Reserved, must be cleared.

Table 19-3. EDMA_CR Field Descriptions (continued)

Field Description
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If enabled, all configuration error conditions, except the scatter/gather and minor-loop link errors, report 
as the channel activates and asserts an error interrupt request. A scatter/gather configuration error is 
reported when the scatter/gather operation begins at major loop completion when properly enabled. A 
minor loop channel link configuration error is reported when the link operation is serviced at minor loop 
completion.

If a system bus read or write is terminated with an error, the data transfer is stopped and the appropriate 
bus error flag set. In this case, the state of the channel's transfer control descriptor is updated by the eDMA 
engine with the current source address, destination address and current iteration count at the point of the 
fault. When a system-bus error occurs, the channel terminates after the read or write transaction (which is 
already pipelined after errant access) has completed. If a bus error occurs on the last read prior to beginning 
the write sequence, the write executes using the data captured during the bus error. If a bus error occurs on 
the last write prior to switching to the next read sequence, the read sequence executes before the channel 
terminates due to the destination bus error.

A transfer may be cancelled by software with the EDMA_CR[CX] bit. When a cancel transfer request is 
recognized, the DMA engine stops processing the channel. The current read-write sequence is allowed to 
finish. If the cancel occurs on the last read-write sequence of a major or minor loop, the cancel request is 
discarded and the channel retires normally.

The error cancel transfer is the same as a cancel transfer except the EDMA_ES register is updated with the 
cancelled channel number and ECX is set. The TCD of a cancelled channel contains the source and 
destination addresses of the last transfer saved in the TCD. If the channel needs to be restarted, you must 
re-initialize the TCD since the aforementioned fields no longer represent the original parameters. When a 
transfer is cancelled by the error cancel transfer mechanism, the channel number is loaded into 
DMA_ES[ERRCHN] and ECX and VLD are set. In addition, an error interrupt may be generated if 
enabled.

The occurrence of any error causes the eDMA engine to stop the active channel immediately, and the 
appropriate channel bit in the eDMA error register is asserted. At the same time, the details of the error 
condition are loaded into the EDMA_ES. The major loop complete indicators, setting the transfer control 
descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is 
detected. After the error status has been updated, the eDMA engine continues operating by servicing the 
next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a 
channel is terminated by an error and then issues another service request before the error is fixed, that 
channel executes and terminate with the same error condition.
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Address: 0xFC04_4004 (EDMA_ES) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ECX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R GPE CPE ERRCHN SAE SOE DAE DOE NCE SGE SBE DBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-4. eDMA Error Status Register (EDMA_ES)

Table 19-4. EDMA_ES Field Descriptions

Field Description

31
VLD

Logical OR of all EDMA_ERRH and EDMA_ERRL status bits
0 No EDMA_ERR bits are set
1 At least one EDMA_ERR bit is set indicating a valid error exists that has not been cleared

30–17 Reserved, must be cleared.

16
ECX

Transfer cancelled
0 No cancelled transfers
1 The last recorded entry was a cancelled transfer by the error cancel transfer input

15
GPE

Group priority error
0 No group priority error
1 The last recorded error was a configuration error among the group priorities. All group priorities are not unique.

14
CPE

Channel priority error
0 No channel priority error
1 The last recorded error was a configuration error in the channel priorities within a group. Channel priorities 

within a group are not unique.

13–8
ERRCHN

Error channel number or cancelled channel number. The channel number of the last recorded error (excluding 
GPE and CPE errors) or last recorded error cancelled transfer.

7
SAE

Source address error.
0 No source address configuration error.
1 The last recorded error was a configuration error detected in the TCDn_SADDR field. TCDn_SADDR is 

inconsistent with TCDn_ATTR[SSIZE]

6
SOE

Source offset error.
0 No source offset configuration error.
1 The last recorded error was a configuration error detected in the TCDn_SOFF field. TCDn_SOFF is 

inconsistent with TCDn_ATTR[SSIZE].

5
DAE

Destination address error.
0 No destination address configuration error.
1 The last recorded error was a configuration error detected in the TCDn_DADDR field. TCDn_DADDR is 

inconsistent with TCDn_ATTR[DSIZE].

4
DOE

Destination offset error.
0 No destination offset configuration error.
1 The last recorded error was a configuration error detected in the TCDn_DOFF field. TCDn_DOFF is 

inconsistent with TCDn_ATTR[DSIZE].
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19.4.3 eDMA Enable Request Registers (EDMA_ERQH, EDMA_ERQL)

The EDMA_ERQ{H,L} registers provide a bit map for the 64 implemented channels to enable the request 
signal for each channel. EDMA_ERQH supports channels 63-32, while EDMA_EQRL covers channels 
31-00. The state of any given channel enable is directly affected by writes to this register; it is also affected 
by writes to the EDMA_SERQ and EDMA_CERQ. The EDMA_{S,C}ERQR are provided so the request 
enable for a single channel can easily be modified without needing to perform a read-modify-write 
sequence to the EDMA_ERQ{H,L}.

DMA request input signals and this enable request flag must be asserted before a channel’s hardware 
service request is accepted. The state of the eDMA enable request flag does not affect a channel service 
request made explicitly through software or a linked channel request.

3
NCE

NBYTES/CITER configuration error.
0 No NBYTES/CITER configuration error.
1 The last recorded error was a configuration error detected in the TCDn_NBYTES or TCDn_CITER fields.

 • TCDn_NBYTES is not a multiple of TCDn_ATTR[SSIZE] and TCDn_ATTR[DSIZE], or
 • TCDn_CITER[CITER] is equal to zero, or
 • TCDn_CITER[E_LINK] is not equal to TCDn_BITER[E_LINK].

2
SGE

Scatter/gather configuration error.
0 No scatter/gather configuration error.
1 The last recorded error was a configuration error detected in the TCDn_DLAST_SGA field. This field is 

checked at the beginning of a scatter/gather operation after major loop completion if TCDn_CSR[E_SG] is 
enabled. TCDn_DLAST_SGA is not on a 32 byte boundary.

1
SBE

Source bus error.
0 No source bus error.
1 The last recorded error was a bus error on a source read.

0
DBE

Destination bus error.
0 No destination bus error.
1 The last recorded error was a bus error on a destination write.

Address: 0xFC04_4008 (EDMA_ERQH) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ERQ
63

ERQ
62

ERQ
61

ERQ
60

ERQ
59

ERQ
58

ERQ
57

ERQ
56

ERQ
55

ERQ
54

ERQ
53

ERQ
52

ERQ
51

ERQ
50

ERQ
49

ERQ
48W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ERQ
47

ERQ
46

ERQ
45

ERQ
44

ERQ
43

ERQ
42

ERQ
41

ERQ
40

ERQ
39

ERQ
38

ERQ
37

ERQ
36

ERQ
35

ERQ
34

ERQ
33

ERQ
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-5. eDMA Enable Request High Register (EDMA_ERQH)

Table 19-4. EDMA_ES Field Descriptions (continued)

Field Description
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The assignments between the DMA requests from the peripherals to the channels of the eDMA are shown 
in Table 19-6.

Address: 0xFC04_400C (EDMA_ERQ) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ERQ
31

ERQ
30

ERQ
29

ERQ
28

ERQ
27

ERQ
26

ERQ
25

ERQ
24

ERQ
23

ERQ
22

ERQ
21

ERQ
20

ERQ
19

ERQ
18

ERQ
17

ERQ
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ERQ
15

ERQ
14

ERQ
13

ERQ
12

ERQ
11

ERQ
10

ERQ
9

ERQ
8

ERQ
7

ERQ
6

ERQ
5

ERQ
4

ERQ
3

ERQ
2

ERQ
1

ERQ
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-6. eDMA Enable Request Low Register (EDMA_ERQL)

Table 19-5. EDMA_ERQH, EDMA_ERQL Field Descriptions

Field Description

31–0
ERQn

Enable DMA Request n.
0 The DMA request signal for channel n is disabled.
1 The DMA request signal for channel n is enabled.

Table 19-6. DMA Request Summary for eDMA

Channel Source Description

0 DREQ0 External DMA request 0

1 DREQ1 External DMA request 1

2 UISR0[FFULL/RXRDY] UART0 Receive

3 UISR0[TXRDY] UART0 Transmit

4 UISR1[FFULL/RXRDY] UART1 Receive

5 UISR1[TXRDY] UART1 Transmit

6 UISR2[FFULL/RXRDY] UART2 Receive

7 UISR2[TXRDY] UART2 Transmit

8 DTER0[CAP] or DTER0[REF] Timer 0

9 DTER1[CAP] or DTER1[REF] Timer 1

10 DTER2[CAP] or DTER2[REF] Timer 2

11 DTER3[CAP] or DTER3[REF] Timer 3

12 DSPI0_SR[RFDF] DSPI0 Receive

13 DSPI0_SR[TFFF] DSPI0 Transmit

14 DSPI1_SR[RFDF] DSPI1 Receive

15 DSPI1_SR[TFFF] DSPI1 Transmit

16 UISR3[FFULL/RXRDY] UART3 Receive
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17 UISR3[TXRDY] UART3 Transmit

18 UISR4[FFULL/RXRDY] UART4 Receive

19 UISR4[TXRDY] UART4 Transmit

20 UISR5[FFULL/RXRDY] UART5 Receive

21 UISR5[TXRDY] UART5 Transmit

22 UISR6[FFULL/RXRDY] UART6 Receive

23 UISR6[TXRDY] UART6 Transmit

24 I2SR0[IIF] I2C0

25 I2SR1[IIF] I2C1

26 I2SR2[IIF] I2C2

27 I2SR3[IIF] I2C3

28 DSPI2_SR[RFDF] DSPI2 Receive

29 DSPI2_SR[TFFF] DSPI2 Transmit

30 Activated explicitly by setting the 
TCDn_CSR[START] bit

Available for software

31 Activated explicitly by setting the 
TCDn_CSR[START] bit

Available for software

32 UISR7[FFULL/RXRDY] UART7 Receive

33 UISR7[TXRDY] UART7 Transmit

34 UISR8[FFULL/RXRDY] UART8 Receive

35 UISR8[TXRDY] UART8 Transmit

36 UISR9[FFULL/RXRDY] UART9 Receive

37 UISR9[TXRDY] UART9 Transmit

38 OW_ISR 1-Wire Request

39 — Reserved

40 I2SR4[IIF] I2C4

41 I2SR5[IIF] I2C5

42 Activated explicitly by setting the 
TCDn_CSR[START] bit

Available for software

43 Activated explicitly by setting the 
TCDn_CSR[START] bit

Available for software

44 DSPI3_SR[RFDF] DSPI3 Receive

45 DSPI3_SR[TFFF] DSPI3 Transmit

46 Activated explicitly by setting the 
TCDn_CSR[START] bit

Available for software

Table 19-6. DMA Request Summary for eDMA (continued)

Channel Source Description



Enhanced Direct Memory Access (eDMA)

NXP Semiconductors 19-13

As a given channel completes the processing of its major iteration count, a flag in the transfer control 
descriptor that affect the ending state of the EDMA_ERQ bit for that channel. If the TCDn_CSR[D_REQ] 
bit is set, the corresponding EDMA_ERQ bit is cleared, disabling the DMA request. If the D_REQ bit 
clears, the state of the EDMA_ERQ bit is unaffected.

19.4.4 eDMA Enable Error Interrupt Registers (EDMA_EEIH, EDMA_EEIL)

The EDMA_EEI{H,L} registers provide a bit map for the 64 channels to enable the error interrupt signal 
for each channel. EDMA_EEIH supports channels 63-32, while EDMA_EEIL covers channels 31-00. The 
state of any given channel’s error interrupt enable is directly affected by writes to this register; it is also 
affected by writes to the EDMA_SEEI and EDMA_CEEI. The EDMA_{S,C}EEIR are provided so the 
error interrupt enable for a single channel can easily be modified without the need to perform a 
read-modify-write sequence to the EDMA_EEI{H,L} registers.

The DMA error indicator and the error interrupt enable flag must be asserted before an error interrupt 
request for a given channel is asserted to the interrupt controller.

47 Activated explicitly by setting the 
TCDn_CSR[START] bit

Available for software

48 SSI0_SR[RFF0] SSI0 Receive 0

49 SSI0_SR[RFF1] SSI0 Receive 1

50 SSI0_SR[TFE0] SSI0 Transmit 0

51 SSI0_SR[TFE1] SSI0 Transmit 1

52 SSI1_SR[RFF0] SSI1 Receive 0

53 SSI1_SR[RFF1] SSI1 Receive 1

54 SSI1_SR[TFE0] SSI1 Transmit 0

55 SSI1_SR[TFE1] SSI1 Transmit 1

56 Depends on 
PWM_SMnDMAEN[CAPTDE]

mcPWM Capture

57 PWM_SMnSR[RF] mcPWM Value

58 — Reserved

59 SDHC_SR[BRRDY, BWRDY] eSDHC

60 ADC_SR ADC0

61 ADC_SR ADC1

62 DAC0_SR DAC0

63 DAC1_SR DAC1

Table 19-6. DMA Request Summary for eDMA (continued)

Channel Source Description
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19.4.5 eDMA Set Enable Request Register (EDMA_SERQ)

The EDMA_SERQ provides a simple memory-mapped mechanism to set a given bit in the 
EDMA_ERQ{H,L} to enable the DMA request for a given channel. The data value on a register write 
causes the corresponding bit in the EDMA_ERQ{H,L} to be set. Setting the SAER bit provides a global 
set function, forcing the entire contents of EDMA_ERQ{H,L} to be set. If bit 7 is set the command is 
ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all 
zeroes.

Address: 0xFC04_4010 (EDMA_EEIH) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EEI63 EEI62 EEI61 EEI60 EEI59 EEI58 EEI57 EEI56 EEI55 EEI54 EEI53 EEI52 EEI51 EEI50 EEI49 EEI48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EEI47 EEI46 EEI45 EEI44 EEI43 EEI42 EEI41 EEI40 EEI39 EEI38 EEI37 EEI36 EEI35 EEI34 EEI33 EEI32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-7. eDMA Enable Error Interrupt High Register (EDMA_EEIH)

Address: 0xFC04_4014 (EDNA_EEIL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EEI31 EEI30 EEI29 EEI28 EEI27 EEI26 EEI25 EEI24 EEI23 EEI22 EEI21 EEI20 EEI19 EEI18 EEI17 EEI16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EEI15 EEI14 EEI13 EEI12 EEI11 EEI10 EEI9 EEI8 EEI7 EEI6 EEI5 EEI4 EEI3 EEI2 EEI1 EEI0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-8. eDMA Enable Error Interrupt Low Register (EDMA_EEIL)

Table 19-7. EDMA_EEIH, EDMA_EEIL Field Descriptions

Field Description

31–0
EEIn

Enable error interrupt n.
0 The error signal for channel n does not generate an error interrupt.
1 The assertion of the error signal for channel n generates an error interrupt request.
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19.4.6 eDMA Clear Enable Request Register (EDMA_CERQ)

The EDMA_CERQ provides a simple memory-mapped mechanism to clear a given bit in the 
EDMA_ERQ{H,L} to disable the DMA request for a given channel. The data value on a register write 
causes the corresponding bit in the EDMA_ERQ{H,L} to be cleared. Setting the CAER bit provides a 
global clear function, forcing the entire contents of the EDMA_ERQ{H,L} to be cleared, disabling all 
DMA request inputs. If bit 7 is set, the command is ignored. This allows you to write multiple-byte 
registers as a 32-bit word. Reads of this register return all zeroes.

Address: 0xFC04_4018 (EDMA_SERQ) Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W NOP SAER SERQ

Reset 0 0 0 0 0 0 0 0

Figure 19-9. eDMA Set Enable Request Register (EDMA_SERQ)

Table 19-8. EDMA_SERQ Field Descriptions

Field Description

7
NOP

0 Normal operation
1 No operation, ignore bits 6–0 of this register

6
SAER

Set all enable requests.
0 Set only those EDMA_ERQ{H,L} bits specified in the SERQ field.
1 Set all bits in EDMA_ERQ{H,L}.

5–0
SERQ

Set enable request. Sets the corresponding bit in EDMA_ERQ{H,L}.

Address: 0xFC04_4019 (EDMA_CERQ) Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W NOP CAER CERQ

Reset 0 0 0 0 0 0 0 0

Figure 19-10. eDMA Clear Enable Request Register (EDMA_CERQ)

Table 19-9. EDMA_CERQ Field Descriptions

Field Description

7
NOP

0 Normal operation
1 No operation, ignore bits 6–0 of this register
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19.4.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEI)

The EDMA_SEEI provides a simple memory-mapped mechanism to set a given bit in the 
EDMA_EEI{H,L} to enable the error interrupt for a given channel. The data value on a register write 
causes the corresponding bit in the EDMA_EEI{H,L} to be set. Setting the SAEE bit provides a global set 
function, forcing the entire EDMA_EEI{H,L} contents to be set. If bit 7 is set, the command is ignored. 
This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

19.4.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEI)

The EDMA_CEEI provides a simple memory-mapped mechanism to clear a given bit in the 
EDMA_EEI{H,L} to disable the error interrupt for a given channel. The data value on a register write 
causes the corresponding bit in the EDMA_EEI{H,L} to be cleared. Setting the CAEE bit provides a 
global clear function, forcing the EDMA_EEI{H,L} contents to be cleared, disabling all DMA request 
inputs. If bit 7 is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit 
word. Reads of this register return all zeroes.

6
CAER

Clear all enable requests.
0 Clear only those EDMA_ERQ{H,L} bits specified in the CERQ field.
1 Clear all bits in EDMA_ERQ{H,L}.

5–0
CERQ

Clear enable request. Clears the corresponding bit in EDMA_ERQ{H,L}.

Address: 0xFC04_401A (EDMA_SEEI) Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W NOP SAEE SEEI

Reset 0 0 0 0 0 0 0 0

Figure 19-11. eDMA Set Enable Error Interrupt Register (EDMA_SEEI)

Table 19-10. EDMA_SEEI Field Descriptions

Field Description

7
NOP

0 Normal operation
1 No operation, ignore bits 6–0 of this register

6
SAEE

Sets all enable error interrupts.
0 Set only those EDMA_EEI{H,L} bits specified in the SEEI field.
1 Sets all bits in EDMA_EEI{H,L}.

5–0
SEEI

Set enable error interrupt. Sets the corresponding bit in EDMA_EEI{H,L}.

Table 19-9. EDMA_CERQ Field Descriptions (continued)

Field Description
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19.4.9 eDMA Clear Interrupt Request Register (EDMA_CINT)

The EDMA_CINT provides a simple, memory-mapped mechanism to clear a given bit in the 
EDMA_INT{H,L} to disable the interrupt request for a given channel. The given value on a register write 
causes the corresponding bit in the EDMA_INT{H,L} to be cleared. Setting the CAIR bit provides a global 
clear function, forcing the entire contents of the EDMA_INT{H,L} to be cleared, disabling all DMA 
interrupt requests. If bit 7 is set, the command is ignored. This allows you to write multiple-byte registers 
as a 32-bit word. Reads of this register return all zeroes.

Address: 0xFC04_401B (EDNA_CEEI) Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W NOP CAEE CEEI

Reset 0 0 0 0 0 0 0 0

Figure 19-12. eDMA Clear Enable Error Interrupt Register (EDMA_CEEI)

Table 19-11. EDMA_CEEI Field Descriptions

Field Description

7
NOP

0 Normal operation
1 No operation, ignore bits 6–0 of this register

6
CAEE

Clear all enable error interrupts.
0 Clear only those EDMA_EEI{H,L} bits specified in the CEEI field.
1 Clear all bits in EDMA_EEI{H,L}.

5–0
CEEI

Clear enable error interrupt. Clears the corresponding bit in EDMA_EEI{H,L}.

Address: 0xFC04_401C (EDMA_CINT) Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W NOP CAIR CINT

Reset 0 0 0 0 0 0 0 0

Figure 19-13. eDMA Clear Interrupt Request (EDMA_CINT)

Table 19-12. EDMA_CINT Field Descriptions

Field Description

7
NOP

0 Normal operation
1 No operation, ignore bits 6–0 of this register
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19.4.10 eDMA Clear Error Register (EDMA_CERR)

The EDMA_CERR provides a simple memory-mapped mechanism to clear a given bit in the 
EDMA_ERR{H,L} to disable the error condition flag for a given channel. The given value on a register 
write causes the corresponding bit in the EDMA_ERR{H,L} to be cleared. Setting the CAEI bit provides 
a global clear function, forcing the EDMA_ERR{H,L} contents to be cleared, clearing all channel error 
indicators. If bit 7 is set, the command is ignored. This allows you to write multiple-byte registers as a 
32-bit word. Reads of this register return all zeroes.

19.4.11 eDMA Set START Bit Register (EDMA_SSRT)

The EDMA_SSRT provides a simple memory-mapped mechanism to set the START bit in the TCD of the 
given channel. The data value on a register write causes the START bit in the corresponding transfer 
control descriptor to be set. Setting the SAST bit provides a global set function, forcing all START bits to 
be set. If bit 7 is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit 
word. Reads of this register return all zeroes.

6
CAIR

Clear all interrupt requests.
0 Clear only those EDMA_INT{H,L} bits specified in the CINT field.
1 Clear all bits in EDMA_INT{H,L}.

5–0
CINT

Clear interrupt request. Clears the corresponding bit in EDMA_INT{H,L}.

Address: 0xFC04_401D (EDMA_CERR) Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W NOP CAEI CERR

Reset 0 0 0 0 0 0 0 0

Figure 19-14. eDMA Clear Error Register (EDMA_CERR)

Table 19-13. EDMA_CERR Field Descriptions

Field Description

7
NOP

0 Normal operation
1 No operation, ignore bits 6–0 of this register

6
CAEI

Clear all error indicators.
0 Clear only those EDMA_ERR{H,L} bits specified in the CERR field.
1 Clear all bits in EDMA_ERR{H,L}.

5–0
CERR

Clear error indicator. Clears the corresponding bit in EDMA_ERR{H,L}.

Table 19-12. EDMA_CINT Field Descriptions (continued)

Field Description
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19.4.12 eDMA Clear DONE Status Bit Register (EDMA_CDNE)

The EDMA_CDNE provides a simple memory-mapped mechanism to clear the DONE bit in the TCD of 
the given channel. The data value on a register write causes the DONE bit in the corresponding transfer 
control descriptor to be cleared. Setting the CADN bit provides a global clear function, forcing all DONE 
bits to be cleared. If bit 7 is set, the command is ignored. This allows you to write multiple-byte registers 
as a 32-bit word. Reads of this register return all zeroes.

Address: 0xFC04_401E (EDMA_SSRT) Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W NOP SAST SSRT

Reset 0 0 0 0 0 0 0 0

Figure 19-15. eDMA Set START Bit Register (EDMA_SSRT)

Table 19-14. EDMA_SSRT Field Descriptions

Field Description

7
NOP

0 Normal operation
1 No operation, ignore bits 6–0 of this register

6
SAST

Set all START bits (activates all channels).
0 Set only those TCDn_CSR[START] bits specified in the SSRT field.
1 Set all bits in TCDn_CSR[START].

5–0
SSRT

Set START bit. Sets the corresponding bit in TCDn_CSR[START].

Address: 0xFC04_401F (EDMA_CDNE) Access: User write-only

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0

W NOP CADN CDNE

Reset 0 0 0 0 0 0 0 0

Figure 19-16. eDMA Clear DONE Status Bit Register (EDMA_CDNE)

Table 19-15. EDMA_CDNE Field Descriptions

Field Description

7
NOP

0 Normal operation
1 No operation, ignore bits 6–0 of this register

6
CADN

Clears all DONE bits.
0 Clears only those TCDn_CSR[DONE] bits specified in the CDNE field.
1 Clears all bits in TCDn_CSR[DONE]

5–0
CDNE

Clear DONE bit. Clears the corresponding bit in TCDn_CSR[DONE].
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19.4.13 eDMA Interrupt Request Registers (EDMA_INTH, EDMA_INTL)

The EDMA_INT{H,L} provide a bit map for the 64 channels signaling the presence of an interrupt request 
for each channel. Depending on the appropriate bit setting in the transfer-control descriptions, the eDMA 
engine generates an interrupt a data transfer completion. The outputs of this register are directly routed to 
the interrupt controller (INTC). During the interrupt-service routine associated with any given channel, it 
is the software’s responsibility to clear the appropriate bit, negating the interrupt request. Typically, a write 
to the EDMA_CINT in the interrupt service routine is used for this purpose.

The state of any given channel’s interrupt request is directly affected by writes to this register; it is also 
affected by writes to the EDMA_CINT. On writes to the EDMA_INT, a 1 in any bit position clears the 
corresponding channel’s interrupt request. A zero in any bit position has no affect on the corresponding 
channel’s current interrupt status. The EDMA_CINT is provided so the interrupt request for a single 
channel can easily be cleared without the need to perform a read-modify-write sequence to the 
EDMA_INT{H,L}.

Offset 0xFC04_4020 (EDMA_INTH) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT63 INT62 INT61 INT60 INT59 INT58 INT57 INT56 INT55 INT54 INT53 INT52 INT51 INT50 INT49 INT48

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT47 INT46 INT45 INT44 INT43 INT42 INT41 INT40 INT39 INT38 INT37 INT36 INT35 INT34 INT33 INT32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-17. eDMA Interrupt Request High Register (EDMA_INTH)

Address: 0xFC04_4024 (EDMA_INTL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT31 INT30 INT29 INT28 INT27 INT26 INT25 INT24 INT23 INT22 INT21 INT20 INT19 INT18 INT17 INT16

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT15 INT14 INT13 INT12 INT11 INT10 INT9 INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-18. eDMA Interrupt Request Low Register (EDMA_INTL)

Table 19-16. EDMA_INTH, EDMA_INTL Field Descriptions

Field Description

31–0
INTn

eDMA interrupt request n
0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.
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19.4.14 eDMA Error Registers (EDMA_ERRH, EDMA_ERRL)

The EDMA_ERR{H,L} provide a bit map for the 64 channels, signaling the presence of an error for each 
channel. EDMA_ERRH supports channels 63-32, while EDMA_ERRL covers channels 31-00. The 
eDMA engine signals the occurrence of a error condition by setting the appropriate bit in this register. The 
outputs of this register are enabled by the contents of the EDMA_EEI, then logically summed across 
groups of 16, 32 and 64 channels to form several group error interrupt requests which is then  routed to the 
interrupt controller. During the execution of the interrupt-service routine associated with any DMA errors, 
it is software’s responsibility to clear the appropriate bit, negating the error-interrupt request. Typically, a 
write to the EDMA_CERR in the interrupt-service routine is used for this purpose. The normal DMA 
channel completion indicators (setting the transfer control descriptor DONE flag and the possible assertion 
of an interrupt request) are not affected when an error is detected.

The contents of this register can also be polled because a non-zero value indicates the presence of a channel 
error regardless of the state of the EDMA_EEI. The state of any given channel’s error indicators is affected 
by writes to this register; it is also affected by writes to the EDMA_CERR. On writes to the EDMA_ERR, 
a one in any bit position clears the corresponding channel’s error status. A zero in any bit position has no 
affect on the corresponding channel’s current error status. The EDMA_CERR is provided so the error 
indicator for a single channel can easily be cleared.

Address: 0xFC04_4028 (EDMA_ERRH) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ERR
63

ERR
62

ERR
61

ERR
60

ERR
59

ERR
58

ERR
57

ERR
56

ERR
55

ERR
54

ERR
53

ERR
52

ERR
51

ERR
50

ERR
49

ERR
48

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ERR
47

ERR
46

ERR
45

ERR
44

ERR
43

ERR
42

ERR
41

ERR
40

ERR
39

ERR
38

ERR
37

ERR
36

ERR
35

ERR
34

ERR
33

ERR
32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-19. eDMA Error High Register (EDMA_ERRH)

Address: 0xFC04_402C (EDMA_ERRL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ERR
31

ERR
30

ERR
29

ERR
28

ERR
27

ERR
26

ERR
25

ERR
24

ERR
23

ERR
22

ERR
21

ERR
20

ERR
19

ERR
18

ERR
17

ERR
16

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ERR
15

ERR
14

ERR
13

ERR
12

ERR
11

ERR
10

ERR
9

ERR
8

ERR
7

ERR
6

ERR
5

ERR
4

ERR
3

ERR
2

ERR
1

ERR
0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-20. eDMA Error Low Register (EDMA_ERRL)
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19.4.15 eDMA Hardware Request Status Registers (EDMA_HRSH, 
EDMA_HRSL)

The HRS register provides a bit map for the DMA channels, signaling the presence of a hardware request 
for each channel. The hardware request status bits reflect the current state of the register and qualified (via 
the ERQ fields) DMA request signals as seen by the DMA's arbitration logic. This view into the hardware 
request signals may be used for debug purposes.

NOTE
These bits reflect the state of the request as seen by the arbitration logic.

Therefore, this status is affected by the ERQ bits.

Table 19-17. EDMA_ERRH, EDMA_ERRL Field Descriptions

Field Description

31–0
ERRn

eDMA Error n.
0 An error in channel n has not occurred.
1 An error in channel n has occurred.

Address: 0xFC04_4030 (EDMA_HRSH) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R HRS
63

HRS
62

HRS
61

HRS
60

HRS
59

HRS
58

HRS
57

HRS
56

HRS
55

HRS
54

HRS
53

HRS
52

HRS
51

HRS
50

HRS
49

HRS
48W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HRS
47

HRS
46

HRS
45

HRS
44

HRS
43

HRS
42

HRS
41

HRS
40

HRS
39

HRS
38

HRS
37

HRS
36

HRS
35

HRS
34

HRS
33

HRS
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-21. eDMA Hardware Request Status High Register (EDMA_HRSH)

Address: 0xFC04_4034 (EDMA_HRSL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R HRS
31

HRS
30

HRS
29

HRS
28

HRS
27

HRS
26

HRS
25

HRS
24

HRS
23

HRS
22

HRS
21

HRS
20

HRS
19

HRS
18

HRS
17

HRS
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HRS
15

HRS
14

HRS
13

HRS
12

HRS
11

HRS
10

HRS
9

HRS
8

HRS
7

HRS
6

HRS
5

HRS
4

HRS
3

HRS
2

HRS
1

HRS
0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-22. eDMA Hardware Request Status Low Register (EDMA_HRSL)



Enhanced Direct Memory Access (eDMA)

NXP Semiconductors 19-23

19.4.16 eDMA Channel n Priority Registers (DCHPRIn)

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the contents of 
these registers define the unique priorities associated with each channel within a group. The channel 
priorities are evaluated by numeric value; for example, 0 is the lowest priority, 1 is the next higher priority, 
then 2, 3, etc. Software must program the channel priorities with unique values. Otherwise, a configuration 
error is reported. The range of the priority value is limited to the values of 0 through 15. When read, the 
GRPPRI bits of the DCHPRIn register reflect the current priority level of the group of channels in which 
the corresponding channel resides. GRPPRI bits are not affected by writes to the DCHPRIn registers. The 
group priority is assigned in the EDMA_CR. See Section 19.4.1, “eDMA Control Register (EDMA_CR)” 
for the EDMA_CR definition.

Channel preemption is enabled on a per-channel basis by setting the DCHPRIn[ECP] bit. Channel 
preemption allows the executing channel’s data transfers to temporarily suspend in favor of starting a 
higher priority channel. After the preempting channel has completed all its minor loop data transfers, the 
preempted channel is restored and resumes execution. After the restored channel completes one read/write 
sequence, it is again eligible for preemption. If any higher priority channel is requesting service, the 
restored channel is suspended and the higher priority channel is serviced. Nested preemption (attempting 
to preempt a preempting channel) is not supported. After a preempting channel begins execution, it cannot 
be preempted. Preemption is available only when fixed arbitration is selected for both group and channel 
arbitration modes.

A channel’s ability to preempt another channel can be disabled by setting DCHPRIn[DPA]. When a 
channel’s preempt ability is disabled, that channel cannot suspend a lower priority channel’s data transfer; 
regardless of the lower priority channel’s ECP setting. This allows for a pool of low priority, large 
data-moving channels to be defined. These low priority channels can be configured to not preempt each 
other, thus preventing a low priority channel from consuming the preempt slot normally available a true, 
high priority channel.

Table 19-18. EDMA_HRSH, EDMA_HRSL Field Descriptions

Field Description

31–0
HRSn

eDMA hardware request status n.
0 A hardware service request for channel n is not present
1 A hardware service request for channel n is present
Note: These bits reflect the state of the request as seen by the arbitration logic. Therefore, this status is affected by 

the EDMA_ERQ{H,L} bits.

Address: 0xFC04_4100 + n, where n = 0 – 63 (DCHPRIn) Access: User read/write

7 6 5 4 3 2 1 0

R
ECP DPA

GRPPRI
CHPRI

W

Reset 0 0 –1 –1 –1 –1 –1 –1

1 Reset value for the group and channel priority fields, GRPPRI and CHPRI, is equal to the corresponding channel 
number for each priority register, i.e., DCHPRI31[GRPPRI] = 0b01 and DCHPRI31[CHPRI] equals 0b1111.

Figure 19-23. eDMA Channel n Priority Register (DCHPRIn)
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19.4.17 Transfer Control Descriptors (TCDn)

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement 
operation. The channel descriptors are stored in the local memory in sequential order: channel 0, channel 
1,... channel 63. Each TCDn definition is presented as 11 registers of 16 or 32 bits. Table 19-20 is a register 
list of the basic TCD structure.

Figure 19-24. TCDn Memory Structure

Table 19-19. DCHPRIn Field Descriptions

Field Description

7
ECP

Enable channel preemption.
0 Channel n cannot be suspended by a higher priority channel’s service request.
1 Channel n can be temporarily suspended by the service request of a higher priority channel.

6
DPA

Disable preempt ability.
0 Channel n can suspend a lower priority channel.
1 Channel n cannot suspend any channel, regardless of channel priority.

5–4
GRPPRI

Channel n current group priority. Group priority assigned to this channel group when fixed-priority arbitration is 
enabled. These two bits are read only; writes are ignored.

3–0
CHPRI

Channel n arbitration priority. Channel priority when fixed-priority arbitration is enabled.
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The following figures and tables define the fields of the TCDn structure:

Address: 0xFC04_5000 + (0x20 n) (TCDn_SADDR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SADDR

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 19-25. TCDn Source Address (TCDn_SADDR)

Table 19-20. TCDn_SADDR Field Descriptions

Field Description

31–0
SADDR

Source address. Memory address pointing to the source data.

Address: 0xFC04_5004 + (0x20 n) (TCDn_ATTR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SMOD SSIZE DMOD DSIZE

W

Reset — — — — — — — — — — — — — — — —

Figure 19-26. TCDn Transfer Attributes (TCDn_ATTR)

Table 19-21. TCDn_ATTR Field Descriptions

Field Description

15–11
SMOD

Source address modulo.
0 Source address modulo feature is disabled.
non-0   This value defines a specific address range specified to be the value after SADDR + SOFF 

calculation is performed or the original register value. The setting of this field provides the ability to 
implement a circular data queue easily. For data queues requiring power-of-2 size bytes, the queue 
should start at a 0-modulo-size address and the SMOD field should be set to the appropriate value for 
the queue, freezing the desired number of upper address bits. The value programmed into this field 
specifies the number of lower address bits allowed to change. For a circular queue application, the SOFF 
is typically set to the transfer size to implement post-increment addressing with the SMOD function 
constraining the addresses to a 0-modulo-size range.

10–8
SSIZE

Source data transfer size.
000 8-bit
001 16-bit
010 32-bit
100 16-byte
Else Reserved
The attempted use of a Reserved encoding causes a configuration error.

7–3
DMOD

Destination address modulo. See the SMOD definition.

2–0
DSIZE

Destination data transfer size. See the SSIZE definition.
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If minor loop mapping is disabled (EDMA_CR[EMLM] = 0), TCD word 2 is defined as in Figure 19-28.

If minor loop mapping is enabled (EDMA_CR[EMLM] = 1), TCD word 2 is defined as in Figure 19-29.

Address: 0xFC04_5006 + (0x20 n) (TCDn_SOFF) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SOFF

W

Reset — — — — — — — — — — — — — — — —

Figure 19-27. TCDn Signed Source Address Offset (TCDn_SOFF)

Table 19-22. TCDn_SOFF Field Descriptions

Field Description

15–0
SOFF

Source address signed offset. Sign-extended offset applied to the current source address to form the 
next-state value as each source read is completed.

Address: 0xFC04_5008 + (0x20 n) (TCDn_NBYTES) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
NBYTES

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 19-28. TCDn Minor Byte Count (TCDn_NBYTES)

Table 19-23. TCDn_NBYTES Field Descriptions

Field Description

31–0
NBYTES

Minor byte transfer count. Number of bytes to be transferred in each service request of the channel. As a 
channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and 
writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot 
be halted. (Although, it may be stalled by using the bandwidth control field, or via preemption.) After the 
minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major 
iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, 
additional processing is performed.
Note: An NBYTES value of 0x0000_0000 is interpreted as a 4 GB transfer.

Address: 0xFC04_5008 + (0x20 n) (TCDn_NBYTES) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

If SMLOE = 0 and DMLOE = 0

R SML
OE

DML
OE

NBYTES
W

If SMLOE  0 or DMLOE  0

R SML
OE

DML
OE

MLOFF NBYTES
W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 19-29. TCDn Minor Byte Count (TCDn_NBYTES)
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Table 19-24. TCDn_NBYTES Field Descriptions

Field Description

31
SMLOE

Source minor loop offset enable. Selects whether the minor loop offset is applied to the source address 
upon minor loop completion.
0 The minor loop offset is not applied to the SADDR
1 The minor loop offset is applied to the SADDR

30
DMLOE

Destination minor loop offset enable. Selects whether the minor loop offset is applied to the destination 
address upon minor loop completion.
0 The minor loop offset is not applied to the DADDR
1 The minor loop offset is applied to the DADDR

29–10
MLOFF

If either SMLOE or DMLOE is set, this field represents a sign-extended offset applied to the source or 
destination address to form the next-state value after the minor loop completes.

29–0
or 9–0

NBYTES

If both SMLOE and DMLOE are cleared, this field is 30 bits wide. If not, it is 10 bits wide.

Minor byte transfer count. Number of bytes to be transferred in each service request of the channel.
As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate 
reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation 
and cannot be halted. (Although, it may be stalled by using the bandwidth control field, or via preemption.) 
After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, 
the major iteration count is decremented and restored to the TCD memory. If the major iteration count is 
completed, additional processing is performed.

Address: 0xFC04_500C + (0x20 n) (TCDn_SLAST) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SLAST

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 19-30. TCDn Source Last Address Adjustment (TCDn_SLAST)

Table 19-25. TCDn_SLAST Field Descriptions

Field Description

31–0
SLAST

Last source address adjustment. Adjustment value added to the source address at the completion of the 
major iteration count. This value can be applied to restore the source address to the initial value, or adjust 
the address to reference the next data structure.

Address: 0xFC04_5010 + (0x20 n) (TCDn_DADDR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DADDR

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 19-31. TCDn Destination Address (TCDn_DADDR)
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Table 19-26. TCDn_DADDR Field Descriptions

Field Description

31–0
DADDR

Destination address. Memory address pointing to the destination data.

Address: 0xFC04_5014 + (0x20 n) (TCDn_CITER) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E_LINK = 1
R

E_LINK LINKCH CITER
W

E_LINK = 0
R

E_LINK CITER
W

Reset — — — — — — — — — — — — — — — —

Figure 19-32. TCDn Current Major Iteration Count (TCDn_CITER)

Table 19-27. TCDn_CITER Field Descriptions

Field Description

15
E_LINK

Enable channel-to-channel linking on minor-loop complete. As the channel completes the minor loop, this 
flag enables linking to another channel, defined by the LINKCH field. The link target channel initiates a 
channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified 
channel. 
If channel linking is disabled, the CITER value is extended to 15 bits in place of a link channel number. If 
the major loop is exhausted, this link mechanism is suppressed in favor of the MAJOR_E_LINK channel 
linking. 
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note: This bit must be equal to the BITER.E_LINK bit. Otherwise, a configuration error is reported.

14–9
LINKCH

Link channel number. If channel-to-channel linking is enabled (E_LINK = 1), then after the minor loop is 
exhausted, the eDMA engine initiates a channel service request to the channel defined by these six bits by 
setting that channel’s TCDn_CSR[START] bit.
0–63 Link to DMA channel 0–63

14–0 or
8–0

CITER

Current major iteration count. This 9-bit (E_LINK = 1) or 15-bit (E_LINK = 0) count represents the current 
major loop count for the channel. It is decremented each time the minor loop is completed and updated in 
the transfer control descriptor memory. After the major iteration count is exhausted, the channel performs 
a number of operations (e.g., final source and destination address calculations), optionally generating an 
interrupt to signal channel completion before reloading the CITER field from the beginning iteration count 
(BITER) field.
Note:  When the CITER field is initially loaded by software, it must be set to the same value as that 

contained in the BITER field.
Note: If the channel is configured to execute a single service request, the initial values of BITER and CITER 

should be 0x0001.
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Address: 0xFC04_5016 + (0x20 n) (TCDn_DOFF) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DOFF

W

Reset — — — — — — — — — — — — — — — —

Figure 19-33. TCDn Destination Address Signed Offset (TCDn_DOFF)

Table 19-28. TCDn_DOFF Field Descriptions

Field Description

15–0
DOFF

Destination address signed offset. Sign-extended offset applied to the current destination address to form 
the next-state value as each destination write is completed.

Address: 0xFC04_5018 + (0x20 n) (TCDn_DLAST_SGA) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DLAST_SGA

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 19-34. TCDn Destination Last Address Adjustment (TCDn_DLAST_SGA)

Table 19-29. TCDn_DLAST_SGA Field Descriptions

Field Description

31–0
DLAST_SGA

Destination last address adjustment or the memory address for the next transfer control descriptor to be 
loaded into this channel (scatter/gather).
If (TCDn_CSR[E_SG] = 0) then

 • Adjustment value added to the destination address at the completion of the major iteration count. This 
value can apply to restore the destination address to the initial value or adjust the address to reference 
the next data structure.

else
 • This address points to the beginning of a 0-modulo-32-byte region containing the next transfer control 

descriptor to be loaded into this channel. This channel reload is performed as the major iteration count 
completes. The scatter/gather address must be 0-modulo-32-byte, else a configuration error is 
reported.

Address: 0xFC04_501C + (0x20 n) (TCDn_BITER) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E_LINK = 1
R

E_LINK LINKCH BITER
W

E_LINK = 0
R

E_LINK BITER
W

Reset — — — — — — — — — — — — — — — —

Figure 19-35. TCDn Beginning Major Iteration Count (TCDn_BITER)
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Table 19-30. TCDn_BITER Field Descriptions

Field Description

15
E_LINK

Enables channel-to-channel linking on minor loop complete. As the channel completes the minor loop, this 
flag enables the linking to another channel, defined by BITER.LINKCH. The link target channel initiates a 
channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified 
channel. If channel linking disables, the BITER value extends to 15 bits in place of a link channel number. 
If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJOR_E_LINK channel 
linking. 

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note: When the software loads the TCD, this field must be set equal to the corresponding CITER field. 

Otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents 
of this field is reloaded into the CITER field.

14–9
LINKCH

Link channel number. If channel-to-channel linking is enabled (E_LINK = 1), then after the minor loop is 
exhausted, the eDMA engine initiates a channel service request at the channel defined by these six bits by 
setting that channel’s TCDn_CSR[START] bit.
0–63 Link to DMA channel 0–63
Note: When the software loads the TCD, this field must be set equal to the corresponding CITER field. 

Otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents 
of this field is reloaded into the CITER field.

14–0 or
8–0

BITER

Starting major iteration count. As the transfer control descriptor is first loaded by software, this 9-bit 
(E_LINK = 1) or 15-bit (E_LINK = 0) field must be equal to the value in the CITER field. As the major 
iteration count is exhausted, the contents of this field are reloaded into the CITER field.
Note: When the software loads the TCD, this field must be set equal to the corresponding CITER field. 

Otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents 
of this field is reloaded into the CITER field. If the channel is configured to execute a single service 
request, the initial values of BITER and CITER should be 0x0001.

Address: 0xFC04_501E + (0x20 n) (TCDn_CSR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BWC MAJOR.LINKCH DONE ACTIVE

MAJOR.
E_LINK

E_SG D_REQ
INT_
HALF

INT_
MAJOR

START
W

Reset — — — — — — — — 0 0 — — — — — 0

Figure 19-36. TCDn Control and Status (TCDn_CSR)
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Table 19-31. TCDn_CSR Field Descriptions

Field Description

15–14
BWC

Bandwidth control. Throttles the amount of bus bandwidth consumed by the eDMA. In general, as the 
eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is 
exhausted. This field forces the eDMA to stall after the completion of each read/write access to control the 
bus request bandwidth seen by the crossbar switch (XBS).
00 No eDMA engine stalls
01 Reserved
10 eDMA engine stalls for 4 cycles after each r/w
11 eDMA engine stalls for 8 cycles after each r/w
Note: If the source and destination sizes are equal, this field is ignored between the first and second 

transfers and after the last write of each minor loop. This behavior is a side effect of reducing start-up 
latency.

13–8
MAJOR_LINKCH

Link channel number.
If (MAJOR_E_LINK = 0) then

 • No channel-to-channel linking (or chaining) is performed after the major loop counter is exhausted.
else

 • After the major loop counter is exhausted, the eDMA engine initiates a channel service request at the 
channel defined by these six bits by setting that channel’s TCDn_CSR[START] bit.

0–63 Link to DMA channel 0–63

7
DONE

Channel done. This flag indicates the eDMA has completed the major loop. The eDMA engine sets it as the 
CITER count reaches zero; The software clears it, or the hardware when the channel is activated.
Note: This bit must be cleared to write the MAJOR_E_LINK or E_SG bits.

6
ACTIVE

Channel active. This flag signals the channel is currently in execution. It is set when channel service begins, 
and the eDMA clears it as the minor loop completes or if any error condition is detected.

5
MAJOR_E_LINK

Enable channel-to-channel linking on major loop complete. As the channel completes the major loop, this 
flag enables the linking to another channel, defined by MAJOR_LINKCH. The link target channel initiates 
a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified 
channel. 
Note: To support the dynamic linking coherency model, this field is forced to zero when written to while the 

TCDn_CSR[DONE] bit is set.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

4
E_SG

Enable scatter/gather processing. As the channel completes the major loop, this flag enables scatter/gather 
processing in the current channel. If enabled, the eDMA engine uses DLAST_SGA as a memory pointer to 
a 0-modulo-32 address containing a 32-byte data structure loaded as the transfer control descriptor into the 
local memory. 
Note: To support the dynamic scatter/gather coherency model, this field is forced to zero when written to 

while the TCDn_CSR[DONE] bit is set.

0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The DLAST_SGA field provides a memory 

pointer to the next TCD to be loaded into this channel after the major loop completes its execution.

3
D_REQ

Disable request. If this flag is set, the eDMA hardware automatically clears the corresponding 
EDMA_ERQ{H,L} bit when the current major iteration count reaches zero.
0 The channel’s EDMA_ERQ{H,L} bit is not affected.
1 The channel’s EDMA_ERQ{H,L} bit is cleared when the major loop is complete.
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19.5 Functional Description
This section provides an overview of the microarchitecture and functional operation of the eDMA module. 

19.5.1 eDMA Microarchitecture

The eDMA module is partitioned into two major modules: the eDMA engine and the transfer-control 
descriptor local memory. Additionally, the eDMA engine is further partitioned into four submodules:

• eDMA Engine

— Address Path: 

This block implements registered versions of two channel transfer control descriptors, 
channel x and channel y, and manages all master bus-address calculations. All the channels 
provide the same functionality. This structure allows data transfers associated with one 
channel to be preempted after the completion of a read/write sequence if a higher priority 
channel activation is asserted while the first channel is active. After a channel is activated, 
it runs until the minor loop is completed, unless preempted by a higher priority channel. This 
provides a mechanism (enabled by DCHPRIn[ECP]) where a large data move operation can 
be preempted to minimize the time another channel is blocked from execution.

When any channel is selected to execute, the contents of its TCD are read from local 
memory and loaded into the address path channel x registers for a normal start and into 
channel y registers for a preemption start. After the minor loop completes execution, the 
address path hardware writes the new values for the TCDn_{SADDR, DADDR, CITER} 
back to local memory. If the major iteration count is exhausted, additional processing are 
performed, including the final address pointer updates, reloading the TCDn_CITER field, 
and a possible fetch of the next TCDn from memory as part of a scatter/gather operation.

2
INT_HALF

Enable an interrupt when major counter is half complete. If this flag is set, the channel generates an 
interrupt request by setting the appropriate bit in the EDMA_INT when the current major iteration count 
reaches the halfway point. Specifically, the comparison performed by the eDMA engine is (CITER == 
(BITER >> 1)). This halfway point interrupt request is provided to support double-buffered (aka ping-pong) 
schemes or other types of data movement where the processor needs an early indication of the transfer’s 
progress. The halfway complete interrupt disables when BITER values are less than two. 
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

1
INT_MAJOR

Enable an interrupt when major iteration count completes. If this flag is set, the channel generates an 
interrupt request by setting the appropriate bit in the EDMA_INT when the current major iteration count 
reaches zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

0
START

Channel start. If this flag is set, the channel is requesting service. The eDMA hardware automatically clears 
this flag after the channel begins execution.
0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

Table 19-31. TCDn_CSR Field Descriptions (continued)

Field Description
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— Data Path: 

This block implements the bus master read/write datapath. It includes 16 bytes of register 
storage and the necessary multiplex logic to support any required data alignment. The 
internal read data bus is the primary input, and the internal write data bus is the primary 
output.

The address and data path modules directly support the 2-stage pipelined internal bus. The 
address path module represents the 1st stage of the bus pipeline (address phase), while the 
data path module implements the 2nd stage of the pipeline (data phase).

— Program Model/Channel Arbitration: 

This block implements the first section of the eDMA programming model as well as the 
channel arbitration logic. The programming model registers are connected to the internal 
peripheral bus (not shown). The eDMA peripheral request inputs and interrupt request 
outputs are also connected to this block (via control logic).

— Control: 

This block provides all the control functions for the eDMA engine. For data transfers where 
the source and destination sizes are equal, the eDMA engine performs a series of source 
read/destination write operations until the number of bytes specified in the minor loop byte 
count has moved. For descriptors where the sizes are not equal, multiple accesses of the 
smaller size data are required for each reference of the larger size. As an example, if the 
source size references 16-bit data and the destination is 32-bit data, two reads are performed, 
then one 32-bit write.

• Transfer Control Descriptor Memory

— Memory Controller: 

This logic implements the required dual-ported controller, managing accesses from the 
eDMA engine as well as references from the internal peripheral bus. As noted earlier, in the 
event of simultaneous accesses, the eDMA engine is given priority and the peripheral 
transaction is stalled.

— Memory Array: TCD storage is implemented using a single-port, synchronous RAM array.

19.5.2 eDMA Basic Data Flow

The basic flow of a data transfer can be partitioned into three segments. As shown in Figure 19-37, the first 
segment involves the channel activation. In the diagram, this example uses the assertion of the eDMA 
peripheral request signal to request service for channel n. Channel activation via software and the 
TCDn_CSR[START] bit follows the same basic flow as peripheral requests. The eDMA request input 
signal is registered internally and then routed through the eDMA engine: first through the control module, 
then into the program model and channel arbitration. In the next cycle, the channel arbitration performs, 
using the fixed-priority or round-robin algorithm. After arbitration is complete, the activated channel 
number is sent through the address path and converted into the required address to access the local memory 
for TCDn. Next, the TCD memory is accessed and the required descriptor read from the local memory and 
loaded into the eDMA engine address path channel x or y registers. The TCD memory is 64 bits wide to 
minimize the time needed to fetch the activated channel descriptor and load it into the address path channel 
x or y registers. 
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Figure 19-37. eDMA Operation, Part 1

In the second part of the basic data flow (Figure 19-38), the modules associated with the data transfer 
(address path, data path, and control) sequence through the required source reads and destination writes to 
perform the actual data movement. The source reads are initiated and the fetched data is temporarily stored 
in the data path block until it is gated onto the internal bus during the destination write. This source 
read/destination write processing continues until the minor byte count has transferred.
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Figure 19-38. eDMA Operation, Part 2

After the minor byte count has moved, the final phase of the basic data flow performs. In this segment, the 
address path logic performs the required updates to certain fields in the appropriate TCD, e.g., SADDR, 
DADDR, CITER. If the major iteration count is exhausted, additional operations are performed. These 
include the final address adjustments and reloading of the BITER field into the CITER. Assertion of an 
optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from memory 
using the scatter/gather address pointer included in the descriptor. The updates to the TCD memory and 
the assertion of an interrupt request are shown in Figure 19-39.

2
1

n-1

Transfer
Control
Descriptor (TCD)

eDMA Engine

Data Path

eDMA

eDMA Peripheral

0

Program Model/ 

 Write Address

 Write Data

 Read Data

Read Data

Write Data

Address

64

eDMA Done

Control

Channel Arbitration

Address Path

In
te

rn
al

 P
er

ip
he

ra
l B

us

To
/F

ro
m

 C
ro

ss
ba

r 
S

w
itc

h

Request



Enhanced Direct Memory Access (eDMA)

19-36 NXP Semiconductors

Figure 19-39. eDMA Operation, Part 3

19.6 Initialization/Application Information

19.6.1 eDMA Initialization 

A typical initialization of the eDMA has the following sequence:

1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the DCHPRIn registers if a configuration other than the 
default is desired.

3. Enable error interrupts in the EDMA_EEIs if so desired.

4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the EDMA_ERQ.

6. Request channel service by software (setting the TCDn_CSR[START] bit) or hardware (slave 
device asserting its eDMA peripheral request signal).
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After any channel requests service, a channel is selected for execution based on the arbitration and priority 
levels written into the programmer's model. The eDMA engine read the entire TCD, including the TCD 
control and status fields (Table 19-32) for the selected channel into its internal address path module. As 
the TCD is read, the first transfer is initiated on the internal bus unless a configuration error is detected. 
Transfers from the source (as defined by the source address, TCDn_SADDR) to the destination (as defined 
by the destination address, TCDn_DADDR) continue until the specified number of bytes 
(TCDn_NBYTES) are transferred. When transfer is complete, the eDMA engine's local TCDn_SADDR, 
TCDn_DADDR, and TCDn_CITER are written back to the main TCD memory and any minor loop 
channel linking is performed, if enabled. If the major loop is exhausted, further post processing executes 
(interrupts, major loop channel linking, and scatter/gather operations) if enabled.

Table 19-33 shows how each DMA request initiates one minor-loop transfer (iteration) without CPU 
intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA 
preemption is allowed. The number of minor loops in a major loop is specified by the beginning iteration 
count (BITER).

Table 19-32. TCD Control and Status Fields

TCDn_CSR 
Field Name

Description

START Control bit to start channel explicitly when using a software 
initiated DMA service (Automatically cleared by hardware)

ACTIVE Status bit indicating the channel is currently in execution

DONE Status bit indicating major loop completion (cleared by software 
when using a software initiated DMA service)

D_REQ Control bit to disable DMA request at end of major loop 
completion when using a hardware initiated DMA service

BWC Control bits for throttling bandwidth control of a channel

E_SG Control bit to enable scatter-gather feature

INT_HALF Control bit to enable interrupt when major loop is half complete

INT_MAJ Control bit to enable interrupt when major loop completes
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Table 19-34 lists the memory array terms and how the TCD settings interrelate.

Table 19-33. Example of Multiple Loop Iterations

Current Major 
Loop Iteration 
Count (CITER)

DMA Request

Minor Loop

Major Loop

3.
.
.

DMA Request

Minor Loop 2.
.
.

DMA Request

Minor Loop 1.
.
.
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19.6.2 DMA Programming Errors

The eDMA performs various tests on the transfer control descriptor to verify consistency in the descriptor 
data. Most programming errors are reported on a per channel basis with the exception of two errors: Group 
Priority Error (EDMA_ES[GPE]) and channel priority error (EDMA_ES[CPE]).

For all error types other than Group or channel priority errors, the channel number causing the error is 
recorded in the EDMA_ES. If the error source is not removed before the next activation of the problem 
channel, the error is detected and recorded again.

Channel priority errors are identified within a group once that group has been selected as the active group. 
For example:

1. The eDMA is configured for fixed group and fixed channel arbitration modes.

2. Group 3 is the highest priority and all channels are unique in that group.

3. Group 2 is the next highest priority and has two channels with the same priority level.

4. If Group 3 has any service requests, those requests will be executed.

5. Once all of Group 3 requests have completed, Group 2 will be the next active group.

6. If Group 2 has a service request, then an undefined channel in Group 2 will be selected and a 
channel priority error will occur.

7. This will repeat until the all of Group 2 requests have been removed or a higher priority Group 3 
request comes in.

Table 19-34. Memory Array Terms

xADDR: (Starting Address) xSIZE
 (size of one Minor Loop 

(NBYTES in 
Minor Loop, 

often the same 
value as xSIZE)

Offset (xOFF): number of bytes added to 
current address after each transfer
(often the same value as xSIZE)

Each DMA source (S) and 
destination (D) has its own:

Address (xADDR)
Size (xSIZE)
Offset (xOFF)

Modulo (xMOD)
Last Address Adjustment (xLAST)

where x = S or D

Peripheral queues typically 
have size and offset equal 

to NBYTES.

 data transfer)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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current address after major loop

(typically used to loop back)
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In this sequence, for item 2, the eDMA Acknowledge lines will assert only if the selected channel is 
requesting service via the eDMA peripheral request signal. If interrupts are enabled for all channels, the 
user will get an error interrupt, but the channel number for the EDMA_ERR and the error interrupt request 
line may be wrong because they reflect the selected channel. A group priority error is global and any 
request in any group will cause a group priority error.

If priority levels are not unique, when any channel requests service, a channel priority error is reported. 
The highest (channel/group) priority with an active request is selected, but the lowest numbered 
(channel/group) with that priority is selected by arbitration and executed by the eDMA engine. The 
hardware service request handshake signals, error interrupts, and error reporting is associated with the 
selected channel.

19.6.3 DMA Arbitration Mode Considerations

19.6.3.1 Fixed Group Arbitration, Fixed Channel Arbitration

In this mode, the channel service request from the highest priority channel in the highest priority group is 
selected to execute. If the eDMA is programmed so the channels within one group use “fixed” priorities, 
and that group is assigned the highest “fixed” priority of all groups, it is possible for that group to take all 
the bandwidth of the eDMA controller - i.e. no other groups will be serviced if there is always at least one 
DMA request pending on a channel in the highest priority group when the controller arbitrates the next 
DMA request. The advantage of this scenario is that latency can be small for channels that need to be 
serviced quickly. Preemption is available in this scenario only.

19.6.3.2 Round Robin Group Arbitration, Fixed Channel Arbitration

The occurrence of one or more DMA requests from one or more groups, the channel with the highest 
priority from a specific group will be serviced first. Groups are serviced starting with the highest group 
number with an service request and rotating through to the lowest group number containing a service 
request.

Once the channel request is serviced, the group round robin algorithm will select the highest pending 
request from the next group in the round robin sequence. Servicing continues round robin, always 
servicing the highest priority channel in the next group in the sequence, or just skipping a group if it has 
no pending requests.

If a channel requests service at a rate that equals or exceeds the round robin service rate, then that channel 
will always be serviced before lower priority channels in the same group, and thus the lower priority 
channels will never be serviced. The advantage of this scenario is that no one group will consume all the 
eDMA bandwidth. The highest priority channel selection latency is potentially greater than fixed/fixed 
arbitration. Excessive request rates on high priority channels could prevent the servicing of lower priority 
channels in the same group.
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19.6.3.3 Round Robin Group Arbitration, Round Robin Channel Arbitration

Groups will be serviced as described in Section 19.6.3.2, but this time channels will be serviced in channel 
number order. Only one channel is serviced from each requesting group for each round robin pass through 
the groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to 
the lowest channel number without regard to channel priority levels.

Because channels are serviced in round robin manner, any channel that generates DMA requests faster than 
a combination of the group round robin service rate and the channel service rate for its group will not 
prevent the servicing of other channels in its group. Any DMA requests that are not serviced are simply 
lost, but at least one channel will be serviced.

This scenario ensures that all channels will be guaranteed service at some point, regardless of the request 
rates. However, the potential latency could be quite high. All channels are treated equally. Priority levels 
are not used in round robin/round robin mode.

19.6.3.4 Fixed Group Arbitration, Round Robin Channel Arbitration

The highest priority group with a request will be serviced. Lower priority groups will be serviced if no 
pending requests exist in the higher priority groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to 
the lowest channel number without regard to the channel priority levels assigned within the group.

This scenario could cause the same bandwidth consumption problem as indicated in Section 19.6.3.1, but 
all the channels in the highest priority group will get serviced. Service latency will be short on the highest 
priority group, but could potentially get very much longer and longer as the group priority decreases.

19.6.4 DMA Transfer

19.6.4.1 Single Request 

To perform a simple transfer of n bytes of data with one activation, set the major loop to one 
(TCDn_CITER = TCDn_BITER = 1). The data transfer begins after the channel service request is 
acknowledged and the channel is selected to execute. After the transfer is complete, the 
TCDn_CSR[DONE] bit is set and an interrupt generates if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is 
programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has 
a byte wide memory port located at 0x1000. The destination memory has a longword-wide port located at 
0x2000. The address offsets are programmed in increments to match the transfer size: one byte for the 
source and four bytes for the destination. The final source and destination addresses are adjusted to return 
to their beginning values.

Example 19-1. Single Request DMA Transfer
TCDn_CITER = TCDn_BITER = 1

TCDn_NBYTES = 16
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TCDn_SADDR = 0x1000

TCDn_SOFF = 1

TCDn_ATTR[SSIZE] = 0

TCDn_SLAST = -16

TCDn_DADDR = 0x2000

TCDn_DOFF = 4

TCDn_ATTR[DSIZE] = 2

TCDn_DLAST_SGA= –16

TCDn_CSR[INT_MAJ] = 1

TCDn_CSR[START] = 1 (Should be written last after all other fields have been initialized)

All other TCDn fields = 0

This generates the following event sequence:

1. User write to the TCDn_CSR[START] bit requests channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCDn_CSR[DONE] = 0, TCDn_CSR[START] = 0, 
TCDn_CSR[ACTIVE] = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source-to-destination transfers are executed as follows:

a) Read byte from location 0x1000, read byte from location 0x1001, read byte from 0x1002, read 
byte from 0x1003.

b) Write longword to location 0x2000  first iteration of the minor loop.

c) Read byte from location 0x1004, read byte from location 0x1005, read byte from 0x1006, read 
byte from 0x1007.

d) Write longword to location 0x2004  second iteration of the minor loop.

e) Read byte from location 0x1008, read byte from location 0x1009, read byte from 0x100A, read 
byte from 0x100B.

f) Write longword to location 0x2008  third iteration of the minor loop.

g) Read byte from location 0x100C, read byte from location 0x100D, read byte from 0x100E, 
read byte from 0x100F.

h) Write longword to location 0x200C  last iteration of the minor loop  major loop complete.

6. The eDMA engine writes: TCDn_SADDR = 0x1000, TCDn_DADDR = 0x2000, TCDn_CITER 
= 1 (TCDn_BITER).

7. The eDMA engine writes: TCDn_CSR[ACTIVE] = 0, TCDn_CSR[DONE] = 1, EDMA_INT[n] 
= 1.

8. The channel retires and the eDMA goes idle or services the next channel.

19.6.4.2 Multiple Requests

Besides transferring 32 bytes via two hardware requests, the next example is the same as previous. The 
only fields that change are the major loop iteration count and the final address offsets. The eDMA is 
programmed for two iterations of the major loop transferring 16 bytes per iteration. After the channel’s 
hardware requests are enabled in EDMA_ERQ, the slave device initiates channel service requests.



Enhanced Direct Memory Access (eDMA)

NXP Semiconductors 19-43

TCDn_CITER = TCDn_BITER = 2

TCDn_SLAST = –32

TCDn_DLAST_SGA = –32

This would generate the following sequence of events:

1. First hardware (eDMA peripheral) request for channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCDn_CSR[DONE] = 0, TCDn_CSR[START] = 0, TCDn_CSR[ACTIVE] 
= 1.

4. eDMA engine reads: channel TCDn data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) Read byte from location 0x1000, read byte from location 0x1001, read byte from 0x1002, read 
byte from 0x1003.

b) Write longword to location 0x2000  first iteration of the minor loop.

c) Read byte from location 0x1004, read byte from location 0x1005, read byte from 0x1006, read 
byte from 0x1007.

d) Write longword to location 0x2004  second iteration of the minor loop.

e) Read byte from location 0x1008, read byte from location 0x1009, read byte from 0x100A, read 
byte from 0x100B.

f) Write longword to location 0x2008  third iteration of the minor loop.

g) Read byte from location 0x100C, read byte from location 0x100D, read byte from 0x100E, 
read byte from 0x100F.

h) Write longword to location 0x200C  last iteration of the minor loop.

6. eDMA engine writes: TCDn_SADDR = 0x1010, TCDn_DADDR = 0x2010, TCDn_CITER = 1.

7. eDMA engine writes: TCDn_CSR[ACTIVE] = 0.

8. The channel retires  one iteration of the major loop. The eDMA goes idle or services the next 
channel.

9. Second hardware (eDMA peripheral) requests channel service.

10. The channel is selected by arbitration for servicing.

11. eDMA engine writes: TCDn_CSR[DONE] = 0, TCDn_CSR[START] = 0, TCDn_CSR[ACTIVE] 
= 1.

12. eDMA engine reads: channel TCD data from local memory to internal register file.

13. The source to destination transfers are executed as follows:

a) Read byte from location 0x1010, read byte from location 0x1011, read byte from 0x1012, read 
byte from 0x1013.

b) Write longword to location 0x2010  first iteration of the minor loop.

c) Read byte from location 0x1014, read byte from location 0x1015, read byte from 0x1016, read 
byte from 0x1017.

d) Write longword to location 0x2014  second iteration of the minor loop.
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e) Read byte from location 0x1018, read byte from location 0x1019, read byte from 0x101A, read 
byte from 0x101B.

f) Write longword to location 0x2018  third iteration of the minor loop.

g) Read byte from location 0x101C, read byte from location 0x101D, read byte from 0x101E, 
read byte from 0x101F.

h) Write longword to location 0x201C  last iteration of the minor loop  major loop complete.

14. eDMA engine writes: TCDn_SADDR = 0x1000, TCDn_DADDR = 0x2000, TCDn_CITER = 2 
(TCDn_BITER).

15. eDMA engine writes: TCDn_CSR[ACTIVE] = 0, TCDn_CSR[DONE] = 1, EDMA_INT[n] = 1.

16. The channel retires  major loop complete. The eDMA goes idle or services the next channel.

19.6.4.3 Modulo Feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in which the size 
of the queue is a power of 2. MOD is a 5-bit field for the source and destination in the TCD, and it specifies 
which lower address bits increment from their original value after the address+offset calculation. All upper 
address bits remain the same as in the original value. A setting of 0 for this field disables the modulo 
feature.

Table 19-35 shows how the transfer addresses are specified based on the setting of the MOD field. Here a 
circular buffer is created where the address wraps to the original value while the 28 upper address bits 
(0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the 
offset is set to 4 bytes and the MOD field is set to 4, allowing for a 24 byte (16-byte) size queue.

19.6.5 eDMA TCDn Status Monitoring

19.6.5.1 Minor Loop Complete

There are two methods to test for minor loop completion when using software initiated service requests. 
The first is to read the TCDn_CITER field and test for a change. (Another method may be extracted from 
the sequence shown below). The second method is to test the TCDn_CSR[START] bit and the 
TCDn_CSR[ACTIVE] bit. The minor-loop-complete condition is indicated by both bits reading zero after 

Table 19-35. Modulo Feature Example

Transfer 
Number

Address

1 0x12345670

2 0x12345674

3 0x12345678

4 0x1234567C

5 0x12345670

6 0x12345674
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the TCDn_CSR[START] was set. Polling the TCDn_CSR[ACTIVE] bit may be inconclusive, because the 
active status may be missed if the channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

The best method to test for minor-loop completion when using hardware (peripheral) initiated service 
requests is to read the TCDn_CITER field and test for a change. The hardware request and acknowledge 
handshakes signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware-activated channel:

For both activation types, the major-loop-complete status is explicitly indicated via the 
TCDn_CSR[DONE] bit. 

The TCDn_CSR[START] bit is cleared automatically when the channel begins execution regardless of 
how the channel activates.

19.6.5.2 Active Channel TCDn Reads

The eDMA reads back the true TCDn_SADDR, TCDn_DADDR, and TCDn_NBYTES values if read 
while a channel executes. The true values of the SADDR, DADDR, and NBYTES are the values the 
eDMA engine currently uses in its internal register file and not the values in the TCD local memory for 
that channel. The addresses (SADDR and DADDR) and NBYTES (decrements to zero as the transfer 
progresses) can give an indication of the progress of the transfer. All other values are read back from the 
TCD local memory. 

TCDn_CSR bits
State

START ACTIVE DONE

1 1 0 0 Channel service request via software

2 0 1 0 Channel is executing

3a 0 0 0 Channel has completed the minor loop and is idle

3b 0 0 1 Channel has completed the major loop and is idle

TCDn_CSR bits
State

START ACTIVE DONE

1 0 0 0 Channel service request via hardware (peripheral 
request asserted)

2 0 1 0 Channel is executing

3a 0 0 0 Channel has completed the minor loop and is idle

3b 0 0 1 Channel has completed the major loop and is idle
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19.6.5.3 Preemption Status

Preemption is available only when fixed arbitration is selected for both group and channel arbitration 
modes. A preemptive situation is one in which a preempt-enabled channel runs and a higher priority 
request becomes active. When the eDMA engine is not operating in fixed group, fixed channel arbitration 
mode, the determination of the actively running relative priority outstanding requests become undefined. 
Channel and/or group priorities are treated as equal (constantly rotating) when round-robin arbitration 
mode is selected.

The TCDn_CSR[ACTIVE] bit for the preempted channel remains asserted throughout the preemption. 
The preempted channel is temporarily suspended while the preempting channel executes one major loop 
iteration. If two TCDn_CSR[ACTIVE] bits are set simultaneously in the global TCD map, a higher 
priority channel is actively preempting a lower priority channel.

19.6.6 Channel Linking

Channel linking (or chaining) is a mechanism where one channel sets the TCDn_CSR[START] bit of 
another channel (or itself), therefore initiating a service request for that channel. When properly enabled, 
the EDMA engine automatically performs this operation at the major or minor loop completion. 

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major 
loop). The TCDn_CITER[E_LINK] field determines whether a minor loop link is requested. When 
enabled, the channel link is made after each iteration of the major loop except for the last. When the major 
loop is exhausted, only the major loop channel link fields are used to determine if a channel link should be 
made. For example, the initial fields of:

TCDn_CITER[E_LINK] = 1

TCDn_CITER[LINKCH] = 0xC

TCDn_CITER[CITER] value = 0x4

TCDn_CSR[MAJOR_E_LINK] = 1

TCDn_CSR[MAJOR_LINKCH] = 0x7

executes as:

1. Minor loop done  set TCD12_CSR[START] bit

2. Minor loop done  set TCD12_CSR[START] bit

3. Minor loop done  set TCD12_CSR[START] bit

4. Minor loop done, major loop done  set TCD7_CSR[START] bit

When minor loop linking is enabled (TCDn_CITER[E_LINK] = 1), the TCDn_CITER[CITER] field uses 
a nine bit vector to form the current iteration count. When minor loop linking is disabled 
(TCDn_CITER[E_LINK] = 0), the TCDn_CITER[CITER] field uses a 15-bit vector to form the current 
iteration count. The bits associated with the TCDn_CITER[LINKCH] field are concatenated onto the 
CITER value to increase the range of the CITER.
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NOTE
The TCDn_CITER[E_LINK] bit and the TCDn_BITER[E_LINK] bit must 
equal or a configuration error is reported. The CITER and BITER vector 
widths must be equal to calculate the major loop, half-way done interrupt 
point.

Table 19-36 summarizes how a DMA channel can link to another DMA channel, i.e, use another channel’s 
TCD, at the end of a loop.

19.6.7 Dynamic Programming

This section provides recommended methods to change the programming model during channel execution.

19.6.7.1 Dynamic Channel Linking and Dynamic Scatter/Gather

Dynamic channel linking and dynamic scatter/gather is the process of changing the 
TCDn_CSR[MAJOR_E_LINK] or TCDn_CSR[E_SG] bits during channel execution. These bits are read 
from the TCD local memory at the end of channel execution, therefore allowing software to enable either 
feature during channel execution. 

Because software can change the configuration during execution, a coherency sequence must be followed. 
Consider the scenario the user attempts to execute a dynamic channel link by enabling the 
TCDn_CSR[MAJOR_E_LINK] bit as the eDMA engine retires the channel. The 
TCDn_CSR[MAJOR_E_LINK] would be set in the programmer’s model, but it would be indeterminate 
whether the actual link was made before the channel retired.

The following coherency sequence is recommended when executing a dynamic channel link or dynamic 
scatter/gather request:

1. Set the TCDn_CSR[MAJOR_E_LINK] bit.

2. Read back the TCDn_CSR[MAJOR_E_LINK] bit.

3. Test the TCDn_CSR[MAJOR_E_LINK] request status.

a) If the bit is set, the dynamic link attempt was successful.

b) If the bit is cleared, the attempted dynamic link did not succeed, the channel was already 
retiring.

This same coherency model is true for dynamic scatter/gather operations. For both dynamic requests, the 
TCD local memory controller forces the TCDn_CSR[MAJOR_E_LINK] and TCDn_CSR[E_SG] bits to 

Table 19-36. Channel Linking Parameters

Desired Link 
Behavior

TCD Control Field Name Description

Link at end of 
Minor Loop

CITER[E_LINK] Enable channel-to-channel linking on minor loop completion (current iteration)

CITER[LINKCH] Link channel number when linking at end of minor loop (current iteration)

Link at end of 
Major Loop

CSR[MAJOR_E_LINK] Enable channel-to-channel linking on major loop completion

CSR[MAJOR_LINKCH] Link channel number when linking at end of major loop
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zero on any writes to a TCDn after the TCDn_CSR[DONE] bit for that channel is set, indicating the major 
loop is complete. 

NOTE
Software must clear the TCDn_CSR[DONE] bit before writing the 
TCDn_CSR[MAJOR_E_LINK] or TCDn_CSR[E_SG] bits. The 
TCDn_CSR[DONE] bit is cleared automatically by the eDMA engine after 
a channel begins execution.
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Chapter 20  
FlexBus

20.1 Introduction
This chapter describes external bus data transfer operations and error conditions. It describes transfers 
initiated by the ColdFire processor (or any other bus master) and includes detailed timing diagrams 
showing the interaction of signals in supported bus operations.

NOTE

• In this chapter, unless otherwise noted, clock refers to the FB_CLK used 
for the external bus (fsys/2 or fsys/4 depending on MISCCR2[FBHALF] 
in the chip configuration module).

• This device’s pinout does not contain separate address and data signals. 
Therefore, non-multiplexed mode cannot be used. Ignore any references 
to non-multiplexed address/data throughout this chapter.

20.1.1 Overview

A multi-function external bus interface called the FlexBus interface controller is provided on the device 
with basic functionality of interfacing to slave-only devices. It can be directly connected to the following 
asynchronous or synchronous devices with little or no additional circuitry:

• External boot ROMs

• Flash memories

• Programmable logic devices

• Other simple target (slave) devices

For asynchronous devices, a simple chip-select based interface can be used.

The FlexBus interface has up to six general purpose chip-selects, FB_CS[5:0]. The actual number of chip 
selects available depends upon the device and its pin configuration. Chip-select FB_CS0 can be dedicated 
to boot memory access and programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. 
Control signal timing is compatible with common ROM and flash memories.

20.1.2 Features

Key FlexBus features include:

• Six independent, user-programmable chip-select signals (FB_CS[5:0]) that can interface with 
external SRAM, PROM, EPROM, EEPROM, flash, and other peripherals

• 8-, 16-, and 32-bit port sizes with configuration for multiplexed address and data buses
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• Byte-, word-, longword-, and 16-byte line-sized transfers

• Programmable burst- and burst-inhibited transfers selectable for each chip select and transfer 
direction

• Programmable address-setup time with respect to the assertion of chip select

• Programmable address-hold time with respect to the negation of chip select and transfer direction

20.1.3 Modes of Operation

The external interface is a configurable multiplexed bus set to one of the following modes:

20.2 External Signals
This section describes the external signals involved in data-transfer operations.

20.2.1 Address and Data Buses (FB_ADn)

 The number of byte lanes carrying the data is determined by the port size associated with the matching 
chip select.

In multiplexed mode, the FB_ADn bus carries the address and data. The full -bit address is driven on 
the first clock of a bus cycle (address phase). Following the first clock, the data is driven on the bus (data 

• Multiplexed 32-bit address and 32-bit data

• Multiplexed 32-bit address and 16-bit data (non-multiplexed 16-bit address and 16-bit data)

• Multiplexed 32-bit address and 8-bit data (non-multiplexed 24-bit address and 8-bit data)

Table 20-1. FlexBus Signal Summary

Signal Name I/O1

1 Because this device shares the FlexBus signals with the NAND flash controller, these signal directions are 
only valid when the FlexBus controls them. The directions may change during NAND flash cycles.

Description

FB_AD[31:0] I/O Address/data bus, FB_AD[31:0].

FB_CS[5:0] O General purpose chip-selects. The actual number of chip selects available 
depends upon the device and its pin configuration. See Table 2-2 for more 
details.

FB_BE/BWE[3:0] O Byte enable/byte write enable

FB_OE O Output enable

FB_R/W O Read/write. 1 = Read, 0 = Write

FB_ALE O Address latch enable

FB_TSIZ[1:0] O Transfer size

FB_TBST O Burst transfer indicator

FB_TA I Transfer acknowledge

32
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phase). During the data phase, the address continues driving on the pins not used for data. For example, in 
16-bit mode the address continues driving on FB_AD[ : ] and in 8-bit mode the address continues 
driving on FB_AD[ : ].

Because this device shares the FlexBus signals with the NAND flash controller, these signals tristate 
between bus cycles.

20.2.2 Chip Selects (FB_CS[5:0])

The chip-select signal indicates which device is selected. A particular chip-select asserts when the transfer 
address is within the device’s address space, as defined in the base- and mask-address registers. The actual 
number of chip selects available depends upon the pin configuration.

20.2.3 Byte Enables/Byte Write Enables (FB_BE/BWE[3:0])

When driven low, the byte enable (FB_BE/BWE[3:0]) outputs indicate data is to be latched or driven onto 
a byte of the data bus. FB_BE/BWEn signals are asserted only to the memory bytes used during read or 
write accesses. A configuration option is provided to assert these signals on reads and writes (byte enable) 
or writes only (byte-write enable).

The FB_BE/BWEn signals are asserted during accesses to on-chip peripherals but not to on-chip SRAM 
or cache. For external SRAM or flash devices, the FB_BE/BWEn outputs must be connected to individual 
byte strobe signals.

20.2.4 Output Enable (FB_OE)

The output enable signal (FB_OE) is sent to the interfacing memory and/or peripheral to enable a read 
transfer. FB_OE is only asserted during read accesses when a chip select matches the current address 
decode.

Because this device shares the FlexBus signals with the NAND flash controller, this signal tristates 
between bus cycles.

20.2.5 Read/Write (FB_R/W)

The processor drives the FB_R/W signal to indicate the current bus operation direction. It is driven high 
during read bus cycles and low during write bus cycles.

Because this device shares the FlexBus signals with the NAND flash controller, this signal tristates 
between bus cycles.

20.2.6 Address Latch Enable (FB_ALE)

The assertion of FB_ALE indicates that the device has begun a bus transaction and the address and 
attributes are valid. FB_ALE is asserted for one bus clock cycle. FB_ALE may be used externally to 
capture the bus transfer address (Figure 20-8). This device can extend this signal until the first positive 
clock edge after FB_CSn asserts. See CSCRn[EXTS] and Section 20.4.9, “Extended Transfer Start”.

15 0
23 0
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Because this device shares the FlexBus signals with the NAND flash controller, this signal tristates 
between bus cycles.

20.2.7 Transfer Size (FB_TSIZ[1:0])

For memory accesses, these signals, along with FB_TBST, indicate the data transfer size of the current bus 
operation. The interface supports byte, word, and longword operand transfers and allows accesses to 8-, 
16-, and 32-bit data ports.

For misaligned transfers, FB_TSIZ[1:0] indicates the size of each transfer. For example, if a longword 
access through a 32-bit port device occurs at a misaligned offset of 0x1, a byte is transferred first 
(FB_TSIZ[1:0] = 01), a word is transferred next at offset 0x2 (FB_TSIZ[1:0] = 10), and the final byte is 
transferred at offset 0x4 (FB_TSIZ[1:0] = 01).

For aligned transfers larger than the port size, FB_TSIZ[1:0] behaves as follows:

• If bursting is used, FB_TSIZ[1:0] is driven to the transfer size.

• If bursting is inhibited, FB_TSIZ[1:0] first shows the entire transfer size and then shows the port 
size.

For burst-inhibited transfers, FB_TSIZ[1:0] changes with each FB_TS assertion to reflect the next transfer 
size. For transfers to port sizes smaller than the transfer size, FB_TSIZ[1:0] indicates the size of the entire 
transfer on the first access and the size of the current port transfer on subsequent transfers. For example, 
for a longword write to an 8-bit port, FB_TSIZ[1:0] equals 00 for the first transaction and 01 for the next 
three transactions. If bursting is used for longword write to an 8-bit port, FB_TSIZ[1:0] is driven to 00 for 
the entire transfer.

20.2.8 Transfer Burst (FB_TBST)

Transfer burst indicates that a burst transfer is in progress as driven by the device. A burst transfer can be 
two to 16 beats depending on FB_TSIZ[1:0] and the port size.

NOTE
When burst (FB_TBST = 0), transfer size is 16 bytes (FB_TSIZ[1:0] = 11) 
and the address is misaligned within the 16-byte boundary, the external 
device must be able to wrap around the address.

Table 20-2. Data Transfer Size

FB_TSIZ[1:0] Transfer Size

00 4 bytes (longword)

01 1 byte

10 2 bytes (word)

11 16 bytes (line)
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20.2.9 Transfer Acknowledge (FB_TA)

This signal indicates the external data transfer is complete. When the processor recognizes FB_TA during 
a read cycle, it latches the data and then terminates the bus cycle. When the processor recognizes FB_TA 
during a write cycle, the bus cycle is terminated.

If auto-acknowledge is disabled (CSCRn[AA] = 0), the external device drives FB_TA to terminate the bus 
transfer; if auto-acknowledge is enabled (CSCRn[AA] = 1), FB_TA is generated internally after a 
specified number of wait states, or the external device may assert external FB_TA before the wait-state 
countdown, terminating the cycle early. The device negates FB_CSn one cycle after the last FB_TA 
asserts. During read cycles, the peripheral must continue to drive data until FB_TA is recognized. For write 
cycles, the processor continues driving data one clock after FB_CSn is negated.

The number of wait states is determined by CSCRn or the external FB_TA input. If the external FB_TA is 
used, the peripheral has total control on the number of wait states.

NOTE
External devices should only assert FB_TA while the FB_CSn signal to the 
external device is asserted.

Because this device shares the FlexBus signals with the NAND flash 
controller, this signal tristates between bus cycles.

20.3 Memory Map/Register Definition
The following tables describe the registers and bit meanings for configuring chip-select operation. 
Table 20-3 shows the chip-select register memory map.

The actual number of chip select registers available depends upon the device and its pin configuration. If 
the device does not support certain chip select signals or the pin is not configured for a chip-select function, 
then that corresponding set of chip-select registers has no effect on an external pin.

NOTE

You must set CSMR0[V] before the chip select registers take effect.

Table 20-3. FlexBus Chip Select Memory Map

Address Register
Width
(bits)

Access Reset Value
Section/

Page

0xFC00_8000
+ (n  0xC)

Chip-Select Address Register (CSARn)
n = 0 – 5

32 R/W 0x0000_0000 20.3.1/20-6

0xFC00_8004
+ (n  0xC)

Chip-Select Mask Register (CSMRn)
n = 0 – 5

32 R/W 0x0000_0000 20.3.2/20-6

0xFC00_8008
+ (n  0xC)

Chip-Select Control Register (CSCRn)
n = 0 – 5

32 R/W See Section 20.3.3/20-7
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20.3.1 Chip-Select Address Registers (CSAR0 – CSAR5)

The CSARn registers specify the chip-select base addresses.

NOTE
Because the FlexBus module is one of the slaves connected to the crossbar 
switch, it is only accessible within a certain memory range. The only 
applicable address ranges for which the chip-selects can be active are 
0x0000_0000 – 0x3FFF_FFFF and 0xC000_0000 – 0xDFFF_FFFF. Set the 
CSARn registers appropriately.

20.3.2 Chip-Select Mask Registers (CSMR0 – CSMR5)

CSMRn registers specify the address mask and allowable access types for the respective chip-selects.

Address: 0xFC00_8000 (CSAR0)
0xFC00_800C (CSAR1)
0xFC00_8018 (CSAR2)

0xFC00_8024 (CSAR3)
0xFC00_8030 (CSAR4)
0xFC00_803C (CSAR5)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-1. Chip-Select Address Registers (CSARn)

Table 20-4. CSARn Field Descriptions

Field Description

31–16
BA

Base address. Defines the base address for memory dedicated to chip-select FB_CSn. BA is compared to 
bits 31–16 on the internal address bus to determine if chip-select memory is being accessed.

15–0 Reserved, must be cleared.

Address: 0xFC00_8004 (CSMR0)
0xFC00_8010 (CSMR1)
0xFC00_801C (CSMR2)

0xFC00_8028 (CSMR3)
0xFC00_8034 (CSMR4)
0xFC00_8040 (CSMR5)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BAM

0 0 0 0 0 0 0
WP

0 0 0 0 0 0 0
V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-2. Chip-Select Mask Registers (CSMRn)
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20.3.3 Chip-Select Control Registers (CSCR0 – CSCR5)

Each CSCRn controls the auto-acknowledge, address setup and hold times, port size, burst capability, and 
number of wait states. To support the global chip-select, FB_CS0, the CSCR0 reset values differ from the 

Table 20-5. CSMRn Field Descriptions

Field Description

31–16
BAM

Base address mask. Defines the chip-select block size by masking address bits. Setting a BAM bit causes the 
corresponding CSAR bit to be a don’t care in the decode.
0 Corresponding address bit is used in chip-select decode.
1 Corresponding address bit is a don’t care in chip-select decode.

The block size for FB_CSn is 2n; n = (number of bits set in respective CSMR[BAM]) + 16.
For example, if CSAR0 equals 0x0000 and CSMR0[BAM] equals 0x0008, FB_CS0 addresses two discontinuous 

64 KB memory blocks: one from 0x0_0000 – 0x0_FFFF and one from 0x8_0000 – 0x8_FFFF.
Likewise, for FB_CS0 to access 32 MB of address space starting at location 0x00_0000, FB_CS1 must begin at the 

next byte after FB_CS0 for a 16 MB address space. Therefore, CSAR0 equals 0x0000, 
CSMR0[BAM] equals 0x01FF, CSAR1 equals 0x0200, and CSMR1[BAM] equals 0x00FF. 

15–9 Reserved, must be cleared.

8
WP

Write protect. Controls write accesses to the address range in the corresponding CSAR. Attempting to write to the 
range of addresses for which CSARn[WP] is set results in a bus error termination of the internal cycle and no external 
cycle.
0 Read and write accesses are allowed
1 Only read accesses are allowed

7–1 Reserved, must be cleared.

0
V

Valid bit. Indicates whether the corresponding CSAR, CSMR, and CSCR contents are valid. Programmed 
chip-selects do not assert until V bit is set (except for FB_CS0, which acts as the global chip-select). Reset clears 
each CSMRn[V].
Note: At reset, no chip-select other than FB_CS0 can be used until the CSMR0[V] is set. Afterward, FB_CS[5:0] 

functions as programmed.
0 Chip-select invalid
1 Chip-select valid
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other CSCRs. FB_CS0 allows address decoding for an external device to serve as the boot memory before 
system initialization and configuration are completed.

Address: 0xFC00_8008 (CSCR0)

0xFC00_8014 (CSCR1)
0xFC00_8020 (CSCR2)
0xFC00_802C (CSCR3)

0xFC00_8038 (CSCR4)
0xFC00_8044 (CSCR5)

Access: User
read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SWS

0 0
SWSEN EXTS ASET RDAH WRAH

W

Reset: CSCR0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Reset: CSCR1–5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WS BLS AA PS BEM BSTR BSTW

0 0 0

W

Reset: CSCR0
1 1 1 1 1 1 0 1

See 
Note

See 
Note

1 0 0 0 0 0

Reset: CSCR1–5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: The PS reset value depends upon the chosen chip configuration (RCON[5:4] for parallel configuration or SBF_RCON[31:30] 
for serial boot configuration).

Figure 20-3. Chip-Select Control Registers (CSCRn)

Table 20-6. CSCRn Field Descriptions

Field Description

31–26
SWS

Secondary wait states. The number of wait states inserted before an internal transfer acknowledge is generated for 
a burst transfer except for the first termination, which is controlled by the wait state count. The secondary wait state 
is used only if the SWSEN bit is set. Otherwise, the WS value is used for all burst transfers.

25–24 Reserved, must be cleared

23
SWSEN

Secondary wait state enable.
0 The WS value inserts wait states before an internal transfer acknowledge is generated for all transfers.
1 The SWS value inserts wait states before an internal transfer acknowledge is generated for burst transfer 

secondary terminations.

22
EXTS

Enable extended transfer start. See Section 20.4.9, “Extended Transfer Start”.
0 FB_TS asserts for one bus clock cycle
1 FB_TS remains asserted until the first positive clock edge after FB_CSn asserts

21–20
ASET

Address setup. This field controls the assertion of the chip-select with respect to assertion of a valid address and 
attributes. The address and attributes are considered valid at the same time FB_ALE asserts.
00 Assert FB_CSn on first rising clock edge after address is asserted. (Default FB_CSn)
01 Assert FB_CSn on second rising clock edge after address is asserted.
10 Assert FB_CSn on third rising clock edge after address is asserted.
11 Assert FB_CSn on fourth rising clock edge after address is asserted. (Default FB_CS0)
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19–18
RDAH

Read address hold or deselect. This field controls the address and attribute hold time after the termination during a 
read cycle that hits in the chip-select address space.
Note: The hold time applies only at the end of a transfer. Therefore, during a burst transfer or a transfer to a port size 

smaller than the transfer size, the hold time is only added after the last bus cycle.

The number of cycles the address and attributes are held after FB_CSn negation depends on the value of 
CSCRn[AA] as shown below.

17–16
WRAH

Write address hold or deselect. This field controls the address, data, and attribute hold time after the termination of 
a write cycle that hits in the chip-select address space.
Note: The hold time applies only at the end of a transfer. Therefore, during a burst transfer or a transfer to a port size 

smaller than the transfer size, the hold time is only added after the last bus cycle.
00 Hold address and attributes one cycle after FB_CSn negates on writes. (Default FB_CSn)
01 Hold address and attributes two cycles after FB_CSn negates on writes.
10 Hold address and attributes three cycles after FB_CSn negates on writes.
11 Hold address and attributes four cycles after FB_CSn negates on writes. (Default FB_CS0)

15–10
WS

Wait states. The number of wait states inserted after FB_CSn asserts and before an internal transfer acknowledge 
is generated (WS = 0 inserts zero wait states, WS = 0x3F inserts 63 wait states). If AA is reserved, FB_TA must be 
asserted by the external system regardless of the number of generated wait states. In that case, the external transfer 
acknowledge ends the cycle. An external FB_TA supersedes the generation of an internal FB_TA.

9
BLS

Byte-lane shift. Determines if data on FB_AD appears left-justified or right-justified during the data phase of a 
FlexBus access.
0 Not shifted. Data is left-justified on FB_AD.
1 Shifted. Data is right justified on FB_AD.

8
AA

Auto-acknowledge enable. Determines the assertion of the internal transfer acknowledge for accesses specified by 
the chip-select address.
0 No internal FB_TA is asserted. Cycle is terminated externally
1 Internal transfer acknowledge is asserted as specified by WS

Note: If AA is set for a corresponding FB_CSn and the external system asserts an external FB_TA before the 
wait-state countdown asserts the internal FB_TA, the cycle is terminated. Burst cycles increment the address 
bus between each internal termination.

Table 20-6. CSCRn Field Descriptions (Continued)

Field Description

RDAH AA = 0 AA = 1

00
(FB_CSn Default)

1 cycle 0 cycles

01 2 cycles 1 cycles

10 3 cycles 2 cycles

11
(FB_CS0 Default)

4 cycles 3 cycles
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20.4 Functional Description

20.4.1 Chip-Select Operation

Each chip-select has a dedicated set of registers for configuration and control: 

• Chip-select address registers (CSARn) control the base address space of the chip-select. See 
Section 20.3.1, “Chip-Select Address Registers (CSAR0 – CSAR5).”

• Chip-select mask registers (CSMRn) provide 16-bit address masking and access control. See 
Section 20.3.2, “Chip-Select Mask Registers (CSMR0 – CSMR5).”

• Chip-select control registers (CSCRn) provide port size and burst capability indication, wait-state 
generation, address setup and hold times, and automatic acknowledge generation features. See 
Section 20.3.3, “Chip-Select Control Registers (CSCR0 – CSCR5).”

FB_CS0 is a global chip-select after reset and provides external boot memory capability.

7–6
PS

Port size. Specifies the data port width associated with each chip-select. It determines where data is driven during 
write cycles and where data is sampled during read cycles.
00 32-bit port size. Valid data sampled and driven on FB_D[31:0]
01 8-bit port size. Valid data sampled and driven on FB_D[31:24]
1x 16-bit port size. Valid data sampled and driven on FB_D[31:16]

5
BEM

Byte-enable mode. Specifies the byte enable operation. Certain memories have byte enables that must be asserted 
during reads and writes. BEM can be set in the relevant CSCR to provide the appropriate mode of byte enable 
support for these SRAMs.
0 FB_BE/BWE is not asserted for reads. FB_BE/BWE is asserted for data write only.
1 FB_BE/BWE is asserted for read and write accesses.

4
BSTR

Burst-read enable. Specifies whether burst reads are used for memory associated with each FB_CSn.
0 Data exceeding the specified port size is broken into individual, port-sized, non-burst reads. For example, a 

longword read from an 8-bit port is broken into four 8-bit reads.
1 Enables data burst reads larger than the specified port size, including longword reads from 8- and 16-bit ports, 

word reads from 8-bit ports, and line reads from 8, 16-, and 32-bit ports.

3
BSTW

Burst-write enable. Specifies whether burst writes are used for memory associated with each FB_CSn.
0 Break data larger than the specified port size into individual, port-sized, non-burst writes. For example, a longword 

write to an 8-bit port takes four byte writes.
1 Enables burst write of data larger than the specified port size, including longword writes to 8 and 16-bit ports, word 

writes to 8-bit ports, and line writes to 8-, 16-, and 32-bit ports.

2–0 Reserved, must be cleared.

Table 20-6. CSCRn Field Descriptions (Continued)

Field Description
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20.4.1.1 General Chip-Select Operation

When a bus cycle is routed to the FlexBus, the device first compares its address with the base address and 
mask configurations programmed for chip-selects 0 to 5 (configured in CSCR0 – CSCR5). The results 
depend on if the address matches or not as shown in Table 20-7.

20.4.1.2 8-, 16-, and 32-Bit Port Sizing

Static bus sizing is programmable through the port size bits, CSCR[PS]. The processor always drives a 
-bit address on the FB_AD bus regardless of the external device’s address size. The external device 

must connect its address lines to the appropriate FB_AD bits from FB_AD0 upward. Its data bus must be 
connected to FB_AD[7:0] from  downward. No bit ordering is required when connecting 
address and data lines to the FB_AD bus. For example, a full 16-bit address/16-bit data device connects 
its addr[15:0] to FB_AD[16:1] and data[15:0] to FB_AD[31:16]. See Figure 20-4 for a graphical 
connection.

20.4.1.3 Global Chip-Select Operation

FB_CS0, the global (boot) chip-select, supports external boot memory accesses before system 
initialization. Its operation differs from other external chip-select outputs after system reset.

After system reset, FB_CS0 is asserted for every external access. No other chip-select can be used until 
the valid bit, CSMR0[V], is set; at this point FB_CS0 functions as configured. After this, FB_CS[5:1] can 
be used as well. At reset during parallel boot, the logic levels on the FB_AD[5:4] signals determine global 
chip-select port size. During serial boot, the value of SBF_RCON[31:30] determine the port size.

20.4.2 Data Transfer Operation

Data transfers between the chip and other devices involve these signals:

Table 20-7. Results of Address Comparison

Address Matches 
CSARn?

Result

Yes,
one CSAR

The appropriate chip-select is asserted, generating an external bus cycle as defined in the chip-select 
control register.

If CSMR[WP] is set and a write access is performed, the internal bus cycle terminates with a bus error, 
no chip select is asserted, and no external bus cycle is performed.

No The chip-select signals are not driven. However, the FlexBus runs an external bus cycle with external 
termination.

Yes,
multiple CSARs

The chip-select signals are driven. However, they are driven using an external burst-inhibited bus cycle 
with external termination on a 32-bit port.

• Address/data bus (FB_AD[31:0])

32

FB_AD31

See Chapter 10, “Chip Configuration Module (CCM),” for more information.
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The address, write data, FB_ALE, FB_CSn, and all attribute signals change on the rising edge of the 
FlexBus clock (FB_CLK). Read data is latched into the device on the rising edge of the clock.

The FlexBus supports byte-, word-, longword-, and 16-byte (line) operand transfers and allows accesses 
to 8-, 16-, and 32-bit data ports.Transfer parameters (address setup and hold, port size, the number of wait 
states for the external device being accessed, automatic internal transfer termination enable or disable, and 
burst enable or disable) are programmed in the chip-select control registers (CSCRs). See Section 20.3.3, 
“Chip-Select Control Registers (CSCR0 – CSCR5).”

20.4.3 Data Byte Alignment and Physical Connections

The device aligns data transfers in FlexBus byte lanes with the number of lanes depending on the data port 
width. Figure 20-4 shows the byte lanes that external memory connects to and the sequential transfers of 
a longword transfer for the supported port sizes when byte lane shift is disabled. For example, an 8-bit 
memory connects to the single lane FB_AD[31:24] (FB_BE/BWE0). A longword transfer through this 
8-bit port takes four transfers, starting with the MSB to the LSB. A longword transfer through a 32-bit port 
requires one transfer on each four-byte lane of the FlexBus.

Figure 20-4. Connections for External Memory Port Sizes (CSCRn[BLS] = 0)

Figure 20-5 shows the byte lanes that external memory connects to and the sequential transfers of a 
longword transfer for the supported port sizes when byte lane shift is enabled.

• Control signals (FB_ALE, FB_TA, FB_CSn, FB_OE, FB_BE/BWE[3:0])

• Attribute signals (FB_R/W, FB_TBST, FB_TSIZ[1:0])

Data Bus

Byte 08-Bit Port

16-Bit Port

32-Bit Port

Byte 1

Byte 2

Byte 3

Byte 0 Byte 1

Byte 2 Byte 3

Byte 0 Byte 1 Byte 2 Byte 3

External

Memory

Memory

Memory

Byte Select

Driven with 
address values

Driven with 
address values

FB_BE/BWE0 FB_BE/BWE1 FB_BE/BWE2 FB_BE/BWE3

FB_AD[31:24] FB_AD[23:16] FB_AD[15:8] FB_AD[7:0]



FlexBus

NXP Semiconductors 20-13

Figure 20-5. Connections for External Memory Port Sizes (CSCRn[BLS] = 1)

20.4.4 Address/Data Bus Multiplexing

The interface supports a single -bit wide multiplexed address and data bus (FB_AD[ :0]). The full 
-bit address is always driven on the first clock of a bus cycle. During the data phase, the FB_AD[ :0] 

lines used for data are determined by the programmed port size for the corresponding chip select. The 
device continues to drive the address on any FB_AD[ :0] lines not used for data.

The table below lists the supported combinations of address and data bus widths.

20.4.5 Bus Cycle Execution

As shown in Figure 20-8 and Figure 20-10, basic bus operations occur in four clocks: 

1. S0: At the first clock edge, the address, attributes, and FB_ALE are driven.

2. S1: FB_CSn is asserted at the second rising clock edge to indicate the device selected; by that time, 
the address and attributes are valid and stable. FB_ALE is negated at this edge.

Table 20-8. FlexBus Multiplexed Operating Modes

Port Size and Phase
FB_AD

[31:24] [23:16] [15:8] [7:0]

32
-b

it Address phase Address

Data phase Data

16
-b

it Address phase Address

Data phase Data Address

8-
b

it Address phase Address

Data phase Data Address

Data Bus

Byte 08-Bit Port

16-Bit Port

32-Bit Port

Byte 1

Byte 2

Byte 3

Byte 0 Byte 1

Byte 2 Byte 3

Byte 0 Byte 1 Byte 2 Byte 3

External

Memory

Memory

Memory

Byte Select

Driven with 
address values

Driven with 
address values

FB_BE/BWE3 FB_BE/BWE2 FB_BE/BWE1 FB_BE/BWE0

FB_AD[31:24] FB_AD[23:16] FB_AD[15:8] FB_AD[7:0]

32 31
32 31

31
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For a write transfer, data is driven on the bus at this clock edge and continues to be driven until one 
clock cycle after FB_CSn negates. For a read transfer, data is also driven into the device during this 
cycle.

External slave asserts FB_TA at this clock edge.

3. S2: Read data and FB_TA are sampled on the third clock edge. FB_TA can be negated after this 
edge and read data can then be tri-stated.

4. S3: FB_CSn is negated at the fourth rising clock edge. This last clock of the bus cycle uses what 
would be an idle clock between cycles to provide hold time for address, attributes, and write data. 

20.4.5.1 Data Transfer Cycle States

An on-chip state machine controls the data-transfer operation in the device. Figure 20-6 shows the 
state-transition diagram for basic read and write cycles.

Figure 20-6. Data-Transfer-State-Transition Diagram

Table 20-10 describes the states as they appear in subsequent timing diagrams.

Table 20-10. Bus Cycle States

State Cycle Description

S0 All The read or write cycle is initiated. On the rising clock edge, the device places a valid address on 
FB_AD[ :0], asserts FB_ALE, and drives FB_R/W high for a read and low for a write.

S1 All FB_ALE is negated on the rising edge of FB_CLK, and FB_CSn is asserted. Data is driven on 
FB_AD[31:X] for writes, and FB_AD[31:X] is tristated for reads. Address continues to be driven 
on the FB_AD pins that are unused for data.

If FB_TA is recognized asserted, then the cycle moves on to S2. If FB_TA is not asserted 
internally or externally, then the S1 state continues to repeat.

Read Data is driven by the external device before the next rising edge of FB_CLK (the rising edge that 
begins S2) with FB_TA asserted.

S0

S1

S2

Wait States

S3

Next Cycle

31
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20.4.6 FlexBus Timing Examples

NOTE
Because this device shares the FlexBus signals with the NAND flash 
controller, all signals, except the chip selects, tristate between bus cycles.

The following sections include timing diagrams that reference signals only 
available in non-multiplexed mode. This device’s pinout does not support 
this mode. Therefore, ignore any references in the timing diagrams to the 
FB_A and FB_D signals.

20.4.6.1 Basic Read Bus Cycle

During a read cycle, the ColdFire device receives data from memory or a peripheral device. Figure 20-7 
is a read cycle flowchart. 

NOTE
Throughout this chapter FB_AD[31:X] indicates a 32-, 16-, or 8-bit wide 
data bus. FB_AD[ ] is an address bus that can be -bits in 
width.

S2 All For internal termination, FB_CSn is negated and the internal system bus transfer is completed. 
For external termination, the external device should negate FB_TA, and the FB_CSn chip select 
negates after the rising edge of FB_CLK at the end of S2.

Read The processor latches data on the rising clock edge entering S2. The external device can stop 
driving data after this edge. However, data can be driven until the end of S3 or any additional 
address hold cycles.

S3 All Address, data, and FB_R/W go invalid off the rising edge of FB_CLK at the beginning of S3, 
terminating the read or write cycle.

Table 20-10. Bus Cycle States (Continued)

State Cycle Description

Y:0 32-, 24-, or 16
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Figure 20-7. Read Cycle Flowchart

The read cycle timing diagram is shown in Figure 20-8.

NOTE
In the next set of timing diagrams, the dotted lines indicate FB_TA, FB_OE, 
and FB_CSn timing when internal termination is used (CSCR[AA] = 1). 
The external and internal FB_TA assert at the same time; however, FB_TA 
is not driven externally for internally-terminated bus cycles.

NOTE
The processor drives the data lines during the first clock cycle of the transfer 
with the full 32-bit address. This may be ignored by standard connected 
devices using non-multiplexed address and data buses. However, some 
applications may find this beneficial.

The address and data buses are muxed between the FlexBus and NAND 
flash controller. At the end of the read bus cycles the address signals are 
indeterminate.

1. Select the appropriate slave device.

Assert FB_TA (external termination).3.

1. Negate FB_TA (external termination).

1. Decode address.

1. Set FB_R/W to read.

Assert FB_CSn.2.

1.
(auto-acknowledge/internal termination).

Sample FB_TA low and latch data. 2.

1. Start next cycle.

ColdFire device System

2. Place address on FB_AD[31:0].

2. Drive data on FB_AD[31:X].

3. Assert FB_ALE.

1. Negate FB_ALE.

FlexBus asserts internal FB_TA
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Figure 20-8. Basic Read-Bus Cycle

20.4.6.2 Basic Write Bus Cycle

During a write cycle, the device sends data to memory or to a peripheral device. Figure 20-9 shows the 
write cycle flowchart.

Figure 20-9. Write-Cycle Flowchart
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ADDR[31:X]
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Assert FB_TA (external termination).3.

1. Negate FB_TA (external termination).
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1. Set FB_R/W to write.

Assert FB_CSn.2.

1.
(auto acknowledge/internal termination).

Sample FB_TA low.2.

1. Start next cycle.

ColdFire device System

Drive data.3.

2. Place address on FB_AD[31:0].

2. Latch data on FB_AD[31:X].

3. Assert FB_ALE.

1. Negate FB_ALE.

FlexBus asserts internal FB_TA
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Figure 20-10 shows the write cycle timing diagram.

NOTE
The address and data buses are muxed between the FlexBus and NAND 
flash controller. At the end of the write bus cycles, the address signals are 
indeterminate.

Figure 20-10. Basic Write-Bus Cycle

20.4.6.3 Bus Cycle Sizing

This section shows timing diagrams for various port size scenarios. Figure 20-11 illustrates the basic byte 
read transfer to an 8-bit device with no wait states. The address is driven on the full FB_AD[ ] bus in 
the first clock. The device tristates FB_AD[  on the second clock and continues to drive address on 
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FB_AD[ ] throughout the bus cycle. The external device returns the read data on FB_AD[31:24] and 
may tristate the data line or continue driving the data one clock after FB_TA is sampled asserted.

Figure 20-11. Single Byte-Read Transfer

Figure 20-12 shows the similar configuration for a write transfer. The data is driven from the second clock 
on FB_AD[31:24].

Figure 20-12. Single Byte-Write Transfer
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Figure 20-13 illustrates the basic word read transfer to a 16-bit device with no wait states. The address is 
driven on the full FB_AD[ :0] bus in the first clock. The device tristates FB_AD[  on the second 
clock and continues to drive the address on FB_AD[ ] throughout the bus cycle. The external device 
returns the read data on FB_AD[31:16], and may tristate the data line or continue driving the data one 
clock after FB_TA is sampled asserted.

Figure 20-13. Single Word-Read Transfer
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Figure 20-14 shows the similar configuration for a write transfer. The data is driven from the second clock 
on FB_AD[31:16].

Figure 20-14. Single Word-Write Transfer

Figure 20-15 depicts a longword read from a 32-bit device.

Figure 20-15. Longword-Read Transfer
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Figure 20-16 illustrates the longword write to a 32-bit device.

Figure 20-16. Longword-Write Transfer

20.4.6.4 Timing Variations

The FlexBus module has several features that can change the timing characteristics of a basic read- or 
write-bus cycle to provide additional address setup, address hold, and time for a device to provide or latch 
data.

20.4.6.4.1 Wait States

Wait states can be inserted before each beat of a transfer by programming the CSCRn registers. Wait states 
can give the peripheral or memory more time to return read data or sample write data.
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Figure 20-17 and Figure 20-18 show the basic read and write bus cycles (also shown in Figure 20-8 and 
Figure 20-13) with the default of no wait states.

Figure 20-17. Basic Read-Bus Cycle (No Wait States)

Figure 20-18. Basic Write-Bus Cycle (No Wait States)
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If wait states are used, the S1 state repeats continuously until the chip-select auto-acknowledge unit asserts 
internal transfer acknowledge or the external FB_TA is recognized as asserted. Figure 20-19 and 
Figure 20-20 show a read and write cycle with one wait state.

Figure 20-19. Read-Bus Cycle (One Wait State)

Figure 20-20. Write-Bus Cycle (One Wait State)
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20.4.6.4.2 Address Setup and Hold

The timing of the assertion and negation of the chip selects, byte selects, and output enable can be 
programmed on a chip-select basis. Each chip-select can be programmed to assert one to four clocks after 
address-latch enable (FB_ALE) is asserted. Figure 20-21 and Figure 20-22 show read- and write-bus 
cycles with two clocks of address setup.

Figure 20-21. Read-Bus Cycle with Two-Clock Address Setup (No Wait States)

Figure 20-22. Write-Bus Cycle with Two Clock Address Setup (No Wait States)
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In addition to address setup, a programmable address hold option for each chip select exists. Address and 
attributes can be held one to four clocks after chip-select, byte-selects, and output-enable negate. 
Figure 20-23 and Figure 20-24 show read and write bus cycles with two clocks of address hold.

Figure 20-23. Read Cycle with Two-Clock Address Hold (No Wait States)

Figure 20-24. Write Cycle with Two-Clock Address Hold (No Wait States)
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Figure 20-25 shows a bus cycle using address setup, wait states, and address hold.

Figure 20-25. Write Cycle with Two-Clock Address Setup and
Two-Clock Hold (One Wait State)

20.4.7 Burst Cycles

The device can be programmed to initiate burst cycles if its transfer size exceeds the port size of the 
selected destination. The initiation of a burst cycle is encoded on the size pins. For burst transfers to 
smaller port sizes, FB_TSIZ[1:0] indicates the size of the entire transfer. For example, with bursting 
enabled, a word transfer to an 8-bit port takes two beats (two byte-sized transfers), for which 
FB_TSIZ[1:0] equals 10 throughout. A longword transfer to an 8-bit port would take a 4-byte burst cycle, 
for which FB_TSIZ[1:0] equals 00 throughout.

With bursting disabled, any transfer larger than the port size breaks into multiple individual transfers. With 
bursting enabled, an access larger than port size results in a burst cycle of multiple beats. Table 20-11 
shows the result of such transfer translations.

Table 20-11. Transfer Size and Port Size Translation

Port Size PS[1:0]
Transfer Size 
FB_TSIZ[1:0]

Burst-Inhibited: Number of Transfers
Burst Enabled: Number of Beats

01 (8-bit) 10 (word) 2

00 (longword) 4

11 (line) 16

1x (16-bit) 00 (longword) 2

11 (line) 8

00 (32-bit) 11 (line) 4

FB_CLK

FB_R/W

FB_ALE

FB_OE

S0 AS S1 WS S2 S3AH

DATA

FB_TSIZ[1:0] TSIZ[1:0]
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FB_D[31:X]

ADDR[31:X]

ADDR[31:X]

FB_AD[Y:0] ADDR[Y:0]

FB_AD[31:X]

FB_CSn, FB_BE/BWEn

FB_TA

S0
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The FlexBus can support 2-1-1-1 burst cycles to maximize system performance. Delaying termination of 
the cycle can add wait states. If internal termination is used, different wait state counters can be used for 
the first access and the following beats.

The CSCRn registers enable bursting for reads, writes, or both. Memory spaces can be declared 
burst-inhibited for reads and writes by clearing the appropriate CSCRn[BSTR,BSTW] bits.

Figure 20-26 shows a longword read to an 8-bit device programmed for burst enable. The transfer results 
in a 4-beat burst and the data is driven on  The transfer size is driven at longword (00) 
throughout the bus cycle.

NOTE

Figure 20-26. Longword-Read Burst from 8-Bit Port 2-1-1-1 (No Wait States)

Figure 20-27 shows a longword write to an 8-bit device with burst enabled. The transfer results in a 4-beat 
burst and the data is driven on  The transfer size is driven at longword (00) throughout the 
bus cycle.

NOTE
The first beat of any write burst cycle has at least one wait state. If the bus 
cycle is programmed for zero wait states (CSCRn[WS] = 0), one wait state 
is added. Otherwise, the programmed number of wait states are used.

FB_AD[31:24].

In multiplexed address/data mode, the address is driven on FB_AD only 
during the first cycle for internally- and externally-terminated cycles.
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S0

FB_AD[31:24].
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Figure 20-27. Longword-Write Burst to 8-Bit Port 3-1-1-1 (No Wait States)

Figure 20-28 shows a longword read from an 8-bit device with burst inhibited. The transfer results in four 
individual transfers. The transfer size is driven at longword (00) during the first transfer and at byte (01) 
during the next three transfers.

NOTE
There is an extra clock of address setup (AS) for each burst-inhibited 
transfer between states S0 and S1.

FB_CLK

FB_R/W

FB_ALE

S0 S1 S2 S2 S2 S3

DATA DATA DATA DATA

WS S2

FB_TSIZ[1:0] 00

DATA DATA DATA DATA

ADDR + 1 ADDR + 2 ADDR + 3

M
ux

’d
N

on
-M

ux
’d

B
us

B
us

FB_A[23:0]

ADDR[23:0]

ADDR[23:0]

FB_D[31:24]

[31:24]
ADDR

FB_AD[23:0]

FB_AD[31:24]

FB_CSn, FB_OE
FB_BE/BWEn, FB_TBST

FB_TA

S0

[31:24]
ADDR



FlexBus

20-30 NXP Semiconductors

Figure 20-28. Longword-Read Burst-Inhibited from 8-Bit Port (No Wait States)
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Figure 20-29 shows a longword write to an 8-bit device with burst inhibited. The transfer results in four 
individual transfers. The transfer size is driven at longword (00) during the first transfer and at byte (01) 
during the next three transfers.

Figure 20-29. Longword-Write Burst-Inhibited to 8-Bit Port (No Wait States)

Figure 20-30 illustrates another read burst transfer, but in this case a wait state is added between individual 
beats.

NOTE
CSCRn[WS] determines the number of wait states in the first beat. 
However, for subsequent beats, the CSCRn[WS] (or CSCRn[SWS] if 
CSCRn[SWSEN] is set) determines the number of wait states.
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Figure 20-30. Longword-Read Burst from 8-Bit Port 3-2-2-2 (One Wait State)

Figure 20-30 illustrates a write burst transfer with one wait state.

Figure 20-31. Longword-Write Burst to 8-Bit Port 3-2-2-2 (One Wait State)
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If address setup and hold are used, only the first and last beat of the burst cycle are affected. Figure 20-32 
shows a read cycle with one clock of address setup and address hold.

NOTE

Figure 20-32. Longword-Read Burst from 8-Bit Port 3-1-1-1 (Address Setup and Hold)

In multiplexed address/data mode, the address is driven on FB_AD only 
during the first cycle for internally- and externally-terminated cycles.
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1 The address hold time depends on the setting of CSCRn[AA]. See Section 20.3.3, “Chip-Select 
Control Registers (CSCR0 – CSCR5)”, for more details.
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Figure 20-33 shows a write cycle with one clock of address setup and address hold.

Figure 20-33. Longword-Write Burst to 8-Bit Port 3-1-1-1 (Address Setup and Hold)
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20.4.8 Misaligned Operands

Because operands, unlike opcodes, can reside at any byte boundary, they are allowed to be misaligned.

• Byte operand is properly aligned at any address

• Word operand is misaligned at an odd address

• Longword is misaligned at any address not a multiple of four

Although the processor enforces no alignment restrictions for data operands (including program counter 
(PC) relative data addressing), misaligned operands require additional bus cycles. 

Instruction words and extension words (opcodes) must reside on word boundaries. Attempting to prefetch 
a misaligned instruction word causes an address-error exception.

The processor core converts misaligned, cache-inhibited operand accesses to multiple aligned accesses. 
Example 20-1 shows the transfer of a longword operand from a byte address to a 32-bit port. First, a byte 
transfers at an offset of 0x1. The slave device supplies the byte and acknowledges the data transfer. When 
the processor starts the second cycle, a word transfers with a byte offset of 0x2. The next two bytes are 
transferred in this cycle. In the third cycle, byte 3 transfers. The byte offset is now 0x0, the port supplies 
the final byte, and the operation completes.

Example 20-1. A Misaligned Longword Transfer (32-Bit Port)

If an operand is cacheable and is misaligned across a cache-line boundary, both lines are loaded into the 
cache. The example in Example 20-2 differs from the one in Example 20-1 because the operand is 
word-sized and the transfer takes only two bus cycles.

Example 20-2. A Misaligned Word Transfer (32-Bit Port)

20.4.9 Extended Transfer Start

The FB_TS signal indicates that a bus transaction has begun and the address and attributes are valid. By 
default, the FB_TS signal asserts for a single bus clock cycle see. When CSCRn[EXTS] is set, the transfer 
start signal asserts and remain asserted until the first positive clock edge after FB_CSn asserts. See 
Figure 20-34.

When EXTS is set, CSCRn[WS] must be programmed to have at least one primary wait state.

–– Byte 0 –– ––Transfer 1

–– –– Byte 1 Byte 2

Byte 3 –– –– ––

Transfer 2

Transfer 3

001

010

100

16 1531 024 23 78 FB_A[2:0]

–– –– –– Byte 0Transfer 1

Byte 0 –– –– —Transfer 2

001

100

16 1531 024 23 78 FB_A[2:0]
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Figure 20-34. Read-Bus Cycle with CSCRn[EXTS] = 1 (One Wait State)

20.4.10 Bus Errors

If the auto-acknowledge is not enabled for the address that generates the error, the bus cycle can be 
terminated by asserting FB_TA. If the processor must manage a bus error differently, asserting an interrupt 
to the core along with FB_TA when the bus error occurs can invoke an interrupt handler.

The device also includes a bus monitor that generates a bus error for unterminated cycles.
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Chapter 21  
DDR SDRAM Memory Controller (DDRMC)

21.1 Overview
The DDR memory controller supports high performance applications for DDR2 SDRAM memories. 

21.1.1 Block Diagram

Figure 21-1 shows a high-level block diagram of the DDR SDRAM controller.

Figure 21-1. SDRAMC Block Diagram

21.1.2 Features

The features of this memory controller include:

• Supports DDR2 SDRAM

• Fully pipelined command, read, and write data interfaces to the memory controller

• Advanced bank look-ahead features for high memory throughput

• Programmable register interface to control memory device parameters and protocols including 
auto pre-charge

• Full initialization of memory on memory controller reset

• Memory datapath size of 8-bit

• Clock frequencies up to 250 MHz supported (500 MBps data rate)
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• Integrated with a DFI-compliant PHY, which contains a read clock recovery (RCR) block for 
reliable data capture timing

• On-die termination (ODT)

• Automatic refresh generation with programmable refresh intervals

• Self-refresh and power-down modes to reduce system power consumption

21.2 Modes of Operation
The DDR memory controller operates in the following modes.

21.2.1 DDR2

This is the main mode of normal operation. All other modes are parts of this mode.

21.2.2 Low Power Modes

There are several low power modes available with the memory controller. The low power modes are listed 
from least to most power saving.

NOTE
It is not possible to exit one low power mode and enter another low power 
mode simultaneously. Plan for a minimum delay between exit and entry of 
the two low power modes of 15 cycles in which the memory controller must 
remain stable.

21.2.2.1 Memory Power-Down

The memory controller sets the memory devices into power-down, which reduces the overall power 
consumption of the system, but has the least effect of all the low power modes. In this mode, the memory 
controller and memory clocks are fully operational, but the CKE input bit to the memory devices is 
negated. The memory controller continues to monitor memory refresh needs and automatically brings the 
memory out of power-down to perform these refreshes. When a refresh is required, the CKE input bit to 
the memory devices is re-enabled, which brings the memory devices out of power-down. After the refresh 
completes, the memory devices are returned to power-down by negating the CKE input bit.

21.2.2.2 Memory Power-Down with Memory Clock Gating

The memory controller sets the memory devices into power-down and gates off the clock to the memory 
devices. Refreshes are handled as in the memory power-down mode (mode 1), with the exception that 
gating on the memory clock is removed before asserting the CKE pin. After the refresh completes, the 
memory devices are returned to power-down with the clock gated. Before the memory devices are 
removed from power-down, the clock is gated on again.

NOTE
Do not use this mode for memory devices that do not support memory clock 
gating. Clock gating is not supported for standard DDR2 devices.



DDR SDRAM Memory Controller (DDRMC)

NXP Semiconductors 21-3

When set into this mode, the memory controller attempts to place the memory devices in power-down and 
gate off the memory clock. The memory functions unpredictably and may hang.

21.2.2.3 Memory Self-Refresh

The memory controller sets the memory devices into self-refresh. In this mode, the memory controller and 
memory clocks are fully operational and the CKE input bit to the memory devices is negated. Since the 
memory automatically refreshes its contents, the memory controller does not need to send explicit 
refreshes to the memory.

21.2.2.4 Memory Self-Refresh with Memory Clock Gating

The memory controller sets the memory devices into self-refresh and gates off the clock to the memory 
devices. Before the memory devices are removed from self-refresh, the clock are gated on again.

21.2.2.5 Memory Self-Refresh with Memory and Controller Clock Gating

This is the deepest low power mode of the memory controller. The memory controller sets the memory 
devices into self-refresh and gates off the clock to the memory devices. In addition, the clock to the 
memory controller and the programming parameters are gated off, except to a small portion of the DLL, 
which must remain active to maintain the lock. Before the memory devices are removed from self-refresh, 
the memory controller and memory clocks are gated on.

21.3 Signal Description
Table 21-1 describes the DDR2 controller’s external memory interface signals.

Table 21-1. Signal Properties

Name Function I/O Reset Pull Up

SD_A[14:0] Selects the column when SD_CAS is asserted
Selects the row when SD_RAS is asserted.

O 0000 Active

SD_BA[2:0] Selects the SDRAM Bank when SD_RAS is asserted 
(precharge or active) or when SD_CAS is asserted 
(read or write).

O 0 Passive

SD_CAS Column address select O 1 Active

SD_CKE Clock enable. Asserts when the clock is valid O 0 Active

SD_CLK
SD_CLK

Differential clock O 0
1

Active

SD_CS Chip select O 1 Active

SD_D[7:0] Write or read data from the SDRAM I/O — Active

SD_DM Data mask O 1 Active

SD_DQS
SD_DQS

Differential data strobe I/O — Active

SD_ODT On-die-termination O 0 Active
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21.3.1 Detailed Signal Descriptions

Table 21-2 describes the external signals in more detail with timing to SD_CLK and how the signals 
interact with each other.

SD_RAS Row address select O 1 Active

SD_WE Write enable O 1 Active

SD_VREF Voltage supply reference — — —

SD_VTT Voltage supply for termination resistors — — —

Table 21-2. SDRAM Interface—Detailed Signal Descriptions

Signal I/O Description

SD_A[14:0] O Provides the row address for ACTIVE commands, and the column address and AUTO PRECHARGE bit 
for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 
is sampled during a precharge command to determine whether the PRECHARGE applies to one bank 
(A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA0, 
BA1 and BA2. The address outputs also provide the op-code during a MODE REGISTER SET 
command. BA0, BA1 and BA2 define which mode register is loaded during the MODE REGISTER SET 
(MRS or EMRS’s)

Timing Assertion/Negation— Occurs synchronously with SD_CLK

SD_BA[2:0] O BA0, BA1 and BA2 define which bank an ACTIVE, READ, WRITE, or PRECHARGE command is being 
applied.

Timing Assertion/Negation— Occurs synchronously with SD_CLK

SD_CAS O Command input. Along with SD_CS, SD_RAS, and SD_WE defines the current command.

State 
Meaning

Please see  for the SDRAM commands.

Timing Assertion/Negation— Occurs synchronously with SD_CLK

SD_CKE O CKE must be maintained high throughout READ and WRITE accesses. Input buffers, excluding 
SD_CLK, SD_CLK, and SD_CKE, are disabled during POWER DOWN or SELF REFRESH.

State 
Meaning

Asserted— Activates internal clock signals and device input buffers and output drivers.
Negated—Deactivates internal clock signals and device input buffers and output drivers.

Timing
Assertion — Asynchronous for SELF-REFRESH exit and for output disable
Negation— Occurs synchronously with SD_CLK

SD_CLK
SD_CLK

O SD_CLK and SD_CLK are differential clock outputs. All address and control output signals are sent on 
the crossing of the positive edge of SD_CLK and the negative edge of SD_CLK. Output data is 
referenced to the crossing of SD_CLK and SD_CLK (both directions of crossing).

Timing
Command signals are synchronously with the rising edge of this clock. The data signals can 
change on both the rising and falling edge of the clock.

Table 21-1. Signal Properties (continued)

Name Function I/O Reset Pull Up
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SD_CS O SD_CS provides for external chip selection on systems with multiple chips. SD_CS is considered part of 
the command code. 

State
Meaning

Asserted— Commands for the selected chip will occur
Negated—All commands are masked.

Timing Assertion/Negation— Occurs synchronously with SD_CLK

SD_D[7:0] I/O Data bus

Timing Assertion/Negation— Occurs on both crossing of SD_CLK and SD_CLK on write command. 
Synchronous with SD_DQS input on read command.

SD_DM O Output mask signal for write data. During Reads, SD_DM may be driven high, low, or floating.

State 
Meaning

Asserted— Data is written to SDRAM
Negation— Data is masked

Timing Assertion/Negation— Occurs on both crossing of SD_CLK and SD_CLK.

SD_DQS
SD_DQS

I/O  Edge-aligned with read data, centered in write data. Used to capture data.

State 
Meaning

Asserted— Similar to a clock signal, the edges are more important than being asserted or 
negated.

Timing Assertion/Negation—Occurs on both crossing of SD_CLK and SD_CLK on write command. 
Asynchronous with SD_CLK and SD_CLK on read command.

SD_ODT O SD_ODT enables termination resistance internal to the DDR2 SDRAM.

State 
Meaning

Asserted— Enable termination resistance
Negation— Disable termination resistance

Timing Assertion/Negation— Occurs synchronously with SD_CLK

SD_RAS O  Command input. Along with SD_CS, SD_CAS, and SD_WE defines the current command.

State 
Meaning

Please see Table 21-3 for SDRAM commands.

Timing Assertion/Negation— Occurs synchronously with SD_CLK.

SD_WE O  Command input. Along with SD_CS, SD_CAS, and SD_RAS defines the current command.

State 
Meaning

Please see Table 21-3 for SDRAM commands.

Timing Assertion/Negation— Occurs synchronously with SD_CLK.

SD_VREF — SDRAM reference voltage. Reference voltage for differential  I/O pad cells. Should be half the voltage of 
the memory used in the system. For example, 2.5V DDR results in an SD_VREF of 1.25V. See the 
device’s datasheet for the voltages and tolerances for the various memory modes.

SD_VTT — Voltage supply for termination resistors

Table 21-2. SDRAM Interface—Detailed Signal Descriptions (continued)

Signal I/O Description
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21.4 Memory Map/Register Definition
Table 21-4 is the DDR2 controller memory map.

Table 21-3. SDRAM Commands

Function CKE CS RAS CAS WE BA[2:0] A[10] ADDR

(Extended) mode register set H L L L L V V V

Refresh H L L L H X X X

Self refresh entry HL L L L H X X X

Self refresh exit LH
H X X X

X X X
L H H H

Single bank precharge H L L H L V L X

Precharge all banks H L L H L X H X

Bank activate H L L H H V V V

Write H L H L L V L V

Write with auto-precharge H L H L L V H V

Read H L H L H V L V

Read with auto-precharge H L H L H V H V

No operation H L H H H X X X

Device deselect H H X X X X X X

Power down entry HL
H X X X

X X X
L H H H

Power down exit LH
H X X X

X X X
L H H H

H = High
L = Low
V = Valid

X = Don’t Care

Table 21-4. DDRMC Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

DDR controller registers

0xFC0B_8000 DDR control register 0 (DDR_CR00) 32 R/W 0x0000_0000 21.4.1/21-9

0xFC0B_8004 DDR control register 1 (DDR_CR01) 32 R/W 0x0000_0000 21.4.2/21-9

0xFC0B_8008 DDR control register 2 (DDR_CR02) 32 R/W 0x0000_0000 21.4.3/21-10

0xFC0B_800C DDR control register 3 (DDR_CR03) 32 R/W 0x0000_0000 21.4.4/21-11

0xFC0B_8010 DDR control register 4 (DDR_CR04) 32 R/W 0x0000_0000 21.4.5/21-12
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0xFC0B_8014 DDR control register 5 (DDR_CR05) 32 R/W 0x0000_0000 21.4.6/21-12

0xFC0B_8018 DDR control register 6 (DDR_CR06) 32 R/W 0x0000_0000 21.4.7/21-13

0xFC0B_801C DDR control register 7 (DDR_CR07) 32 R/W 0x0000_0000 21.4.8/21-14

0xFC0B_8020 DDR control register 8 (DDR_CR08) 32 R/W 0x0000_0000 21.4.9/21-15

0xFC0B_8024 DDR control register 9 (DDR_CR09) 32 R/W 0x0000_0000 21.4.10/21-15

0xFC0B_8028 DDR control register 10 (DDR_CR10) 32 R/W 0x0000_0000 21.4.11/21-16

0xFC0B_802C DDR control register 11 (DDR_CR11) 32 R/W 0x0000_0000 21.4.12/21-17

0xFC0B_8030 DDR control register 12 (DDR_CR12) 32 R/W 0x0000_0000 21.4.13/21-18

0xFC0B_8034 DDR control register 13 (DDR_CR13) 32 R/W 0x0002_0000 21.4.14/21-19

0xFC0B_8038 DDR control register 14 (DDR_CR14) 32 R/W 0x0000_0000 21.4.15/21-20

0xFC0B_803C DDR control register 15 (DDR_CR15) 32 R/W 0x0000_0000 21.4.16/21-20

0xFC0B_8040 DDR control register 16 (DDR_CR16) 32 R/W 0x0000_0000 21.4.17/21-21

0xFC0B_8044 DDR control register 17 (DDR_CR17) 32 R/W 0x0000_0000 21.4.18/21-22

0xFC0B_8048 DDR control register 18 (DDR_CR18) 32 R/W 0x0000_0000 21.4.19/21-23

0xFC0B_804C DDR control register 19 (DDR_CR19) 32 R/W 0x0000_0000 21.4.20/21-23

0xFC0B_8050 DDR control register 20 (DDR_CR20) 32 R/W 0x0C00_0000 21.4.21/21-24

0xFC0B_8054 DDR control register 21 (DDR_CR21) 32 R/W 0x0000_0400 21.4.22/21-25

0xFC0B_8058 DDR control register 22 (DDR_CR22) 32 R/W 0x0000_0000 21.4.23/21-26

0xFC0B_805C DDR control register 23 (DDR_CR23) 32 R/W 0x1000_0000 21.4.24/21-27

0xFC0B_8060 DDR control register 24 (DDR_CR24) 32 R/W 0x0000_0000 21.4.25/21-28

0xFC0B_8064 DDR control register 25 (DDR_CR25) 32 R/W 0x0000_0000 21.4.26/21-29

0xFC0B_8068 DDR control register 26 (DDR_CR26) 32 R/W 0x0000_0000 21.4.27/21-29

0xFC0B_806C DDR control register 27 (DDR_CR27) 32 R 0x0000_0000 21.4.28/21-30

0xFC0B_8070 DDR control register 28 (DDR_CR28) 32 R/W 0x0000_0000 21.4.29/21-30

0xFC0B_8074 DDR control register 29 (DDR_CR29) 32 R/W 0x0000_0000 21.4.30/21-31

0xFC0B_8078 DDR control register 30 (DDR_CR30) 32 R 0x0000_0000 21.4.31/21-32

0xFC0B_807C DDR control register 31 (DDR_CR31) 32 R/W 0x0000_0000 21.4.32/21-32

0xFC0B_8080 DDR control register 32 (DDR_CR32) 32 R/W 0x0000_0000 21.4.33/21-33

0xFC0B_8084 DDR control register 33 (DDR_CR33) 32 R/W 0x0000_0000 21.4.34/21-33

0xFC0B_8088 DDR control register 33 (DDR_CR34) 32 R/W 0x0000_0000 21.4.35/21-34

0xFC0B_808C DDR control register 35 (DDR_CR35) 32 R/W 0x0000_0000 21.4.36/21-34

0xFC0B_8090 DDR control register 36 (DDR_CR36) 32 R/W 0x0000_0000 21.4.37/21-35

Table 21-4. DDRMC Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page
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0xFC0B_8094 DDR control register 37 (DDR_CR37) 32 R/W 0x0000_0000 21.4.38/21-35

0xFC0B_8098 DDR control register 38 (DDR_CR38) 32 R/W 0x0000_0000 21.4.39/21-35

0xFC0B_809C DDR control register 39 (DDR_CR39) 32 R/W 0x0000_0000 21.4.40/21-36

0xFC0B_80A0 DDR control register 40 (DDR_CR40) 32 R/W 0x0000_0000 21.4.41/21-36

0xFC0B_80A4 DDR control register 41 (DDR_CR41) 32 R/W 0x0000_0000 21.4.42/21-37

0xFC0B_80A8 DDR control register 42 (DDR_CR42) 32 R/W 0x0000_0000 21.4.43/21-37

0xFC0B_80AC DDR control register 43 (DDR_CR43) 32 R/W 0x0000_0000 21.4.44/21-37

0xFC0B_80B0 DDR control register 44 (DDR_CR44) 32 R 0x0000_2040 21.4.45/21-38

0xFC0B_80B4 DDR control register 45 (DDR_CR45) 32 R/W 0x0000_0000 21.4.46/21-38

0xFC0B_80B8 Reserved 32 — — 21.4.47/21-38

0xFC0B_80BC Reserved 32 — — 21.4.48/21-39

0xFC0B_80C0 Reserved 32 — — 21.4.49/21-39

0xFC0B_80C4 Reserved 32 — — 21.4.50/21-39

0xFC0B_80C8 Reserved 32 — — 21.4.51/21-39

0xFC0B_80CC Reserved 32 — — 21.4.52/21-39

0xFC0B_80D0 Reserved 32 — — 21.4.53/21-39

0xFC0B_80D4 DDR control register 53 (DDR_CR53) 32 R 0x0000_0000 21.4.54/21-39

0xFC0B_80D8 Reserved 32 — — 21.4.55/21-39

0xFC0B_80DC DDR control register 55 (DDR_CR55) 32 R 0x0000_0000 21.4.56/21-40

0xFC0B_80E0 DDR control register 56 (DDR_CR56) 32 R/W 0x0000_0000 21.4.57/21-40

0xFC0B_80E4 DDR control register 57 (DDR_CR57) 32 R/W 0x0000_0000 21.4.58/21-41

0xFC0B_80E8 DDR control register 58 (DDR_CR58) 32 R/W 0x0000_0000 21.4.59/21-41

0xFC0B_80EC DDR control register 59 (DDR_CR59) 32 R/W 0x0000_0000 21.4.60/21-42

0xFC0B_80F0 DDR control register 60 (DDR_CR60) 32 R/W 0x0000_0000 21.4.61/21-42

0xFC0B_80F4 Reserved 32 R/W 0x0000_0000 21.4.62/21-42

0xFC0B_80F8 Reserved 32 R/W 0x0000_0000 21.4.63/21-43

0xFC0B_80FC Reserved 32 R/W 0x0000_0000 21.4.64/21-43

0xFC0B_8180 RCR control register (DDR_RCR) 32 R/W 0x0000_0000 21.4.65/21-43

0xFC0B_81AC DDR I/O pad control register (DDR_PADCR) 32 R/W 0x0000_0000 21.4.66/21-43

Table 21-4. DDRMC Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page
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21.4.1 DDR Control Register 0 (DDR_CR00)

21.4.2 DDR Control Register 1 (DDR_CR01)

Address: 0xFC0B_8000 (DDR_CR00) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 WP
0

0 0 0 0 0 0 0 RP
0

0 0 0 0 0 0 0 ADD
COL

0 0 0 0 0 0 0
AGE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-2. DDR Control Register 0 (DDR_CR00)

Table 21-5. DDR_CR00 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
WP0

Sets the port 0 write command priority.
0 Highest
1 Lowest

23–17 Reserved, must be cleared.

16
RP0

Sets the port 0 read command priority.
0 Highest
1 Lowest

15–9 Reserved, must be cleared.

8
ADDCOL

Enables address collision/data coherency detection as a condition when using the placement logic to fill the 
command queue.
0 Disable
1 Enable

7–1 Reserved, must be cleared.

0
AGE

Enables aging of commands in the command queue when using the placement logic to fill the command queue. 
The total number of cycles required to decrement the priority value on a command by one is the product of the 
values in DDR_CR16[AGECNT] and DDR_CR17[CMDAGE] parameters.
0 Disable
1 Enable

Address: 0xFC0B_8004 (DDR_CR01) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AP

0 0 0 0 0 0 0 WP
1

0 0 0 0 0 0 0 RP
1W AREF

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-3. DDR Control Register 1 (DDR_CR01)
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21.4.3 DDR Control Register 2 (DDR_CR02)

Table 21-6. DDR_CR01 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
AREF

Trigger auto-refresh at boundary specified by AUTO_REFRESH_MODE. This bit is write-only and always reads 
zero. If there are any open banks when this parameter is set, the memory controller automatically closes these 
banks before issuing the auto-refresh command.
0 No action
1 Issue auto-refresh to the DRAM devices.

23–17 Reserved, must be cleared.

16
AP

Auto-precharge enable for DRAM devices. 
0 Disable. Memory banks stay open until another request requires this bank, the maximum open time 

(TRAS_MAX) elapses, or a refresh command closes all banks.
1 Enable. All read and write transactions must be terminated by an auto precharge command. If a transaction 

consists of multiple read or write bursts, only the last command is issued with an auto precharge.
Note: This bit cannot be changed after DDR_CR09[START] is set.

15–9 Reserved, must be cleared.

8
WP1

Sets the port 1 write command priority.
0 Highest
1 Lowest

7–1 Reserved, must be cleared.

0
RP1

Sets the port 1 read command priority.
0 Highest
1 Lowest

Address: 0xFC0B_8008 (DDR_CR02) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 CC
APEN

0 0 0 0 0 0 0 BIG
END

0 0 0 0 0 0 0 BNK
SPT

0 0 0 0 0 0 0 AREF
MODEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-4. DDR Control Register 2 (DDR_CR02)

Table 21-7. DDR_CR02 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
CCAPEN

Concurrent auto-precharge enable. Allow controller to issue commands to other banks while a bank is in auto 
precharge. Some DRAM devices do not allow one bank to auto pre-charge while another bank is reading or 
writing. The JEDEC standard allows concurrent auto pre-charge. Set this parameter for the DRAM device being 
used.
0 Disabled
1 Enabled

23–17 Reserved, must be cleared.
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21.4.4 DDR Control Register 3 (DDR_CR03)

16
BIGEND

Big endian enable. Set byte ordering as little endian or big endian.
0 Little endian
1 Big endian

15–9 Reserved, must be cleared.

8
BNKSPT

Bank split enable for command queue placement logic.
0 Disabled
1 Enabled

7–1 Reserved, must be cleared.

0
AREFMODE

Auto refresh mode. Define auto refresh to occur at the next burst or command boundary.
0 Issue refresh on the next DRAM burst boundary, even if the current command is not complete
1 Issue refresh on the next command boundary. If a refresh is required to memory, the controller delays this 

refresh until the end of the current transaction (if the transaction is fully contained inside a single page), or 
until the current transaction hits the end of the current page.

Address: 0xFC0B_800C (DDR_CR03) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 DQS
BEN

0 0 0 0 0 0 0 DLL
BYP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-5. DDR Control Register 3 (DDR_CR03)

Table 21-8. DDR_CR03 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
DQSBEN

Configures the DQS pin as single-ended or differential.
0 Single-ended
1 Differential

23–17 Reserved, must be cleared.

16
DLLBYP

DLL bypass enable. 
Note: This bit must be set.

15–0 Reserved, must be cleared.

Table 21-7. DDR_CR02 Field Descriptions (continued)

Field Description
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21.4.5 DDR Control Register 4 (DDR_CR04)

21.4.6 DDR Control Register 5 (DDR_CR05)

Address: 0xFC0B_8010 (DDR_CR04) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QK
REF

0 0 0 0 0 0 0 8
BNK

0 0 0 0 0 0 0 DRV
DQSW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-6. DDR Control Register 4 (DDR_CR04)

Table 21-9. DDR_CR04 Field Descriptions

Field Description

31–17 Reserved, must be cleared.

16
QKREF

Enable quick self-refresh. Allows user to interrupt memory initialization to enter self-refresh mode when a power 
loss is detected during the initialization process.
0 Continue memory initialization
1 Interrupt memory initialization and enter self-refresh mode

15–9 Reserved, must be cleared.

8
8BNK

Eight bank mode. Number of banks on the DRAMs.
0 4 banks
1 8 banks

7–1 Reserved, must be cleared.

0
DRVDQ

S

Selects if the DQ/DQS output enables are driven active when controller is idle.
0 Deassert the output enables when idle
1 Drive the output enables active when idle

Address: 0xFC0B_8014 (DDR_CR05) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 INT
WR

0 0 0 0 0 0 0 INT
RD

0 0 0 0 0 0 0 INT
PRE

0 0 0 0 0 0 0 FST
WRW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-7. DDR Control Register 5 (DDR_CR05)

Table 21-10. DDR_CR05 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
INTWR

Allows the controller to interrupt a combined write command with auto precharge with another write command 
to the same bank.
0 Disable
1 Enable

23–17 Reserved, must be cleared.
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21.4.7 DDR Control Register 6 (DDR_CR06)

16
INTRD

Allows the controller to interrupt a combined read command with auto-precharge with another read command to 
the same bank.
0 Disable
1 Enable

15–9 Reserved, must be cleared.

8
INTPRE

Allows the controller to interrupt an auto-precharge command with another command.
0 Disable
1 Enable. The current operation is interrupted. However, the bank is precharged as if the current operation were 

allowed to continue.

7–1 Reserved, must be cleared.

0
FSTWR

Defines when write commands are issued to DRAM devices.
0 The memory controller issues a write command to the DRAM devices when it has received enough data for 

one DRAM burst. Write data can be sent in any cycle relative to the write command. This mode also allows 
for multi-word write command data to arrive in non-sequential cycles.

1 The memory controller issues a write command to the DRAM devices after the first word of the write data is 
received by the memory controller. The first word can be sent at any time relative to the write command. In 
this mode, multi-word write command data must be available to the memory controller in sequential cycles.

Address: 0xFC0B_8018 (DDR_CR06) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0

OOR
ID

0 0 0 0 0 0 0 ODT
EN

0 0 0 0 0 0 0 TAC
EN

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-8. DDR Control Register 6 (DDR_CR06)

Table 21-11. DDR_CR06 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
OORID

Source ID of the command that caused an out-of-range interrupt request. This bit is read only.

23–17 Reserved, must be cleared.

16
ODTEN

Indicates that ODT with CAS latency 3 is supported. This bit must always be set.
0 Reserved
1 ODT with CAS latency 3 is supported but is not DFI compliant. This disables the interrupt bit for 

ODT-with-CAS3 and disables the OVL error.

15–9 Reserved, must be cleared.

Table 21-10. DDR_CR05 Field Descriptions (continued)

Field Description
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21.4.8 DDR Control Register 7 (DDR_CR07)

8
TACEN

Enable extra turn-around clock between back-to-back reads/writes to different chip selects. The additional clock 
may be needed at higher clock frequencies. The turn-off and turn-on time of termination resistors are not 
scalable.
At higher clock frequencies, it is possible that these times may overlap, resulting in two active resistors while the 
DQS line is still active. This could compromise the signal integrity of the DQS signal. The additional clock 
prevents this overlap.
0 No additional clocking required
1 Additional clock added for back-to-back reads or writes that occur to different banks

7–0 Reserved, must be cleared.

Address: 0xFC0B_801C (DDR_CR07) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0

PD
0 0 0 0 0 0 0

ERR
ID

0 0 0 0 0 0 0 PROT
EN

0 0 0 0 0 0 0 PL
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-9. DDR Control Register 7 (DDR_CR07)

Table 21-12. DDR_CR07 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
PD

Power down. Disable clock enable and set DRAMs in the power-down state.
0 Enable full power state
1  The memory controller completes processing of the current burst for the current transaction (if any), issues 

a precharge all command, and disables the clock enable signal to the DRAM devices. Any subsequent 
commands in the command queue are suspended until this bit is cleared.

23–17 Reserved, must be cleared.

16
ERRID

Port command error ID. Source ID of the command that caused the port command error. This bit is read-only.

15–9 Reserved, must be cleared.

8
PROTEN

Enables port address range protection and interrupt generation logic.
0 Disabled
1 Enabled. All incoming addresses are checked against valid address ranges and an out-of-range interrupt 

occurs if the check fails.

7–1 Reserved, must be cleared.

0
PLEN

Placement enable. Enable placement logic to fill the command queue.
0 Disabled. The command queue is a straight FIFO.
1 Enabled. The command queue is filled according to the placement logic factors.

Table 21-11. DDR_CR06 Field Descriptions (continued)

Field Description
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21.4.9 DDR Control Register 8 (DDR_CR08)

21.4.10 DDR Control Register 9 (DDR_CR09)

Address: 0xFC0B_8020 (DDR_CR08) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 RED
UC

0 0 0 0 0 0 0 R2R
TAC

0 0 0 0 0 0 0 PU
REF

0 0 0 0 0 0 0 PRI
ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-10. DDR Control Register 8 (DDR_CR08)

Table 21-13. DDR_CR08 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
REDUC

Controls the width of the memory datapath.
0 Reserved
1 8-bit
Note: The entire user datapath is used regardless of this setting. Only burst length value of 4 is supported.

23–17 Reserved, must be cleared.

16
R2RTAC

Adds an extra turn-around clock for back-to-back reads to different chip selects.
0 Disabled
1 Enabled

15–9 Reserved, must be cleared.

8
PUREF

Allow power-up via self-refresh instead of full memory initialization. This fields allows you to skip full initialization 
when the DRAM devices are in a known self-refresh state.

0 Disabled
1 Enabled
Note: For this silicon revision, clear this bit. This may result in a tXSNR violation. Consult your memory vendor to 

understand the exact implications of this.

7–1 Reserved, must be cleared.

0
PRIEN

Enable priority for command queue placement logic.
0 Disabled
1 Enabled

Address: 0xFC0B_8024 (DDR_CR09) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 STA
RT

0 0 0 0 0 0 0 SR
EF

0 0 0 0 0 0 0 RW
EN

0 0 0 0 0 0 0 REG
DIMMW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-11. DDR Control Register 9 (DDR_CR09)
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21.4.11 DDR Control Register 10 (DDR_CR10)

Table 21-14. DDR_CR09 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
START

Initiate command processing in the controller.
0 The memory controller does not issue any commands to the DRAM devices or respond to any signal activity 

except for reading and writing parameters.
1 After setting this bit, the memory controller responds to inputs from the ASIC. The memory controller begins 

its initialization routine.
Note: You must wait for the initialization complete bit to set in DDR_CR27[INT_STATUS].

23–17 Reserved, must be cleared.

16
SREF

Place DRAMs into self-refresh mode.
0 Disable self-refresh mode.
1 Initiate self-refresh mode of the DRAM devices. The burst of the current transaction (if any) completes, all 

banks are closed, the self-refresh command is issued to the DRAM, and the clock enable signal is negated. 
The system remains in self-refresh mode until this bit is cleared. The DRAM devices return to normal 
operating mode after the self-refresh exit time (TXSR) of the device. The memory controller resumes 
processing of the commands from the interruption point.

15–9 Reserved, must be cleared.

8
RWEN

Enable read/write grouping for command queue placement logic.
0 Disabled
1 Enabled

7–1 Reserved, must be cleared.

0
REGDIMM

Enables registered DIMM operations to control the address and command pipeline of the memory controller.
0 Normal operation
1 Enable registered DIMM operation

Address: 0xFC0B_8028 (DDR_CR10) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 INT
WBR

0 0 0 0 0 0 0 TREF
EN

0 0 0 0 0 0 0
TRAS

0 0 0 0 0 0 0 SWP
ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-12. DDR Control Register 10 (DDR_CR10)

Table 21-15. DDR_CR10 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
INTWBR

Allows the controller to interrupt a write burst to the DRAMs with a read command. Some memory devices do 
not support this functionality.
0 Read commands cannot interrupt write commands
1 Read commands can interrupt write commands

23–17 Reserved, must be cleared.
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21.4.12 DDR Control Register 11 (DDR_CR11)

16
TREFEN

Enables refresh commands. If command refresh mode is configured, then refresh commands are automatically 
issued based on the internal DDR_CR31[TREF] counter and any refresh commands sent through the command 
interface or the register interface.
0 Refresh commands disabled
1 Refresh commands enabled

15–9 Reserved, must be cleared.

8
TRAS

Defines the tRAS lockout setting for the DRAM device. tRAS lockout allows the memory controller to execute auto 
pre-charge commands before the TRAS_MIN parameter expires.
0 tRAS lockout not supported by memory device
1 tRAS lockout supported by memory device

7–1 Reserved, must be cleared.

0
SWPEN

Enables swapping of the active command for a new higher-priority command when using the placement logic.
0 Disabled
1 Enabled

Address: 0xFC0B_80 (DDR_CR11) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
P0

ATT1

0 0 0 0 0 0
P0

ATT0

0 0 0 0 0 0
P0

TYP

0 0 0 0 0 0 0 0

W WR
MD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-13. DDR Control Register 11 (DDR_CR11)

Table 21-16. DDR_CR11 Field Descriptions

Field Description

31–26 Reserved, must be cleared.

25–24
P0ATT1

Allowed transaction types for port 0 address range 1. This field is only used when DDR_CR07[PROTEN] is set 
to verify incoming addresses are of a valid type and range.
00 No access
01 Read only
10 Write only
11 Read and write
Note: This field resets to no access. Therefore, you must initialize this field to access the memory.

23–18 Reserved, must be cleared.

17–16
P0ATT0

Allowed transaction types for port 0 address range 0. This field is only used when DDR_CR07[PROTEN] is set 
to verify incoming addresses are of a valid type and range.
00 No access
01 Read only
10 Write only
11 Read and write
Note: This field resets to no access. Therefore, you must initialize this field to access the memory.

Table 21-15. DDR_CR10 Field Descriptions (continued)

Field Description
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21.4.13 DDR Control Register 12 (DDR_CR12)

15–10 Reserved, must be cleared.

9–8
P0TYP

Clock domain relativity between port 0 and the controller core.
00 Asynchronous
01 2:1 port:core pseudo-synchronous
10 1:2 port:core pseudo-synchronous
11 Synchronous

7–1 Reserved, must be cleared.

0
WRMD

Write mode register data to the DRAMs. This bit is write-only.
0 No write occurs
1 Write the mode parameters (EMRS register) in the DRAM devices. Each subsequent setting of this bit writes 

the EMRS register of the next chip select. This parameter always reads zero.
The mode registers are automatically written at initialization of the memory controller. There is no need to initiate 
a mode register write after setting DDR_CR09[START], unless the values in these registers needs to be 
changed after initialization.
Note: This parameter may not be changed when the memory is in power-down mode (CKE is negated).

Address: 0xFC0B_8030 (DDR_CR12) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 CS
MAP

0 0 0 0 0 0 P1
ATT1

0 0 0 0 0 0 P1
ATT0

0 0 0 0 0 0 P1
TYPW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-14. DDR Control Register 12 (DDR_CR12)

Table 21-17. DDR_CR12 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
CSMAP

Defines if the chip select is enabled.
0 Chip select disabled
1 Chip select enabled

23–18 Reserved, must be cleared.

17–16
P1ATT1

Allowed transaction types for port 1 address range 1. This field is only used when DDR_CR07[PROTEN] is set 
to verify incoming addresses are of a valid type and range.
00 No access
01 Read only
10 Write only
11 Read and write
Note: This field resets to no access. Therefore, you must initialize this field to access the memory.

15–10 Reserved, must be cleared.

Table 21-16. DDR_CR11 Field Descriptions (continued)

Field Description
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21.4.14 DDR Control Register 13 (DDR_CR13)

DDR_CR13[ODTRDCS] must be set.

9–8
P1ATT0

Allowed transaction types for port 1 address range 0. This field is only used when DDR_CR07[PROTEN] is set 
to verify incoming addresses are of a valid type and range.
00 No access
01 Read only
10 Write only
11 Read and write
Note: This field resets to no access. Therefore, you must initialize this field to access the memory.

7–2 Reserved, must be cleared.

1–0
P1TYP

Clock domain relativity between port 1 and the controller core.
00 Asynchronous
01 2:1 port:core pseudo-synchronous
10 1:2 port:core pseudo-synchronous
11 Synchronous

Address: 0xFC0B_8034 (DDR_CR13) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0 ODT

RD
CS

0 0 0 0 0 0
CS

MAX
0 0 0 0 0 0 0 LP

REF
0 0 0 0 0 0 0 CLK

DIS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-15. DDR Control Register 13 (DDR_CR13)

Table 21-18. DDR_CR13 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
ODTRDCS

Determines if the chip select has termination when a read occurs on the chip select.
0 Reserved
1 CS has active ODT termination when CS performs a read
Note: This bit must be set.

23–18 Reserved, must be cleared.

17–16
CSMAX

Maximum number of chip selects supported by the memory controller. This bit is read-only.
00 Zero
01 One
10 Two
11 Reserved
Note: This field may not necessarily indicate how many chip selects are available externally on this device.

15–9 Reserved, must be cleared.

8
LPREF

Disables refreshes while in low power mode.
0 Refreshes occur
1 Refreshes do not occur

Table 21-17. DDR_CR12 Field Descriptions (continued)

Field Description
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21.4.15 DDR Control Register 14 (DDR_CR14)

21.4.16 DDR Control Register 15 (DDR_CR15)

7–1 Reserved, must be cleared.

0
CLKDIS

Enables/disables the memory clocks.
0 Enable memory clocks
1 Disable memory clocks 

Address: 0xFC0B_8038 (DDR_CR14) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0

OOR
TYP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ODT
WR
CS

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-16. DDR Control Register 14 (DDR_CR14)

Table 21-19. DDR_CR14 Field Descriptions

Field Description

31–26 Reserved, must be cleared.

25–24
OORTYP

Type of command that caused an out-of-range interrupt request. This bit is read-only.

23–9 Reserved, must be cleared.

8
ODTWRCS

Determines if the chip select has termination when a write occurs on the chip select.
0 Reserved
1 CS has active ODT termination when the CS performs a write
Note: This bit must be set.

7–0 Reserved, must be cleared.

Address: 0xFC0B_803C (DDR_CR15) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 ADD
PINS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ODT
RES

0 0 0 0 0 0 QFU
LLW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-17. DDR Control Register 15 (DDR_CR15)

Table 21-18. DDR_CR13 Field Descriptions (continued)

Field Description
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21.4.17 DDR Control Register 16 (DDR_CR16)

Table 21-20. DDR_CR15 Field Descriptions

Field Description

31–27 Reserved, must be cleared.

26–24
ADDPINS

Defines the difference between the maximum number of address pins configured (16) and the actual number of 
pins used. The user address is automatically shifted so that the user address space is mapped contiguously into 
the memory map based on the value of this parameter.
For details, refer to Section 21.5.2.1, “DDR SDRAM Address Mapping Options”.

23–10 Reserved, must be cleared.

9–8
ODTRES

On-die termination resistance setting for all DRAM devices.
00 Termination disabled
01 75 Ohm
10 150 Ohm
11 Reserved

7–2 Reserved, must be cleared.

1–0
QFULL

Quantity that determines the command queue is full.

Address: 0xFC0B_8040 (DDR_CR16) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
COLSIZ

0 0 0 0 0
CKEDLY

0 0 0 0 0
CASLAT

0 0 0 0 0
AGECNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-18. DDR Control Register 16 (DDR_CR16)

Table 21-21. DDR_CR16 Field Descriptions

Field Description

31–27 Reserved, must be cleared.

26–24
COLSIZ

Difference between the 12 column pins available and the number being used. The user address is automatically 
shifted so that the user address space is mapped contiguously into the memory map based on the value of this 
parameter. For details, refer to Section 21.5.2.1, “DDR SDRAM Address Mapping Options”.

23–19 Reserved, must be cleared.

18–16
CKEDLY

Additional cycles to delay CKE for status reporting.

15–11 Reserved, must be cleared.

10–8
CASLAT

Encoded column address strobe (CAS) latency sent to DRAMs during initialization. The value programmed into 
this parameter is dependent on the memory device, since the same CASLAT value may have different 
meanings to different memories. This is programmed into the DRAM devices at initialization. The CAS 
encoding is specified in the DRAM data sheet, and should correspond to the DDR_CR20[LATLIN] parameter.
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21.4.18 DDR Control Register 17 (DDR_CR17)

7–3 Reserved, must be cleared.

2–0
AGECNT

Initial value of master aging-rate counter for command aging. When using the placement logic to fill the 
command queue, the command aging counters are decremented one each time the master aging-rate counter 
counts down AGECNT cycles.

Address: 0xFC0B_8044 (DDR_CR17) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 DFICTL
DLY

0 0 0 0 0
CKEPW

0 0 0 0 0 PCERR 0 0 0 0 0 CMD
AGEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-19. DDR Control Register 17 (DDR_CR17)

Table 21-22. DDR_CR17 Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
DFICTLDLY

Contains the DFI tCTRL_DELAY timing parameter. This field should be programmed with the number of cycles that 
the PHY requires to send a power-down or self-refresh command to the DRAM devices.

23–19 Reserved, must be cleared.

18–16
CKEPW

Minimum CKE pulse width in cycles.

15–11 Reserved, must be cleared.

10–8
PCERR

Type of error and access type that caused the port command error. This bit is read-only.
Bit 2:
0 No address range error
1 The input address was outside all valid address ranges. Valid addresses are within PnSTADm and 

PnENDADm.
Bit 1:
0 No transaction type error
1 The input address is valid, but the transaction type requested (read, write) was not valid for the address range. 

Valid types are defined in the PnATTm fields.
Bit 0: Indicates the transaction type that generated the error
0 Read
1 Write

7–3 Reserved, must be cleared.

2–0
CMDAGE

Initial value of individual command aging counters associated with each command in the command queue. 
When using the placement logic to fill the command queue, the command aging counters decrement one each 
time the master aging-rate counter counts down DDR_CR16[AGECNT] cycles.

Table 21-21. DDR_CR16 Field Descriptions (continued)

Field Description
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21.4.19 DDR Control Register 18 (DDR_CR18)

21.4.20 DDR Control Register 19 (DDR_CR19)

Address: 0xFC0B_8048 (DDR_CR18) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
TRRD

0 0 0 0 0 0 0 0 0 0 0 0 DFICLK
EN

0 0 0 0 0 DFICLK
DISW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-20. DDR Control Register 18 (DDR_CR18)

Table 21-23. DDR_CR18 Field Descriptions

Field Description

31–27 Reserved, must be cleared.

26–24
TRRD

Defines the DRAM activate to activate delay for different banks (TRRD) in cycles.

23–12 Reserved, must be cleared.

11–8
DFICLKEN

Contains the DFI tDRAM_CLK_ENABLE timing parameter.
Note: This parameter is currently unused in the memory controller.

7–3 Reserved, must be cleared.

2–0
DFICLKDIS

Contains the DFI tDRAM_CLK_DISABLE timing parameter. Program this field with the number of cycles that the PHY 
requires to disable the clock after the dfi_dram_clk_disable signal is asserted.
The recommended value for this field is 0x2.

Address: 0xFC0B_804C (DDR_CR19) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
APREBIT

0 0 0 0
WRLAT

0 0 0 0
TWTR

0 0 0 0 0
TRTP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-21. DDR Control Register 19 (DDR_CR19)

Table 21-24. DDR_CR19 Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
APREBIT

Location of the auto precharge bit in the DRAM address in decimal encoding.

23–20 Reserved, must be cleared.

19–16
WRLAT

Defines the DRAM write latency (WRLAT) when the write command is issued to the time the write data is 
presented to the DRAM devices in cycles.

15–12 Reserved, must be cleared.
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21.4.21 DDR Control Register 20 (DDR_CR20)

11–8
TWTR

Sets the number of cycles needed to switch from a write to a read operation, as dictated by the DDR SDRAM 
specification.

7–3 Reserved, must be cleared.

2–0
TRTP

Defines the DRAM read to precharge time (TRTP) in cycles.

Address: 0xFC0B_8050 (DDR_CR20) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 MAXCOL 0 0 0 0
AREFINIT

0 0 0 0
LATGATE

0 0 0 0
LATLIN

W

Reset 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-22. DDR Control Register 20 (DDR_CR20)

Table 21-25. DDR_CR20 Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
MAXCOL

Maximum width of the column address in the DRAM devices. This field is read-only. This value can be used to 
set the DDR_CR16[COLSIZ] field.

COLSIZ = MAXCOL – number of column bits in the memory device
0x0 Zero
...
0xC 12
Else Reserved

23–20 Reserved, must be cleared.

19–16
AREFINIT

Number of auto-refresh commands to execute during DRAM initialization.

15–12 Reserved, must be cleared.

11–8
LATGATE

Adjusts data capture gate open time by half cycles. This parameter is programmed differently than LATLIN field 
when there are fixed offsets in the flight path between the memories and the memory controller for clock 
gating. When this field is larger than LATLIN, the data capture window becomes shorter. A value smaller than 
LATLIN may have no effect on the data capture window, depending on the fixed offsets in the ASIC and the 
board.

Table 21-24. DDR_CR19 Field Descriptions (continued)

Field Description
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21.4.22 DDR Control Register 21 (DDR_CR21)

7–3 Reserved, must be cleared.

2–0
LATLIN

Sets the CAS latency linear value in half cycle increments. This sets an internal adjustment for the delay from 
when the read command is sent from the memory controller to when data is received back. The window of time 
in which the data is captured is a fixed length. This field adjusts the start of this data capture window.
Not all linear values are supported for the memory devices being used. Refer to the device’s data sheet for valid 
values.
0000 Reserved
0001 Reserved
0010 1 cycle
0011 1.5 cycles
...
1111 7.5 cycles

Address: 0xFC0B_8054 (DDR_CR21) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0

PHY
WRLAT

0 0 0 0 PHY
RDLAT

0 0 0 0
CTRLUPD

MIN
0 0 0

TDAL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Figure 21-23. DDR Control Register 21 (DDR_CR21)

Table 21-26. DDR_CR21 Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
PHYWRLAT

Indicates the calculated DFI tPHY_WRLAT timing parameter. This bit is read only.
PHYWRLAT = DDR_CR22[WRLATBASE] + DDR_CR57[WRLATADJ] + DDR_CR09[REGDIMM] – 
WRLAT_WIDTH’h3

23–20 Reserved, must be cleared.

19–16
PHYRDLAT

Contains the tPHY_RDLAT timing parameter.

15–12 Reserved, must be cleared.

11–8
CTRLUPDMIN

Contains the DFI tCTRLUPD_MIN timing parameter. This bit is read only.

Table 21-25. DDR_CR20 Field Descriptions (continued)

Field Description
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21.4.23 DDR Control Register 22 (DDR_CR22)

7–5 Reserved, must be cleared.

4–0
TDAL

Defines the auto-precharge write recovery time when auto-precharge is enabled (DDR_CR01[AP] is set), in 
cycles. This is defined internally as tRP (pre-charge time) + auto-precharge write recovery time.
Not all memories use this parameter. If tDAL is defined in the memory specification, then program this 
parameter to the specified value. If the memory does not specify a tDAL time, then program this parameter to 
tWR + tRP.
Note: Do not program this parameter with a value of 0x0. Else, the memory controller does not function 

properly when auto-precharge is enabled.

Address: 0xFC0B_8058 (DDR_CR22) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
TRP

0 0 0 0 RDDATA
BASE

0 0 0 0 RDDATAEN 0 0 0 0 PHYWRLAT
BASEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-24. DDR Control Register 22 (DDR_CR22)

Table 21-27. DDR_CR22 Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
TRP

Defines the DRAM precharge command time (TRP) in cycles.

23–20 Reserved, must be cleared.

19–16
RDDATABAS

E

Sets the DFI base value for the tRDDATA_EN timing parameter. Set this field to 2.

15–12 Reserved, must be cleared.

11–8
RDDATAEN

Contains the calculated DFI tRDDATA_EN timing parameter. These bits are read-only.
RDDATAEN = RDDATABASE + DDR_CR57[RDLATADJ] + DDR_CR09[REGDIMM] – RDLAT_WIDTH’h3

7–4 Reserved, must be cleared.

3–0
WRLATBASE

Sets the DFI base value for the tPHY_WRLAT timing parameter. Set this field to 2.

Table 21-26. DDR_CR21 Field Descriptions (continued)

Field Description
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21.4.24 DDR Control Register 23 (DDR_CR23)

Address: 0xFC0B_805C (DDR_CR23) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 MAXROW 0 0 0
LPCTRL

0 0 0
LPAUTO

0 0 0
TWR

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-25. DDR Control Register 23 (DDR_CR23)

Table 21-28. DDR_CR23 Field Descriptions

Field Description

31–29 Reserved, must be cleared.

28–24
MAXRO

W

Maximum width of the memory address bus. This byte is read-only and always reads 0x10. This value can be 
used to set the DDR_CR15[ADDPINS] field:

ADDPINS = MAXROW – number of row bits in the memory device.
Note: The memory controller supports a 16-bit address bus. However, only 15 address lines are available 

externally on this device.

23–21 Reserved, must be cleared.

20–16
LPCTRL

Controls entry into the low power modes.

0 Disable
1 Enable

15–13 Reserved, must be cleared.

12–8
LPAUTO

Enables automatic entry into the low power mode on idle.

0 Automatic entry into this mode is disabled. You may enter the modes manually by setting the associated 
LPCTRL bit.

1 The controller/memory automatically enters this mode when the proper counters expire, and only if the 
associated LPCTRL bit is set.

LPCTRL bit Description

4 Memory power-down mode (mode 1)

3 Memory power-down with memory clock gating mode (mode 2)

2 Memory self-refresh mode (mode 3)

1 Memory self-refresh with memory clock gating mode (mode 4)

0 Memory self-refresh with memory and controller clock gating mode (mode 5)

LPAUTO bit Description

4 Memory power-down mode (mode 1)

3 Memory power-down with memory clock gating mode (mode 2)

2 Memory self-refresh mode (mode 3)

1 Memory self-refresh with memory clock gating mode (mode 4)

0 Memory self-refresh with memory and controller clock gating mode (mode 5)
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21.4.25 DDR Control Register 24 (DDR_CR24)

7–5 Reserved, must be cleared.

4–0
TWR

Defines the DRAM write recovery time (TWR) parameter in cycles.

Address: 0xFC0B_8060 (DDR_CR24) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0
TMRD

0 0 0
TFAW

0 0 0
PUPCS

0 0 0
PDNCS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-26. DDR Control Register 24 (DDR_CR24)

Table 21-29. DDR_CR24 Field Descriptions

Field Description

31–29 Reserved, must be cleared.

28–24
TMRD

DRAM TMRD parameter in cycles.

23–21 Reserved, must be cleared.

20–16
TFAW

Defines the DRAM tFAW parameter in cycles.

15–13 Reserved, must be cleared.

12–8
PUPCS

Off-chip driver (OCD) pull-up adjustment setting for DRAMs for the chip select. The memory controller issues 
OCD adjustment commands during power-up.
Bit 4:
0 Decrement OCD settings
1 Increment OCD settings
Bits 3–0:
Number of OCD adjustment commands to issue

7–5 Reserved, must be cleared.

4–0
PDNCS

Off-chip driver (OCD) pull-down adjustment setting for DRAMs for the chip select. The memory controller issues 
OCD adjustment commands during power-up.
Bit 4:
0 Decrement OCD settings
1 Increment OCD settings
Bits 3–0:
Number of OCD adjustment commands to issue

Table 21-28. DDR_CR23 Field Descriptions (continued)

Field Description
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21.4.26 DDR Control Register 25 (DDR_CR25)

21.4.27 DDR Control Register 26 (DDR_CR26)

Address: 0xFC0B_8064 (DDR_CR25) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TRASMIN

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRC

W INTACK

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-27. DDR Control Register 25 (DDR_CR25)

Table 21-30. DDR_CR25 Field Descriptions

Field Description

31–24
TRASMIN

Defines the DRAM minimum row active time (TRAS_MIN) in cycles.

23–16
INTACK

Clear mask of the INTSTATUS parameter. This field is write-only.
0 No effect
1 Clear the corresponding bit in INTSTATUS

15–5 Reserved, must be cleared.

4–0
TRC

Defines the DRAM period between active commands for the same bank (TRC) in cycles.

Address: 0xFC0B_8068 (DDR_CR26) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
INTMASK TRFC TRCD_INT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-28. DDR Control Register 26 (DDR_CR26)

Table 21-31. DDR_CR26 Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24–16
INTMASK

Mask for controller interrupt signals from the INTSTATUS parameter.

15–8
TRFC

Defines the DRAM refresh command time (TRFC) in cycles.

7–0
TRCD_INT

Defines the DRAM RAS to CAS delay in cycles.
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21.4.28 DDR Control Register 27 (DDR_CR27)

21.4.29 DDR Control Register 28 (DDR_CR28)

Address: 0xFC0B_806C (DDR_CR27) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 OORLEN 0 0 0 0 0 0 0 INTSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-29. DDR Control Register 27 (DDR_CR27)

Table 21-32. DDR_CR27 Field Descriptions

Field Description

31–26 Reserved, must be cleared.

25–16
OORLEN

Length of command that caused an out-of-range interrupt request. This field is read-only.

15–9 Reserved, must be cleared.

8–0
INTSTATU

S

Status of interrupt features in the controller. This field is read-only.

Address: 0xFC0B_8070 (DDR_CR28) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
P0WRCNT

0 0 0 0 0
P0RDCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-30. DDR Control Register 28 (DDR_CR28)

INTSTATUS bit Description

8 Logical OR of INTSTATUS[7:0]

7 Reserved

6 Reserved

5 Reserved

4 Address cross page boundary detected

3 DRAM initialization complete

2 Error was found with command channel in a port

1 Multiple accesses outside the defined physical memory space detected

0 A single access outside the defined physical memory space detected
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21.4.30 DDR Control Register 29 (DDR_CR29)

Table 21-33. DDR_CR28 Field Descriptions

Field Description

31–27 Reserved, must be cleared.

26–16
P0WRCNT

Number of bytes for INCR write command on port 0. The logic subdivides an INCR request into memory 
controller core commands of the size of this parameter. The logic continues sending bursts of this size as the 
previous request is transmitted by the crossbar port. If the INCR command is terminated on an unnatural 
boundary, the logic discards the unnecessary words.
The value defined in this parameter must be a multiple of four. Clearing this parameter causes the port to issue 
commands of zero length to the memory controller core, which the core interprets as the pre-configured value 
of 128 bytes.

15–11 Reserved, must be cleared.

10–0
P0RDCNT

Number of bytes for INCR read command on port 0. The logic subdivides an INCR request into memory 
controller core commands of the size of this parameter. The logic continues requesting bursts of this size as soon 
as the previous request is received by the crossbar port. If the INCR command is terminated on an unnatural 
boundary, the logic discards the unnecessary words.
The value defined in this parameter must be a multiple of four. Clearing this parameter causes the port to issue 
commands of zero length to the memory controller core, which the core interprets as the pre-configured value 
of 128 bytes.

Address: 0xFC0B_8074 (DDR_CR29) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
P1WRCNT

0 0 0 0 0
P1RDCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-31. DDR Control Register 29 (DDR_CR29)

Table 21-34. DDR_CR29 Field Descriptions

Field Description

31–27 Reserved, must be cleared.

26–16
P1WRCNT

Number of bytes for INCR write command on port 1. The logic subdivides an INCR request into memory 
controller core commands of the size of this parameter. The logic continues sending bursts of this size as the 
previous request is transmitted by the crossbar port. If the INCR command is terminated on an unnatural 
boundary, the logic discards the unnecessary words.
The value defined in this parameter must be a multiple of four. Clearing this parameter causes the port to issue 
commands of zero length to the memory controller core, which the core interprets as the pre-configured value 
of 128 bytes.

15–11 Reserved, must be cleared.

10–0
P1RDCNT

Number of bytes for INCR read command on port 1. The logic subdivides an INCR request into memory 
controller core commands of the size of this parameter. The logic continues requesting bursts of this size as soon 
as the previous request is received by the crossbar port. If the INCR command is terminated on an unnatural 
boundary, the logic discards the unnecessary words.
The value defined in this parameter must be a multiple of four. Clearing this parameter causes the port to issue 
commands of zero length to the Databahn MC core, which the core interprets as the pre-configured value of 128 
bytes.
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21.4.31 DDR Control Register 30 (DDR_CR30)

21.4.32 DDR Control Register 31 (DDR_CR31)

Address: 0xFC0B_8078 (DDR_CR30) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 PHYUPDRESP 0 0 CTRLUPDMAX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-32. DDR Control Register 30 (DDR_CR30)

Table 21-35. DDR_CR30 Field Descriptions

Field Description

31–30 Reserved, must be cleared.

29–16
PHYUPDRESP

Contains the DFI tPHYUPD_RESP timing parameter. This field is read-only.

15–14 Reserved, must be cleared.

13–0
CTRLUPDMAX

Contains the DFI tCTRLUPD_MAX timing parameter. This field is read-only.

Address: 0xFC0B_807C (DDR_CR31) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0
TREF

0 0 PHYUPD_TYPE0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-33. DDR Control Register 31 (DDR_CR31)

Table 21-36. DDR_CR31 Field Descriptions

Field Description

31–30 Reserved, must be cleared.

29–16
TREF

Defines the DRAM cycles between refresh commands (TREF) in cycles.

15–14 Reserved, must be cleared.

13–0
PHYUPD_TYPE0

Contains the DFI tPHYUPD_TYPE0 timing parameter. This field is read-only.
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21.4.33 DDR Control Register 32 (DDR_CR32)

21.4.34 DDR Control Register 33 (DDR_CR33)

Address: 0xFC0B_8080 (DDR_CR32) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
P0ENDAD0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-34. DDR Control Register 32 (DDR_CR32)

Table 21-37. DDR_CR32 Field Descriptions

Field Description

31 Reserved, must be cleared.

30–16
P0ENDAD0

End address of port 0 address range 0. This is only used when the DDR_CR07[PROTEN] is set to verify that 
incoming addresses are of a valid type and range. The granularity of this parameter is in kilobytes.
For example, if P0STAD1 = 0x00_0000, P0ENDAD1 = 0x00_0002, and P0ATT1 = 0x1, then port 0 has read-only 
access to the first 2KB of the memory.

15–0 Reserved, must be cleared.

Address: 0xFC0B_8084 (DDR_CR33) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
P0STAD0

0
P0ENDAD1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-35. DDR Control Register 33 (DDR_CR33)

Table 21-38. DDR_CR33 Field Descriptions

Field Description

31 Reserved, must be cleared.

30–16
P0STAD0

Start address of port 0 address range 0. This is only used when the DDR_CR07[PROTEN] is set to verify that 
incoming addresses are of a valid type and range. The granularity of this parameter is in kilobytes.
For example, if P0STAD1 = 0x00_0000, P0ENDAD1 = 0x00_0002, and P0ATT1 = 0x1, then port 0 has read-only 
access to the first 2KB of the memory.

15 Reserved, must be cleared.

14–0
P0ENDAD1

End address of port 0 address range 1. This is only used when the DDR_CR07[PROTEN] is set to verify that 
incoming addresses are of a valid type and range. The granularity of this parameter is in kilobytes.
For example, if P0STAD1 = 0x00_0000, P0ENDAD1 = 0x00_0002, and P0ATT1 = 0x1, then port 0 has read-only 
access to the first 2KB of the memory.
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21.4.35 DDR Control Register 34 (DDR_CR34)

21.4.36 DDR Control Register 35 (DDR_CR35)

Address: 0xFC0B_8088 (DDR_CR34) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
P1ENDAD0

0
P0STAD1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-36. DDR Control Register 34 (DDR_CR34)

Table 21-39. DDR_CR34 Field Descriptions

Field Description

31 Reserved, must be cleared.

30–16
P1ENDAD0

End address of port 1 address range 0. This is only used when the DDR_CR07[PROTEN] is set to verify that 
incoming addresses are of a valid type and range. The granularity of this parameter is in kilobytes.
For example, if P0STAD1 = 0x00_0000, P0ENDAD1 = 0x00_0002, and P0ATT1 = 0x1, then port 0 has read-only 
access to the first 2KB of the memory.

15 Reserved, must be cleared.

14–0
P0STAD1

Start address of port 0 address range 1. This is only used when the DDR_CR07[PROTEN] is set to verify that 
incoming addresses are of a valid type and range. The granularity of this parameter is in kilobytes.
For example, if P0STAD1 = 0x00_0000, P0ENDAD1 = 0x00_0002, and P0ATT1 = 0x1, then port 0 has read-only 
access to the first 2KB of the memory.

Address: 0xFC0B_808C (DDR_CR35) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
P1STAD0

0
P1ENDAD1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-37. DDR Control Register 35 (DDR_CR35)

Table 21-40. DDR_CR35 Field Descriptions

Field Description

31 Reserved, must be cleared.h

30–16
P1STAD0

Start address of port 1 address range 0. This is only used when the DDR_CR07[PROTEN] is set to verify that 
incoming addresses are of a valid type and range. The granularity of this parameter is in kilobytes.
For example, if P0STAD1 = 0x00_0000, P0ENDAD1 = 0x00_0002, and P0ATT1 = 0x1, then port 0 has read-only 
access to the first 2KB of the memory.

15 Reserved, must be cleared.

14–0
P1ENDAD1

End address of port 1 address range 1. This is only used when the DDR_CR07[PROTEN] is set to verify that 
incoming addresses are of a valid type and range. The granularity of this parameter is in kilobytes.
For example, if P0STAD1 = 0x00_0000, P0ENDAD1 = 0x00_0002, and P0ATT1 = 0x1, then port 0 has read-only 
access to the first 2KB of the memory.



DDR SDRAM Memory Controller (DDRMC)

NXP Semiconductors 21-35

21.4.37 DDR Control Register 36 (DDR_CR36)

21.4.38 DDR Control Register 37 (DDR_CR37)

21.4.39 DDR Control Register 38 (DDR_CR38)

Address: 0xFC0B_8090 (DDR_CR36) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P1STAD1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-38. DDR Control Register 36 (DDR_CR36)

Table 21-41. DDR_CR36 Field Descriptions

Field Description

31–15 Reserved, must be cleared.

14–0
P1STAD1

Start address of port 1 address range 1. This is only used when the DDR_CR07[PROTEN] is set to verify that 
incoming addresses are of a valid type and range. The granularity of this parameter is in kilobytes.
For example, if P0STAD1 = 0x00_0000, P0ENDAD1 = 0x00_0002, and P0ATT1 = 0x1, then port 0 has read-only 
access to the first 2KB of the memory.

Address: 0xFC0B_8094 (DDR_CR37) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EMRS2D

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-39. DDR Control Register 37 (DDR_CR37)

Table 21-42. DDR_CR37 Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
EMRS2D

Data to program into memory mode register 2 for the chip select. The contents of this parameter are 
programmed into the DRAM at initialization or when the DDR_CR11[WRMD] is set. Consult the DRAM 
specification for the correct settings for this field.

Address: 0xFC0B_8098 (DDR_CR38) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
LPEXTCNT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-40. DDR Control Register 38 (DDR_CR38)



DDR SDRAM Memory Controller (DDRMC)

21-36 NXP Semiconductors

21.4.40 DDR Control Register 39 (DDR_CR39)

21.4.41 DDR Control Register 40 (DDR_CR40)

Table 21-43. DDR_CR38 Field Descriptions

Field Description

31–16
LPEXTCNT

Counts the number of idle cycles before memory self-refresh in memory clock gating low power mode.

15–0 Reserved, must be cleared.

Address: 0xFC0B_809C (DDR_CR39) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
LPPDCNT LPINTCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-41. DDR Control Register 39 (DDR_CR39)

Table 21-44. DDR_CR39 Field Descriptions

Field Description

31–16
LPPDCNT

Counts the number of idle cycles before memory power-down or power-down in memory clock gating low power 
mode.

15–0
LPINTCNT

Counts the number of idle cycles before memory self-refresh in memory and controller clock gating low power 
mode.

Address: 0xFC0B_80A0 (DDR_CR40) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
LPSREFCNT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-42. DDR Control Register 40 (DDR_CR40)

Table 21-45. DDR_CR40 Field Descriptions

Field Description

31–16
LPSREFCNT

Counts the number of cycles to the next memory self-refresh low power mode.

15–0 Reserved, must be cleared.
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21.4.42 DDR Control Register 41 (DDR_CR41)

21.4.43 DDR Control Register 42 (DDR_CR42)

21.4.44 DDR Control Register 43 (DDR_CR43)

Address: 0xFC0B_80A4 (DDR_CR41) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TDLL TCPD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-43. DDR Control Register 41 (DDR_CR41)

Table 21-46. DDR_CR41 Field Descriptions

Field Description

31–16
TDLL

DLL lock time in cycles.
Note: This field’s value is ascertained from the memory data sheet.

15–0
TCPD

Defines the DRAM TCPD (clock enable to precharge delay time) parameter in cycles.

Address: 0xFC0B_80A8 (DDR_CR42) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TRASMAX TPDEX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-44. DDR Control Register 42 (DDR_CR42)

Table 21-47. DDR_CR42 Field Descriptions

Field Description

31–16
TRASMAX

Defines the DRAM maximum row active time (TRAS_MAX) in cycles.

15–0
TPDEX

Defines the DRAM power-down exit command period in cycles.

Address: 0xFC0B_80AC (DDR_CR43) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TXSR TXSNR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-45. DDR Control Register 43 (DDR_CR43)
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21.4.45 DDR Control Register 44 (DDR_CR44)

21.4.46 DDR Control Register 45 (DDR_CR45)

21.4.47 DDR Control Register 46 (DDR_CR46)

This register location is reserved.

Table 21-48. DDR_CR43 Field Descriptions

Field Description

31–16
TXSR

Defines the DRAM self-refresh exit time (TXSR) in cycles.

15–0
TXSNR

Defines the DRAM TXSNR parameter in cycles.

Address: 0xFC0B_80B0 (DDR_CR44) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VERSION

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 21-46. DDR Control Register 44 (DDR_CR44)

Table 21-49. DDR_CR44 Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
VERSION

Controller version number. This field is read only and always reads 0x2040.

Address: 0xFC0B_80B4 (DDR_CR45) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
TINIT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-47. DDR Control Register 45 (DDR_CR45)

Table 21-50. DDR_CR45 Field Descriptions

Field Description

31–24 Reserved, must be cleared.

23–0
TINIT

Defines the DRAM initialization time in cycles.
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21.4.48 DDR Control Register 47 (DDR_CR47)

This register location is reserved.

21.4.49 DDR Control Register 48 (DDR_CR48)

This register location is reserved.

21.4.50 DDR Control Register 49 (DDR_CR49)

This register location is reserved.

21.4.51 DDR Control Register 50 (DDR_CR50)

This register location is reserved.

21.4.52 DDR Control Register 51 (DDR_CR51)

This register location is reserved.

21.4.53 DDR Control Register 52 (DDR_CR52)

This register location is reserved.

21.4.54 DDR Control Register 53 (DDR_CR53)

21.4.55 DDR Control Register 54 (DDR_CR54)

This register location is reserved.

Address: 0xFC0B_80D4 (DDR_CR53) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PCERRAD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-48. DDR Control Register 53 (DDR_CR53)

Table 21-51. DDR_CR53 Field Descriptions

Field Description

31–0
PCERRAD

Address of the command that caused a port command error condition. This field is read-only.
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21.4.56 DDR Control Register 55 (DDR_CR55)

21.4.57 DDR Control Register 56 (DDR_CR56)

Address: 0xFC0B_80DC (DDR_CR55) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OORAD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-49. DDR Control Register 55 (DDR_CR55)

Table 21-52. DDR_CR55 Field Descriptions

Field Description

31–0
OORAD

Address of the command that caused an out-of-range interrupt. This field is read-only.
Note: See DDR_CR56[OOR32] for bit 32 of this address.

Address: 0xFC0B_80E0 (DDR_CR56) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 DRAM

CLASS
0 0 0 0 0 W2R

SAME
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OOR
AD32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-50. DDR Control Register 56 (DDR_CR56)

Table 21-53. DDR_CR56 Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
DRAMCLASS

Defines the mode of operation of the controller.
0000 Reserved
0001 Reserved
0100 DDR2
Else Reserved

23–19 Reserved, must be cleared.

18–16
W2RSAME

Additional clocks of delay to insert between writes and reads to the same chip select.

15–1 Reserved, must be cleared.

0
OORAD32

Bit 32 of the address of command that caused an out-of-range interrupt. This bit is read-only.
Note: See DDR_CR56[OORAD] for bits 31–0 of this address.
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21.4.58 DDR Control Register 57 (DDR_CR57)

21.4.59 DDR Control Register 58 (DDR_CR58)

Address: 0xFC0B_80E4 (DDR_CR57) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TMOD

0 0 0 0 0 0 0 0 0 0 0 0 WRLAT
ADJ

0 0 0 0 RDLAT
ADJW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-51. DDR Control Register 57 (DDR_CR57)

Table 21-54. DDR_CR57 Field Descriptions

Field Description

31–24
TMOD

Defines the number of cycles of wait time between mode commands. For write leveling, this is defined as the 
number of cycles of wait time after a MRS command to the ODT enable.

23–12 Reserved, must be cleared.

11–8
WRLATADJ

Adjusts the relative timing between DFI write commands and the dfi_wrdata_en signal to conform to PHY timing 
requirements. When this field is cleared, dfi_wrdata_en asserts on the same cycle as the dfi_address.
Set WRLATADJ = DDR_CR19[WRLAT].

7–4 Reserved, must be cleared.

3–0
RDLATADJ

Adjusts the relative timing between DFI read commands and the dfi_rddata_en signal to conform to PHY timing 
requirements. When this field is cleared, dfi_rddata_en asserts one cycle after the dfi_address.
Set RDLATADJ = DDR_CR16[CASLAT].

Address: 0xFC0B_80E8 (DDR_CR58) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EMRS1D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-52. DDR Control Register 58 (DDR_CR58)

Table 21-55. DDR_CR58 Field Descriptions

Field Description

31–16
EMRS1D

Data to program into memory mode register 1 for the chip select. The contents of this parameter are 
programmed into the DRAM at initialization or if DDR_CR11[WRMD] is set. Consult the DRAM specification for 
the correct settings for this parameter.
Note: The memory controller does not support additive latency. Therefore, the additive latency bits must be 

cleared. For DDR2 memories, these are bits 5:3 of this field or A[5:3].

Note: The same values must be programmed into EMRS1D[6,2] (A6, A2) and ODTRES.

15–0 Reserved, must be cleared.
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21.4.60 DDR Control Register 59 (DDR_CR59)

21.4.61 DDR Control Register 60 (DDR_CR60)

21.4.62 DDR Control Register 61 (DDR_CR61)

This register location is reserved.

Address: 0xFC0B_80EC (DDR_CR59) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EMRS3D EMRS1D_B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-53. DDR Control Register 59 (DDR_CR59)

Table 21-56. DDR_CR59 Field Descriptions

Field Description

31–16
EMRS3D

Data to program into memory mode register 3 for the chip select. The contents of this parameter are 
programmed into the DRAM at initialization or when the DDR_CR11[WRMD] is set. Consult the DRAM 
specification for the correct settings for this field.

15–0
EMRS1D_B

Note: This value must match DDR_CR58[EMRS1D].

Address: 0xFC0B_80F0 (DDR_CR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MRSD EMRS3D_B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-54. DDR Control Register 60 (DDR_CR60)

Table 21-57. DDR_CR60 Field Descriptions

Field Description

31–16
MRSD

MRS data to program into memory mode register 0 for the chip select. The memory controller ignores the 
programmed value of the DLL reset bit in this field. An internal state machine controls this bit and only sets it 
during initialization.
Note: The memory controller does not support interleaved bursts or burst lengths other than 4. Therefore, you 

must set MRSD[3:0] to 0010 (A3 = 0 and A[2:0] = 010).
The contents of this field, except the DLL reset bit, is programmed into the DRAM at initialization or if 
DDR_CR11[WRMD] is set. Consult the DRAM specification for the correct settings for this field.

15–0
EMRS3D_

B

Note: This value must match DDR_CR59[EMRS3D].
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21.4.63 DDR Control Register 62 (DDR_CR62)

This register location is reserved.

21.4.64 DDR Control Register 63 (DDR_CR63)

This register location is reserved.

21.4.65 RCR Control Register (DDR_RCR)

The DDR_RCR register controls the operation of the read clock recovery module.

21.4.66 DDR I/O Pad Control Register (DDR_PADCR)

This register stores the various control bits for the DQS pad and the pad control logic. The 
OFFSET_VALUE is set differently for each type of supported SDRAM.

Address: 0xFC0B_8180 (DDR_RCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W RST

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-55. RCR Control Register (DDR_RCR)

Table 21-58. DDR_RCR Field Descriptions

Field Description

31 Reserved, should be cleared.

30
RST

Read clock recovery module reset. Used to force RCR software reset in addition to system reset.
0 No software reset.
1 Force software reset

Note: This bit is write-only; always return 0 on a read.

29–0 Reserved, should be cleared.

Offset 0xFC0B_81AC (DDR_PADCR) Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 PAD_ODT
_CS

0 0 0 0 0 0 OFFSET_
VALUEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 1 0 0 0 0 0 0 0 SPARE_DLY
_CTRLW

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure 21-56. I/O Pad Control Register (DDR_PADCR)
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21.5 Functional Description

21.5.1 High-Level Memory Controller Blocks

The DDR2 memory controller can be broken down into two main functional sub-blocks as described 
below.

21.5.1.1 DDR2 Memory Controller Core

The controller core provides two crossbar switch ports to improve system performance by enabling 
multiple access requests to be presented to the controller at the same time. This allows the controller to 
pipeline many of the operations (for example, bank activate and precharge), and to reduce the average 
system access latency and improve utilization of the external memory. The transaction order can be 
rearranged to maximize the number of in-page accesses.

The controller also provides a programmable register interface to control memory device parameters and 
protocols including auto pre-charge. 

Table 21-59. DDR_PADCR Field Descriptions

Field Description

31–26 Reserved, must be cleared.

25–24
PAD_ODT_CS

On-die termination of the pads when the read command is issued to the chip-select.
00 ODT disabled
01 75 
10 150 
11 50 

23–18 Reserved, must be cleared.

17–16
OFFSET_VALUE

Adjusts the voltage value of the hysteresis differential amplifier in the DQS pad.
00 400 mV (DDR2)
01 500 mV (DDR2)
10 600 mV (DDR2)
11 700 mV (DDR2)

15–10 Reserved, must be cleared.

9 Reserved, must be set.

8–2 Reserved, must be cleared.

1–0
SPARE_DLY_

CTRL

Sets the delay chains in the spare logic. This field is used to control the delay chain #0.
00  No buffer, only mux delay
01  4 buffers
10  7 buffers
11  10 buffers
Note: Read access can fail if SPARE_DLY_CTRL=00. Use SPARE_DLY_CTRL=01 instead. 
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21.5.1.2 DFI-Compliant PHY

The DDR2 memory controller interfaces to the external SDRAM bus via a PHY. This PHY is compatible 
with the DDR PHY interface (DFI) specification. This block transfers control information and read and 
write data to and from the DRAM devices. The PHY contains three majors sub-blocks:

• Logic to convey the control and address signals

• Logic to buffer and manipulate write data

• Logic to delay input DQS to capture read data and to forward read data to the controller

The read data path logic uses the read clock recovery (RCR) hard macro built within the PHY.

21.5.2 Address Mapping

The memory controller automatically maps user addresses to the DRAM memory in a contiguous block. 
Addressing starts at user address 0 and ends at the highest available address according to the size and 
number of DRAM devices present. This mapping is dependent on how the memory controller is 
configured.

The mapping of the address space to the internal data storage structure of the DRAM devices is based on 
the actual size of the DRAM devices available. The size is stored in user-programmable parameters that 
must be initialized at power up. Certain DRAM devices allow for different mapping options to be chosen, 
while other DRAM devices depend on the chosen burst length.

21.5.2.1 DDR SDRAM Address Mapping Options

The address structure of DDR SDRAM devices contains the following five fields:

• Chip select

• Row

• Bank

• Column

• Datapath

Each of these fields can be individually addressed when accessing the DRAM.

The maximum widths of the fields are based on the configuration settings. The actual widths of the fields 
may be smaller if the device address width parameters (DDR_CR15[ADDPINS], DDR_CR04[8BNK], 
and DDR_CR16[COLSIZ]) are programmed differently.

21.5.2.2 Maximum Address Space

The maximum user address range is determined by the width of the memory datapath, the number of chip 
select pins, and the address space of the DRAM device. The maximum amount of memory can be 
calculated by the following formula:

Eqn. 21-1Maximum Memory Size Chip Selects 2Address Banks DatapathWidth=
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For this memory controller, the maximum values for these fields are as follows: 

• Chip selects = 1

• Device address = 15 rows + 12 columns = 27

• Number of banks = 8

• Memory datapath width = 1 byte

As a result, the maximum accessible memory area is 1 GB.

21.5.2.3 Memory Mapping to Address Space

The maximum allowable address space and mapping into the DRAM devices for the memory controller is 
shown in Figure 21-57. This map corresponds to a memory device with 15 row bits and 12 column bits.

The only valid Datapath setting is zero. The DDR_CR15[ADDPINS] and DDR_CR16[COLSIZ] fields 
can each range from the maximum configured for the memory controller to seven bits smaller than the 
maximum configured. This allows the memory controller to function with a wide variety of memory 
device sizes.

The settings for the ADDPINS and COLSIZ parameters control how the address map decodes the user 
address to the DRAM chip selects and row and column addresses. The DDR_CR04[8BNK] parameter 
controls the address in DDR2 mode. It is assumed that the values in these parameters never exceed the 
maximum values configured.

Using the example shown in Figure 21-57, if the memory controller is connected to devices with 13 row 
and 10 column bits, the maximum accessible memory space is reduced. The accessible memory space for 
this configuration is 256 MB.

The address map for this configuration is shown in Figure 21-58. Address bits 28–32 are not used. These 
bits are ignored when generating the address to the DRAM devices.

NOTE
The chip select, row, bank, and column fields address an entire memory 
word (a byte in this case).

21.5.3 Write Data Queue

The write data queue is a write data storage array for transactions. The queue consists of multiple buffers 
holding write data for the write requests of a particular port. Write data is stored in these buffers for 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Don’t
care

Chip
select

Row Bank Column
Data
path

Figure 21-57. Memory Controller Memory Map: Maximum

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Don’t care
Chip

select
Row Bank Column

Data
path

Figure 21-58. Alternate Memory Map
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commands in the command queue until the command is processed in the placement logic and needed by 
the DRAM command arbitration logic.

The buffers can accept data whenever any space is available. The buffers are defined to hold 8 entries. The 
size of the write data buffers and the burst length programmed into the memory devices affect the overall 
performance of a single port during the write operation. Each buffer must have a depth of at least twice the 
number of data words for a memory burst to ensure that the memory controller can continuously burst 
write data for a port. The buffer should also be large enough to hold enough words to consume data for a 
single write transaction related to the bus. The data may actually be written into the buffers from the bus 
at a later time, depending on the priority of the request and the number of transactions in the command 
queue.

21.5.4 DRAM Command Processing

The DRAM command processing logic processes the commands in the command queue. The logic 
organizes the commands to the memory devices so that data throughput is maximized. Bank opening and 
closing cycles are used for data transfers.

The logic uses a variety of factors to determine when to issue bank open and close commands. The logic 
reviews the entire command queue for a look-ahead of which banks are to be accessed in the future. The 
timing is then set to meet the TRC and TRAS_MIN timing parameters of the memory devices, values 
which were programmed into the memory controller on initialization. This flexibility allows the memory 
controller to be tuned to extract the maximum performance out of memory devices. The parameters that 
relate to DRAM device protocol are listed in the Section 21.4, “Memory Map/Register Definition”.

21.5.5 Latency

By using the placement logic of the command queue in the memory controller, a new request through any 
port can be immediately placed at the top of the command queue or can interrupt an ongoing request. This 
scheme allows a high priority request to be serviced in the shortest possible time. However, since there are 
many factors that determine the placement into the command queue, there are also many factors that affect 
the actual latency of the command.

These factors include information about transactions already in the command queue:

• Coherency status — If there is a data coherency conflict with a transaction already in the command 
queue, the new transaction is placed after the transaction that produced the conflict. The position 
of the conflicting transaction determines the latency of the high priority read or write command.

• Priority status — If the new command has a higher priority than those already in the command 
queue, the new request is serviced ahead of the lower priority command. The latency of the new 
command is lower than the latency of the older command.

• Read, write, and bank information — In general, reads are placed ahead of writes when both are of 
the same priority level. Read commands are grouped with other read commands of similar 
priorities, and write commands are grouped with other write commands of similar priorities. 
Among these groupings, transactions with similar bank and different row destinations are 
separated as much as possible.
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If all of the placement conditions are met, then a new command is placed at the top of the command queue. 
However, if the new command is of a higher priority than the transaction executing, the current command 
is interrupted and the new command executes first. The interruption occurs at a natural burst boundary of 
the DRAMs. The interrupted transaction is placed at the top of the placement queue and resumes after the 
new request is completed. The page status of the new transaction determines when the current transaction 
is interrupted:

• If the page for the new transaction is already open, then the current transaction is interrupted at the 
next natural burst boundary of the DRAM device.

• If the page is not currently open, then the new request is placed at the top of the command queue 
while its page is prepared.

There are a fixed number of latency cycles in the memory controller, based on the pipeline through the 
memory controller logic. These steps are:

1. Command passing through the port interface. (fixed)

2. Arbitration through the arbiter. (fixed)

3. Placement into the command queue. (fixed)

4. Memory command generation. (variable)

5. Sending of control signals from the core logic. (fixed)

6. Flight time to the DRAM device. (variable)

7. Flight time from the DRAM device. (variable)

8. For reads, synchronization of read data from the data strobe domain. (fixed)

9. For reads, data pass through the port interface. (fixed)

21.5.6 Core Command Queue with Placement Logic

The memory controller core contains a command queue that accepts commands from the arbiter. This 
command queue uses a placement algorithm to determine the order that commands execute in the core. 
The placement logic follows many rules to determine where new commands are inserted into the queue, 
relative to the contents of the command queue at the time. Placement is determined by considering address 
collisions, source collisions, data collisions, command types and priorities. In addition, the placement logic 
attempts to maximize efficiency of the memory controller core through command grouping and bank 
splitting. After being placed into the command queue, the relative order of commands is constant.

Many of the rules used in placement may be individually enabled/disabled. In addition, the queue may be 
programmed through DDR_CR07[PLEN] to disable the placement logic entirely, resulting in an in-line 
queue that services requests in the order they are received. If DDR_CR07[PLEN] is cleared, the placement 
algorithm is ignored.

21.5.6.1 Rules of the Placement Algorithm

The factors affecting command placement work together to identify where a new command fits into the 
execution order. They are listed in order of importance.
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21.5.6.1.1 Address Collision/Data Coherency Violation

The order that read and write commands are processed in the memory controller is critical to proper system 
behavior. While reads and writes to different addresses are independent and may be re-ordered without 
affecting system performance, reads and writes that access the same address are significantly related. If 
the port requests a read after a write to the same address, then repositioning the read before the write 
returns the original data, not the changed data. Similarly, if the read was requested ahead of the write but 
accidentally positioned after the write, then the read returns the new data, not the original data prior to 
being overwritten. These are significant data coherency mistakes.

To avoid address collisions, reads or writes that access the same chip select, bank, and row as a command 
already in the command queue are inserted into the command queue after the original command, even if 
the new command is a higher priority.

This factor may be enabled/disabled through DDR_CR00[ADDCOL] and should only be disabled if the 
system can guarantee coherency of reads and writes.

21.5.6.1.2 Source ID Collision

Each port is assigned a specific source ID that identifies the source uniquely. This allows the memory 
controller to map data from/to the correct source/destination.

NOTE
A source ID does contain port identification information, which means that 
the rules for placement are dependent on the requesting port. There are not 
source ID collisions between ports.

In general, commands of the same type from the same source ID are placed in the command queue in order. 
Therefore, a read/write command with the same source ID as a read/write command already in the 
command queue is processed after the original read/write command.

The behavior of commands of different types from the same source ID is dependent on the user 
configuration. For this memory controller, the placement of new read/write commands that collide in terms 
of source ID with existing entries in the command queue only depends on other commands of the same 
type, not on different types. This means that, if there are no address conflicts, a read command can be 
executed ahead of a write command with the same source ID. Likewise a write command can be executed 
ahead of a read command with the same source ID.

This feature is always enabled.

21.5.6.1.3 Write Buffer Collision

Incoming write requests in the command queue are allocated to one of the two write buffers in the memory 
controller core automatically based on availability. New write commands are designated to any available 
buffer. However, back-to-back write requests from a particular source ID are allocated to the same write 
buffer as the previous command.

Since the controller core must pull data out of the buffers in the order it was stored, if a write command is 
linked to a buffer that is associated with another command in the queue, then the new command is placed 
in the command queue after that command, regardless of priority.
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This feature is always enabled.

21.5.6.1.4 Priority

Priorities distinguish important commands from less important commands. Each command is given a 
priority based on the command type through the programmable fields RPn and WPn (where n represents 
the port number). A value of 0 is the highest priority, and value of 1 is the lowest.

The placement algorithm attempts to place higher priority commands ahead of lower priority commands, 
as long as they have no source ID, write buffer, or address collisions. Higher priority commands are placed 
lower in the command queue if they access the same address, are from the same requestor, or use the same 
buffer as lower priority commands already in the command queue.

This feature is enabled through DDR_CR08[PRIEN].

21.5.6.1.5 Bank Splitting

Before accesses can be made to two different rows within the same bank, the first active row must be 
closed (pre-charged) and the new row must be opened (activated). Both activities require some timing 
overhead. Therefore, for optimization, the placement queue attempts to insert the new command into the 
command queue such that commands to other banks may execute during this timing overhead. The 
placement of the new commands still follows priority, source ID, write buffer, and address collision rules.

The placement logic also attempts to optimize the memory controller core by inserting a command to the 
same bank as an existing command in the command queue immediately after the original. This reduces the 
overall timing overhead by potentially eliminating one pre-charging/activating cycle. This placement is 
only possible if there are no priority, source ID, write buffer, or address collisions or conflicts with other 
commands in the command queue.

All bank splitting features are enabled through DDR_CR02[BNKSPT].

21.5.6.1.6 Read/Write Grouping

The memory suffers a small timing overhead when switching from read to write mode. For efficiency, the 
placement queue attempts to place a new read command sequentially with other read commands in the 
command queue, or a new write command sequentially with other write commands in the command queue. 
Grouping is only possible if no priority, source ID, write buffer, or address collision rules are violated.

This feature is enabled through DDR_CR09[RWEN].

21.5.7 Command Execution Order After Placement

When a command is placed in the command queue, its order relative to the other commands in the queue 
at that time is fixed. While this provides simplicity in the algorithm, there are drawbacks. For this reason, 
the memory controller offers two options that affect commands after they are placed in the command 
queue.
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21.5.7.1 High-Priority Command Swapping

Commands are assigned priority values to ensure that critical commands are executed more quickly in the 
memory controller than less important commands. Therefore, it is desirable that high-priority commands 
pass into the memory controller core as soon as possible. The placement algorithm takes priority into 
account when determining the order of commands, but still allows a scenario in which a high-priority 
command sits waiting at the top of the command queue while another command, perhaps of a lower 
priority, is in process.

The high-priority command swapping feature allows this new high-priority command to be executed more 
quickly. If the swapping function is enabled by DDR_CR10[SWPEN], then the entry at the top of the 
command queue is compared with the current command in progress. If the command queue’s top entry is 
a higher priority (not the same priority) and it does not have an address, source ID, or write buffer conflict 
with the current command being executed, then the original command is interrupted.

If the command is to be interrupted, it is halted after completing the current burst, stored and placed at the 
top of the queue, and the new command is executed. As long as the command queue is not full, new 
commands may continue to be inserted into the command queue based on the placement rules, even at the 
head of the queue ahead of the interrupted command. The top entry in the command queue is executed 
next. Whenever the interrupted command is resumed, it starts from the point at which it was interrupted.

NOTE
Priority 0 commands are never interrupted, so set any commands that should 
not be interrupted to priority 0.

21.5.7.2 Command Aging

Since commands can be inserted ahead of existing commands in the command queue, the situation could 
occur where a low priority command remains at the bottom of the queue indefinitely. To avoid such a 
lockout condition, aging counters are included in the placement logic that measure the number of cycles 
that each command has been waiting. If command aging is enabled through DDR_CR00[AGE], then if an 
aging counter hits its maximum, the priority of the associated command is decremented by one (lower 
priority commands are executed first). This increases the likelihood that this command moves to the top 
of the command queue and executed. This feature does not move relative positions in the command queue 
when it ages; the new priority is considered when placing new commands into the command queue.

Aging is controlled through a master aging-rate counter and command aging counters associated with each 
command in the command queue. DDR_CR16[AGECNT] and DDR_CR17[CMDAGE] hold the initial 
values for each of these counters, respectively. When the master counter counts down the AGECNT value, 
a signal is sent to the command aging counters to decrement. When the command aging counters have 
completely decremented, then the priority of the associated command is decremented by one number and 
the counter is reset. Therefore, a command does not age by a priority level until the total elapsed cycles 
reaches the product of the AGECNT and CMDAGE values. The maximum number of cycles that any 
command can wait in the command queue until reaching the top priority level is the product of AGECNT, 
CMDAGE, and the number of priority levels in the system.
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21.5.8 Low Power Modes

The various low power modes available for the memory controller are described in Section 21.2.2, “Low 
Power Modes”. The memory controller may enter and exit these modes in the following ways:

• Automatic entry

When the memory controller is idle, four timing counters begin counting the cycles of inactivity. 
If any counter expires, the memory controller enters the low-power mode associated with that 
counter.

• Manual entry

You may initiate any low power mode by setting the bit of DDR_CR23[LPCTRL] associated with 
the desired mode. The memory controller enters the selected low power mode when it is has 
completed its current burst.

Automatic and manual entry methods are both controlled by two parameters: DDR_CR23[LPCTRL, 
LPAUTO]. LPCTRL contains individual enable/disable bits for each low-power mode, and LPAUTO 
enables automatic low-power mode entry for each low-power mode.

21.5.8.1 Automatic Entry

Automatic entry occur if the following conditions are true:

• The mode is programmed for automatic entry by setting the relevant bit in DDR_CR23[LPAUTO]

• The particular mode is enabled in DDR_CR23[LPCTRL]

• The memory controller is idle.

• The counter associated with this mode expires

There are four counters to cover the five low power modes:

• Separate counter for each of the three memory self-refresh low power modes (modes 3, 4 and 5)

• Memory power-down mode (mode 1) and memory power-down with memory clock gating mode 
(mode 2) share a counter

The counters determine the number of idle cycles before entering the associated low power mode. All 
counters are re-initialized each time there is a new read or write transaction entering or executing in the 
memory controller. This ensures that the memory controller does not enter any of the low power modes 
when active.

All five low power modes can be entered through automatic entry, and are exited automatically when any 
of the following conditions occur:

• A new read or write transaction appears at the memory controller interface

• The memory controller must refresh the memory when in either of the power-down modes (mode 1 
or 2). After completing the memory refresh, the memory controller re-enters power-down.

• The counter for a deeper low-power mode expires. The memory controller must exit the current 
low power mode to enter the deeper low power mode. A minimum of 15 cycles occur between exit 
from one low power mode before entering the next low power mode, even if the counters expire 
within 15 cycles of each other. The memory controller cannot enter a less deep low power mode, 
regardless of which counters expire.
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21.5.8.2 Manual On-Demand Entry

Manual entry occurs if the following conditions are true:

• The mode is programmed for manual entry by clearing the relevant bit in DDR_CR23[LPAUTO]

• The particular mode is set in DDR_CR23[LPCTRL]

For manual entry, DDR_CR23[LPCTRL] triggers entry into the low power modes. The memory controller 
does not need to be idle when a low power mode bit is enabled. When a particular mode that is 
programmed for manual entry is enabled, the memory controller completes the current memory burst 
access, and then, regardless of the activity inside the memory controller or at the memory interface, it 
enters the selected low power mode.

If new transactions enter the memory controller while it is in any of the low power modes, they accumulate 
inside the memory controller’s command queue until the queue is full.

Exiting from a manually-entered low power mode is also manual. Clearing DDR_CR23[LPCTRL] 
triggers the memory controller to pull the memory devices out of power-down or self-refresh, and 
command processing resumes.

NOTE
In the deepest low power mode (mode 5), the clock to the programming 
registers module is gated off. However, manual low power mode exit 
requires you to clear DDR_CR23[LPCTRL], which is not possible when the 
clock is off. As a result, never manually activate the deepest low power 
mode.

If a different DDR_CR23[LPCTRL] bit is set while in one of the low power modes, or on clearing of the 
original bit, the memory controller exits the current low power mode. There is at least a 15 cycle delay 
before the memory controller is fully operational or enters the new low power mode.

21.5.8.3 Register Programming

The low power modes of the memory controller are controlled through DDR_CR23[LPCTRL and 
LPAUTO]. These five-bit parameters each contain one bit for controlling each low power mode. 
DDR_CR23[LPCTRL] enables the associated low power mode, and DDR_CR23[LPAUTO] sets the entry 
method into that mode as manual or automatic. Table 21-60 shows the relationship between the five bits 
of DDR_CR23[LPCTRL and LPAUTO] and the various low power modes.

Table 21-60. Low Power Mode Parameters

Low power mode Enable Entry Counter

Memory power down
(mode 1)

LPCTRL[4] = 1 LPAUTO[4]
0 Manual
1 Automatic

DDR_CR39[LPPDCNT]

Memory power down
with memory clock gating

(mode 2)

LPCTRL[3] = 1 LPAUTO[3]
0 Manual
1 Automatic

DDR_CR39[LPPDCNT]
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When a LPCTRL bit is set, the memory controller checks the corresponding LPAUTO bit.

• If the associated bit is set, the memory controller watches the associated counter for expiration and 
then enters that low power mode. Table 21-60 shows the correlation between the low power modes 
and the counters that control each mode’s automatic entry.

• If the associated bit is cleared, the memory controller completes its current memory burst access 
and then enter the specified low power mode.

The values in LPAUTO are only relevant when the associated LPCTRL bit is set.

Multiple bits in LPCTRL and LPAUTO can be set at the same time. When this happens, the memory 
controller always enters the deepest low power mode of all the modes that are enabled. If the memory 
controller is already in one low power mode when a deeper low power mode is requested automatically or 
manually, it must first exit the current low power mode, and then enter the deeper low power mode. A 
minimum 15 cycle delay occurs before the second entry.

The timing for automatic entry into any of the low power modes is based on the number of idle cycles that 
have elapsed in the memory controller. There are four counters related to the five low power modes to 
determine when any particular low power mode is entered if the automatic entry option is chosen. The 
counters are also shown in Table 10-1, “Low Power Mode Parameters”. Since the two power-down modes 
share one counter, if you wish to enter memory power-down mode (mode 1) automatically, then you must 
not enable memory power-down with memory clock gating mode (mode 2).

21.5.9 Out-of-Range Address Checking

It is possible that the master attempts to write to an invalid address. For this reason, all incoming addresses 
are always checked against the addressable physical memory space. If a transaction is addressed to an 
out-of-range memory location, then bit 0 of DDR_CR27[INTSTATUS] is set to alert you of this condition. 
The memory controller records the following information that caused the out-of-range interrupt:

• Address: {DDR_CR56[OORAD32], DDR_CR55[OORAD]}

• Source ID: DDR_CR06[OORID]

• Length: DDR_CR27[OORLEN]

• Type of transaction: DDR_CR14[OORTYPE]

Memory self-refresh
(mode 3)

LPCTRL[2] = 1 LPAUTO[2]
0 Manual
1 Automatic

DDR_CR40[LPSREFCNT]

Memory self-refresh
with memory clock gating

(mode 4)

LPCTRL[1] = 1 LPAUTO[1]
0 Manual
1 Automatic

DDR_CR38[LPEXTCNT]

Memory self-refresh
with memory and controller clock gating

(mode 5)

LPCTRL[0] = 1 LPAUTO[0]
0 Manual
1 Automatic

DDR_CR39[LPINTCNT]

Table 21-60. Low Power Mode Parameters (continued)

Low power mode Enable Entry Counter
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Reading the out-of-range parameters initiates the memory controller to empty these parameters and allow 
them to store out-of-range access information for future errors. Acknowledge the interrupt by setting bit 0 
of DDR_CR25[INTACK], which causes bit 0 of INTSTATUS to clear.

If a second out-of-range access occurs before the first out-of-range interrupt is acknowledged, then bit 1 
of DDR_CR27[INTSTATUS] is set to indicate that multiple out-of-range accesses have occurred. If the 
out-of-range parameters have been read when the second out-of-range error occurs, then the details for this 
transaction are stored in the out-of-range parameters. If they have not been read, then the details of the 
second error are lost.

Even though the address is identified as erroneous, the memory controller still processes the read or write 
transaction. A read transaction returns random data which you must receive to avoid stalling the memory 
controller. A write transaction writes the associated data to an unknown location in the memory array, 
potentially over-writing other stored data. The command cannot be aborted once accepted into the memory 
controller.

21.6 Initialization/Application Information
The memory controller requires a sequence for correct operation after power to the microcontroller and 
memory devices is stable. When initialized, the memory controller automatically initializes the memory 
devices.

The procedure to initialize the memory controller is as follows:

1. Issue write register commands to configure the DRAM protocols and the settings for the DCC. 
Keep DDR_CR09[START] cleared during this initialization step.

2. Set DDR_CR09[START]. This triggers the memory controller to execute the initialization 
sequence using the parameters written into the registers. The memory controller waits for the PHY 
to indicate that the PHY and memory devices are ready to accept commands.
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Chapter 22  
NAND Flash Controller (NFC)

22.1 Introduction
The NAND flash controller (NFC) interfaces to standard NAND flash memory devices. It is composed of 
various control logic units and a 9 KB SRAM buffer. The NFC provides a glueless interface to 8- and 
16-bit NAND flash devices with page sizes of 512 bytes, 2 KB, 4 KB, and 8 KB.

Throughout this chapter the following terms are used:

• Block — (specified by device) smallest erasable unit in a NAND device, consisting of multiple 
pages

• Page — (specified by device) unit of flash data containing main and spare areas

• Main area of a page— stores data

• Spare area of a page — stores ECC and other software information

• Sector — an elementary transfer unit

— For devices with pages of 2KB and smaller, this is the same size of the page

— For devices with pages larger than 2KB, the pages are split into multiple virtual pages. In this 
case, the sector size is the size of the virtual page

• Virtual page — is the physical page size divided by the splitting factor, NFC_CFG[PAGECNT]

• ECC — error-correcting code

• BCH (Bose Chaudhuri Hocquenghem) — cyclic error-correcting code that corrects multi-bit errors
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22.1.1 Block Diagram

See Figure 22-1 for a block diagram of the NAND flash controller.

Figure 22-1. NAND Flash Controller Block Diagram

22.1.2 Features

The NAND flash controller includes the following features:

• 8- and 16-bit NAND flash interface

• 9 KB RAM buffer

— Memory-mapped registers and SRAM buffer

• Supports all NAND flash products regardless of density/organization 

• Supports flash device commands, such as page read, page program, reset, block erase, read status, 
read ID, copy-back, multiplane read/program, interleaved read/program, random input/output, 
read in EDO mode.

• Integrated DMA engine 
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— Two configurable DMA channels

– Use DMA channel 1 only to read/write a page for main and spare area of a page

– Use DMA channel 1 to read/write the main area of a page, and DMA channel 2 for the spare 
area

• ECC mode

— In ECC mode, NFC supports 4/6/8/12/16/24/32-bit error correction.

— ECC mode can be bypassed.

• Boot from page size  2KB flash (x8) without extra control

22.2 External Signal Description
The following signals shown in Table 22-1 are used to control NAND flash device.

22.3 Memory Map/Register Definition

Table 22-1. NFC Signal Properties

Name Function I/O Reset

NFC_ALE Flash address latch enable O 1

NFC_CE Flash chip enable O 1

NFC_CLE Flash command latch enable O 1

NFC_R/B Flash ready/busy I Pull up

NFC_RE Flash read enable O 1

NFC_WE Flash write enable O 1

NFC_IO[15:0] Flash data bus I/O —

Table 22-3. NFC Memory Map

Offset or 
Address

Register
Width
(bits)

Access Reset Value Section/Page

SRAM buffer

0xFC0F_C000
– 

0xFC0F_F8FF

SRAM buffer 64 R/W — 22.4.1/22-15

General Registers

0xFC0F_FF00 Flash command 1 (NFC_CMD1) 32 R/W 0x30FF_0000 22.3.1/22-4

0xFC0F_FF04 Flash command 2 (NFC_CMD2) 32 R/W 0x007E_E000 22.3.2/22-4

0xFC0F_FF08 Column address (NFC_CAR) 32 R/W 0x0000_0000 22.3.3/22-5

0xFC0F_FF0C Row address (NFC_RAR) 32 R/W 0x1100_0000 22.3.4/22-6
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22.3.1 Flash Command 1 Register (NFC_CMD1)

T

22.3.2 Flash Command 2 Register (NFC_CMD2)

0xFC0F_FF10 Flash command repeat (NFC_RPT) 32 R/W 0x0000_0000 22.3.5/22-6

0xFC0F_FF14 Row address increment (NFC_RAI) 32 R/W 0x0000_0001 22.3.6/22-6

0xFC0F_FF18 Flash status 1 (NFC_SR1) 32 R 0x0000_0000 22.3.7/22-7

0xFC0F_FF1C Flash status 2 (NFC_SR2) 32 R 0x0000_0000 22.3.8/22-8

0xFC0F_FF20 DMA 1 address register (NFC_DMA1) 32 R/W 0x0000_0000 22.3.9/22-8

0xFC0F_FF34 DMA 2 address register (NFC_DMA2) 32 R/W 0x0000_0000 22.3.10/22-8

0xFC0F_FF24 DMA configuration register (NFC_DMACFG) 32 R/W 0x0000_0000 22.3.11/22-9

0xFC0F_FF28 Cache swap register (NFC_SWAP) 32 R/W 0x0FFE_0FFE 22.3.12/22-9

0xFC0F_FF2C Sector size register (NFC_SECSZ) 32 R/W 0x0000_0420 22.3.13/22-10

0xFC0F_FF30 Flash configuration register (NFC_CFG) 32 R/W 0x000E_A631 22.3.14/22-11

0xFC0F_FF38 Interrupt status register (NFC_ISR) 32 R/W 0x6000_0000 22.3.15/22-12

Address: 0xFC0F_FF00 (NFC_CMD1) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BYTE2 BYTE3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-2. Flash Command 1 Register (NFC_CMD1)

Table 22-4. NFC_CMD1 Field Descriptions

Field Description

31–24
BYTE2

Second command byte that may be sent to the flash device

23–16
BYTE3

Third command byte that may be sent to the flash device

15–0 Reserved, must be cleared.

Address: 0xFC0F_FF04 (NFC_CMD2) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BYTE1 CODE

0 0 0 0 0 BUF
NO

BUSY

W START

Reset 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-3. Flash Command 2 Register (NFC_CMD2)

Table 22-3. NFC Memory Map (continued)

Offset or 
Address

Register
Width
(bits)

Access Reset Value Section/Page
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22.3.3 Column Address Register (NFC_CAR)

T

Table 22-5. NFC_CMD2 Field Descriptions

Field Description

31–24
BYTE1

First command byte that may be sent to flash device

23–8
CODE

User-defined flash operation sequencer. Each bit indicates a certain action. (See Table 22-22)
If the bit is set, the corresponding action is executed after writing 1 to START.

The following are some configuration examples (other sequences are possible):
0111_1110_1110_0000 Read data (BYTE1, 5x Address, BYTE2, R/B, read data)
1111_1111_1101_1000 Write page (DMA,BYTE1, 5x Address, write data, BYTE2, R/B, BYTE3, read status)
0100_1110_1101_1000 Block erase (BYTE1, 3x Address, BYTE2, R/B, BYTE3, read status)
0100_1000_0000_0100 Read ID (BYTE1, 1x Address, read ID)
0100_0000_0100_0000 Reset (BYTE1, R/B)
0100_0000_0110_0000 Read burst (BYTE1, R/B, read data)
0111_1110_0000_0000 CMD+address (BYTE1, 5xaddress)
1111_1111_1100_0000 Write page burst (DMA,BYTE1,5xAddress, write data, BYTE2,R/B)

7–3 Reserved, must be cleared.

2–1
BUFNO

Internal buffer number used for this command

0
BUSY/STAR

T

Busy indicator and start command. 

During reads:
0 Flash controller is idle - OK to sent next command.
1 Command execution is busy
Note: This bit is repeated in NFC_ISR.

During writes:
0 No action
1 Command execution starts

Address: 0xFC0F_FF08 (NFC_CAR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BYTE2 BYTE1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-4. Column Address Register (NFC_CAR)

Table 22-6. NFC_CAR Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–8
BYTE2

Second byte of column address

7–0
BYTE1

First byte of column address
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22.3.4 Row Address Register (NFC_RAR)

T

22.3.5 Flash Command Repeat (NFC_RPT)

T

22.3.6 Row Address Increment (NFC_RAI)

When auto-increment of row address is enabled (NFC_CFG[AIAD] = 1), the row address is incremented 
as follows:

Address: 0xFC0F_FF0C (NFC_RAR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
BYTE3 BYTE2 BYTE1

W

Reset 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-5. Row Address Register (NFC_RAR)

Table 22-7. NFC_RAR Field Descriptions

Field Description

31–29 Reserved, must be cleared.

28 Reserved, must be set

27–25 Reserved, must be cleared.

24 Reserved, must be set

23–16
BYTE3

Third byte of row address

15–8
BYTE2

Second byte of row address

7–0
BYTE1

First byte of row address

Address: 0xFC0F_FF10 (NFC_RPT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-6. Flash Command Repeat Register (NFC_RPT)

Table 22-8. NFC_RPT Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
COUNT

16-bit repeat count. Determines how many times NFC_CMD2[CODE] is executed.
If 0 or 1, the flash command is executed once.
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new{NFC_RAR[BYTE3, BYTE2, BYTE1]} =
{NFC_RAR[BYTE3], NFC_RAR[BYTE2], NFC_RAR[BYTE1]} + {NFC_RAI[INC3, INC2, INC1]}

T

22.3.7 Flash Status 1 Register (NFC_SR1)

T

Address: 0xFC0F_FF14 (NFC_RAI) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
INC3 INC2 INC1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 22-7. Row Address Increment Register (NFC_RAI)

Table 22-9. NFC_RAI Fields

Field Description

31–24 Reserved, must be cleared.

23–16
INC3

Increment for the third byte of row address

15–8
INC2

Increment for the second byte of row address

7–0
INC1

Increment for the first byte of row address

Address: 0xFC0F_FF18 (NFC_SR1) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ID1 ID2 ID3 ID4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-8. Flash Status 1 Register (NFC_SR1)

Table 22-10. NFC_SR1 Field Descriptions

Field Description

31–24
ID1

First byte returned by read ID command

23–16
ID2

Second byte returned by read ID command

15–8
ID3

Third byte returned by read ID command

7–0
ID4

Fourth byte returned by read ID command
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22.3.8 Flash Status 2 Register (NFC_SR2)

T

22.3.9 DMA1 Address Register (NFC_DMA1)

T

22.3.10 DMA2 Address Register (NFC_DMA2)

Address: 0xFC0F_FF1C (NFC_SR2) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ID5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 STATUS1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-9. Flash Status 2 Register (NFC_SR2)

Table 22-11. NFC_SR2 Field Descriptions

Field Description

31–24
ID5

Fifth byte returned by read ID command

23–8 Reserved, must be cleared.

7–0
STATUS1

Byte returned by read status command

Address: 0xFC0F_FF20 (NFC_DMA1) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDRESS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-10. DMA1 Address Register (NFC_DMA1)

Table 22-12. NFC_DMA1 Field Descriptions

Field Description

31–0
ADDRESS

DMA channel 1 address 

Address: 0xFC0F_FF34 (NFC_DMA2) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDRESS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-11. DMA2 Address Register (NFC_DMA2)
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Tfl

22.3.11 DMA Configuration Register (NFC_DMACFG)

T

22.3.12 Cache Swap Register (NFC_SWAP)

When DMA transfers data to/from the NFC cache (NFC SRAM buffer), or when the CPU reads or writes 
data to/from the NFC cache via the internal bus, all accesses that go to NFC_SWAP[ADDR1], are directed 
to NFC_SWAP[ADDR2]. Likewise, all accesses that go to NFC_SWAP[ADDR2] are directed to 
NFC_SWAP[ADDR1].

The feature  allows the bad block marker in the first position of the spare area of a page. Because of the 
way the flash controller interleaves data and ECC bytes on flash devices with page sizes larger than 2 KB, 
the position of the bad block marker is shifted, and does not appear in the first position of the spare area 
of the page. The cache swap feature allows consistent swapping of the actual bad block line with the 
expected bad block line, and causes the operating system to get the bad block marker in the position where 
it is expected. Table 22-21 gives some examples of usage.

Table 22-13. NFC_DMA2 Field Descriptions

Field Description

31–0
ADDRESS

DMA channel 2 address 

Address: 0xFC0F_FF24 (NFC_DMACFG) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COUNT1 COUNT2 OFFSET2

ACT
1

ACT
2W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-12. DMA2 Configuration Register (NFC_DMACFG)

Table 22-14. NFC_DMACFG Field Descriptions

Field Description

31–20
COUNT1

Byte count to be transferred by DMA for DMA channel 1

19–13
COUNT2

Byte count to be transferred by DMA for DMA channel 2

12–2
OFFSET2

Byte offset for DMA channel 2. DMA channel 2 transfer starts at this offset count.

1
ACT1

0 DMA channel 1 is inactive
1 DMA channel 1 is active, and transfers to memory when triggered

0
ACT2

0 DMA channel 2 is inactive
1 DMA channel 2 is active, and will be used for transfers to memory when triggered
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T

22.3.13 Sector Size Register (NFC_SECSZ)

T

Address: 0xFC0F_FF28 (NFC_SWAP) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
ADDR2

0 0 0 0 0
ADDR1

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Figure 22-13. Cache Swap Register (NFC_SWAP)

Table 22-15. NFC_SWAP Fields

Field Description

31–28 Reserved, must be cleared.

27–17
ADDR1

Lower swap address

16–12 Reserved, must be cleared.

11–1
ADDR2

Upper swap address

0 Reserved, must be cleared.

Address: 0xFC0F_FF2C (NFC_SECSZ) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SIZE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Figure 22-14. Sector Size Register (NFC_SECSZ)

Table 22-16. NFC_SECSZ Field Descriptions

Field Description

31–13 Reserved, must be cleared.

12–0
SIZE

Size in bytes of one elementary transfer unit. For devices with pages of 2KB and smaller, this is the physical 
size of the page in bytes (data bytes + header bytes + ECC bytes) transferred in one page. When pages are 
larger than 2KB, they must be split in multiple virtual pages. In this case, the sector size is the size of the virtual 
page. The virtual page size is the physical size divided by the splitting factor, NFC_CFG[PAGECNT]. 
Table 22-20 gives examples on programming this field.
Note: If only a part of a page to be programmed or read, SIZE can be set to the number of affected bytes, not 

the page size. Then, ECC and DMA (data bytes) are all performed on the number of bytes, indicated by 
SIZE.

Note: For 16-bit data width flash devices, only odd SIZE is supported. If SIZE is even number, the real 
implemented size is SIZE – 1. So, write size + 1 to this field. For example, if SIZE = 1, no data is written 
or read.

Note: When programming NAND memory for boot and using the ECC feature, ensure that SIZE is equal to the 
default value (data (996) + ECC (60) bytes).
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22.3.14 Flash Configuration Register (NFC_CFG)

Address: 0xFC0F_FF30 (NFC_CFG) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R STOP
WERR

ECCAD ECC
SRAM

DMA
REQ

ECCMODE FAST
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IDCNT TIMEOUT 16BIT

BT
MD

AIAD AIBN PAGECNT
W

Reset
1 0 1 0 0 1 1 0 0

See 
Note

1 1 0 0 0 1

Note: Resets to 0 if no boot is performed by the NFC; 1 if booting from NFC.

Figure 22-15. Flash Configuration Register (NFC_CFG)

Table 22-17. NFC_CFG Field Descriptions

Field Description

31
STOPWERR

0 No stop on write error
1 Auto sequencer stops on a write error

30–22
ECCAD

Byte address in SRAM where ECC status is written.

21
ECCSRAM

0 Do not write ECC status to SRAM
1 Write ECC status to SRAM

20
DMAREQ

0 Do not transfer sector after ECC done
1 After ECC done, transfer sector using DMA

19–17
ECCMODE

000 No correction, ECC bypass
001 4-error correction (8 ECC bytes)
010 6-error correction (12 ECC bytes)
011 8-error correction (15 ECC bytes)
100 12-error correction (23 ECC bytes)
101 16-error correction (30 ECC bytes)
110 24-error correction (45 ECC bytes)
111 32-error correction (60 ECC bytes)

16
FAST

0 Slow flash timing. Clock in read data on rising edge of read strobe
1 Fast flash timing. Clock in read data a half clock later than rising edge of read strobe
See Section 22.4.5, “Fast Flash Configuration for EDO” for more details.

15–13
IDCNT

Number of bytes that are read for the read id command.
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22.3.15 Interrupt Status Register (NFC_ISR)

12–8
TIMEOUT

The number of flash_clk cycles from NFC_WE high to either:
 • NAND flash busy (tWB), or
 • NFC_RE low (tWHR)
After the last command is issued to flash, before sampling NFC_R/B, the NFC must wait tWB 
clocks. After tWB clocks: 
 • if NFC_R/B is sampled as high, the NFC considers the command to be a timeout, and the flash 

memory is idle. The NFC can issue new commands to the flash memory.
 • if NFC_R/B is sampled as low, the NAND flash memory is busy.
When reading the status or ID from the NAND flash memory, after the last command is issued to 
flash, the NFC must wait for tWHR cycles. The NFC then negates NFC_RE to low to read the valid 
status or ID.
Note: tWB exists in page program/read, block erase, etc. Refer to the NAND flash datasheet for 

details of tWB and tWHR.

7
16BIT

0 8-bit wide flash mode
1 16-bit wide flash mode

6
BTMD

0 Normal mode
1 Boot mode
Note: Resets to 0 if no boot is performed from the NFC, 1 if NFC boot is performed

5
AIAD

0 Do not auto-increment flash row address
1 Auto-increment flash row address

4
AIBN

0 Do not auto-increment buffer number
1 Auto increment buffer number

3–0
PAGECNT

Number of virtual pages (in one physical flash page) to be programmed or read, etc.

Address: 0xFC0F_FF38 (NFC_ISR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WERR DONE IDLE 0

WERR
NS

CMD
BUSY

RES
BUSY

ECC
BUSY

DMA
BUSY WERR

EN
DONE

EN
IDLE
EN

0 0 0 0

W WERR
CLR

DON
ECLR

IDLE
CLR

Reset 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 RESBN ECCBN DMABN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-16. Interrupt Status Register (NFC_ISR)

Table 22-17. NFC_CFG Field Descriptions (continued)

Field Description
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T

Table 22-18. NFC_ISR Field Descriptions

Field Description

31
WERR

Write error interrupt. Set if an error condition is detected during a flash read status command. Sticky bit

30
DONE

Done interrupt. Set if command processing is done.

29
IDLE

Command idle interrupt. Set if command done, and residue engine, ECC engine and DMA engine are 
idle.

28 Reserved, must be cleared.

27
WERRNS

Write error status. Set if an error condition was detected during the last flash read status command. 
Non-sticky bit.

26
CMDBUSY

Set it command execution busy, cleared otherwise.

25
RESBUSY

Set if residue engine busy, cleared otherwise.

24
ECCBUSY

Set if ECC engine busy, cleared otherwise.

23
DMABUSY

Set it DMA engine busy, cleared otherwise.

22
WERREN

Enable bit for NFC_ISR[WERR].

21
DONEEN

Enable bit for NFC_ISR[DONE].

20
IDLEEN

Enable bit for command NFC_ISR[IDLE].

19
WERRCLR

Clear bit for NFC_ISR[WERR]. Writing 1 to this bit clears NFC_ISR[WERR].

18
DONECLR

Clear bit for NFC_ISR[DONE]. Writing 1 to this bit clears NFC_ISR[DONE].

17
IDLECLR

Clear bit for NFC_ISR[IDLE]. Writing 1 to this bit clears NFC_ISR[IDLE].

16–6 Reserved, must be cleared.

5–4
RESBN

Residue buffer number. Buffer number corresponding with the current residue block task.

3–2
ECCBN

ECC buffer number. Buffer number corresponding with the current ECC task.

1–0
DMABN

DMA buffer number - Buffer number corresponding with the current DMA task.
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22.4 Functional Description
The NFC executes commands on a single or bank of external NAND flash chips. The NFC supports 
commands such as read, program, reset, erase, status read, read ID.

The NFC block contains a DMA engine and built-in ECC logic. For each read or write, the NFC performs 
ECC calculations on-the-fly. Two DMA channels are organized for each read or write: one for the main 
area, and one for the spare area. It is possible to disable the second DMA channel, and transfer main and 
spare data with only the first DMA channel.

Page size supported is 512, 2K, 4K and 8K bytes. There are 8 different ECC settings provided: 0, 4, 6, 8, 
12, 16, 24 and 32 bits errors. They use 0, 8, 12, 15, 23, 30, 45 and 60 ECC bytes. The ECC works on page 
sizes of 512+spares bytes, 1K+spares bytes, 2K+spares bytes. The ECC algorithm used is a BCH code.

The error corrector can write ECC status to the spare area, since the read is pipelined. This means, while 
the current page is transferred from flash to buffer, the previous page is ECC corrected, and the page before 
that is transferred using DMA. Because of the pipelining, it is difficult to inform the CPU in the foreground 
of ECC errors. To solve this, ECC status is written to the auxiliary area of the sector, and transferred to 
memory. See Section 22.4.2, “Error Corrector Status” for more information. It’s up to the CPU to inspect 
the ECC result in memory, and act appropriately.

As described, reads are pipelined. However, writes are flow-through; no advance operations are done 
during a write. If there is a problem found during a write, the command sequence may be interrupted, and 
the CPU is informed.

Each page read, page write, page erase, read ID, or read status command sequence needs CPU attention 
only once. The CPU needs to prepare the DMA to point to the data, write correct values to all registers, 
and start the command. After command completion, the NFC block may interrupt the CPU.

The block allows command repeat, which is useful for write, read and erase, and allows processing 
multiple pages with just one command given by the CPU. No bank interleaving is supported during 
command repeat.

Booting from NAND flash is optional. The feature is activated when the reset configuration indicates a 
boot from NAND flash. See Chapter 10, “Chip Configuration Module (CCM)”, for details on selecting 
NFC boot on this device. If boot feature is activated, first the NFC issues a reset command (0xFF) to the 
flash, then NFC reads four pages from block 0. Each page is 1056 bytes. The boot pages are protected by 
32-bit error correction, which means that of the 1056 bytes, 996 bytes are user bytes and 60 bytes are ECC 
bytes. When the data from the boot pages is read, successfully error corrected, and stored in the NFC 
SRAM, the NFC indicates to the CPU that its boot code is visible in the NFC SRAM, and visible on 
addresses 0x000 to 0xF8F (3984 bytes total). 

If the boot image from block 0 cannot be corrected, because there are more than 32 errors in one or several 
pages, boot is retried on the blocks at row addresses 256, 512, and 768. If it still fails after these retries, 
boot from the NFC is aborted and the processor begins execution using the default memory mapped to the 
FlexBus.

Right after boot, a special address hashing function is active on all reads and writes done to NFC SRAM. 
This hashing function interleaves the page data from the four boot pages in such a way that all user data is 
visible in address range 0x000 to 0xF8F instead of four different ranges, one for each page. This hashing 
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is controlled by NFC_CFG[BTMD], and the hashing should be turned off by the CPU after finishing 
reading/executing the boot image, and before normal operations of the NFC. See Figure 22-25 and 
Section 22.4.1, “NFC Buffer Memory Space”.

Page size at boot is set to 1056 bytes to be compatible with a large number of NFC devices, without 
needing additional power-on reset flags to indicate the boot device.

• Compatible with 8-wide SLC and MLC devices with page size of 2 KB + 64 bytes spare

• Compatible with 8-wide SLC and MLC devices with page size of 4 KB and larger

• Compatible with 16-wide SLC and MLC devices with page size of 2 KB + 64 bytes spare

• Compatible with 16-wide SLC and MLC devices with page size of 4 KB and larger

• Not compatible with devices with 512 bytes page size.

22.4.1 NFC Buffer Memory Space

Figure 22-17 shows the organization of the buffer memory space in the NFC. The memory’s size is 
1152  64 bit, and is separated into four buffers, each with incontinuous physical address. For example, 
buffer 0’s physical address is (0xFC0F_C000 + 0x20i) – (0xFC0F_C007+0x20i). 

However, when the CPU writes or reads a buffer in non-boot mode, the CPU address is continuous, since 
there’s an address transition inside NFC: sram_physical_addr[13:3] = {cpu_addr[11:3],cpu_addr[13:12]}

So, in non-boot mode, the address ranges are:

• Buffer 0: 0xFC0F_C000 – 0xFC0F_C8FF

• Buffer 1: 0xFC0F_D000 – 0xFC0F_D8FF

• Buffer 2: 0xFC0F_E000 – 0xFC0F_E8FF

• Buffer 3: 0xFC0F_F000 – 0xFC0F_F8FF

See Figure 22-25 for the different operations between the NFC_CFG[BTMD] settings.
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Figure 22-17. NFC Buffer Memory Space

22.4.2 Error Corrector Status

The ECC engine determines if a page is correctable. If correctable, it corrects error bits, and indicates error 
number. Otherwise, CORFAIL bit is asserted as shown in Table 22-19. For a bad block management 
strategy to work, it may be necessary for the processor to obtain this information.

The error corrector writes the status word to a byte location to the SRAM buffer, defined by 
NFC_CFG[ECCAD]. It is selectable if the status is written or not with NFC_CFG[ECCSRAM]. If the 
status is written to the SRAM buffer, it becomes effectively part of the flash data, and is processed like the 
flash data. Most likely, the status byte is written to memory as part of the page header. Once in memory, 
the ECC status is visible to the CPU, while CPU parses the rest of the flash header. No interrupt on error 
or status is available because this increases the interrupt load on the CPU. (The interrupt would be 
independent of the command done interrupt.) It is not possible to stop reading when ECC failed.

The organization of the status byte is given in Table 22-19.

0x0000 Buffer 0

Buffer 0

0xFC0F_C000

0x0008 Buffer 1 0xFC0F_C008

0x0010 Buffer 2 ...

0x0018 Buffer 3 0xFC0F_C8F8

0x0020 Buffer 0

0x0028 Buffer 1

Buffer 1

0xFC0F_D000

0x0030 Buffer 2 0xFC0F_D008

0x0038 Buffer 3 ...

...
0xFC0F_D8F8

j*0x0020 Buffer 0

Buffer 2

0xFC0F_E000

j*0x0028 Buffer 1 0xFC0F_E008

j*0x0030 Buffer 2 ...

j*0x0038 Buffer 3 0xFC0F_E8F8

...

0x23E0 Buffer 0

Buffer 3

0xFC0F_F000

0x23E8 Buffer 1 0xFC0F_F008

0x23F0 Buffer 2 ...

0x23F8 Buffer 3 0xFC0F_F8F8

Physical Address Address of CPU accessing to
buffer in non-boot mode
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22.4.3 NFC Basic Commands

22.4.3.1 Page Read

This command reads pages from the NAND flash. Figure 22-18 is the general flow chart of read operation.

Figure 22-18. Flow Chart of Read Operation

Table 22-19. ECC Status Word

Field Definition

7
CORFAIL

0 Page has been successfully corrected
1 Page is uncorrectable

5–0
ERROR_COUNT

Number of errors that have been corrected in this page

Start

Set NFC_CMD2[BYTE1] to 0x00
Set NFC_CMD1[BYTE2] to 0x30
Set NFC_CMD2[CODE] to 0x7EE0 

(0111_1110_1110_0000)1

Config BUFNO, NFC_CAR, NFC_RAR, 
NFC_SECSZ, NFC_ISR

Register Config NFC Actions

Set NFC_CMD2[BUSY/START]

Issue NFC_CMD2[BYTE1] to flash

Issue NFC_CAR, NFC_RAR to flash

Issue NFC_CMD1[BYTE2] to flash

Wait for R/B handshake

Read data sector from flash

NFC_ISR[DONE],

Y

NFC_RPT[COUNT]
=0?

N

NFC_RPT[COUNT] =
NFC_RPT[COUNT] – 1

If NFC_CFG[AIAD] = 1, 
NFC_RAR =
NFC_RAR + NFC_RAI;

If NFC_CFG[AIBN] = 1,
BUFNO = BUFNO + 1

End

Optional register config:
1. Set NFC_CFG[ECCMODE] to 0–7.
2. Set NFC_CFG[ECCAD], NFC_CFG[ECCSRAM] 

to write ECC status to SRAM buffer.
3. Set NFC_CFG[DMAREQ] and config NFC_DMA, 

NFC_DMA2, NFC_DMACFG to use two DMA 
channels for read operation.

4. Config NFC_RPT[COUNT], NFC_RAI, 
NFC_CFG[AIAD], NFC_CFG[AIBN] for 
command repeat.

5. Set NFC_CFG[PAGECNT] if a page is split into 
multiple virtual pages.

Perform ECC on sector, write ECC status to 
NFC_CFG[ECCAD] using DMA to 
transfer data from SRAM buffer to 
memory

O
pt

io
na

l

Note:
1 COL_ADDR2, NFC_RAR[BYTE3], and NFC_CMD1[BYTE2] (bold) are not necessary for some flash devices. See their 

data sheets for detail. For example:
If the flash only has one column address, then NFC_CMD2[CODE] = 0110_1110_1110_0000;
If the flash only has two row addresses, then NFC_CMD2[CODE] = 0111_1100_1110_0000;
If flash does not need the second command 0x30 for read, then NFC_CMD2[CODE] = 0110_1110_0110_0000.



NAND Flash Controller (NFC)

22-18 NXP Semiconductors

Figure 22-19 shows a particular case: one page is split into 8 virtual pages (see Section 22.4.6, 
“Organization of the Data in the NAND Flash”), and DMA is not used. The SRAM buffer can hold data 
for four (virtual) pages at most. The CPU must transfer data out of the SRAM buffer after the first four 
virtual pages are read from flash. Otherwise, the next four virtual pages data overwrite the buffer. So, the 
read operation has following steps: 

• Configure registers as shown in Figure 22-18. NFC_CFG[PAGECNT] = 4, start commands, wait 
for NFC_ISR[DONE]

• CPU reads data from buffer, set NFC_CMD2[CODE] = 0x20 (only enable read data) 

• Start commands to read out the next 4 virtual pages, wait for NFC_ISR[DONE]

If DMA is used to transfer data from SRAM buffer to memory instead of CPU, the flow in Figure 22-18 
is used: set NFC_CFG[PAGECNT] = 8, set NFC_CFG[DMAREQ] = 1, configure DMA registers, start 
commands. A pipeline (Section 22.4, “Functional Description”) controls the read operation.

Figure 22-19. Flow Chart of Read Operation, NFC_CFG[PAGECNT] = 8, No DMA

Register config NFC actionsStart

Set NFC_CMD2[BYTE1] to 0x00
Set NFC_CMD1[BYTE2] to 0x30
Set NFC_CFG[PAGECNT] to 0x4
Set NFC_CMD2[CODE] to 0x7EE0 

(0111_1110_1110_0000)1

Config BUFNO, NFC_CAR, NFC_RAR, NFC_SECSZ, 
NFC_ISR, others optional registers

BUSY/START=1

Issue NFC_CMD2[BYTE1] to flash
Issue NFC_CAR, NFC_RAR to flash
Issue NFC_CMD1[BYTE2] to flash
Wait for R/B handshake
Read 4 virtual pages from flash

Set NFC_CMD2[CODE] = 0x0020 
(0000_0000_0010_0000)

Config BUFNO, NFC_ISR

CPU reads out 4 pages data from SRAM buffer

BUSY/START=1

Read the next 4 virtual pages from flash

NFC_ISR[DONE]

NFC_ISR[DONE]

End

Note:
1 See footnote in Figure 22-18.
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22.4.3.2 Page Program

This command programs pages to the NAND flash. Figure 22-20 is the general flow of page program 
operation.

Figure 22-20. Flow Chart of Page Program Operation

Figure 22-21 is the particular case which is similar as Figure 22-19. The CPU writes at most four virtual 
pages of data into the buffer before the first start command. Set NFC_CFG[PAGECNT] to 4 and set 
NFC_CMD2[CODE] twice:

• First, set it to 0x7F00 (0111_1111_0000_0000). The NFC issues NFC_CMD2[BYTE1], address 
cycles, four virtual pages data to flash. After NFC_ISR[DONE] is set, the CPU can write the next 
four virtual pages data into the SRAM buffer.

Start

Set NFC_CMD2[BYTE1] to 0x80
Set NFC_CMD1[BYTE2] to 0x10
Set NFC_CMD2[CODE] to 0x7FC0 

(0111_1111_1100_0000)1

Config BUFNO, NFC_CAR, NFC_RAR, 
NFC_SECSZ, NFC_ISR

Register config NFC actions

Set NFC_CMD2[BUSY/START]

Issue NFC_CMD2[BYTE1] to flash

Issue NFC_CAR, NFC_RAR to flash

Issue NFC_CMD1[BYTE2] to flash

Write data to flash (mandatory)
calculate ECC, and write to flash (optional)

Wait for R/B handshake

NFC_ISR[DONE]

Y

NFC_RPT[COUNT]
= 0?

N

NFC_RPT[COUNT] = 
NFC_RPT[COUNT] – 1

If NFC_CFG[AIAD] = 1, 
NFC_RAR =
NFC_RAR + NFC_RAI

If NFC_CFG[AIBN] = 1, 
BUFNO = BUFNO + 1

End

Optional register config:
1. See Figure 22-18 for registers regarding ECC, 

DMA, command repeat, and multiple virtual 
pages.

2. If using DMA to transfer data from (DRAM) 
memory to SRAM buffer, set NFC_CMD2[CODE] 
to 0x7EC0 (1111_1111_1100_0000)1. Do not set 
NFC_CFG[DMAREQ].

3. If not using DMA, CPU should write data into buffer
4. Read status: Set NFC_CMD1[BYTE3] to 0x70, set 

NFC_CMD2[CODE] to 0x7FD8 
(0111_1111_1101_1000)1

5. Set NFC_CFG[STOPWERR] (stop operation on 
write error)

Using DMA to transfer data from memory to 
sram buffer

O
pt

io
na

l

Issue NFC_CMD1[BYTE3] to flash

O
pt

io
na

l Read NFC_SR2[STATUS1]. Operation 
stops if NFC_CFG[STOPWERR] = 1 and 
NFC_SR2[STATUS1[0]] = 1

Note:
1 COL_ADDR2 and NFC_RAR[BYTE3] (bold) are not necessary for some flash devices. See their data sheets for detail. 

See the footnote of Figure 22-18.
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• Second, set CODE to 0x01C0 (0000_0001_1100_0000). The NFC sends the next four virtual pages 
of data to flash, issues NFC_CMD1[BYTE2], waits for R/B handshake, and waits for 
NFC_ISR[DONE] to set.

Like the read operation, if DMA transfers data from memory to NFC SRAM buffer (instead of the CPU), 
the flow in Figure 22-20 is used and set NFC_CFG[PAGECNT] to 0x8.

Figure 22-21. Flow Chart of Page Program Operation, NFC_CFG[PAGECNT] = 8, No DMA

Register config NFC actionsStart

Set NFC_CMD2[BYTE1] to 0x80
Set NFC_CMD1[BYTE2] to 0x10
Set NFC_CFG[PAGECNT] to 0x4
Set NFC_CMD2[CODE] to 0x7F00 (0111_1111_0000_0000)
Config BUFNO, NFC_CAR, NFC_RAR, NFC_SECSZ, 

NFC_ISR, other optional registers
CPU writes 4 pages of data to SRAM buffer

BUSY/START=1

Issue NFC_CMD2[BYTE1] to flash
Issue NFC_CAR,NFC_RAR to flash
Write 4 virtual pages data to flash

NFC_CMD2[CODE] = 0x01C0 (0000_0001_1100_0000)1

Config BUFNO, NFC_ISR

CPU writes the next 4 pages data to SRAM buffer

BUSY/START=1

Write the next 4 virtual pages to flash
Issue NFC_CMD1[BYTE2] to flash
Wait for the R/B handshake

NFC_ISR[DONE]

NFC_ISR[DONE]

End

Note:
1 If you want to read the status after the second 0x10 command, set NFC_CMD1[BYTE3] to 0x70 and NFC_CMD2[CODE] to 

0x01D8 (0000_0001_1101_1000). Then, after “Wait for the R/B handshake“, the NFC issues NFC_CMD1[BYTE3] to flash, 
and reads the status. If NFC_CFG[STOPWERR] is set and NFC_SR2[STATUS1[0]]=1, operation stops. Otherwise, 
NFC_ISR[DONE] comes out. The COL_ADDR2 and NFC_RAR[BYTE3] of the first NFC_CMD2[CODE] may not be 
necessary. See note 1 of Figure 22-18.
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22.4.3.3 Block Erase

This command is used to erase blocks.

Figure 22-22. Flow Chart of Block Erase Operation

Start

Set NFC_CMD2[BYTE1] to 0x60
Set NFC_CMD1[BYTE2] to 0xD0
Set NFC_CMD2[CODE] to 0x4EC0 

(0100_1110_1100_0000)1

Config NFC_RAR and NFC_ISR

Register config NFC actions

Set NFC_CMD2[BUSY/START]

Issue NFC_CMD2[BYTE1] to flash

Issue NFC_RAR to flash

Issue NFC_CMD1[BYTE2] to flash

Wait for R/B handshake

NFC_ISR[DONE],

Y

NFC_RPT[COUNT]
=0?

N

NFC_RPT[COUNT] = 
NFC_RPT[COUNT] – 1

If NFC_CFG[AIAD] = 1, 
NFC_RAR = 
NFC_RAR + NFC_RAI

End

Optional register config:
1. Read status: Set NFC_CMD1[BYTE3] to 0x70, 

NFC_CMD2[CODE] to 0x4ED8 
(0100_1110_1101_1000)1

2. Set NFC_CFG[STOPWERR] to 1 (stop operation 
on error)

3. See Figure 22-18 for command repeat

Issue NFC_CMD1[BYTE3] to flash
O

pt
io

na
l

Read NFC_SR2[STATUS1]2

Note:
1 NFC_RAR[BYTE3] (bold) is not necessary for some flash devices. See their data sheets for detail.
2 If NFC_CFG[STOPWERR] is set and NFC_SR2[STATUS1[0]]=1, operation stops.
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22.4.3.4 Read ID

This command reads the flash ID.

Figure 22-23. Flow Chart of Read ID Operation

22.4.3.5 Reset

This command sends a single reset command to the flash.

Figure 22-24. Flow Chart of Reset Operation

22.4.4 NAND Flash Boot

For booting, the power-on reset values of some registers are:

• Sector size is 1056 bytes: NFC_SECSZ = 1056

• Flash is defined as 8-bit: NFC_CFG[16BIT] = 0

• ECC correction depth is 32 bits errors: NFC_CFG[ECCMODE] = 0x7

• Boot sector address is 0: NFC_CMD2[BUFNO] = 00

Start

Set NFC_CMD2[BYTE1] to 0x90
Set NFC_CMD2[CODE] to 0x4804 

(0100_1000_0000_0100)
Configure NFC_ISR

Register config NFC actions

Set NFC_CMD2[BUSY/START]

Issue NFC_CMD2[BYTE1] to flash

Issue NFC_RAR[BYTE1] to flash

NFC_ISR[DONE]

End

Read ID1–5 from NFC_SR1 and NFC_SR2

Start

Set NFC_CMD2[BYTE1] to 0xFF
Set NFC_CMD2[CODE] to 0x4002 

(0100_0000_0000_0010) or 0x4040 
(0100_0000_0100_0000)

Configure NFC_ISR

Register config NFC actions

Set NFC_CMD2[BUSY/START]

Issue NFC_CMD2[BYTE1] to flash

wait for R/B handshake

NFC_ISR[DONE],

End
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Boot-up occurs after power-on reset. After boot, the following happens:

1. The NFC issues reset command 0xFF to the flash.

2. Four boot blocks are identified in the flash at row addresses 0, 256, 512, and 768.

3. The flash controller burst reads four pages from the first boot block to memory. A total of 4 KB are 
read in this way.

4. If there is no ECC failure during the burst read, the boot is successful. 

If there is an ECC failure during the burst read, the process is started again from the next boot 
block. If the fourth block still has ECC failure, boot is unsuccessful, which means it is not possible 
to read a reliable boot image from the flash. The processor begins instruction execution using the 
default boot memory mapped to the FlexBus.

5. CPU access is held until boot completion.

6. After boot, the boot image is visible in the memory map at address 0x00 – 0xF8F. A special hash 
function is active on the NFC SRAM read to have the boot image in one continuous address range, 
and not in four address ranges (one for each page). The NFC_CFG[BTMD] bit controls this hash 
function, and this bit should be cleared after the CPU has read/executed the boot image, and before 
it operates the NFC in standard mode. See Figure 22-25.

NOTE
There is no difference in how data is transferred between SRAM buffer and 
the flash: one page uses one buffer. But, how the CPU writes/reads the 
buffer is different. In non-boot mode, the write/read address is the SRAM 
physical address. In boot mode, the write/read address is based on the 
buffers. See Section 22.4.1, “NFC Buffer Memory Space”.

Figure 22-25. Boot and NFC_CFG[BTMD]

Suppose the boot code is U0, U1, U2, U3, ... each an 8-byte data. The flash device data width is 8-bit.
Data organization in the NAND flash is:

Page0: U0, U4, U8, U12, ...; Page1: U1, U5, U9, U13, ...; Page2: U2, U6, U10, U14, ...; Page3: U3, U7, U11, U14, ...

U0
U4
U8
U12
...

U1
U5
U9
U13
...

U2
U6
U10
U14
...

U3
U7
U11
U15
...

Page 0 1 2 3

U0
U4
U8
U12
...

U1
U5
U9
U13
...

U2
U6
U10
U14
...

U3
U7
U11
U15
...

0 1 2 3

Buffer

read 4 pages, each 
page 1056 bytes

When boot starts, NFC_CFG[BTMD] is set. After boot 
completes, if the CPU reads data from the 0x0000 of the SRAM 
buffer, the data is U0, U1, U2, U3, U4, U5, U6, U7, ...

If NFC_CFG[BTMD] is cleared (non-boot mode), the CPU reads
 • U0, U4, U8, U12, ... from address 0x0000 (buffer0),
 • U1, U5, U9, U13, ... from address 0x1000 (buffer1),
 • U2, U6, U10, U14, ... from address 0x2000 (buffer2),
 • U3, U7, U11, U15, ... from address 0x3000 (buffer3).

Physical address:
0x00 – 1F
0x20 – 3F
0x40 – 5F
0x60 – 7F

...
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The CPU boot code should be split into four pages as shown in Figure 22-25. Boot sector encoding cannot 
be done by the NFC block itself. It must be done in software. Each page contains 996-byte boot codes and 
60-byte ECC codes.

The ECC codes should be inverted because when NFC is doing a page program, it sends the inverted ECC 
codes to flash. When reading, it inverts them again to get the correct ECC codes for error correction. And 
only page reads are performed in boot operation. So, software should do the ECC code inversion after boot 
sector encoding.

For an 8-bit flash, the upper 1 KB of data is not read.

Figure 22-26. Boot Data’s Location in a Page

22.4.5 Fast Flash Configuration for EDO

Normally, read out data goes valid after the high-to-low transition of RE, and invalid on the low-to-high 
transition (Figure 22-27) tRHOH<tREH. NFC sampled the read data at the negedge of flash_clk, and because 
the data is invalid at that time, a latch is used here to maintain the valid data during the high period of 
flash_clk, so that NFC can sampled correct data.

Some flash devices contain a EDO (enhanced data out) feature, where the data can be held until the next 
high-to-low RE transition(Figure 22-28), tRHOH>tREH. The read data is valid at the negedge of flash_clk, 
NFC can sample data directly without latching it. To support the EDO feature, the NFC must work in fast 
mode (NFC_CFG[FAST] set). The NFC clock from the clock module must be configured fast enough 
(usually > 33MHz) according to the data sheet of flash devices. The NFC clock frequency is determined 
by the PLL_DR[OUTDIV5] bitfield. See Section 8.2.2, “PLL Divider Register (PLL_DR)”, for details.

Unused996 bytes boot codes
60 bytes ECC 

(inverted)

0 1056

8-bit flash boot codes and ECC’s location in a page
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Figure 22-27. Read Operation

Figure 22-28. Read Operation, EDO type

22.4.6 Organization of the Data in the NAND Flash

Pages on the flash can be split into multiple virtual ECC/DMA pages. The parameter that controls this is 
NFC_CFG[PAGECNT]. This parameter gives the number of virtual ECC/DMA pages in one flash page. 
See Section 22.3.14, “Flash Configuration Register (NFC_CFG)” for more details.

The virtual page is split into a user (main) area and ECC (spare) area. Data in the user area can be set or 
used by the application, while data in the ECC area is set and used by the ECC. 
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The following tables give virtual-to-physical mappings for various flash devices and their recommended 
settings.

Table 22-20. Virtual-to-Physical Mappings of Different Flash1,2

Flash page 
size

(main+spare)
bytes

NFC_CFG
[ECC

MODE]

ECC
bits

NFC_CFG
[PAGE
CNT]

Sector 
size

(bytes)

Virtual page
user size
(bytes)

Mapping

512 + 16 000 0 1 528 528 VirtualPage_0[527:0] = Physical[527:0]

512 + 16 001 4 1 528 520 VirtualPage_0[519:0] = Physical[519:0]

2048 + 64 000 0 1 2112 2112 VirtualPage_0[2111:0] = Physical[2111:0]

2048 + 64 101 16 1 2112 2082 VirtualPage_0[2081:0] = Physical[2081:0]

2048 + 64 110 24 1 2112 2067 VirtualPage_0[2066:0] = Physical[2066:0]

2048 + 64 111 32 1 2112 2052 VirtualPage_0[2051:0] = Physical[2051:0]

2048 + 64 000 0 4 528 528 VirtualPage_0[527:0] = Physical[527:0]
VirtualPage_1[527:0] = Physical[1055:528]
VirtualPage_2[527:0] = Physical[1583:1056]
VirtualPage_3[527:0] = Physical[2111:1584]

2048 + 64 001 4 4 528 520 VirtualPage_0[519:0] = Physical[519:0]
VirtualPage_1[519:0] = Physical[1047:528]
VirtualPage_2[519:0] = Physical[1575:1056]
VirtualPage_3[519:0] = Physical[2103:1584]

4096 + 128 000 0 2 2112 2112 VirtualPage_0[2111:0] = Physical[2111:0]
VirtualPage_1[2111:0] = Physical[4223:2112]

4096 + 128 101 16 2 2112 2082 VirtualPage_0[2081:0] = Physical[2081:0]
VirtualPage_1[2081:0] = Physical[4193:2112]

4096 + 128 110 24 2 2112 2067 VirtualPage_0[2066:0] = Physical[2066:0]
VirtualPage_1[2066:0] = Physical[4178:2112]

4096 + 128 111 32 2 2112 2052 VirtualPage_0[2051:0] = Physical[2051:0]3

VirtualPage_1[2051:0] = Physical[4163:2112]

4096 + 128 000 0 84 528 528 VirtualPage_0[527:0] = Physical[527:0]
VirtualPage_1[527:0] = Physical[1055:528]
VirtualPage_2[527:0] = Physical[1583:1056]
VirtualPage_3[527:0] = Physical[2111:1584]
VirtualPage_4[527:0] = Physical[2639:2112]
VirtualPage_5[527:0] = Physical[3167:2640]
VirtualPage_6[527:0] = Physical[3695:3168]
VirtualPage_7[527:0] = Physical[4223:3696]

4096 + 128 001 4 8 528 520 VirtualPage_0[519:0] = Physical[519:0]
VirtualPage_1[519:0] = Physical[1047:528]
VirtualPage_2[519:0] = Physical[1575:1056]
VirtualPage_3[519:0] = Physical[2103:1584]
VirtualPage_4[519:0] = Physical[2631:2112]
VirtualPage_5[519:0] = Physical[3159:2640]
VirtualPage_6[519:0] = Physical[3687:3168]
VirtualPage_7[519:0] = Physical[4215:3696]
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4096 + 208 000 0 2 2152 2152 VirtualPage_0[2151:0] = Physical[2151:0]
VirtualPage_1[2151:0] = Physical4303:2152]

4096 + 208 101 16 2 2152 2122 VirtualPage_0[2121:0] = Physical[2121:0]
VirtualPage_1[2121:0] = Physical[4273:2152]

4096 + 208 110 24 2 2152 2104 VirtualPage_0[2103:0] = Physical[2103:0]
VirtualPage_1[2103:0] = Physical[4255:2152]

4096 + 208 111 32 2 2152 2092 VirtualPage_0[2091:0] = Physical[2091:0]
VirtualPage_1[2091:0] = Physical[4243:2152]

4096 + 208 000 0 8 538 538 VirtualPage_0[537:0] = Physical[537:0]
VirtualPage_1[537:0] = Physical[1075:538]
VirtualPage_2[537:0] = Physical[1613:1076]
VirtualPage_3[537:0] = Physical[2151:1614]
VirtualPage_4[537:0] = Physical[2689:2152]
VirtualPage_5[537:0] = Physical[3227:2690]
VirtualPage_6[537:0] = Physical[3765:3228]
VirtualPage_7[537:0] = Physical[4304:3766]

4096 + 208 001 4 8 538 530 VirtualPage_0[529:0] = Physical[529:0]
VirtualPage_1[529:0] = Physical[1067:538]
VirtualPage_2[529:0] = Physical[1605:1076]
VirtualPage_3[529:0] = Physical[2143:1614]
VirtualPage_4[529:0] = Physical[2681:2152]
VirtualPage_5[529:0] = Physical[3219:2690]
VirtualPage_6[529:0] = Physical[3757:3228]
VirtualPage_7[529:0] = Physical[4295:3766]

4096 + 208 010 6 8 538 526 VirtualPage_0[525:0] = Physical[525:0]
VirtualPage_1[525:0] = Physical[1063:538]
VirtualPage_2[525:0] = Physical[1601:1076]
VirtualPage_3[525:0] = Physical[2139:1614]
VirtualPage_4[525:0] = Physical[2677:2152]
VirtualPage_5[525:0] = Physical[3215:2690]
VirtualPage_6[525:0] = Physical[3753:3228]
VirtualPage_7[525:0] = Physical[4291:3766]

4096 + 208 011 8 8 538 523 VirtualPage_0[522:0] = Physical[523:0]
VirtualPage_1[522:0] = Physical[1060:538]
VirtualPage_2[522:0] = Physical[1598:1076]
VirtualPage_3[522:0] = Physical[2136:1614]
VirtualPage_4[522:0] = Physical[2674:2152]
VirtualPage_5[522:0] = Physical[3212:2690]
VirtualPage_6[522:0] = Physical[3750:3228]
VirtualPage_7[522:0] = Physical[4288:3766]

1 Not all settings are shown. Its also possible to spit 2K and 4K sectors into 1KB units, which is not shown. For flash devices with 
more spare bytes, it is possible to correct more errors, at a higher ECC byte count cost.

Table 22-20. Virtual-to-Physical Mappings of Different Flash1,2 (continued)

Flash page 
size

(main+spare)
bytes

NFC_CFG
[ECC

MODE]

ECC
bits

NFC_CFG
[PAGE
CNT]

Sector 
size

(bytes)

Virtual page
user size
(bytes)

Mapping
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If flash devices with a physical page size of 4K or more are used, the bad block marker appears as the first 
byte of the spare area. But, because of the physical-to-virtual mapping, it does not appear in byte 2048 of 
the virtual page, where its logical place would be. The DMA engine contains the option to swap some 
bytes, and to make the bad block marker appear in the requested place.

22.4.7 Flash Command Code Description

The 16-bit command code in NFC_CMD2[CODE] is defined in Table 22-22. If a bit is set, the action is 
executed. The command is repeated for the number of the NFC_RPT[COUNT] value. If 
NFC_RPT[COUNT] is zero or one, the command is executed once.

2 It is possible to split 2 KB and 4 KB pages into virtual pages of 512, 1 KB or 2 KB. The best error protection is achieved with the 
larger page sizes. For example, splitting a 4 KB page in two 2 KB pages, with 32-bit error correction yields lower uncorrectable 
error probability than splitting the same page in eight 512-byte pages with 8 bit error correction. For OS compatibility, it may be 
necessary to use 512 byte pages, however.

3 In most applications, this mode is of no use because user size is too small.
4 When 4KB page is split into eight virtual pages, if page program/read using DMA, set NFC_CFG[PAGECNT] to 8. if not using 

DMA, set NFC_CFG[PAGECNT] to 4. See Section 22.4.3.1, “Page Read” and Section 22.4.3.2, “Page Program” for details.

Table 22-21. Using the Swap Field to Move the Bad Block Marker

Flash sector size
(main + spare)

bytes

Bad block 
marker

(physical)

Bad block 
marker
(virtual)

Before swap

Bad block 
marker

(expected)
After swap

Swap

4096 + 128 4096 Page 1/byte 1984 Page 1/byte 2048 NFC_SWAP[ADDR1] = (1984/8)1

NFC_SWAP[ADDR2] = (2048/8)

1 Only works with a user page size of at least 2055 bytes. Does not work with ECC mode 111.

4096 + 208 4096 Page 1/byte 1944 Page 1/byte 2048 NFC_SWAP[ADDR1] = (1944/8)
NFC_SWAP[ADDR2] = (2048/8)

Table 22-22. NFC_CMD2[CODE] Detail

NFC_CMD2
[CODE] bit Action when Bit is Set

15 Start DMA transfer to read data from memory , and write to SRAM.

14 Send command byte 1 (NFC_CMD2[BYTE1]) to flash

13 Send column address 1 (COL_ADDR1) to flash

12 Send column address 2 (COL_ADDR2) to flash

11 Send row address 1 (NFC_RAR[BYTE1]) to flash

10 Send row address 2 (NFC_RAR[BYTE2]) to flash

9 Send row address 3 (NFC_RAR[BYTE3]) to flash

8 Write data to flash. Total of NFC_CFG[PAGECNT] pages is written to the flash, and equal number of starts is 
sent to the residue engine. Also, additional starts to the DMA engine are sent, until DMA has transferred the 
NFC_CFG[PAGECNT] data from memory to NFC.

7 Send command byte 2 (NFC_CMD1[BYTE2]) to flash
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22.4.8 Interrupts

There are two interrupts to flag the end of a command execution:

1. The done interrupt, NFC_ISR[DONE]. Use this interrupt if commands are sent back-to-back to the 
flash. It indicates when a new command can be dispatched. The done interrupt is given before the 
flash data is corrected and resident in memory, because operation of the ECC engine and DMA 
engine is pipelined.

When the done interrupt is tracks command completion, the software may also monitor the 
NFC_ISR[ECCBUSY, DMABUSY, ECCBN, DMABN] fields.

a) NFC_ISR[ECCBUSY] indicates that the ECC block is still busy, and reports the buffer number 
the ECC block is working on in NFC_ISR[ECCBN].

b) NFC_ISR[DMABUSY] indicates that the DMA block is still busy, and reports the buffer 
number the DMA block is working on in NFC_ISR[DMABN].

2. The command idle interrupt, NFC_ISR[IDLE]. Use this interrupt if you want to use the data 
produced in the next process. The idle interrupt indicates all command processing has terminated, 
and the relevant data is now available in memory or the NFC SRAM buffer. When using 
back-to-back reads to the flash, use of the idle interrupt means the NFC does not operate at its 
maximum transfer speed, as ECC and DMA are now done in foreground.

When using the done interrupt, transfer completion for write pages can be assumed when the done interrupt 
is received. When done is received for read pages, the data may still be in flight in the DMA or the ECC. 
To check this, the CPU should remember the buffer number (NFC_CMD2[BUFNO]) associated with the 
command, and wait until the DMA and ECC are either idle, or are both busy on a different buffer number. 
(The ECC buffer number and DMA buffer number fields do not match the BUFNO specified with 
command.) You can check on any done interrupt or by polling the register.

6 Wait for flash R/B handshake

5 Read data from flash. Read is only started if the new NFC_CMD2[BUFNO] is idle. One or more starts are sent 
to the residue engine, total NFC_CFG[PAGECNT] starts.
Note: For reads, DMA is not started. Instead, to start DMA for reads, NFC_CFG[DMAREQ] must be set.

4 Send command byte 3 (NFC_CMD1[BYTE3]) to flash

3 Read flash status

2 Read ID

1 Always set. End-of-command marker used to signal done.

0 Reserved, must be cleared.

Table 22-22. NFC_CMD2[CODE] Detail (continued)

NFC_CMD2
[CODE] bit Action when Bit is Set
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Chapter 23  
Universal Serial Bus Interface – Host Module
This chapter describes the universal serial bus (USB) host module, which implements many industry 
standards. However, it is beyond the scope of this document to document the intricacies of these standards. 
Instead, it is left to the reader to refer to the governing specifications. Readers of this chapter are assumed 
to be fluent in the operation and requirements of a USB network.

The following documents are available from the USB Implementers Forum web page at 
http://www.usb.org/developers/docs:

• Universal Serial Bus Specification, Revision 2.0

The following documents are available from the Intel USB Specifications web page at 
http://www.intel.com/technology/usb/spec.htm:

• Enhanced Host Controller Interface (EHCI) Specification for Universal Serial Bus, Revision 1.0

23.1 Introduction
The processor implements two USB modules: a host module and an On-The-Go (OTG) module. The host 
and OTG modules can be used with a full-speed/low-speed on-chip transceiver or with an external ULPI 
transceiver. For more details on the USB OTG module, refer to Chapter 24, “Universal Serial Bus 
Interface – On-The-Go Module.”

USB host modules must supply 500 mA with a 5 V supply on its downstream port (referred to as VBUS). 
If the connected device attempts to draw more than the allocated amount of current, the USB host must 
disable the port and remove power. This processor provides pins for control and status to an external IC 
capable of managing the VBUS downstream supply.

Register and data structure interfaces conform to the EHCI specification from Intel Corporation, with 
enhancements to support the embedded environment. The USB controller contains its own DMA (direct 
memory access) engines that reduce interrupt load on the application processor, and thereby reduce total 
system bus bandwidth dedicated to servicing the USB interface requirements. The USB controller includes 
logic to support USB’s low-power suspend features, and for suspended devices to request remote wakeup 
from the host.

This USB host controller hides all direct interaction with the protocol, but some knowledge of the USB is 
required to properly configure the device for operation on the local bus and on the USB. This document 
covers programming requirements, and additional information may be found in the USB specification.

http://www.usb.org/developers/docs
http://www.intel.com/technology/usb/spec.htm
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23.1.1 Block Diagram

The USB host module is shown below in Figure 23-1.

Figure 23-1. USB Host Interface Block Diagram

23.1.2 Overview

The USB host module is a USB 2.0-compliant serial interface engine for implementing a USB interface. 
The registers and data structures for both modules are based on the Enhanced Host Controller Interface 
Specification for Universal Serial Bus from Intel Corporation. The USB controller supports directly 
connected full- and low-speed peripherals without the need for UHCI or OHCI companion controllers.

The USB host module interfaces to the processor’s ColdFire core. The USB controller is programmable to 
support full-speed (12 Mbps) and low-speed (1.5 Mbps) applications using the on-chip transceiver. The 
processor’s on-chip PLL provides all necessary clocks to the USB controller. For special applications, pin 
access (via USBCLKIN) is provided for an external USB reference clock (60MHz).

The USB host controller provides control and status signals to interface with external USB host power 
devices. Use these control and status signals on the chip interface to communicate with external USB host 
power solutions. USB VBUS is not provided on-chip.

The on-chip FS/LS transceiver does not include USB DP and DM bias resistors. The primary function of 
the transceiver is the physical signal conditioning of the external USB DP and DM cable signals for a 
USB 2.0 network. Several USB system elements are not supported on this device as they are available via 
a standard product from various manufacturers.

23.1.3 Features

The USB host module includes the following features:

• Complies with USB specification revision 2.0
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• Supports operation as a standalone USB host controller

— Supports enhanced host controller interface (EHCI) 

— Allows direct connection of full-speed (FS) or low-speed (LS) devices without an OHCI/UHCI 
companion controller

— Supported by Linux and other commercially available operating systems

• Includes on-chip full-speed (12 Mbps), and low-speed (1.5 Mbps) transceiver

• Optional UTMI+ Low Pin Interface (ULPI) to support high speed (HS = 480 Mbps) transfers with 
external PHY, shared with USB OTG module (see MISCCR2[ULPI] in Chapter 10, “Chip 
Configuration Module (CCM)).

• Allows vendor to define any USB device or class for targeted peripheral list, including USB hubs

• Supports VBUS power enable and VBUS over-current detect to control bus power

• Registers provided for indicating VBUS state to controller

• Suspend mode/low power

— As host, firmware can suspend individual devices or the entire USB and disable chip clocks for 
low-power operation

— Device supports low-power suspend

— Remote wake-up supported

— Integrated with the processor’s doze and stop modes for ultra-low power operation

23.1.4 Modes of Operation

The USB host controller provides the functionality of one USB 2.0 host. The module is hardwired to an 
on-chip full-/low-speed transceiver. Speed selection is auto-detected at connect time via sensing of the DP 
or DM pullup resistor on the connected device using procedures of enumeration in the USB network. The 
USB host module provides the following modes of operation for the user:

• USB disabled. In this mode, the USB host datapath does not accept transactions received on the 
USB interface.

• USB enabled. In this mode, the USB host’s datapath is enabled to accept transactions received on 
the USB interface.

• USB enabled, low power modes. See Section 23.1.4.1, “Low-Power Modes,” for details.

23.1.4.1 Low-Power Modes 

The USB host module is integrated with the Version 3 ColdFire core’s low-power modes (stop, doze and 
wait). The modes are implemented as follows:

• Stop — The processor stops the clock to the USB host module. In this state, the module ignores 
traffic on the USB network and does not generate any interrupts or wake-up events. The on-chip 
transceiver is disabled to save power.

• Wait — The clocks to the USB host module are running.
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• Doze — The processor stops the system clocks to the USB host module. However, the 60 Mhz 
transceiver clock remains active. Detection of resume signaling initiates a restart of the module 
clocks. 

23.2 External Signal Description
Table 23-1 describes the external signals of the USB host module.

23.2.1 USB Host Control and Status Signals

To minimize the pin-count on the device, a few USB host control and status signals are implemented 
on-chip as bit fields in a register within the chip configuration module (CCM).

The host controller status register (UHCSR) is implemented as follows:

• Writes to the UHCSR register from the firmware set the corresponding bits on the USB interface.

• When the USB host module outputs change, the corresponding bits on the UHCSR register are 
updated, and a maskable interrupt is generated.

The UHCSR register is documented in the CCM chapter, see Chapter 10, “Chip Configuration Module 
(CCM).”

Table 23-1. USB Host External Signals

Signal I/O Description

USB_CLKIN I Optional 60 MHz clock source.

USBH_DM I/O

D- output of the dual-speed transceiver for the USB Host module.

State
Meaning

Asserted—Data 1
Negated—Data 0

Timing Asynchronous

USBH_DP I/O

D+ output of the dual-speed transceiver for the USB Host module.

State
Meaning

Asserted—Data 1
Negated—Data 0

Timing Asynchronous

USBH_VBUS_EN O

Enables off-chip charge pump controller of VBUS for the USB host module.

State
Meaning

Asserted—Off-chip charge pump controller enabled
Negated—Off-chip charge pump controller disabled

Timing Asynchronous

USBH_VBUS_OC I

Communicates short on USB lines occurred for USB host module.

State
Meaning

Asserted—Short detected
Negated—No short detected

Timing Synchronous to USB_CLKIN.
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23.3 Memory Map/Register Definitions
This section provides the memory map of the USB host module. Descriptions of these registers can be 
found in Chapter 24, “Universal Serial Bus Interface – On-The-Go Module.” See the Section/Page heading 
in the below table for direct links to the corresponding register description. Addresses and reset values 
shown here are correct for the USB host module.

Table 23-2. Internal Control and Status Bits for USB Host Module

Signal Mnemonic Direction Access
Interrupt
Trigger?

Port Indicator LED 
Control

PORTIND[1:0]
Selects LED color for product 
package.

R N

Wake-up Event
WKUP

Reflects when a wake-up event has 
occurred on the USB bus.

R/W Y

Drive VBUS
DRVVBUS

Enables drive of the 5 V power on 
VBUS

R/W N

VBUS Power Fault
PWRFLT

Indicates a power fault occurred on 
VBUS (overcurrent)

R/W N

Interrupt Mask

UHMIE

Interrupt enable. When set, changes 
on WKUP cause an interrupt to be 
asserted.
When cleared, the interrupt is masked.

R/W N/A

On-chip Transceiver 
Pull-down Enable

XPDE
Enables 50 k pull-downs on the host 
controller’s DM and DP pins

R/W N

Table 23-3. USB Host Controller Memory Map

Address Register

E
H

C
I1 Width

(bits)

A
cc

es
s

Reset Section/Page

Module Identification Registers

0xFC0B_4000 Identification Register (ID) N 32 R 0xE242_FA05 24.3.1.1/24-8

0xFC0B_4004 General Hardware Parameters (HWGENERAL) N 32 R 0x0000_07C5 24.3.1.2/24-9

0xFC0B_4008 Host Hardware Parameters (HWHOST) N 32 R 0x1002_0001 24.3.1.3/24-10

0xFC0B_4010 TX Buffer Hardware Parameters (HWTXBUF) N 32 R 0x8004_0404 24.3.1.5/24-11

0xFC0B_4014 RX Buffer Hardware Parameters (HWRXBUF) N 32 R 0x0000_0404 24.3.1.6/24-11

Timer Registers

0xFC0B_4080 General Purpose Timer 0 Load (GPTIMER0LD) N 32 R/W 0x0000_0000 24.3.2.1/24-12

0xFC0B_4084 General Purpose Timer 0 Control (GPTIMER0CTL) N 32 R/W 0x0000_0000 24.3.2.2/24-12

0xFC0B_4088 General Purpose Timer 1 Load (GPTIMER1LD) N 32 R/W 0x0000_0000 24.3.2.1/24-12

0xFC0B_408C General Purpose Timer 1 Control (GPTIMER1CTL) N 32 R/W 0x0000_0000 24.3.2.2/24-12

Capability Registers
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23.4 Functional Description
The USB host module’s functional description is very similar to the USB OTG module in host mode. See 
Chapter 24, “Universal Serial Bus Interface – On-The-Go Module,” and the Enhanced Host Controller 
Interface (EHCI) Specification for Universal Serial Bus, Revision 1.0 for more information.

0xFC0B_4100 Host Interface Version Number (HCIVERSION) Y 16 R 0x0100 24.3.3.1/24-13

0xFC0B_4103 Capability Register Length (CAPLENGTH) Y 8 R 0x40 24.3.3.4/24-15

0xFC0B_4104 Host Structural Parameters (HCSPARAMS) Y 32 R 0x0001_0011 24.3.3.3/24-14

0xFC0B_4108 Host Capability Parameters (HCCPARAMS) Y 32 R 0x0000_0006 24.3.3.4/24-15

Operational Registers

0xFC0B_4140 USB Command (USBCMD) Y 32 R/W 0x0008_0B00 24.3.4.1/24-17

0xFC0B_4144 USB Status (USBSTS) Y 32 R/W 0x0000_1080 24.3.4.2/24-19

0xFC0B_4148 USB Interrupt Enable (USBINTR) Y 32 R/W 0x0000_0000 24.3.4.3/24-22

0xFC0B_414C USB Frame Index (FRINDEX) Y 32 R/W 0x0000_0000 24.3.4.4/24-24

0xFC0B_4154 Periodic Frame List Base Address (PERIODICLISTBASE) Y 32 R/W 0x0000_0000 24.3.4.5/24-25

0xFC0B_4158 Current Asynchronous List Address (ASYNCLISTADDR) Y 32 R/W 0x0000_0000 24.3.4.7/24-26

0xFC0B_415C Host TT Asynchronous Buffer Control (TTCTRL) N 32 R/W 0x0000_0000 24.3.4.9/24-27

0xFC0B_4160 Master Interface Data Burst Size (BURSTSIZE) N 32 R/W 0x0000_1010 24.3.4.10/24-28

0xFC0B_4164 Host Transmit FIFO Tuning Control (TXFILLTUNING) N 32 R/W 0x0002_0000 24.3.4.11/24-28

0xFC0B_4180 Configure Flag Register (CONFIGFLAG) Y 32 R 0x0000_0001 24.3.4.13/24-32

0xFC0B_4184 Port Status/Control (PORTSC1) Y 32 R/W 0xEC00_0000 24.3.4.14/24-32

0xFC0B_41A8 USB Mode Register (MODE) N 32 R/W 0x0000_0003 24.3.4.16/24-39

1 Indicates if the register is present in the EHCI specification.

Table 23-3. USB Host Controller Memory Map (continued)

Address Register

E
H

C
I1 Width

(bits)

A
cc

es
s

Reset Section/Page
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Chapter 24  
Universal Serial Bus Interface – On-The-Go Module

24.1 Introduction
This chapter describes the universal serial bus (USB) interface, which implements many industry 
standards. However, it is beyond the scope of this document to document the intricacies of these standards. 
Instead, you should refer to the governing specifications. Readers of this chapter are assumed to be fluent 
in the operation and requirements of a USB network.

Visit the USB Implementers Forum web page at http://www.usb.org/developers/docs for:

• Universal Serial Bus Specification, Revision 2.0

• On-The-Go Supplement to the USB 2.0 Specification, Revision 1.0a

Visit the Intel USB specifications web page at http://www.intel.com/technology/usb/spec.htm for:

• Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 1.0

Visit the ULPI web page at http://www.ulpi.org for:

• UTMI+ Specification, Revision 1.0

• UTMI Low Pin Interface (ULPI) Specification, Revision 1.0

24.1.1 Overview

The USB On-The-Go (OTG) module is a USB 2.0-compliant serial interface engine for implementing a 
USB interface. The registers and data structures are based on the Enhanced Host Controller Interface 
Specification for Universal Serial Bus (EHCI) from Intel Corporation. The USB OTG module can act as 
a host, a device, or an On-The-Go negotiable host/device on the USB bus.

The USB 2.0 OTG module interfaces to the processor’s ColdFire core. The USB controller is 
programmable to support host, or device operations under firmware control. Full-speed (FS) and 
low-speed (LS) applications are supported by the integrated on-chip transceiver. The ULPI interface 
option supports high-speed (HS) applications. The processor’s on-chip PLL provides all necessary clocks 
to the USB controller, including a system interface clock and a 60 MHz clock. For special applications, 
pin access (via USBCLKIN) is provided for an external 60 MHz reference clock. See Chapter 10, "Chip 
Configuration Module (CCM)",” for more information.

The USB controller provides control and status signals to interface with external USB OTG and USB host 
power devices. Use these control and status signals on the chip interface and the I2C bus to communicate 
with external USB On-The-Go and USB host power devices.

USB-host modules must supply 500 mA with a 5 V supply on its downstream port (referred to as VBUS); 
however, the USB OTG standard provides a minimum 8 mA VBUS supply requirement. Optionally, the 

http://www.usb.org/developers/docs
http://www.intel.com/technology/usb/spec.htm
http://www.ulpi.org
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OTG module may supply up to 500 mA to the USB-connected devices. If the connected device attempts 
to draw more than the allocated amount of current, the USB host must disable the port and remove power. 
USB VBUS is not provided on-chip. This processor provides pins for control and status to an external IC 
capable of managing the VBUS downstream supply.

For OTG operations, external circuitry is required to manage the host negotiation protocol (HNP) and 
session request protocol (SRP). External ICs that are capable of providing the OTG VBUS with support 
for HNP and SRP, as well as support for programmable pullup and pulldown resistors on the USB DP and 
DM lines are available from various manufacturers.

The on-chip FS/LS transceiver also includes a programmable pullup resistor on USB DP. This pullup is 
configurable via the CCM. Also, configurable 50 k pulldown resistors are available on the USB_DP and 
USB_DM signals of the on-chip transceiver. See Chapter 10, "Chip Configuration Module (CCM)",” for 
more information. The primary function of the transceiver is the physical signal conditioning of the 
external USB DP and DM cable signals for a USB 2.0 network. Several USB system elements are not 
supported on the device as they are available via standard products from various manufacturers.

24.1.2 Block Diagram

Figure 24-1 shows the USB On-The-Go interface using the on-chip full-speed/low-speed transceiver.

Figure 24-1. USB On-The-Go with on-chip FS/LS Transceiver Interface Block Diagram

Figure 24-2 illustrates the On-The-Go (OTG) configuration with an off-chip ULPI transceiver. The ULPI 
transceiver is an implementation of the HS/FS/LS physical layer which encapsulates the 60+ pin UTMI+ 
interface using a 12-pin digital interface.
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The board-level implementation of a ULPI based product is dependent on the PHY vendor. One possible 
implementation is shown in Figure 24-1. The ULPI PHY manages USB clocking, DP/DM bias resistors, 
and the OTG VBUS charge pump. For OTG applications requiring full host power (100 – 500 mA 
downstream current), an additional USB power-switch chip may be used. This OTG configuration may be 
used as a USB device, host, or dual-role device under firmware control.

Figure 24-2. USB On-The-Go module and ULPI transceiver/PHY

24.1.3 Features

The USB On-The-Go module includes these features:

• Complies with USB specification rev 2.0

• USB host mode

— Supports enhanced-host-controller interface (EHCI).

— Allows direct connection of FS/LS devices without an OHCI/UHCI companion controller.

— Supported by Linux and other commercially available operating systems.

• USB device mode

— Supports full-speed operation via the on-chip transceiver.

— Supports full-speed/high-speed operation via an external ULPI transceiver.

— Supports one upstream facing port.

— Supports four programmable, bidirectional USB endpoints, including endpoint 0. See endpoint 
configurations:
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• Suspend mode/low power

— As host, firmware can suspend individual devices or the entire USB and disable chip clocks for 
low-power operation

— Device supports low-power suspend

— Remote wake-up supported for host and device

— Integrated with the processor’s doze and stop modes for low power operation

• Includes an on-chip full-speed (12 Mbps) and low-speed (1.5 Mbps) transceiver

• Support for off-chip HS/FS/LS transceiver

— External ULPI transceiver supports high speed (480 Mbps), full speed, and low speed 
operation in host mode, and high-speed and full-speed operation in device mode (shared with 
USB host module, see MISCCR2[ULPI] in Chapter 10, "Chip Configuration Module (CCM)")

— Interface uses 8-bit single-data-rate ULPI data bus

— ULPI PHY supplies a 60 MHz USB reference clock input to the processor

24.1.4 Modes of Operation

The USB OTG module has two basic operating modes: host and device. Selection of operating mode is 
accomplished via the USBMODE[CM] bit field.

Speed selection is auto-detected at connect time via sensing of the DP or DM pull-up resistor on the 
connected device using enumeration procedures in the USB network. The USB OTG module provides 
these operation modes:

• USB disabled. In this mode, the USB OTG’s datapath does not accept transactions received on the 
USB interface.

• USB enabled. In this mode, the USB host’s datapath is enabled to accept transactions received on 
the USB interface.

• USB enabled, low-power modes. See Section 24.1.4.1, “Low-Power Modes,” for details.

24.1.4.1 Low-Power Modes

The USB OTG module is integrated with the processor’s low-power modes (stop, doze and wait). The 
modes are implemented as follows:

• Stop — The processor stops the clock to the USB OTG module. In this state, the USB OTG module 
ignores traffic on the USB and does not generate any interrupts or wake-up events. The on-chip 
transceiver is disabled to save power.

• Wait — The clocks to the USB OTG module are running.

Table 24-1. Endpoint Configurations

Endpoint Type FIFO Size Data Transfer Comments

0 Bidirectional Variable Control Mandatory

1-3 IN or OUT Variable Ctrl, Int, Bulk, or Iso Optional
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• Doze — The processor stops the system clocks to the USB OTG module, but the 60 MHz 
transceiver clock remains active. In doze mode, detection of resume signaling initiates a restart of 
the module clocks. 

24.2 External Signal Description
Table 24-2 describes the external signal functionality of the USB OTG module.

NOTE
The ULPI signals are multiplexed with the Ethernet assembly. This section 
describes the signal functions when in ULPI mode; refer to Chapter 15, 
"Pin-Multiplexing and Control",” for more details.

24.2.1 USB OTG Control and Status Signals

The USB OTG module uses a number of control and status signals to implement the OTG protocols. The 
USB OTG module must be able to individually enable and disable the pull-up and pull-down resistors on 
DP and DM, and it must be able to control and sense the levels on the USB VBUS line. 

These control and status signals are implemented on chip as registers within the chip-configuration module 
(CCM) to minimize the pin-count on the device. With firmware, the system designer uses an external 
device to manage the OTG functions to implement communications across the I2C bus or GPIO pins.

The OTG controller status register (UOCSR) implements as follows:

• Writes to the UOCSR register from the firmware set the corresponding bits on the USB interface.

Table 24-2. USB OTG Signal Descriptions

Signal I/O Description

On-chip FS/LS transceiver

USB_CLKIN I Optional 60 MHz clock source. This signal is also used for the input clock from a ULPI PHY.

USBOTG_DM I/O Data minus. Output of dual-speed transceiver for the USB OTG module.

State
Meaning

Asserted—Data 1
Negated—Data 0

Timing Asynchronous

USBOTG_DP I/O Data plus. Output of dual-speed transceiver for the USB OTG module.

State
Meaning

Asserted—Data 1
Negated—Data 0

Timing Asynchronous

USB_PULLUP O Enables an external pull-up on the USBOTG_DP line. This signal is controlled by the 
UOCSR[BVLD] bit.

State
Meaning

Asserted—Pull-up enabled. UOCSR[BVLD] set.
Negated—Pull-up disabled. UOCSR[BVLD] cleared.

Timing Asynchronous
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• When the USB OTG module outputs change, the corresponding bits on the UOCSR register are 
updated, and a maskable interrupt is generated.

The UOCSR register is documented in the CCM chapter, see 10.3.7, "USB On-the-Go Controller Status 
Register (UOCSR)".

Table 24-3. Internal Control and Status Bits for USB OTG Module

Signal Mnemonic Direction Comments
Interrupt
Trigger?

DP Pull-down 
Enable

DPPD Enables 15 k resistor pull-down 
on DP

R Y

DM Pull-down 
Enable

DMPD Enables 15 k resistor pull-down 
on DM

R Y

VBUS Drive DRV_VBUS Enables bus power on VBUS to 
connected device.

R Y

VBUS Charge CRG_VBUS Enables 8 mA pull-up to charge 
VBUS.

R Y

VBUS Discharge DCR_VBUS Enables 8 mA pull-down to 
discharge VBUS.

R Y

DP Pull-up Enable DPPU Enables the 1.5K resistor pull-up 
on DP

R Y

A Session Valid AVLD Indicates a valid session level for A 
device detected on VBUS.

R/W N

B Session Valid BVLD Indicates a valid session level for B 
device detected on VBUS.

R/W N

Session Valid VVLD Indicates valid operating level on 
VBUS from USB device’s 
perspective.

R/W N

Session End SEND Indicates VBUS fell below the 
session valid threshold.

R/W N

VBUS Fault PWRFLT Indicates a fault (overcurrent, 
thermal issue) on VBUS.

R/W N

Wake-up Event WKUP Reflects when a wake-up event 
occurred on the USB bus.

R/W Y

Interrupt Mask UOMIE Interrupt enable. When this bit is 1, 
changes on DPPD, DMPD, DPPU, 
CHRG_VBUS, DCRG_VBUS, or 
VBUS_PWR cause an interrupt to 
be asserted.
When this bit is 0, the interrupt is 
masked.

R/W N/A

On-chip Transceiver 
Pull-down Enable

XPDE Enables the on-chip 50 k 
pull-downs on the OTG controller’s 
DM and DP pins when the on-chip 
transceiver is used.

R/W N
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24.3 Memory Map/Register Definition
This section provides the memory map and detailed descriptions of all USB-interface registers. See 
Table 24-4 for the memory map of the USB OTG interface. Registers in USB host module are similar, 
starting with 0xFC0B_4xxx. See Chapter 23, "Universal Serial Bus Interface – Host Module",” for the 
USB host memory map.

Table 24-4. USB On-The-Go Memory Map

Address Register

E
H

C
I1

H
/D

2 Width
(bits)

A
cc

es
s

Reset Section/Page

Module Identification Registers

0xFC0B_0000 Identification Register (ID) N H/D 32 R 0xE241_FA05 24.3.1.1/24-8

0xFC0B_0004 General Hardware Parameters (HWGENERAL) N H/D 32 R 0x0000_07C5 24.3.1.2/24-9

0xFC0B_0008 Host Hardware Parameters (HWHOST) N H/D 32 R 0x1002_0001 24.3.1.3/24-10

0xFC0B_000C Device Hardware Parameters (HWDEVICE) N D 32 R 0x0000_0009 24.3.1.4/24-10

0xFC0B_0010 TX Buffer Hardware Parameters (HWTXBUF) N H/D 32 R 0x8004_0604 24.3.1.5/24-11

0xFC0B_0014 RX Buffer Hardware Parameters (HWRXBUF) N H/D 32 R 0x0000_0404 24.3.1.6/24-11

Device/Host Timer Registers

0xFC0B_0080 General Purpose Timer 0 Load (GPTIMER0LD) N H/D 32 R/W 0x0000_0000 24.3.2.1/24-12

0xFC0B_0084 General Purpose Timer 0 Control (GPTIMER0CTL) N H/D 32 R/W 0x0000_0000 24.3.2.2/24-12

0xFC0B_0088 General Purpose Timer 1 Load (GPTIMER1LD) N H/D 32 R/W 0x0000_0000 24.3.2.1/24-12

0xFC0B_008C General Purpose Timer 1 Control (GPTIMER1CTL) N H/D 32 R/W 0x0000_0000 24.3.2.2/24-12

Capability Registers

0xFC0B_0100 Host Interface Version Number (HCIVERSION) Y H 16 R 0x0100 24.3.3.1/24-13

0xFC0B_0103 Capability Register Length (CAPLENGTH) Y H/D 8 R 0x40 24.3.3.2/24-14

0xFC0B_0104 Host Structural Parameters (HCSPARAMS) Y H 32 R 0x0001_0011 24.3.3.3/24-14

0xFC0B_0108 Host Capability Parameters (HCCPARAMS) Y H 32 R 0x0000_0006 24.3.3.4/24-15

0xFC0B_0122 Device Interface Version Number (DCIVERSION) N D 16 R 0x0001 24.3.3.5/24-16

0xFC0B_0124 Device Capability Parameters (DCCPARAMS) N D 32 R 0x0000_0184 24.3.3.6/24-16

Operational Registers

0xFC0B_0140 USB Command (USBCMD) Y H/D 32 R/W 0x0008_0000 24.3.4.1/24-17

0xFC0B_0144 USB Status (USBSTS) Y H/D 32 R/W 0x0000_0080 24.3.4.2/24-19

0xFC0B_0148 USB Interrupt Enable (USBINTR) Y H/D 32 R/W 0x0000_0000 24.3.4.3/24-22

0xFC0B_014C USB Frame Index (FRINDEX) Y H/D 32 R/W 0x0000_0000 24.3.4.4/24-24

0xFC0B_0154 Periodic Frame List Base Address (PERIODICLISTBASE) Y H 32 R/W 0x0000_0000 24.3.4.5/24-25

0xFC0B_0154 Device Address (DEVICEADDR) N D 32 R/W 0x0000_0000 24.3.4.6/24-26
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24.3.1 Module Identification Registers

Declare the slave interface presence and include a table of the hardware configuration parameters. These 
registers are not defined by the EHCI specification.

24.3.1.1 Identification (ID) Register

Provides a simple way to determine if the module is provided in the system. The ID register identifies the 
module and its revision.

0xFC0B_0158 Current Asynchronous List Address (ASYNCLISTADDR) Y H 32 R/W 0x0000_0000 24.3.4.7/24-26

0xFC0B_0158 Address at Endpoint List (EPLISTADDR) N D 32 R/W 0x0000_0000 24.3.4.8/24-27

0xFC0B_015C Host TT Asynchronous Buffer Control (TTCTRL) N H 32 R/W 0x0000_0000 24.3.4.9/24-27

0xFC0B_0160 Master Interface Data Burst Size (BURSTSIZE) N H/D 32 R/W 0x0000_0101 24.3.4.10/24-28

0xFC0B_0164 Host Transmit FIFO Tuning Control (TXFILLTUNING) N H 32 R/W 0x0000_0000 24.3.4.11/24-28

0xFC0B_0170 ULPI Register Access (ULPI_VIEWPORT) N H/D 32 R/W 0x0000_0000 24.3.4.12/24-30

0xFC0B_0180 Configure Flag Register (CONFIGFLAG) Y H/D 32 R 0x0000_0001 24.3.4.13/24-32

0xFC0B_0184 Port Status/Control (PORTSC1) Y H/D 32 R/W 0xEC00_0004 24.3.4.14/24-32

0xFC0B_01A4 On-The-Go Status and Control (OTGSC) N H/D 32 R/W 0x0000_1020 24.3.4.15/24-36

0xFC0B_01A8 USB Mode Register (MODE) N H/D 32 R/W 0x0000_0000 24.3.4.16/24-39

0xFC0B_01AC Endpoint Setup Status Register (EPSETUPSR) N D 32 R/W 0x0000_0000 24.3.4.17/24-40

0xFC0B_01B0 Endpoint Initialization (EPPRIME) N D 32 R/W 0x0000_0000 24.3.4.18/24-41

0xFC0B_01B4 Endpoint De-initialize (EPFLUSH) N D 32 R/W 0x0000_0000 24.3.4.19/24-41

0xFC0B_01B8 Endpoint Status Register (EPSR) N D 32 R 0x0000_0000 24.3.4.20/24-42

0xFC0B_01BC Endpoint Complete (EPCOMPLETE) N D 32 R/W 0x0000_0000 24.3.4.21/24-43

0xFC0B_01C0 Endpoint Control Register 0 (EPCR0) N D 32 R/W 0x0080_0080 24.3.4.22/24-44

0xFC0B_01C4 Endpoint Control Register 1 (EPCR1) N D 32 R/W 0x0000_0000 24.3.4.23/24-45

0xFC0B_01C8 Endpoint Control Register 2 (EPCR2) N D 32 R/W 0x0000_0000 24.3.4.23/24-45

0xFC0B_01CC Endpoint Control Register 3 (EPCR3) N D 32 R/W 0x0000_0000 24.3.4.23/24-45

1 Indicates if the register is present in the EHCI specification.
2 Indicates if the register is available in host and/or device modes.

Table 24-4. USB On-The-Go Memory Map (continued)

Address Register

E
H

C
I1

H
/D

2 Width
(bits)

A
cc

es
s

Reset Section/Page
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24.3.1.2 General Hardware Parameters Register (HWGENERAL)

The HWGENERAL register contains parameters defining the particular implementation of the module. 

Address: 0xFC0B_0000 (ID) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 REVISION 1 1 NID 0 0 ID

W

Reset 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1

Figure 24-3. Identification Register (ID)

Table 24-5. ID Field Descriptions

Field Description

31–24 Reserved, always set to 0xE2.

23–16
REVISION

Revision number of the module.

15–14 Reserved, always set.

13–8
NID

Ones-complement version of the ID bit field.

7–6 Reserved, always cleared.

5–0
ID

Configuration number. This number is set to 0x05.

Address: 0xFC0B_0004 (HWGENERAL) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SM PHYM PHYW 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1

Figure 24-4. General Hardware Parameters Register (HWGENERAL)

Table 24-6. HWGENERAL Field Descriptions

Field Description

31–11 Reserved, always cleared.

10–9
SM

Serial mode. Indicates presence of serial interface. Always 11.
11 Serial engine is present and defaulted for all FS/LS operations

8–6
PHYM

PHY Mode. Indicates USB transceiver interface used. Always reads 111.
111 Software controlled reset to serial FS

5–4
PHYW

PHY width. Indicates data interface to UTMI transceiver. This field is relevant only for UTMI mode; therefore, it is 
relevant only to the USB OTG module in UTMI mode. Always reads 00.
00 8-bit data bus (60 MHz)

3 Reserved, always cleared. 
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24.3.1.3 Host Hardware Parameters Register (HWHOST)

Provides host hardware parameters for this implementation of the module.

24.3.1.4 Device Hardware Parameters Register (HWDEVICE)

Provides device hardware parameters for this implementation of the USB OTG module.

2–1 Reserved. For the USB OTG module, always 10; for the USB host module, always 01.

0 Reserved, always set.

Address: 0xFC0B_0008 (HWHOST) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TTPER TTASY 0 0 0 0 0 0 0 0 0 0 0 0 NPORT HC

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 24-5. Host Hardware Parameters Register (HWHOST)

Table 24-7. HWHOST Field Descriptions

Field Description

31–24
TTPER

Transaction translator periodic contexts. Number of supported transaction translator periodic contexts. 
Always 0x10.
0x10 16

23–16
TTASY

Transaction translator contexts. Number of transaction translator contexts. Always 0x02.
0x02 2

15–4 Reserved, always cleared.

3–1
NPORT

Indicates number of ports in host mode minus 1. Always 0 for the USB OTG module; Always 1 for the USB host 
module. 

0
HC

Indicates module is host capable. Always set.

Address: 0xFC0B_000C (HWDEVICE) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DEVEP DC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Figure 24-6. Device Hardware Parameters Register (HWDEVICE)

Table 24-6. HWGENERAL Field Descriptions (continued)

Field Description
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24.3.1.5 Transmit Buffer Hardware Parameters Register (HWTXBUF)

Provides the transmit-buffer parameters for this implementation of the module.

24.3.1.6 Receive Buffer Hardware Parameters Register (HWRXBUF)

Provides the receive buffer parameters for this implementation of the module.

Table 24-8. HWDEVICE Field Descriptions

Field Description

31–6 Reserved, always cleared.

5–1
DEVEP

Device endpoints. The number of supported endpoints. Always 0x04.

0
DC

Indicates the OTG module is device capable. Always set.

Address: 0xFC0B_0010 (HWTXBUF) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TXLC 0 0 0 0 0 0 0 TXCHANADD TXADD TXBURST

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

Figure 24-7. Transmit Buffer Hardware Parameters Register (HWTXBUF)

Table 24-9. HWTXBUF Field Descriptions

Field Description

31
TXLC

Transmit local context registers. Indicates how the device transmit context registers implement. Always set on 
USB OTG module; Always clear on USB host.
0 Store device transmit contexts in the TX FIFO
1 Store device transmit contexts in a register file 

30–24 Reserved, always cleared.

23–16
TXCHANADD

Transmit channel address. Number of address bits required to address one channel’s worth of TX data. Always 
0x04.

15–8
TXADD

Transmit address. Number of address bits for the entire TX buffer. Always 0x06.

7–0
TXBURST

Transmit burst. Indicates number of data beats in a burst for transmit DMA data transfers. Always 0x04.

Address: 0xFC0B_0014 (HWRXBUF) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RXADD RXBURST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

Figure 24-8. Receive Buffer Hardware Parameters Register (HWRXBUF)
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24.3.2 Device/Host Timer Registers

The host/device controller drivers can measure time-related activities using these timer registers, which 
are not defined by the EHCI specification.

24.3.2.1 General Purpose Timer n Load Registers (GPTIMERnLD)

The GPTIMERnLD registers contain the timer duration or load value.

24.3.2.2 General Purpose Timer n Control Registers (GPTIMERnCTL)

The GPTIMERnCTL registers control the various functions of the general purpose timers.

Table 24-10. HWRXBUF Field Descriptions

Field Description

31–16 Reserved.

15–8
RXADD

Receive address. The number of address bits for the entire RX buffer. Always 0x04.

7–0
RXBURST

Receive burst. Indicates the number of data beats in a burst for receive DMA data transfers. Always 0x04.

Address: 0xFC0B_0080 (GPTIMER0LD)
0xFC0B_0088 (GPTIMER1LD)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
GPTLD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-9. General Purpose Timer n Load Registers (GPTIMERnLD)

Table 24-11. GPTIMERnLD Field Descriptions

Field Description

31–24 Reserved, must be cleared.

23–0
GPTLD

Specifies the value to be loaded into the countdown timer on a reset. The value in this register represents the 
time in microseconds minus 1 for the timer duration. For example, for a one millisecond timer, 
load 1000 – 1 = 999 (0x00_03E7).
Note: Maximum value of 0xFF_FFFF or 16.777215 seconds.

Address: 0xFC0B_0084 (GPTIMER0CTL)
0xFC0B_008C (GPTIMER1CTL)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RUN

0 0 0 0 0 0
MODE

GPTCNT

W RST

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-10. General Purpose Timer n Control Registers (GPTIMERnCTL)
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24.3.3 Capability Registers

Specifies software limits, restrictions, and capabilities of the host/device controller implementation. Most 
of these registers are defined by the EHCI specification. Registers not defined by the EHCI specification 
are noted in their descriptions.

24.3.3.1 Host Controller Interface Version Register (HCIVERSION)

This is a two-byte register containing a BCD encoding of the EHCI revision number supported by this 
OTG controller. The most-significant byte of the register represents a major revision; the least-significant 
byte is the minor revision. Figure 24-11 shows the HCIVERSION register.

Table 24-12. GPTIMERnCTL Field Descriptions

Field Description

31
RUN

Timer run. Enables the general purpose timer. Setting or clearing this bit does not have an effect on the 
GPTCNT field.
0 Timer stop
1 Timer run

30
RST

Timer reset. Setting this bit reloads GPTCNT with the value in GPTIMERnLD[GPTLD].
0 No action
1 Load counter value

29–25 Reserved, must be cleared.

24
MODE

Timer mode. Selects between a single timer countdown and a looped countdown. In one-shot mode, the timer 
counts down to zero, generates an interrupt, and stops until the counter is reset by software. In repeat mode, 
the timer counts down to zero, generates an interrupt, and automatically reloads the counter and begins 
another countdown.
0 One shot
1 Repeat

23–0
GPTCNT

Timer count. Indicates the current value of the running timer.

Address: 0xFC0B_0100 (HCIVERSION) Access: User read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HCIVERSION

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 24-11. Host Controller Interface Version Register (HCIVERSION)

Table 24-13. HCIVERSION Field Descriptions

Field Description

15–0
HCIVERSION

EHCI revision number. Value is 0x0100 indicating version 1.0.



Universal Serial Bus Interface – On-The-Go Module

24-14 NXP Semiconductors

24.3.3.2 Capability Registers Length Register (CAPLENGTH)

Register is used as an offset to add to the register base address to find the beginning of the operational 
register space, the location of the USBCMD register.

24.3.3.3 Host Controller Structural Parameters Register (HCSPARAMS)

This register contains structural parameters such as the number of downstream ports. Figure 24-13 shows 
the HCSPARAMS register.

Address: 0xFC0B_0103 (CAPLENGTH) Access: User read-only

7 6 5 4 3 2 1 0

R CAPLENGTH

W

Reset: 0 1 0 0 0 0 0 0

Figure 24-12. Capability Registers Length Register (CAPLENGTH)

Table 24-14. CAPLENGTH Field Descriptions

Field Description

7–0
CAPLENGTH

Capability registers length. Always 0x40.

Address: 0xFC0B_0104 (HCSPARAMS) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 N_TT N_PTT 0 0 0 PI N_CC N_PCC 0 0 0 PPC N_PORTS

W

Reset
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

See 
Note

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Note: Set on USB host module; Cleared on USB OTG.

Figure 24-13. Host Controller Structural Parameters Register (HCSPARAMS)

Table 24-15. HCSPARAMS Field Descriptions

Field Description

31–28 Reserved, always cleared.

27–24
N_TT

Number of transaction translators. Non-EHCI field. Indicates number of embedded transaction translators 
associated with host controller. This field is always 0x0. 
See Section 24.5.5.1, “Embedded Transaction Translator Function,” for more information on embedded 

transaction translators.

23–20
N_PTT

Ports per transaction translator. Non-EHCI field. Indicates number of ports assigned to each transaction 
translator within host controller.

19–17 Reserved, always cleared.
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24.3.3.4 Host Controller Capability Parameters Register (HCCPARAMS)

Identifies multiple mode control (time-base bit functionality) addressing capability.

16
PI

Port indicators. Indicates whether the ports support port indicator control. Always set on USB host, cleared on 
USB OTG.
0 No port indicator fields.
1 The port status and control registers include a R/W field for controlling the state of the port indicator. See 

Table 24-3 for more information.

15–12
N_CC

Number of companion controllers. Indicates number of companion controllers associated with USB OTG 
controller. Always cleared. 

11–8
N_PCC

Number ports per CC. Indicates number of ports supported per internal companion controller. This field is 0 
because no companion controllers are present.

7–5 Reserved, always cleared.

4
PPC

Power port control. Indicates whether host controller supports port power control. Always set.
1 Ports have power port switches.

3–0
N_PORTS

Number of ports. Indicates number of physical downstream ports implemented for host applications. Field value 
determines how many addressable port registers in the operational register. For the USB host and OTG 
modules, this is always 0x1.

Address: 0xFC0B_0108 (HCCPARAMS) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EECP IST 0 ASP PFL ADC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 24-14. Host Controller Capability Parameters Register (HCCPARAMS)

Table 24-16. HCCPARAMS Field Descriptions

Field Description

31–16 Reserved, always cleared.

15–8
EECP

EHCI extended capabilities pointer. This optional field indicates the existence of a capabilities list. 
0x00 No extended capabilities are implemented. This field is always 0.

7–4
IST

Isochronous scheduling threshold. Indicates where software can reliably update the isochronous schedule, 
relative to the current position of the executing host controller. This field is always 0.
0 The value of the least significant 3 bits indicates the number of microframes a host controller can hold a set 

of isochronous data structures (one or more) before flushing the state. 

3 Reserved, always cleared.

2
ASP

Asynchronous schedule park capability. Indicates if the host controller supports the park feature for high-speed 
queue heads in the asynchronous schedule. The feature can be disabled or enabled and set to a specific level 
by using the asynchronous schedule park mode enable and asynchronous schedule park mode count fields in 
the USBCMD register. This bit is always set.
0 Park not supported.
1 Park supported.

Table 24-15. HCSPARAMS Field Descriptions (continued)

Field Description
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24.3.3.5 Device Controller Interface Version (DCIVERSION)

Not defined in the EHCI specification. DCIVERSION is a two-byte register containing a BCD encoding 
of the device controller interface. The most-significant byte of the register represents a major revision and 
the least-significant byte is the minor revision.

24.3.3.6 Device Controller Capability Parameters (DCCPARAMS)

Not defined in the EHCI specification. Register describes the overall host/device capability of the USB 
OTG module.

1
PFL

Programmable frame list flag. Indicates that system software can specify and use a frame list length less that 
1024 elements. This bit is always set.
1 Frame list size is configured via the USBCMD register frame list size field. The frame list must always be 

aligned on a 4K-page boundary. This requirement ensures that the frame list is always physically contiguous.

0
ADC

64-bit addressing capability. This field is always 0; 64-bit addressing is not supported.
0 Data structures use 32-bit address memory pointers

Address: 0xFC0B_0122 (DCIVERSION) Access: User read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DCIVERSION

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 24-15. Device Controller Interface Version Register (DCIVERSION)

Table 24-17. DCIVERSION Field Descriptions

Field Description

15–0
DCIVERSION

Device interface revision number.

Address: 0xFC0B_0124 (DCCPARAMS) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HC DC 0 0 DEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

Figure 24-16. Device Control Capability Parameters (DCCPARAMS)

Table 24-18. DCCPARAMS Field Descriptions

Field Description

31–9 Reserved, always cleared.

8
HC

Host capable. Indicates the USB OTG controller can operate as an EHCI compatible USB 2.0 host. Always set.

Table 24-16. HCCPARAMS Field Descriptions (continued)

Field Description
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24.3.4 Operational Registers

Comprised of dynamic control or status registers and are defined below.

24.3.4.1 USB Command Register (USBCMD)

The module executes the command indicated in this register.

7
DC

Device Capable. Indicates the USB OTG controller can operate as an USB 2.0 device. Always set.

6–5 Reserved, always cleared.

4–0
DEN

Device endpoint number. This field indicates the number of endpoints built into the device controller. Always 
0x04.

Address: 0xFC0B_0140 (USBCMD) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 ITC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FS2

ATDT
W

SUTW
0

ASPE
0

ASP
0

IAA ASE PSE FS1 FS0 RST RS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-17. USB Command Register (USBCMD)

Table 24-19. USBCMD Field Descriptions

Field Description

31–24 Reserved, must be cleared.

23–16
ITC

Interrupt threshold control. System software uses this field to set the maximum rate at which the module issueS 
interrupts. ITC contains maximum interrupt interval measured in microframes.
0x00 Immediate (no threshold)
0x01 1 microframe
0x02 2 microframes
0x04 4 microframes
0x08 8 microframes
0x10 16 microframes
0x20 32 microframes
0x40 64 microframes
Else Reserved

15
FS2

See the FS bit description below. This is a non-EHCI bit. 

Table 24-18. DCCPARAMS Field Descriptions (continued)

Field Description
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14
ATDTW

Add dTD TripWire. This is a non-EHCI bit, that is present on the USB OTG module only. This bit is used as a 
semaphore when a dTD is added to an active (primed) endpoint. This bit is set and cleared by software. This 
bit is also cleared by hardware when the state machine is in a hazard region where adding a dTD to a primed 
endpoint may go unrecognized. More information appears in Section 24.5.3.6.3, “Executing a Transfer 
Descriptor.”

13
SUTW

Setup TripWire. A non-EHCI bit present on the USB OTG module only. Used as a semaphore to ensure that 
the setup data payload of 8 bytes is extracted from a QH by driver software without being corrupted. If the setup 
lockout mode is off (USBMODE[SLOM] = 1) then a hazard exists when new setup data arrives, and the 
software copies setup from the QH for a previous setup packet. This bit is set and cleared by software and is 
cleared by hardware when a hazard exists. More information appears in Section 24.5.3.4.4, “Control Endpoint 
Operation.”

12 Reserved, must be cleared.

11
ASPE

Asynchronous schedule park mode enable. Software uses this bit to enable or disable park mode.
1 Park mode enabled
0 Park mode disabled

10 Reserved, must be cleared.

9–8
ASP

Asynchronous schedule park mode count. Contains a count of the successive transactions the host controller 
can execute from a high-speed queue head on the asynchronous schedule before continuing traversal of the 
asynchronous schedule. Valid values are 0x1 to 0x3. Software must not write a zero to this field when ASPE is 
set as this results in undefined behavior.

7 Reserved, must be cleared.

6
IAA

Interrupt on async advance doorbell. Used as a doorbell by software to tell controller to issue an interrupt the 
next time it advances the asynchronous schedule. Software must write a 1 to this bit to ring the doorbell.
When controller has evicted all appropriate cached schedule states, it sets USBSTS[AAI] register. If the 
USBINTR[AAE] bit is set, the host controller asserts an interrupt at the next interrupt threshold.
The controller clears this bit after it has set the USBSTS[AAI] bit. Software must not write a 1 to this bit when 
the asynchronous schedule is inactive. Doing so yields undefined results. This bit used only in host mode. 
Writing a 1 to this bit when the USB OTG module is in device mode has undefined results.

5
ASE

Asynchronous schedule enable. Controls whether the controller skips processing the asynchronous schedule. 
Only used in host mode.
1 Use the ASYNCLISTADDR register to access asynchronous schedule.
0 Do not process asynchronous schedule.

4
PSE

Periodic schedule enable. Controls whether the controller skips processing periodic schedule. Used only in 
host mode.
1 Use the PERIODICLISTBASE register to access the periodic schedule.
0 Do not process periodic schedule.

3–2
FS

Frame list size. With bit 15, these bits make the FS[2:0] fields, which specifies the frame list size controlling 
which bits in the frame index register must be used for the frame list current index. Used only in host mode.
Note: Values below 256 elements are not defined in the EHCI specification.
000 1024 elements (4096 bytes)
001 512 elements (2048 bytes)
010 256 elements (1024 bytes)
011 128 elements (512 bytes)
100 64 elements (256 bytes)
101 32 elements (128 bytes)
110 16 elements (64 bytes)
111 8 elements (32 bytes)

Table 24-19. USBCMD Field Descriptions (continued)

Field Description
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24.3.4.2 USB Status Register (USBSTS)

This register indicates various states of each module and any pending interrupts. This register does not 
indicate status resulting from a transaction on the serial bus. Software clears certain bits in this register by 
writing a 1 to them.

1
RST

Controller reset. Software uses this bit to reset controller. Controller clears this bit when reset process 
completes. Clearing this register does not allow software to terminate the reset process early.
Host mode (USB Host and USB OTG):

When software sets this bit, the controller resets its internal pipelines, timers, counters, state machines etc. 
to their initial value. Any transaction in progress on the USB immediately terminates. A USB reset is not 
driven on downstream ports. Software must not set this bit when the USBSTS[HCH] bit is cleared. 
Attempting to reset an actively running host controller results in undefined behavior.

Device mode (USB OTG-only):
When software sets this bit, the controller resets its internal pipelines, timers, counters, state machines, etc. 
to their initial value. Setting this bit with the device in the attached state is not recommended because it has 
an undefined effect on an attached host. To ensure the device is not in an attached state before initiating a 
device controller reset, all primed endpoints must be flushed and the USBCMD[RS] bit must be cleared.

0
RS

Run/Stop. 
Host mode (USB Host and USB OTG):

When set, the controller proceeds with the execution of the schedule. The controller continues execution as 
long as this bit is set. When this bit is cleared, the controller completes the current transaction on the USB 
and then halts. The USBSTS[HCH] bit indicates when the host controller finishes the transaction and enters 
the stopped state. Software must not set this bit unless controller is in halted state (USBSTS[HCH] = 1).

Device mode (USB OTG-only):
Setting this bit causes the controller to enable a pull-up on DP and initiate an attach event. This control bit 
is not directly connected to the pull-up enable, as the pull-up becomes disabled upon transitioning into 
high-speed mode. Software must use this bit to prevent an attach event before the USB OTG controller has 
properly initialized. Clearing this bit causes a detach event.

Address: 0xFC0B_0144 (USBSTS) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 TI1 TI0 0 0 0 0
UPI UAI

0 NAKI

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AS PS RCL HCH 0 ULPII 0 SLI SRI URI AAI SEI FRI PCI UEI UI

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 24-18. USB Status Register (USBSTS)

Table 24-19. USBCMD Field Descriptions (continued)

Field Description
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Table 24-20. USBSTS Field Descriptions

Field Description

31–26 Reserved, must be cleared.

25
TI1

General purpose timer 1 interrupt. Set when the counter in the GPTIMER1CTRL register transitions to zero. 
Writing a one to this bit clears it.
0 No interrupt
1 Interrupt occurred.

24
TI0

General purpose timer 0 interrupt. Set when the counter in the GPTIMER0CTRL register transitions to zero. 
Writing a one to this bit clears it.
0 No interrupt
1 Interrupt occurred.

23–20 Reserved, must be cleared.

19
UPI

USB host periodic interrupt. Set by the host controller when the cause of an interrupt is a completion of a USB 
transaction where the transfer descriptor (TD) has an interrupt on complete (IOC) bit set and the TD was from 
the periodic schedule.
This bit is also set by the host controller when a short packet is detected and the packet is on the periodic 
schedule. A short packet is when the actual number of bytes received was less than the expected number of 
bytes.
Note: This bit is not used by the device controller and is always zero.

18
UAI

USB host asynchronous interrupt. Set by the host controller when the cause of an interrupt is a completion of 
a USB transaction where the transfer descriptor (TD) has an interrupt on complete (IOC) bit set and the TD was 
from the asynchronous schedule.
This bit is also set by the host controller when a short packet is detected and the packet is on the asynchronous 
schedule. A short packet is when the actual number of bytes received was less than the expected number of 
bytes.
Note: This bit is not used by the device controller and is always zero.

17 Reserved, must be cleared.

16
NAKI

NAK interrupt. Set by hardware for a particular endpoint when the TX/RX endpoint’s NAK bit and the 
corresponding TX/RX endpoint’s NAK enable bit are set. The hardware automatically clears this bit when all 
the enabled TX/RX endpoint NAK bits are cleared.

15
AS

Asynchronous schedule status. Reports the current real status of asynchronous schedule. Controller is not 
immediately required to disable or enable the asynchronous schedule when software transitions the 
USBCMD[ASE] bit. When this bit and the USBCMD[ASE] bit have the same value, the asynchronous schedule 
is enabled (1) or disabled (0). Used only in host mode.
0 Disabled.
1 Enabled.

14
PS

Periodic schedule status. Reports current real status of periodic schedule. Controller is not immediately 
required to disable or enable the periodic schedule when software transitions the USBCMD[PSE] bit. When this 
bit and the USBCMD[PSE] bit have the same value, the periodic schedule is enabled or disabled. Used only in 
host mode.
0 Disabled.
1 Enabled.

13
RCL

Reclamation. DetectS an empty asynchronous schedule. Used only by the host mode.
0 Non-empty asynchronous schedule.
1 Empty asynchronous schedule.
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12
HCH

Host controller halted. This bit is cleared when the USBCMD[RS] bit is set. The controller sets this bit after it 
stops executing because of the USBCMD[RS] bit being cleared, by software or the host controller hardware 
(for example, internal error). Used only in host mode.
0 Running.
1 Halted.

11 Reserved, must be cleared.

10
ULPII

ULPI interrupt. Set by event completion. 

9 Reserved, must be cleared.

8
SLI

Device-controller suspend. Non-EHCI bit present on the USB OTG module only. When a device controller 
enters a suspend state from an active state, this bit is set. The device controller clears the bit upon exiting from 
a suspend state. Used only by the device controller.
0 Active.
1 Suspended.

7
SRI

SOF received. This is a non-EHCI status bit. Software writes a 1 to this bit to clear it.
Host mode (USB host and USB OTG):

In host mode, this bit is set every 125 s, provided PHY clock is present and running (for example, the port 
is NOT suspended) and can be used by the host-controller driver as a time base. 

Device mode (USB OTG-only):
When controller detects a start of (micro) frame, bit is set. When a SOF is extremely late, controller 
automatically sets this bit to indicate an SOF was expected. Therefore, this bit is set roughly every 1 ms in 
device FS mode and every 125 sec in HS mode, and it is synchronized to the actual SOF received. 
Because the controller is initialized to FS before connect, this bit is set at an interval of 1 ms during the 
prelude to the connect and chirp.

6
URI

USB reset received. A non-EHCI bit present on the USB OTG module only. When the controller detects a USB 
reset and enters the default state, this bit is set. Software can write a 1 to this bit to clear it. Used only by in 
device mode.
0 No reset received.
1 Reset received.

5
AAI

Interrupt on async advance. By setting the USBCMD[IAA] bit, system software can force the controller to issue 
an interrupt the next time the controller advances the asynchronous schedule. This status bit indicates the 
assertion of that interrupt source. Used only by the host mode.
0 No async advance interrupt.
1 Async advance interrupt.

4
SEI

System error. Set when an error is detected on the system bus. If the system error enable bit (USBINTR[SEE]) 
is set, interrupt generates. The interrupt and status bits remain set until cleared by writing a 1 to this bit. 
Additionally, when in host mode, the USBCMD[RS] bit is cleared, effectively disabling controller. An interrupt 
generates for the USB OTG controller in device mode, but no other action is taken.
0 Normal operation
1 Error

3
FRI

Frame-list rollover. Controller sets this bit when the frame list index (FRINDEX) rolls over from its maximum 
value to 0. The exact value the rollover occurs depends on the frame list size. For example, if the frame list size 
(as programmed in the USBCMD[FS] field) is 1024, the frame index register rolls over every time FRINDEX[13] 
toggles. Similarly, if the size is 512, the controller sets this bit each time FRINDEX[12] toggles. Used only in the 
host mode.

Table 24-20. USBSTS Field Descriptions (continued)

Field Description



Universal Serial Bus Interface – On-The-Go Module

24-22 NXP Semiconductors

24.3.4.3 USB Interrupt Enable Register (USBINTR)

The interrupts to software are enabled with this register. An interrupt generates when a bit is set and the 
corresponding interrupt is active. The USB status register (USBSTS) continues to show interrupt sources 
(even if the USBINTR register disables them), allowing polling of interrupt events by the software.

2
PCI

Port change detect. This bit is not EHCI compatible.
Host mode (USB host and USB OTG):

Controller sets this bit when a connect status occurs on any port, a port enable/disable change occurs, an 
over-current change occurs, or the force port resume (PORTSCn[FPR]) bit is set as the result of a J-K 
transition on the suspended port.

Device mode (USB OTG only):
The controller sets this bit when it enters the full- or high-speed operational state. When it exits the full- or 
high-speed operation states due to reset or suspend events, the notification mechanisms are URI and SLI 
bits respectively. The device controller detects resume signaling only.

1
UEI

USB error interrupt. When completion of USB transaction results in error condition, the controller sets this bit. 
If the TD on which the error interrupt occurred also had its interrupt on complete (IOC) bit set, this bit is set 
along with the USBINT bit. See Section 4.15.1 in the EHCI specification for a complete list of host error interrupt 
conditions. See Table 24-58 for more information on device error matrix.
0 No error.
1 Error detected.

0
UI

USB interrupt (USBINT). This bit is set by the controller when the cause of an interrupt is a completion of a USB 
transaction where the TD has an interrupt on complete (IOC) bit set. This bit is also set by the controller when 
a short packet is detected. A short packet is when the actual number of bytes received was less than the 
expected number of bytes.

Address: 0xFC0B_0148 (USBINTR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0
TIE1 TIE0

0 0 0 0
UPIE UAIE

0
NAKE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
ULPIE

0
SLE SRE URE AAE SEE FRE PCE UEE UE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-19. USB Interrupt Enable Register (USBINTR)

Table 24-20. USBSTS Field Descriptions (continued)

Field Description
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Table 24-21. USBINTR Field Descriptions

Field Description

31–26 Reserved, must be cleared.

25
TIE1

General purpose timer 1 interrupt enable. When this bit and USBSTS[GPTINT1] are set, the USB controller 
issues an interrupt to the processor. The interrupt is acknowledged by clearing GPTINT1.
0 Disabled
1 Enabled

24
TIE0

General purpose timer 0 interrupt enable. When this bit and USBSTS[GPTINT0] are set, the USB controller 
issues an interrupt to the processor. The interrupt is acknowledged by clearing GPTINT0.
0 Disabled
1 Enabled

23–20 Reserved, must be cleared.

19
UPIE

USB host periodic interrupt enable. When this bit and USBSTS[USBHSTPERINT] are set, the host controller 
issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by clearing USBHSTPERINT.

18
UAIE

USB host asynchronous interrupt enable. When this bit and USBSTS[USBHSTASYNCINT] are set, the host 
controller issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by clearing 
USBHSTASYNCINT.

17 Reserved, must be cleared.

16
NAKE

NAK interrupt enable. When this bit and the USBSTS[NAKI] bit are set, an interrupt generates.
0 Disabled
1 Enabled

15–11 Reserved, must be cleared.

10
ULPIE

ULPI enable. When this bit and USBSTS[ULPII] are set, controller issues an interrupt. The interrupt is 
acknowledged by writing a 1 to USBSTS[ULPII].

9 Reserved, must be cleared.

8
SLE

Sleep (DC suspend) enable. A non-EHCI bit present on the OTG module only. When this bit is set and the 
USBSTS[SLI] bit transitions, USB OTG controller issues an interrupt. Software writing a 1 to the USBSTS[SLI] 
bit acknowledges the interrupt. Used only in device mode.
0 Disabled
1 Enabled

7
SRE

SOF-received enable. This is a non-EHCI bit. When this bit and the USBSTS[SRI] bit are set, controller issues 
an interrupt. Software clearing the USBSTS[SRI] bit acknowledges the interrupt.
0 Disabled
1 Enabled

6
URE

USB-reset enable. A non-EHCI bit present on the USB OTG module only. When this bit and the USBSTS[URI] 
bit are set, device controller issues an interrupt. Software clearing the USBSTS[URI] bit acknowledges the 
interrupt. Used only in device mode.
0 Disabled
1 Enabled

5
AAE

Interrupt on async advance enable. When this bit and the USBSTS[AAI] bit are set, controller issues an 
interrupt at the next interrupt threshold. Software clearing the USBSTS[AAI] bit acknowledges the interrupt. 
Used only in host mode.
0 Disabled
1 Enabled
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24.3.4.4 Frame Index Register (FRINDEX)

In host mode, the controller uses this register to index the periodic frame list. The register updates every 
125 microseconds (once each microframe). Bits [N–3] select a particular entry in the periodic frame list 
during periodic schedule execution. The number of bits used for the index depends on the size of the frame 
list as set by system software in the USBCMD[FS] field.

This register must be a longword. Byte writes produce undefined results. This register cannot be written 
unless the USB OTG controller is in halted state as the USBSTS[HCH] bit indicates. A write to this 
register while the USBSTS[RS] bit is set produces undefined results. Writes to this register also affect the 
SOF value.

In device mode (USB OTG-only), this register is read-only, and the USB OTG controller updates the 
FRINDEX[13–3] bits from the frame number the SOF marker indicates. When the USB bus receives a 
SOF, FRINDEX[13–3] checks against the SOF marker. If FRINDEX[13–3] is different from the SOF 
marker, FRINDEX[13–3] is set to the SOF value and FRINDEX[2–0] is cleared (SOF for 1 ms frame). If 
FRINDEX[13–3] equals the SOF value, FRINDEX[2–0] is incremented (SOF for 125 sec microframe.)

4
SEE

System error enable. When this bit and the USBSTS[SEI] bit are set, controller issues an interrupt. Software 
clearing the USBSTS[SEI] bit acknowledges the interrupt.
0 Disabled
1 Enabled

3
FRE

Frame list rollover enable. When this bit and the USBSTS[FRI] bit are set, controller issues an interrupt. 
Software clearing the USBSTS[FRI] bit acknowledges the interrupt. Used only in host mode.
0 Disabled
1 Enabled

2
PCE

Port change detect enable. When this bit and the USBSTS[PCI] bit are set, controller issues an interrupt. 
Software clearing the USBSTS[PCI] bit acknowledges the interrupt.
0 Disabled
1 Enabled

1
UEE

USB error interrupt enable. When this bit and the USBSTS[UEI] bit are set, controller issues an interrupt at the 
next interrupt threshold. Software clearing the USBSTS[UEI] bit acknowledges the interrupt.
0 Disabled
1 Enabled

0
UE

USB interrupt enable. When this bit is 1 and the USBSTS[UI] bit is set, the USB OTG controller issues an 
interrupt at the next interrupt threshold. Software clearing the USBSTS[UI] bit acknowledges the interrupt.
0 Disabled
1 Enabled

Address: 0xFC0B_014C (FRINDEX) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FRINDEX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-20. Frame Index Register (FRINDEX)

Table 24-21. USBINTR Field Descriptions (continued)

Field Description
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Table 24-23 illustrates values of N based on the value of the USBCMD[FS] field when used in host mode.

24.3.4.5 Periodic Frame List Base Address Register (PERIODICLISTBASE)

This register contains the beginning address of the periodic frame list in the system memory. The host 
controller driver loads this register prior to starting the schedule execution by the controller. The memory 
structure referenced by this physical memory pointer assumes to be 4-Kbyte aligned. The contents 
combine with the FRINDEX register to enable the controller to step through the periodic frame list in 
sequence.

On the USB OTG module, the host and device mode functions share this register. In host mode, it is the 
PERIODICLISTBASE register; in device mode, it is the DEVICEADDR register. See Section 24.3.4.6, 
“Device Address Register (DEVICEADDR),” for more information.

Table 24-22. FRINDEX Field Descriptions

Field Description

31–14 Reserved, must be cleared.

13–0
FRINDEX

Frame index. The value in this register increments at the end of each time frame (microframe). Bits [N– 3] are 
for the frame list current index. This means each location of the frame list is accessed 8 times per frame (once 
each microframe) before moving to the next index.
In device mode for the USB OTG module, the value is the current frame number of the last frame transmitted 
and not used as an index.
In either mode, bits 2–0 indicate current microframe.

Table 24-23. FRINDEX N Values

USBCMD[FS] Frame List Size FRINDEX N value

000 1024 elements (4096 bytes) 12

001 512 elements (2048 bytes) 11

010 256 elements (1024 bytes) 10

011 128 elements (512 bytes) 9

100 64 elements (256 bytes) 8

101 32 elements (128 bytes) 7

110 16 elements (64 bytes) 6

111 8 elements (32 bytes) 5

Address: 0xFC0B_0154 (PERIODICLISTBASE) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PERBASE

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-21. Periodic Frame List Base Address Register (PERIODICLISTBASE)



Universal Serial Bus Interface – On-The-Go Module

24-26 NXP Semiconductors

24.3.4.6 Device Address Register (DEVICEADDR)

This register is not defined in the EHCI specification. For the USB OTG module in device mode, the upper 
seven bits of this register represent the device address. After any controller or USB reset, the device 
address is set to the default address (0). The default address matches all incoming addresses. Software 
reprograms the address after receiving a SET_ADDRESS descriptor.

On the USB OTG module, the host and device mode functions share this register. In device mode, it is the 
DEVICEADDR register; in host mode, it is the PERIODICLISTBASE register. See Section 24.3.4.5, 
“Periodic Frame List Base Address Register (PERIODICLISTBASE),” for more information.

24.3.4.7 Current Asynchronous List Address Register (ASYNCLISTADDR)

The ASYNCLISTADDR register contains the address of the next asynchronous queue head to executed 
by the host.

On the USB OTG module, the host and device mode functions share this register. In host mode, it is the 
ASYNCLISTADDR register; in device mode, it is the EPLISTADDR register. See Section 24.3.4.8, 
“Endpoint List Address Register (EPLISTADDR),” for more information.

Table 24-24. PERIODICLISTBASE Field Descriptions

Field Description

31–12
PERBASE

Base Address. These bits correspond to memory address signal [31:12]. Used only in the host mode

11–0 Reserved, must be cleared.

Address: 0xFC0B_0154 (DEVICEADDR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
USBADR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-22. Device Address Register (DEVICEADDR)

Table 24-25. DEVICEADDR Field Descriptions

Field Description

31–25
USBADR

Device Address. This field corresponds to the USB device address.

24–0 Reserved, must be cleared.

Address: 0xFC0B_0158 (ASYNCLISTADDR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ASYBASE

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-23. Current Asynchronous List Address Register (ASYNCLISTADDR)
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24.3.4.8 Endpoint List Address Register (EPLISTADDR)

This register is not defined in the EHCI specification. For the USB OTG module in device mode, this 
register contains the address of the endpoint list top in system memory. The memory structure referenced 
by this physical memory pointer assumes to be 64-bytes. The queue head is actually a 48-byte structure, 
but must be aligned on 64-byte boundary. However, the EPBASE field has a granularity of 2 Kbytes; in 
practice, the queue head should be 2-Kbyte aligned.

On the USB OTG module, the host and device mode functions share this register. In device mode, it is the 
EPLISTADDR register; in host mode, it is the ASYNCLISTADDR register. See Section 24.3.4.7, 
“Current Asynchronous List Address Register (ASYNCLISTADDR),” for more information.

24.3.4.9 Host TT Asynchronous Buffer Control (TTCTRL)

Table 24-26. ASYNCLISTADDR Field Descriptions

Field Description

31–5
ASYBASE

Link pointer low (LPL). These bits correspond to memory address signal [31:5]. This field may only reference 
a queue head (QH). Used only in host mode.

4–0 Reserved, must be cleared.

Address: 0xFC0B_0158 (EPLISTADDR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EPBASE

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-24. Endpoint List Address Register (EPLISTADDR)

Table 24-27. EPLISTADDR Field Descriptions

Field Description

31–11
EPBASE

Endpoint list address. Correspond to memory address signals [31:11] References a list of up to 32 queue heads 
(i.e. one queue head per endpoint and direction). Address of the top of the endpoint list.

10–0 Reserved, must be cleared.

Address: 0xFC0B_015C (TTCTRL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 TTHA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-25. Host TT Asynchronous Buffer Control (TTCTRL)
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24.3.4.10 Master Interface Data Burst Size Register (BURSTSIZE)

This register is not defined in the EHCI specification. BURSTSIZE dynamically controls the burst size 
during data movement on the initiator (master) interface.

24.3.4.11 Transmit FIFO Tuning Control Register (TXFILLTUNING)

This register is not defined in the EHCI specification. The TXFILLTUNING register controls performance 
tuning associated with how the module posts data to the TX latency FIFO before moving the data onto the 
USB bus. The specific areas of performance include how much data to post into the FIFO and an estimate 
for how long that operation takes in the target system.

Definitions:

T0 = Standard packet overhead

T1 = Time to send data payload

Ts = Total packet flight time (send-only) packet (Ts = T0 + T1)

Tff = Time to fetch packet into TX FIFO up to specified level

Tp = Total packet time (fetch and send) packet (Tp = Tff + Ts)

Table 24-28. TTCTRL Field Descriptions

Field Description

31 Reserved, must be cleared.

30–24
TTHA

TT Hub Address. This field is used to match against the Hub Address field in a QH or siTD to determine if the 
packet is routed to the internal TT for directly attached FS/LS devices. If the hub address in the QH or siTD 
does not match this address then the packet is broadcast on the high speed ports destined for a downstream 
HS hub with the address in the QH or siTD.

23–0 Reserved, must be cleared.

Address: 0xFC0B_0160 (BURSTSIZE) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TXPBURST RXPBURST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

Figure 24-26. Master Interface Data Burst Size (BURSTSIZE)

Table 24-29. BURSTSIZE Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–8
TXPBURST

Programmable TX burst length. Represents the maximum length of a burst in 32-bit words while moving data 
from system memory to the USB bus. Must not be set to greater than 16.

7–0
RXPBURST

Programmable RX burst length. This register represents the maximum length of a burst in 32-bit words while 
moving data from the USB bus to system memory. Must not be set to greater than 16.
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Upon discovery of a transmit (OUT/SETUP) packet in the data structures, the host controller checks to 
ensure Tp remains before the end of the (micro)frame. If so, it pre-fills the TX FIFO. If at anytime during 
the pre-fill operation the time remaining the (micro)frame is less than Ts, packet attempt ceases and tries 
at a later time. Although this is not an error condition and the module eventually recovers, a mark is made 
in the scheduler health counter to mark the occurrence of a back-off event. When a back-off event is 
detected, the partial packet fetched may need to be discarded from the latency buffer to make room for 
periodic traffic beginning after the next SOF. Too many back-off events can waste bandwidth and power 
on the system bus and should be minimized (not necessarily eliminated). The TSCHHEALTH (Tff) 
parameter described below can minimize back-offs.

Address: 0xFC0B_0164 (TXFILLTUNING) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
TXFIFOTHRES

0 0 0 TXSCHHEALT
H

TXSCHOH
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-27. Transmit FIFO Tuning Controls (TXFILLTUNING)

Table 24-30. TXFILLTUNING Field Descriptions

Field Description

31–22 Reserved, must be cleared.

21–16
TXFIFOTHRES

FIFO burst threshold. Controls the number of data bursts that are posted to the TX latency FIFO in host mode 
before the packet begins on the bus. The minimum value is 2 and this value should be as low as possible to 
maximize USB performance. Systems with unpredictable latency and/or insufficient bandwidth can use a 
higher value where the FIFO may underrun because the data transferred from the latency FIFO to USB 
occurs before it can replenish from system memory.
This value is ignored if the USBMODE[SDIS] bit is set. When the USBMODE[SDIS] bit is set, the host 
controller behaves as if TXFIFOTHRES is set to its maximum value.

15–13 Reserved, must be cleared.
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24.3.4.12 ULPI Register Access (ULPI_VIEWPORT)

The register provides indirect access to the ULPI PHY register set. Although the controller modules 
perform access to the ULPI PHY register set, there may be circumstances where software may need direct 
access.

NOTE
Be advised that writes to the ULPI through the ULPI viewport can 
substantially harm standard USB operations. Currently no usage model has 
been defined where software should need to execute writes directly to the 
ULPI. Executing read operations though the ULPI viewport should have no 
harmful side effects to standard USB operations. Also, if the ULPI interface 
is not enabled, this register is always read cleared.

12–8
TXSCHHEALT

H

Scheduler health counter. These bits increment when the host controller fails to fill the TX latency FIFO to the 
level programmed by TXFIFOTHRES before running out of time to send the packet before the next SOF.
This health counter measures the number of times this occurs to provide feedback to selecting a proper 
TXSCHOH. Writing to this register clears the counter and this counter stops counting after reaching the 
maximum of 31.

7–0
TXSCHOH

Scheduler overhead. These bits add an additional fixed offset to the schedule time estimator described as Tff. 
As an approximation, the value chosen for this register should limit the number of back-off events captured 
in the TXSCHHEALTH field to less than 10 per second in a highly utilized bus. Choosing a value too high for 
this register is not desired as it can needlessly reduce USB utilization.
The time unit represented in this register is 1.267 s when a device connects in high-speed mode.
The time unit represented in this register is 6.333 s when a device connects in low-/full-speed mode.

For most applications, TXSCHOH can be set to 4 or less. A good value to begin with is: 

Eqn. 24-1

Always rounded to the next higher integer. TimeUnit is 1.267 or 6.333 as noted earlier in this description. For 
example, if TXFIFOTHRES is 5 and BURSTSIZE is 8, set TXSCHOH to 5(84)/(401.267) equals 4 for a 
high-speed link. If this value of TXSCHOH results in a TXSCHHEALTH count of 0 per second, low the value 
by 1 if optimizing performance is desired. If TXSCHHEALTH exceeds 10 per second, raise the value by 1.
If streaming mode is disabled via the USBMODE register, treat TXFIFOTHRES as the maximum value for 
purposes of the TXSCHOH calculation.

Address: 0xFC0B_0170 (ULPI_VIEWPORT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ULPI_
WU

ULPI_
RUN

ULPI_
RW

0 ULPI_
SS

ULPI_
PORT

ULPI_ADDR
ULPI_DATRD

ULPI_DATWR
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-28. ULPI Register Access (ULPI VIEWPORT)

Table 24-30. TXFILLTUNING Field Descriptions (continued)

Field Description

TXFIFOTHRES BURSTSIZE 4 
40 TimeUnit

--------------------------------------------------------------------------------------------
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There are two operations that can be performed with the ULPI viewport, wake-up and read/write 
operations. The wake-up operation is used to put the ULPI interface into normal operation mode and 
re-enable the clock if necessary. A wake-up operation is required before accessing the registers when the 
ULPI interface is operating in low power mode, serial mode, or carkit mode. The ULPI state can be 
determined by reading the sync state bit (ULPI_SS). If this bit is set, then the ULPI interface is running in 
normal operating mode and can accept read/write operations. If ULPI_SS is cleared, then read/write 
operations are not executed. Undefined behavior results if a read or write operation is performed when 
ULPI_SS is cleared. To execute a wake-up operation, write all 32-bits of the ULPI VIEWPORT where 
ULPI_PORT is constructed appropriately and the ULPI_WU bit is set and the ULPI_RUN bit is cleared. 
Poll the ULPI VIEWPORT until ULPI_WU is cleared for the operation to complete.

To execute a read or write operation, write all 32-bits of the ULPI VIEWPORT where ULPI_DATWR, 
ULPI_ADDR, ULPI_PORT, ULPI_RW are constructed appropriately and the ULPI_RUN bit is set. Poll 
the ULPI VIEWPORT until ULPI_RUN is cleared for the operation to complete. For read operations, 
ULPI_DATRD is valid after ULPI_RUN is cleared.

The polling method above can be replaced with interrupts using the ULPI interrupt defined in the USBSTS 
and USBINTR registers. When a wake-up or read/write operation completes, the ULPI interrupt is set.

Table 24-31. ULPI VIEWPORT Field Descriptions

Field Description

31
ULPI_WU

ULPI wake-up. Setting this bit begins the wake-up operation. This bit automatically clears after the 
wake-up is complete. After this bit is set, it can not be cleared by software.
Note: The driver must never execute a wake-up and a read/write operation at the same time.

30
ULPI_RUN

ULPI run. Setting this bit begins a read/write operation. This bit automatically clears after the read/write is 
complete. After this bit is set, it can not be cleared by software.
Note: The driver must never execute a wake-up and a read/write operation at the same time.

29
ULPI_RW

Read/write. Selects between running a read or write operation to the ULPI.
0 Read
1 Write

28 Reserved, should be cleared.

27
ULPI_SS

Sync state. Represents the state of the ULPI interface. Before reading this bit, the ULPI_PORT field 
should be set accordingly if used with the multi-port host. Otherwise, this field should always remain 0.
0 Any other state (that is, carkit, serial, low power).
1 Normal sync state.

26–24
ULPI_PORT

Port number. For wake-up or read/write operations this value selects the port number to which the ULPI 
PHY is attached. Valid values are 0 and 1.

23–16
ULPI_ADDR

Data address. When a read or write operation is commanded, the address of the operation is written to 
this field.

15–8
ULPI_DATRD

Data read. After a read operation completes, the result is placed in this field.

7–0
ULPI_DATWR

Data write. When a write operation is commanded, the data to be sent is written to this field.
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24.3.4.13 Configure Flag Register (CONFIGFLAG)

This EHCI register is not used in this implementation. A read from this register returns a constant of a 
0x0000_0001 to indicate that all port routings default to this host controller.

24.3.4.14 Port Status and Control Registers (PORTSCn)

Both USB modules contain a single PORTSC register. This register only resets when power is initially 
applied or in response to a controller reset. Initial conditions of a port are:

• No device connected

• Port disabled

If the port has port power control, this state remains until software applies power to the port by setting port 
power to one.

For the USB OTG module in device mode, the USB OTG controller does not support power control. Port 
control in device mode is used only for status port reset, suspend, and current connect status. It is also used 
to initiate test mode or force signaling, and allows software to place the PHY into low-power suspend 
mode and disable the PHY clock.

Address: 0xFC0B_0180 (CONFIGFLAG) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 24-29. Configure Flag Register (CONFIGFLAG)

Table 24-32. CONFIGFLAG Field Descriptions

Field Description

31–0 Reserved. (0x0000_0001, all port routings default to this host)

Address: 0xFC0B_0184 (PORTSC1) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PTS

1 0 PSPD 0
PFSC PHCD WKOC WKDS WLCN PTC

W

Reset 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PIC

PO
PP

LS HSP
PR SUSP FPR

OCC OCA PEC
PE

CSC CCS

W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 24-30. Port Status and Control Register (PORTSC1)
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Table 24-33. PORTSC1 Field Descriptions

Field Description

31–30
PTS

Port transceiver select. Controls which parallel transceiver interface is selected. This field is read-only for the host 
and is set to 11 to indicate a FS/LS on-chip transceiver. The following settings apply for the OTG module:
00 Reserved
01 Reserved
10 ULPI parallel interface
11 FS/LS on-chip transceiver
This bit is not defined in the EHCI specification.

29 Reserved, must be set.

28 Reserved, must be cleared.

27–26
PSPD

Port speed. This read-only register field indicates the speed the port operates. This bit is not defined in the EHCI 
specification.
00 Full speed
01 Low speed
10 High speed
11 Undefined

25 Reserved, must be cleared.

24
PFSC

Port force full-speed connect. Disables the chirp sequence that allows the port to identify itself as a HS port. useful 
for testing FS configurations with a HS host, hub, or device. Not defined in the EHCI specification.
0 Allow the port to identify itself as high speed.
1 Force the port to only connect at full speed.
This bit is for debugging purposes.

23
PHCD

PHY low power suspend. This bit is not defined in the EHCI specification. 
Host mode (USB host and USB OTG):

The PHY can be placed into low-power suspend when downstream device is put into suspend mode or when no 
downstream device connects. Software completely controls low-power suspend.

Device mode (USB OTG only):
For the USB OTG module in device mode, the PHY can be put into low power suspend when the device is not 
running (USBCMD[RS] = 0) or suspend signaling is detected on the USB. The PHCD bit is cleared automatically 
when the resume signaling is detected or when forcing port resumes.

0 Normal PHY operation.
1 Signal the PHY to enter low-power suspend mode
Reading this bit indicates the status of the PHY.

22
WKOC

Wake on over-current enable. Enables the port to be sensitive to over-current conditions as wake-up events. This 
field is 0 if the PP bit is cleared. In host mode, this bit can work with an external power control circuit.

21
WKDS

Wake on disconnect enable. Enables the port to be sensitive to device disconnects as wake-up events.
This field is 0 if the PP bit is cleared or the module is in device mode (USB OTG-only). In host mode, this bit can 
work with an external power control circuit.

20
WLCN

Wake on connect enable. Enables the port to be sensitive to device connects as wake-up events.
This field is 0 if the PP bit is cleared or the module is in device mode (USB OTG-only). In host mode, this can work 
with an external power control circuit.
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19–16
PTC

Port test control. Any value other than 0 indicates the port operates in test mode. Refer to Chapter 7 of the USB 
Specification Revision 2.0 for details on each test mode.
0000 Not enabled.
0001 J_STATE
0010 K_STATE
0011 SEQ_NAK
0100 Packet
0101 FORCE_ENABLE_HS
0110 FORCE_ENABLE_FS
0111 FORCE_ENABLE_LS
Else  Reserved.
Note: The FORCE_ENABLE_FS and FORCE ENABLE_LS settings are extensions to the test mode support in the 

EHCI specification. Writing the PTC field to any of the FORCE_ENABLE values forces the port into the 
connected and enabled state at the selected speed. Then clearing the PTC field allows the port state 
machines to progress normally from that point.

15–14
PIC

Port indicator control. Controls the link indicator signals and is valid for host mode only. Refers to the USB 
Specification Revision 2.0 for a description on how these bits are used.
00 Off
01 Amber
10 Green
11 Undefined
This field is output from the module on the USB port control signals for use by an external LED driving circuit. For 
this device’s USB host module, the port indicator signals are implemented as status bits within the CCM. On the 
USB OTG module this feature is not implemented, therefore this field is read-only and is always cleared.

13
PO

Port owner. Port owner handoff is not implemented in this design, therefore this bit is read-only and is always 
cleared.

12
PP

Port power. Represents the current setting of the port power control switch (0 equals off, 1 equals on). When power 
is not available on a port (PP = 0), it is non-functional and does not report attaches, detaches, etc.
When an over-current condition is detected on a powered port, the host controller driver from a 1to a 0 (removing 
power from the port) transitions the PP bit in each affected port.

11–10
LS

Line status. Reflects current logical levels of the USB DP (bit 11) and DM (bit 10) signal lines. In host mode, the line 
status by the host controller driver is not necessary (unlike EHCI) because hardware manages the connection of FS 
and LS. In device mode, LS by the device controller is not necessary.
00 SE0
01 J-state
10 K-state
11 Undefined

9
HSP

High speed port. Indicates if the host/device connected is in high speed mode.
0 FS or LS
1 HS
Note: This bit is redundant with the PSPD bit field.

Table 24-33. PORTSC1 Field Descriptions (continued)

Field Description
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8
PR

Port reset. This field is cleared if the PP bit is cleared.
Host mode (USB host and USB OTG):

When software sets this bit the bus-reset sequence as defined in the USB Specification Revision 2.0 starts. This 
bit automatically clears after the reset sequence completes. This behavior is different from EHCI where the host 
controller driver is required to clear this bit after the reset duration is timed in the driver.

Device mode (USB OTG only):
This bit is a read-only status bit. Device reset from the USB bus is also indicated in the USBSTS register.

0 Port is not in reset.
1 Port is in reset.

7
SUSP

Suspend
0 Port not in suspend state.
1 Port in suspend state.
Host mode (USB host and USB OTG):

The PE and SUSP bits define the port state as follows:

When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The 
blocking occurs at the end of the current transaction if a transaction was in progress when this bit was set. In the 
suspend state, the port is sensitive to resume detection. The bit status does not change until the port is 
suspended and there may be a delay in suspending a port if there is a transaction currently in progress on the 
USB.
The module unconditionally clears this bit when software clears the FPR bit. The host controller ignores clearing 
this bit. If host software sets this bit when the port is not enabled (PE = 0), the results are undefined.
This field is cleared if the PP bit is cleared in host mode.

Device mode (USB OTG only):
In device mode, this bit is a read-only status bit.

6
FPR

Force Port Resume. This bit is not-EHCI compatible.
0 No resume (K-state) detected/driven on port.
1 Resume detected/driven on port. 
Host mode (USB host and USB OTG):

Software sets this bit to drive resume signaling. The controller sets this bit if a J-to-K transition is detected while 
the port is in suspend state (PE = SUSP = 1), which in turn sets the USBSTS[PCI] bit. This bit automatically 
clears after the resume sequence is complete. This behavior is different from EHCI where the host controller 
driver is required to clear this bit after the resume duration is timed in the driver.
When the controller owns the port, the resume sequence follows the defined sequence documented in the USB 
Specification Revision 2.0. The resume signaling (full-speed K) is driven on the port as long as this bit remains 
set. This bit remains set until the port switches to the high-speed idle. Clearing this bit has no affect because the 
port controller times the resume operation to clear the bit the port control state switches to HS or FS idle.
This field is cleared if the PP bit is cleared in host mode.

Device mode (USB OTG only):
After the device is in suspend state for 5 ms or more, software must set this bit to drive resume signaling before 
clearing. The device controller sets this bit if a J-to-K transition is detected while port is in suspend state, which 
in turn sets the USBSTS[PCI] bit. The bit is cleared when the device returns to normal operation.

Table 24-33. PORTSC1 Field Descriptions (continued)

Field Description

PE SUSP Port State

0 x Disable

1 0 Enable

1 1 Suspend
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24.3.4.15 On-the-Go Status and Control Register (OTGSC)

This register is not defined in the EHCI specification. The host controller implements one OTGSC register 
corresponding to port 0 of the host controller.

5
OCC

Over-current change. Indicates a change to the OCA bit. Software clears this bit by writing a 1. For host mode, the 
user can provide over-current detection to the USBn_PWRFAULT signal for this condition. For device-only 
implementations (USB OTG only), this bit must always be cleared.
0 No over-current.
1 Over-current detect.

4
OCA

Over-current active. This bit automatically transitions from 1 to 0 when the over-current condition is removed. For 
host/OTG implementations, the user can provide over-current detection to the USBn_PWRFAULT signal for this 
condition. For device-only implementations (USB OTG only), this bit must always be cleared.
0 Port not in over-current condition.
1 Port currently in over-current condition.

3
PEC

Port enable/disable change. For the root hub, this bit gets set only when a port is disabled due to disconnect on the 
port or due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification). 
Software clears this by writing a 1 to it.
In device mode (USB OTG only), the device port is always enabled. (This bit is zero).
0 No change.
1 Port disabled.
This field is cleared if the PP bit is cleared.

2
PE

Port enabled/disabled.
Host mode (USB host and USB OTG):

Ports can only be enabled by the controller as a part of the reset and enable sequence. Software cannot enable 
a port by setting this bit. A fault condition (disconnect event or other fault condition) or host software can disable 
ports. The bit status does not change until the port state actually changes. There may be a delay in disabling or 
enabling a port due to other host and bus events.
When the port is disabled, downstream propagation of data is blocked except for reset. This field is cleared if the 
PP bit is cleared in host mode.

Device mode (USB USB OTG only):
The device port is always enabled. (This bit is set).

1
CSC

Connect change status. 
Host mode (USB host and USB OTG):

This bit indicates a change occurred in the port’s current connect status. The controller sets this bit for all changes 
to the port device connect status, even if system software has not cleared an existing connect status change. For 
example, the insertion status changes twice before system software has cleared the changed condition; hub 
hardware is setting an already-set bit (i.e., the bit remains set). Software clears this bit by writing a 1 to it. This 
field is cleared if the PP bit is cleared.

0 No change.
1 Connect status has changed.
In device mode (USB USB OTG only), this bit is undefined.

0
CCS

Current connect status. Indicates that a device successfully attaches and operates in high speed or full speed as 
indicated by the PSPD bit. If clear, the device did not attach successfully or forcibly disconnects by the software 
clearing the USBCMD[RUN] bit. It does not state the device disconnected or suspended. This field is cleared if the 
PP bit is cleared in host mode.
0 No device present (host mode) or attached (device mode)
1 Device is present (host mode) or attached (device mode)

Table 24-33. PORTSC1 Field Descriptions (continued)

Field Description
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The OTGSC register has four sections:

• OTG interrupt enables (read/write)

• OTG interrupt status (read/write to clear)

• OTG status inputs (read-only)

• OTG controls (read/write)

The status inputs de-bounce using a 1 ms time constant. Values on the status inputs that do not persist for 
more than 1 ms do not cause an update of the status inputs or an OTG interrupt.

Address: 0xFC0B_01A4 (OTGSC) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0
DPIE 1MSE BSEIE BSVIE ASVIE AVVIE IDIE

0 DPIS 1MSS BSEIS BSVIS ASVIS AVVIS IDIS

W w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 DPS 1MST BSE BSV ASV AVV ID 0 0
IDPU DP OT

0
VC VD

W

Reset 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

Figure 24-31. On-the-Go Status and Control Register (OTGSC)

Table 24-34. OTGSC Field Descriptions

Field Description

31 Reserved, must be cleared.

30
DPIE

Data pulse interrupt enable.
0 Disable
1 Enable

29
1MSE

1 millisecond timer interrupt enable.
0 Disable
1 Enable

28
BSEIE

B session end interrupt enable.
0 Disable
1 Enable

27
BSVIE

B session valid interrupt enable.
0 Disable
1 Enable

26
ASVIE

A session valid interrupt enable.
0 Disable
1 Enable

25
AVVIE

A VBUS valid interrupt enable.
0 Disable
1 Enable
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24
IDIE

USB ID interrupt enable.
0 Disable
1 Enable

23 Reserved, must be cleared.

22
DPIS

Data pulse interrupt status. Indicates when data bus pulsing occurs on DP or DM. Data bus pulsing only detected 
when USBMODE[CM] equals 11 and PORTSC0[PP] is cleared. Software must write a 1 to clear this bit.

21
1MSS

1 millisecond timer interrupt status. This bit is set once every millisecond. Software must write a 1 to clear this bit.

20
BSEIS

B session end interrupt status. Indicates when VBUS falls below the B session end threshold. Software must write 
a 1 to clear this bit.

19
BSVIS

B session valid interrupt status. Indicates when VBUS rises above or falls below the B session valid threshold 
(0.8 VDC). Software must write a 1 to clear this bit.

18
ASVIS

A session valid interrupt status. Indicates when VBUS rises above or falls below the A session valid threshold 
(0.8 VDC). Software must write a 1 to clear this bit.

17
AVVIS

A VBUS valid interrupt status. Indicates when VBUS rises above or falls below the VBUS valid threshold (4.4 
VDC) on an A device. Software must write a 1 to clear this bit.

16
IDIS

USB ID interrupt status. Indicates when a change on the ID input is detected. Software must write a 1 to clear this 
bit.

15 Reserved, must be cleared.

14
DPS

Data bus pulsing status.
0 No pulsing on port.
1 Pulsing detected on port.

13
1MST

1 millisecond timer toggle. This bit toggles once per millisecond.

12
BSE

B session end. 
0 VBus is above B session end threshold.
1 VBus is below B session end threshold.

11
BSV

B Session valid.
0 VBus is below B session valid threshold.
1 VBus is above B session valid threshold.

10
ASV

A Session valid.
0 VBus is below A session valid threshold.
1 VBus is above A session valid threshold.

9
AVV

A VBus valid.
0 VBus is below A VBus valid threshold.
1 VBus is above A VBus valid threshold.

8
ID

USB ID.
0 A device.
1 B device.

7–6 Reserved, must be cleared.

Table 24-34. OTGSC Field Descriptions (continued)

Field Description
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24.3.4.16 USB Mode Register (USBMODE)

This register is not defined in the EHCI specification. It controls the operating mode of the module.

5
IDPU

ID Pull-up. Provides control over the ID pull-up resistor.
0 Disable pull-up. ID input not sampled.
1 Enable pull-up.

4
DP

Data pulsing.
0 The pull-up on DP is not asserted.
1 The pull-up on DP is asserted for data pulsing during SRP.

3
OT

OTG Termination. This bit must be set with the OTG module in device mode.
0 Disable pull-down on DM.
1 Enable pull-down on DM.

2 Reserved, must be cleared.

1
VC

VBUS charge. Setting this bit causes the VBUS line to charge. This is used for VBus pulsing during SRP.

0
VD

VBUS discharge. Setting this bit causes VBUS to discharge through a resistor.

Address: 0xFC0B_01A8 (USBMODE) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0
SDIS SLOM ES CM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-32. USB Mode Register (USBMODE)

Table 24-34. OTGSC Field Descriptions (continued)

Field Description
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24.3.4.17 Endpoint Setup Status Register (EPSETUPSR)

This register is not defined in the EHCI specification. This register contains the endpoint setup status and 
is used only by the USB OTG module in device mode.

Table 24-35. USBMODE Field Descriptions

Field Description

31–5 Reserved, must be cleared.

4
SDIS

Stream disable. 
0 Inactive.
1 Active.
Host mode (USB host and USB OTG):

Setting this bit ensures that overruns/underruns of the latency FIFO are eliminated for low bandwidth systems 
where the RX and TX buffers are sufficient to contain the entire packet. Enabling stream disable also has the 
effect of ensuring the TX latency fills to capacity before the packet launches onto the USB.
Time duration to pre-fill the FIFO becomes significant when stream disable is active. See TXFILLTUNING to 
characterize the adjustments needed for the scheduler when using this feature.
Also, in systems with high system bus utilization, setting this bit ensures no overruns or underruns during 
operation at the expense of link utilization. SDIS can be left clear and the rules under the description of the 
TXFILLTUNING register can limit underruns/overruns for those who desire optimal link performance.

Device mode (USB OTG only):
Setting this bit disables double priming on RX and TX for low bandwidth systems. This mode ensures that when 
the RX and TX buffers are sufficient to contain an entire packet that the standard double buffering scheme is 
disabled to prevent overruns/underruns in bandwidth limited systems.
In high-speed mode, all packets received are responded to with a NYET handshake when stream disable is 
active.

3
SLOM

Setup lockout mode. For the module in device mode, this bit controls behavior of the setup lock mechanism. See 
Section 24.5.3.4.4, “Control Endpoint Operation.”
0 Setup lockouts on.
1 Setup lockouts off (software requires use of the USBCMD[SUTW] bit).

2
ES

Endian select. Controls the byte ordering of the transfer buffers to match the host microprocessor bus architecture. 
The bit fields in the register interface and the DMA data structures (including the setup buffer within the device QH) 
are unaffected by the value of this bit, because they are based upon 32-bit words.
0 Little endian. First byte referenced in least significant byte of 32-bit word. 
1 Big endian. First byte referenced in most significant byte of 32-bit word.
Note: For proper operation, this bit must be set for this ColdFire device.

1–0
CM

Controller mode. This register can be written only once after reset. If necessary to switch modes, software must 
reset the controller by writing to the USBCMD[RST] bit before reprogramming this register.
00 Idle (default for the USB OTG module)
01 Reserved
10 Device controller
11 Host controller (default for the USB host module)
Note: The USB OTG module must be initialized to the desired operating mode after reset. 

Address: 0xFC0B_01AC (EPSETUPSR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EPSETUPSTAT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-33. Endpoint Setup Status Register (EPSETUPSR)
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24.3.4.18 Endpoint Initialization Register (EPPRIME)

This register is not defined in the EHCI specification. This register is used to initialize endpoints and is 
used only by the USB OTG module in device mode.

24.3.4.19 Endpoint Flush Register (EPFLUSH)

This register is not defined in the EHCI specification. This register used only by the USB OTG module in 
device mode.

Table 24-36. EPSETUPSR Field Descriptions

Field Description

31–4 Reserved, must be cleared.

3–0
EPSETUPSTAT

Setup endpoint status. For every setup transaction received, a corresponding bit in this field is set. 
Software must clear or acknowledge the setup transfer by writing a 1 to a respective bit after it has read 
the setup data from the queue head. The response to a setup packet, as in the order of operations and 
total response time, is crucial to limit bus time outs while the setup lockout mechanism engages. 

Address: 0xFC0B_01B0 (EPPRIME) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0
PETB

0 0 0 0 0 0 0 0 0 0 0 0
PERB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-34. Endpoint Initialization Register (EPPRIME)

Table 24-37. EPPRIME Field Descriptions

Field Description

31–20 Reserved, must be cleared.

19–16
PETB

Prime endpoint transmit buffer. For each endpoint, a corresponding bit requests that a buffer be prepared for a 
transmit operation to respond to a USB IN/INTERRUPT transaction. Software must write a 1 to the corresponding 
bit when posting a new transfer descriptor to an endpoint. Hardware automatically uses this bit to begin parsing for 
a new transfer descriptor from the queue head and prepare a transmit buffer. Hardware clears this bit when 
associated endpoint(s) is (are) successfully primed.
Note: These bits are momentarily set by hardware during hardware re-priming operations when a dTD retires, and 

the dQH updates.

15–4 Reserved, must be cleared.

3–0
PERB

Prime endpoint receive buffer. For each endpoint, a corresponding bit requests that a buffer be prepared for a 
receive operation to respond to a USB OUT transaction. Software must write a 1 to the corresponding bit when 
posting a new transfer descriptor to an endpoint. Hardware automatically uses this bit to begin parsing for a new 
transfer descriptor from the queue head and prepare a receive buffer. Hardware clears this bit when associated 
endpoint(s) is (are) successfully primed.
Note: These bits are momentarily set by hardware during hardware re-priming operations when a dTD retires, and 

the dQH updates.
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24.3.4.20 Endpoint Status Register (EPSR)

This register is not defined in the EHCI specification. This register is only used by the USB OTG module 
in device mode.

Address: 0xFC0B_01B4 (EPFLUSH) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0
FETB

0 0 0 0 0 0 0 0 0 0 0 0
FERB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-35. Endpoint Flush Register (EPFLUSH)

Table 24-38. EPFLUSH Field Descriptions

Field Description

31–20 Reserved, must be cleared.

19–16
FETB

Flush endpoint transmit buffer. Writing a 1 to a bit in this field causes the associated endpoint to clear any primed 
buffers. If a packet is in progress for an associated endpoint, that transfer continues until completion. Hardware 
clears this register after the endpoint flush operation is successful.

15–4 Reserved, must be cleared.

3–0
FERB

Flush endpoint receive buffer. Writing a 1 to a bit in this field causes the associated endpoint to clear any primed 
buffers. If a packet is in progress for an associated endpoint, that transfer continues until completion. Hardware 
clears this register after the endpoint flush operation is successful. FERB[3] corresponds to endpoint 3.

Address: 0xFC0B_01B8 (EPSR) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 ETBR 0 0 0 0 0 0 0 0 0 0 0 0 ERBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-36. Endpoint Status Register (EPSR)

Table 24-39. EPSR Field Descriptions

Field Description

31–20 Reserved, must be cleared.

19–16
ETBR

Endpoint transmit buffer ready. One bit for each endpoint indicates status of the respective endpoint buffer. The 
hardware sets this bit in response to receiving a command from a corresponding bit in the EPPRIME register. A 
constant delay exists between setting a bit in the EPPRIME register and endpoint indicating ready. This delay time 
varies based upon the current USB traffic and the number of bits set in the EPPRIME register. USB reset, USB DMA 
system, or EPFLUSH register clears the buffer ready. ETBR[3] (bit 19) corresponds to endpoint 3.
Note: Hardware momentarily clears these bits during hardware endpoint re-priming operations when a dTD is 

retired, and the dQH is updated.
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24.3.4.21 Endpoint Complete Register (EPCOMPLETE)

This register is not defined in the EHCI specification. This register is used only by the USB OTG module 
in device mode.

15–4 Reserved, must be cleared.

3–0
ERBR

Endpoint receive buffer ready. One bit for each endpoint indicates status of the respective endpoint buffer. The 
hardware sets this bit in response to receiving a command from a corresponding bit in the EPPRIME register. A 
constant delay exists between setting a bit in the EPPRIME register and endpoint indicating ready. This delay time 
varies based upon the current USB traffic and the number of bits set in the EPPRIME register. USB reset, USB DMA 
system, or EPFLUSH register clears the buffer ready. ERBR[3] (bit 19) corresponds to endpoint 3.
Note: Hardware momentarily clears these bits during hardware endpoint re-priming operations when a dTD is 

retired, and the dQH is updated. 

Address: 0xFC0B_01BC (EPCOMPLETE) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 ETCE 0 0 0 0 0 0 0 0 0 0 0 0 ERCE

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-37. Endpoint Complete Register (EPCOMPLETE)

Table 24-40. EPCOMPLETE Field Descriptions

Field Description

31–20 Reserved, must be cleared.

19–16
ETCE

Endpoint transmit complete event. Each bit indicates a transmit event (IN/INTERRUPT) occurs and software must 
read the corresponding endpoint queue to determine the endpoint status. If the corresponding IOC bit is set in the 
transfer descriptor, this bit is set simultaneously with the USBINT. Writing a 1 clears the corresponding bit in this 
register. ETCE[3] (bit 19) corresponds to endpoint 3.

15–4 Reserved, must be cleared

3–0
ERCE

Endpoint receive complete event. Each bit indicates a received event (OUT/SETUP) occurs and software must 
read the corresponding endpoint queue to determine the transfer status. If the corresponding IOC bit is set in the 
transfer descriptor, this bit is set simultaneously with the USBINT. Writing a 1 clears the corresponding bit in this 
register. ERCE[3] corresponds to endpoint 3.

Table 24-39. EPSR Field Descriptions (continued)

Field Description
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24.3.4.22 Endpoint Control Register 0 (EPCR0)

This register is not defined in the EHCI specification. Every device implements endpoint 0 as a control 
endpoint.

Address: 0xFC0B_01C0 (EPCR0) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 TXE 0 0 0 TXT 0
TXS

0 0 0 0 0 0 0 0 RXE 0 0 0 RXT 0
RXS

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 24-38. Endpoint Control 0 (EPCR0)

Table 24-41. EPCR0 Field Descriptions

Field Description

31–24 Reserved, must be cleared.

23
TXE

TX endpoint enable. Endpoint zero is always enabled.
1  Enable

22–20 Reserved, must be cleared.

19–18
TXT

TX endpoint type. Endpoint zero is always a control endpoint.
00 Control

17 Reserved, must be cleared.

16
TXS

TX endpoint stall. Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. 
It continues returning STALL until software clears the bit or it automatically clears upon receipt of a new SETUP 
request.
0 Endpoint OK
1 Endpoint stalled

15–8 Reserved, must be cleared.

7
RXE

RX endpoint enable. Endpoint zero is always enabled.
1 Enabled.

6–4 Reserved, must be cleared.

3–2
RXT

RX endpoint type. Endpoint zero is always a control endpoint.
00 Control

1 Reserved, must be cleared.

0
RXS

RX endpoint stall. Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. 
It continues returning STALL until software clears the bit or it automatically clears upon receipt of a new SETUP 
request.
0 Endpoint OK
1 Endpoint stalled
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24.3.4.23 Endpoint Control Register n (EPCRn)

These registers are not defined in the EHCI specification. There is an EPCRn register for each endpoint in 
a device.

Address: 0xFC0B_01C4 (EPCR1)
0xFC0B_01C8 (EPCR2)
0xFC0B_01CA (EPCR3)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0
TXE

0
TXI

0
TXT TXD TXS

W TXR

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
RXE

0
RXI

0
RXT RXD RXS

W RXR

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-39. Endpoint Control Registers (EPCRn)

Table 24-42. EPCRn Field Descriptions

Field Description

31–24 Reserved, must be cleared.

23
TXE

TX endpoint enable. 
0 Disabled
1 Enabled

22
TXR

TX data toggle reset. When a configuration event is received for this Endpoint, software must write a 1 to this bit 
to synchronize the data PID’s between the host and device. This bit is self-clearing.

21
TXI

TX data toggle inhibit. This bit is used only for test and should always be written as 0. Writing a 1 to this bit causes 
this endpoint to ignore the data toggle sequence and always transmit DATA0 for a data packet.
0 PID sequencing enabled.
1 PID sequencing disabled.

20 Reserved, must be cleared.

19–18
TXT

TX endpoint type. 
00 Control
01 Isochronous
10 Bulk
11 Interrupt
Note: When only one endpoint (RX or TX, but not both) of an endpoint pair is used, the unused endpoint should 

be configured as a bulk type endpoint.

17
TXD

TX endpoint data source. This bit should always be written as 0, which selects the dual port memory/DMA engine 
as the source.
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24.4 Functional Description
Each module (USB host and USB OTG) can be broken down into functional sub-blocks as described 
below.

24.4.1 System Interface

The system interface block contains all the control and status registers to allow a core to interface to the 
module. These registers allow the processor to control the configuration and ascertain the capabilities of 
the module and, they control the module’s operation.

16
TXS

TX endpoint stall. This bit sets automatically upon receipt of a SETUP request if this endpoint is not configured as 
a control endpoint. It clears automatically upon receipt of a SETUP request if this endpoint is configured as a 
control endpoint.
Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. It continues 
returning STALL until software clears this bit clears or automatically clears as above.
0 Endpoint OK
1 Endpoint stalled

15–8 Reserved, must be cleared.

7
RXE

RX endpoint enable. 
0 Disabled
1 Enabled

6
RXR

RX data toggle reset. When a configuration event is received for this endpoint, software must write a 1 to this bit 
to synchronize the data PIDs between the host and device. This bit is self-clearing.

5
RXI

RX data toggle inhibit. This bit is only for testing and should always be written as 0. Writing a 1 to this bit causes 
this endpoint to ignore the data toggle sequence and always accept data packets regardless of their data PID.
0 PID sequencing enabled
1 PID sequencing disabled

4 Reserved, must be cleared.

3–2
RXT

RX endpoint type. 
00 Control
01 Isochronous
10 Bulk
11 Interrupt
Note: When only one endpoint (RX or TX, but not both) of an endpoint pair is used, the unused endpoint should 

be configured as a bulk type endpoint.

1
RXD

RX endpoint data sink. This bit should always be written as 0, which selects the dual port memory/DMA engine 
as the sink.

0
RXS

RX endpoint stall. This bit sets automatically upon receipt of a SETUP request if this endpoint is not configured as 
a control endpoint. It clears automatically upon receipt of a SETUP request if this endpoint is configured as a 
control endpoint,
Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. It continues 
returning STALL until software clears this bit or automatically clears as above,
0 Endpoint OK
1 Endpoint stalled

Table 24-42. EPCRn Field Descriptions (continued)

Field Description
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24.4.2 DMA Engine

Both USB modules contain local DMA engines. It is responsible for moving all of the data transferred over 
the USB between the module and system memory. Like the system interface block, the DMA engine block 
uses a simple synchronous bus signaling protocol.

The DMA controllers must access control information and packet data from system memory. Control 
information is contained in link list based queue structures. The DMA controllers have state machines able 
to parse data structures defined in the EHCI specification. In host mode, the data structures are EHCI 
compliant and represent queues of transfers performed by the host controller, including the 
split-transaction requests that allow an EHCI controller to direct packets to FS and LS speed devices. In 
device mode (USB OTG module only), data structures are similar to those in the EHCI specification and 
used to allow device responses to be queued for each of the active pipes in the device.

24.4.3 FIFO RAM Controller

The FIFO RAM controller is used for context information and to control FIFOs between the protocol 
engine and the DMA controller. These FIFOs decouple the system processor/memory bus requests from 
the extremely tight timing required by USB.

The use of the FIFO buffers differs between host and device mode operation. In host mode, a single data 
channel maintains in each direction through the buffer memory. In device mode (USB OTG module only), 
multiple FIFO channels maintain for each of the active endpoints in the system.

In host mode, the USB host and USB OTG modules use 16-byte transmit buffers and 16-byte receive 
buffers. For the USB OTG module, device operation uses a single 16-byte receive buffer and a 16-byte 
transmit buffer for each endpoint.

24.4.4 Physical Layer (PHY) Interface

Readers should familiarize themselves with chapter 7 of the Universal Serial Bus Specification, Revision 
2.0. The USB host and OTG modules contain an on-chip digital to analog transceiver (XCVR) for DP and 
DN USB network communication. The USB module defaults to FS XCVR operation and can 
communicate in LS. The USB OTG module may interface to any ULPI compatible PHY as well.

Due to pin-count limitations the USB modules only support certain combinations of PHY interfaces and 
USB functionality. Refer to the Table 24-43 for more information.

Table 24-43. USB Network Speed and Required Physical Interface

USB Mode and Speed
DP and DN 

On-Chip Analog 
XCVR Active

I2C FEC External Integrated Circuit Required

USB Host FS/LS Yes No Yes See Section 24.4.4.1, “USB On-Chip Transceiver 
Required External Components”

USB Device FS Yes No Yes See Section 24.4.4.1, “USB On-Chip Transceiver 
Required External Components”

Host/Device ULPI HS/FS No Yes No Maxim
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24.4.4.1 USB On-Chip Transceiver Required External Components

USB system operation does not require external components. However, the recommended method ensures 
driver output impedance, eye diagram, and VBUS cable fault tolerance requirements are met. The 
recommended method is for the DM and DP I/O pads to connect through series resistors (approximately 
33  each) to the USB connector on the application printed circuit board (PCB). Additionally, signal 
quality optimizes when these 33  resistors are mounted close to the processor rather than closer to the 
USB board level connector.

NOTE
Internal pull-down resistors are included that keep the DP and DM ports in 
a known quiescent state when the USB port is not used or when a USB cable 
is not connected.

Also included is an internal 1.5k  pull-up resistor on DP controlled by the 
CCM. (See Chapter 10, "Chip Configuration Module (CCM)",” for more 
details.) This allows the OTG module to operate in full-speed device 
operation. Host operation requires this internal resistor to be disabled via the 
CCM, and 15k  external resistors to connect from DP and DM signals to 
ground.

24.5 Initialization/Application Information

24.5.1 Host Operation

Enhanced Host Controller Interface (EHCI) Specification defines the general operational model for the 
USB modules in host mode. The EHCI specification describes the register-level interface for a host 
controller for USB Revision 2.0. It includes a description of the hardware/software interface between 
system software and host controller hardware. The next section has information about the initialization of 
the USB modules; however, full details of the EHCI specification are beyond the scope of this document.

24.5.1.1 Host Controller Initialization

After initial power-on or module reset (via the USBCMD[RST] bit), all of the operational registers are at 
default values, as illustrated in the register memory map in Table 24-4. 

To initialize the host controller, software must:

1. Optionally set streaming disable in the USBMODE[SDIS] bit.

2. Optionally modify the BURSTSIZE register.

3. Program the PORTSC1[PTS] field if using a non-ULPI PHY.

4. Optionally write the appropriate value to the USBINTR register to enable the desired interrupts.

5. Set the USBMODE[CM] field to enable host mode, and set the USBMODE[ES] bit for big endian 
operation.

6. Write the USBCMD register to set the desired interrupt threshold, frame list size (if applicable), 
and turn the controller on by setting the USBCMD[RS] bit.
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7. Enable external VBUS supply. The exact steps required for initialization depend on the external 
hardware used to supply the 5V VBUS power.

8. Set the PORTSC[PP] bit.

At this point, the host controller is up and running and the port registers begin reporting device connects. 
System software can enumerate a port through the reset process (port is in the enabled state). 

To communicate with devices via the asynchronous schedule, system software must write the 
ASYNCLISTADDR register with the address of a control or bulk queue head. Software must then enable 
the asynchronous schedule by setting the asynchronous schedule enable (ASE) bit in the USBCMD 
register. To communicate with devices via the periodic schedule, system software must enable the periodic 
schedule by setting the periodic schedule enable (PSE) bit in the USBCMD register. Schedules can be 
turned on before the first port is reset and enabled.

Any time the USBCMD register is written, system software must ensure the appropriate bits are preserved, 
depending on the intended operation.

24.5.2 Device Data Structures

This section defines the interface data structures used to communicate control, status, and data between 
device controller driver (DCD) software and the device controller.The interface consists of device queue 
heads and transfer descriptors.

NOTE
Software must ensure that data structures do not span a 4K-page boundary.

The USB OTG uses an array of device endpoint queue heads to organize device transfers. As shown in 
Figure 24-40, there are two endpoint queue heads in the array for each device endpoint—one for IN and 
one for OUT. The EPLISTADDR provides a pointer to the first entry in the array.

Figure 24-40. End Point Queue Head Organization
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24.5.2.1 Endpoint Queue Head

All transfers are managed in the device endpoint queue head (dQH). The dQH is a 48-byte data structure, 
but must align on 64-byte boundaries. During priming of an endpoint, the dTD (device transfer descriptor) 
copies into the overlay area of the dQH, which starts at the nextTD pointer longword and continues 
through the end of the buffer pointers longwords. After a transfer is complete, the dTD status longword 
updates in the dTD pointed to by the currentTD pointer. While a packet is in progress, the overlay area of 
the dQH acts as a staging area for the dTD so the device controller can access needed information with 
minimal latency.

Figure 24-41 shows the endpoint queue head structure.

24.5.2.1.1 Endpoint Capabilities/Characteristics (Offset = 0x0)

This longword specifies static information about the endpoint. In other words, this information does not 
change over the lifetime of the endpoint. DCD software must not attempt to modify this information while 
the corresponding endpoint is enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Mult
ZL
T

0 0 Maximum Packet Length IOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x00

Current dTD Pointer 0 0 0 0 0 0x04

Next dTD Pointer 0 0 0 0 T 0x081

1 Offsets 0x08 through 0x20 contain the transfer overlay.

0 0 Total Bytes IOC 0 0 0 MultO 0 0 Status 0x0C1

Buffer Pointer (Page 0) Current Offset 0x101

Buffer Pointer (Page 1) Reserved 0x141

Buffer Pointer (Page 2) Reserved 0x181

Buffer Pointer (Page 3) Reserved 0x1C1

Buffer Pointer (Page 4) Reserved 0x201

Reserved 0x24

Setup Buffer Bytes 3–0 0x28

Setup Buffer Bytes 7–4 0x2C

Device controller read/write; all others read-only.

Figure 24-41. Endpoint Queue Head Layout
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24.5.2.1.2 Current dTD Pointer (Offset = 0x4)

The device controller uses the current dTD pointer to locate transfer in progress. This word is for USB 
OTG (hardware) use only and should not be modified by DCD software.

Table 24-44. Endpoint Capabilities/Characteristics

Field Description

31–30
Mult

Mult. This field indicates the number of packets executed per transaction description as given by:
00 Execute N Transactions as demonstrated by the USB variable length packet protocol where N computes 

using the Maximum Packet Length (dQH) and the Total Bytes field (dTD)
01 Execute 1 Transaction.
10 Execute 2 Transactions.
11 Execute 3 Transactions.

Note: Non-ISO endpoints must set Mult equal to 00. ISO endpoints must set Mult equal to 01, 10, or 11 as 
needed.

29
ZLT

Zero length termination select. This bit is ignored in isochronous transfers.
Clearing this bit enables the hardware to automatically append a zero length packet when the following 
conditions are true:
 • The packet transmitted equals maximum packet length
 • The dTD has exhausted the field Total Bytes
After this the dTD retires. When the device is receiving, if the last packet length received equals the maximum 
packet length and the total bytes is zero, it waits for a zero length packet from the host to retire the current dTD.

Setting this bit disables the zero length packet. When the device is transmitting, the hardware does not append 
any zero length packet. When receiving, it does not require a zero length packet to retire a dTD whose last 
packet was equal to the maximum packet length packet. The dTD is retired as soon as Total Bytes field goes to 
zero, or a short packet is received.

0 Enable zero length packet (default).
1 Disable the zero length packet.
Note: Each transfer is defined by one dTD, so the zero length termination is for each dTD. In some software 

application cases, the logic transfer does not fit into only one dTD, so it does not make sense to add a 
zero length termination packet each time a dTD is consumed. On those cases we recommend to disable 
the ZLT feature, and use software to generate the zero length termination.

28–27 Reserved. Reserved for future use and must be cleared.

26–16
Maximum 

Packet Length

Maximum packet length. This directly corresponds to the maximum packet size of the associated endpoint 
(wMaxPacketSize). The maximum value this field may contain is 0x400 (1024).

15
IOS

Interrupt on setup (IOS). This bit used on control type endpoints indicates if USBSTS[UI] is set in response to a 
setup being received.

14–0 Reserved. Reserved for future use and must be cleared.

Table 24-45. Current dTD Pointer 

Field Description

31–5
Current dtd

Current dtd. This field is a pointer to the dTD represented in the transfer overlay area. This field is modified by the 
device controller to next dTD pointer during endpoint priming or queue advance.

4–0 Reserved. Reserved for future use and must be cleared.
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24.5.2.1.3 Transfer Overlay (Offset = 0x8–0x20)

The seven longwords in the overlay area represent a transaction working space for the device controller. 
The general operational model is that the device controller can detect whether the overlay area contains a 
description of an active transfer. If it does not contain an active transfer, it does not read the associated 
endpoint.

After an endpoint is readied, the dTD is copied into this queue head overlay area by the device controller. 
Until a transfer expires, software must not write the queue head overlay area or the associated transfer 
descriptor. When the transfer is complete, the device controller writes the results back to the original 
transfer descriptor and advance the queue.

See Section 24.5.2.2, “Endpoint Transfer Descriptor (dTD),” for a description of the overlay fields.

24.5.2.1.4 Setup Buffer (Offset = 0x28–0x2C)

The set-up buffer is dedicated storage for the 8-byte data that follows a set-up PID. Refer to 
Section 24.5.3.4.4, “Control Endpoint Operation” for information on the procedure for reading the setup 
buffer

NOTE
Each endpoint has a TX and an RX dQH associated with it, and only the RX 
queue head receives setup data packets.

24.5.2.2 Endpoint Transfer Descriptor (dTD)

The dTD describes to the device controller the location and quantity of data sent/received for a given 
transfer. The DCD software should not attempt to modify any field in an active dTD except the next dTD 
pointer, which must be modified only as described in Section 24.5.3.6, “Managing Transfers with Transfer 
Descriptors.”

Table 24-46. Multiple Mode Control

longword Field Description

1 31–0
Setup Buffer 0

Setup Buffer 0. This buffer contains bytes 3 to 0 of an incoming setup buffer packet and is written 
by the device controller software reads.

2 31–0
Setup Buffer 1

Setup Buffer 1. This buffer contains bytes 7 to 4 of an incoming setup buffer packet and is written 
by the device controller software reads.
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24.5.2.2.1 Next dTD Pointer (Offset = 0x0)

The next dTD pointer is used to point the device controller to the next dTD in the linked list.

24.5.2.2.2 dTD Token (Offset = 0x4)

The dTD token is used to specify attributes for the transfer including the number of bytes to read or write 
and the status of the transaction. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next dTD Pointer 0 0 0 0 T 0x00

0 Total Bytes ioc 0 0 0 MultO 0 0 Status 0x04

Buffer Pointer (Page 0) Current Offset 0x08

Buffer Pointer (Page 1) 0 Frame Number 0x0C

Buffer Pointer (Page 2) 0 0 0 0 0 0 0 0 0 0 0 0 0x10

Buffer Pointer (Page 3) 0 0 0 0 0 0 0 0 0 0 0 0 0x14

Buffer Pointer (Page 4) 0 0 0 0 0 0 0 0 0 0 0 0 0x18

Device controller read/write; all others read-only.

Figure 24-42. Endpoint Transfer Descriptor (dTD)

Table 24-47. Next dTD Pointer

Field Description

31–5
Next dTD 

pointer

Next dTD pointer. This field contains the physical memory address of the next dTD to be processed. The field 
corresponds to memory address signals [31:5], respectively.

4–1 Reserved. Reserved for future use and must be cleared.

0
T

Terminate. This bit indicates to the device controller no more valid entries exist in the queue.
0=Pointer is valid (points to a valid transfer element descriptor).
1=pointer is invalid. 
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Table 24-48. dTD Token

Field Description

31 Reserved. Reserved for future use and must be cleared.

30–16
Total Bytes

Total bytes. This field specifies the total number of bytes moved with this transfer descriptor. This field decrements 
by the number of bytes actually moved during the transaction and only on the successful completion of the 
transaction.

The maximum value software may store in the field is 5*4K(0x5000). This is the maximum number of bytes 5 page 
pointers can access. Although possible to create a transfer up to 20K, this assumes the first offset into the first 
page is 0. When the offset cannot be predetermined, crossing past the fifth page can be guaranteed by limiting 
the total bytes to 16K**. Therefore, the maximum recommended transfer is 16K (0x4000).
Note: Larger transfer sizes can be supported, but require disabling ZLT and using multiple dTDs.

If the value of the field is 0 when the host controller fetches this transfer descriptor (and the active bit is set), the 
device controller executes a zero-length transaction and retires the transfer descriptor.

For IN transfers it is not a requirement for total bytes to transfer be an even multiple of the maximum packet length. 
If software builds such a transfer descriptor for an IN transfer, the last transaction is always less than maximum 
packet length.
For OUT transfers the total bytes must be evenly divisible by the maximum packet length.

15
IOC

Interrupt on complete. Indicates if USBSTS[UI] is set in response to device controller finished with this dTD.

14–12 Reserved. Reserved for future use and must be cleared.

11–10
MultO

Multiplier Override. This field can possibly transmit-ISOs (ISO-IN) to override the multiplier in the QH. This field 
must be 0 for all packet types not transmit-ISO.

For example, if QH.MULT equals 3; Maximum packet size equals 8; Total Bytes equals 15; MultiO equals 0 
[default], then three packets are sent: {Data2(8); Data1(7); Data0(0)}.

If QH.MULT equals 3; Maximum packet size equals 8; Total Bytes equals 15; MultO equals 2, then two packets 
are sent: {Data1(8); Data0(7)}

For maximal efficiency, software must compute MultO equals greatest integer of (Total Bytes / Max. Packet Size) 
except for the case when Total Bytes equals 0; then MultO must be 1.

Note: Non-ISO and Non-TX endpoints must set MultO equals 00.

9–8 Reserved. Reserved for future use and must be cleared.
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24.5.2.2.3 dTD Buffer Page Pointer List (Offset = 0x8–0x18)

The last five longwords of a device element transfer descriptor are an array of physical memory address 
pointers. These pointers reference the individual pages of a data buffer.

24.5.3 Device Operation

The device controller performs data transfers using a set of linked list transfer descriptors pointed to by a 
queue head. The next sections explain the use of the device controller from the device controller driver 
(DCD) point-of-view and further describe how specific USB bus events relate to status changes in the 
device controller programmer's interface.

24.5.3.1 Device Controller Initialization

After hardware reset, USB OTG is disabled until the run/stop bit in the USBCMD register is set. At 
minimum, it is necessary to have the queue heads set up for endpoint 0 before the device attach occurs. 
Shortly after the device is enabled, a USB reset occurs followed by setup packet arriving at endpoint 0. A 
queue head must be prepared so the device controller can store the incoming setup packet.

7–0
Status

Status. Device controller communicates individual command execution states back to the DCD software. This field 
contains the status of the last transaction performed on this dTD. The bit encodings are:

Bit Status Field Description 

7 Active. Set by software to enable the execution of transactions by the device controller. 

6 Halted. Set by the device controller during status updates to indicate a serious error has 
occurred at the device/endpoint addressed by this dTD. Any time a transaction results in the 
halted bit being set, the active bit is also cleared.

5 Data Buffer Error. Set by the device controller during status update to indicate the device 
controller is unable to maintain the reception of incoming data (overrun) or is unable to supply 
data fast enough during transmission (under run).

4 Reserved.

3 Transaction Error. Set by the device controller during status update in case the device did not 
receive a valid response from the host (time-out, CRC, bad PID).

2–0 Reserved.

Table 24-49. Buffer Page Pointer List

Field Description

31–12
Buffer Pointer

Buffer Pointer. Selects the page offset in memory for the packet buffer. Non virtual memory systems typically 
set the buffer pointers to a series of incrementing integers.

0;11–0
Current Offset

Current Offset. Offset into the 4kB buffer where the packet begins.

1;10–0
Frame Number

Frame Number. Written by the device controller to indicate the frame number a packet finishes in. Typically 
correlates relative completion times of packets on an ISO endpoint.

Table 24-48. dTD Token (continued)

Field Description
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To initialize a device, the software must:

1. Optionally set streaming disable in the USBMODE[SDIS] bit.

2. Optionally modify the BURSTSIZE register.

3. Program the PORTSC1[PTS] field if using a non-ULPI PHY.

4. Write the appropriate value to the USBINTR to enable the desired interrupts. For device operation, 
setting UE, UEE, PCE, URE, and SLE is recommended.

For a list of available interrupts, refer to Section 24.3.4.3, “USB Interrupt Enable Register 
(USBINTR),” and Section 24.3.4.2, “USB Status Register (USBSTS).”

5. Set the USBMODE[CM] field to enable device mode, and set the USBMODE[ES] bit for big 
endian operation.

6. Optionally write the USBCMD register to set the desired interrupt threshold.

7. Set USBMODE[SLOM] to disable setup lockouts.

8. Initialize the EPLISTADDR.

9. Create two dQHs for endpoint 0—one for IN transactions and one for OUT transactions. 

For information on device queue heads, refer to Section 24.5.2.1, “Endpoint Queue Head.”

10. Set the CCM’s UOCSR[BVLD] bit to allow device to connect to a host.

11. Set the USBCMD[RS] bit.

After the run/stop bit is set, a device reset occurs. The DCD must monitor the reset event and set the 
DEVICEADDR and EPCRn registers, and adjust the software state as described in Section 24.5.3.2.1, 
“Bus Reset.”

NOTE

Endpoint 0 is a control endpoint only and does not need to configured using 
the EPCR0 register. 

It is not necessary to initially prime endpoint 0 because the first packet received is always a setup packet. 
The contents of the first setup packet requires a response in accordance with USB device framework 
command set.

24.5.3.2 Port State and Control

From a chip or system reset, the USB OTG module enters the powered state. A transition from the powered 
state to the attach state occurs when the USBCMD[RS] bit is set. After receiving a reset on the bus, the 
port enters the defaultFS or defaultHS state in accordance with the protocol reset described in Appendix 
C.2 of the Universal Serial Bus Specification, Revision 2.0. Figure 24-43 depicts the state of a USB 2.0 
device.
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Figure 24-43. USB 2.0 Device States

States powered, attach, defaultFS/HS, suspendFS/HS are implemented in the USB OTG, and they are 
communicated to the DCD using these status bits:

Table 24-50. Device Controller State Information Bits 

Bit Register

DC Suspend (SLI) USBSTS

USB Reset Received (URI) USBSTS

Default
FS/HS

Suspend
FS/HS

Address
FS/HS

Suspend
FS/HS

Configured
FS/HS

Suspend
FS/HS

Attach

Powered

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Device
De-configured Device

Configured

Address
Assigned

Reset

Set Run/Stop bit 
to run mode

Power
Interruption

When the host
resets, the device

returns to the
default state.

Software-only state

Active State Inactive State
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DCD software must maintain a state variable to differentiate between the defaultFS/HS state and the 
address/configured states. Change of state from default to the address and configured states is part of the 
enumeration process described in the device framework section of the USB 2.0 specification.

As a result of entering the address state, the DCD must program the device address register 
(DEVICEADDR).

Entry into the configured state indicates that all endpoints to be used in the operation of the device have 
been properly initialized by programming the EPCRn registers and initializing the associated queue heads.

24.5.3.2.1 Bus Reset

The host uses a bus reset to initialize downstream devices. When a bus reset is detected, USB OTG 
controller renegotiates its attachment speed, resets the device address to 0, and notifies the DCD by 
interrupt (assuming the USB reset interrupt enable is set). After a reset is received, all endpoints (except 
endpoint 0) are disabled and the device controller cancels any primed transactions. The concept of priming 
is clarified below, but when a reset is received, the DCD must perform:

1. Clear all setup token semaphores by reading the EPSETUPSR register and writing the same value 
back to the EPSETUPSR register.

2. Clear all the endpoint complete status bits by reading the EPCOMPLETE register and writing the 
same value back to the EPCOMPLETE register.

3. Cancel all primed status by waiting until all bits in the EPPRIME are 0 and then writing 
0xFFFF_FFFF to EPFLUSH.

4. Read the reset bit in the PORTSCn register and make sure it remains active. A USB reset occurs 
for a minimum of 3 ms and the DCD must reach this point in the reset clean-up before end of the 
reset occurs, otherwise a hardware reset of the device controller is recommended (rare). 

a) Setting USBCMD[RST] bit can perform a hardware reset. 

NOTE
A hardware reset causes the device to detach from the bus by clearing the 
USBCMD[RS] bit. Therefore, the DCD must completely re-initialize the 
USB OTG after a hardware reset.

5. Free all allocated dTDs because the device controller no longer executes them. If this is the first 
time the DCD processes a USB reset event, it is likely w3a4no dTDs have been allocated.

6. At this time, the DCD may release control back to the OS because no further changes to the device 
controller are permitted until a port change detect is indicated. 

Port Change Detect (PCI) USBSTS

High-Speed Port (PSPD) PORTSCn

Table 24-50. Device Controller State Information Bits  (continued)

Bit Register
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7. After a port change detect, the device has reached the default state and the DCD can read the 
PORTSCn register to determine if the device operates in FS or HS mode. At this time, the device 
controller has reached normal operating mode and DCD can begin enumeration according to the 
chapter 9 Device Framework of the USB specification.

In some applications, it may not be possible to enable one or more pipes while in FS mode. Beyond the 
data rate issue, there is no difference in DCD operation between FS and HS modes.

24.5.3.2.2 Suspend/Resume

To conserve power, USB OTG module automatically enters the suspended state when no bus traffic is 
observed for a specified period. When suspended, the module maintains any internal status, including its 
address and configuration. Attached devices must be prepared to suspend any time they are powered, 
regardless if they are assigned a non-default address, are configured, or neither. Bus activity may cease due 
to the host entering a suspend mode of its own. In addition, a USB device shall also enter the suspended 
state when the hub port it is attached to is disabled.

The USB OTG module exits suspend mode when there is bus activity. It may also request the host to exit 
suspend mode or selective suspend by using electrical signaling to indicate remote wake-up. The ability 
of a device to signal remote wake-up is optional. The USB OTG is capable of remote wake-up signaling. 
When the USB OTG is reset, remote wake-up signaling must be disabled.

Suspend Operational Model

The USB OTG moves into the suspend state when suspend signaling is detected or activity is missing on 
the upstream port for more than a specific period. After the device controller enters the suspend state, an 
interrupt notifies the DCD (assuming device controller suspend interrupt is enabled, 
USBINTR[SLE] is set). When the PORTSCn[SUSP] is set, the device controller is suspended.

DCD response when the device controller is suspended is application specific and may involve switching 
to low power operation. Find information on the bus power limits in suspend state in USB 2.0 
specification.

Resume

If the USB OTG is suspended, its operation resumes when any non-idle signaling is received on its 
upstream facing port. In addition, the USB OTG can signal the system to resume operation by forcing 
resume signaling to the upstream port. Setting the PORTSCn[FPR] bit while the device is in suspend state 
sends resume signaling upstream. Sending resume signal to an upstream port should cause the host to issue 
resume signaling and bring the suspended bus segment (one more devices) back to the active condition.

NOTE
Before use of resume signaling, the host must enable it by using the set 
feature command defined in chapter 9 Device Framework of the USB 2.0 
specification.
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24.5.3.3 Managing Endpoints

The USB 2.0 specification defines an endpoint (also called a device endpoint or an address endpoint) as a 
uniquely addressable portion of a USB device that can source or sink data in a communications channel 
between the host and the device. Combination of the endpoint number and the endpoint direction specifies 
endpoint address.

The channel between the host and an endpoint at a specific device represents a data pipe. Endpoint 0 for a 
device is always a control type data channel used for device discovery and enumeration. Other types of 
endpoints are supported by USB include bulk, interrupt, and isochronous. Each endpoint type has specific 
behavior related to packet response and error managing. Find more detail on endpoint operation in the USB 
2.0 specification.

The USB OTG supports up to four endpoint specified numbers. The DCD can enable, disable, and 
configure each endpoint.

Each endpoint direction is essentially independent and can have differing behavior in each direction. For 
example, the DCD can configure endpoint 1-IN to be a bulk endpoint and endpoint 1-OUT to be an 
isochronous endpoint. This helps to conserve the total number of endpoints required for device operation. 
The only exception is that control endpoints must use both directions on a single endpoint number to 
function as a control endpoint. Endpoint 0, for example, is always a control endpoint and uses both 
directions.

Each endpoint direction requires a queue head allocated in memory. If the maximum is four endpoint 
numbers (one for each endpoint direction used by the device controller), eight queue heads are required. 
The operation of an endpoint and use of queue heads are described later in this document.

24.5.3.3.1 Endpoint Initialization

After hardware reset, all endpoints except endpoint 0 are uninitialized and disabled. The DCD must 
configure and enable each endpoint by writing to the appropriate EPCRn register. Each EPCRn is split into 
an upper and lower half. The lower half of EPCRn configures the receive or OUT endpoint, and the upper 
half configures the corresponding transmit or IN endpoint. Control endpoints must be configured the same 
in the upper and lower half of the EPCRn register; otherwise, behavior is undefined. Table 24-51 shows 
how to construct a configuration word for endpoint initialization.

Table 24-51. Device Controller Endpoint Initialization

Field Value

Data Toggle Reset (TXR, RXR) 1 Synchronize the data PIDs

Data Toggle Inhibit (TXI, RXI) 0 PID sequencing disabled

Endpoint Type (TXT, RXT) 00 Control
01 Isochronous
10 Bulk
11 Interrupt

Endpoint Stall (TXS, RXS) 0 Not stalled
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24.5.3.3.2 Stalling

There USB OTG has two occasions it may need to return to the host a STALL:

• The first is the functional stall, a condition set by the DCD as described in the USB 2.0 Device 
Framework chapter. A functional stall is used only on non-control endpoints and can be enabled in 
the device controller by setting the endpoint stall bit in the EPCRn register associated with the 
given endpoint and the given direction. In a functional stall condition, the device controller 
continues to return STALL responses to all transactions occurring on the respective endpoint and 
direction until the endpoint stall bit is cleared by the DCD.

• A protocol stall, unlike a function stall, is used on control endpoints and automatically cleared by 
the device controller at the start of a new control transaction (setup phase). When enabling a 
protocol stall, DCD must enable the stall bits as a pair (TXS and RXS bits). A single write to the 
EPCRn register can ensure both stall bits are set at the same instant. 

NOTE
Any write to the EPCRn register during operational mode must preserve the 
endpoint type field (perform a read-modify-write).

24.5.3.3.3 Data Toggle 

Data toggle maintains data coherency between host and device for any given data pipe. For more 
information on data toggle, refer to the USB 2.0 specification.

Data Toggle Reset

The DCD may reset the data toggle state bit and cause the data toggle sequence to reset in the device 
controller by setting the data toggle reset bit in the EPCRn register. This should only happen when 
configuring/initializing an endpoint or returning from a STALL condition.

Table 24-52. Device Controller Stall Response Matrix

USB Packet
Endpoint 
Stall Bit

Effect on 
Stall bit

USB Response

SETUP packet received by a non-control 
endpoint.

N/A None STALL

IN/OUT/PING packet received by a 
non-control endpoint.

1 None STALL

IN/OUT/PING packet received by a 
non-control endpoint.

0 None ACK/NAK/NYET

SETUP packet received by a control 
endpoint.

N/A Cleared ACK

IN/OUT/PING packet received by a control 
endpoint

1 None STALL

IN/OUT/PING packet received by a control 
endpoint.

0 None ACK/NAK/NYET
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Data Toggle Inhibit

This feature is for test purposes only and must never be used during normal device controller operation.

Setting the data toggle inhibit bit causes the USB OTG module to ignore the data toggle pattern normally 
sent and accepts all incoming data packets regardless of the data toggle state. 

In normal operation, the USB OTG checks the DATA0/DATA1 bit against the data toggle to determine if 
the packet is valid. If the data PID does not match the data toggle state bit maintained by the device 
controller for that endpoint, the data toggle is considered not valid. If the data toggle is not valid, the device 
controller assumes the packet was already received and discards the packet (not reporting it to the DCD). 
To prevent the USB OTG from re-sending the same packet, the device controller responds to the error 
packet by acknowledging it with an ACK or NYET response.

24.5.3.4 Packet Transfers

The host initiates all transactions on the USB bus and in turn, the device must respond to any request from 
the host within the turnaround time stated in the USB 2.0 specification. 

A USB host sends requests to the USB OTG in an order that can not be precisely predicted as a single 
pipeline, so it is not possible to prepare a single packet for the device controller to execute. However, the 
order of packet requests is predictable when the endpoint number and direction is considered. For example, 
if endpoint 3 (transmit direction) is configured as a bulk pipe, expect the host to send IN requests to that 
endpoint. This USB OTG module prepares packets for each endpoint/direction in anticipation of the host 
request. The process of preparing the device controller to send or receive data in response to host initiated 
transaction on the bus is referred to as priming the endpoint. This term appears throughout the 
documentation to describe the USB OTG operation so the DCD is built properly. Further, the term flushing 
describes the action of clearing a packet queued for execution.

24.5.3.4.1 Priming Transmit Endpoints

Priming a transmit endpoint causes the device controller to fetch the device transfer descriptor (dTD) for 
the transaction pointed to by the device queue head (dQH). After the dTD is fetched, it is stored in the dQH 
until the device controller completes the transfer described by the dTD. Storing the dTD in the dQH allows 
the device controller to fetch the operating context needed to manage a request from the host without the 
need to follow the linked list, starting at the dQH when the host request is received.

After the device has loaded the dTD, the leading data in the packet is stored in a FIFO in the device 
controller. This FIFO splits into virtual channels so the leading data can be stored for any endpoint up to 
the maximum number of endpoints configured at device synthesis time. 

After a priming request is complete, an endpoint state of primed is indicated in the EPSR register. For a 
primed transmit endpoint, the device controller can respond to an IN request from the host and meet the 
stringent bus turnaround time of high-speed USB. 
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24.5.3.4.2 Priming Receive Endpoints

Priming receives endpoints identical to priming of transmit endpoints from the point of view of the DCD. 
The major difference in the operational model at the device controller is no data movement of the leading 
packet data because the data is to be received from the host.

As part of the architecture, the FIFO for the receive endpoints is not partitioned into multiple channels like 
the transmit FIFO. Thus, the size of the RX FIFO does not scale with the number of endpoints. 

24.5.3.4.3 Interrupt/Bulk Endpoint Operation

The behaviors of the device controller for interrupt and bulk endpoints are identical. All valid IN and OUT 
transactions to bulk pipes handshake with a NAK unless the endpoint is primed. After the endpoint is 
primed, data delivery commences.

A dTD is retired by the device controller when the packets described in the transfer descriptor are 
completed. Each dTD describes N packets to transfer according to the USB variable length transfer 
protocol. The formula below and Table 24-53 describe how the device controller computes the number and 
length of the packets sent/received by the USB vary according to the total number of bytes and maximum 
packet length. See Section 24.5.2.1.1, “Endpoint Capabilities/Characteristics (Offset = 0x0),” for details 
on the ZLT bit.

With zero-length termination (ZLT) cleared:

N = INT(number of bytes/max. packet length) + 1

With zero-length termination (ZLT) set:

N = MAXINT(number of bytes/max. packet length)

NOTE
The MULT field in the dQH must be set to 00 for bulk, interrupt, and control 
endpoints.

Table 24-53. Variable Length Transfer Protocol Example (ZLT=0)

Bytes 
(dTD)

Max. Packet 
Length (dQH)

N P1 P2 P3

511 256 2 256 255 —

512 256 3 256 256 0

512 512 2 512 0 —

Table 24-54. Variable Length Transfer Protocol Example (ZLT=1)

Bytes 
(dTD)

Max. Packet 
Length (dQH)

N P1 P2 P3

511 256 2 256 255 —

512 256 2 256 256 —

512 512 1 512 — —
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TX-dTD is complete when: 

• All packets described in the dTD successfully transmit. Total bytes in dTD equal 0 when this 
occurs.

RX-dTD is complete when:

• All packets described in the dTD are successfully received. Total bytes in dTD equal 0 when this 
occurs.

• A short packet (number of bytes < maximum packet length) was received. 
This is a successful transfer completion; DCD must check the total bytes field in the dTD to 
determine the number of bytes remaining. From the total bytes remaining in the dTD, the DCD can 
compute the actual bytes received.

• A long packet was received (number of bytes > maximum packet size) or (total bytes received > 
total bytes specified). 
This is an error condition. The device controller discards the remaining packet and set the buffer 
error bit in the dTD. In addition, the endpoint flushes and the USBERR interrupt becomes active.

NOTE
Disabling zero-length packet termination allows transfers larger than the 
total bytes field spanning across two or more dTDs.

Upon successful completion of the packet(s) described by the dTD, the active bit in the dTD is cleared and 
the next pointer is followed when the terminate bit is clear. When the terminate bit is set, USB OTG flushes 
the endpoint/direction and ceases operations for that endpoint/direction.

Upon unsuccessful completion of a packet (see long packet above), the dQH is left pointing to the dTD in 
error. To recover from this error condition, DCD must properly re-initialize the dQH by clearing the active 
bit and update the nextTD pointer before attempting to re-prime the endpoint.

NOTE
All packet level errors, such as a missing handshake or CRC error, are 
retried automatically by the device controller. There is no required 
interaction with the DCD for managing such errors.

Table 24-55. Interrupt/Bulk Endpoint Bus Response Matrix

Token 
Type

Stall
Not 

Primed
Primed Underflow Overflow

Setup Ignore Ignore Ignore N/A N/A

In STALL NAK Transmit BS Error1

1 Force bit stuff error

N/A

Out STALL NAK Receive + NYET/ACK2 N/A NAK

Ping STALL NAK ACK N/A N/A

Invalid Ignore Ignore Ignore Ignore Ignore
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24.5.3.4.4 Control Endpoint Operation

Setup Phase

All requests to a control endpoint begin with a setup phase followed by an optional data phase and a 
required status phase. 

Setup packet managing:

• Disable setup lockout by setting the setup lockout mode bit (USBMODE[SLOM]), once at 
initialization. Setup lockout is not necessary when using the tripwire as described below.

NOTE
Leaving the setup lockout mode cleared results in a potential compliance 
issue.

• After receiving an interrupt and inspecting EPSETUPSR to determine a setup packet was received 
on a particular pipe:

1. Write 1 to clear corresponding bit in EPSETUPSR.

2. Set the setup tripwire bit (USBCMD[SUTW]).

3. Duplicate contents of dQH.SetupBuffer into local software byte array.

4. Read the USBCMD[SUTW] bit. If set, continue; if cleared, goto 2)

5. Clear the USBCMD[SUTW] bit.

6. Poll until the EPSETUPSR bit clears.

7. Process setup packet using the local software byte array copy and execute status/handshake phases.

NOTE
After receiving a new setup packet, status and/or handshake phases may 
remain pending from a previous control sequence. These should be flushed 
and de-allocated before linking a new status and/or handshake dTD for the 
most recent setup packet.

Data Phase

Following the setup phase, the DCD must create a device transfer descriptor for the data phase and prime 
the transfer.

After priming the packet, the DCD must verify a new setup packet is not received by reading the 
EPSETUPSR register immediately verifying that the prime had completed. A prime completes when the 
associated bit in the EPPRIME register is cleared and the associated bit in the EPSR register is set. If the 
EPPRIME bit goes to 0 and the EPSR bit is not set, the prime fails. This can only happen because of 
improper setup of the dQH, dTD, or a setup arriving during the prime operation. If a new setup packet is 
indicated after the EPPRIME bit is cleared, then the transfer descriptor can be freed and the DCD must 
re-interpret the setup packet.

2 NYET/ACK — NYET unless the transfer descriptor has packets remaining according 
to the USB variable length protocol then ACK.
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Should a setup arrive after the data stage is primed, the device controller automatically clears the prime 
status (EPSR) to enforce data coherency with the setup packet.

NOTE
Error managing of data phase packets is the same as bulk packets described 
previously.

Status Phase

Similar to the data phase, the DCD must create a transfer descriptor (with byte length equal zero) and prime 
the endpoint for the status phase. The DCD must also perform the same checks of the EPSETUPSR as 
described above in the data phase.

NOTE
Error managing of status phase packets is the same as bulk packets 
described previously.

Control Endpoint Bus Response Matrix

Table 24-56 shows the device controller response to packets on a control endpoint according to the device 
controller state.

24.5.3.4.5 Isochronous Endpoint Operation

Isochronous endpoints used for real-time scheduled delivery of data, and their operational model is 
significantly different than the host throttled bulk, interrupt, and control data pipes. Real time delivery by 
the USB OTG is accomplished by:

• Exactly MULT packets per (micro)frame are transmitted/received. 

Table 24-56. Control Endpoint Bus Response Matrix 

Token
Type

Endpoint State
Setup 

Lockout
Stall Not Primed Primed Underflow Overflow

Setup ACK ACK ACK N/A SYSERR1

1 SYSERR — System error must never occur when the latency FIFOs are correctly sized 
and the DCD is responsive.

In STALL NAK Transmit BS Error2

2 Force bit stuff error

N/A N/A

Out
STALL NAK Receive + 

NYET/ACK3

3 NYET/ACK — NYET unless the transfer descriptor has packets remaining according to the 
USB variable length protocol then ACK.

N/A NAK N/A

Ping STALL NAK ACK N/A N/A N/A

Invalid Ignore Ignore Ignore Ignore Ignore Ignore
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NOTE
MULT is a two-bit field in the device queue head. Isochronous endpoints do 
not use the variable length packet protocol.

• NAK responses are not used. Instead, zero length packets are sent in response to an IN request to 
unprimed endpoints. For unprimed RX endpoints, the response to an OUT transaction is to ignore 
the packet within the device controller.

• Prime requests always schedule the transfer described in the dTD for the next (micro)frame. If 
ISO-dTD remains active after that frame, ISO-dTD holds ready until executed or canceled by the 
DCD.

The USB OTG in host mode uses the periodic frame list to schedule data exchanges to isochronous 
endpoints. The operational model for device mode does not use such a data structure. Instead, the same 
dTD used for control/bulk/interrupt endpoints is also used for isochronous endpoints. The difference is in 
the managing of the dTD.

The first difference between bulk and ISO-endpoints is that priming an ISO-endpoint is a delayed 
operation such that an endpoint becomes primed only after a SOF is received. After the DCD writes the 
prime bit, the prime bit clears as usual to indicate to software that the device controller completed a 
priming the dTD for transfer. Internal to the design, the device controller hardware masks that prime start 
until the next frame boundary. This behavior is hidden from the DCD, but occurs so the device controller 
can match the dTD to a specific (micro)frame. 

Another difference with isochronous endpoints is that the transaction must wholly complete in a 
(micro)frame. After an ISO transaction is started in a (micro)frame, it retires the corresponding dTD when 
MULT transactions occur or the device controller finds a fulfillment condition.

The transaction error bit set in the status field indicates a fulfillment error condition. When a fulfillment 
error occurs, the frame after the transfer failed to complete wholly, and the device controller retires the 
current ISO-dTD and move to the next ISO-dTD.

Fulfillment errors are only caused due to partially completed packets. If no activity occurs to a primed 
ISO-dTD, the transaction stays primed indefinitely. This means it is up to software must discard transmit 
ISO-dTDs that pile up from a failure of the host to move the data.

Finally, the last difference with ISO packets is in the data level error managing. When a CRC error occurs 
on a received packet, the packet is not retried similar to bulk and control endpoints. Instead, the CRC is 
noted by setting the transaction error bit and the data is stored as usual for the application software to sort 
out.

• TX packet retired:

— MULT counter reaches zero.

— Fulfillment error (transaction error bit is set):

– # packets occurred > 0 AND # packets occurred < MULT
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NOTE
For TX-ISO, MULT counter can be loaded with a lesser value in the dTD 
multiplier override field. If the multiplier override field is zero, the MULT 
counter initializes to the multiplier in the QH.

• RX packet retired:

— MULT counter reaches zero.

— Non-MDATA data PID is received

— Overflow error:

– Packet received is > maximum packet length. (Buffer Error bit is set)

– Packet received exceeds total bytes allocated in dTD. (Buffer Error bit is set)

— Fulfillment error (Transaction Error bit is set):

– # packets occurred > 0 AND # packets occurred < MULT

— CRC error (Transaction Error bit is set)

NOTE
For ISO, when a dTD is retired, the next dTD is primed for the next frame. 
For continuous (micro)frame to (micro)frame operation, DCD must ensure 
the dTD linked-list is out ahead of the device controller by at least two 
(micro)frames.

Isochronous Pipe Synchronization

When it is necessary to synchronize an isochronous data pipe to the host, the (micro)frame number 
(FRINDEX register) can act as a marker. To cause a packet transfer to occur at a specific (micro)frame 
number (N), the DCD must interrupt on SOF during frame N-1. When the FRINDEX equals N-1, the DCD 
must write the prime bit. The USB OTG primes the isochronous endpoint in (micro)frame N-1 so the 
device controller executes delivery during (micro)frame N. 

CAUTION
Priming an endpoint towards the end of (micro)frame N-1 does not 
guarantee delivery in (micro)frame N. The delivery may actually occur in 
(micro)frame N+1 if the device controller does not have enough time to 
complete the prime before the SOF for packet N is received.

Isochronous Endpoint Bus Response Matrix

Table 24-57. Isochronous Endpoint Bus Response Matrix

Token
Type

Stall
Not 

Primed
Primed Underflow Overflow

Setup STALL STALL STALL N/A N/A

In
NULL1 
Packet

NULL 
Packet

Transmit BS Error2 N/A
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24.5.3.5 Managing Queue Heads

The device queue head (dQH) points to the linked list of transfer tasks, each depicted by the device transfer 
descriptor (dTD). An area of memory pointed to by EPLISTADDR contains a group of all dQH's in a 
sequential list (Figure 24-44). The even elements in the list of dQH's receive endpoints (OUT/SETUP) and 
the odd elements transmit endpoints (IN/INTERRUPT). Device transfer descriptors are linked head to tail 
starting at the queue head and ending at a terminate bit. After the dTD retires, it is no longer part of the 
linked list from the queue head. Therefore, software is required to track all transfer descriptors because 
pointers no longer exist within the queue head after the dTD is retired (see Section 24.5.3.6.1, “Software 
Link Pointers”).

Figure 24-44. Endpoint Queue Head Diagram

In addition to current and next pointers and the dTD overlay examined in Section 24.5.3.4, “Packet 
Transfers,” the dQH also contains the following parameters for the associated endpoint: multipler, 
maximum packet length, and interrupt on setup. The next section includes demonstration of complete 
initialization of the dQH including these fields.

Out
Ignore Ignore Receive N/A Drop 

Packet

Ping Ignore Ignore Ignore Ignore Ignore

Invalid Ignore Ignore Ignore Ignore Ignore

1 Zero length packet
2 Force bit stuff error

Table 24-57. Isochronous Endpoint Bus Response Matrix (continued)

Token
Type

Stall
Not 

Primed
Primed Underflow Overflow

Endpoint QH1 - Out

Endpoint QH0 - In

Endpoint QH0 - Out

ENDPOINTLISTADDR

Endpoint Queue Heads
(up to 32 elements)

Transfer
Buffer

Transfer Buffer
Pointer

Transfer
Buffer

Transfer
Buffer

Transfer
Buffer

Transfer Buffer
Pointer

Endpoint
Transfer

Descriptors
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24.5.3.5.1 Queue Head Initialization

One pair of device queue heads must be initialized for each active endpoint. To initialize a device queue 
head:

• Write the wMaxPacketSize field as required by the USB specification chapter 9 or application 
specific protocol.

• Write the multiplier field to 0 for control, bulk, and interrupt endpoints. For ISO endpoints, set the 
multiplier to 1,2, or 3 as required for bandwidth with the USB specification chapter 9 protocol. In 
FS mode, the multiplier field can only be 1 for ISO endpoints.

• Set the next dTD terminate bit field.

• Clear the active bit in the status field.

• Clear the halt bit in the status field.

NOTE
The DCD must only modify dQH if the associated endpoint is not primed 
and there are no outstanding dTDs.

24.5.3.5.2 Setup Transfers Operation

As discussed in Section 24.5.3.4.4, “Control Endpoint Operation,” setup transfers require special 
treatment by the DCD. A setup transfer does not use a dTD, but instead stores the incoming data from a 
setup packet in an 8-byte buffer within the dQH.

Upon receiving notification of the setup packet, the DCD should manage the setup transfer by:

1. Copying setup buffer contents from dQH-RX to software buffer.

2. Acknowledging setup backup by writing a 1 to the corresponding bit in the EPSETUPSR register.

NOTE
The acknowledge must occur before continuing to process the setup packet. 
After acknowledge occurs, DCD must not attempt to access the setup buffer 
in dQH-RX. Only local software copy should be examined.

3. Checking for pending data or status dTD's from previous control transfers and flushing if any exist 
as discussed in Section 24.5.3.6.5, “Flushing/De-priming an Endpoint.”

NOTE
It is possible for the device controller to receive setup packets before 
previous control transfers complete. Existing control packets in progress 
must be flushed and the new control packet completed.

4. Decoding setup packet and prepare data phase (optional) and status phase transfer as required by 
the USB specification chapter 9 or application specific protocol.
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24.5.3.6 Managing Transfers with Transfer Descriptors

24.5.3.6.1 Software Link Pointers

It is necessary for the DCD software to maintain head and tail pointers for the linked list of dTDs for each 
respective queue head. This is necessary because the dQH only maintains pointers to the current working 
dTD and the next dTD executed. The operations described in the next section for managing dTDs assumes 
DCD can reference the head and tail of the dTD linked list.

NOTE
To conserve memory, the reserved fields at the end of the dQH can be used 
to store the head and tail pointers, but DCD must continue maintaining the 
pointers.

Figure 24-45. Software Link Pointers

NOTE
Check the status of each dTD to determine completed status.

24.5.3.6.2 Building a Transfer Descriptor

Before a transfer can be executed from the linked list, a dTD must be built to describe the transfer. Use the 
following procedure for building dTDs.

Allocate an 8-longword dTD block of memory aligned to 8-longword boundaries. The last 5 bits of the 
address must equal 00000.

Write the following fields:

1. Initialize the first 7 longwords to 0.

2. Set the terminate bit.

3. Fill in total bytes with transfer size.

4. Set the interrupt on complete bit if desired.

5. Initialize the status field with the active bit set, and all remaining status bits cleared.

6. Fill in buffer pointer page 0 and the current offset to point to the start of the data buffer.

7. Initialize buffer pointer page 1 through page 4 to be one greater than each of the previous buffer 
pointers.

Endpoint QH current

next
Tail PointerHead Pointer

Queued dTDsCompleted dTDs
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24.5.3.6.3 Executing a Transfer Descriptor

To safely add a dTD, the DCD must follow this procedure that manages the event where the device 
controller reaches the end of the dTD list. At the same time, a new dTD is added to the end of the list.

Determine whether the linked list is empty: 

Check the DCD driver to see if the pipe is empty (internal representation of the linked list should 
indicate if any packets are outstanding)

Case 1: Link list is empty

1. Write dQH next pointer AND dQH terminate bit to 0 as a single longword operation.

2. Clear active and halt bit in dQH (in case set from a previous error).

3. Prime endpoint by writing 1 to the correct bit position in the EPPRIME register.

Case 2: Link list is not empty

1. Add dTD to end of the linked list.

2. Read correct prime bit in EPPRIME - if set, DONE.

3. Set the USBCMD[ATDTW] bit.

4. Read correct status bit in EPSR, and store in a temporary variable for later.

5. Read the USBCMD[ATDTW] bit:

If clear, go to 3.

If set, continue to 6.

6. Clear the USBCMD[ATDTW] bit.

7. If status bit read in step 4 is 1 DONE.

8. If status bit read in step 4 is 0 then go to case 1, step 1.

24.5.3.6.4 Transfer Completion

After a dTD is initialized and the associated endpoint is primed, the device controller executes the transfer 
upon the host-initiated request. The DCD is notified with a USB interrupt if the interrupt-on-complete bit 
was set, or alternatively, the DCD can poll the endpoint complete register to determine when the dTD had 
been executed. After a dTD is executed, DCD can check the status bits to determine success or failure.

CAUTION
Multiple dTDs can be completed in a single endpoint complete notification. 
After clearing the notification, the DCD must search the dTD linked list and 
retire all finished (active bit cleared) dTDs.

By reading the status fields of the completed dTDs, the DCD can determine if the transfers completed 
successfully. Success is determined with the following combination of status bits:

• Active = 0, Halted = 0, Transaction error = 0, Data buffer error = 0

Should any combination other than the one shown above exist, the DCD must take proper action. Transfer 
failure mechanisms are indicated in Section 24.5.3.6.6, “Device Error Matrix.”
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In addition to checking the status bit, the DCD must read the transfer bytes field to determine the actual 
bytes transferred. When a transfer is complete, the total bytes transferred decrements by the actual bytes 
transferred. For transmit packets, a packet is only complete after the actual bytes reaches zero. However, 
for receive packets, the host may send fewer bytes in the transfer according the USB variable length packet 
protocol.

24.5.3.6.5 Flushing/De-priming an Endpoint

It is necessary for the DCD to flush or de-prime endpoints during a USB device reset or during a broken 
control transfer. There may also be application specific requirements to stop transfers in progress. The 
DCD can use this procedure to stop a transfer in progress:

1. Set the corresponding bit(s) in the EPFLUSH register.

2. Wait until all bits in the EPFLUSH register are cleared.

NOTE
This operation may take a large amount of time depending on the USB bus 
activity. It is not desirable to have this wait loop within an interrupt service 
routine.

3. Read the EPSR register to ensure that for all endpoints commanded to be flushed, that the 
corresponding bits are now cleared. If the corresponding bits are set after step #2 has finished, flush 
failed as described below:

In very rare cases, a packet is in progress to the particular endpoint when commanded to flush using 
EPFLUSH. A safeguard is in place to refuse the flush to ensure that the packet in progress 
completes successfully. The DCD may need to repeatedly flush any endpoints that fail to flush by 
repeating steps 1-3 until each endpoint successfully flushes.

24.5.3.6.6 Device Error Matrix

The following table summarizes packet errors not automatically managed by the USB OTG module.

The device controller manages all errors on bulk/control/interrupt endpoints except for a data buffer 
overflow. However, for ISO endpoints, errors packets are not retried and errors are tagged as indicated.

Table 24-58. Device Error Matrix

Error Direction
Packet
Type

Data Buffer
Error Bit

Transaction
Error Bit

Data Buffer Overflow RX Any 1 0

ISO Packet Error RX ISO 0 1

ISO Fulfillment Error Both ISO 0 1
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24.5.4 Servicing Interrupts

The interrupt service routine must understand there are high frequency, low frequency, and error 
operations to order accordingly.

24.5.4.1 High Frequency Interrupts

In particular, high frequency interrupts must be managed in the order below. The most important of these 
is listed first because the DCD must acknowledge a setup buffer in the timeliest manner possible.

24.5.4.1.1 Low Frequency Interrupts

The low frequency events include the following interrupts. These interrupts can be managed in any order 
because they do not occur often in comparison to the high-frequency interrupts.

Table 24-59. Error Descriptions

Overflow Number of bytes received exceeded max. packet size or total buffer length. 

Note: This error also sets the halt bit in the dQH, and if there are dTDs remaining in the 
linked list for the endpoint, those are not executed.

ISO Packet Error CRC error on received ISO packet. Contents not guaranteed correct.

ISO Fulfillment Error Host failed to complete the number of packets defined in the dQH mult field within the given 
(micro)frame. For scheduled data delivery, DCD may need to readjust the data queue 
because a fulfillment error causes the device controller to cease data transfers on the pipe 
for one (micro)frame. During the dead (micro)frame, the device controller reports error on 
the pipe and primes for the following frame.

Table 24-60. Interrupt Managing Order

Execution 
Order

Interrupt Action

1a USB Interrupt1

EPSETUPSR

1 It is likely multiple interrupts stack up on any call to the interrupt service routine and during interrupt service routine.

Copy contents of setup buffer and acknowledge setup packet (as indicated 
in Section 24.5.3.5, “Managing Queue Heads”). Process setup packet 
according to USB specification chapter 9 or application specific protocol. 

1b USB Interrupt
EPCOMPLETE

Manage completion of dTD as indicated in Section 24.5.3.5, “Managing 
Queue Heads.”

2 SOF Interrupt Action as deemed necessary by application. This interrupt may not have a 
use in all applications.

Table 24-61. Low Frequency Interrupt Events

Interrupt Action

Port Change Change software state information.

Sleep Enable (Suspend) Change software state information. Low power managing as 
necessary.

Reset Received Change software state information. Abort pending transfers.
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24.5.4.1.2 Error Interrupts

Error interrupts are least frequent and should be placed last in the interrupt service routine.

24.5.5 Deviations from the EHCI Specifications

The host mode operation of the USB host and OTG modules is nearly EHCI-compatible with a few minor 
differences. For the most part, the modules conform to the data structures and operations described in 
Section 3, “Data Structures,” and Section 4, “Operational Model,” in the EHCI specification. The 
particulars of the deviations occur in the following areas:

• Embedded transaction translator (USB host and OTG modules)—Allows direct attachment of FS 
and LS devices in host mode without the need for a companion controller.

• Device operation (USB OTG module only)—In host mode, the device operational registers are 
generally disabled; therefore, device mode is mostly transparent when in host mode. However, 
there are a couple exceptions documented in the following sections.

• Embedded design interface—The modules do not have a PCI Interface and therefore the PCI 
configuration registers described in the EHCI specification are not applicable.

For the purposes of the USB OTG implementing a dual-role host/device controller with support for OTG 
applications, it is necessary to deviate from the EHCI specification. Device and OTG operation are not 
specified in the EHCI specification, and thus the implementation supported in the USB OTG module is 
proprietary. 

24.5.5.1 Embedded Transaction Translator Function

The USB host mode supports directly connected full- and low-speed devices without requiring a 
companion controller by including the capabilities of a USB 2.0 high-speed hub transaction translator. 
Although there is no separate transaction translator block in the system, the transaction translator function 
normally associated with a high-speed hub is implemented within the DMA and protocol engine blocks. 
The embedded transaction translator function is an extension to EHCI interface, but makes use of the 
standard data structures and operational models existing in the EHCI specification to support full- and 
low-speed devices.

24.5.5.1.1 Capability Registers

These additions to the capability registers support the embedded Transaction translator function:

• N_TT added to HSCPARAMS - Host Controller Structural Parameters

• N_PTT added to HSCPARAMS - Host Controller Structural Parameters

Table 24-62. Error Interrupt Events

Interrupt Action

USB Error Interrupt. This error is redundant because it combines USB interrupt and an error status in the dTD. 
The DCD more aptly manages packet-level errors by checking the dTD status field upon 
receipt of USB interrupt (w/ EPCOMPLETE).

System Error Unrecoverable error. Immediate reset of module; free transfers buffers in progress and 
restart the DCD.



Universal Serial Bus Interface – On-The-Go Module

24-76 NXP Semiconductors

See Section 24.3.3.3, “Host Controller Structural Parameters Register (HCSPARAMS)” for usage 
information.

24.5.5.1.2 Operational Registers

These additions to the operational registers support the embedded TT:

• Addition of the TTCTRL register.

• Addition of a two-bit port speed (PSPD) field to the PORTSCn register.

24.5.5.1.3 Discovery

In a standard EHCI controller design, the EHCI host controller driver detects a full-speed (FS) or 
low-speed (LS) device by noting if the port enable bit is set after the port reset operation. The port enable 
is set only in a standard EHCI controller implementation after the port reset operation and when the host 
and device negotiate a high-speed connection (chirp completes successfully).

The module always sets the port enable bit after the port reset operation regardless of the result of the host 
device chirp result, and the resulting port speed is indicated by the PORTSCn[PSPD] field. Therefore, the 
standard EHCI host controller driver requires an alteration to manage directly connected full- and 
low-speed devices or hubs. The change is a fundamental one summarized in Table 24-63.

24.5.5.1.4 Data Structures

The same data structures used for FS/LS transactions though a HS hub are also used for transactions 
through the root hub. It is demonstrated here how hub address and endpoint speed fields should be set for 
directly attached FS/LS devices and hubs:

1. QH (for direct attach FS/LS) – asynchronous (bulk/control endpoints) periodic (interrupt)

• Hub address equals 0

• Transactions to direct attached device/hub.

Table 24-63. Functional Differences Between EHCI and EHCI with Embedded TT

Standard EHCI EHCI with embedded Transaction Translator 

After port enable bit is set following a 
connection and reset sequence, the 
device/hub is assumed to be HS. 

After port enable bit is set following a connection and 
reset sequence, the device/hub speed is noted from 
PORTSCn.

FS and LS devices are assumed to be 
downstream from a HS hub. 
Therefore, all port-level control 
performs through the hub class to the 
nearest hub.

FS and LS device can be downstream from a HS hub or 
directly attached. When the FS/LS device is downstream 
from a HS hub, port-level control acts using the hub class 
through the nearest hub. When a FS/LS device is directly 
attached, then port-level control is accomplished using 
PORTSCn.

FS and LS devices are assumed to be 
downstream from a HS hub with 
HubAddr equal to X. [where HubAddr 
> 0 and HubAddr is the address of the 
hub where the bus transitions from HS 
to FS/LS (split target hub)]

FS and LS device can be downstream from a HS hub 
with HubAddr equal to X [HubAddr > 0] or directly 
attached [where HubAddr equals 0 and HubAddr is the 
address of the root hub where the bus transitions from 
HS to FS/LS (split target hub is the root hub)]
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— QH.EPS equals port speed

• Transactions to a device downstream from direct attached FS hub.

— QH.EPS equals downstream device speed

NOTE
When QH.EPS equals 01 (LS) and PORTSCn[PSPD] equals 00 (FS), a 
LS-pre-PID is sent before transmitting LS traffic.

Maximum packet size must equal 64 or less to prevent undefined behavior.

2. siTD (for direct attach FS) – Periodic (ISO endpoint)

• All FS ISO transactions:

— Hub address equals 0

— siTD.EPS equals 00 (full speed)

Maximum packet size must equal to 1023 or less to prevent undefined behavior.

24.5.5.1.5 Operational Model

The operational models are well defined for the behavior of the transaction translator (see USB 2.0 
specification) and for the EHCI controller moving packets between system memory and a USB-HS hub. 
Because the embedded transaction translator exists within the USB host controller, no physical bus 
between EHCI host controller driver and the USB FS/LS bus. These sections briefly discuss the 
operational model for how the EHCI and transaction translator operational models combine without the 
physical bus between. The following sections assume the reader is familiar with the EHCI and USB 2.0 
transaction translator operational models.

Microframe Pipeline

The EHCI operational model uses the concept of H-frames and B-frames to describe the pipeline between 
the host (H) and the bus (B). The embedded transaction translator uses the same pipeline algorithms 
specified in the USB 2.0 specification for a hub-based transaction translator.

All periodic transfers always begin at B-frame 0 (after SOF) and continue until the stored periodic transfers 
are complete. As an example of the microframe pipeline implemented in the embedded transaction 
translator, all periodic transfers that are tagged in EHCI to execute in H-frame 0 are ready to execute on 
the bus in B-frame 0.

When programming the S-mask and C-masks in the EHCI data structures to schedule periodic transfers 
for the embedded transaction translator, the EHCI host controller driver must follow the same rules 
specified in EHCI for programming the S-mask and C-mask for downstream hub-based transaction 
translators.

After periodic transfers are exhausted, any stored asynchronous transfer is moved. Asynchronous transfers 
are opportunistic because they execute when possible and their operation is not tied to H-frame and 
B-frame boundaries with the exception that an asynchronous transfer cannot babble through the SOF (start 
of B-frame 0.)
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Split State Machines

The start and complete-split operational model differs from EHCI slightly because there is no bus medium 
between the EHCI controller and the embedded transaction translator. Where a start or complete-split 
operation would occur by requesting the split to the HS hub, the start/complete-split operation is simple 
an internal operation to the embedded transaction translator. Table 24-64 summarizes the conditions where 
handshakes are emulated from internal state instead of actual handshakes to HS split bus traffic.

Asynchronous Transaction Scheduling and Buffer Management

The following USB 2.0 specification items are implemented in the embedded Transaction Translator:

• USB 2.0 – 11.17.3

— Sequencing is provided and a packet length estimator ensures no full-/low-speed packet 
babbles into SOF time.

• USB 2.0 – 11.17.4

— • Transaction tracking for 2 data pipes.

• USB 2.0 – 11.17.5

— • Clear_TT_Buffer capability provided though the use of the TTCTRL register.

Periodic Transaction Scheduling and Buffer Management

The following USB 2.0 specification items are implemented in the embedded transaction translator:

• USB 2.0 – 11.18.6.[1-2]

— Abort of pending start-splits

– EOF (and not started in microframes 6)

– Idle for more than 4 microframes

— Abort of pending complete-splits

– EOF

– Idle for more than 4 microframes

• USB 2.0 - 11.18.[7-8]

— Transaction tracking for up to 4 data pipes.

Table 24-64. Emulated Handshakes

Condition Emulate TT Response 

Start-Split: All asynchronous buffers full NAK

Start-Split: All periodic buffers full ERR

Start-Split: Success for start of async. transaction ACK

Start-Split: Start periodic transaction No handshake (Ok)

Complete-Split: Failed to find transaction in queue Bus time-out

Complete-Split: Transaction in queue is busy NYET

Complete-Split: Transaction in queue is complete Actual handshake from FS/LS device
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– No more than 4 periodic transactions (interrupt/isochronous) can be scheduled through the 
embedded TT per frame.

— Complete-split transaction searching.

NOTE
There is no data schedule mechanism for these transactions other than the 
microframe pipeline. The embedded TT assumes the number of packets 
scheduled in a frame does not exceed the frame duration (1 ms) or else 
undefined behavior may result.

24.5.5.2 Device Operation

The co-existence of a device operational controller within the USB OTG module has little effect on EHCI 
compatibility for host operation. However, given that the USB OTG controller initializes in neither host 
nor device mode, the USBMODE register must be programmed for host operation before the EHCI host 
controller driver can begin EHCI host operations.

24.5.5.3 Non-Zero Fields in the Register File

Some of the reserved fields and reserved addresses in the capability registers and operational registers have 
use in device mode. Adhere to these steps:

• Write operations to all EHCI reserved fields (some of which are device fields in the USB OTG 
module) in the operation registers should always be written to zero. This is an EHCI requirement 
of the device controller driver that must be adhered to.

• Read operations by the module must properly mask EHCI reserved fields (some of which are 
device fields in the USB OTG module registers).

24.5.5.4 SOF Interrupt

The SOF interrupt is a free running 125 μs interrupt for host mode. EHCI does not specify this interrupt, 
but it has been added for convenience and as a potential software time base. The free running interrupt is 
shared with the device mode start-of-frame interrupt. See Section 24.3.4.2, “USB Status Register 
(USBSTS),” and Section 24.3.4.3, “USB Interrupt Enable Register (USBINTR),” for more information. 

24.5.5.5 Embedded Design

This is an embedded USB host controller as defined by the EHCI specification; therefore, it does not 
implement the PCI configuration registers.

24.5.5.5.1 Frame Adjust Register

Given that the optional PCI configuration registers are not included in this implementation, there is no 
corresponding bit level timing adjustments like those provided by the frame adjust register in the PCI 
configuration registers. Starts of microframes are timed precisely to 125 μs using the transceiver clock as 
a reference clock or a 60 Mhz transceiver clock for 8-bit physical interfaces and full-speed serial 
interfaces.
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24.5.5.6 Miscellaneous Variations from EHCI

24.5.5.6.1 Programmable Physical Interface Behavior

The modules support multiple physical interfaces that can operate in different modes when the module is 
configured with the software programmable physical interface modes. The control bits for selecting the 
PHY operating mode are added to the PORTSCn register providing a capability not defined by the EHCI 
specification.

24.5.5.6.2 Discovery

Port Reset

The port connect methods specified by EHCI require setting the port reset bit in the PORTSCn register for 
a duration of 10 ms. Due to the complexity required to support the attachment of devices not high speed, 
a counter is present in the design that can count the 10 ms reset pulse to alleviate the requirement of the 
software to measure this duration. Therefore, the basic connection is summarized as:

• Port change interrupt—Port connect change occurs to notify the host controller driver that a device 
has attached.

• Software shall set the PORTSCn[PR] bit to reset the device.

• Software shall clear the PORTSCn[PR] bit after 10 ms.

— This step, necessary in a standard EHCI design, may be omitted with this implementation. 
Should the EHCI host controller driver attempt to write a 0 to the reset bit while a reset is in 
progress, the write is ignored and the reset continues until completion.

• Port change interrupt—Port enable change occurs to notify the host controller that the device is 
now operational and at this point the port speed is determined.

Port Speed Detection

After the port change interrupt indicates that a port is enabled, the EHCI stack should determine the port 
speed. Unlike the EHCI implementation, which re-assigns the port owner for any device that does not 
connect at high speed, this host controller supports direct attach of non-HS devices. Therefore, the 
following differences are important regarding port speed detection:

• Port owner hand-off is not implemented. Therefore, PORTSCn[PO] bit is read-only and always 
reads 0.

• A 2-bit port speed indicator field has been added to PORTSCn to provide the current operating 
speed of the port to the host controller driver.

• A 1-bit high-speed indicator bit has been added to PORTSCn to signify that the port is in HS vs. 
FS/LS. 

— This information is redundant with the 2-bit port speed indicator field above.
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Chapter 25  
Enhanced Secure Digital Host Controller (eSDHC)

25.1 Overview
The enhanced Secure Digital host controller (eSDHC) provides an interface between the host system and 
several types of memory cards:

• MultiMediaCard (MMC)

MMC is a universal low-cost data storage and communication medium designed to cover a wide 
area of applications including mobile video and gaming, which are available from pre-loaded 
MMC cards or downloadable from cellular phones, WLAN, or other wireless networks. Old MMC 
cards are based on a seven-pin serial bus with a single data pin, while the new high-speed MMC 
communication is based on an advanced 11-pin serial bus designed to operate in a low voltage 
range.

• Secure Digital (SD) card

The Secure Digital (SD) card is an evolution of MMC technology. It is specifically designed to 
meet the security, capacity, performance, and environment requirements inherent in the emerging 
audio and video consumer electronic devices. The physical form factor, pin assignments, and data 
transfer protocol are forward-compatible with the old MMC.

• SDIO

Under the SD protocol, the SD cards can be categorized as a memory card, I/O card, or combo card. 
The memory card invokes a copyright protection mechanism that complies with the security of the 
SDMI standard. The I/O card provides high-speed data I/O with low power consumption for 
mobile electronic devices. The combo card has both memory and I/O functions. For the sake of 
simplicity, Figure 25-1 does not show cards with reduced sizes.
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The eSDHC acts as a bridge, passing host bus transactions to SD/SDIO/MMC cards by sending commands 
and performing data accesses to or from the cards. It handles the SD/SDIO/MMC protocol at the 
transmission level. Figure 25-1 shows connection of the eSDHC.

Figure 25-1. System Connection of the eSDHC
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25.1.1 Block Diagram

Figure 25-2 is a block diagram of the eSDHC.

Figure 25-2. eSDHC Block Diagram

25.1.2 Features

The eSDHC includes the following features:

• Compatible with the following specifications:

— SD Host Controller Standard Specification, Version 2.0 (http://www.sdcard.org) with test event 
register and advanced DMA support

— MultiMediaCard System Specification, Version 4.2 (http://www.mmca.org)

— SD Memory Card Specification, Version 2.0 (http://www.sdcard.org), supporting high capacity 
SD memory cards
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— SDIO Card Specification, Version 2.0 (http://www.sdcard.org)

• Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC, 
MMCplus, and RS-MMC cards

• SD bus clock frequency over 25 MHz

• Supports 1-/4-bit SD and SDIO modes, 1-/4-bit MMC modes

— Up to 160 Mbps data transfer for SD/SDIO/MMC cards using four parallel data lines

• Single- and multi-block read and write

• Write-protection switch for write operations

• Synchronous and asynchronous abort

• Pause during the data transfer at a block gap

• SDIO read wait and suspend/resume operations

• Auto CMD12 for multi-block transfer

• Host can initiate non-data transfer commands while the data transfer is in progress

• Allows cards to interrupt the host in 1- and 4-bit SDIO modes

• Supports interrupt period, defined in the SDIO standard

• Fully configurable 128  32-bit FIFO for read/write data

• Internal DMA capabilities

• Supports advanced DMA to perform linked memory access

25.1.3 Data Transfer Modes

The eSDHC can select the following modes for data transfer:

• SD 1-bit

• SD 4-bit

• MMC 1-bit

• MMC 4-bit

• Full-speed mode (greater than 25 MHz)

25.2 External Signal Description
The eSDHC contains the following chip I/O signals:

• SDHC_CLK is the internally generated clock signal that drives the MMC, SD, or SDIO card

• SDHC_CMD I/O sends commands and receive responses from the card

• SDHC_DAT3–SDHC_DAT0 perform data transfers between the eSDHC and the card

Table 25-1 shows the properties of the eSDHC I/O signals.

http://www.sdcard.org
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25.3 Memory Map/Register Definition
Table 25-2 shows the register memory map. All registers can only be accessed based on a 32-bit width.

Table 25-1. Signal Properties

Name Port Function Reset State Pull up

SDHC_CLK  O Clock for MMC/SD/SDIO card 0 N/A

SDHC_CMD I/O Command line to card High Z Pull up

SDHC_DAT3 I/O 4-bit mode: DAT3 line or configured as card 
detection pin
1-bit mode: May be configured as card detection pin

High Z Board should have 100K pull 
down. The card drives 50K pull 
up as required by the SD card 
specification.

SDHC_DAT2 I/O 4-bit mode: DAT2 line or read wait
1-bit mode: Read wait

High Z Pull up

SDHC_DAT1 I/O 4-bit mode: DAT1 line or interrupt detect
1-bit mode: Interrupt detect

High Z Pull up

SDHC_DAT0 I/O DAT0 line or busy-state detect High Z Pull up

Table 25-2. eSDHC Memory Map

Address Register
Width
(bits)

Access Reset Section/Page

0xFC0C_C000 DMA system address (DSADDR) 32 R/W 0x0000_0000 25.3.1/25-6

0xFC0C_C004 Block attributes (BLKATTR) 32 R/W 0x0001_0000 25.3.2/25-7

0xFC0C_C008 Command argument (CMDARG) 32 R/W 0x0000_0000 25.3.3/25-8

0xFC0C_C00C Command transfer type (XFERTYP) 32 R/W 0x0000_0000 25.3.4/25-8

0xFC0C_C010 Command response0 (CMDRSP0) 32 R 0x0000_0000 25.3.5/25-11

0xFC0C_C014 Command response1 (CMDRSP1) 32 R 0x0000_0000 25.3.5/25-11

0xFC0C_C018 Command response2 (CMDRSP2) 32 R 0x0000_0000 25.3.5/25-11

0xFC0C_C01C Command response3 (CMDRSP3) 32 R 0x0000_0000 25.3.5/25-11

0xFC0C_C020 Data buffer access port (DATPORT) 32 R/W 0x0000_0000 25.3.6/25-13

0xFC0C_C024 Present state (PRSSTAT) 32 R 0xFF88_00F8 25.3.7/25-13

0xFC0C_C028 Protocol control (PROCTL) 32 R/W 0x0000_0020 25.3.8/25-17

0xFC0C_C02C System control (SYSCTL) 32 R/W 0x0000_8008 25.3.9/25-20

0xFC0C_C030 Interrupt status (IRQSTAT) 32 R/W 0x0000_0000 25.3.10/25-22

0xFC0C_C034 Interrupt status enable (IRQSTATEN) 32 R/W 0x117F_013F 25.3.11/25-26

0xFC0C_C038 Interrupt signal enable (IRQSIGEN) 32 R/W 0x0000_0000 25.3.12/25-29

0xFC0C_C03C Auto CMD12 status (AUTOC12ERR) 32 R 0x0000_0000 25.3.13/25-30

0xFC0C_C040 Host controller capabilities (HOSTCAPBLT) 32 R 0x07F3_0000 25.3.14/25-33

0xFC0C_C0441 Watermark level (WML) 32 R/W 0x0810_0810 25.3.15/25-34
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25.3.1 DMA System Address Register (DSADDR)

The DMA system address register contains the physical system memory address used for DMA transfers. 
Only access this register when no transactions are executing (after transactions have stopped). The host 
driver must wait until PRSSTAT[DLA] is cleared.

0xFC0C_C050 Force event (FEVT) 32 W 0x0000_0000 25.3.16/25-34

0xFC0C_C054 ADMA error status (ADMAESR) 32 R 0x0000_0000 25.3.17/25-36

0xFC0C_C058 ADMA system address (ADMASAR) 32 R/W 0x0000_0000 25.3.18/25-37

0xFC0C_C0C0 Vendor specific register (VENDOR) 32 R/W 0x0000_0001 25.3.19/25-38

0xFC0C_C0FC Host controller version (HOSTVER) 32 R 0x0000_1201 25.3.20/25-39

1 The addresses following 0x044, except 0x050, 0x0FC and 0x40C, are reserved and read as all 0s. Writes to these registers are 
ignored.

Address: 0xFC0C_C000 (DSADDR) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DS_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-3. DMA System Address Register (DSADDR)

Table 25-3. DSADDR Field Descriptions

Field Description

31–0
DS_ADDR

DMA system address. When the eSDHC stops a DMA transfer, this register points to the system address of the 
next contiguous data position.

Note: The DS_ADDR must be aligned to a four-byte boundary; the two least-significant bits must be cleared.

Note: Since this register supports dynamic address reflecting, when TC bit is set, it automatically alters the value 
of internal address counter. So, software cannot change this register when the IRQSTAT[TC] bit is set.

Table 25-2. eSDHC Memory Map (continued)

Address Register
Width
(bits)

Access Reset Section/Page
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25.3.2 Block Attributes Register (BLKATTR)

The block attributes register configures the number of data blocks and the number of bytes in each block. 
Only access this register when no transactions are executing (after transactions have stopped). The host 
driver must wait until PRSSTAT[DLA] is cleared.

Address: 0xFC0C_C004 (BLKATTR) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BLKCNT

0 0 0
BLKSZE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 Since at reset XFERTYP[MSBSEL] is cleared, this field reads 0x0001 after reset

Figure 25-4. Block Attributes Register (BLKATTR)

Table 25-4. BLKATTR Field Descriptions

Field Description

31–16
BLKCNT

Block count for current transfer. This field is enabled when XFERTYP[BCEN] is set and is valid only for multiple block 
transfers. The host driver should set this field to a value between 1 and the maximum block count. The eSDHC 
decrements the block count after each block transfer and stops when the count reaches zero. Clearing this field 
results in no data blocks being transferred.
When saving transfer context as a result of a suspend command, this field indicates the number of blocks yet to be 
transferred. When restoring transfer context prior to issuing a resume command, the host driver should write the 
previously saved block count.
0000 Stop count
0001 1 block
0002 2 blocks
...
FFFF 65,535 blocks
Note: When XFERTYP[MSBSEL] is cleared, this field always reads 0x0001.

15–13 Reserved

12–0
BLKSIZE

Transfer block size. Specifies the block size for block data transfers. Values can range from one byte up to the 
maximum buffer size.The DMA always writes at least four bytes to memory. Thus, software should allocate a buffer 
space rounded up to a 4-byte alighted size in order to avoid data corruption.
0000 No data transfer
0001 1 byte
0002 2 bytes
0003 3 bytes
0004 4 bytes
...
01FF 511 bytes
0200 512 bytes
...
0800 2048 bytes
1000 4096 bytes
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25.3.3 Command Argument Register (CMDARG)

The command argument register contains the SD/MMC command argument.

25.3.4 Transfer Type Register (XFERTYP)

The transfer type register controls the operation of data transfers. The host driver should set this register 
before issuing a command followed by a data transfer, or before issuing a resume command. To prevent 
data loss, the eSDHC prevents a write to the bits that are involved in the data transfer of this register while 
the data transfer is active.

The host driver should check PRSSTAT[CDIHB] and PRSSTAT[CIHB] before writing to this register.

• If PRSSTAT[CDIHB] is set, any attempt to send a command with data by writing to this register is 
ignored.

• If PRSSTAT[CIHB] is set, any write to this register is ignored.

Address: 0xFC0C_C008 (CMDARG) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CMDARG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-5. Command Argument Register (CMDARG)

Table 25-5. CMDARG Field Descriptions

Field Description

31–0
CMDARG

Command argument. The SD/MMC command argument is specified as bits 39–8 of the command format in the SD 
or MMC Specification. If PRSSTAT[CMD] is set, this register is write-protected.

Address: 0xFC0C_C00C (XFERTYP) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0
CMDINX

CMD
TYP

DP
SEL

CIC
EN

CCC
EN

0 RSP
TYP

0 0 0 0 0 0 0 0 0 0 MSB
SEL

DTD
SEL

0 AC1
2EN

BC
EN

DM
AENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-6. Transfer Type Register (XFERTYP)

Table 25-6. XFERTYP Field Descriptions

Field Description

31–30 Reserved, must be cleared.

29–24
CMDINX

Command index. These bits should be set to the command number (CMD0–63, ACMD0–63) that is specified 
in bits 45–40 of the command format in the SD Memory Card Physical Layer Specification and SDIO Card 
Specification.
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23–22
CMDTYP

Command type. There are three types of special commands: suspend, resume, and abort. Clear this bit field 
for all other commands.
 • Suspend command. 

If the suspend command succeeds, the eSDHC assumes the SD bus has been released and it is possible 
to issue the next command which uses the SDHC_DAT line. The eSDHC de-asserts read wait for read 
transactions and stops checking busy for write transactions. In 4-bit mode, the interrupt cycle starts.
If the suspend command fails, the eSDHC maintains its current state, and the host driver should restart the 
transfer by setting PROCTL[CREQ]. The eSDHC does not check if the suspend command succeeds or not. 
It is the host driver’s responsibility to issue a normal CMD52 marked as suspend command when the 
suspend request is accepted by the card, so that eSDHC can be informed that the SD bus is released and 
de-assert read wait during read operation.

 • Resume command. The host driver restarts the data transfer by restoring the registers saved before sending 
the suspend command and sends the resume command. The eSDHC checks for pending busy state before 
starting write transfers.

 • Abort command.
If this command is set when executing a read transfer, the eSDHC stops reads to the buffer.
If this command is set when executing a write transfer, the eSDHC stops driving the SDHC_DAT line. 
After issuing the abort command, the host driver should issue a software reset. (Abort transaction)

00  Normal—other commands
01  Suspend—CMD52 for writing bus suspend in the common card control register (CCCR), defined in the 

SDIO specification
10  Resume—CMD52 for writing function select in CCCR
11  Abort—CMD12, CMD52 for writing I/O abort in CCCR

21
DPSEL

Data present select. Set to indicate that data is present and should be transferred using the SDHC_DAT line. 
It is cleared for the following:
 • Commands using only the SDHC_CMD line (e.g. CMD52)
 • Commands with no data transfer but using busy signal on the SDHC_DAT[0] line (R1b or R5b, e.g. CMD38)
Note: In resume command, this bit should be set while the other bits in this register should be set the same as 

when the transfer initially launched.

0 No data present
1 Data present

20
CICEN

Command index check enable.
0 Disable. The index field is not checked.
1 Enable. The eSDHC checks the index field in the response to see if it has the same value as the command 
index. If it is not, it is reported as a command index error.

19
CCCEN

Command CRC check enable. The number of bits checked by the CRC field value changes according to the 
length of the response. (Refer to RSPTYP[1:0] and Table 25-8.)
0 Disable. The CRC field is not checked.
1 Enable. The eSDHC checks the CRC field in the response if it contains the CRC field. If an error is detected, 
it is reported as a command CRC error.

18 Reserved, must be cleared.

17–16
RSPTYP

Response type select.
00  No response
01  Response length 136
10  Response length 48
11  Response length 48 check busy after response

15–6 Reserved, must be cleared.

Table 25-6. XFERTYP Field Descriptions (continued)

Field Description
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Table 25-7 shows how register settings determine the data transfer type.

5
MSBSEL

Multi/single block select. Enables multiple block SDHC_DAT line data transfers. For any other commands, this 
bit should be cleared. If this bit is cleared, it is not necessary to set the block count register. (Refer to 
Table 25-7.)
0 Single block
1 Multiple blocks

4
DTDSEL

Data transfer direction select. Defines the direction of SDHC_DAT line data transfers. The bit is set by the host 
driver to transfer data from the SD card to the eSDHC and it is cleared for all other commands.
0 Write (host to card)
1 Read (card to host)

3 Reserved, must be cleared.

2
AC12EN

Auto CMD12 enable. Multiple block transfers for memory require CMD12 to stop the transaction. If this bit is 
set, the eSDHC issues CMD12 automatically when the last block transfer is completed. The host driver should 
not set this bit to issue commands that do not require CMD12 to stop a multiple block data transfer. In particular, 
secure commands defined in the Part 3 File Security specification do not require CMD12. In a single block 
transfer, the eSDHC ignores this bit.
0 Disable
1 Enable

1
BCEN

Block count enable. Enables the block attributes register, which is only relevant for multiple block transfers. 
When this bit is cleared, the block attributes register is disabled, which is useful in executing an infinite transfer.
0 Disable
1 Enable

0
DMAEN

DMA enable. Enables DMA functionality as described in Section 25.4.2, “DMA Crossbar Switch Interface.” If 
this bit is set, a DMA operation should begin when the host driver writes to the CMDINX field of the transfer type 
register.
0 Disable
1 Enable

Table 25-7. Determination of Transfer Type

Multi/Single Block Select
XFERTYP[MSBSEL]

Block Count Enable
XFERTYP[BCEN]

Block Count
BLKATTR[BLKCNT]

Function

0 — — Single transfer

1 0 — Infinite transfer

1 1 Non-zero Multiple transfer

1 1 0 No data transfer

Table 25-6. XFERTYP Field Descriptions (continued)

Field Description
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Table 25-8 shows how the response type can be determined by the command index check enable, 
command CRC check enable, and response type bits.

NOTE
In the SDIO specification, response type notation of R5b is not defined. R5 
includes R5b in the SDIO specification. But, R5b is defined in this 
specification to specify the eSDHC checks busy status after receiving a 
response. For example, usually CMD52 is used as R5 but the I/O abort 
command should be used as R5b.

The CRC field for R3 and R4 is expected to be all ones. The CRC check 
should be disabled for these response types.

25.3.5 Command Response 0–3 (CMDRSP0–3)

The command response registers stores the four parts of the response bits from the card.

Table 25-9 describes the mapping of command responses from the SD bus to the command response 
registers for each response type. In the table, R[ ] refers to a bit range within the response data as 
transmitted on the SD bus.

Table 25-8. Relation Between Parameters and Name of Response Type

Response Type
XFERTYP[RSPTYP]

Index Check Enable
XFERTYP[CICEN]

CRC Check Enable
XFERTYP[CCCEN]

Response Type

00 0 0 No response

01 0 1 R2

10 0 0 R3, R4

10 1 1 R1, R5, R6

11 1 1 R1b, R5b

Address: 0xFC0C_C010 (CMDRSP0)
0xFC0C_C014 (CMDRSP1)
0xFC0C_C018 (CMDRSP2)
0xFC0C_C01C (CMDRSP3)

Access: Read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CMDRSP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-7. Command Response 0–3 Register (CMDRSPn)
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This table shows that:

• Most responses with a length of 48 (R[47:0]) have 32 bits of the response data (R[39:8]) stored in 
the CMDRSP0 register.

• Responses of type R1b (Auto CMD12 responses) have response data bits R[39:8] stored in the 
CMDRSP3 register.

• Responses with length 136 (R[135:0]) have 120 bits of the response data (R[127:8]) stored in the 
CMDRSP0, 1, 2, and 3 registers.

To be able to read the response status efficiently, the eSDHC only stores part of the response data in the 
command response registers. This enables the host driver to efficiently read 32 bits of response data in one 
read cycle on a 32-bit bus system. Parts of the response, the index field, and the CRC are checked by the 
eSDHC (as specified by XFERTYP[CICEN, CCCEN]) and generate an error interrupt if any error is 
detected. The bit range for the CRC check depends on the response length. If the response length is 48, the 
eSDHC checks R[47:1], and if the response length is 136, the eSDHC checks R[119:1].

Since the eSDHC may have a multiple block data transfer executing concurrently with a CMD_wo_DAT 
command, the eSDHC stores the Auto CMD12 response in the CMDRSP3 register and the 
CMD_wo_DAT response is stored in CMDRSP0. This allows the eSDHC to avoid overwriting the Auto 
CMD12 response with the CMD_wo_DAT and vice versa. When the eSDHC modifies part of the 
command response registers it preserves the unmodified bits.

Table 25-9. Response Bit Definition for Each Response Type

Response Type Meaning of Response
Response 

Field
Response Register

R1,R1b (normal response) Card status R[39:8] CMDRSP0

R1b (Auto CMD12 response) Card status for Auto CMD12 R[39:8] CMDRSP3

R2 (CID, CSD register) CID/CSD register [127:8] R[127:8] {CMDRSP3[23:0], CMDRSP2, 
CMDRSP1, CMDRSP0}

R3 (OCR register) OCR register for memory R[39:8] CMDRSP0

R4 (OCR register) OCR register for I/O etc. R[39:8] CMDRSP0

R5, R5b SDIO response R[39:8] CMDRSP0

R6 (publish RCA) New published RCA[31:16] 
and card status[15:0]

R[39:9] CMDRSP0
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25.3.6 Buffer Data Port Register (DATPORT)

The buffer data port register is a 32-bit data port register used to access the internal buffer.

25.3.7 Present State Register (PRSSTAT)

PRSSTAT indicates the status of the eSDHC to the host driver.

Address: 0xFC0C_C020 (DATPORT) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATCONT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-8. Buffer Data Port Register (DATPORT)

Table 25-10. DATPORT Field Descriptions

Field Description

31–0
DATCONT

Data content. The buffer data port register is for 32-bit data access by the CPU or an external DMA. When the 
internal DMA is enabled, any write to this register is ignored, and a read from this register always yields 0.

Address: 0xFC0C_C024 (PRSSTAT) Access: Read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 DLSL CLSL 0 0 0 1 0 0 CINS

W

Reset 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 BREN BWEN RTA WTA

SD
OFF

PER
OFF

HCK
OFF

IPG
OFF

SDSTB DLA CDIHB CIHB

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0

Figure 25-9. Present State Register (PRSSTAT)
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Table 25-11. PRSSTAT Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
DLSL

SDHC_DAT[3:0] line signal level. These bits are used to check the SDHC_DAT line level to recover from errors, and 
for debugging.This is especially useful in detecting the busy signal level from SDHC_DAT[0]. The reset value is 
affected by the external pull resistors. By default, read value of this bit field after reset is 0111, when SDHC_DAT[3] 
is pull-down and other lines are pull-up.

23
CLSL

SDHC_CMD line signal level. This status is used to check the SDHC_CMD line level to recover from errors, and for 
debugging. The reset value is affected by the external pull resistor, by default, read value of this bit after reset is 1, 
when the command line is pull-up.

16
CINS

Card inserted. Indicates if a card has been inserted. The eSDHC debounces this signal so that the host driver does 
not need to wait for it to stabilize. Changing from 0 to 1 generates a card-insertion interrupt in the interrupt status 
register and changing from 1 to 0 generates a card removal interrupt in the interrupt status register. A write to the 
force event register does not affect this bit.
The software reset for all in the system control register does not affect this bit. A software reset does not affect this 
bit.
0 Power-on-reset or no card
1 Card inserted

15–12 Reserved, must be cleared.

11
BREN

Buffer read enable. This status is used for non-DMA read transfers. The eSDHC may implement multiple buffers to 
transfer data efficiently. This read-only flag indicates that a burst-length of valid data exists in the host-side buffer.
When the buffer is read, this bit is cleared. When a burst length of data is ready in the buffer, this bit is set and a 
buffer read ready interrupt is generated (if the interrupt is enabled).
0 Buffer read disable
1 Buffer read enable

10
BWEN

Buffer write enable. This status is used for non-DMA write transfers. The eSDHC can implement multiple buffers to 
transfer data efficiently. This read-only flag indicates if space is available for a burst length of write data.
When the buffer is written, this bit is cleared. When a burst length of data is written to the buffer, this bit is set and a 
buffer write ready interrupt is generated (if the interrupt is enabled).
0 Buffer write disable
1 Buffer write enable

9
RTA

Read transfer active. This status is used for detecting completion of a read transfer.
This bit is set for either of the following conditions:
 • After the end bit of the read command
 • When writing a 1 to PROCTL[CREQ] to restart a read transfer
This bit is cleared for either of the following conditions:
 • When the last data block as specified by block length is transferred to the system
 • When all valid data blocks have been transferred to the system and no current block transfers are being sent as 

a result of PROCTL[SABGREQ] being set. A transfer complete interrupt is generated when this bit changes to 0.
0 No valid data
1 Transferring data

PRSSTAT Bit SDHC_DATn

27 3

26 2

25 1

24 0
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8
WTA

Write transfer active. This status indicates a write transfer is active. If this bit is 0, it means no valid write data exists 
in eSDHC.
This bit is set in either of the following cases:
 • After the end bit of the write command.
 • When writing a 1 to PROCTL[CREQ] to restart a write transfer.
This bit is cleared in either of the following cases:
 • After getting the CRC status of the last data block, as specified by the transfer count (single and multiple)
 • After getting the CRC status of any block where data transmission is about to be stopped by a stop-at-block-gap 

request.
During a write transaction, a IRQSTAT[BGE] interrupt is generated when this bit is changed to 0, as result of 
PROCTL[SABGREQ] being set. This status is useful for the host driver in determining when to issue commands 
during write busy.
0 No valid data
1 Transferring data

7
SDOFF

SDHC clock gated off internally. Indicates the SDHC clock is internally gated off because of a buffer overrun, buffer 
underrun, a read pause without read-wait assertion, or SYSCTL[SDCLKEN] is cleared to stop the SD clock. This bit 
is for the host driver to debug data transaction on SD bus.
0 SD clock is active
1 SD clock is gated off

6
PEROFF

Peripheral clock gated off internally. The host driver uses this bit to debug a transaction on SD bus. When 
SYSCTL[INITA] is set and the eSDHC is sending 80 clock cycles to the card, SYSCTL[SDCLKEN] must be set to 
enable the output card clock. Otherwise, the peripheral clock is never gated off.

5
HCKOFF

Crossbar switch master clock internally gated off. The host driver uses this bit to debug a data transfer.

4
IPGOFF

Controller clock gated off internally. Indicates that the controller clock is internally gated off. This bit is for the host 
driver to debug.

3
SDSTB

SD clock stable. Indicates that the internal card clock is stable. This bit is for the host driver to poll clock status when
changing the clock frequency. It is recommended to clear SYSCTL[SDCLKEN] to remove glitches on the card clock 
when the frequency is changing.
0 Clock is changing frequency and not stable
1 Clock is stable

Table 25-11. PRSSTAT Field Descriptions (continued)

Field Description
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2
DLA

Data line active. Indicates whether one of the SDHC_DAT line on SD bus is in use.

For read transactions, this bit indicates if a read transfer is executing on the SD bus. Clearing this bit from 1 to 0 
between data blocks generates a block gap event interrupt. 
This bit is set in either of the following cases:
 • After the end bit of the read command
 • When writing a 1 to PROCTL[CREQ] to restart a read transfer
This bit is cleared in either of the following cases:
 • When the end bit of the last data block is sent from the SD bus to the eSDHC
 • When beginning a read wait transfer initiated by a stop at block gap request

The eSDHC waits at the next block gap by driving read wait at the start of the interrupt cycle. If the read-wait signal 
is already driven (data buffer cannot receive data), the eSDHC can wait for current block gap by continuing to drive 
the read-wait signal. It is necessary to support read wait in order to use the suspend/resume function.

For write transactions, this bit indicates that a write transfer is executing on the SD bus. Clearing this bit from 1 to 0 
generates a transfer complete interrupt.
This bit is set in any of the following cases:
 • After the end bit of the write command
 • When writing a 1 to PROCTL[CREQ] to continue a write transfer
This bit is cleared in any of the following cases:
 • When the SD card releases write-busy of the last data block, the eSDHC also detects if output is not busy. If the 

SD card does not drive the busy signal after CRC status is received, the eSDHC should consider the card drive 
not busy.

 • When the SD card releases write-busy prior to waiting for write transfer as a result of a stop at block gap request

0 SDHC_DAT line inactive
1 SDHC_DAT line active

1
CDIHB

Command inhibit (SDHC_DAT). This bit is set if the SDHC_DAT line is active, the read transfer active is set, or read 
wait is asserted. If this bit is cleared, it indicates the eSDHC can issue the next SD/MMC command. Commands 
with busy signal belong to command inhibit (SDHC_DAT) (e.g. R1b and R5b type). Clearing from 1 to 0 generates 
a transfer complete interrupt.
Note: The SD host driver can save registers for a suspend transaction after this bit has cleared from 1 to 0.
0 Can issue command which uses the SDHC_DAT line
1 Cannot issue command which uses the SDHC_DAT line

0
CIHB

Command inhibit (SDHC_CMD). This bit is cleared, if the SDHC_CMD line is not in use and the eSDHC can issue 
a SD/MMC command using the SDHC_CMD line.
This bit is set immediately after the XFERTYP register is written. This bit is cleared when the command response is 
received. Even if the CDIHB bit is set, commands using only the SDHC_CMD line can be issued if this bit is cleared. 
Clearing from 1 to 0 generates a command complete interrupt.
If the eSDHC cannot issue the command because of a command conflict error (refer to command CRC error) or 
Auto CMD12 error, this bit remains set and IRQSTAT[CC] is not set.
0 Can issue command using only SDHC_CMD line
1 Cannot issue command

Table 25-11. PRSSTAT Field Descriptions (continued)

Field Description
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NOTE
The host driver can issue CMD0, CMD12, CMD13 (for memory) and 
CMD52 (for SDIO) when the SDHC_DAT lines are busy during a data 
transfer. These commands can be issued when PRSSTAT[CIHB] is cleared. 
Other commands should be issued when PRSSTAT[CDIHB] is cleared. 
Possible changes to the SD physical specification may add other commands 
to this list in the future.

25.3.8 Protocol Control Register (PROCTL)

The protocol control register is shown in Figure 25-10.

Address: 0xFC0C_C028 (PROCTL) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 WE
CRM

WE
CINS

WE
CINT

0 0 0 0
IABG

RW
CTL

CREQ
SABG
REQW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
DMAS CDSS CDTL EMODE D3CD DTW

0

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Figure 25-10. Protocol Control Register (PROCTL)

Table 25-12. PROCTL Field Descriptions

Field Description

31–27 Reserved, must be cleared.

26
WECRM

Wake-up event enable on SD card removal. This bit enables wakeup event via card removal assertion in the 
IRQSTAT register. FN_WUS (wake-up support) in CIS does not affect this bit.
0 Disable
1 Enable

25
WECINS

Wake-up event enable on SD card insertion. This bit enables wakeup event via card insertion assertion in the 
IRQSTAT register. FN_WUS (wake-up support) in CIS does not affect this bit.
0 Disable
1 Enable

24
WECINT

Wake-up event enable on card interrupt. This bit enables wakeup event via card interrupt assertion in the 
IRQSTAT register. This bit can be set to 1 if FN_WUS (wake-up support) in CIS is set to 1.
0 Disable
1 Enable

23–20 Reserved, must be cleared.
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19
IABG

Interrupt at block gap. This bit is valid only in 4-bit mode of the SDIO card and selects a sample point in the 
interrupt cycle. If the SDIO card cannot signal an interrupt during a multiple block transfer, this bit should be 
cleared to avoid an inadvertent interrupt. When the host driver detects an SDIO card insertion, it should set this 
bit according to the CCCR of the card.
0 Disable interrupt detection during a multiple block transfer.
1 Enable interrupt detection at the block gap for a multiple block transfer.

18
RWCTL

Read wait control. The read wait function is optional for SDIO cards.
If the card supports read wait, set this bit to enable the read wait protocol to stop read data using the 
SDHC_DAT[2] line. Otherwise, the eSDHC has to stop the SD clock to hold read data, which restricts command 
generation. When the host driver detects an SDIO card insertion, it should set this bit according to the CCCR of 
the card.
If the card does not support read wait, this bit should never be set otherwise an SDHC_DAT line conflict may 
occur. If this bit is cleared, a stop-at-block-gap-during-read operation is also supported, but the eSDHC stops the 
SD clock to pause the reading operation.
0 Disable read-wait control, and stop SD clock at block gap when the SABGREQ bit is set
1 Enable read-wait control, and assert read wait without stopping the SD clock at block gap when 

PROCTL[SABGREQ] is set

17
CREQ

Continue request. Restarts a transaction which was stopped using the stop-at-block-gap request. To cancel the 
request, clear SABGREQ and set this bit to restart the transfer.
The eSDHC automatically clears this bit in either of the following cases:
 • For a read transaction, the PRSSTAT[DLA] bit changes from 0 to 1 as a read transaction restarts.
 • For a write transaction, the PRSSTAT[WTA] bit changes from 0 to 1 as the write transaction restarts.
Therefore, it is not necessary for the host driver to clear. If SABGREQ and this bit are set, the continue request 
is ignored.
0 No effect
1 Restart

16
SABGREQ

Stop at block gap request. Stops executing a transaction at the next block gap for both DMA and non-DMA 
transfers. Until the TC bit is set, indicating a transfer completion, the host driver should leave this bit set. Clearing 
SABGREQ and CREQ does not cause the transaction to restart.
Read wait is used to stop the read transaction at the block gap. The eSDHC honors stop-at-block-gap request 
for write transfers. But for read transfers it requires that the SDIO card support read wait. Therefore, the host 
driver should not set this bit during read transfers unless the SDIO card supports read wait and has set read wait 
control to 1. Otherwise, the eSDHC stops the SD bus clock to pause the read operation during the block gap.

For write transfers in which the host driver writes data to the data port register, the host driver should set this bit 
after all block data is written. If this bit is set, the host driver should not write data to the DATPORT register after 
a block is sent. When this bit is set, the host driver should not clear this bit before IRQSTAT[TC] is set. Otherwise, 
the eSDHC behavior is undefined. Confirm that IRQSTAT[TC] is enabled.
This bit affects PRSSTAT[RTA, WTA, DLA, CIHB].
0 Transfer
1 Stop or not resume yet

15–10 Reserved, must be cleared.

9–8
DMAS

DMA select. Selects the DMA operation when DMA is enabled.
00 Simple DMA
01 Advanced DMA 1 (ADMA1)
10 Advanced DMA 2 (ADMA2)
11 Reserved

Table 25-12. PROCTL Field Descriptions (continued)

Field Description
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There are three ways to restart the transfer after a stop at the block gap. The appropriate method depends 
on whether the eSDHC issues a suspend command or the SD card accepts the suspend command:

• If the host driver does not issue a suspend command, the continue request should be used to restart 
the transfer.

• If the host driver issues a suspend command and the SD card accepts it, a resume command should 
be used to restart the transfer.

• If the host driver issues a suspend command and the SD card does not accept it, PROCTL[CREQ] 
should be used to restart the transfer.

Any time PROCTL[SABGREQ] stops the data transfer, the host driver should wait for IRQSTAT[TC] 
before attempting to restart the transfer. When restarting the data transfer by continue request, the host 
driver should clear PROCTL[SABGREQ] before or simultaneously.

7
CDSS

Card detect signal selection. Selects the source for card detection.
0 Card detection level is selected (for normal purpose)
1 Card detection test level is selected (for test purpose)

6
CDTL

Card detect test level. Determines card insertion status when CDSS is set.
0 No card in the slot
1 Card is inserted

5–4
EMODE

Endian mode. eSDHC supports only address-invariant mode in data transfer.
00 Reserved
01 Reserved
10 Address-invariant mode. Each byte location in the main memory is mapped to the same byte location in the 

MMC/SD card.
11 Reserved

3
D3CD

SDHC_DAT3 as card detection pin. If this bit is set, SDHC_DAT3 should be pulled down to act as a card 
detection pin. Be cautious when using this feature, because SDHC_DAT3 is chip-select for SPI mode, and a 
pull-down on this pin and CMD0 may set the card into SPI mode, which the eSDHC does not support.
Note: On this device there is no separate card-detection signal. To use card detection this bit must be set.

0 SDHC_DAT3 does not monitor card insertion
1 SDHC_DAT3 is card0detection pin

2–1
DTW

Data transfer width. Selects the data width of the SD bus. The host driver should set it to match the data width 
of the card.
00 1-bit mode
01 4-bit mode
10 Reserved
11 Reserved

1 Reserved, must be cleared.

Table 25-12. PROCTL Field Descriptions (continued)

Field Description
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25.3.9 System Control Register (SYSCTL)

The system control register is shown in Figure 25-11.

 

Address: 0xFC0C_C02C (SYSCTL) Access: Read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0
INITA

0 0 0 0 0 0 0
DTOCV

W RSTD RSTC RSTA

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SDCLKFS DVS

SDCLK
EN

PEREN HCKEN IPGEN
W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Figure 25-11. System Control Register (SYSCTL)

Table 25-13. SYSCTL Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27
INITA

Initialization active. When this bit is set, 80 SD clocks are sent to the card. After the 80 clocks are sent, this bit is 
self-cleared. This bit is very useful during the card power-up period when 74 SD clocks are needed and clock 
auto-gating feature is enabled.
Writing one to this bit when it is already set has no effect. Clearing this bit at any time does not affect it. When 
PRSSTAT[CIHB] or PRSSTAT[CDIHB] is set, writing a one to this bit is ignored. That is, when the command line 
or data line is active, writing to this bit is not allowed.

26
RSTD

Software reset for SDHC_DAT line. The DMA and part of the data circuit are reset. The following registers and 
bits are cleared by this bit:
 • DATPORT register
 • Buffer is cleared and initialized; PRSSTAT register
 • PRSSTAT[BREN, BWEN, RTA, WTA, DLA, CDIHB]
 • PROCTL[CREQ, SABGREQ]
 • IRQSTAT[BRR, BWR, DINT, BGE, TC]
0 Work
1 Reset

25
RSTC

Software reset for SDHC_CMD line. Only part of the command circuit is reset. The following bits are cleared by 
this bit:
 • PRSSTAT[CIHB]
 • IRQSTAT[CC]
0 Work
1 Reset
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24
RSTA

Software reset for all. This reset affects the entire host controller except for the card-detection circuit. Register 
bits of type ROC, RW, RW1C, and RWAC are cleared.
During its initialization, the host driver should set this bit to reset the eSDHC. The eSDHC should clear this bit 
when capabilities registers are valid and the host driver can read them. Additional use of the this bit does not 
affect the value of the capabilities registers. After this bit is set, it is recommended the host driver reset the 
external card and re-initialize it.
0 Work
1 Reset

23–20 Reserved, must be cleared.

19–16
DTOCV

Data timeout counter value. Determines the interval by which SDHC_DAT line timeouts are detected. Refer to 
the data timeout error Section 25.3.10, “Interrupt Status Register (IRQSTAT)”, for information on factors that 
dictate timeout generation. Timeout clock frequency is generated by dividing the base clock SDHC_CLK value 
by this value. When setting this register, prevent inadvertent timeout events by clearing IRQSTATEN[DTOESEN].
0000 SDHC_CLK x 213

0001 SDHC_CLK x 214

...
1110 SDHC_CLK x 227

1111 Reserved

15–8
SDCLKFS

SDHC_CLK frequency select. This field, together with DVS, selects the frequency of SDHC_CLK pin. This bit 
holds the prescaler of the base clock frequency. Only the following settings are allowed:
0x01 Base clock divided by 2
0x02 Base clock divided by 4
0x04 Base clock divided by 8
0x08 Base clock divided by 16
0x10 Base clock divided by 32
0x20 Base clock divided by 64
0x40 Base clock divided by 128
0x80 Base clock divided by 256
Multiple bits must not be set or the behavior of this prescaler is undefined.
The maximum SD clock frequency is 25 MHz, and should never exceed this limit. The frequency of SDHC_CLK 
is set by the following formula:

clock frequency = (base clock) / [(SDCLKFS 2)  (DVS +1)] Eqn. 25-1

For example, if the base clock frequency is 96 MHz, and the target frequency is 25 MHz, then choosing the 
prescaler value of 0x1 and divisor value of 0x1 yields 24 MHz, which is the nearest frequency less than or equal 
to the target. Similarly, to approach a clock value of 400 KHz, the prescaler value of 0x04 and divisor value of 
0xE yields the exact clock value of 400 KHz.
The reset value of this bit field is 0x80. So, if the input base clock is about 96 MHz, the default SD clock after 
reset is 375 KHz.

7–4
DVS

Divisor. Provides a more exact divisor to generate the desired SD clock frequency. The settings are as follows:
0x0 Divide by 1
0x1 Divide by 2
...
0xE Divide by 15
0xF Divide by 16

Table 25-13. SYSCTL Field Descriptions (continued)

Field Description
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25.3.10 Interrupt Status Register (IRQSTAT)

An interrupt is generated when one of the status bits and its corresponding interrupt enable bit are set. For 
all bits, writing one to a bit clears it, while writing zero keeps the bit unchanged. More than one status can 

3
SDCLKEN

SDHC_CLK enable. The host controller stops the SDHC_CLK when this bit is cleared. Only change the 
SDHC_CLK frequency when this bit is cleared. If PRSSTAT[CINS] is cleared, this bit should be cleared by the 
host driver to save power.
0 SDHC_CLK disabled
1 SDHC_CLK enabled

2
PEREN

Peripheral clock enable. If set, the peripheral clock is always active and no automatic gating is applied, thus 
SDHC_CLK is active only except auto gating-off during buffer danger. If cleared, the peripheral clock is 
automatically off when no transaction is on the SD bus. Clearing this bit does not stop SDHC_CLK immediately. 
The peripheral clock will be internally gated off, if none of the following factors are met:
 • Command part is reset
 • Data part is reset
 • Soft reset
 • Command is about to send
 • Clock divisor is just updated
 • Continue request is just set
 • This bit is set
 • Card insertion is detected
 • Card removal is detected
 • Card external interrupt is detected
 • 80 clocks for initialization phase is ongoing
0 The peripheral clock is internally gated off
1 The peripheral clock is not automatically gated off

1
HCKEN

Crossbar switch master clock enable. If set, the clock is always active and no automatic gating is applied. If 
cleared, the clock is automatically off when no data transfer is on SD bus.
0) Clock is internally gated off
1) Clock is not automatically gated off

0
IPGEN

Controller clock enable. If this bit is set, the controller clock is always active and no automatic gating is applied. 
The controller clock is internally gated off, if neither the following factors is met:
 • Command part is reset
 • Data part is reset
 • Soft reset
 • Command is about to send
 • Clock divisor is just updated
 • Continue request is just set
 • This bit is set
 • Card insertion is detected
 • Card removal is detected
 • Card external interrupt is detected
 • The controller clock is not gated off
Note: The controller clock is not auto-gated off if the peripheral clock is not gated off. So, clearing this bit only 

does not take effect if SYSCTL[PEREN] is not cleared.
0 The controller clock is internally gated off
1 The controller clock is not automatically gated off

Table 25-13. SYSCTL Field Descriptions (continued)

Field Description
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be cleared with a single register write. For a card interrupt (IRQSTAT[CINT]), the card must stop asserting 
the interrupt before writing one to clear. Otherwise, the CINT bit is set again.

Address: 0xFC0C_C030 (IRQSTAT) Access: Read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
0 0 0 DMAE 0 0 0

AC12
E

0 DEBE DCE DTOE CIE CEBE CCE CTOE

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 CINT CRM CINS BRR BWR DINT BGE TC CC

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-12. Interrupt Status Register (IRQSTAT)

Table 25-14. IRQSTAT Field Descriptions

Field Description

31–29 Reserved, must be cleared.

28
DMAE

DMA error. Occurs when internal DMA (simple or advanced) transfer failed. This bit is set when some error occurs 
in the data transfer. The value in the DMA system address register is the next fetch address where the error occurs. 
Since any error corrupts the entire data block, the host driver should restart the transfer from the corrupted block 
boundary. The address of the block boundary can be calculated from the current DS_ADDR value or the remaining 
number of blocks and the block size.
0 No Error
1 Error

27–25 Reserved, must be cleared.

24
AC12E

Auto CMD12 error. Occurs when one of the bits in AUTOC12ERR is set. This bit is also set when Auto CMD12 is 
not executed due to a previous command error.
0 No Error
1 Error

23 Reserved, must be cleared.

22
DEBE

Data end bit error. Occurs when detecting 0 at the end bit position of read data on the SDHC_DAT line or at the end 
bit position of the CRC.
0 No Error
1 Error
Note: When DEBE and CINT are set, the software should ignore DEBE. But, it must not ignore the other status bits. 

The software should also clear this bit by writing 1 to it. It is highly recommended to clear this bit before the 
next transfer.

21
DCE

Data CRC error. Occurs when detecting CRC error when transferring read data on the SDHC_DAT line or when 
detecting the write CRC status having a value other than 0b010.
0 No Error
1 Error
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20
DTOE

Data timeout error. Occurs during one of following timeout conditions:
 • Busy timeout for R1b and R5b types
 • Busy timeout after write CRC status
 • Read data timeout
0 No error
1 Timeout

19
CIE

Command index error. Occurs if a command index error occurs in the command response.
0 No error
1 Timeout

18
CEBE

Command end bit error. Occurs when the end bit of a command response is 0.
0 No error
1 End bit error generated

17
CCE

Command CRC error. A command CRC error is generated in two cases:
 • If a response is returned and IRQSTAT[CTOE] is cleared (indicating no timeout), this bit is set when detecting a 

CRC error in the command response.
 • The eSDHC detects a SDHC_CMD line conflict by monitoring the SDHC_CMD line when a command is issued. 

If the eSDHC drives the SDHC_CMD line to 1, but detects 0 on the SDHC_CMD line at the next SDHC_CLK 
edge, then the eSDHC aborts the command (stop driving SDHC_CMD line) and sets this bit. The CTOE bit is 
also set to distinguish the SDHC_CMD line conflict.

0 No error
1 CRC error generated

16
CTOE

Command timeout error. Occurs if no response is returned within 64 SDHC_CLK cycles from the end bit of the 
command. Also, if eSDHC detects a SDHC_CMD line conflict, this bit is set along with IRQSTAT[CCE] as shown in 
Table 25-31.
0 No error
1 Time out

15–9 Reserved, must be cleared.

8
CINT

Card interrupt.
 • In 1-bit mode, the eSDHC detects the card interrupt without the SD clock to support wakeup.
 • In 4-bit mode, the card interrupt signal is sampled during the interrupt cycle. So, there are some sample delays 

between the interrupt signal from the SD card and the interrupt to the host system.
Writing 1 clears this bit. But, if the interrupt source from the SD card is not cleared, this bit is set again. To clear this 
bit, the SD card interrupt source must be cleared followed by writing 1 to this bit.

When this bit is set and the host driver needs to start the interrupt service, IRQSIGEN[CINTIEN] should be cleared 
to stop driving the interrupt signal to the host system. After completing the card interrupt service, write 1 to clear this 
bit, set IRQSIGEN[CINTIEN], and start sampling the interrupt signal again.

0 No card interrupt
1 Generate card interrupt

7
CRM

Card removal. This bit is set if PRSSTAT[CINS] changes from 1 to 0. When the host driver writes 1 to this bit to clear 
it, the status of PRSSTAT[CINS] should be confirmed. Because the card-detect state may be changed when the 
host driver clears this bit, an interrupt event may not be generated.
When this bit is cleared, it is set again if no card is inserted. To leave it cleared, clear IRQSTATEN[CRMSEN].
0 Card state unstable or inserted
1 Card removed

Table 25-14. IRQSTAT Field Descriptions (continued)

Field Description
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Table 25-15 below shows that command timeout error has higher priority than command complete. If both 
bits are set, it can be assumed that the response was not received correctly.

6
CINS

Card insertion. This bit is set if PRSSTAT[CINS] changes from 0 to 1. When the host driver writes 1 to this bit to 
clear it, the status of PRSSTAT[CINS] should be confirmed. Because the card-detect state may be changed when 
the host driver clears this bit, an interrupt event may not be generated.
When this bit is cleared, it is set again if a card has been inserted. To leave it cleared, clear IRQSTATEN[CINSEN].
0 Card state unstable or removed
1 Card inserted

5
BRR

Buffer read ready. This bit is set if PRSSTAT[BREN] changes from 0 to 1.
0 Not ready to read buffer
1 Ready to read buffer

4
BWR

Buffer write ready. This bit is set if PRSSTAT[BWEN] changes from 0 to 1.
0 Not ready to write buffer
1 Ready to write buffer

3
DINT

DMA interrupt. Occurs when the internal DMA (simple or advanced) finishes the data transfer successfully. If errors 
occur during data transfer, this bit is not set. Instead, the DMAE bit is set.
0 No DMA interrupt
1 DMA interrupt is generated

2
BGE

Block gap event. If PROCTL[SABGREQ] is set, this bit is set when a read or write transaction is stopped at a block 
gap. If PROCTL[SABGREQ] is cleared, this bit is not set.
During a read transaction, this bit is set at the falling edge of the SDHC_DAT line active status (when the transaction 
is stopped at SD bus timing). Read wait must be supported to use this function.
During a write transaction, this bit is set at the falling edge of PRSSTAT[WTA] (after reading the CRC status at SD 
bus timing).
0 No block gap event
1 Transaction stopped at block gap

1
TC

Transfer complete. This bit is set when a read or write transfer is completed.
For a read transaction, this bit is set at the falling edge of PRSSTAT[WTA]. There are two cases in which this 
interrupt is generated:
 • When a data transfer is completed, as specified by data length (after the last data has been read to the host 

system).
 • When data has stopped at the block gap and completed the data transfer by setting PROCTL[SABGREQ] (after 

valid data has been read to the host system).
For a write transaction, this bit is set at the falling edge of PRSSTAT[DLA]. There are two cases in which this 
interrupt is generated:
 • When the last data is written to the SD card, as specified by data length and the busy signal is released.
 • When data transfers are stopped at the block gap by setting PROCTL[SABGREQ] and data transfers have 

completed (after valid data is written to the SD card and the busy signal is released).

0
CC

Command complete. This bit is set when the end bit of the command response is received (except Auto CMD12). 
Refer to PRSSTAT[CIHB].
0 No command complete
1 Command complete

Table 25-14. IRQSTAT Field Descriptions (continued)

Field Description
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Table 25-16 below shows that transfer complete has higher priority than data timeout error. If both bits are 
set, the data transfer can be considered complete.

The relation between command CRC error and command timeout error is shown in Table 25-17 below.

25.3.11 Interrupt Status Enable Register (IRQSTATEN)

Setting the bits of IRQSTATEN enables the corresponding interrupt status bit to be set by the specified 
event. If any bit is cleared, the corresponding IRQSTAT bit is also cleared and is never set.

Table 25-15. Relation Between Command Timeout Error and Command Complete Status

Command Complete Command Timeout Error Meaning of the Status

0 0 —

Don’t Care 1
Response not received within 64 

SDHC_CLK cycles

1 0 Response received

Table 25-16. Relation Between Data Timeout Error and Transfer Complete Status

Transfer Complete Data Timeout Error Meaning of the Status

0 0 —

0 1 Timeout occur during transfer

1 X Data transfer complete

Table 25-17. Relation Between Command CRC Error and Command Timeout Error

Command CRC Error Command Timeout Error Meaning of the Status

0 0 No error

0 1 Response Timeout Error

1 0 Response CRC Error

1 1 SDHC_CMD line conflict
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Address: 0xFC0C_C034 (IRQSTATEN) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 DMAE
SEN

0 0 0 AC12E
SEN

0 DEBE
SEN

DCE
SEN

DTOE
SEN

CIE
SEN

CEBE
SEN

CCE
SEN

CTOE
SENW

Reset 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 CINT
SEN

CRM
SEN

CINS
SEN

BRR
SEN

BWR
SEN

DINT
SEN

BGE
SEN

TC
SEN

CC
SENW

Reset 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1

Figure 25-13. Interrupt Status Enable Register (IRQSTATEN)

Table 25-18. IRQSTATEN Field Descriptions

Field Description

31–29 Reserved, must be cleared.

28
DMAESEN

DMA error status enable
0 Masked
1 Enabled

27–25 Reserved, must be cleared.

24
AC12ESEN

Auto CMD12 error status enable
0 Masked
1 Enabled

23 Reserved, must be cleared.

22
DEBESEN

Data end bit error status enable
0 Masked
1 Enabled

21
DCESEN

Data CRC error status enable
0 Masked
1 Enabled

20
DTOESEN

Data timeout error status enable
0 Masked
1 Enabled

19
CIESEN

Command index error status enable
0 Masked
1 Enabled

18
CEBESEN

Command end bit error status enable
0 Masked
1 Enabled

17
CCESEN

Command CRC error status enable
0 Masked
1 Enabled
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NOTE
The eSDHC may sample the card interrupt signal during the interrupt period 
and hold its value in the flip-flop. As a result of synchronization, there is a 
delay in the card interrupt (which is asserted from the card) to the time the 
host system is informed.

To detect a SDHC_CMD line conflict, the host driver must set both 
CTOESEN and CCESEN bits.

16
CTOESEN

Command timeout error status enable
0 Masked
1 Enabled

15–9 Reserved, must be cleared.

8
CINTSEN

Card interrupt status enable. If this bit is cleared, the eSDHC clears the interrupt request to the system. The 
card interrupt detection is stopped when this bit is cleared and restarted when this bit is set. To prevent 
inadvertent interrupts, the host driver should clear this bit before servicing the card interrupt and should set 
this bit again after all interrupt requests from the card are cleared.
0 Masked
1 Enabled

7
CRMSEN

Card removal status enable
0 Masked
1 Enabled

6
CINSEN

Card insertion status enable
0 Masked
1 Enabled

5
BRRSEN

Buffer read ready status enable
0 Masked
1 Enabled

4
BWRSEN

Buffer write ready status enable
0 Masked
1 Enabled

3
DINTSEN

DMA interrupt status enable
0 Masked
1 Enabled

2
BGESEN

Block gap event status enable
0 Masked
1 Enabled

1
TCSEN

Transfer complete status enable
0 Masked
1 Enabled

0
CCSEN

Command complete status enable
0 Masked
1 Enabled

Table 25-18. IRQSTATEN Field Descriptions (continued)

Field Description
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25.3.12 Interrupt Signal Enable Register (IRQSIGEN)

IRQSIGEN selects which interrupt status is indicated to the host system as the interrupt. These status bits 
all share the same interrupt line. Setting any of these bits enables an interrupt generation. The 
corresponding status register bit generates an interrupt when the corresponding interrupt signal enable bit 
is set.

Address: 0xFC0C_C038 (IRQSIGEN) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 DMAE
IEN

0 0 0 AC12E
IEN

0 DEBE
IEN

DCE
IEN

DTOE
IEN

CIE
IEN

CEBE
IEN

CCE
IEN

CTOE
IENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 CINT
IEN

CRM
IEN

CINS
IEN

BRR
IEN

BWR
IEN

DINT
IEN

BGE
IEN

TC
IEN

CC
IENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-14. Interrupt Signal Enable Register (IRQSIGEN)

Table 25-19. IRQSIGEN Field Descriptions

Field Description

31–29 Reserved, must be cleared.

28
DMAEIEN

DMA error interrupt enable
0 Masked
1 Enabled

27–25 Reserved, must be cleared.

24
AC12EIEN

Auto CMD12 error interrupt enable
0 Masked
1 Enabled

23 Reserved, must be cleared.

22
DEBEIEN

Data end bit error interrupt enable
0 Masked
1 Enabled

21
DCEIEN

Data CRC error interrupt enable
0 Masked
1 Enabled

20
DTOEIEN

Data timeout error interrupt enable
0 Masked
1 Enabled

19
CIEIEN

Command index error interrupt enable
0 Masked
1 Enabled
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25.3.13 Auto CMD12 Error Status Register (AUTOC12ERR)

When IRQSTAT[AC12E] is set, the host driver checks this register to identify what kind of error Auto 
CMD12 indicated. This register is valid only when IRQSTAT[AC12E] is set.

18
CEBEIEN

Command end bit error interrupt enable
0 Masked
1 Enabled

17
CCEIEN

Command CRC error interrupt enable
0 Masked
1 Enabled

16
CTOEIEN

Command timeout error interrupt enable
0 Masked
1 Enabled

15–9 Reserved, must be cleared.

8
CINTIEN

Card interrupt signal enable
0 Masked
1 Enabled

7
CRMIEN

Card removal interrupt enable
0 Masked
1 Enabled

6
CINIEN

Card insertion interrupt enable
0 Masked
1 Enabled

5
BRRIEN

Buffer read ready interrupt enable
0 Masked
1 Enabled

4
BWRIEN

Buffer write ready interrupt enable
0 Masked
1 Enabled

3
DINTIEN

DMA interrupt enable
0 Masked
1 Enabled

2
BGEIEN

Block gap event interrupt enable
0 Masked
1 Enabled

1
TCIEN

Transfer complete interrupt enable
0 Masked
1 Enabled

0
CCIEN

Command complete interrupt enable
0 Masked
1 Enabled

Table 25-19. IRQSIGEN Field Descriptions (continued)

Field Description
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Address: 0xFC0C_C03C (AUTOC12ERR) Access: Read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CNIB
AC12E

0 0
AC12

IE
AC12
CE

AC12
EBE

AC12
TOE

AC12
NE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-15. Auto CMD12 Error Status Register (AUTOC12ERR)

Table 25-20. AUTOC12ERR Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7
CNIBAC12E

Command not issued by Auto CMD12 error. This bit is set when CMD_wo_DAT is not executed due to an 
Auto CMD12 error (D04–D01).
0 No error
1 Not Issued

6–5 Reserved, must be cleared.

4
AC12IE

Auto CMD12 index error. Occurs if the command index error occurs in response to a command.
0 No error
1 Error, the CMD index in response is not CMD12

3
AC12CE

Auto CMD12 CRC error. Occurs when detecting a CRC error in the command response.
0 No CRC error
1 CRC error met in Auto CMD12 response

2
AC12EBE

Auto CMD12 end bit error. Occurs when detecting that the end bit of command response is 0 when it should 
be 1.
0 No error
1 End bit error generated

1
AC12TOE

Auto CMD12 timeout error. Occurs if no response is returned within 64 SDHC_CLK cycles from the end bit 
of the command. If this bit is set, the other error status bits (2–4) are meaningless.
0 No error
1 Time out

0
AC12NE

Auto CMD12 not executed. If a memory multiple block data transfer is not started due to command error, 
this bit is not set because it is not necessary to issue Auto CMD12. Setting this bit means eSDHC cannot 
issue Auto CMD12 to stop the memory multiple block data transfer due to some error. If this bit is set, the 
other error status bits (1–4) are meaningless.
0 Executed
1 Not executed

Table 25-21. Relationship Between Command CRC Error and Command Timeout Error 
for Auto CMD12

Auto CMD12 CRC Error Auto CMD12 Timeout Error Types of Error

0 0 No error
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There are three scenarios when AUTOC12ERR can be changed:

1. When eSDHC is going to issue Auto CMD12

— Set AC12NE if Auto CMD12 cannot be issued due to an error in the previous command.

— Clear AC12NE if Auto CMD12 is issued.

2. At the end bit of an Auto CMD12 response

— Check received responses by checking the error bits 1–4.

— Set if error is detected.

— Clear if error is not detected.

3. Before reading AUTOC12ERR[CNIBAC12E]

— Set CNIBAC12E if there is a command that cannot be issued

— Clear CNIBAC12E if there is no command to issue

The timing of generating the Auto CMD12 error and writing to the command register is asynchronous. The 
command may be blocked by any Auto CMD12 error causing CNIBAC12E to be set. Therefore, it is 
suggested to read this register only when IRQSTAT[AC12E] is set. An Auto CMD12 error interrupt is 
generated when one of the error bits 0–4 is set1. The CNIBAC12E error bit does not generate an interrupt.

0 1 Response timeout error

1 0 Response CRC error

1 1 SDHC_CMD line conflict

Table 25-21. Relationship Between Command CRC Error and Command Timeout Error 
for Auto CMD12 (continued)

Auto CMD12 CRC Error Auto CMD12 Timeout Error Types of Error
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25.3.14 Host Controller Capabilities (HOSTCAPBLT)

The host controller capabilities provides the host driver with information specific to the eSDHC 
implementation. The value in this register does not change in a software reset, and any write to this register 
is ignored.

Address: 0xFC0C_C040 (HOSTCAPBLT) Access: Read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 VS18 VS30 VS33 SRS DMAS HSS ADMAS 0 MBL

W

Reset 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-16. Host Capabilities Register (HOSTCAPBLT)

Table 25-22. HOSTCAPBLT Field Descriptions

Field Description

31–27 Reserved, must be cleared.

26
VS18

Voltage support 1.8 V. This bit depends on the host system ability.
0 1.8 V not supported
1 1.8 V supported

25
VS30

Voltage support 3.0 V. This bit depends on the host system ability.
0 3.0 V not supported
1 3.0 V supported

24
VS33

Voltage support 3.3 V. This bit depends on the host system ability.
0 3.3 V not supported
1 3.3 V supported

23
SRS

Suspend/resume support. Indicates if eSDHC supports suspend/resume functionality. If this bit is 0, the 
suspend and resume mechanism, as well as the read wait, are not supported and the host driver should not 
issue suspend or resume commands.
0 Not supported
1 Supported

22
DMAS

DMA support. Indicates if eSDHC is capable of using internal DMA to transfer data between system memory 
and the data buffer directly.
0 DMA not supported
1 DMA supported

21
HSS

High speed support. Indicates if the eSDHC supports high speed mode and the host system can supply the 
SD clock frequency from 25 to 50 MHz.
0 High speed not supported
1 High speed supported
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25.3.15 Watermark Level Register (WML)

Both write and read watermark levels are configurable. The value can be any number from 1–128 words.

25.3.16 Force Event Register (FEVT)

The force event register is not a physically implemented register. Rather, it is an address to which the 
IRQSTAT register can be written if the corresponding bit of IRQSTATEN is set. Therefore, this register is 
a write-only register and writing zero has no effect. Writing 1 to this register sets the corresponding bit of 
IRQSTAT. Reading from this register always returns zeroes.

20
ADMAS

ADMA support. Indicates if the eSDHC supports advanced DMA feature.
0) Advanced DMA not supported
1) Advanced DMA supported

19 Reserved, must be cleared.

18–16
MBL

Max block length. Indicates the maximum block size that the host driver can read and write to the buffer in the 
eSDHC. The buffer should transfer block size without wait cycles.
000 512 bytes
001 1024 bytes
010 2048 bytes
011 4096 bytes

15–0 Reserved, must be cleared.

Address: 0xFC0C_C044 (WML) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 1 0 0 0
WR_WML

0 0 0 0 1 0 0 0
RD_WML

W

Reset 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

Figure 25-17. Watermark Level Register (WML)

Table 25-23. WML Field Descriptions

Field Description

31–24 Reserved, must be cleared.

23–16
WR_WML

Write watermark level. Number of 32-bit words of watermark level in DMA write operation. Also, the number 
of words of write burst length.

15–8 Reserved, must be cleared.

7–0
RD_WML

Read watermark level. Number of 32-bit words of watermark level in DMA read operation. Also, the number 
of words of read burst length.
Note: The maximum value for RD_WML is 0x10, which means 16 words (64 bytes). Setting RD_WML to 

a higher value results in non-predicted behavior.

Table 25-22. HOSTCAPBLT Field Descriptions (continued)

Field Description
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Forcing a card interrupt generates a short pulse on the SDHC_DAT[1] line, and the driver may treat this 
interrupt as normal. The interrupt service routine may skip polling the card-interrupt source as the interrupt 
is self-cleared.

Address: 0xFC0C_C050 (FEVT) Access: Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W FEVT
CINT

FEVT
DMAE

FEVT
AC12E

FEVT
DEBE

FEVT
DCE

FEVTD
TOE

FEVT
CIE

FEVT
CEBE

FEVT
CCE

FEVT
CTOE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W FEVTCNI
BAC12E

FEVT
AC12IE

FEVTA
C12EBE

FEVTA
C12CE

FEVTA
C12TOE

FEVTA
C12NE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-18. Force Event Register (FEVT)

Table 25-24. FEVT Field Descriptions

Field Description

31
FEVTCINT

Force event card interrupt. Writing 1 to this bit generates a low-level short pulse on the internal 
SDHC_DAT[1] line, which imitates a self-clearing interrupt from the external card. If enabled, 
IRQSTAT[CINT] is set and the interrupt service routine may treat this interrupt as a normal interrupt from 
the external card.

30–29 Reserved, must be cleared.

28
FEVTDMAE

Force event DMA error. Forces IRQSTAT[DMAE] to set.

27–25 Reserved, must be cleared.

24
FEVTAC12E

Force event Auto CMD12 error. Forces IRQSTAT[AC12E] to set.

23 Reserved, must be cleared.

22
FEVTDEBE

Force event data end bit error. Forces IRQSTAT[DEBE] to set.

21
FEVTDCE

Force event data CRC error. Forces IRQSTAT[DCE] to set.

20
FEVTDTOE

Force event data time out error. Forces IRQSTAT[DTOE] to set.

19
FEVTCIE

Force event command index error. Forces IRQSTAT[CCE] to set.

18
FEVTCEBE

Force event command end bit error. Forces IRQSTAT[CEBE] to set.
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25.3.17 ADMA Error Status Register

When an ADMA error interrupt occurs, this register contains the ADMA state. For recovering from the 
error, the host driver uses the ADMA state to identify the error descriptor address as follows:

• ST_STOP — The previous location set in the ADMA system address register is the error descriptor 
address

• ST_FDS — The current location set in the ADMA system address register is the error descriptor 
address

• ST_CADR — This sate is never set because it only increments the descriptor pointer and does not 
generate an ADMA error

• ST_TFR — The previous location set in the ADMA system address register is the error descriptor 
address

In a write operation, the host driver should use ACMD22 to get the number of written blocks rather than 
using this information, since unwritten data may exist in the host controller.

The host controller generates an ADMA error interrupt when it detects invalid descriptor data (Valid=0) 
at the ST_FDS state. The host driver distinguishes this error by reading the valid bit of the error descriptor.

17
FEVTCCE

Force event command CRC error. Forces IRQSTAT[CCE] to set.

16
FEVTCCE

Force event command time out error. Forces IRQSTAT[CTOE] to set.

15–8 Reserved, must be cleared.

7
FEVTCNIBAC12E

Force event command not executed by Auto CMD12 error. Forces AUTOC12ERR[CNIBAC12E] to set.

6–5 Reserved, must be cleared.

4
FEVTAC12IE

Force event Auto CMD12 index error. Forces AUTOC12ERR[AC12IE] to set.

3
FEVTAC12EBE

Force event Auto CMD12 end bit error. Forces AUTOC12ERR[AC12EBE] to set.

2
FEVTAC12CE

Force event Auto CMD12 CRC error. Forces AUTOC12ERR[AC12CE] to set.

1
FEVTAC12TOE

Force event Auto CMD12 time out error. Forces AUTOC12ERR[AC12TOE] to set.

0
FEVTAC12NE

Force event Auto CMD12 not executed. Forces AUTOC12ERR[AC12NE] to set.

Table 25-24. FEVT Field Descriptions (continued)

Field Description
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25.3.18 ADMA System Address Register

This register contains the physical system memory address used for ADMA transfers. The lower two bits 
of this register is tied to zero so that the ADMA address is always word-aligned.

Address: 0xFC0C_C054 (ADMAESR) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DCE LME ES

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-19. ADMA Error Status Register (ADMAESR)

Table 25-25. ADMAESR Field Descriptions

Field Description

31–4 Reserved, must be cleared.

3
DCE

Descriptor error. Occurs when an invalid descriptor is fetched by the ADMA.
0 No error
1 Error

2
LME

ADMA length mismatch error. This error occurs when either:
 • If block count enable is set, the total data length specified by the descriptor table is different than that 

specified by the block count and block length.
 • Total data length is not evenly divisible by the block length.
0) No error
1) Error

1–0
ES

ADMA error state. Indicates the state of ADMA when an error occurred during ADMA data transfer.

Address: 0xFC0C_C058 (ADMASAR) Access: Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-20. ADMA System Address Register (ADMASAR)

ES ADMA Error State Contents of ADMASAR

00 ST_STOP (Stop DMA) Points to the next descriptor

01 ST_FDS (Fetch descriptor) Points to the error descriptor

10 ST_CADR (Change address) No ADMA error is generated

11 ST_TFR (Transfer data) Points to the next descriptor
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25.3.19 Vendor Specific Register

This register contains the vendor specific control/status bits.

Table 25-26. ADMASAR Field Descriptions

Field Description

31–2
ADDR

ADMA system address. Contains the word address of the executing command of the descriptor table. At 
the start of ADMA, the host driver sets the start address of the descriptor table. The ADMA engine 
increments this register address every descriptor command fetch. When the ADMA is stopped at the 
block gap, this register indicates the address of the next executable descriptor command. If an ADMA 
error interrupt is generated, this register contains a valid descriptor address depending on the ADMA 
state.
Note: Since this register supports dynamic address reflecting, when TC bit is set, it automatically alters 

the value of internal address counter. So, software cannot change this field when IRQSTAT[TC] is 
set.

1–0 Reserved, must be cleared

Address: 0xFC0C_C0C0 (VENDOR) Access: Read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EXT_
DMA_

ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 25-21. Vendor Specific Register (VENDOR)

Table 25-27. VENDOR Field Descriptions

Field Description

31–1 Reserved

0
EXT_DMA_EN

External DMA Request Enable
Enable the request to external DMA. When the internal DMA (either Simple DMA or Advanced DMA) is not 
in use and this bit is set, the eSDHC sends a DMA request when the internal buffer is ready. This bit is 
particularly useful when transferring data by CPU polling mode, and it is not allowed to send out the 
external DMA request. By default, this bit is set.
0) In any scenario, eSDHC does not send out external DMA request
1) When internal DMA is not active, the external DMA request will be sent out
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25.3.20 Host Controller Version Register (HOSTVER)

The host controller version register contains the version for the vendor and the host controller. All the bits 
are read-only.

25.4 Functional Description
The following sections provide a brief functional description of the major system blocks, including the 
data buffer, DMA crossbar switch interface, register bank, register bus interface, dual-port memory 
wrapper, data/command controller, clock and reset manager, and clock generator.

25.4.1 Data Buffer

The eSDHC uses one configurable data buffer so that data can be transferred between the internal system 
bus and the SD card in an optimized manner to maximize throughput between the two clock domains (the 
peripheral clock and the crossbar switch master clock). See Figure 25-23 for an illustration of the buffer 
scheme.

The buffer is used as temporary storage for data being transferred between the host system and the card. 
The burst lengths for read and write are both configurable and can be any value between 1 and 128 words.

Address: 0xFC0C_C0FC (HOSTVER) Access: Read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VVN SVN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

Figure 25-22. Host Controller Version Register (HOSTVER)

Table 25-28. HOSTVER Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–8
VVN

Vendor version number. The host driver should not use this status. The upper and the lower 4-bits indicate the 
version.
0x00 NXP eSDHC version 1.0
0x10 NXP eSDHC version 2.0
0x11 NXP eSDHC version 2.1
0x12 NXP eSDHC version 2.2
others Reserved

7–0
SVN

Specification version number. Indicates for the host controller specification version. The upper and the lower 
4-bits indicate the version.
0x00 SD Host Specification Version 1.0
0x01 SD Host Specification Version 2.0, supports the test event register.
others Reserved
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Figure 25-23. eSDHC Buffer Scheme

For a host read operation, when the amount of data exceeds the RD_WML value, the eSDHC sets 
PRSSTAT[BREN] and either:

• Issues a DMA request to inform the system to read the data

• Issues a DMA interrupt to inform the system to read the data

• When granted crossbar access permission, the internal DMA burst-reads RD_WML number of 
words

Conversely, for a host write operation, when the amount of buffer spaces exceeds the WR_WML value, 
the eSDHC sets PRSSTAT[BWEN] and either:

• Issues a DMA request to inform the system to write data to the buffer

• Issues a DMA interrupt to inform the system to write data to the buffer

• When granted crossbar access permission, the internal DMA burst-writes WR_WML number of 
words into the buffer

25.4.1.1 Write Operation Sequence

There are three ways to write data into the buffer when the user transfers data to the card.

• The external DMA through the eSDHC DMA request signal

• The processor core polling IRQSTAT[BWR] (interrupt or polling)

• The internal DMA

When the internal DMA is not used (XFERTYP[DMAEN] is not set when the command is sent), the 
eSDHC asserts an external DMA request when more than WML[WR_WML] number of empty buffer 
word slots are available and ready for receiving new data. At the same time, the eSDHC sets 
IRQSTAT[BWR]. The buffer write ready interrupt is generated if it is enabled by software.

When the internal DMA is used, the eSDHC does not inform the system before all the required number of 
bytes are transferred and no error is encountered. When an error occurs during the data transfer, the eSDHC 
aborts the data transfer and abandons the current block. The host driver should read the content of the 
DMA system address register to obtain the start address of abandoned data block. If the current data 
transfer is in multi-block mode, the eSDHC does not automatically send CMD12 even though 
XFERTYP[AC12EN] is set. Therefore, in this scenario, the host driver should send CMD12 and restart 
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the write operation from that address. It is recommended that a software reset for data is applied before the 
transfer is restarted after error recovery.

The eSDHC does not start data transmission until the WML[WR_WML] number of words of data can be 
held in the buffer. If the buffer is empty and the host system does not write data in time, the eSDHC stops 
the SDHC_CLK to avoid a data buffer underrun situation.

25.4.1.2 Read Operation Sequence

There are three ways to read data from the buffer when transferring data to the card.

• The external DMA through the eSDHC DMA request signal

• The processor core polling IRQSTAT[BRR] (interrupt or polling)

• The internal DMA

When the internal DMA is not used (XFERTYP[DMAEN] is not set when the command is sent), the 
eSDHC asserts a DMA request when more than WML[RD_WML] number of words are available and 
ready for the system to fetch the data. At the same time, the eSDHC sets the IRQSTAT[BRR] bit. The 
buffer read ready interrupt is generated if it is enabled by software.

When the internal DMA is used, the eSDHC does not inform the system before all the required number of 
bytes are transferred and no error is encountered. When an error occurs during the data transfer, the eSDHC 
aborts the data transfer and abandons the current block. The host driver should read the content of the 
DMA system address register to obtain the start address of abandoned data block. If the current data 
transfer is in multi-block mode, the eSDHC does not automatically send CMD12 even though 
XFERTYP[AC12EN] is set. Therefore, in this scenario, the host driver should send CMD12 and restart 
the read operation from that address. It is recommended that a software reset for data is applied before the 
transfer is restarted after error recovery.

The eSDHC does not start data transmission until the WML[RD_WML] number of words of data are in 
the buffer. If the buffer is full and the host system does not read the data in time, the eSDHC stops the 
SDHC_CLK to avoid a data buffer overrun situation.

25.4.1.3 Data Buffer Size

To use the buffer in the most optimized way, the buffer size must be known. In the eSDHC the data buffer 
can hold up to 128 32-bit words, and the read and write watermark levels are each configurable from 1–128 
words. The host driver may configure the values according to the system situation and requirements.

During multi-block data transfer, the maximum block length is 4096 bytes, which can satisfy all the 
requirements from MMC, SD, and SDIO cards. Any block length less than this value is also allowed. The 
only restriction is from the external card since it may not support such a large block or a partial block 
access that is not an integer multiple of 512 bytes.

25.4.1.4 Dividing Large Data Transfer

This SDIO command CMD53 definition limits the maximum data size of data transfers according to the 
following formula:
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Maximum data size = (block size)  (block count) Eqn. 25-2

The length of a multiple block transfer must be in block size units. If the total data length cannot be divided 
evenly to a multiple of the block size, then there are two ways to transfer the data depending on the function 
and card design.

• The card driver splits the transaction. The remainder of block size data is then transferred using a 
single block command at the end.

• Add dummy data in the last block to fill the block size. The card must remove the dummy data.

See Figure 25-24 for an example of dividing large data transfers. Although the eSDHC supports a block 
size of up to 4096 bytes, the example below illustrates a maximum of 64 bytes where the data must be 
divided.

Figure 25-24. Example of Dividing a Large Data Transfer

25.4.1.5 External DMA Request

When the internal DMA is not enabled, the data buffer generates a DMA request to the system. During a 
write operation, when the number of WR_WML words can be held in the buffer, a DMA request is asserted 
to the processor for a DMA burst write. IRQSTAT[BWR] is also set if IRQSTATEN[BWRSEN] is set. The 
DMA request is immediately deasserted when an access on the data port register is made. If another write 
burst is allowed, the DMA request is asserted again after a cycle.

Likewise, during a read operation, when the number of RD_WML words are in the buffer, a DMA request 
is asserted to the processor for a DMA burst read. IRQSTAT[BRR] is also set if IRQSTATEN[BRRSEN] 
is set. The DMA request is immediately deasserted when an access on the data port register is made. If 
another read burst is allowed, the DMA request is asserted again after a cycle.

Since the DMA burst length cannot change during a data transfer, the read or write burst length must be a 
divisor of the block size. For example, if the block size is 512 bytes, the burst length must be 1, 2, 4, 8, 
16..., or 128 words.
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25.4.2 DMA Crossbar Switch Interface

The internal DMA implements a DMA engine and crossbar switch master. When the internal DMA is 
enabled (XFERTYP[DMAEN] is set), the buffer interrupt status bits are still set if they are enabled. To 
avoid setting them, clear IRQSTATEN[BWRSEN, BRRSEN]. See Figure 25-25 for illustration of the 
DMA crossbar switch interface block.

Figure 25-25. DMA Crossbar Switch Interface Block

25.4.2.1 Internal DMA Request

If the watermark level is met in the data transfer and the internal DMA is enabled, the data buffer block 
sends a DMA request to this block. Meanwhile, the external DMA request is disabled. The delay of 
response from the internal DMA engine depends on the system bus loading and the priority assigned to 
eSDHC. The DMA engine does not respond to the request during its burst transfer, and is available as soon 
as the burst is over. The data buffer deasserts the request once an access on the buffer is made. Upon access 
to the buffer by the internal DMA, the data buffer updates its internal buffer pointer and when the 
watermark level is satisfied, another DMA request is sent.

The data transfer is in the block unit and the last watermark level is always set to the remaining number of 
words. For instance, for a multi-block data read with each block size of 31 bytes, the burst length is set at 
six words. After the first burst transfer, if there are more than seven bytes in the buffer, which might be 
partly some data of the next block, another DMA read request is sent because the remaining number of 
words to send for the current block is (31 – 6  4)  4 = 2, and eSDHC reads two words out of the buffer, 
with seven valid bytes and one stuff byte automatically added by eSDHC.

25.4.2.2 DMA Burst Length

Just like the CPU polling access, the DMA burst length for the internal DMA engine does not a restriction 
other than the maximum size. The burst length for read or write can be 1–128 words. The actual burst 
length for the DMA depends on which is smaller: configured watermark level or the remaining words of 
current block.

Take the example in Section 25.4.2.1, “Internal DMA Request,” again. After six words are read, the burst 
length is two words to complete the 31-byte block. The burst length then changes back to six words to 
prepare for the next 31-byte block. The host driver writer may take this variable burst length into account. 
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It is also acceptable to configure the burst length as the divisor of block size so that each time the burst 
length is the same.

25.4.2.3 ADMA Engine

The SD Host Controller Standard Specification, Version 2.0 defines a new DMA transfer algorithm called 
ADMA (advanced DMA). For simple DMA, when a page boundary is reached, a DMA interrupt is 
generated and the new system address is programmed by the host driver. The advanced DMA defines a 
programmable descriptor table in the system memory. The host driver can calculate system address at the 
page boundary and program the descriptor table before executing ADMA. This reduces the frequency of 
interrupts to the host system. Therefore, a higher speed DMA transfer is realized since host MCU 
intervention is not needed during a long DMA-based data transfer.

There are two types of ADMA in the host controller: ADMA1 and ADMA2. ADMA1 supports data 
transfer of 4 KByte-aligned data in system memory. ADMA2 improves the restriction so that data of any 
location and size can be transferred in system memory. Their descriptor table formats are different.

25.4.2.3.1 ADMA Concept and Descriptor Format

ADMA can recognize many descriptors defined in SD Host Controller Standard Specification, Version 2.0, 
including:

• Valid/Invalid descriptor

• NOP descriptor

• Set data length descriptor

• Set data address descriptor

• Link descriptor

• Interrupt and end flags in descriptor

• (ADMA2 only) Rsv descriptor

The ADMA1 format descriptor table is shown in Figure 25-26, and its concept is shown in Figure 25-27.

Address/Page Field Attribute Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address or Data Length 0 0 0 0 0 0 ACT2 ACT1 0 INT END VALID

Figure 25-26. ADMA1 Descriptor Table Format
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Figure 25-27. Concept and Access Method of ADMA1 Descriptor Table

The ADMA2 format descriptor table is shown in Figure 25-28, and its concept is shown in Figure 25-29.

Table 25-29. ADMA1 Descriptor Table Field Descriptions

Field Description

Address or data 
field, ACT2, ACT1

Valid 0 Generate ADMA error interrupt and stop ADMA
1 This line of descriptor is effective

End 0 Not the end of the transfer
1 Terminate transfer and generate a transfer complete interrupt when this transfer is completed

Int 0 Do not generate interrupt
1 Generates DMA interrupt when this transfer completes

ACT[2:1] Symbol Command 31–28 27–12

00 NOP No operation Don’t Care 

01 Set Set data length 0000 Data Length

10 Tran Transfer data Data Address

11 Link Link descriptor Descriptor Address

System Memory

Address/Length Attribute 

Address Tran

Address Link

Address/Length Attribute

Data Length Set

Address Tran, End

Page Data

Page Data

Descriptor Table

State

System Address Register

Data Address (invisible)

Data Length (invisible)

Flags

SDMA

Machine

System Address Register points to 
the head node of Descriptor Table

DMA Interrupt

Transfer Complete

Block Gap Event

Advanced DMA
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Address Field

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Address

Length Field Attribute Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Length 0 0 0 0 0 0 0 0 0 0 ACT2 ACT1 0 INT END VALID

Figure 25-28. ADMA2 Descriptor Table Format

Table 25-30. ADMA2 Descriptor Table Field Descriptions

Field Description

Address or data 
field, ACT2, ACT1

Valid 0 Generate ADMA error interrupt and stop ADMA
1 This line of descriptor is effective

End 0 Not the end of the transfer
1 Terminate transfer and generate a transfer complete interrupt when this transfer is completed

Int 0 Do not generate interrupt
1 Generates DMA interrupt when this transfer completes

ACT[2:1] Symbol Command Operation

00 NOP No operation Don’t Care 

01 Rsv Reserved Same as NOP. Read this line and 
go to next one

10 Tran Transfer data Transfer data with address and 
length set in this descriptor line

11 Link Link descriptor Link to another descriptor
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Figure 25-29. Concept and Access Method of ADMA2 Descriptor Table

ADMA2 deals with the lower 32-bits first, then the higher 32-bits. If the Valid flag of the descriptor is 
cleared, it ignores the high 32-bits. The address field must be word-aligned (lower 2-bit is always cleared). 
The data length is in bytes.

ADMA starts a read/write operation after it reaches the Tran state, using the data length and data address 
analyzed from the most recent descriptors.

• ADMA1 — The valid data length is specified in the last Set descriptor before a Tran descriptor. 
Every Tran type triggers a transfer, and the transfer data length is extracted from the most recent 
Set descriptor. If there is no Set descriptor after the previous Tran descriptor, the data length is the 
value from the previous transfer, or zero if there has been no Set descriptor.

• ADMA2 — A Tran descriptor contains the data length and transfer data address. So, only a Tran 
type descriptor starts a data transfer

25.4.2.3.2 ADMA Interrupts

AMDA1 generates four types of interrupts:

• Set type descriptor — interrupt is generated when data length is set

• Tran type descriptor — interrupt is generated when this transfer is complete

• Link type descriptor — interrupt is generated when new descriptor address is set

• Nop type descriptor — interrupt is generated just after this descriptor is fetched

ADMA2 generates three types of interrupts:

• Tran type descriptor — interrupt is generated when this transfer is complete

• Link type descriptor — interrupt is generated when new descriptor address is set

System Memory
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Address2 Length1 Tran
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Page Data
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• Nop/Rsv type descriptor — interrupt is generated just after this descriptor is fetched

25.4.2.3.3 ADMA Errors

The ADMA stops when any error is encountered. See Section 25.5.3.4.3, “ADMA Error”, for details on 
these errors.

25.4.2.4 Crossbar Switch Master Interface

It is possible that the internal DMA engine fails during the data transfer. When an error occurs, the DMA 
engine stops the transfer and goes to the idle state, while the internal data buffer stops working, too. 
IRQSTAT[DMAE] is set to inform the driver.

Once the IRQSTAT[DMAE] interrupt is received, software should send CMD12 to abort the current 
transfer and read DSADDR[DS_ADDR] to obtain the start address of the corrupted block. After the DMA 
error is fixed, the software should apply a data reset and restart the transfer from this address to recover 
the corrupted block.

25.4.3 SD Protocol Unit

The SD protocol unit deals with all SD protocol affairs and performs the following:

• Acts as the bridge between internal buffer and the SD bus

• Sends the command data and its argument serially

• Stores the serial response bit stream into corresponding registers

• Detects bus state on SDHC_DAT[0] line

• Monitors interrupt from the SDIO card

• Asserts read wait signal

• Gates off SD clock when the buffer announces danger status

• Detects write-protect state

• And other functions

It consists of four submodules: SD transceiver, SD clock and monitor, command agent and data agent.

25.4.3.1 SD Transceiver

In the SD protocol unit, the transceiver is the main control module. It consists of a FSM and the control 
module, from which the control signals for all other three modules are generated.

25.4.3.2 SD Clock & Monitor

This module monitors the signal level on all four data lines and the command lines, directly route the level 
values into the register bank for the driver to debug with.

The transceiver reports the card insertion state according to the signal level on SDHC_DAT[3] line when 
PROCTL[D3CD] is set.
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If the internal data buffer is in danger and the SD clock must be gated off to avoid buffer over/underrun, 
this module asserts the gate of output SD clock to shut the clock off. When the buffer danger is eliminated 
when system access of the buffer catches up, the clock gate of this module is open and the SD clock is 
active again.

25.4.3.3 Command Agent

The command agent deals with the transactions on SDHC_CMD line. See Figure 25-30 for illustration of 
the structure for the command CRC shift register.

Figure 25-30. Command CRC Shift Register

The CRC polynomials for the SDHC_CMD are as follows:

Generator polynomial: G(x) = x7 + x3 + 1

M(x) = (first bit)  xn + (second bit)  xn-1 +...+ (last bit)  x0

CRC[6:0] = Remainder [(M(x)  x7)  G(x)]

25.4.3.4 Data Agent

The data agent handles the transactions on the eight data lines. Moreover, this module also detects the busy 
state from on SDHC_DAT[0] line, and generates read wait state by the request from the transceiver. The 
CRC polynomials for the SDHC_DAT are as follows:

Generator polynomial: G(x) = x16 + x12 + x5 + 1

M(x) = (first bit)  xn + (second bit)  xn-1 +...+ (last bit)  x0

CRC[15:0] = Remainder [(M(x)  x16)  G(x)]

25.4.4 Clock & Reset Manager

This module controls all the reset signals within the eSDHC. There are four types of reset signals within 
eSDHC: hardware reset, software reset for all, software reset for data, and software reset for command. 
All these signals are fed into this module and stable signals are generated to reset all other modules.

This module also gates off all the inside signals. The module monitors the activities of all other modules, 
supplies the clocks for them, and when enabled, automatically gates off the corresponding clocks.
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25.4.5 Clock Generator

The clock generator generates the SDHC_CLK by dividing the internal bus clock into two stages. Refer 
to Figure 25-31 for the structure of the divider, in which the term base represents the frequency of the 
internal bus clock.

Figure 25-31. Two Stages of the Clock Divider

The first stage is a prescaler. The frequency of clock output from this stage, DIV, can be base, base/2, 
base/4, ..., or base/256.

The second stage outputs the actual clock, SDHC_CLK, as the driving clock for all sub-modules of SD 
protocol unit, and the sync FIFOs in Figure 25-23 to synchronize with the data rate from the internal data 
buffer. It can be div, div/2, div/3,..., or div/16. Thus, the highest frequency of SDHC_CLK generated by 
the internal bus clock is base, while the lowest frequency is base/4096.

25.4.6 SDIO Card Interrupt

25.4.6.1 Interrupts in 1-bit Mode

In this case the SDHC_DAT[1] pin is dedicated to providing the interrupt function. An interrupt is asserted 
by pulling the SDHC_DAT[1] low from the SDIO card, until the interrupt service is finished to clear the 
interrupt.

25.4.6.2 Interrupt in 4-bit Mode

Since the interrupt and data line 1 share pin 8 in four-bit mode, an interrupt is only sent by the card and 
recognized by the host during a specific time. This is known as the interrupt period. The eSDHC only 
samples the level on pin 8 during the interrupt period. At all other times, the host ignores the level on pin 8 
and treats it as the data signal. The definition of the interrupt period is different for operations with single- 
and multiple-block data transfers.

For normal single data block transmissions, the interrupt period becomes active two clock cycles after the 
completion of a data packet. This interrupt period lasts until after the card receives the end bit of the next 
command that has a data block transfer associated with it.

For multiple block data transfers in 4-bit mode there is only a limited period of time that the interrupt 
period can be active due to the limited period of data line availability between the multiple blocks of data. 
This requires a more strict definition of the interrupt period. For this case, the interrupt period is limited to 
two clock cycles, which begins two clocks after the end bit of the previous data block. During this 
two-clock cycle interrupt period if an interrupt is pending, the SDHC_DAT[1] line is held low for one 
clock cycle with the last clock cycle pulling SDHC_DAT[1] high. On completion of the interrupt period, 
the card releases the SDHC_DAT[1] line into the high-Z state. The eSDHC samples the SDHC_DAT[1] 
during the interrupt period when PROCTL[IABG] is set.

DIVBase
1st Divisor

by
1, 2, 4, . . . , 256
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by

1, 2, 3, . . . , 16
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Refer to SDIO Card Specification v1.10f for further information about the SDIO card interrupt.

25.4.6.3 Card Interrupt Handling

When IRQSIGEN[CINTIEN] is cleared, the eSDHC clears the interrupt request to the host system. The 
host driver should clear this bit before servicing the SDIO interrupt and should set this bit again after all 
interrupt requests from the card are cleared to prevent inadvertent interrupts.

If enabled by IRQSTATEN[CINTSEN], the IRQSTAT[CINT] bit can only be cleared by resetting the 
SDIO interrupt source and then writing one to this bit. Merely writing to this bit has no effect.

In 1-bit mode, the eSDHC detects the SDIO interrupt with or without SD clock (to support wakeup). In 
4-bit mode, the interrupt signal is sampled during the interrupt period, so there are some sample delays 
between the interrupt signal from the SDIO card and the interrupt to the host system interrupt controller. 
When IRQSTAT[CINT] is set and the host driver needs to start this interrupt service, 
IRQSTATEN[CINTSEN] is cleared in order to clear IRQSTAT[CINT] that is latched in the eSDHC and 
to stop driving the interrupt signal to the processor’s interrupt controller. The host driver must issue a 
CMD52 to clear the interrupts at the card. After completion of the card interrupt service, 
IRQSTATEN[CINTSEN] is set, and the eSDHC can start sampling the interrupt signal again.

See the following illustrations:

• Figure 25-32 (a) for an illustration of the SDIO card interrupt scheme

• Figure 25-32 (b) for the sequences of software and hardware events that take place during card 
interrupt handling procedure
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Figure 25-32. a) Card Interrupt Scheme; b) Card Interrupt Detection and Handling Procedure

25.4.7 Card Insertion and Removal Detection

The eSDHC uses the SDHC_DAT[3] pin to detect card insertion or removal. When SDHC_DAT[3] pin is 
used for card detection, the chip level integration needs to pull-down this pad as a default state. When there 
is no card on the MMC/SD bus, the SDHC_DAT[3] is pulled to a low voltage level by default. When any 
card is inserted to or removed from the socket, the eSDHC detects the logic value changes on the 
SDHC_DAT[3] pin and generates an interrupt.

25.4.8 Power Management and Wake-Up Events

When there is no operation between eSDHC and the card through SD bus, you can completely disable the 
internal clocks in the chip level clock control module to save power. When you need to use the eSDHC to 
communicate with the card, it can enable the clock and start the operation. This can be done by clearing 
the appropriate bit in the PPMR register as described in Chapter 9, “Power Management”.

In some circumstances, when the clocks to eSDHC are disabled, or when system is in low power mode, 
there are some events when you need to enable the clock and handle the event. These events are called 
wakeup interrupts. The eSDHC can generate these interrupts even there are no clocks enabled. The three 
interrupts which can be used as wake-up events are:

• Card removal interrupt
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• Card insertion interrupt

• SDIO card interrupt

These three wake-up events (or wake-up interrupts) can also wake up the system from low-power modes.

25.4.8.1 Setting Wake Up Events

For the eSDHC to respond to a wake up event, the software must set the respective wake up enable bit 
before the CPU enters sleep mode. Refer to Section 25.3.8, “Protocol Control Register (PROCTL),” for 
more information on the wakeup enable bits.

Before the software disables the host clock, it should ensure that all of the following conditions have been 
met:

• No read or write transfer is active

• Data and command lines are not active

• No interrupts are pending

• Internal data buffer is empty

25.5 Initialization/Application Information
All communication between system and cards are controlled by the host. The host sends commands of two 
types: broadcast and addressed (point-to-point) commands.

Broadcast commands are intended for all cards, such as GO_IDLE_STATE, SEND_OP_COND, 
ALL_SEND_CID, etc. In broadcast mode, all cards are in the open-drain mode to avoid bus contention. 
Refer to Section 25.5.5, “Commands for MMC/SD/SDIO,” for the commands of bc and bcr categories.

After the broadcast command CMD3 is issued, the cards enter standby mode. Addressed type commands 
are used from this point. In this mode, the SDHC_CMD/SDHC_DAT I/O pads turn to push-pull mode, to 
have the driving capability for maximum frequency operation. Refer to Section 25.5.5, “Commands for 
MMC/SD/SDIO,” for the commands of ac and adtc categories.

25.5.1 Command Send and Response Receive Basic Operation

Assuming data type WORD is an unsigned 32-bit integer, the below flow is a guideline for sending a 
command to the card(s):
send_command(cmd_index, cmd_arg, other requirements)
{
WORD wCmd; // 32-bit integer to make up the data to write into the XFERTYP register, it is

 // recommended to implement in a bit-field manner
wCmd = (<cmd_index> & 0x3f) >> 24; // set the first 8 bits as ‘00’+<cmd_index>
set CMDTYP, DPSEL, CICEN, CCCEN, RSTTYP, and DTDSEL according to the command index; 

// XFERTYP register bits
if (internal DMA is used) wCmd |= 0x1;
if (multi-block transfer) {

set XFERTYP[MSBSEL] bit;
if (finite block number) {

set XFERTYP[BCEN] bit;
if (auto12 command is to use) set XFERTYP[AC12EN] bit;
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}
}
write_reg(CMDARG, <cmd_arg>); // configure the command argument
write_reg(XFERTYP, wCmd); // set XFERTYP register as wCmd value to issue the command
}
wait_for_response(cmd_index)
{
while (IRQSTAT[CC] is not set); // wait until command complete bit is set
read IRQSTAT register and check if any error bits about command are set;
if (any error bits are set) report error;
write 1 to clear IRQSTAT[CC] and all command error bits;
}

For the sake of simplicity, the function wait_for_response is implemented here by means of polling. For 
an effective and formal way, the response is usually checked after the command complete interrupt is 
received. By doing this, ensure the corresponding interrupt status bits are enabled.

For some scenarios, the response timeout is expected. For instance, after all cards respond to CMD3 and 
go to the standby state, no response to the host when CMD2 is sent. The host driver should manage false 
errors similar to this with caution.

25.5.2 Card Identification Mode

When a card is inserted to the socket or the card was reset by the host, the host needs to validate the 
operation voltage range, identify the cards, and request the cards to publish the relative card address (RCA) 
or to set the RCA for the MMCs.

25.5.2.1 Card Detect

See Figure 25-33 for a flow diagram showing the detection of MMC, SD, and SDIO cards using the 
eSDHC.

Figure 25-33. Flow Diagram for Card Detection

• Set IRQSIGEN[CINIEN] to enable card detection interrupt.

• When an interrupt from eSDHC is received, check IRQSTAT[CINS] to see if it is caused by card 
insertion.
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• Clear the IRQSIGEN[CINIEN] to disable card detection interrupt and ignore all card insertion 
interrupt afterwards.

25.5.2.2 Reset

The host consists of three types of reset:

• Hardware reset (card and host) which is driven by POR (power on reset).

• Software reset (host only) is proceeded by the write operation on the SYSCTL[RSTD], 
SYSCTL[RSTC], or SYSCTL[RSTA] bits to reset the data part, command part, or all parts of the 
host controller, respectively.

• Card reset (card only). The command CMD0, GO_IDLE_STATE, is the software reset command 
for all types of MMCs and SD memory cards. This command sets each card into idle state 
regardless of the current card state. For an SDIO card, CMD52 is used to write I/O reset in CCCR. 
The cards are initialized with a default relative card address (RCA = 0x0000) and with a default 
driver stage register setting (lowest speed, highest driving current capability).

After the card is reset, the host needs to validate the voltage range of the card. See Figure 25-34 for the 
software flow to reset the eSDHC and card.

Figure 25-34. Flow Chart for Reset of eSDHC and SD I/O Card

software_reset()
{

set_bit(SYSCTL, RSTA); // software reset the host
set SYSCTL[DTOCV and SDCLKFS]; // get the SDHC_CLK of frequency around 400 KHz
configure I/O pad; // set the voltage of external card to around 3.0 V
poll PRSSTAT[CIHB and CDIHB]; // wait until both bits are cleared
set_bit(SYSCTRL, INTIA); // send 80 clock ticks for card to power-up
send_command(CMD_GO_IDLE_STATE, <other parameters>); // reset the card with CMD0
or send_command(CMD_IO_RW_DIRECT, <other parameters>);

}

25.5.2.3 Voltage Validation

All cards should be able to establish communication with the host using any operation voltage in the 
maximum allowed voltage range specified in this standard. However, the supported minimum and 
maximum values for VDD are defined in the operation conditions register (OCR) and may not cover the 
whole range. Cards that store the CID (card identification) and CSD data in the preloaded memory are only 
able to communicate these information under data transfer VDD conditions. This means that if the host and 
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card have different VDD ranges, the card is not able to complete the identification cycle, nor is it able to 
send CSD data.

Therefore, a special command is available:

• SEND_OP_CONT (CMD1 for MMC), 

• SD_SEND_OP_CONT (ACMD41 for SD Memory), and 

• IO_SEND_OP_CONT (CMD5 for SD I/O).

The voltage validation procedure is designed to provide a mechanism to identify and reject cards which 
do not match the VDD range(s) desired by the host. This is accomplished by the host sending the desired 
VDD voltage window as the operand of this command. Cards that can not perform data transfer in the 
specified range must discontinue any further bus operations and enter the inactive state. By omitting the 
voltage range in the command, the host can query each card and determine the common voltage range 
before sending out-of-range cards into the inactive state. This query should be used if the host is able to 
select a common voltage range or if a notification should be sent to the system when a non-usable cards in 
the stack is detected.

The following steps illustrate how to perform voltage validation when a card is inserted:
voltage_validation(voltage_range_argument)
{
label the card as UNKNOWN;
send_command(IO_SEND_OP_COND, 0x0, <other parameters are omitted>); 

// CMD5, check SDIO operation voltage, command argument is zero
if (RESP_TIMEOUT != wait_for_response(IO_SEND_OP_COND)) { // SDIO command is accepted

if (0 < number of IO functions) {
label the card as SDIO;
IORDY = 0;
while (!(IORDY in IO OCR response)) { // set voltage range for each IO function

send_command(IO_SEND_OP_COND, <voltage range>, <other parameter>);
wait_for_response(IO_SEND_OP_COND);

} // end of while ...
} // end of if (0 < ...)
if (memory part is present inside SDIO card) label the card as SDCombo; 

// this is an SD-Combo card
} // end of if (RESP_TIMEOUT...)
if (the card is labeled as SDIO card) return; 

// card type is identified and voltage range is set, so exit the function;
send_command(APP_CMD, 0x0, <other parameters are omitted>); 

// CMD55, application specific CMD prefix
if (no error calling wait_for_response(APP_CMD, <...>) { // CMD55 is accepted

send_command(SD_APP_OP_COND, <voltage range>, <...>); 
// ACMD41, to set voltage range for memory part or SD card

wait_for_response(SD_APP_OP_COND); // voltage range is set
if (card type is UNKNOWN) label the card as SD;
return;

} // end of if (no error ...
else if (errors other than timeout occur) { // command/response pair is corrupted

respond to it by program specific manner;
} // of else if (response timeout)
else { // CMD55 is refused, it must be MMC or CE-ATA card

if (card is already labeled as SD Combo) { // change label
re-label the card as SDIO;
ignore the error or report it;
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return; // card is identified as SDIO card
} // of if (card is ...)
send_command(SEND_OP_COND, <voltage range>, <...>);
if (RESP_TIMEOUT == wait_for_response(SEND_OP_COND)) { 

// CMD1 is not accepted, either
label the card as UNKNOWN;
return;

} // of if (RESP_TIMEOUT...)
if (check for CE-ATA signature succeeded) { // the card is CE-ATA

store CE-ATA specific info from the signature;
label the card as CE-ATA;

} // of if (check for CE-ATA...)
else label the card as MMC;

} // of else
}

25.5.2.4 Card Registry

Card registry on MMC and SD/SDIO/SD Combo cards are different.

For the SD card, the identification process starts at a clock rate lower than 400 KHz and the power voltage 
higher than 2.7 V, as defined by the card specification. At this time, the SDHC_CMD line output drives 
are push-pull drivers instead of open-drain. After the bus is activated, the host requests the card to send 
their valid operation conditions. The response to ACMD41 is the operation condition register of the card. 
The same command should be sent to all of the new cards in the system. Incompatible cards are placed 
into the inactive state. The host then issues the command, ALL_SEND_CID (CMD2), to each card to get 
its CID. Cards that are currently unidentified (that is, in ready state), send their CID number as the 
response. After the CID is sent by the card, the card goes into the identification state.

The host then issues Send_Relative_Addr (CMD3), requesting the card to publish a new relative card 
address (RCA) that is shorter than CID. This RCA is used to address the card for future data transfer 
operations. Once the RCA is received, the card changes its state to the standby state. At this point, if the 
host wants the card to have an alternative RCA number, it may ask the card to publish a new number by 
sending another Send_Relative_Addr command to the card. The last published RCA is the actual RCA of 
the card.

The host repeats the identification process with CMD2 and CMD3 for each card in the system until the last 
CMD2 gets no response from any of the cards in system.

For MMC operation, the host starts the card identification process in open-drain mode with the 
identification clock rate lower than 400 KHz, the power voltage higher than 2.7 V. The open-drain driver 
stages on the SDHC_CMD line allow parallel card operation during card identification. After the bus is 
activated the host requests the cards to send their valid operation conditions (CMD1). The response to 
CMD1 is the wired-OR operation on the condition restrictions of all cards in the system. Incompatible 
cards are sent into inactive state. The host then issues the broadcast command All_Send_CID (CMD2), 
asking all cards for their unique CID number. All unidentified cards (the cards in ready state) 
simultaneously start sending their CID numbers serially, while bit-wise monitoring their outgoing bit 
stream. Those cards, whose outgoing CID bits do not match the corresponding bits on the command line 
in any one of the bit periods, stop sending their CID immediately and must wait for the next identification 
cycle. Since the CID is unique for each card, only one card can successfully send its full CID to the host. 
This card then goes into identification state. Thereafter, the host issues Set_Relative_Addr (CMD3) to 
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assign to this card a relative card address (RCA). Once the RCA is received, the card state changes to the 
stand-by state, and the card does not react in further identification cycles, and its output driver switches 
from open-drain to push-pull. The host repeats the process, namely CMD2 and CMD3, until the host 
receives a time-out condition to recognize completion of the identification process.
card_registry()
{
do { // decide RCA for each card until response timeout

if(card is labeled as SD Combo or SDIO) { // for SDIO card like device
send_command(SET_RELATIVE_ADDR, 0x00, <...>); 

// ask SDIO card to publish its RCA
retrieve RCA from response;

} // end if (card is labeled as SD Combo...)
else if (card is labeled as SD) { // for SD card

send_command(ALL_SEND_CID, <...>);
if (RESP_TIMEOUT == wait_for_response(ALL_SEND_CID)) break;
send_command(SET_RELATIVE_ADDR, <...>);
retrieve RCA from response;

} // else if (card is labeled as SD ...)
else if (card is labeled as MMC or CE-ATA) { // treat CE-ATA as MMC

send_command(ALL_SEND_CID, <...>);
rca = 0x1; // arbitrarily set RCA, 1 here for example, this RCA is also the

 // relative address to access the CE-ATA card
send_command(SET_RELATIVE_ADDR, 0x1 << 16, <...>); 

// send RCA at upper 16 bits
} // end of else if (card is labeled as MMC...)

} while (response is not timeout);
}

25.5.3 Card Access

These sections describe the supported access modes with external cards.

25.5.3.1 Block Write

This section describes the process of writing data to external cards in block mode.

25.5.3.1.1 Normal Write

During block write (CMD24–27), one or more blocks of data are transferred from the host to the card with 
a CRC appended to the end of each block by the host. If the CRC fails, the card should indicate the failure 
on the SDHC_DAT line (see below). The transferred data is discarded and not written, and all further 
transmitted blocks (in multi-block write mode) are ignored.

If the host uses partial blocks whose accumulated length is not block-aligned and block misalignment is 
not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card detects the block 
misalignment error and aborts programming before the beginning of the first misaligned block. The card 
sets the ADDRESS_ERROR error bit in the status register, defined in the MMC/SD Specification, and 
then waits in the receive-data state for a stop command while ignoring all further data transfers. The write 
operation is also aborted if the host attempts to write over a write-protected area.

For MMC and SD cards, programming the CID and CSD registers does not require a previous block length 
setting. The transferred data is also CRC protected. If a part of the CSD or CID register is stored in the 
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ROM, this unchangeable section must match the corresponding section of the receive buffer. If this match 
fails, then the card reports an error and does not change any register contents.

Some cards may require a long and unpredictable period of time to write a block of data. After receiving 
a block of data and completing the CRC check, the card begins writing. If its write buffer is full and unable 
to accept new data from a new WRITE_BLOCK command, the card holds the SDHC_DAT line low. The 
host may poll the status of the card with a SEND_STATUS command (CMD13) or other means for SDIO 
cards, at any time and the card responds with its status. The card status indicates whether the card can 
accept new data or if the write process is still in progress. The host may deselect the card by issuing CMD7 
(to select a different card) to change the card into the standby state and release the SDHC_DAT line 
without interrupting the write operation. When re-selecting the card, it reactivates the busy indication by 
pulling SDHC_DAT low if programming is still in progress and the write buffer is unavailable.

For simplicity, the software flow described below incorporates the internal DMA, and the write operation 
is a multi-block write with Auto CMD12 enabled. For the other two methods (external DMA or CPU 
polling status) and different transfer nature, the internal DMA part of the procedure should be removed 
and alternative steps inserted.

1. Check the card status and wait until the card is ready for data.

2. Set the card block length.

— MMC/SD cards — use SET_BLOCKLEN (CMD16)

— SDIO cards or the I/O portion of SD Combo cards — IO_RW_DIRECT (CMD52) to set I/O 
block size bit field in the CCCR register (for function 0) or FBR (for functions 1–7)

3. Set eSDHC BLKATTR[BLKSIZE] to the same as the block length set in the card in step 2.

4. Set eSDHC BLKATTR[BLKCNT] with the number of blocks to send.

5. Disable the buffer write ready interrupt, configure the DMA setting, and enable the eSDHC DMA 
when sending the command with data transfer. Set XFERTYP[AC12EN].

6. Wait for the transfer complete interrupt.

7. Check the status bit to see if a read CRC error or any other errors occurred between sending Auto 
CMD12 and receiving the response.

25.5.3.1.2 Write with Pause

The write operation can be paused during the transfer. Instead of stopping the SDHC_CLK at any time to 
pause all the operations which is also inaccessible to the host driver, the driver can set 
PROCTL[SABGREQ] to pause the transfer between the data blocks. Since there is no timeout condition 
in a write operation during the data blocks, a write operation to the cards can be paused in this way and if 
line SDHC_DAT0 is not required to de-assert to release busy state, no suspend command is needed.

Similar to the flow described in Section 25.5.3.1.1, “Normal Write,” the write with pause is shown with 
the same type of write operations:

1. Check the card status and wait until card is ready for data.

2. Set the card block length. 

— MMC/SD cards — use SET_BLOCKLEN (CMD16)
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— SDIO cards or the I/O portion of SD Combo cards — use IO_RW_DIRECT (CMD52) to set 
the I/O block size bit field in CCCR register (for function 0) or FBR (for functions 1–7)

3. Set the eSDHC BLKATTR[BLKSIZE] to the same as the block length set in the card in step 2.

4. Set eSDHC BLKATTR[BLKCNT] with the number of blocks to send.

5. Disable the buffer write ready interrupt, configure the DMA setting, and enable the eSDHC DMA 
when sending the command with data transfer. Set XFERTYP[AC12EN].

6. Set PROCTL[SABGREQ].

7. Wait for the transfer complete interrupt.

8. Clear PROCTL[SABGREQ].

9. Check the status bit to see if a read CRC error occurred.

10. Set PROCTL[CREQ] to continue the read operation.

11. Wait for the transfer complete interrupt.

12. Check the status bit to see if a read CRC error or any other errors occurred between sending Auto 
CMD12 and receiving the response.

The number of blocks left during the data transfer is accessible by reading the content of 
BLKATTR[BLKCNT]. Due to the data transfers and setting PROCTL[SABGREQ] are concurrent, along 
with the delay of register read and the register setting, the actual number of blocks left may not be the same 
as the value read earlier. The driver should read the value of BLKATTR[BLKCNT] after the transfer is 
paused and the transfer complete interrupt is received.

It is also possible that the transfer of the last block begins when the stop-at-block-gap request is sent to the 
buffer. In this case, the next block gap is the actual end of the transfer, and therefore, the request is ignored. 
The driver should treat this as a non-pause transfer and a common write operation.

When the write operation is paused, the data transfer inside the host system does not stop and the transfer 
remains active until the data buffer is full. Therefore, avoid using the suspend command for the SDIO card. 
When such command is sent, the eSDHC assumes the system switches to another function of the SDIO 
card and flushes the data buffer. The eSDHC reads the resume command as a normal command with a data 
transfer, and it is the driver’s responsibility to set all the relevant registers before the transfer is resumed. 
If there is only one block to send when the transfer is resumed, XFERTYP[MSBSEL, BCEN, AC12EN] 
are set. However, the eSDHC automatically sends CMD12 to mark the end of multi-block transfer.

25.5.3.2 Block Read

25.5.3.2.1 Normal Read

For block reads, the basic unit of a data transfer is a block whose maximum size is stored in areas defined 
in corresponding card specifications. A CRC is appended to the end of each block, ensuring data transfer 
integrity. CMD17, CMD18, CMD53, and so on, can initiate a block read. After completing the transfer, 
the card returns to the transfer state.

For multi-block reads, data blocks are continuously transferred until a stop command is issued. If the host 
uses partial blocks whose accumulated length is not block aligned and block misalignment is not allowed, 
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the card which does not support partial block length, should detect the block misalignment at the beginning 
of the first misaligned block and report the error, depending on its card type.

For simplicity, the software flow described below incorporates the internal DMA, and the read operation 
is a multi-block read with Auto CMD12 enabled. For the other two methods (external DMA or CPU 
polling status) and different transfer nature, the internal DMA part should be removed and the alternative 
steps are straightforward.

1. Check the card status and wait until the card is ready for data.

2. Set the card block length.

— MMC/SD cards — use SET_BLOCKLEN (CMD16)

— SDIO cards or the I/O portion of SD Combo cards — use IO_RW_DIRECT (CMD52) to set 
IO block size bit field in CCCR register (for function 0) or FBR (for functions 1–7)

3. Set eSDHC BLKATTR[BLKSIZE] to the same as the block length set in the card in step 2.

4. Set eSDHC BLKATTR[BLKCNT] with the number of blocks to send.

5. Disable the buffer read ready interrupt, configure the DMA setting, and enable the eSDHC DMA 
when sending the command with data transfer. Set XFERTYP[AC12EN].

6. Wait for the transfer complete interrupt.

7. Check the status bit to see if a read CRC error or any other errors occurred between sending Auto 
CMD12 and receiving the response.

25.5.3.2.2 Read with Pause

In general, the read operation is not able to pause. Only the SDIO card (and SD Combo card working under 
I/O mode) supporting the read wait feature can pause during the read operation. If the SDIO card supports 
read wait (CCCR[SRW] = 1), the driver can set PROCTL[SABGREQ] to pause the transfer between the 
data blocks. Before setting SABGREQ, PROCTL[RWCTL] must be set. Otherwise, the eSDHC does not 
assert the read wait signal during the block gap and data corruption occurs. It is recommended to set the 
RWCTL bit once the read wait capability of the SDIO card is recognized.

Similar to the flow described in Section 25.5.3.2.1, “Normal Read,” the read with pause is shown with the 
same type of read operations:

1. Check CCCR[SRW] in the SDIO card to confirm the card supports read wait.

2. Set PROCTL[RWCTL].

3. Check the card status and wait until the card is ready for data.

4. Set the card block length.

— MMC/SD cards — use SET_BLOCKLEN (CMD16)

— SDIO cards or the I/O portion of SD Combo cards — use IO_RW_DIRECT (CMD52) to set 
IO block size bit field in CCCR register (for function 0) or FBR (for functions 1–7)

— .

5. Set eSDHC BLKATTR[BLKSIZE] to the same as the block length set in the card in Step 2.

6. Set eSDHC BLKATTR[BLKCNT] with the number of blocks to send.
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7. Disable the buffer read ready interrupt, configure the DMA setting, and enable the eSDHC DMA 
when sending the command with data transfer. Set XFERTYP[AC12EN].

8. Set PROCTL[SABGREQ].

9. Wait for the transfer complete interrupt.

10. Clear PROCTL[SABGREQ].

11. Check the status bit to see if a read CRC error occurred.

12. Set PROCTL[CREQ] to continue the read operation.

13. Wait for the transfer complete interrupt.

14. Check the status bit to see if a read CRC error or any other errors occurred between sending Auto 
CMD12 and receiving the response.

Similar to the write operation, it is possible to meet the ending block of the transfer when paused. In this 
case, the eSDHC ignores the stop-at-block-gap request and treats it as a command read operation.

Unlike the write operation, there is no remaining data inside the buffer when the transfer is paused. All 
data received before the pause is transferred to the host system. Whether or not a suspend command is sent, 
the internal data buffer is not flushed.

If the suspend command is sent and the transfer is later resumed by means of the resume command, the 
eSDHC takes the command as a normal one accompanied with data transfer, and it is left for the driver to 
set all the relevant registers before the transfer is resumed. If there is only one block to send when the 
transfer is resumed, XFERTYP[MSBSEL, BCEN] and IRQSTT[AC12EN] are set. However, the eSDHC 
automatically sends CMD12 to mark the end of a multi-block transfer.

25.5.3.3 ADMA Usage

To use the ADMA in a data transfer, the host driver must prepare the correct descriptor chain prior to 
sending the read/write command. To do this:

1. Create a descriptor to set the data length that the current descriptor group is about to transfer. The 
data length should be even numbers of the block size.

2. Create another descriptor to transfer the data from the address in this descriptor. The data address 
must be at a page boundary (4kB address aligned).

3. If necessary, create a link descriptor containing the address of the next descriptor. The descriptor 
group is created in steps 1–3.

4. Repeat steps 1–3 until all descriptors are created.

5. In the last descriptor, set the end flag and ensure the total length of all descriptors matches the 
product of the block size and block number configured in the block attribute register.

6. Set the ADMA system address register to the address of the first descriptor and set 
PROCTL[DMAS] to 01 to select the ADMA.

7. Issue a write or read command with XFERTYP[DMAEN] set.

Since steps 1–5 are independent of step 6, step 6 can finish before steps 1–5. Regarding the descriptor 
configuration, it is recommended not to use the link descriptor as it requires extra system memory access.
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25.5.3.4 Transfer Error

25.5.3.4.1 CRC Error

At the end of a block transfer, a write CRC status error or read CRC error may occur. For this type of error, 
the last block received should be discarded because the integrity of the data block is not guaranteed. It is 
recommended to discard the following data blocks and re-transfer the block from the corrupted one. For a 
multi-block transfer, the host driver should issue CMD12 to abort the current process and start the transfer 
by a new data command. In this scenario, even when the XFERTYP[AC12EN, BCEN] are set, the eSDHC 
does not automatically send CMD12 because the last block is not transferred. On the other hand, if it is 
within the last block that CRC error occurs, Auto CMD12 is sent by the eSDHC. In this case, the driver 
should resend or re-obtain the last block with a single block transfer.

25.5.3.4.2 Internal DMA Error

During the data transfer with the internal DMA, if the DMA engine encounters an error on the CSB bus, 
the DMA operation is aborted and a DMA error interrupt is sent to the host system. When acknowledged 
by such an interrupt, the driver should calculate the start address of the data block where the error occurred. 
The start address can be calculated by either of the following methods:

• Read the DSADDR[DSADDR] field. The error occurs during the previous burst. Therefore, by 
taking the block size, the previous burst length, and the start address of the next burst transfer into 
account, one can obtain the start address of the corrupted block.

• Read the BLKATTR[BLKCNT] field. The start address of the corrupted block can be calculated 
by the number of blocks left, the total number to transfer, the start address of transfer, and the size 
of each block. However, if BCEN is not set, the contents of the block attribute register does not 
change and this method does not work.

When a DMA error occurs, it is recommended to abort the current transfer by means of CMD12 (for 
multi-block transfer), apply a reset for data, and restart the transfer from the corrupted block to recover the 
error.

25.5.3.4.3 ADMA Error

There are three possible ADMA errors: AHB transfer, invalid descriptor, and data-length mismatch errors. 
When these errors occur, the DMA transfer stops and the corresponding error status bit is set. To 
acknowledge the status, the host driver should recover the error as shown below and re-transfer from the 
place of interruption.

• AHB transfer error — Such errors may occur during a data transfer or descriptor fetch. For either 
scenario, it is recommended to retrieve the transfer context, reset the data part and either re-transfer 
the block that was corrupted or transfer the next block if no block is corrupted.

• Invalid descriptor error — It is recommended to retrieve the transfer context, reset the data part and 
re-create the descriptor chain from the invalid descriptor and issue a new transfer. Since the data to 
transfer now may be less than the previous setting, configure the data length in the new descriptor 
chain to match the new value.

• Data-length mismatch error — Similar to the invalid descriptor error, the host driver polls related 
registers to retrieve the transfer context, resets the data part, configures a new descriptor chain, and 
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makes another transfer if there is data left. Like the previous scenario of the invalid descriptor error, 
the data length must match the new transfer.

25.5.3.4.4 Auto CMD12 Error

After the last block of a multi-block transfer is sent or received and XFERTYP[AC12EN] is set when the 
data transfer is initiated by the data command, the eSDHC automatically sends CMD12 to the card to stop 
the transfer. When an error occurs at this point, it is recommended that the host driver responds by:

1. Auto CMD12 response timeout. It is not certain whether the command has been accepted by the 
card or not. The driver should clear the Auto CMD12 error status bits and resend CMD12 until it 
is accepted by the card.

2. Auto CMD12 response CRC error. Since CMD12 has been received by the card, the card aborts 
the transfer. The driver may ignore the error and clear the error status bit.

3. Auto CMD12 conflict error or not sent. The command was not sent. Therefore, the driver should 
send CMD12 manually.

25.5.3.5 Card Interrupt

The external cards can inform the host controller through the use of special signals. For SDIO cards, it can 
be the low level on the SDHC_DAT[1] line during a specific period. It is possible some other external 
interrupt behaviors can be defined. The eSDHC only monitors the SDHC_DAT[1] line and supports SDIO 
interrupts.

When an SDIO interrupt is captured by the eSDHC and the host system is informed by the eSDHC 
asserting its interrupt line, the interrupt service of host driver is requested.

As the interrupt source is controlled by the external card, the interrupt from the SDIO card must be served 
before the CINT bit is cleared. Refer to Section 25.4.6.3, “Card Interrupt Handling,” for the card interrupt 
handling flow.

25.5.4 Switch Function

MMCs transferring data with a bus width other than one-bit wide is a new feature added to the MMC 
specification. The high-speed timing mode for all card devices is also newly-defined in recent various card 
specifications. To enable these new features, a type of switch command should be issued by the host driver.

NOTE
High-speed mode is not supported on this device.

For SDIO cards, the high speed mode is enabled by writing to CCCR[EHS] after the CCCR[SHS] bit is 
confirmed. For SD cards, the high-speed mode is queried and enabled by CMD6 (with the mnemonic 
symbol as SWICH_FUNC); for MMCs, the high-speed mode is queried by CMD8 and enabled by CMD6 
(with the mnemonic symbol as SWITCH).

The 4-bit and 8-bit bus width of MMC is also enabled by the SWITCH command, but with a different 
argument.
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These new functions can also be disabled by software reset (for SDIO card, by setting RES bit in CCCR 
register; for other cards, by issuing CMD0), but such manner of restoring to normal mode is not 
recommended because a complete identification process is needed before the card is ready for data 
transfer.

For simplicity, the following flowcharts do not show a current capability check, which is recommended in 
the function switch process.

25.5.4.1 Query, Enable and Disable SDIO High Speed Mode
enable_sdio_high_speed_mode(void)
{
send CMD52 to query bit SHS at address 0x13;
if (SHS bit is ‘0’) 

{
report the SDIO card does not support high speed mode and return;
}

send CMD52 to set bit EHS at address 0x13 and read after write to confirm EHS bit is set;
change clock divisor value or configure the system clock feeding into eSDHC to generate the 
card_clk of around 50MHz;
(data transactions like normal peers)
}
disable_sdio_high_speed_mode(void)
{
send CMD52 to clear bit EHS at address 0x13 and read after write to confirm EHS bit is cleared;
change clock divisor value or configure the system clock feeding into eSDHC to generate the 
card_clk of the desired value below 25MHz;
(data transactions like normal peers)
}

25.5.4.2 Query, Enable and Disable SD High Speed Mode
enable_sd_high_speed_mode(void)
{

set BLKATTR[BLKCNT] to 1 (block), set BLKATTR[BLKSIZE] to 64 (bytes);
send CMD6, with argument 0xFFFFF1 and read 64 bytes of data accompanying the R1

response;
wait data transfer done bit is set;
check if the bit 401 of received 512 bit is set;
if (bit 401 is ‘0’) report the SD card does not support high speed mode and return;
send CMD6, with argument 0x80FFFFF1 and read 64 bytes of data accompanying the R1

response;
check if the bit field 379~376 is 0xF;
if (the bit field is 0xF) report the function switch failed and return;
change clock divisor value or configure the system clock feeding into eSDHC to generate 

the card_clk of around 50MHz;
(data transactions like normal peers)

}
disable_sd_high_speed_mode(void)
{

set BLKCNT field to 1 (block), set BLKSIZE field to 64 (bytes);
send CMD6, with argument 0x80FFFFF0 and read 64 bytes of data accompanying the R1

response;
check if the bit field 379~376 is 0xF;
if (the bit field is 0xF) report the function switch failed and return;
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change clock divisor value or configure the system clock feeding into eSDHC to generate
the card_clk of the desired value below 25MHz;

(data transactions like normal peers)
}

25.5.4.3 Query, Enable and Disable MMC High Speed Mode
enable_mmc_high_speed_mode(void)
{

send CMD9 to get CSD value of MMC;
check if the value of SPEC_VER field is 4 or above;
if (SPEC_VER value is less than 4) report the MMC does not support high speed mode and

return;
set BLKCNT field to 1 (block), set BLKSIZE field to 512 (bytes);
send CMD8 to get EXT_CSD value of MMC;
extract the value of CARD_TYPE field to check the ‘high speed mode’ in this MMC is

26MHz or 52MHz;
send CMD6 with argument 0x1B90100;
send CMD13 to wait card ready (busy line released);
send CMD8 to get EXT_CSD value of MMC;
check if HS_TIMING byte (byte number 185) is 1;
if (HS_TIMING is not 1) report MMC switching to high speed mode failed and return;
change clock divisor value or configure the system clock feeding into eSDHC to generate

the card_clk of around 26MHz or 52MHz according to the CARD_TYPE;
(data transactions like normal peers)

}

disable_mmc_high_speed_mode(void)
{

send CMD6 with argument 0x2B90100;
set BLKCNT field to 1 (block), set BLKSIZE field to 512 (bytes);
send CMD8 to get EXT_CSD value of MMC;
check if HS_TIMING byte (byte number 185) is 0;
if (HS_TIMING is not 0) report the function switch failed and return;
change clock divisor value or configure the system clock feeding into eSDHC to generate

the card_clk of the desired value below 20MHz;
(data transactions like normal peers)

}

25.5.4.4 Set MMC Bus Width
change_mmc_bus_width(void)
{

send CMD9 to get CSD value of MMC;
check if the value of SPEC_VER field is 4 or above;
if (SPEC_VER value is less than 4) report the MMC does not support multiple bit width

and return;
send CMD6 with argument 0x3B70x00; (8-bit, x=2; 4-bit, x=1; 1-bit, x=0)
send CMD13 to wait card ready (busy line released);
(data transactions like normal peers)

}

25.5.4.5 ADMA1 Operation
Set_adma1_descriptor
{
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if (to start data transfer) {
// Ensure the address is 4KB aligned.
Set ‘Set’ type descriptor;
{

Set Act bits to 01;
Set [31:12] bits data length (byte unit);

}
Set ‘Tran’ type descriptor;
{

Set Act bits to 10;
Set [31:12] bits address (4KB align);

}
}
else if (to fetch descriptor at non-continuous address) {

Set Act bits to 11;
Set [31:12] bits the next descriptor address (4KB align);

}
else { // other types of descriptor

Set Act bits accordingly
}
if (this descriptor is the last one) {

Set End bit to 1;
}
if (to generate interrupt for this descriptor) {

Set Int bit to 1;
}
Set Valid bit to 1;

}

25.5.4.6 ADMA2 Operation
Set_adma2_descriptor
{

if (to start data transfer) {
// Ensure the address is 32-bit boundary (lower 2-bit are always '00').
Set higher 32-bit of descriptor for this data transfer initial address;
Set [31:16] bits data length (byte unit);
Set Act bits to '10';

}
else if (to fetch descriptor at non-continuous address) {

Set Act bits to '11';
// Ensure the address is 32-bit boundary (lower 2-bit are always set to '00').
Set higher 32-bit of descriptor for the next descriptor address;

}
else { // other types of descriptor

Set Act bits accordingly
}
if (this descriptor is the last one) {

Set 'End' bit '1';
}
if (to generate interrupt for this descriptor) {

Set 'Int' bit '1';
}
Set the 'Valid' bit to '1';

}
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25.5.5 Commands for MMC/SD/SDIO

See Table 25-31 for the list of commands for the MMC/SD/SDIO cards. Refer to the corresponding 
specifications for details about the command information.

Four kinds of commands control the MMC:

1. Broadcast commands (bc)—no response

2. Broadcast commands with response (bcr)—response from all cards simultaneously

3. Addressed (point-to-point) commands (ac)—no data transfer on SDHC_DAT

4. Addressed (point-to-point) data transfer commands (ADTC)

Table 25-31. Commands for MMC/SD/SDIO

CMD 
INDEX

Type Argument Resp Abbreviation Description1

CMD0 bc [31:0] stuff bits — GO_IDLE_STATE Resets all MMC and SD memory cards 
to idle state.

CMD1 bcr [31:0] OCR without 
busy

R3 SEND_OP_COND Asks all MMCs and SD memory cards 
in idle state to send their operation 
conditions register contents in the 
response on the SDHC_CMD line.

CMD2 bcr [31:0] stuff bits R2 ALL_SEND_CID Asks all cards to send their CID 
numbers on the SDHC_CMD line.

CMD3(1) ac [31:6] RCA
[15:0] stuff bits

R1
R6(SDIO)

SET/SEND_RELATIVE_AD
DR

Assigns relative address to the card.

CMD4 bc [31:0] DSR
[15:0] stuff bits

— SET_DSR Programs the DSR of all cards.

CMD5 bc [31:0] OCR without 
busy

R4 IO_SEND_OP_COND Asks all SDIO cards in idle state to 
send their operation conditions register 
contents in the response on the 
SDHC_CMD line.

CMD6(2) adtc [31] Mode
0: Check function
1: Switch function 
[30:8] Reserved for 
function groups 6 ~ 3 
(All 0 or 0xFFFF)
[7:4] Function group1 
for command system
[3:0] Function group2 
for access mode

R1 SWITCH_FUNC Checks switch ability (mode 0) and 
switch card function (mode 1). Refer to 
SD Physical Specification version 1.1 
for details.

CMD6(3) ac [31:26] Set to 0
[25:24] Access
[23:16] Index
[15:8] Value
[7:3] Set to 0
[2:0] Cmd Set

R1b SWITCH Switches the mode of operation of the 
selected card or modifies the 
EXT_CSD registers. Refer to the 
MultiMediaCard System Specification 
version 4.0 final draft 2 for details.
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CMD7 ac [31:6] RCA
[15:0] stuff bits

R1b SELECT/DESELECT_CARD Command toggles a card between the 
stand-by and transfer states or 
between the programming and 
disconnect states. In both cases, the 
card is selected by its own relative 
address and gets deselected by any 
other address; address 0 deselects all.

CMD8 adtc [31:0] stuff bits R1 SEND_EXT_CSD The card sends its EXT_CSD register 
as a block of data, with block size of 
512 bytes.

CMD9 ac [31:6] RCA
[15:0] stuff bits

R2 SEND_CSD Addressed card sends its card-specific 
data (CSD) on the SDHC_CMD line.

CMD10 ac [31:6] RCA
[15:0] stuff bits

R2 SEND_CID Addressed card sends its 
card-identification (CID) on the 
SDHC_CMD line.

CMD11 adtc [31:0] data address R1 READ_DAT_UNTIL_STOP Reads data stream from the card 
starting at the given address until 
STOP_TRANSMISSION is received.

CMD12 ac [31:0] stuff bits R1b STOP_TRANSMISSION Forces the card to stop transmission.

CMD13 ac [31:6] RCA
[15:0] stuff bits

R1 SEND_STATUS Addressed card sends its status 
register.

CMD14 Reserved

CMD15 ac [31:6] RCA
[15:0] stuff bits

— GO_INACTIVE_STATE Sets the card to inactive state in order 
to protect the card stack against 
communication breakdowns.

CMD16 ac [31:0] block length R1 SET_BLOCKLEN Sets the block length (in bytes) for all 
following block commands (read and 
write). Default block length is specified 
in the CSD.

CMD17 adtc [31:0] data address R1 READ_SINGLE_BLOCK Reads a block of the size selected by 
the SET_BLOCKLEN command.

CMD18 adtc [31:0] data address R1 READ_MULTIPLE_BLOCK Continuously transfers data blocks 
from card to host until interrupted by a 
stop command.

CMD19 Reserved

CMD20 adtc [31:0] data address R1 WRITE_DAT_UNTIL_STOP Writes data stream from the host 
starting at the given address until the 
STOP_TRANSMISION command is 
received.

CMD21–23 Reserved

CMD24 adtc [31:0] data address R1 WRITE_BLOCK Writes a block of the size selected by 
the SET_BLOCKLEN command.

Table 25-31. Commands for MMC/SD/SDIO (continued)

CMD 
INDEX

Type Argument Resp Abbreviation Description1
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CMD25 adtc [31:0] data address R1 WRITE_MULTIPLE_BLOCK Continuously writes blocks of data until 
the STOP_TRANSMISSION command 
is received.

CMD26 adtc [31:0] stuff bits R1 PROGRAM_CID Programming of the card identification 
register. This command should be 
issued only once per card. The card 
contains hardware to prevent this 
operation after the first programming. 
Normally this command is reserved for 
the manufacturer.

CMD27 adtc [31:0] stuff bits R1 PROGRAM_CSD Programming of the programmable bits 
of the CSD.

CMD28 ac [31:0] data address R1b SET_WRITE_PROT If the card has write-protection 
features, this command sets the write 
protection bit of the addressed group. 
The properties of write protection are 
coded in the card-specific data 
(WP_GRP_SIZE).

CMD29 ac [31:0] data address R1b CLR_WRITE_PROT If the card provides write-protection 
features, this command clears the write 
protection bit of the addressed group.

CMD30 adtc [31:0] write protect 
data address

R1 SEND_WRITE_PROT If the card provides write-protection 
features, this command asks the card 
to send the status of the 
write-protection bits.

CMD31 Reserved

CMD32 ac [31:0] data address R1 TAG_SECTOR_START Sets the address of the first sector of 
the erase group.

CMD33 ac [31:0] data address R1 TAG_SECTOR_END Sets the address of the last write block 
of the continuous range to be erased.

CMD34 ac [31:0] data address R1 UNTAG_SECTOR Removes one previously selected 
sector from the erase selection.

CMD35 ac [31:0] data address R1 TAG_ERASE_GROUP_STA
RT

Sets the address of the first erase 
group within a range to be selected for 
erase.

CMD36 ac [31:0] data address R1 TAG_ERASE_GROUP_END Sets the address of the last erase 
group within a continuous range to be 
selected for erase.

CMD37 ac [31:0] data address R1 UNTAG_ERASE_GROUP Removes one previously selected 
erase group from the erase selection.

CMD38 ac [31:0] stuff bits R1b ERASE Erase all previously selected sectors.

Table 25-31. Commands for MMC/SD/SDIO (continued)

CMD 
INDEX

Type Argument Resp Abbreviation Description1
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CMD39 ac [31:0] RCA
[15] register write flag
[14:8] register 
address
[7:0] register data

R4 FAST_IO Used to write and read 8-bit (register) 
data fields. The command address a 
card and a register and provides the 
data for writing if the write flag is set. 
The R4 response contains data read 
from the address register. This 
command accesses application 
dependent registers which are not 
defined in the MMC standard.

CMD40 bcr [31:0] stuff bits R5 GO_IRQ_STATE Sets the system into interrupt mode.

CMD41 Reserved

CDM42 adtc [31:0] stuff bits R1b LOCK_UNLOCK Used to set/reset the password or 
lock/unlock the card. The size of the 
data block is set by the 
SET_BLOCK_LEN command.

CMD43–51 Reserved

CMD52 ac [31:0] stuff bits R5 IO_RW_DIRECT Access a single register within the total 
128 Kbytes of register space in any I/O 
function.

CMD53 ac [31:0] stuff bits R5 IO_RW_EXTENDED Access a multiple I/O register with a 
single command, it allows the reading 
or writing of a large number of I/O 
registers.

CMD54 Reserved

CMD55 ac [31:16] RCA
[15:0] stuff bits

R1 APP_CMD Indicates to the card that the next 
command is an application specific 
command rather that a standard 
command.

CMD56 adtc [31:1] stuff bits
[0]: RD/WR

R1b GEN_CMD Used either to transfer a data block to 
the card or to get a data block from the 
card for general-purpose or 
application-specific commands. The 
size of the data block is set by the 
SET_BLOCK_LEN command.

ACMDs should be preceded with the APP_CMD command
(Commands listed below are for SD cards only. Other SD commands not listed below are not supported by this module)

ACMD6 ac [31:2] stuff bits [1:0] 
bus width

R1 SET_BUS_WIDTH Defines the data bus width (00 = 1 bit 
or 10 = 4 bit bus) to be used for data 
transfer. The allowed data bus widths 
are given in SCR register.

ACMD13 adtc [31:0] stuff bits R1 SD_STATUS Send the SD memory card status.

ACMD22 adtc [31:0] stuff bits R1 SEND_NUM_WR_
SECTORS

Send the number of the written (without 
errors) sectors. Responds with 
32 bit + CRC data block.

Table 25-31. Commands for MMC/SD/SDIO (continued)

CMD 
INDEX

Type Argument Resp Abbreviation Description1
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NOTE
• CMD3 differs for MMC and SD cards

For MMC cards, CMD3 is referred to as SET_RELATIVE_ADDR and 
has a response type R1
For SD cards, CMD3 is referred to as SEND_RELATIVE_ADDR and 
has a response type R6, with RCA inside

• Command SWITCH is for high-speed MMC cards. The index field can 
contain any value from 0–255, but only values 0–191 are valid. If the 
index value is in the 192–255 range, the card does not perform any 
modification and the status bit EXT_CSD[SWITCH_ERROR] is set. 
The access bits are shown in Table 25-32:

25.5.6 Software Restrictions

25.5.6.1 Initialization Active

The driver cannot set SYSCTL[INITA] when any of the command or data lines are active, so the driver 
must ensure both CDIHB and CIHB bits are cleared. To auto clear the INITA bit, the SDCLKEN bit must 
be set; otherwise, no clocks can go to the card and INITA never clears.

ACMD23 ac — R1 SET_WR_BLK_ERASE_
COUNT

—

ACMD41 bcr [31:0] OCR R3 SD_APP_OP_COND Asks the accessed card to send its 
operating condition register (OCR) 
content in the response on the 
SDHC_CMD line.

ACMD42 ac R1 SET_CLR_CARD_DETECT —

ACMD51 adtc [31:0] stuff bits R1 SEND_SCR Reads the SD Configuration Register 
(SCR)

1 Registers mentioned in this table are SD card registers.

Table 25-32. EXT_CSD Access Modes

Bits Access Name Operation

00 Command set The command set is changed according to the command set field of the argument

01 Set bits The bits in the pointed byte are set, according to the set bits in the value field.

10 Clear bits The bits in the pointed byte are cleared, according to the set bits in the value field.

11 Write byte The value field is written into the pointed byte.

Table 25-31. Commands for MMC/SD/SDIO (continued)

CMD 
INDEX

Type Argument Resp Abbreviation Description1
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25.5.6.2 Software Polling Procedure

When polling read or write, once the software begins a buffer read or write, it must access exactly the 
number of times as set in the watermark level register. Moreover, if the block size is not the value in 
watermark level register (read and write respectively), the software must access exactly the remaining 
number of words at the end of each block.

For example, for a read operation, if the RD_WML is 4, indicating the watermark level is 16 bytes, block 
size is 40 bytes, and the block number is 2, then the access times for the burst sequence in the whole 
transfer process must be 4, 4, 2, 4, 4, 2.

25.5.6.3 Suspend Operation

To suspend the data transfer, the software must inform the eSDHC that the suspend command is 
successfully accepted. To achieve this, after the suspend command is accepted by the SDIO card, software 
must send another normal command marked as suspend command (XFERTYP[CMDTYP] = 01) to 
inform the eSDHC that the transfer is suspended.

If software must resume the suspended transfer, it should read the value in BLKCNT to save the remaining 
number of blocks before sending the normal command marked as suspend. Otherwise, on sending the 
suspend command, the eSDHC regards the current transfer as aborted and changes BLKCNT to its original 
value, instead of keeping the remained number of blocks.

25.5.6.4 Data Length Setting

For an ADMA (ADMA1 or ADMA2) transfer, the data in the data buffer must be word aligned. So, the 
data length set in the descriptor must be a multiple of 4.

25.5.6.5 DMA Address Setting

To configure ADMA/DMA address register, when TC bit is set, the register always updates itself with the 
internal address value to support dynamic address synchronization. Software must ensure TC bit is cleared 
prior to configuring the ADMA/DMA address register.

25.5.6.6 Data Port Access

The data port does not support parallel access. For example, during an external DMA access, it is not 
allowed to write any data to the data port by CPU. During a CPU read operation, it is also prohibited to 
write any data to the data port, by either CPU or external DMA. Otherwise, the data is corrupted inside the 
eSDHC buffer.

25.5.6.7 Change Clock Frequency

The eSDHC does not automatically gate off the card clock when the host driver changes the clock 
frequency. To remove a possible glitch on the card clock, clear SYSCTL[SDCLKEN] when changing the 
clock divisor value, and set SDCLKEN after PRSSTAT[SDSTB] sets.
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Chapter 26  
Cryptographic Acceleration Unit (CAU)

26.1 Introduction
The cryptographic acceleration unit (CAU) is a ColdFire coprocessor implementing a set of specialized 
operations in hardware to increase the throughput of software-based encryption and hashing functions.

26.1.1 Block Diagram

Figure 26-1 shows a simplified block diagram of the CAU.

Figure 26-1. Top Level CAU Block Diagram

26.1.2 Overview

The CAU supports acceleration of the following algorithms:

• DES

• 3DES

• AES

• MD5

ALU
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• SHA-1

• SHA-256

This selection of algorithms provides excellent support for network security standards (SSL, IPsec). 
Additionally, using the CAU efficiently permits the implementation of any higher level functions or modes 
of operation (HMAC, CBC, etc.) based on the supported algorithm.

The CAU is an instruction-level ColdFire coprocessor. The cryptographic algorithms are implemented 
partially in software with only functions critical to increasing performance implemented in hardware. The 
ColdFire coprocessor allows for efficient, fine-grained partitioning of functions between hardware and 
software. 

• Implement the innermost round functions by using the coprocessor instructions

• Implement higher-level functions in software by using the standard ColdFire instructions

This partitioning of functions is key to minimizing size of the CAU while maintaining a high level of 
throughput. Using software for some functions also simplifies the CAU design. The CAU implements a 
set of 22 coprocessor commands that operate on a register file of eight 32-bit registers. It is tightly coupled 
to the ColdFire core and there is no local memory or external interface.

26.1.3 Features

The CAU includes these distinctive features:

• Supports DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms

• Simple, flexible programming model

26.2 Memory Map/Register Definition
The CAU only supports longword operations and register accesses. All registers support read, write, and 
ALU operations. However, only bits 1–0 of the CASR are writable. Bits 31–2 of the CASR must be written 
as 0 for compatibility with future versions of the CAU.

Table 26-1. CAU Memory Map

Code Register

D
E

S

A
E

S

S
H

A
-1

S
H

A
-2

56

M
D

5

Access Reset Value Section/Page

0 CAU status register (CASR) — — — — — R/W 0x2000_0000 26.2.1/26-3

1 CAU accumulator (CAA) — — T T a R 0x0000_0000 26.2.2/26-4

2 General purpose register 0 (CA0) C W0 A A — R 0x0000_0000 26.2.3/26-4

3 General purpose register 1 (CA1) D W1 B B b R 0x0000_0000 26.2.3/26-4

4 General purpose register 2 (CA2) L W2 C C c R 0x0000_0000 26.2.3/26-4

5 General purpose register 3 (CA3) R W3 D D d R 0x0000_0000 26.2.3/26-4

6 General purpose register 4 (CA4) — — E E — R 0x0000_0000 26.2.3/26-4

7 General purpose register 5 (CA5) — — W F — R 0x0000_0000 26.2.3/26-4
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26.2.1 CAU Status Register (CASR)

CASR contains the status and configuration for the CAU.

8 General purpose register 6 (CA6) — — — G — R 0x0000_0000 26.2.3/26-4

9 General purpose register 7 (CA7) — — — H — R 0x0000_0000 26.2.3/26-4

10 General purpose register 8 (CA8) — — — W/T1 — R 0x0000_0000 26.2.3/26-4

Register
code:

0x0 (CASR) Access: Read/write
via CAU commands

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R VER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DPE IC

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-2. CAU Status Register (CASR)

Table 26-2. CASR Field Descriptions

Field Description

31–28
VER

CAU version. Indicates CAU version
0x1 Initial CAU version
0x2 Second version, added support for SHA-256 algorithm (This is the value on this device)

27–2 Reserved, must be cleared.

1
DPE

DES parity error.
0 No error detected
1 DES key parity error detected

0
IC

Illegal command. Indicates an illegal instruction not found in Section 26.3.3, “CAU Commands,” has been executed.
0 No illegal commands issued
1 Illegal coprocessor command issued

Table 26-1. CAU Memory Map (continued)

Code Register

D
E

S

A
E

S

S
H
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H
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56

M
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Access Reset Value Section/Page
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26.2.2 CAU Accumulator (CAA)

CAU commands use the CAU accumulator for storage of results and as an operand for the cryptographic 
algorithms.

26.2.3 CAU General Purpose Registers (CAn)

The nine CAU general purpose registers are used in the CAU commands for storage of results and as 
operands for the various cryptographic algorithms.

26.3 Functional Description

26.3.1 Programming Model

The CAU is an instruction-level coprocessor. It has a dedicated register file, a specialized ALU, and 
specialized units for performing cryptographic operations. The CAU design uses a simple, flexible 

Register
code:

0x1 (CAA) Access: Read/write
via CAU commands

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ACC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-3. CAU Accumulator Register (CAA)

Table 26-3. CAA Field Descriptions

Field Description

31–0
ACC

Accumulator. Stores results of various CAU commands.

Register
code:

0x2 (CA0)
0x3 (CA1)
0x4 (CA2)
0x5 (CA3)
0x6 (CA4)
0x7 (CA5)

0x8 (CA6)
0x9 (CA7)
0xA (CA8)

Access: Read/write
via CAU commands

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CAn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-4. CAU General Purpose Registers (CAn)

Table 26-4. CAn Field Descriptions

Field Description

31–0
CAn

General purpose registers. Used by the CAU commands. Some cryptographic operations work with specific 
registers.
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accumulator-based architecture. Most commands, including load and store, can specify any register in the 
register file. Some cryptographic operations work with specific registers.

26.3.2 Coprocessor Instructions

Operation of the CAU is controlled via standard ColdFire coprocessor load (cp0ld) and store (cp0st) 
instructions. The CAU has a dedicated register file accessed using these instructions. The load instruction 
loads CAU registers and specifies CAU operations. The store instruction stores CAU registers. The 
example assembler syntax for the CAU is:

cp0ld.l <ea>,<CMD> ; coprocessor load
cp0st.l <ea>,<CMD> ; coprocessor store

The <ea> field specifies the source operand (operand1) for load instructions and destination (result) for 
store instructions. The basic ColdFire addressing modes {Rn, (An), -(An), (An)+, (d16,An)} are supported 
for this field. The <CMD> field is a 9-bit value that specifies the CAU command for an instruction. 
Table 26-5 shows how the CAU supports a single command (STR) for store instructions and 21 commands 
for the load instructions. The CAU only supports longword operations. A CAU command can be issued 
every clock cycle.

26.3.3 CAU Commands

The CAU supports the commands shown in Table 26-5. All other encodings are reserved. The CASR[IC] 
bit is set if an undefined command is issued. A specific illegal command (ILL) is defined to allow software 
self-checking. Reserved commands should not be issued to ensure compatibility with future 
implementations.

The CMD field specifies the CAU command for the instruction.

Table 26-5. CAU Commands

Inst Type
Command

Name
Description

CMD
Operation

8 7 6 5 4 3 2 1 0

cp0ld CNOP No Operation 0x000 —

cp0ld LDR Load Reg 0x01 CAx Op1  CAx

cp0st STR Store Reg 0x02 CAx CAx  Result

cp0ld ADR Add 0x03 CAx CAx + Op1  CAx

cp0ld RADR Reverse and Add 0x04 CAx CAx + ByteRev(Op1)  CAx

cp0ld ADRA Add Reg to Acc 0x05 CAx CAx + CAA  CAA

cp0ld XOR Exclusive Or 0x06 CAx CAx ^ Op1  CAx

cp0ld ROTL Rotate Left 0x07 CAx CAx <<< Op1  CAx

cp0ld MVRA Move Reg to Acc 0x08 CAx CAx  CAA

cp0ld MVAR Move Acc to Reg 0x09 CAx CAA  CAx

cp0ld AESS AES Sub Bytes 0x0A CAx SubBytes(CAx)  CAx
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Section 26.4.2, “Assembler Equate Values,” contains a set of assembly constants used in the command 
descriptions here. If supported by the assembler, macros can also be created for each instruction. The value 
CAx should be interpreted as any CAU register (CASR, CAA, CAn) and the <ea> field as one of the 
supported ColdFire addressing modes {Rn, (An), -(An), (An)+, (d16,An)}. For example, the instruction to 
add the value from the core register D1 to the CAU register CA0 is: 

cp0ld.l         %d1,#ADR+CA0        ; CA0=CA0+d1

26.3.3.1 Coprocessor No Operation (CNOP)
cp0ld.l   #CNOP

The CNOP command is the coprocessor no-op defined by the ColdFire coprocessor definition for 
synchronization. It is not actually issued to the coprocessor from the core.

26.3.3.2 Load Register (LDR)
cp0ld.l   <ea>,#LDR+CAx

The LDR command loads CAx with the source data specified by <ea>.

cp0ld AESIS AES Inv Sub Bytes 0x0B CAx InvSubBytes(CAx)  CAx

cp0ld AESC AES Column Op 0x0C CAx MixColumns(CAx)^Op1 CAx

cp0ld AESIC AES Inv Column Op 0x0D CAx InvMixColumns(CAx^Op1)  CAx

cp0ld AESR AES Shift Rows 0x0E0 ShiftRows(CA0-CA3)  CA0-CA3

cp0ld AESIR AES Inv Shift Rows 0x0F0 InvShiftRows(CA0-CA3) 
CA0-CA3

cp0ld DESR DES Round 0x10 IP FP KS[1:0] DES Round(CA0-CA3)CA0-CA3

cp0ld DESK DES Key Setup 0x11 0 0 CP DC DES Key Op(CA0-CA1)CA0-CA1
Key Parity Error & CP  CASR[1]

cp0ld HASH Hash Function 0x12 0 HF[2:0] Hash Func(CA1-CA3)+CAACAA

cp0ld SHS Secure Hash Shift 0x130 CAA <<< 5 CAA,
CAACA0, CA0CA1,

CA1 <<< 30  CA2,
CA2CA3, CA3CA4

cp0ld MDS Message Digest Shift 0x140 CA3CAA, CAACA1, 
CA1CA2, CA2CA3,

cp0ld SHS2 Secure Hash Shift 2 0x150 CAACA0, CA0CA1,
CA1  CA2, CA2CA3,

CA3 + CA8 CA4,
CA4  CA5, CA5  CA6,

CA6  CA7

cp0ld ILL Illegal Command 0x1F0 0x1CASR[0]

Table 26-5. CAU Commands (continued)

Inst Type
Command

Name
Description

CMD
Operation

8 7 6 5 4 3 2 1 0



Cryptographic Acceleration Unit (CAU)

NXP Semiconductors 26-7

26.3.3.3 Store Register (STR)
cp0st.l   <ea>,#STR+CAx

The STR command stores the value from CAx to the destination specified by <ea>.

26.3.3.4 Add to Register (ADR)
cp0ld.l   <ea>,#ADR+CAx

The ADR command adds the source operand specified by <ea> to CAx and stores the result in CAx.

26.3.3.5 Reverse and Add to Register (RADR)
cp0ld.l   <ea>,#RADR+CAx

The RADR command performs a byte reverse on the source operand specified by <ea>, adds that value to 
CAx, and stores the result in CAx. Table 26-6 shows an example.

26.3.3.6 Add Register to Accumulator (ADRA)
cp0ld.l   #ADRA+CAx

The ADRA command adds CAx to CAA and stores the result in CAA.

26.3.3.7 Exclusive Or (XOR)
cp0ld.l   <ea>,#XOR+CAx

The XOR command performs an exclusive-or of the source operand specified by <ea> with CAx and stores 
the result in CAx.

26.3.3.8 Rotate Left (ROTL)
cp0ld.l   <ea>,#ROTL+CAx

ROTL rotates the CAx bits to the left with the result stored back to CAx. The number of bits to rotate is the 
value specified by <ea> modulo 32.

26.3.3.9 Move Register to Accumulator (MVRA)
cp0ld.l   #MVRA+CAx

The MVRA command moves the value from the source register CAx to the destination register CAA.

26.3.3.10 Move Accumulator to Register (MVAR)
cp0ld.l   #MVAR+CAx

Table 26-6. RADR Command Example

Operand CAx Before CAx After

0x0102_0304 0xA0B0_C0D0 0xA4B3_C2D1
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The MVAR command moves the value from source register CAA to the destination register CAx.

26.3.3.11 AES Substitution (AESS)
cp0ld.l   #AESS+CAx

The AESS command performs the AES byte substitution operation on CAx and stores the result back to 
CAx.

26.3.3.12 AES Inverse Substitution (AESIS)
cp0ld.l   #AESIS+CAx

The AESIS command performs the AES inverse byte substitution operation on CAx and stores the result 
back to CAx.

26.3.3.13 AES Column Operation (AESC)
cp0ld.l   <ea>,#AESC+CAx

The AESC command performs the AES column operation on the contents of CAx then performs an 
exclusive-or of that result with the source operand specified by <ea> and stores the result in CAx.

26.3.3.14 AES Inverse Column Operation (AESIC)
cp0ld.l   <ea>,#AESIC+CAx

The AESIC command performs an exclusive-or operation of the source operand specified by <ea> on the 
contents of CAx followed by the AES inverse mix column operation on that result and stores the result 
back in CAx.

26.3.3.15 AES Shift Rows (AESR)
cp0ld.l   #AESR

The AESR command performs the AES shift rows operation on registers CA0, CA1, CA2, and CA3. 
Table 26-7 shows an example.

26.3.3.16 AES Inverse Shift Rows (AESIR)
cp0ld.l   #AESIR

Table 26-7. AESR Command Example

Register Before After

CA0 0x0102_0304 0x0106_0B00

CA1 0x0506_0708 0x050A_0F04

CA2 0x090A_0B0C 0x090E_0308

CA3 0x0D0E_0F00 0x0D02_070C
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The AESIR command performs the AES inverse shift rows operation on registers CA0, CA1, CA2 and 
CA3. Table 26-8 has an example.

26.3.3.17 DES Round (DESR)
cp0ld.l   #DESR+{IP}+{FP}+{KSx}

The DESR command performs a round of the DES algorithm and a key schedule update with the following 
source and destination designations: CA0=C, CA1=D, CA2=L, CA3=R. If the IP bit is set, DES initial 
permutation performs on CA2 and CA3 before the round operation. If the FP bit is set, DES final 
permutation (inverse initial permutation) performs on CA2 and CA3 after the round operation. The round 
operation uses the source values from registers CA0 and CA1 for the key addition operation. The KSx field 
specifies the shift for the key schedule operation to update the values in CA0 and CA1. Table 26-9 defines 
the specific shift function performed based on the KSx field.

26.3.3.18 DES Key Setup (DESK)
cp0ld.l   #DESK+{CP}+{DC}

The DESK command performs the initial key transformation (permuted choice 1) defined by the DES 
algorithm on CA0 and CA1 with CA0 containing bits 1–32 of the key and CA1 containing bits 33–64 of 
the key1. If the DC bit is set, no shift operation performs and the values C0 and D0 store back to CA0 and 
CA1 respectively. The DC bit should be set for decrypt operations. If the DC bit is not set, a left shift by 
one also occurs and the values C1 and D1 store back to CA0 and CA1 respectively. The DC bit should be 
cleared for encrypt operations. If the CP bit is set and a key parity error is detected, CASR[DPE] bit is set; 
otherwise, it is cleared.

Table 26-8. AESIR Command Example

Register Before After

CA0 01060B00 01020304

CA1 050A0F04 05060708

CA2 090E0308 090A0B0C

CA3 0D02070C 0D0E0F00

Table 26-9. Key Shift Function Codes

KSx 
Code

KSx
Define

Shift Function

0 KSL1 Left 1

1 KSL2 Left 2

2 KSR1 Right 1

3 KSR2 Right 2

1.The DES algorithm numbers the most significant bit of a block as bit 1 and the least significant as bit 64. 
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26.3.3.19 Hash Function (HASH)
cp0ld.l   #HASH+HFx

The HASH command performs a hashing operation on a set of registers and adds that result to the value in 
CAA and stores the result in CAA. The specific hash function performed is based on the HFx field as 
defined in Table 26-10.

26.3.3.20 Secure Hash Shift (SHS)
cp0ld.l   #SHS

The SHS command does a set of parallel register-to-register move and shift operations for implementing 
SHA-1. The following source and destination assignments are made: CAA=CAA<<<5, CA0=CAA, 
CA1=CA0, CA2=CA1<<<30, CA3=CA2, CA4=CA3.

26.3.3.21 Message Digest Shift (MDS)
cp0ld.l   #MDS

The MDS command does a set of parallel register-to-register move operations for implementing MD5. The 
following source and destination assignments are made: CAA=CA3, CA1=CAA, CA2=CA1, CA3=CA2.

26.3.3.22 Secure Hash Shift 2 (SHS2)
cp0ld.l   #SHS2

The SHS2 command does an addition and a set of register to register moves in parallel for implementing 
SHA-256. The following source and destination assignments are made: CA0=CAA, CA1=CA0, 
CA2=CA1, CA3=CA2, CA4=CA3+CA8, CA5=CA4, CA6=CA5, CA7=CA6.

Table 26-10. Hash Function Codes

HFx 
Code

HFx
Define

Hash Function Hash Logic

0 HFF MD5 F() (CA1 & CA2) | (CA1 & CA3)

1 HFG MD5 G() (CA1 & CA3) | (CA2 & CA3)

2 HFH MD5 H(), SHA Parity() CA1 ^ CA2 ^ CA3

3 HFI MD5 I() CA2 ^ (CA1 | CA3)

4 HFC SHA Ch() (CA1 & CA2) ^ (CA1 & CA3)

5 HFM SHA Maj() (CA1 & CA2) ^ (CA1 & CA3) ^ (CA2 & CA3)

6 HF2C SHA-256 Ch() (CA4 & CA5) ^ (CA4 & CA6)

7 HF2M SHA-256 Maj() (CA0 & CA1) ^ (CA0 & CA2) ^ (CA1 & CA2)

8 HF2S SHA-256 Sigma 0 ROTR2(CA0) ^ ROTR13(CA0) ^ ROTR22(CA0)

9 HF2T SHA-256 Sigma 1 ROTR6(CA4) ^ ROTR11(CA4) ^ ROTR25(CA4)

A HF2U SHA-256 sigma 0 ROTR7(CA8) ^ ROTR18(CA8) ^ SHR3(CA8)

B HF2V SHA-256 sigma 1 ROTR17(CA8) ^ ROTR19(CA8) ^ SHR10(CA8)
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26.3.3.23 Illegal Command (ILL)
cp0ld.l   #ILL

The ILL command is a specific illegal command that sets CASR[IC]. All other illegal commands are 
reserved for use in future implementations.

26.4 Application/Initialization Information 

26.4.1 Code Example

A code fragment is shown below as an example of how the CAU is used. This example shows the round 
function of the AES algorithm. Core register A0 is pointing to the key schedule.

cp0ld.l   #AESS+CA0         ; sub bytes w0
cp0ld.l   #AESS+CA1         ; sub bytes w1
cp0ld.l   #AESS+CA2         ; sub bytes w2
cp0ld.l   #AESS+CA3         ; sub bytes w3
cp0ld.l   #AESR             ; shift rows
cp0ld.l   (%a0)+,#AESC+CA0  ; mix col, add key w0
cp0ld.l   (%a0)+,#AESC+CA1  ; mix col, add key w1
cp0ld.l   (%a0)+,#AESC+CA2  ; mix col, add key w2
cp0ld.l   (%a0)+,#AESC+CA3  ; mix col, add key w3

26.4.2 Assembler Equate Values

The following equates ease programming of the CAU.
; CAU Registers (CAx)

.set CASR,0x0

.set CAA,0x1

.set CA0,0x2

.set CA1,0x3

.set CA2,0x4

.set CA3,0x5

.set CA4,0x6

.set CA5,0x7

.set CA6,0x8

.set CA7,0x9

.set CA8,0xA

; CAU Commands
.set CNOP,0x000
.set LDR,0x010
.set STR,0x020
.set ADR,0x030
.set RADR,0x040
.set ADRA,0x050
.set XOR,0x060
.set ROTL,0x070
.set MVRA,0x080
.set MVAR,0x090
.set AESS,0x0A0
.set AESIS,0x0B0
.set AESC,0x0C0
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.set AESIC,0x0D0

.set AESR,0x0E0

.set AESIR,0x0F0

.set DESR,0x100

.set DESK,0x110

.set HASH,0x120

.set SHS,0x130

.set MDS,0x140

.set SHS2,0x150

.set ILL,0x1F0

; DESR  Fields
.set IP,0x08 ; initial permutation
.set FP,0x04 ; final permutation
.set KSL1,0x00 ; key schedule left 1 bit
.set KSL2,0x01 ; key schedule left 2 bits
.set KSR1,0x02 ; key schedule right 1 bit
.set KSR2,0x03 ; key schedule right 2 bits

; DESK Field
.set DC,0x01 ; decrypt key schedule
.set CP,0x02 ; check parity

; HASH Functions Codes
.set HFF,0x0 ; MD5 F() CA1&CA2 | ~CA1&CA3
.set HFG,0x1 ; MD5 G() CA1&CA3 | CA2&~CA3
.set HFH,0x2 ; MD5 H(), SHA Parity() CA1^CA2^CA3
.set HFI,0x3 ; MD5 I()  CA2^(CA1|~CA3)
.set HFC,0x4 ; SHA Ch() CA1&CA2 ^ ~CA1&CA3
.set HFM,0x5 ; SHA Maj() CA1&CA2 ^ CA1&CA3 ^ CA2&CA3
.set HF2C,0x6 ; SHA-256 Ch() CA4&CA5 ^ ~CA4&CA6
.set HF2M,0x7 ; SHA-256 Maj() CA0&CA1 ^ CA0&CA2 ^ CA1&CA2
.set HF2S,0x8 ; SHA-256 Sigma 0 ROTR2(CA0)^ROTR13(CA0)^ROTR22(CA0)
.set HF2T,0x9 ; SHA-256 Sigma 1 ROTR6(CA4)^ROTR11(CA4)^ROTR25(CA4)
.set HF2U,0xA ; SHA-256 sigma 0 ROTR7(CA8)^ROTR18(CA8)^SHR3(CA8)
.set HF2V,0xB ; SHA-256 sigma 1 ROTR17(CA8)^ROTR19(CA8)^SHR10(CA8)
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Chapter 27  
Random Number Generator (RNG)

27.1 Introduction
This chapter describes the random number generator (RNG), including a programming model, functional 
description, and application information.

NOTE
The MCF54410, MCF54415, and MCF54417 do not contain cryptography 
modules. Refer to Table 1-1for details on device configurations.

27.1.1 Block Diagram

Figure 27-1 shows the RNG’s three main blocks: PRNG, TRNG, and XSEED generator. Section 27.4, 
“Functional Description,” describes these blocks in more detail.

Figure 27-1. RNG Block Diagram

27.1.2 Overview

The purpose of the RNG is to generate cryptographically strong random data. It uses a true random number 
generator (TRNG) and a pseudo-random number generator (PRNG) to achieve true randomness and 
cryptographic strength. The RNG generates random numbers for secret keys, per message secrets, random 
challenges, and other similar quantities used in cryptographic algorithms.

XSEED
Generator

PRNG

Internal Bus Interface

Internal Bus

Random Number Generator
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Registers &

FSM SIM
Reseed



Random Number Generator (RNG)

27-2 NXP Semiconductors

27.1.3 Features

The RNG includes these distinctive features:

• National Institute of Standards and Technology (NIST)-approved pseudo-random number 
generator

— http://csrc.nist.gov

• Supports the key generation algorithm defined in the Digital Signature Standard

— http://www.itl.nist.gov/fipspubs/fip186.htm

• Integrated entropy sources capable of providing the PRNG with entropy for its seed.

27.2 Modes of Operation
The RNG operates in the following modes.

27.2.1 Self Test Mode

In this mode the RNG performs a self test of the statistical counters and the PRNG algorithm to verify that 
the hardware is functioning properly. The self test takes ~29,000 cycles to complete. When self test 
completes an interrupt may be generated, if there are no outstanding commands in the command register. 
This mode is entered by setting the RNGCMD[ST] bit. When self test mode completes, the RNG remains 
idle until seed mode is requested or the RNG transitions to seed mode if automatic seeding is enabled.

27.2.2 Seed Generation Mode

During seed generation, the RNG adds entropy generated in the TRNG to the 256-bit XKEY register. The 
PRNG algorithm executes 20,000 times sampling the entropy from the TRNG to create an initial seed for 
random number generation. At the same time, the TRNG runs simple statistical tests on its output.

When seed generation is complete, the TRNG reports the pass/fail result of the tests through RNGESR. If 
the new seed passes the statistical tests, RNGSR[SDN] is set, signalling that the RNG is ready to compute 
secure pseudo-random data. The RNG then transitions to random number generation mode.

27.2.3 Random Number Generation Mode

When seed generation mode completes and the output FIFO is empty, the RNG enters this mode 
automatically. Random number generation mode quickly creates computationally random data that is 
derived by the initial seed produced in seed generation mode.

During random number generation, a new 160-bit random number is generated whenever the five word 
output FIFO is empty. When the output FIFO contains data, the RNG automatically enters sleep mode, 
waiting for the data to be read. When the data is read, the RNG generates a new 160-bit word and goes 
back to sleep.

After generating 220 words of random data, the RNG lets the user know that it requires reseeding through 
RNGSR and continues to generate random data until it is directed to reseed. However, if auto-seeding is 
selected, the RNG automatically completes seeding whenever it is needed.

http://csrc.nist.gov/
http://www.itl.nist.gov/fipspubs/fip186.htm
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27.3 Memory Map/Register Definition
Table 27-1 shows the address map for the RNG module. Detailed register descriptions are found in the 
following section.

27.3.1 RNG Version ID Register (RNGVER)

The read-only RNGVER register contains the current version of the RNG. It consists of the RNG type and 
major and minor revision numbers.

Table 27-1. RNG Block Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xFC0C_4000 RNG Version ID Register (RNGVER) 32 R/W 0x1000_0280 27.3.1/27-3

0xFC0C_4004 RNG Command Register (RNGCMD) 32 R/W 0x0000_0000 27.3.2/27-4

0xFC0C_4008 RNG Control Register (RNGCR) 32 R/W 0x0000_0000 27.3.3/27-5

0xFC0C_400C RNG Status Register (RNGSR) 32 R 0x0000_500D 27.3.4/27-6

0xFC0C_4010 RNG Error Status Register (RNGESR) 32 R 0x0000_0000 27.3.5/27-7

0xFC0C_4014 RNG Output FIFO (RNGOUT) 32 R 0x0000_0000 27.3.6/27-8

0xFC0C_4018 RNG Entropy Register (RNGER) 32 W 0x0000_0000 27.3.7/27-8

Address: 0xFC0C_4000 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TYPE 0 0 0 0 0 0 0 0 0 0 0 0 MAJOR MINOR

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

Figure 27-2. RNG Version Register (RNGVER)

Table 27-2. RNGVER Field Descriptions

Field Description

31–28
TYPE

Random number generator type.
0000 RNGA
0001 RNGB (This is the type used in this module)
0010 RNGC
Else Reserved

27–16 Reserved, must be cleared.

15–8
MAJOR

Major version number. This field is always set to 0x02.

7–0
MINOR

Minor version number. Subject to change.



Random Number Generator (RNG)

27-4 NXP Semiconductors

27.3.2 RNG Command Register (RNGCMD)

RNGCMD controls the RNG’s operating modes and interrupt status.

Address: 0xFC0C_4004 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GS ST

W SR CE CI

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-3. RNG Command Register (RNGCMD)

Table 27-3. RNGCMD Field Descriptions

Field Description

31–7 Reserved, must be cleared.

6
SR

Software reset. Performs a software reset of the RNG. This bit is self-clearing.
0 Do not perform a software reset
1 Software reset

5
CE

Clear error. Clears the errors in the RNGESR register and the RNG interrupt. This bit is self-clearing.
0 Do not clear errors and interrupt
1 Clear errors and interrupt

4
CI

Clear interrupt. Clears the RNG interrupt if an error is not present. This bit is self-clearing.
0 Do not clear interrupt
1 Clear interrupt

3–2 Reserved, must be cleared.

1
GS

Generate seed. Initiates the seed generation process described in Section 27.2.2, “Seed Generation Mode”. Seed 
generation starts
 • When RNGSR[BUSY] is cleared
 • If set simultaneously with ST, after self-test
When the seed generation process completes, this bit automatically clears and an interrupt may be generated if all 
requested operations are complete.
0 Not in seed generation mode
1 Generate seed mode

0
ST

Self test. Initiates a self test of the RNG’s internal logic, described in Section 27.2.1, “Self Test Mode”. The self-test 
starts 
 • When RNGSR[BUSY] is cleared, or
 • If set simultaneously with GS, self test takes precedence and is completed first.
When self test completes, this bit automatically clears and an interrupt may be generated if all requested operations 
are complete.
0 Not in self test mode
1 Self test mode
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27.3.3 RNG Control Register (RNGCR)

Through use of this register, the RNG can be programmed to provide slightly different functionality based 
on its desired use.

Address: 0xFC0C_4008 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MSK
ERR

MSK
DN

AS
0 0 FUF

MODW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-4. RNG Control Register (RNGCR)

Table 27-4. RNGCR Field Descriptions

Field Description

31–7 Reserved, must be cleared.

7 Reserved, must be cleared.

6
MSKERR

Mask error interrupt. Masks interrupts generated by errors in the RNG. These errors can still be viewed in RNGESR.
0 No mask applied
1 Mask applied to the error interrupt

5
MSKDN

Mask done interrupt. Masks interrupts generated upon completion of seed and self test modes. The status of these 
jobs can be viewed by:
 • Reading RNGSR and viewing the seed done and self test done bits (RNGSR[SDN, STDN])
 • Viewing RNGCMD for generate seed or self test bits (RNGCMD[GS,ST]) being set, indicating that the operation 

is still taking place.
0 No mask applied
1 Mask applied

4
AR

Auto-reseed. Setting this bit allows the RNG to automatically generate a new seed whenever one is needed. This 
allows software to never use the RNGCMD[GS], although it is still possible. A new seed is needed whenever the 
RNGSR[RS] is set.
0 Do not enable automatic reseeding
1 Enable automatic reseeding

3–2 Reserved, must be cleared.

1–0
FUFMOD

FIFO underflow response mode. Controls the RNG’s response to a FIFO underflow condition.
00 Return all zeros and set RNGESR[FUF]
01 Generate bus transfer wait until data is available, then return generated word
10 Generate bus transfer error. See Chapter 13, "System Control Module (SCM)", for more details.
11 Generate interrupt and return all zeros. (Overrides RNGCR[MSKERR].)
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27.3.4 RNG Status Register (RNGSR)

The RNGSR is a read-only register which reflects the internal status of the RNG.

.

Address: 0xFC0C_400C Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R STATPF SELFPF 0 0 0 0 0 ERR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FS FL 0 NSDN SDN STDN RS SLP BUSY 1

W

Reset 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1

Figure 27-5. RNG Status Register (RNGSR)

Table 27-5. RNGSR Field Descriptions

Field Description

31–24
STATPF

Statistics test pass fail. Indicates pass or fail status of the various statistics tests on the last seed generated. 
 • Bit 31 - Long run test (>34)
 • Bit 30 - Length 6+ run test
 • Bit 29 - Length 5 run test
 • Bit 28 - Length 4 run test
 • Bit 27 - Length 3 run test
 • Bit 26 - Length 2 run test
 • Bit 25 - Length 1 run test
 • Bit 24 - Monobit test
0 Pass
1 Fail

23–22
SELFPF

Self Test Pass Fail. Indicates Pass or Fail status of the TRNG and PRNG Self Tests, 1 indicates failure, 0 pass.
 • Bit 23 - TRNG self test pass/fail
 • Bit 22 - PRNG self test pass/fail
0 Pass
1 Fail

21–17 Reserved, must be cleared.

16
ERR

Error. Indicates an error was detected in the RNG. Read the RNGESR register for details.
0 No error
1 Error detected

15–12
FS

FIFO size. Size of the FIFO, and maximum possible FIFO level. This value is set to five.

11–8
FL

FIFO level. Indicates the number of random words currently in the output FIFO.

6
NSDN

New seed done. Indicates that a new seed is ready for use during the next seed generation process.

5
SDN

Seed done. Indicates the RNG has generated the first seed.
0 Seed generation process not complete
1 Completed seed generation since the last reset
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27.3.5 RNG Error Status Register (RNGESR)

4
STDN

Self test done. Indicates the self test is complete. This bit is cleared by hardware reset or a new self test is initiated 
by setting RNGCMD[ST].
0 Self test not complete
1 Completed a self test since the last reset

3
RS

Reseed needed. Indicates the RNG needs to be reseeded. This is done by setting RNGCMD[GS], or automatically 
if RNGCR[AR] is set.
0 RNG does not need to be reseeded
1 RNG needs to be reseeded

2
SLP

Sleep. Indicates if the RNG is in sleep mode. When set, the RNG is in sleep mode and all internal clocks are disabled. 
While in this mode, access to the FIFO is allowed. Once the FIFO is empty, the RNG fills the FIFO and then enters 
sleep mode again.
0 RNG is not in sleep mode
1 RNG is in sleep mode

1
BUSY

Busy. Reflects the current state of RNG. If RNG is currently seeding, generating the next seed, creating a new 
random number, or performing a self test, this bit is set.
0 Not busy
1 Busy

0 Reserved, must be set.

Address: 0xFC0C_4010 Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FUF SATE STE OSCE LFE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-6. RNG Error Status Register (RNGESR)

Table 27-6. RNGESR Field Descriptions

Field Description

31–5 Reserved, must be cleared.

4
FUF

FIFO underflow error. Indicates the RNG has experienced a FIFO underflow condition resulting in the last random 
data read being unreliable. This bit can be masked by RNGCR[FUFMOD] and is cleared by hard or soft reset or by 
setting RNGCMD[CE].
1 FIFO underflow has occurred
0 FIFO underflow has not occurred

3
SATE

Statistical test error. Indicates if RNG has failed the statistical tests for the last generated seed. This bit is sticky and 
is cleared by a hardware or software reset, setting RNGCMD[CE].
1 RNG has failed the statistical tests during initialization
0 RNG has not failed the statistical tests

2
STE

Self test error. Indicates the RNG has failed the most recent self test. This bit is sticky and can only be reset by a 
software or hardware reset.
0 RNG has not failed self test
1 RNG has failed self test

Table 27-5. RNGSR Field Descriptions (continued)

Field Description
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27.3.6 RNG Output FIFO (RNGOUT)

The RNGOUT provides temporary storage for random data generated by the RNG. This allows the user 
to read multiple random longwords back-to-back. A read of this address when the FIFO is not empty, 
returns 32 bits of random data. If the FIFO is read when empty, a FIFO underrun response is returned 
according to RNGCR[FUFMOD]. For optimal system performance, poll RNGSR[FL] to ensure random 
values are present before reading the FIFO.

27.3.7 RNG Entropy Register (RNGER)

The RNGER is a write-only register which allows the user to insert entropy into the RNG. When written 
this register causes an addition of the write data to the XKEY within the RNG. If the system has a means 
to collect quality entropy (user key strokes or other random patterns), this is the way to add it directly into 
the accumulated entropy within the RNG. Writing the RNGER does not have a detrimental effect on the 
quality of random numbers as the number written is added to the state, not used to replace the existing state. 
Writing all zeros to the entropy register does nothing to the quality of random numbers generated.

NOTE
This register can only be written when the RNG is not busy 
(RNGSR[BUSY] = 0).

1
OSCE

Oscillator error. Indicates the oscillator in the RNG may be broken. This bit is sticky and can only be cleared by a 
software or hardware reset.
0 RNG oscillator is working properly
1 Problem detected with the RNG oscillator

0
LFE

Linear feedback shift register (LFSR) error. When this bit is set, the interrupt generated was caused by a failure of 
one of the LFSRs in one of the RNG’s three entropy sources. This bit is sticky and can only be reset via a hardware 
reset.
0 LFSRs are working properly
1 LFSR failure has occurred

Address: 0xFC0C_4014 Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Random Output

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-7.  RNG Output FIFO (RNGOUT)

Address: 0xFC0C_4018 Access: User write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W ENT

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-8. RNG Entropy Register (RNGER)

Table 27-6. RNGESR Field Descriptions (continued)

Field Description
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27.4 Functional Description
The RNG performs two functional operations, as described in Section 27.2, “Modes of Operation”: seed 
generation and random number generation. Theses operations are performed with cooperation from the 
two major functional blocks in the RNG described below.

27.4.1 Pseudorandom Number Generator (PRNG)

The PRNG implements the NIST-approved PRNG described in the Digital Signature Standard. The 
160-bit output of the SHA-1 block is the next five words of random data. The PRNG is designed to 
generate 220 words of random data before requiring reseeding, using the TRNG only during the 
seeding/initialization process. The initial seed takes approximately two million clock cycles. After this the 
RNG can generate five 32-bit words every 112 clock cycles. Reseeding takes place transparently through 
use of the simultaneous reseed LFSRs. The entropy stored in this 128-bit LFSR and 128-bit shift register 
is added directly into the XKEY structure via the RNG XSEED generator whenever reseeding is required.

27.4.2 True Random Number Generator (TRNG)

The TRNG is comprised of two entropy sources each providing a single bit of output. Concatenated 
together, these two output bits are expected to provide one bit of entropy every 100 clock cycles. In 
addition to generating entropy, the TRNG also performs several statistical tests on its output. The pass/fail 
status of these tests are reflected in RNGESR.

27.4.3 RNG Interrupts

There is a single RNG interrupt generated to the processor’s interrupt controller. The source of the interrupt 
is determined by reading the RNG status register. If an error is the cause of the interrupt, further 
information is available by reading the RNG error status register. The available sources are described in 
the following table.

Table 27-7. RNGER Field Descriptions

Field Description

31–0
ENT

Entropy input. This value is added directly to the internal state of the RNG thus modifying its internal
state and affecting future random numbers generated by the RNG.

Table 27-8. RNG Interrupt Sources

Sources Status Bit Field Mask Bit Field Description

Error RNGSR[ERR] RNGCR[MERR]
Error detected. See RNGESR for 
details.

LFSR RNGESR[LSFRE] RNGCR[MERR] Fault in one of the TRNG’s LFSRs

Oscillator RNGESR[OSCE] RNGCR[MERR]
TRNG ring oscillator may be 
malfunctioning

Self test RNGESR[STE] RNGCR[MERR] Self test failed
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27.5 Initialization/Application Information

27.5.1 Manual Seeding

The intended general operation of the RNG is as follows:

1. Reset/initialize.

2. Write to the RNG control register to setup the RNG for the desired functionality.

3. Write to RNGCMD to run self-test or seed generation.

4. Wait for interrupt to indicate completion of the requested operation(s).

5. Repeat steps 3–4 if seed generation is not complete.

6. Poll RNGSR for FIFO level.

7. Read available random data from output FIFO.

8. Repeat steps 6 and 7 as needed, until 220 words have been generated.

9. Write to RNGCMD to run seed mode.

10. Repeat steps 4–9.

27.5.2 Automatic Seeding

The intended general operation of the RNG with automatic seeding enabled is as follows:

1. Reset/initialize.

2. Write to the RNG control register to setup the RNG for automatic seeding and the desired 
functionality.

3. Wait for interrupt to indicate completion of first seed

4. Poll RNGSR for FIFO level.

5. Read available random data from output FIFO.

6. Repeat steps 4 and 5 as needed. Automatic seeding occurs when necessary and is transparent to 
operation.

Statistical test RNGESR[SATE] RNGCR[MERR]
Statistics test for last seed 
generation failed

FIFO Underflow RNGESR[FUF] RNGCR[MERR] FIFO read while empty

Seed generation done RNGSR[SDN] RNGCR[MSKDN] First seed was generated

Self test done RNGSR[STDN] RNGCR[MSKDN] Self test finished

Table 27-8. RNG Interrupt Sources (continued)

Sources Status Bit Field Mask Bit Field Description
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Chapter 28  
Subscriber Identification Module (SIM)

28.1 Introduction
The subscriber identification module (SIM) facilitates communication to SIM cards or Eurochip pre-paid 
phone cards. The SIM module has two ports that can be used to interface with the various cards.

28.1.1 Block Diagram

Figure 28-1. SIM Block Diagram

28.1.2 Features

The SIM contains the following features:

• Programmable clock divisor for SIM card clock generation

• Transmitter block with a transmit state machine, transmit shift register, and transmit FIFO

— 16-byte transmit FIFO

— Automatic NACK generation on parity and overrun errors

— Hardware data format support (inverse convention or direct convention)

— Retransmission of data upon SIM card NACK request with programmable maximum threshold 
of retransmissions

— Programmable guard time between transmitted bytes

• Receiver block with a receive state machine, receive FIFO, and control logic

— 32-byte receive FIFO

— Decoding of initial character mode for setting data format

— Hardware data format support (inverse convention or direct convention)

— NACK detection
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— 11 ETU character support

— Character wait time counter

• Supports numerous port control functions necessary for SIM card interaction

— SIM card presence detect with interrupt capability

— Deep sleep wake-up via SIM card presence detect interrupt

— Manual control of all SIM card interface signals

— Automatic power-down of port logic on SIM card presence detect

28.1.3 Modes of Operation

The SIM module I/O interface operates in one mode summarized below.

• Internal one wire interface. In this mode the TX pin is routed to the smart card. The RX signal is 
connected to the TX pin internal to the processor. The 3VOLT bit in the port control register is set 
and SIM_ODCR[ODPn] is set. For this interface to work properly the TX pin must be pulled high 
by a resistor. The value should be selected small enough to give a fast  rise time.

28.2 External Signal Description
See Table 28-1 for a summary of the SIM module signals.

28.3 Memory Map/Register Definition
Table 28-2 shows the SIM memory map.

Table 28-1. SIM Signal Descriptions

Signal I/O Description

SIM_CLK[1:0] O Clock for the smart card. Typical frequencies are 1–5 MHz. This clock is 372 times the data rate 
that is on SIM_DATA. There is no required timing relationship between this clock signal and any 
of the other data signals. This is because of the asynchronous nature of the protocol.

SIM_RST[1:0] O Reset signal.

SIM_VEN[1:0] O Power supply enable signal.

SIM_DATA[1:0] I/O Bidirectional transmit/receive data signal.

SIM_PD[1:0] I Card insertion detect signal.

Table 28-2. SIM Memory Map

Address Register Access Reset Value Section/Page

0xFC0A_C000 SIM port 1 control register (SIM_PCR1) R/W 0x0000_0000 28.3.1/28-4

0xFC0A_C004 SIM setup register (SIM_SETUP) R/W 0x0000_0000 28.3.2/28-5

0xFC0A_C008 SIM port 1 detect register (SIM_DETECT1) R/W 0x0000_---- 28.3.3/28-6

0xFC0A_C00C SIM port 1 transmit buffer register (SIM_TBUF1) R/W 0x0000_0000 28.3.4/28-7

0xFC0A_C010 SIM port 1 receive buffer register (SIM_RBUF1) R 0x0000_0000 28.3.5/28-7
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0xFC0A_C014 SIM port 0 control register (SIM_PCR0) R/W 0x0000_0000 28.3.1/28-4

0xFC0A_C018 SIM control register (SIM_CR) R/W 0x0000_0006 28.3.6/28-8

0xFC0A_C01C SIM clock prescaler register (SIM_PRE) R/W 0x0000_0002 28.3.7/28-10

0xFC0A_C020 SIM receive threshold register (SIM_RTHR) R/W 0x0000_0001 28.3.8/28-11

0xFC0A_C024 SIM enable register (SIM_EN) R/W 0x0000_0000 28.3.9/28-11

0xFC0A_C028 SIM transmit status register (SIM_TSR) R/W 0x0000_00B8 28.3.10/28-12

0xFC0A_C02C SIM receive status register (SIM_RSR) R/W 0x0000_0040 28.3.11/28-13

0xFC0A_C030 SIM interrupt mask register (SIM_IMR) R/W 0x0000_1FFF 28.3.12/28-15

0xFC0A_C034 SIM port0 transmit buffer register (SIM_TBUF0) R/W 0x0000_0000 28.3.4/28-7

0xFC0A_C038 SIM port0 receive buffer register (SIM_RBUF0) R 0x0000_0000 28.3.4/28-7

0xFC0A_C03C SIM port0 detect register (SIM_DETECT0) R/W 0x0000_---- 28.3.3/28-6

0xFC0A_C040 SIM data format register (SIM_FORMAT0) R/W 0x0000_0000 28.3.13/28-17

0xFC0A_C044 SIM transmit threshold register (SIM_TTHR) R/W 0x0000_0000 28.3.14/28-17

0xFC0A_C048 SIM transmit guard control register (SIM_TGCR) R/W 0x0000_0000 28.3.15/28-18

0xFC0A_C04C SIM open drain configuration control register (SIM_ODCR) R/W 0x0000_0000 28.3.16/28-19

0xFC0A_C050 SIM reset control register (SIM_RCR) R/W 0x0000_0000 28.3.17/28-19

0xFC0A_C054 SIM character wait time register (SIM_CWTR) R/W 0x0000_FFFF 28.3.18/28-20

0xFC0A_C058 SIM general purpose counter register (SIM_GPCNT) R/W 0x0000_FFFF 28.3.19/28-21

0xFC0A_C05C SIM divisor register (SIM_DIV) R/W 0x0000_00FF 28.3.20/28-21

0xFC0A_C060 SIM block wait time register (SIM_BWT) R/W 0x0000_FFFF 28.3.21/28-22

0xFC0A_C064 SIM block guard time register (SIM_BGT) R/W 0x0000_0000 28.3.22/28-22

0xFC0A_C068 SIM block wait time register high (SIM_BWTH) R/W 0x0000_FFFF 28.3.23/28-23

0xFC0A_C06C SIM transmit FIFO status register (SIM_TFSR) R 0x0000_0000 28.3.24/28-23

0xFC0A_C070 SIM receive FIFO counter register (SIM_RFCR) R 0x0000_0000 28.3.25/28-24

0xFC0A_C074 SIM receive FIFO write pointer register (SIM_RFWP) R 0x0000_0000 28.3.26/28-24

0xFC0A_C078 SIM receive FIFO read pointer register (SIM_RFRP) R 0x0000_0000 28.3.27/28-24

Table 28-2. SIM Memory Map (continued)

Address Register Access Reset Value Section/Page
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28.3.1 SIM Port Control Registers (SIM_PCRn)

Address: 0xFC0A_C000 (SIM_PCR1)
0xFC0A_C014 (SIM_PCR0)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0
3VOLT SCSP SCEN SRST STEN SVEN SAPD

W SFPD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-2. SIM Port 0–1 Control Registers (SIM_PCRn)

Table 28-3. SIM_PCRn Field Descriptions

Field Description

31–8 Reserved

7
SFPD

Force auto power-down. Starts the automatic power down sequence for the port. This bit will autoclear. 
Reading this bit returns a zero.
0 No effect
1 Start auto power-down

6
3VOLT

External one-wire interface.
0 Reserved
1 SIM_DATAn pin is bidirectional
Note: Since only one data pin is available on this device, this bit must be set.

5
SCSP

SIM card clock stop polarity. Controls the polarity of the idle SIM clock when the clock is disabled by 
SCEN. This bit is forced to zero by hardware during the auto power down sequence. This forces the clock 
be a logic 0 when stopped by auto power down as required by ISO 7816 spec.
0 Clock is logic 0 when stopped by SCEN
1 Clock is logic 1 when stopped by SCEN

4
SCEN

SIM card clock enable. Enables the clock to the SIM card. It is forced low by hardware during the auto 
power down sequence.
0 SIM card clock disabled
1 SIM card clock enabled

3
SRST

SIM card reset. Controls state of reset line to the SIM card. It is forced low by hardware during the auto 
power down sequence. SIM card reset signals are active low.
0 SIM card reset inactive
1 SIM card reset active

2
STEN

SIM card transmit enable. Enables the transmit data to the SIM card. It can be forced low by hardware 
during the auto power down sequence.
0 Transmit data is forced to zero
1 Transmit data controlled by SIM module
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28.3.2 SIM Port 1 Setup Register (SIM_SETUP)

1
SVEN

SIM card Vcc enable. Controls the state of the SVEN pin on SIM card port. The SVEN pin controls the 
SIM card Vcc enable in the power management chip. It is forced low by hardware during the auto power 
down sequence.
0 SIM card voltage disabled
1 SIM card voltage enabled

0
SAPD

SIM card auto power down. Enables the auto power down function. It will be forced low at the end of the 
auto power down sequence.
0 Auto power down disabled
1 Auto power down enabled

Address: 0xFC0A_C004 (SIM_SETUP) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SPS

AMO
DEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-3. SIM Setup Register (SIM_SETUP)

Table 28-4. SIM_SETUP Field Descriptions

Field Description

31–2 Reserved, must be cleared.

1
SPS

SIM card port select. Controls which port the SIM interface uses.
Note: The AMODE bit must be cleared when the SPS bit is set.
0 Port 0 enabled
1 Port 1 enabled

0
AMODE

Alternate SIM card mode enable. Enables an alternate SIM module to control this port.
Note: The SPS bit must be cleared to give the alternate SIM module control.
0 Alternate port disabled
1 Alternate port enabled

Table 28-3. SIM_PCRn Field Descriptions (continued)

Field Description
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28.3.3 SIM Port Detect Registers (SIM_DETECTn)

Address: 0xFC0A_C008 (SIM_DETECT1)
0xFC0A_C03C (SIM_DETECT0)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0
SPDS

SPDP SDI
SDIM

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 1

Figure 28-4. SIM Port 1 Detect Register (SIM_DETECTn)

Table 28-5. SIM_DETECTn Field Descriptions

Field Description

31–4 Reserved

3
SPDS

SIM presence detect select. Controls which edge of the SIM_PD pin is used to detect the presence of the 
SIM card.
0 Falling edge of SIM_PD input
1 Rising edge of SIM_PD input

2
SPDP

SIM_PD input pin status. Reflects the state of the SIM_PD pin. This bit is not a latched register bit, but 
instead a synchronized version of the state of the SIM_PD pin itself.
0 SIMPD pin is logic low
1 SIMPD pin is logic high

1
SDI

SIM detect interrupt flag. Indicates an insertion or removal of a SIM card has been detected. This bit may 
generate an interrupt if SDIM is cleared. Write a one to this bit to clear it.
0 No insertion or removal of SIM card detected
1 Insertion or removal of SIM card detected

0
SDIM

SIM detect interrupt mask. Interrupt mask for the SDI interrupt flag.
0 SDI enabled
1 SDI masked

Summary:
SPDS determines which edge transition of the SIM_PD pin is used for SIM card presence detection. Presence detection 
determines if the card has been inserted or removed. The occurrence of the SIMPD1 edge specified by SPDS will cause 
the following: SDI to be set; if the SDIM mask is clear, an interrupt on SIMIRQ_N; and if SIM_PCRn[SAPD] is set, an auto 
power down sequence to begin. If SIM card insertion is expected, SAPD can be cleared to avoid the auto power down 
sequence. There is no auto power up sequence. The bit SPDP can be used to determine the current state of the SIM_PD 
pin.
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28.3.4 SIM Port Transmit Buffer Registers (SIM_TBUFn)

28.3.5 SIM Port Receive Buffer Registers (SIM_RBUFn)

Address: 0xFC0A_C00C (SIM_TBUF1)
0xFC0A_C034 (SIM_TBUF0)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TXBUF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-5. SIM Port Transmit Buffer Registers (SIM_TBUFn)

Table 28-6. SIM_TBUFn Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
TXBUF

Port transmit buffer. Write to the next available location in the transmit buffer. Writes to this register are 
ignored depending on SIM_SETUP[SPS].

Address: 0xFC0A_C010 (SIM_RBUF1)
0xFC0A_C038 (SIM_RBUF0)

Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CWT FE PE RXBUF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-6. SIM Port Receive Buffer Registers (SIM_RBUFn)

Table 28-7. SIM_RBUFn Field Descriptions

Field Description

31–11 Reserved

10
CWT

Port CWT flag. Indicates that the current byte was late. It is not necessary to clear the byte since it is 
overwritten by the next byte received at that location of the FIFO.
0 Byte was on time
1 Byte was late

Transmit Buffer SIM_SETUP[SPS] Writes Ignored?

SIM_TFBUF0[TXBUF]
0 No

1 Yes

SIM_TFBUF1[TXBUF]
0 Yes

1 No
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28.3.6 SIM Control Register (SIM_CR)

9
FE

Port frame error flag. Indicates a frame error was detected during reception of the current byte read from 
the port’s receiver. This bit cannot generate an interrupt. It is not necessary to clear the byte since it is 
overwritten by the next byte received at that location of the FIFO.
0 Byte contains no framing error
1 Byte contains a framing error

8
PE

Port parity error flag. Indicates a parity error was detected during reception of the current byte read from 
the port’s receiver. This bit cannot create an interrupt. It is not necessary to clear the byte since it is 
overwritten by the next byte received at that location of the FIFO. A parity error can create a NACK pulse. 
0 Byte contains no parity error (default)
1 Byte contains a parity error

7–0
RXBUF

Port receive buffer. Read from the next location in the receive buffer. Reads from this register return zero 
when SPS is cleared.

Address: 0xFC0A_C018 (SIM_CR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BWT
EN

XMT_
CRC_
LRC

CRC
EN

LRCE
N

CWT
EN

GPCNT_
CLKSEL

BAUD_SEL
0 SAM

PLE 
12

ONA
CK

ANAC
K

ICM
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 28-7. SIM Control Register (SIM_CR)

Table 28-8. SIM_CR Field Descriptions

Field Description

31–16 Reserved

15
BWTEN

Block wait time enable. Enables the BWT and BGT functions. These functions can then be individually 
selected using the interrupt mask.
0 Disable BWT and BGT
1 Enable BWT and BGT

14
XMT_CRC_L

RC

Transmit CRC or LRC. Specifies whether to transmit the redundancy checking data at the end of a 
transmission (when the FIFO becomes empty).
0 No redundancy check info transmitted
1 Transmit LRC or CRC info when FIFO empties

Table 28-7. SIM_RBUFn Field Descriptions (continued)

Field Description
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13
CRCEN

CRC Enable. Enables the calculation of the 16-bit CRC value for both receiver and transmitter. The result 
of the calculation is continuously compared to the expected remainder and reflected in 
SIM_RSR[CRCOK] register. Clearing this bit resets the current CRC residual value in the SIM hardware.
0 16-bit CRC disabled
1 16-bit CRC enabled

12
LRCEN

LRC Enable. Enables the calculation of the 8-bit LRC value for both receiver and transmitter. The result 
of the calculation is continuously compared to zero and reflected in SIM_RSR[LRCOK]. Clearing this bit 
resets the current LRC value in the SIM hardware.
0 8-bit linear redundancy checking disabled
1 8-bit linear redundancy checking enabled

11
CWTEN

Character wait time counter enable. Enables the character wait time counter. Clearing this bit resets the 
counter to zero.
0 Character wait time counter off
1 Character wait time counter on

10–9
GPCNT_
CLKSEL

General purpose counter clock select. Selects which clock source is used by SIM module general 
purpose counter. The only way to reset the counter is to clear this field. The counter begins counting as 
soon as the clock input is selected and the clocks are enabled. These input clocks are enabled through 
other register bits of the SIM module (KILL_CLOCK, RXEN, and TXEN respectively).
00 Disabled/reset
01 Card clock
10 Receive clock
11 ETU clock (transmit clock)

8–6
BAUD_SEL

SIM baud rate select. Selects the asynchronous baud rate divisor of the clock When set to 111, the divisor 
is set to the value programmed in the DIVISOR register. This allows for more flexible baud rate 
determination.
000 31 (372/1 Fi/Di)
001 32 (512/2 Fi/Di)
010 16 (512/4 Fi/Di)
011 8 (512/8 Fi/Di)
100 4 (512/16 Fi/Di)
101 2 (512/32 Fi/Di)
110 1 (512/64 Fi/Di)
111 SIM_DIV

5 Reserved

4
SAMPLE12

Sample12. Set the third stage divider. Sets the corresponding sample rate which is the number of times 
a bit being received is sampled.
0 Divide by 8
1 Divide by 12

3
ONACK

Overrun NACK Enable.
0 NACK generation on overrun is disabled
1 NACK generation on overrun is enabled

2
ANACK

Automatic NACK Enable. Enables NACK generation for parity errors or invalid initial characters when ICM 
is set.
0 NACK generation on errors disabled
1 NACK generation on errors enabled

Table 28-8. SIM_CR Field Descriptions (continued)

Field Description
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28.3.7 SIM Clock Prescaler Register (SIM_PRE)

1
ICM

Initial character mode. Enables initial character mode. This bit is automatically cleared by hardware after 
a valid initial character is received. This bit is set following reset.
0 Initial character mode disabled
1 Initial character mode enabled

0 Reserved

Address: 0xFC0A_C01C (SIM_PRE) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PRESCALER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-8. SIM Clock Prescaler Register (SIM_PRE)

Table 28-9. SIM_PRE Field Descriptions

Field Description

31–8 Reserved

7–0
PRESCALER

Clock prescaler divisor register. The value written to this register will determine the first stage divider 
setting. If the ipg_clk is 66Mhz, a typical setting would be 0x0e. This would set the SIM card clock to 
66Mhz/14 = 4.7Mhz. The duty cycle of divided clock will be between 45% and 55% according to ISO7816 
requirement. For the odd divider factor (2K+1), the duty cycle will be K/(2K+1) and (K+1)/(2k+1). So for 
0x03, the duty cycle is 33%-66%. For 0x05, the duty cycle is 40%-60%. For 0x07, the duty cycle is 
43%-57%, and for 0x09, the duty cycle is 44%-56%. For all other values, the clock duty cycle can meet 
the ISO7816 requirement.
0x00~0x02 ipg_clk/ 2
0x03 ipg_clk / 3
0x04 ipg_clk / 4
0x05 ipg_clk / 5
0x06 ipg_clk / 6
...
0xFD ipg_clk / 253
0xFE ipg_clk / 254
0xFF ipg_clk / 255

Table 28-8. SIM_CR Field Descriptions (continued)

Field Description
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28.3.8 SIM Receive Threshold Register (SIM_RTHR)

28.3.9 SIM Enable Register (SIM_EN)

Address: 0xFC0A_C020 (SIM_RTHR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RTH RDT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-9. SIM Receive Threshold Register (SIM_RTHR)

Table 28-10. SIM_RTHR Field Descriptions

Field Description

31–13 Reserved

8–5
RTH

Receive Nack threshold. Specifies the number of consecutive NACK’s transmitted by the SIM module, for 
a given character, before the receive threshold error (RTE) flag is triggered. A value of 0 indicates that 
RTE is never set. When a valid character is received by the SIM, the internal counter keeping track of the 
NACK count resets to zero for the subsequent byte being received. If SIM_CR[ANACK] is cleared, RTH 
has no effect.

4–0
RDT

Receive data threshold. Determines the number of unread bytes that must exist in the FIFO to trigger the 
receive data register full (RDRF) interrupt flag. If the number of unread bytes in the receive FIFO is greater 
than or equal to the value in RDT, the SIM_RSR[RDRF] flag is set. A value of zero indicates that there 
must be 285 unread bytes in the FIFO to trigger RDRF. The RDT value can be altered at any time, and 
the RDRF flag will be updated accordingly.

Address: 0xFC0A_C024 (SIM_EN) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TXEN RXEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-10. SIM Enable Register (SIM_EN)

Table 28-11. SIM_EN Field Descriptions

Field Description

31–2 Reserved
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28.3.10 SIM Transmit Status Register (SIM_TSR)

1
TXEN

SIM transmit enable. Enables the SIM transmit state machine. When the SIM is being used to receive 
data, TXEN should be cleared. This bit also enables the internal transmit and receive clocks to the 
general purpose counter.
Note:  Setting this bit (transition from 0 to 1) will reset the CRC and LRC values.

0 SIM transmitter disabled
1 SIM transmitter enabled

0
RXEN

SIM receiver enable. Enables the SIM receive state machine. RXEN must be set whenever the SIM 
module is in use. The SIM module has an automatic receive mode operation that disables the reception 
of characters when the transmitter is operational. Once the transmitter has completed sending the last 
character, the receiver is automatically enabled. This bit also enables the RCV_CLK input to the general 
purpose counter.
0 SIM receiver disabled
1 SIM receiver enabled

Address: 0xFC0A_C028 (SIM_TSR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0

GP
CNT

TDTF TFO TC ETC TFE 0 0 XTE

W w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0

Figure 28-11. SIM Transmit Status Register (SIM_TSR)

Table 28-12. SIM_TSR Field Descriptions

Field Description

31–9 Reserved, must be cleared.

8
GPCNT

General purpose counter flag. Indicates when the general purpose counter has reached the value in the 
GPCNT register.
0 GPCNT time not reached
1 General purpose counter has reached the GPCNT value

7
TDTF

Transmit data threshold flag. This flag is set when the number of bytes in the FIFO goes above the value 
programmed in SIM_TTHR[TDT]. If the data level never goes above the threshold, then this flag doesn't 
set.
0 Number of bytes in FIFO is greater than TDT
1 Number of bytes in FIFO is less than or equal to TDT

Table 28-11. SIM_EN Field Descriptions (continued)

Field Description
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28.3.11 SIM Receive Status Register (SIM_RSR)

6
TFO

Transmit FIFO overfill error. Indicates when the Transmit FIFO has been written with more than 16 bytes. 
This bit is only cleared by setting either SIM_RCR[FLUSH_XMT, SOFT_RESET].
0 No transmit FIFO overfill error occurred
1 A Transmit FIFO overfill error occurred

5
TC

Transmit complete. Indicates the SIM transmitter is ready for a new transmission. This bit is set after the 
guard time has expired for the last byte in the transmit FIFO. TC generates an interrupt if SIM_IMR[TCIM] 
is cleared. Write one to TC to clear it.
0 Transmit pending or in progress
1 Transmit complete

4
ETC

Early transmit complete. Indicates the SIM transmitter has finished sending the current byte and the 
transmit FIFO is empty. This bit differs from TC in that it is set before the guard time of the last byte has 
elapsed. ETC generates an interrupt if SIM_IMR[ETCIM] is cleared. Write one to ETC to clear it.
0 Transmit pending or in progress
1 Transmit complete

3
TFE

Transmit FIFO empty. Indicates the transmit FIFO is empty. This bit is set when the last byte in the 
transmit FIFO has been transferred to the SIM transmit shift register. TFE generates an interrupt if 
SIM_IMR[TFEIM] is cleared. Write one to TFE to clear it.
0 Transmit FIFO is not empty
1 Transmit FIFO is empty

2–1 Reserved, must be cleared

0
XTE

Transmit NACK threshold error. Indicates the transmit NACK threshold has been reached. When XTE is 
set, no further transmissions are done until XTE is cleared. Any data transmissions pending in the 
transmit FIFO are aborted, and TC, ETC, and TFE are set. XTE generates an interrupt if SIM_IMR[XTM] 
is cleared. Write one to XTE to clear it.
0 Transmit NACK threshold has not been reached
1 Transmit NACK threshold reached; transmitter frozen

0xFC0A_C02C (SIM_RSR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 BGT BWT RTE CWT
CRC
OK

LRC
OK

RDRF RFD 0 0 0 OEF

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 28-12. SIM Receive Status Register (SIM_RSR)

Table 28-12. SIM_TSR Field Descriptions (continued)

Field Description
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Table 28-13. SIM_RSR Field Descriptions

Field Description

31–12 Reserved, must be cleared.

11
BGT

Block guard time error flag. Indicates the block guard time was too small. The threshold is set by the block 
guard time register (SIM_BGT).
0 Block guard time was sufficient
1 Block guard time was too small

10
BWT

Block wait time error flag. Indicates the block wait time has been exceeded. The threshold is set by the 
block wait time registers (SIM_BWT, SIM_BWTH).
0 Block wait time not exceeded
1 Block wait time was exceeded

9
RTE

Receive NACK threshold error flag. Indicates if the number of consecutive NACK’s generated by the SIM 
module in response to receive parity errors for the byte being received, equals the value programmed in 
SIM_RTHR[RTH]. This bit never sets unless SIM_CR[ANACK] is set. SIM_PCRn[SAPD] must be set to 
enable the threshold error to trigger the auto power down sequence. 
Write one to RTE to clear it. Clearing this bit resets the internal counter for consecutive NACK’s being 
transmitted for a given byte.
0 Number of NACKs generated by the receiver is less than the value programmed in SIM_RTHR[RTH]
1 Number of NACKs generated by the receiver is equal to the value programmed in SIM_RTHR[RTH]

8
CWT

Character wait time counter flag. Indicates when the time between received characters is equal to or 
greater than the value programmed in the SIM_CWTR register.
0 No CWT violation has occurred
1 Time between two consecutive characters exceeded the value in SIM_CWTR

7
CRCOK

Cyclic redundancy check okay flag. Indicates when the calculated 16-bit CRC value matches the 
expected value for the current input data stream. The value is calculated across all received characters 
from the point SIM_CR[CRCEN] is set. The current CRC residual is reset by three mechanisms:
 • Clear SIM_CR[CRCEN]
 • Set SIM_EN[TXEN]
 • Automatically by hardware when ETC flag is set at the end of a transmission.

0 Current CRC value does not match remainder
1 Current calculated CRC value matches the expected result

6
LRCOK 

Linear redundancy check okay flag. Indicates when the calculated 8-bit LRC value is zero value for the 
current input data stream. The value is calculated across all received characters from the point 
SIM_CR[LRCEN] is set. The current LRC residual is reset by three mechanisms:
 • Clear SIM_CR[LRCEN]
 • Set SIM_EN[TXEN
 • Automatically by hardware when ETC flag is set at the end of a transmission.

0 Current LRC value does not match remainder
1 Current calculated LRC value matches the expected result of zero

5
RDRF

Receive data register full. Indicates the SIM receive FIFO has reached the threshold level set by 
SIM_RTHR[RDT]. RDRF is set any time the number of unread bytes in the receive FIFO is equal to or 
greater than the value set by RDT. The flag is cleared by reading enough bytes out of the receive FIFO 
to bring the number of bytes left in the FIFO below RDT level. Another way to clear the flag is to set RDT 
higher than the number of unread bytes currently in the FIFO. RDRF generates an interrupt if 
SIM_CR[RIM] is cleared.
0 Number of unread bytes in receive buffer is less than value set by RDT
1 Number of unread bytes in receive buffer is greater than or equal to the value set by RDT



Subscriber Identification Module (SIM)

NXP Semiconductors 28-15

28.3.12 SIM Interrupt Mask Register (SIM_IMR)

4
RFD

Receive FIFO has unread data. Indicates there is at least one unread byte in the receive data FIFO. This 
bit is only cleared by reading all bytes out of the receive FIFO. RFD cannot be used to generate an 
interrupt. Normally, the SIM triggers the interrupt with RDRF and software uses RFD to read all of the 
bytes out of the receive FIFO.
0 There are no unread bytes in the receive FIFO
1 There is at least one unread byte in the receive FIFO

3–1 Reserved, must be cleared.

0
OEF

Overrun error flag. Indicates the SIM was unable to store received data due to already having 285 unread 
bytes in the FIFO. It does not necessarily indicate that data has been lost. If SIM_CR[ONACK] is set, a 
NACK pulse is generated on bytes that would otherwise cause a loss of data due to a full FIFO. These 
bytes should be retransmitted by the SIM card which implies that no data has actually been lost. In this 
case, the OEF flag is just an indicator that this situation has occurred which may be helpful in system 
debug. 
If ONACK is not set, a set OEF flag indicates a loss of data since all bytes received with the OEF flag set 
will indeed be lost (including the byte that caused the bit to set). The OEF flag generates an interrupt if 
SIM_IMR[OIM] is cleared. The OEF flag is a write-one-to-clear bit.
0 No overrun error has occurred
1 A byte was received when the received FIFO was already full

Address: 0xFC0A_C030 (INT_MASK) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 BGT
M

BWT
M

RTM
CWT

M
GPC
NTM

TDTF
M

TFO
M

XTM
TFEI

M
ETCI

M
OIM TCIM RIM

W

Reset 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 28-13. SIM Interrupt Mask Register (SIM_IMR)

Table 28-14. SIM_IMR Field Descriptions

Field Description

31–13 Reserved, must be cleared.

12
BGTM

Block guard time interrupt mask. Enables the interrupt mask for SIM_RSR[BGT].
0 Enabled
1 Masked

Table 28-13. SIM_RSR Field Descriptions (continued)

Field Description
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11
BWTM

Block wait time interrupt mask. Enables the interrupt mask for SIM_RSR[BWT].
0 Enabled
1 Masked

10
RTM

Receive NACK threshold interrupt mask. Enables the interrupt mask for SIM_RSR[RTE].
0 Enabled
1 Masked

9
CWTM

Character wait time interrupt mask. Enables the interrupt mask for SIM_RSR[CWT].
0 Enabled
1 Masked

8
GPCNTM

General purpose counter interrupt mask. Enables the interrupt mask for SIM_TSR[GPCNT].
0 Enabled
1 Masked

7
TDTFM

Transmit data threshold interrupt mask. Enables the interrupt mask for SIM_TSR[TDTF].
0 Enabled
1 Masked

6
TFOM

Transmit FIFO overfill error interrupt mask. Enables the interrupt mask for SIM_TSR[TFO].
0 Enabled
1 Masked

5
XTM

Transmit NACK threshold interrupt mask. Enables the interrupt mask for SIM_TSR[XTE].
0 Enabled
1 Masked

4
TFEIM

Transmit FIFO empty interrupt mask. Enables the interrupt mask for SIM_TSR[TFE].
0 Enabled
1 Masked

3
ETCIM

Early transmit complete interrupt mask. Enables the interrupt mask for SIM_TSR[ETC].
0 Enabled
1 Masked

2
OIM

Overrun interrupt mask. Enables the interrupt mask for SIM_RSR[OEF].
0 Enabled
1 Masked

1
TCIM

Transmit complete interrupt mask. Enables the interrupt mask for SIM_TSR[TC].
0 Enabled
1 Masked

0
RIM

Receive Interrupt Mask. Enables the interrupt mask for SIM_RSR[RDRF].
0 Enabled
1 Masked

Table 28-14. SIM_IMR Field Descriptions (continued)

Field Description
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28.3.13 SIM Data Format Register (SIM_FORMAT)

28.3.14 SIM Transmit Threshold Register (SIM_TTHR)

Address: 0xFC0A_C040 (SIM_FORMAT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-14. SIM Data Format Register (SIM_FORMAT)

Table 28-15. SIM_FORMAT Field Descriptions

Field Description

31–1 Reserved, must be cleared

0
IC

Inverse convention. Configures the SIM to use inverse or direct convention for its data format. This bit 
can be controlled by software, but it is normally set by hardware as a result of the interpretation of the 
initial character when in ICM mode.

0 Direction convention transfers enabled (default).
1 Inverse convention transfers enabled.

Address: 0xFC0A_C044 (SIM_TTHR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XTH TDT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-15. SIM Transmit Threshold Register (SIM_TTHR)

Table 28-16. SIM_TTHR Field Descriptions

Field Description

31–8 Reserved, must be cleared.
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28.3.15 SIM Transmit Guard Control Register (SIM_TGCR)

7–4
XTH

Transmit NACK threshold. When this threshold is reached for the current byte being transmitted, 
SIM_TSR[XTE] is set. This causes the remaining transmissions queued in the transmit FIFO to be 
aborted and no more transmissions occur until software clears XTE. To trigger XTE, a given byte being 
transmitted must reach the XTH threshold itself. Transmit NACKs accumulated on one byte are not 
carried over to the next.
0x0 XTE is never set; retransmission after NACK reception is disabled
0x1 XTE is set after 1 NACK is received; 0 retransmissions occur
0x2 XTE is set after 2 NACKs are received; at most 1 retransmission occurs
0x3 XTE is set after 3 NACKs are received; at most 2 retransmissions occur
...
0xF XTE is set after 15 NACKs are received; at most 14 retransmissions occur

3–0
TDT

Transmit data threshold. When the number of bytes in the transmit FIFO is less than or equal to TDT, 
SIM_TSR[TDTF] is set.

Address: 0xFC0A_C048 (SIM_TGCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RCVR
11

GETU
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-16. SIM Transmit Guard Control Register (SIM_TGCR)

Table 28-17. SIM_TGCR Field Descriptions

Field Description

31–9 Reserved, must be cleared.

8
RCVR11

Receiver 11 ETUs. Configure the SIM receiver for 11 ETU operation (1 stop bit). This bit is provided for 
the T=1 protocol.
0 Receiver configured for 12 ETU operation
1 Receiver configured for 11 ETU operation

7–0
GETU

Transmit guard ETUs. Controls the number of additional elementary time units (ETUs) inserted between 
bytes transmitted by the SIM. An ETU is equivalent to one bit time at the given baud rate (for example, 
the length of a start bit). The guard time has no effect on the SIM receiver.
0x00 No additional ETUs inserted
...
0xFE 254 additional ETUs inserted
0xFF One ETU removed (Stop bits reduced from two to one)

Table 28-16. SIM_TTHR Field Descriptions (continued)

Field Description
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28.3.16 SIM Open Drain Configuration Control Register (SIM_ODCR)

28.3.17 SIM Reset Control Register (SIM_RCR)

Address: 0xFC0A_C04C (SIM_ODCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OD
P1

OD
P0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-17. SIM Open Drain Configuration Control Register (SIM_ODCR)

Table 28-18. SIM_ODCR Field Descriptions

Field Description

31–2 Reserved

1
ODP1

Open drain control for port 1. Since the data pin is bi-directional, this bit must be set.
0 Reserved
1 SIM_DATA1 is open-drain
Note: This bit resets to 0 which is a reserved setting. You must set this bit for proper operation.

0
ODP0

Open drain control for port 0. Since the data pin is bi-directional, this bit must be set.
0 Reserved
1 SIM_DATA0 is open-drain
Note: This bit resets to 0 which is a reserved setting. You must set this bit for proper operation.

Address: 0xFC0A_C050 (SIM_RCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0

DBUG STOP DOZE
KILL

CLOCK

0
FLUSH

XMT
FLUSH

RCVW SOFT
RST

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-18. SIM Reset Control Register (SIM_RCR)
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28.3.18 SIM Character Wait Time Register (SIM_CWTR)

Table 28-19. SIM_RCR Field Descriptions

Field Description

31–7 Reserved, must be cleared.

6
DBUG

Debug. Configures the SIM when a debug event occurs. When set, a debug event causes the receive 
FIFO read pointer to freeze.
0 Debug event has no affect on SIM module
1 Debug event prohibits read pointer changes for receive FIFO

5
STOP

Stop. Configures the SIM when a processor stop instruction is executed. This bit provides support for SIM 
cards that do not allow the SIM card clock to be stopped while power is applied.
0 Stop instruction shuts down all SIM clocks
1 Stop instruction shuts down all clocks except for the BAUD_CLK (clock provided to SIM Card)

4
DOZE

Doze. Configures the SIM module when a processor DOZE instruction is executed.
0 DOZE instruction has no effect on SIM module
1 DOZE instruction will cause SIM module to gate SIM clocks when the transmit FIFO is empty

3
KILL_CLOCK

Kill SIM Clock. Disables the SIM clock input to the SIM module. This bit gates all SIM clocks including the 
SIM card clock regardless of the state of the STOP bit.
0 SIM input clock enabled
1 SIM input clock disabled

2
SOFT_RST

Software reset. Resets the entire SIM module. This acts the same as a hardware reset for the SIM 
module. This bit is self-clearing.
Note:  Software should allow a minimum of 4 reference clock cycles (CKIH) before attempting to access 
the SIM module after a software reset.

0 SIM normal operation
1 SIM held in reset

1
FLUSH_XMT

Flush transmitter. Resets the SIM transmitter. The receive portion of the SIM module is not affected. The 
software must clear this bit before the SIM transmitter can operate.
0 SIM transmitter normal operation
1 SIM transmitter held in reset

0
FLUSH_RCV

Flush Receiver. Resets the SIM receiver. The transmit portion of the SIM module is not affected. The 
software must clear this bit before the SIM receiver can operate.
0 SIM receiver normal operation
1 SIM receiver held in reset

Address: 0xFC0A_C054 (SIM_CWTR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CWT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 28-19. SIM Character Wait Time Register (SIM_CWTR)
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28.3.19 SIM General Purpose Counter Register (SIM_GPCNT)

28.3.20 SIM Divisor Register (SIM_DIV)

Table 28-20. SIM_CWTR Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
CWT

Character wait time. Specifies the number of ETU times allowed between characters. Default is 0xFFFF

Address: 0xFC0A_C058 (SIM_GPCNT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GPCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 28-20. SIM General Purpose Counter Register (SIM_GPCNT)

Table 28-21. SIM_GPCNT Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
GPCNT

General purpose counter. The value written to this field is compared to the general purpose counter in the 
SIM module. Once the general purpose counter reaches this value, SIM_TSR[GPCNT] is set.
This counter is intended to be used for any events that must be monitored for duration based on the card 
clock, receiver sample rate, or ETU rate (transmit clock). Example: ATR arrival time and ATR duration.
Default is 0xFFFF

Address: 0xFC0A_C05C (SIM_DIV) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIVISOR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 28-21. SIM Divisor Register (SIM_DIV)

Table 28-22. SIM_DIV Field Descriptions

Field Description

31–8 Reserved

7–0
DIVISOR

Divisor register. The value written to this register generates the SIM receive clock. SIM_CR[BAUD_SEL] 
must be set to 111 to control the divisor value using the DIVISOR field. Default is 0xFF.
Note: A value of 0 is reserved.
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28.3.21 SIM Block Wait Time Low Register (SIM_BWTL)

28.3.22 SIM Block Guard Time Register (SIM_BGT)

Address: 0xFC0A_C060 (SIM_BWTL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BWT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 28-22. SIM Block Wait Time Low Register (SIM_BWTL)

Table 28-23. SIM_BWTL Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
BWT

Lower block wait time. This value is the lower 16 bits of the block wait time. The time from the start bit of 
the last byte sent from the SIM to the start bit of the first byte sent from the smart card must be less than 
the 32-bit value formed SIM_BWTH and SIM_BWTL. If not, SIM_RSR[BWT] is set. Default is 0xFFFF

Address: 0xFC0A_C064 (SIM_BGT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BGT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-23. SIM Block Guard Time Register (SIM_BGT)

Table 28-24. SIM_BGT Field Descriptions

Field Description

31–16 Reserved, must be cleared

15–0
BGT

Block guard time. The time from the start bit of the last byte sent from the SIM to the start bit of the first 
byte sent from the smart card must be greater than this value. If not, SIM_RSR[BGT] is set. Default is 
0x0000
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28.3.23 SIM Block Wait Time High Register (SIM_BWTH)

28.3.24 SIM Transmit FIFO Status Register (SIM_TFSR)

Address: 0xFC0A_C068 (SIM_BWTH) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BWT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 28-24. SIM Block Wait Time High Register (SIM_BWTH)

Table 28-25. SIM_BWTH Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
BWT

Upper block wait time. This value is the upper 16 bits of the block wait time. The time from the start bit of 
the last byte sent from the SIM to the start bit of the first byte sent from the smart card must be less than 
the 32-bit value formed SIM_BWTH and SIM_BWTL. If not, SIM_RSR[BWT] is set. Default is 0xFFFF

Address: 0xFC0A_C06C (SIM_TFSR) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CNT WPTR RPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-25. SIM Transmit FIFO Status Register (SIM_TFSR)

Table 28-26. SIM_TFSR Field Descriptions

Field Description

31–12 Reserved, must be cleared.

11–8
CNT

Indicates the number of bytes in the transmit FIFO. 
0000  FIFO is empty or full
0001 One byte in the FIFO
...
1111 15 bytes in the FIFO

7–4
WPTR

Indicates the transmit FIFO write pointer.

3–0
RPTR

Indicates the transmit FIFO read pointer.
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28.3.25 SIM Receive FIFO Counter Register (SIM_RFCR)

28.3.26 SIM Receive FIFO Write Pointer Register (SIM_RFWP)

28.3.27 SIM Receive FIFO Read Pointer Register (SIM_RFRP)

Address: 0xFC0A_C070 (SIM_RFCR) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-26. SIM Receive FIFO Counter Register (SIM_RFCR)

Table 28-27. SIM_RFCR Field Descriptions

Field Description

31–9 Reserved, must be cleared.

8–0
CNT

Indicates the number of bytes of data currently in the FIFO. A value of zero indicate the receive FIFO is 
empty or full.

Address: 0xFC0A_C074 (SIM_RFWP) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-27. SIM Receive FIFO Write Pointer Register (SIM_RFWP)

Table 28-28. SIM_RFWP Field Descriptions

Field Description

31–9 Reserved, must be cleared.

8–0
WPTR

Indicates the receive FIFO write pointer.

Address: 0xFC0A_C078 (SIM_RFRP) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-28. SIM Receive FIFO Read Pointer Register (SIM_RFRP)
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28.4 Functional Description
To best describe the organization of the SIM module from a user’s point of view, it is instructive to view 
the SIM at a number of different levels of hierarchy. The SIM module is essentially a standard UART with 
some special provisions made for SIM card communication. The SIM consists of seven main parts:

• Clock generator

• Transmitter

• Receiver

• Port controller

• General purpose counter

• LRC blocks

• CRC blocks

28.4.1 SIM Clock Generator

The clock generator is responsible for generating the baud rate clock (BAUD_CLK), and clocks to the 
transmitter, receiver, and port controller sections of the SIM module. 

28.4.1.1 Baud Clock Generation

The baud rate clock generation performed by the clock generator results in different frequencies. The 
default frequency is a divide by two of the peripheral clock. The baud rate can be programmed to be 
another divisor using the SIM_PRE register as shown in Section 28.3.7, “SIM Clock Prescaler Register 
(SIM_PRE)”. The baud clock is generated in two forms in the design. The BAUD_CLK that is used by 
the SIM cards (SCLK0, SCLK1) must be 45–55% duty cycle at the divide values. This is necessary to meet 
the requirements of the ISO 7816 specification. The BAUD_CLK used internal to the SIM module is a 
gated version of the peripheral clock. 

28.4.1.2 Transmitter Clock Generation

The internal transmitter clock (XMT_CLK) is generated by the clock generator based on the values of the 
SIM_CR[BAUD_SEL, SAMPLE12] bitfields. The transmit clock is gated by the transmit enable 
(SIM_EN[TXEN]) register bit. When the transmitter is enabled, the clock generator counts the appropriate 
number of internal receive clock (RCV_CLK) positive edges to determine when to toggle the transmitter 
clock output. The transmitter clock is always based upon the receive clock.

Table 28-29. SIM_RFRP Field Descriptions

Field Description

31–9 Reserved, must be cleared.

8–0
RPTR

Indicates the receiver FIFO read pointer.
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28.4.1.3 Receiver Clock Generation

The internal receiver clock (RCV_CLK) is generated by the clock generator based on the value passed to 
it for the baud rate select (SIM_CR[BAUD_SEL]). The receiver clock is gated by the receiver enable 
(SIM_EN[RXEN]) register bit. When the receiver is enabled, the clock generator counts the appropriate 
number of BAUD_CLK positive edges to determine when to toggle the receiver clock output. The number 
of BAUD_CLK positive edges is set by SIM_CR[BAUD_SEL] and is programmable to these divisors: 31 
(slowest because used with the 372/1 Fi/Di rate), 32, 16, 8, 4, 2, 1, and SIM_DIV[DIVISOR].

28.4.1.4 Port Control Clock Generation

The port controller clocks are provided by the clock generator for the SIM card ports. These clocks are 
equivalent in frequency to the BAUD_CLK and are gated by the SIM clock enable (SIM_PCRn[SCEN]) 
signals. The level at which the card clocks (SIM_CLKn) are stopped when disabled is determined by the 
SIM clock select polarity (SIM_PCRn[SCSP]) inputs to the clock generator. Synchronizers are 
implemented to ensure glitch free operation of the card clocks when enabling, disabling, or changing the 
clock stopped polarity.

28.4.1.5 Low Power Mode Clock Control

The clock generator block is responsible for gating the clocks to the SIM module appropriately whenever 
a low power mode instruction is decoded. There are two available low-power states of the processor: stop 
and doze. The response to doze mode is controlled by SIM_RCR[DOZE]. Likewise, the response to stop 
mode is controlled by SIM_RCR[STOP]. See Section 28.3.17, “SIM Reset Control Register 
(SIM_RCR)”.

28.4.2 SIM Transmitter

The transmitter block comprises the following sections of logic: transmit state machine, transmit shift 
register, transmit FIFO, guard time generator, transmit NACK control, and transmit data convention.

28.4.2.1 Transmit State Machine

The Transmit state machine is the heart of the transmitter block. The state machine is responsible for 
sequencing through a transmit operation while reacting to inputs from the receiver, the transmit FIFO, and 
the guard time circuit. See Figure 28-29 for flow diagram of the transmit state machine.
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Figure 28-29. Transmit State Machine

The functions performed by each state are:

• IDLE

— This is the initial state. The state machine waits here until SIM_EN[TXEN] is set and a write 
to the transmit FIFO has occurred. The data pointed to by the transmit read pointer is loaded 
into the shift register, and the state machine transitions to the MAIN_XMIT state. Any time 
SIM_EN[TXEN] is cleared, the state machine returns to this state.

• MAIN_XMIT

— The transmitter is operating normally in this state. The data in the shift register is shifting once 
every transmit clock cycle. When the second to last bit of the current transmission is about to 
be sent, the state machine transitions to the LAST_XMIT state.

• LAST_XMIT

— This state transmits the last bit of the current transmission and determines the next operation. 
One of the following will occur. 

– If SIM_TGCR[GETU] is non-zero, jump to the GUARD_WAIT state.

– If a transmit NACK error occurred, with a zero in SIM_TGCR[GETU], jump to 
MAIN_XMIT state to retransmit the current byte.

– If no transmit NACK, and SIM_TGCR[GETU] is zero, load the shift register, jump to 
MAIN_XMIT to transmit the next byte

– If no transmit NACK, SIM_TGCR[GETU] is zero, and the FIFO is empty, jump to IDLE 
state; set the transmit complete (TC) flag.

• GUARD_WAIT

— The state machine remains in this state until the guard time counter has expired.

– If a transmit NACK error occurred on last transmission, jump to RTX_MAIN_XMIT and 
re-transmit

IDLE

MAIN_XMIT

LAST_XMIT

GUARD_WAIT

RTX_MAIN_XMIT

RTX_LAST_XMIT
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– If no transmit NACK and the FIFO is not empty, load the shift register, jump to 
MAIN_XMIT to transmit the next byte.

– If no transmit NACK and the FIFO is empty, return to the IDLE state.

– If transmit NACK threshold is detected, stop transmitter, set XTE flag, and jump to the 
IDLE state.

• RTX_MAIN_XMIT

— The transmitter is operating normally in this state. The data in the shift register is shifting once 
every transmit clock cycle. When the second to last bit of the current transmission is about to 
be sent, the state machine transitions to the RTX_LAST_XMIT state. This state is identical to 
the MAIN_XMIT state except that it retransmits the previously NACKed byte.

• RTX_LAST_XMIT

— This state transmits the last bit of the current re-transmission and determines the next operation. 
One of the following will occur. 

– If SIM_TGCR[GETU] is non-zero, jump to the GUARD_WAIT state.

– If a transmit NACK error occurred, with a zero in SIM_TGCR[GETU], jump to 
GUARD_WAIT state to check transmit NACK threshold.

– If no transmit NACK, SIM_TGCR[GETU] is zero, and the FIFO is not empty, load the shift 
register, jump to MAIN_XMIT to transmit the next byte

– If no transmit NACK, SIM_TGCR[GETU] is zero, and the FIFO is empty, jump to IDLE 
state; set the transmit complete (TC) flag.

28.4.2.2 Transmit Shift Register

The transmit shift register is 11 bits wide and controlled by the transmit state machine described 
previously. The shift register shifts out data at the transmit clock frequency.

28.4.2.3 Transmit FIFO

The transmit FIFO is implemented inside the transmitter block. The FIFO depth is 16 bytes. The FIFO 
block is shared by both SIM module ports. The transmit FIFO cannot be accessed by the alternate SIM 
module through the alternate port. Each write to the transmit FIFO increases the transmit FIFO write 
pointer. Each time the transmit shift register is loaded from the transmit FIFO, the transmit FIFO read 
pointer is incremented. When the read and write pointers are equal, the transmit FIFO empty flag (TFE) is 
set. Software has no visibility of the transmit FIFO pointers, but a transmit FIFO threshold value can be 
set to alert the software when the number of bytes in the FIFO has reached a specified level. A read of the 
transmit FIFO register (SIM_TBUF) returns the last byte written to the FIFO. Writes to the transmit FIFO 
can occur at any time.

The transmit FIFO can be flushed by setting SIM_RCR[FLUSHTX]. A transmit NACK threshold error 
(XTE) halts the transmitter and flushes the transmit FIFO. The flush operation resets the transmit read and 
write pointers to the same values. Everything in the transmitter block is reset by the transmit flush 
operation. This does not include the control registers associated with the transmitter. The transmit data 
threshold flag (TDTF) is not cleared by the flush operation.
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28.4.2.4 Transmit Guard Time Generator

The guard time generator is simply a counter that is clocked by the transmit clock in order to delay the 
beginning of the next transmission and the setting of the transmit complete interrupt flag (TC) by a 
programmable amount of transmit bit widths (ETUs). The duration of the count is controlled by 
SIM_TGCR[GETU]. See Figure 28-30 for depiction of the three transmit operations to show the effect of 
the guard time generator logic

.

Figure 28-30. Transmit Guard Time

28.4.2.5 Transmit NACK Generator

The transmit NACK generator is responsible for driving the transmitter output low during the stop bit time 
to signify an error was detected in the received data from the SIM card. This logic responds to a NACK 
request generated by the receiver block. Figure 28-31 shows a typical SIM transaction with the NACK 
pulse inserted.
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Figure 28-31. Transmit NACK Generator

The transmit NACK generator is also responsible for keeping track of the number of NACKs received 
during a transmit operation. The SIM receive state machine detects NACKs generated by the SIM card, 
and reports them to the transmit NACK logic. When the number of detected NACKs equals the 
programmed threshold (SIM_TTHR[XTH]), an interrupt is generated, the transmit FIFO is flushed, and 
the transmitter is disabled.

28.4.2.6 Transmit Data Convention Logic

The transmit data convention logic supports the two different data conventions available in SIM cards. See 
Figure 28-32 for illustration of SIM data conventions.

 

Figure 28-32. SIM Data Conventions

The direct data convention is the default. If SIM_FORMAT[IC] is set, the transmit data convention logic 
converts the output of the transmit FIFO to the inverse convention before sending it to the transmit shift 
register.

28.4.3 SIM Receiver

The receiver block is comprised of the receive state machine and the receive FIFO.

PByte i Byte i+1Start Stop Bits Start

PByte i Byte iStart
Error
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(NACK)
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Start Stop Bits Start

Parity

12 ETU min

ba bb bc bd be bf bg bh ba bb bc bd be

Parity bit: If configured for even parity, total number of logic ones in the 9 bits (8 bits data, 1 parity bit) is even
if configured for odd parity, total number of logic ones in the 9 bits (8 bits data, 1 parity bit) is odd

Direct convention: ba is lsb of the data byte sent. bh is msb.
Neither the data bits nor parity bit is logically inverted.

Inverse convention: ba is msb of the data byte sent. bh is lsb.
Both the data bits and parity bit are logically inverted by hardware.

When configured for inverse convention, the parity bit is inverted by the SIM before being transmitted.
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28.4.3.1 Receive State Machine

The receive state machine samples the receive data pin and captures the bit value into the receive shift 
register. Additionally, the receive state machine detects the start bit, parity errors, framing errors, and the 
initial character when operating in initial character mode.

Once enabled by SIM_EN[RXEN] , the receive state machine sequences through the states as shown in 
Figure 28-33.

Figure 28-33. Receive State Machine

The states identified with an 8x are used when operating in a 8x oversampling mode. The states identified 
with a 12x are used when operating in a 12x oversampling mode (SIM_CR[SAMPLE12] is set). The 
number following the oversampling mode identifier represents the state number in the current mode. There 
are 12 states in 12x mode, and eight states in 8x mode. Some states simply implement a one RCV_CLK 
delay. States that perform additional functions are:

• RCV8x_1, RCV12x_1

— This is the initial state of the receive state machine. If the first bit has not been received, the 
state machine remains in this state until a valid start bit is detected. For every subsequent bit, 
this state is simply a one RCV_CLK cycle delay.

• RCV8x_2, RCV12x_2

— This state captures the first sample of the current receive data input.
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• RCV12x_3

— This state captures the second sample of the current receive data input.

• RCV12x_4

— This state captures the third sample of the current receive data input.

• RCV8x_3, RCV12x_5

— This state checks if the SIM is receiving a correct start Bit. If not, return to state 1.

• RCV8x_4, RCV12x_6

— If in the 11th bit, check for parity or initial character errors and send NACK if needed.

• RCV8x_5, RCV12x_7

— Store current bit value in the shift register. If this is the first bit and the value is not zero, restart 
the state machine.

• RCV8x_6, RCV12x_8

— If the current bit is the last bit of the transfer, set flag to transfer shift register to receive buffer.

• RCV8x_7, RCV12x_9

— Clear flag for transferring shift register to receive buffer.

• RCV12x_10

— If the current bit is the last bit of the transfer (first stop bit), this state samples the NACK 
window.

• RCV12x_11

— If the current bit is the last bit of the transfer (first stop bit), this state samples the NACK 
window.

• RCV8x_8, RCV12x_12

— This state represents the end of the current receive input bit. Several operations occur during 
this state, including:

– Increment bit counter

– Perform a majority vote on the NACK samples and notify the transmitter if a NACK pulse 
was detected.

28.4.3.2 Data Sampling/Voting

The receive state machine runs at the receive clock rate (RCV_CLK). This clock oversamples the received 
data at either an 8x or 12x sample rate. For each input bit, the receive state machine captures three samples. 
A majority voting algorithm is then applied to determine the value of the bit received. The value common 
to two or more samples is determined to be the bit value in the receive shift register.

28.4.3.3 Start Bit Detection

The SIM receive input is defined as high when not active. The data transmission is defined to begin with 
a low pulse for a bit duration. This is called the start bit. The receive state machine is responsible for 
detecting and validating the start bit. The receive state machine samples the start bit three times using a 
majority voting scheme to determine if the start bit is valid. This will effectively filter out any low receive 
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inputs shorter than one RCV_CLK period. See Figure 28-34 for illustration of a typical SIM data 
transaction with the start bit identified.

Figure 28-34. Start Bit Diagram

28.4.3.4 Parity Error Detection

The receive state machine is responsible for detecting parity errors in the received data. Data is always 
transmitted with even parity, except when in inverse convention mode. In this mode, all data and parity 
bits are complemented making the data appear as odd parity. The parity bit is defined as the tenth bit of the 
received data. The parity of the second through tenth received bits is calculated by the receiver parity logic. 
This logic determines if the parity of the nine received bits is correct. See Figure 28-35 for illustration of 
a typical SIM data transaction with the parity bit identified.

Figure 28-35. Parity Bit Diagram

When a parity error is detected on a given byte, SIM_RBUFn[PE] is set for that byte. A parity error cannot 
generate an interrupt. However, it can signal the SIM transmitter to send a NACK pulse to the SIM card 
asking for a retransmission of the corrupted data. NACK generation upon a parity error is enabled by 
setting SIM_CR[ANACK].

28.4.3.5 Framing Error Detection

The receive state machine is responsible for detecting framing errors in the received data. A SIM data 
transaction is defined as 11 or 12 bits long consisting of the start bit, eight data bits, one parity bit, and one 
or two stop bits. A framing error occurs when the stop bit is not detected during the 11th bit time of a data 
transaction. The stop bit is generally defined as two bit times (ETUs) of a high pulse following the parity 
bit. When SIM_TGCR[GETU] is 0xFF, the stop bit is defined as one bit time. A framing error occurs only 
when the parity bit of the current byte is low, and the stop bit arrives late. See Figure 28-36 for illustration 
of a typical SIM data transaction with the stop bits identified. Also shown is a SIM data transaction with 
a late arriving stop bit indicating a framing error.
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Start Bit Start Bit
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Parity Bit

lsb msb



Subscriber Identification Module (SIM)

28-34 NXP Semiconductors

Figure 28-36. Framing Error Diagram

When a framing error is detected on a given byte, SIM_RBUFn[FE] is set for that byte. A framing error 
cannot generate an interrupt, nor can it create a NACK pulse to the SIM card asking for a retransmission 
of the corrupted data.

28.4.3.6 NACK Detection

The existence of the NACK pulse is sampled by the receive state machine at 11 elementary time units 
(ETUs) after the falling edge of the start bit. An ETU is equivalent in time to one transmit clock period. 
When the receiver detects a NACK, it signals the transmitter that an error occurred. The transmitter will 
not initiate retransmission for at least another two ETU times as required by the ISO 7816 specification.

28.4.3.7 Initial Character Detection

The SIM receive state machine supports the detection of special characters that allow it to determine what 
data format is being used by the connected SIM card. When placed in initial character mode, the SIM 
expects to receive one of two potential characters that it will use to set the data format control bit 
(SIM_FORMAT[IC]).

.

The two possible data formats are inverse convention and direct convention. Figure 28-37 and 
Figure 28-38 illustrate the differences between the two formats. Essentially, inverse convention flips the 
order of the data and the data and parity bits are logically inverted. When receiving inverse convention 
data, the transformation of the data back to direct convention format is done in hardware, including the 
inversion of the data and parity bits.

Figure 28-37. Valid Initial Characters
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Figure 28-38. Inverse Convention Versus Direct Convention

28.4.3.8 Receive FIFO

The receive FIFO is implemented inside a sub-block of the receiver. The FIFO depth is 285 bytes and is 
shared by both SIM module ports. The receive FIFO is accessed through the SIM_RBUFn registers.

The receive FIFO is loaded from the receive shift register after the final bit of the current SIM card 
transmission has been received. The FIFO contains ten bits per transmission. The lower eight bits contain 
the received data byte. Bits 8 and 9 contain the parity and framing status for the received byte.

Each read from the receive FIFO increments the receive FIFO read pointer. Each time the receive shift 
register is transferred to the receive FIFO, the receive FIFO write pointer increments. When the difference 
between the read and write pointers equals the programmed threshold value (RDT), the receive data 
register full flag (RDRF) is set. An interrupt is generated by RDRF if SIM_IMR[RIM] is cleared. Software 
has no visibility of the receive FIFO pointers. A write to the receive FIFO register (SIM_RBUFn) 
generates an invalid access exception to the processor.

The receive FIFO is flushed by setting SIM_RCR[RCV_FLUSH]. The flush operation resets the receive 
read and write pointers to equal values. All logic associated with the receiver will be reset by the flush 
operation except for receiver control registers.

28.4.3.9 Overrun Detection

The receive FIFO logic is responsible for detecting an overrun condition. When a received byte is 
transferred from the receive shift register to a receive FIFO that contains 285 unread bytes, the SIM 
receiver flags an overrun condition (SIM_RSR[OEF]). The received byte is discarded leaving the 285 
unread bytes in the FIFO unaltered. The SIM module generates a NACK to the SIM card if 
SIM_CR[ONACK] is set. The SIM module continually NACK SIM card transmissions until a read of the 
receive FIFO occurs.

28.4.3.10 Character Wait Time Counter

The SIM receiver block includes a 16-bit counter that counts the number of bit times (ETUs) between 
received characters. When enabled, the character wait time counter (CWT) does not start counting until 

P

Byte i Byte i+1

Start Stop Bits Start

Parity

12 ETU min

ba bb bc bd be bf bg bh ba bb bc bd be

Parity bit: If configured for even parity, total number of logic ones in the 9 bits (8 bits data, 1 parity bit) will be even.
If configured for odd parity, total number of logic ones in the 9 bits (8 bits data, 1 parity bit) will be odd.

Direct convention: ba is lsb of data byte to be sent. bh is msb.

Neither the data bits nor parity bit is logically inverted.

Inverse convention: ba is msb of data byte to be sent. bh is lsb.

Both the data bits and parity bit are logically inverted by SIM card.

When configured for inverse convention, the parity bit is inverted by SIM card before being transmitted.
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after the start bit(s) of a valid character are received. The counter is synchronized to the receive character 
bit positions so that an accurate count of the number of ETUs between characters is made. The CWT has 
a 16-bit programmable comparator that software can write the expected number of ETUs between 
characters to. If the time between characters exceeds this value, an interrupt flag is set and an interrupt 
generated if the mask is clear.

28.4.4 SIM Port Control

The port control block comprises the following functions: SIM card interface, SIM Card presence detect, 
and SIM card auto-power down.

28.4.4.1 SIM Card Interface

The SIM module allows for direct control of two separate SIM cards. The SIM module does not support 
simultaneous communication with two SIM cards.

The SIM card clock is generated in the SIM clock generator. The SIM card reset and card voltage enable 
are controlled by software through SIM_PCRn.

See Figure 28-39 for an example SIM module connection to two SIM cards. The power management chip 
shown is used to provide Vcc for the SIM card, and level translators for the remaining signals when 
interfacing to a SIM card operating at a different voltage than SIM module. The SIM module can directly 
access a SIM card if it is operating at the same voltage. 

Figure 28-39. SIM Card Hookup

28.4.4.2 SIM Card Presence Detect

The SIM_PDx input allows for detection of the insertion or removal of a SIM card. Software can use 
SIM_DETECTn[SPDS] to configure which edge of the SIM_PDx pin causes a presence detect event. A 
maskable interrupt can be generated when a SIM_PDx event occurs.
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You can place an external pull-down resistor on the SIM_PDx pins. Doing so allows a high-to-low 
transition on the SIM_PDx pins to occur, when an external driver drives a logic high on the SIM_PDx pins 
when a card is present and the SIM card is then removed.

28.4.4.3 SIM Card Automatic Power Down

When interfacing to the SIM cards, it is necessary to follow a particular sequence when powering them up 
and down. The SIM port control block contains hardware that provides the correct sequence to power 
down a SIM card (see Figure 28-40). The power-up sequence must be done manually by the software using 
the pin control bits supplied in SIM_PCRn.

NOTE
The on-chip 32-kHz oscillator must be enabled for the automatic power 
down feature to operate. Set the RTC_CFG_DATA[OSCEN] bit in the RTC 
module. See Section 37.4.14, “RTC Configuration Data Register 
(RTC_CFG_DATA)”, for more details.

The power-down sequence is specified in ISO 7816 as:

1. SIM_RST transitions from high to low.

2. SIM_CLK is negated.

3. I/O transitions from high impedance to low.

4. SIM Vcc is turned off.

Figure 28-40. Auto Power Down Sequence

28.4.5 SIM General Purpose Counter

The SIM module provides a 16-bit counter for timing events during SIM card communication. The clock 
source for the counter is selectable between three sources: BAUD_CLK, RCV_CLK, or XMT_CLK (ETU 
clock). SIM_CR[GPCNT_CLKSEL] selects the clock input. The counter is enabled as soon as the input 
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clock is selected. The starting of the counter is immediate once the input clock is running. Software 
controls the three input clock sources by using SIM_RCR[KILL_CLOCK] and SIM_EN[RXEN, TXEN].

The counter is reset by clearing SIM_CR[GPCNT_CLKSEL]. A 16-bit comparator value allows software 
to select a count value to interrupt the processor if the mask is clear.

28.4.6 SIM LRC Block

The SIM module provides an 8-bit linear redundancy check (LRC) generator/checker for T=1 SIM cards 
that support LRC. This block is enabled through SIM_CR[LRCEN] and performs an 8-bit exclusive-OR 
on all received or transmitted characters. At the end of the reception of a block of characters, the result is 
expected to be zero. If so, SIM_RSR[LRCOK] is set. During transmission, the LRC block exclusive-ORs 
each character that is transmitted with the current value of the LRC. If SIM_CR[XMT_CRC_LRC] is set, 
the LRC value is automatically sent by the SIM transmitter as the final character when the transmit FIFO 
empties.

The LRC value is reset by any of the following:

• Clearing SIM_CR[LCREN]

• At the end of a transmission (either after the LRC byte is transmitted, or after the last character in 
the transmit FIFO is sent when XMT_CRC_LRC is clear)

• Setting SIM_EN[TXEN]

28.4.7 SIM CRC Block

The SIM module provides an 16-bit cyclic redundancy check (CRC) generator/checker for T=1 SIM cards 
that support CRC. This block is enabled through SIM_CR[CRCEN]. This block performs a polynomial 
based check on all received or transmitted characters. The polynomial description is shown in Figure 4-17. 
The polynomial used is the standard CRC-CCITT where g(x) = x16 + x12 + x5 + 1. The CRC register is 
initialized to all ones before the data is shifted in. Before transmission the resulting CRC is inverted. For 
example, transmitting a 0xFA results in the following:

• Data = 0x5F (bit reversal of 0xFA)

• CRC = 0x4AEA

• Invert the crc = 0xB515 (bit reversal of 0xADA8)

Table 28-30. General Purpose Counter Clock Source Selections

SIM_RCR
[KILL_CLK]

SIM_CR
[GPCNT_
CLKSEL]

SIM_EN
[RXEN]

SIM_CR
[CWTEN]

SIM_EN
[TXEN]

Card Clock Source 0 01 — — —

Receive Clock Source
0 10 1 — —

0 10 — — 1

ETU (Transmit) Clock 
Source

0 11 1 1 —

0 11 — — 1
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• Data transmitted = 0xFA, 0xAD, 0xA8

See Figure 28-41 for an illustration of the SIM CRC block.

Figure 28-41. CRC Block Diagram

At the end of the reception of a block of characters, the residual from the CRC calculation is compared to 
0x1D0F. If equal, SIM_RSR[CRCOK] is set. During transmission, the CRC block updates the current 
value of the CRC residual using each character. If SIM_CR[XMT_CRC_LRC] is set, the CRC value is 
automatically inverted and sent by the SIM transmitter as the final two characters when the transmit FIFO 
empties.

The CRC value is reset by any of the following:

• Clearing SIM_CR[CRCEN]

• At the end of a transmission (either after the CRC characters are transmitted, or after the last 
character in the transmit FIFO is sent when XMT_CRC_LRC is cleared)
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• Setting SIM_EN[TXEN]

28.4.8 Module Interrupts

See Table 28-31 for the list of all possible interrupt sources and their corresponding mask bits. The SIM 
interrupts are logically ORed to create two interrupts to the interrupt controller:

• SIM data interrupt — includes five transmit and receive status interrupts

• SIM general interrupt — includes ten various SIM interrupts

All mask bits disable the interrupt when set, whereas a zero implies that the interrupt is enabled 
(unmasked). All mask bits are set out of reset (all interrupts are masked).

28.5 Initialization/Application Information
This section describes the intended programming model for using the SIM module. The section describes 
how to begin a typical mode of operation using the registers.

Table 28-31. SIM Module Interrupts

Flag Mask Register Description

Data Interrupt

SIM_TSR[TC] SIM_IMR[TCIM] Transmit complete

SIM_TSR[ETC] SIM_IMR[ETCIM] Early transmit complete

SIM_TSR[TFE] SIM_IMR[TFEIM] Transmit FIFO empty

SIM_TSR[TDTF] SIM_IMR[TDTFM] Transmit data threshold flag

SIM_RSR[RDRF] SIM_IMR[RIM]
Receive data register full
(FIFO threshold level reached)

General Interrupt

SIM_TSR[GPCNT] SIM_IMR[GPCNTM]
General purpose counter 
comparator flag

SIM_TSR[XTE] SIM_IMR[XTM] Transmit threshold error

SIM_TSR[TFO] SIM_IMR[TFOM] Transmit FIFO overfill error

SIM_RSR[OEF] SIM_IMR[OIM] Overrun error flag

SIM_RSR[CWT] SIM_IMR[CWTM]
Character wait time counter 
comparator flag

SIM_RSR[BWT] SIM_IMR[BWTM]
Block wait time counter comparator 
flag

SIM_RSR[BGT] SIM_IMR[BGTM]
Block guard time counter 
comparator flag

SIM_RSR[RTE] SIM_IMR[RTM] Receive NACK threshold error

SIM_DETECT1[SDI1] SIM_DETECT1[SDIM1] SIM detect interrupt for port 1

SIM_DETECT0[SDI0] SIM_DETECT0[SDIM0] SIM detect interrupt for port 0
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28.5.1 Configuring SIM for Operation

The following list of items must be performed to configure the SIM module for operation:

1. Port selection in the SIM_SETUP register.

a) Select which SIM module port is active by writing the SPS bit.

2. Enable the selected port (port 1, SIM_PCR1; port 0, SIM_PCR0) following the SIM power-up 
procedure specified in ISO 7816.

a) Set SVEN to enable power to the SIM card.

b) Set STEN to enable SIM module transmit data output. This is required to allow the SIM 
receiver to create NACK pulses.

c) Set SCEN to enable SIM card clock.

d) Set SRST to release the SIM card from reset.

3. Choose the port baud rate in SIM_CR.

a) Select the SIM card clock rate by using CLK_PRE.

b) Select the SIM card baud rate by using BAUD_SEL and SAMPLE12

NOTE
Follow the ISO 7816 spec with regards to card clock frequencies to ensure 
the maximum frequency specification is not violated.

4. Select data format type, or place SIM receiver in initial character mode.

a) Select inverse convention or direct convention by using SIM_FORMAT[IC], or

b) Enable initial character mode by using SIM_CR[ICM]

28.5.1.1 Configuring SIM Receive

The following list of items must be performed to configure the SIM receiver for operation:

1. Enable NACK capability in SIM_CR.

a) Select NACK generation on parity errors, or invalid initial character by using ANACK.

b) Select NACK generation on overrun conditions by using ONACK.

2. Select the desired receive NACK threshold and receive FIFO threshold in SIM_RTHR.

a) Program the threshold at which the RDRF flag is set by using RDT.

b) Program the threshold at which the RTE flag is set by writing to RTH. If an automatic power 
down after RTE flag is set is desired, then enable the SIM card auto power down by setting 
SIM_PCRn[SAPD].

3. Configure the character wait time counter, the block wait timer counter, and the block guard time 
counter.

4. Enable interrupts in SIM_IMR.

a) Enable the receive data register full interrupt by using RIM.

b) Enable the receive threshold error interrupt by using RTM.

c) Enable the overrun condition interrupt by using OIM.
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d) Enable the character wait time interrupt by using CWTM.

28.5.1.2 Configuring SIM Transmitter

The following list of items must be performed to configure the SIM transmitter for operation:

1. Select desired re-transmission threshold for NACKed characters in SIM_TTHR.

a) Program the threshold at which the XTE flag will be set by using XTH.

2. Select the guard time between transmissions in SIM_TGCR.

a. Program the desired guard time between characters transmitted by the SIM module by using 
GETU.

3. Select the desired transmit FIFO threshold level in SIM_TTHR.

a) Program the desired threshold using TDT.

4. Enable interrupts in SIM_IMR.

a) Enable the transmit complete interrupt by using TCIM.

b) Enable the early transmit complete interrupt by using ETCIM.

c) Enable the transmit FIFO empty interrupt by using TFEIM.

d) Enable the transmit threshold error interrupt by using XTM.

e) Enable the transmit FIFO threshold interrupt by using TDTFM.

f) Enable the transmit FIFO overfill interrupt by using TFOM.

28.5.1.3 Configuring SIM General Purpose Counter

The following list of items must be performed to configure the SIM general purpose counter for operation:

1. Select the desired clock source for the general purpose counter using the SIM_CR register.

a) Use SIM_CR[GPCNT_CLKSEL] to select the desired clock source for the counter

2. Program counter comparator using the SIM_GPCNT register.

a) Use the GPCNT bits to select the desired count value at which the GPCNT interrupt flag is 
set.

3. Enable the selected clock source for the general purpose counter using SIM_RCR or SIM_EN.

a) If the GP counter is configured for the card clock, enable the clock by clearing 
SIM_RCR[KILL_CLOCK].

b) If the GP counter is configured for the receive oversample clock, enable this clock by setting 
SIM_EN[RXEN] or SIM_EN[TXEN].

c) If the GP counter is configured for the transmit oversample clock, enable this clock by setting 
SIM_EN[TXEN].

4. Enable interrupts in SIM_IMR.

a) Enable the general purpose counter interrupt by clearing GPCNTM.
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28.5.1.4 Configuring SIM to Measure WWT (Work Wait Time) for Type=0 Smart 
Cards

Work wait time is a combination of BWT and CWT. If you want the SIM to enforce a WWT of 100 bits, 
then you must activate CWT and BWT, and program them both for a value of 100 bits. When measuring 
WWT, the BGT timer is not used so it is masked (inactive) by the BGTM bit. 

Below is the sequence to program the SIM to send and receive data while checking WWT.

1. Program SIM_CWTR, SIM_BWTL, and SIM_BWTH registers to the WWT (work wait time) 
value that needs to be enforced. Clear the BGT register.

2. Activate both the CWT and BWT functions by setting SIM_CR[CWTEN, BWTEN].

3. Enable the CWT and BWT interrupts by clearing SIM_IMR[CWTM, BWTM].

4. Program the data to send to the smart card by writing data to SIM_TBUFn.

5. Activate the SIM transmit and receive by setting SIM_EN[TXEN, RXEN].

6. If the software has more data to send, then as the FIFO starts to empty, it should write more data 
to SIM_TBUFn. If the software does not have any more data to send then proceed to the next step.

7. When the smart card has completed its transmission to the SIM module, disable the BWT by 
clearing SIM_CR[BWTEN]. This prepares the SIM to measure the next block wait time.

8. Disable the SIM transmitter by clearing SIM_EN[TXEN].

9. Program the next data to send by writing data to SIM_TBUFn.

10. Enable the BWT function by setting SIM_CR[BWTEN].

11. Enable the SIM transmitter by setting SIM_EN[TXEN].

12. Steps 6 to 10 can be repeated for each transmission to the smart card.

13. If a CWT or a BWT interrupt occurs, the software should consider this a WWT violation. The 
software should clear the CWT or BWT interrupt by writing one to SIM_RSR[BWT or CWT].

28.5.1.5 Configuring SIM to measure CWT, BWT, BGT for Type=1 Smart Cards

The following list of items must be performed to configure the SIM to measure CWT, BWT, and BGT.

1. Program SIM_CWTR, SIM_BWTL, SIM_BWTH, and SIM_BGT to the enforced value.

2. Activate the CWT and BWT functions by setting SIM_CR[CWTEN, BWTEN].

3. Enable the CWT, BWT, and BGT interrupts by clearing SIM_IMR[CWTM, BWTM, BGTM].

4. Program the data to send to the smart card by writing data to SIM_TBUFn

5. Activate the SIM transmit and receive by setting SIM_EN[TXEN, RXEN].

6. As the FIFO approaches empty, if the software has more data to send, it should write more data to 
SIM_TBUFn. If the software does not have any more data to send, proceed to the next step.

7. When the smart card has completed its transmission to the SIM module, disable the BWT by 
clearing SIM_CR[BWTEN. This prepares the SIM to measure the next block wait time. 

8. Disable the SIM transmitter by clearing SIM_EN[TXEN].

9. Program the next data to send by writing data to SIM_TBUFn.

10. Enable the BWT function by setting SIM_CR[BWTEN].
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11. Enable the SIM transmitter by setting SIM[TXEN].

12. Steps 6 to 10 can be repeated for each transmission to the smart card.

13. If a CWT or a BWT interrupt occurs, the software should read SIM_RSR to determine if the error 
was caused by a CWT, BWT, or BGT violation. The software should clear the CWT, BWT, or 
BGT interrupt by writing a one to SIM_RSR[CWT, BWT, or BGT]

28.5.1.6 Configuring SIM Linear Redundancy Check (LRC) Block

The following list must be performed to configure the SIM linear redundancy check block for operation:

1. Enable the LRC block by using SIM_CR

a) Use LRCEN to enable the LRC block

b) Use XMT_CRC_LRC to enable the transmission of the LRC character after the last character 
in the transmit FIFO is sent. Refer to the T=1 programming model for more details.

28.5.1.7 Configuring SIM Cyclic Redundancy Check (CRC) Block

The following list must be performed to configure the SIM cyclic redundancy check block for operation:

1. Enable the CRC block by using SIM_CR.

a) Use CRCEN to enable the CRC block

b) Use XMT_CRC_LRC to enable the transmission of the CRC characters after the last 
character in the transmit FIFO is sent. Refer to the T=1 programming model for more details.

28.5.2 Using SIM Receiver

When the SIM has been properly configured (correct baud rate and data format), SIM receptions can be 
enabled by setting the receive enable bit, SIM_EN[RXEN]. As bytes are received, they are placed in the 
285 byte deep receive data FIFO. Unread bytes can be accessed from this FIFO at any time. There is no 
need to disable the receiver to access the FIFO. The FIFO should only be read when the receive FIFO data 
flag, SIM_RSR[RFD] is set. The RFD flag, which cannot generate an interrupt, is set when there is at least 
one unread byte in the receive FIFO. If the receive FIFO is read when RFD is cleared, it will simply 
produce the last byte read.

The correct address to read the data contained in the receive FIFO depends on which SIM port is selected. 
SIM_SETUP[SPS] controls port selection. If cleared, read the data from the SIM_RBUF0; if set, read the 
data from SIM_RBUF1.

The receive data register full flag, SIM_RSR[RDRF], is used to determine when the receive FIFO has 
reached a given threshold value. This flag generates an interrupt if SIM_IMR[RIM] is cleared. To control 
at when RDRF is set, program the receive data threshold, SIM_RTHR[RDT]. If the number of unread 
bytes in the receive FIFO is equal to or greater than the value set by RDT, RDRF is set.

NOTE
A value of 0x0 in RDT implies that there must be 285 unread bytes in the 
receive FIFO to trigger RDRF.
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The value in RDT can be changed at any time to alter this threshold level. The comparison between the 
number of unread bytes in the FIFO and the value set by RDT is continuously updated so that any change 
in either will be immediately reflected in the state of RDRF. For instance, if RDT is set to 0x5 and there 
are three unread bytes in the FIFO, changing RDT to 0x2 immediately sets RDRF. Likewise, setting RDT 
back to 0x5 clears RDRF. Similarly, if there are five unread bytes in the receive FIFO and RDT is set to 
0x3, RDRF remains set until three reads are complete (assuming RDT is constant and no new data is 
received).

The standard flow for receiving bytes from the SIM card is to:

1. Set RDT to the appropriate value.

2. Wait for RDRF to cause an interrupt (RIM clear).

3. Read bytes out of the receive FIFO as long as RFD is set.

In addition to checking RFD between every byte, it is also recommended to check for the existence 
of a set OEF flag as well.

28.5.2.1 Receive Parity Errors and Parity NACK Generation

The SIM receiver checks every byte received for proper parity. SIM_FORMAT[IC] controls whether it 
checks for odd or even parity. When checking for odd parity, the number of logic ones contained in the 
nine received bits (eight data bits and one parity bit) should be odd. Likewise, when checking for even 
parity, the number of logic ones contained in the nine received bits should be even.

When a parity error is detected on a given byte, SIM_RBUFn[PE] for that byte is set. The PE flag for each 
byte is read out of the FIFO when the data itself is read. There is no need to clear the parity error flag in 
the FIFO. It is simply overwritten the next time a byte is received into that position of the FIFO. A parity 
error cannot cause an interrupt.

If SIM_CR[ANACK] is set, the SIM automatically requests the SIM card to resend a byte found with a 
parity error by generating a NACK pulse on the SIM_DATA pin. Bytes with parity errors that cause a 
NACK pulse are still placed into the FIFO just as bytes that do not cause a NACK pulse. Software must 
discard data bytes with parity errors.

To control NACK generation by the SIM receiver use SIM_RTHR[RTH]. This set of bits specify the 
number of consecutive NACKs generated by the SIM module on a received byte, before setting the receive 
threshold interrupt flag, SIM_RSR[RTE]. The RTE flag also forces the SIM port to power-down the card 
if SIM_PCRn[SAPD] is set.

NOTE
SIM_CR[ANACK] must be set to enable this feature. In initial character 
mode, ANACK enables the retransmission of initial characters in the event 
that an invalid initial character is received.

When a valid character has been received by the SIM, the internal counter keeping track of the number of 
NACKs transmitted on the current byte resets to zero. Clearing SIM_RSR[RTE] also clears that counter.

When generating a NACK pulse, the SIM generates the low pulse starting at 10.5 ETUs and lasting for 
one ETU.
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28.5.2.2 Receive Frame Errors

The SIM receiver checks every byte received for a proper stop bit. A stop bit should exist during at least 
the first half of the 11th ETU time after the start of the character. If this is not true, a frame error is flagged. 
When a frame error is detected on a given byte, SIM_TBUFn[FE] for that byte is set in the FIFO. The FE 
flag for each byte is read out of the FIFO when the data itself is read. There is no need to clear the frame 
error flag in the FIFO. It is simply overwritten the next time a byte is received into that position of the 
FIFO. A frame error cannot cause an interrupt, nor can it create a NACK pulse to the receiver asking for 
a retransmission of the corrupted data.

28.5.2.3 Receive Overrun Errors and Overrun NACK Generation

When 285 unread bytes are in the FIFO, a received character will cause the SIM receiver to flag an overrun 
condition. This condition always sets the overrun error flag, SIM_RSR[OEF]. The received byte is 
discarded, leaving the 285 unread bytes in the FIFO unaltered.

If SIM_CR[ONACK] is set, the SIM automatically requests the SIM card to resend the byte that caused 
the overrun condition by generating a NACK pulse on the SIM_DATA pin. In this case, the existence of 
an OEF flag does not indicate the loss of data, but rather a NACK (retransmission request) due to a full 
receive FIFO. As opposed to transmit NACK generation, there is no limit to the number of times an 
overrun condition causes a NACK other than to disable ONACK itself. When generating a NACK pulse, 
the SIM generates the low pulse starting at 10.5 ETUs and lasting for one ETU.

If ONACK is cleared, a set SIM_RSR[OEF] indicates the loss of data. The OEF flag generates an interrupt 
if SIM_IMR[OIM] is cleared.

To clear OEF, software must write a one to SIM_RSR[OEF]. A high OEF flag has no effect on the 
operation of the SIM receiver other than to create an interrupt if OIM is clear.

28.5.2.4 Initial Character Mode and Resulting Receive Data Formats

The SIM receiver supports the detection of special characters that allow it to determine what data format 
is being used by the connected SIM card. When placed in initial character mode, the SIM expects to 
receive one of two potential values that it uses to set the data format control bit, SIM_FORMAT[IC].

The two possible data formats are inverse convention and direct convention. Essentially, inverse 
convention differs from direct convention in that the order of the data is flipped, and the data and parity 
bit are logically inverted. When receiving inverse convention data, the transformation of the data back to 
direct convention format is done in hardware, including the inversion of the data and parity bits.

To place the SIM into initial character mode, set SIM_CR[ICM]. When a valid initial character is received, 
SIM_FORMAT[IC] is set accordingly by the hardware, and ICM is cleared. Software can read the state of 
IC to determine which mode the SIM is currently using.

A 0x3B (as decoded by direct convention) with parity bit set causes direct convention to be used (IC 
cleared); whereas, a 0x3F (as decoded by inverse convention) with parity bit set causes inverse convention 
to be used (IC set).

When the receiver is in initial character mode, all received bytes continue to be placed into the receive 
FIFO whether they are valid initial characters or not. If a valid initial character is received that causes the 
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data format being used to change, all subsequent bytes are decoded with that format before being placed 
into the FIFO (including the initial character byte itself). That is, if IC is cleared and the correct initial 
character for setting inverse convention is received, that character and all subsequently received characters 
are stored in the FIFO after having been decoded using inverse convention (for example, the initial 
character is stored as 0x3F).

If the receiver is in initial character mode (ICM is set) and an invalid initial character is received, the SIM 
can be configured to automatically request that the initial character be retransmitted by setting 
SIM_CR[ANACK]. When generating a NACK pulse, the SIM generates the low pulse starting at 
10.5 ETUs and lasting for one ETU. The invalid initial character is placed into the receive FIFO and 
marked with a parity error, signifying that this is an invalid initial character.

28.5.2.5 Initial Character Mode Programming Notes

The usage of initial character mode requires close attention to the programming model. A parity error in 
the initial byte for direct convention (0x3B) could be decoded as what appears as a valid initial character 
for inverse convention (0x3F). The SIM module does not recognize this as a valid initial character for 
inverse convention and marks the character by setting the parity error flag. The software must look for the 
existence of a parity error before recognizing a character as a valid initial character.

28.5.2.6 Automatic Receiver Mode

The SIM module has an automatic receive mode that inhibits the data being transmitted by the SIM module 
from entering the SIM receive buffer through the feedback path of the SIM data pin. The SIM module 
receiver should normally be enabled while the transmitter is operational. Automatic receive mode saves 
the software from having to actively manage the transition from transmitter to receiver. The auto-receive 
mode is always active when the receiver is enabled.

28.5.2.7 Using the SIM Receiver with T=1 SIM Cards

T=1 SIM cards present several requirements beyond standard T=0 cards. The features provided to meet 
the requirements that pertain to the SIM receiver are as follows:

• 11 ETU characters

— T=1 cards can transmit with character lengths of 11 ETUs (one stop bit). The SIM module 
provides SIM_TGCR[RCVR11] register to configure the receiver state machine to accept 
11 ETU characters.

• Character wait time counter

— The character waiting time (CWT) is the time between the start bits of two consecutive 
characters received from the smart card. The value of CWT can range from 12 ETU to 32,779 
ETU. The SIM module provides a 16-bit counter with programmable comparator clocked at 
the ETU bit rate to identify when the CWT has been exceeded by the SIM card.

• Block waiting time

— The block waiting time (BWT) is the maximum time between the start bits of the last character 
of a transmitted block and the first character of the next received block. The BWT must not 
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exceed a value that is programmable. The SIM module provides a 32-bit block wait timer 
(divided in two registers) that identifies when the BWT has been violated.

• Block guard time

— The block guard time (BGT) is the minimum delay between the start bits of the last character 
of a transmitted block and the first character of the next received block. The BGT must be 
greater than a value that is programmable. The SIM module provides a 16-bit block guard timer 
that identifies when the BGT has been violated.

• Error detection code

— T=1 cards can specify LRC or CRC error detection codes to be used. The SIM module provides 
hardware support for LRC and CRC operations.

28.5.3 Using SIM Transmitter

Once the SIM is properly configured (such as, SIM_PCRn[STEN] set, correct baud rate, and correct data 
format), enable the transmitter by setting SIM_EN[TXEN]. If data was previously written to the transmit 
FIFO, the transmitter begins to send the first character. If no data is written to the transmit FIFO before 
enabling the transmitter, then the transmitter waits until the first character is written before beginning 
transmission. Clearing SIM_EN[TXEN] while the transmitter is in operation, halts any transmission in 
progress, flushes the transmit FIFO, and resets the transmit state machine. Data can be written to the 
transmit FIFO at any time.

The transmit data threshold flag, SIM_TSR[TDTF] is used to determine when the transmit FIFO has 
reached a given threshold value. This flag creates an interrupt if SIM_IMR[TDTFM] is cleared. To control 
at which point TDTF is set, program the transmit data threshold, SIM_TTHR[TDT]. If the number of bytes 
remaining in the transmit FIFO is equal to or less than the value set by TDT, TDTF is set.

NOTE
A value of zero in TDT implies that the transmit FIFO must be empty to 
trigger TDTF.

The value in TDT can be changed at any time to alter this threshold level. The comparison between the 
number of remaining bytes in the transmit FIFO and the value set by TDT is continuously updated so that 
any change in either will be immediately reflected in the state of TDTF. Unlike the RDRF flag for the 
receive FIFO, TDTF is latched and remains set until the software writes a one to SIM_TSR[TDTF]. For 
instance, if TDT is set to 0x5, and there are six bytes remaining in the FIFO, changing TDT to 0x6 
immediately causes TDTF to set. However, setting TDT back to 0x5 does not cause TDTF to clear.

The standard flow for transmitting bytes from the SIM card is to:

1. Set TDT[3:0] to the appropriate value

2. Write up to 16 bytes to the transmit FIFO

3. Enable the transmitter

4. Wait for TDTF to cause an interrupt (TDTFM clear)

5. Write additional bytes to the transmit FIFO
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28.5.3.1 Transmit Data Formats

There are two possible data formats the SIM module uses when transferring data to the card: inverse or 
direct convention. The format used depends on the state of inverse convention bit, SIM_FORMAT[IC]. 
Software can set the IC bit or it can be set automatically by hardware when using initial character mode.

28.5.3.2 Transmit NACK

The SIM transmitter can respond to NACKs created by the SIM card. A NACK is decoded if the SIM card 
creates a logic low level on the SIM receive pin during the stop bit time at the end of a transmitted byte. 
To prevent a situation where the SIM interface is stalled by an infinite number of NACK pulses on a given 
byte, the SIM module can be configured to limit the number of times it will respond to NACKs by 
SIM_TTHR[XTH]. If the threshold is reached, a transmit threshold error, SIM_TSR[XTE], is asserted. 

When XTE is set, the SIM transmitter is halted, all pending transfers are aborted, and the TC, ETC, and 
TFE flags are set. All bytes remaining in the transmit FIFO are lost. There is no way to restart the 
transmission on the next byte in the FIFO. The transmitter remains frozen until XTE is cleared by software 
by writing a one to SIM_TTHR[XTE]. The XTE flag can generate an interrupt if SIM_TTHR[XTM] is 
cleared.

You can disable the detection of NACKs from the SIM card by setting XTH to 0x0. Setting XTH to 0x1, 
disables all retransmissions while still setting XTE on the first NACK received. In general, XTE is set on 
the NACK that causes the threshold to be reached. This final NACK does not cause a retransmission, 
whereas all previous NACKs do.

28.5.3.3 Transmit Guard Time

The time between data bytes sent from the SIM transmitter can be altered using the transmit guard time 
control. By default, the minimum time between start bits of successive transmitted bytes is 12 ETUs (a 
start bit, eight data bits, a parity bit, and two stop bits). The number of stop bits (idle bits) can be extended 
by an integer number of ETUs. The number of additional ETUs can be programmed directly into 
SIM_TGCR[GETU]. Setting GETU bits to 0xFF configures the SIM transmitter to use only one stop bit 
for each character transmission.

28.5.3.4 Using the SIM Transmitter with T=1 SIM Cards

T=1 SIM cards present several requirements beyond standard T=0 cards. The features provided to meet 
the requirements that pertain to the SIM transmitter are as follows:

• 11 ETU characters

— The SIM module transmitter has a programmable guard time register that allows the 
programmer to specify the number of ETUs between character transmissions. Programming a 
value of 255 (0xFF) in SIM_TGCR[GETU] sets the number of ETUs per character transmitted 
to 11.

• Character waiting time

— The character waiting time (CWT) is the time between the start bits of two consecutive 
characters. The value of CWT can range from 12–32,779 ETU. The time between transmitted 
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characters is controlled by the programmable guard time in SIM_TGCR. However, the time 
between the last byte in the transmit FIFO, and the next transmitted byte can be largely affected 
by software response time to the transmit interrupts. The SIM transmitter provides a transmit 
FIFO threshold (TDTF) interrupt to signal the system when the expected number of characters 
have been transmitted from the transmit FIFO. The minimum CWT is achieved only if the 
software can respond to the TDTF interrupt and write new data to the transmit FIFO before the 
last character in the transmit FIFO has been sent.

• Block waiting time

— The block waiting time (BWT) is the maximum time between the start bits of the last character 
of a transmitted block and the first character of the next received block. The value of BWT is 
always greater than 1800 ETU. The SIM transmitter provides a general purpose counter that 
can be used to track the BWT. The BWT is purely determined by software response time to the 
transmit interrupts.

• Block guard time

— The block guard time (BGT) is the minimum delay between the start bits of the last character 
of a transmitted block and the first character of the next received block. The value of BGT is 
22 ETU. The SIM module supports the BGT by providing an interrupt when the last byte is 
received, and transmitting within 2 ETU after SIM_EN[TXEN] is set. The BGT is determined 
by the speed at which the software can react to an interrupt and enable the transmitter.

• Error detection code

— T=1 cards can specify LRC or CRC error detection codes to be used. The SIM module provides 
hardware support for both LRC and CRC operation.

28.5.4 Suggested Programming Model

This section describes the suggested programming model for supporting T=1, T=0, and known special 
cards using the SIM module. This should be used as a rough guide for configuring the SIM module for 
SIM cards specified by ISO 7816-3 and EMV. Some details are not addressed. Other uses for some of the 
SIM features are not included (for example, GP counter for some ISO timing requirements).

28.5.4.1 Detecting Answer To Reset (ATR)

The first step to communicating with a SIM card is providing power and a clock signal to the card. Once 
the card is detected as present (using the presence detect features or some other method), the SIM card 
should be powered up according to the power-up sequence specified in the ISO 7816-3 specification.

1. Apply voltage to the SIM card by setting SIM_PCRn[SVEN].

2. Set the SIM_ODCR[ODPn] bit to enable the SIM_DATA pin.

3. Set the SIM_PCRn[3VOLT] bit to enable the data to the SIM as bidirectional through the 
SIM_DATA pin.

4. Select the appropriate clock frequency for the SIM card by programming SIM_PRE.

5. Enable the clock to the SIM card by setting SIM_PCRn[SCEN].

6. Remove the card from reset by setting SIM_PCRn[SRST].
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The first communication between the SIM card and the SIM module is a block of data sent from 
the SIM card to the SIM module after the card is powered and the card reset is removed. This block 
is called the answer to reset (ATR). To receive the ATR, the SIM module should be configured for 
12 ETU character reception. According to the ISO 7816-3 spec, both T=0 and T=1 cards 
communicate initially using 12 ETU character durations.

NOTE
We are aware of some card manufacturers that communicate at 11.5 ETU 
character durations (Geldkarte). This complicates the initial card detection 
sequence shown below.

7. Clear SIM_TGCR[RCVR11].

8. Set SIM_CR[ANACK] to enable NACK generation.

The ISO 7816-3 spec allows the SIM module to NACK any communication errors that occur 
during the initial communication at 12 ETU.

NOTE
The Europay Mastercard and VISA (EMV) cards are similar to T=1, but do 
not allow the SIM module to NACK during the initial communication. This 
again complicates the initial card detection sequence shown below.

9. Enable RDRF and OEF interrupts by setting SIM_IMR[RIM, OIM] to notify when characters are 
received.

10. Set desired threshold for received characters before generating an interrupt by writing 
SIM_RTHR[RDT].

11. Set initial character mode by setting SIM_CR[ICM].

This causes the hardware to identify the first valid character sent during the ATR as an initial 
character. This character automatically configures the hardware for the data convention used by the 
SIM card.

The ISO 7816-3 spec requires that SIM cards meet certain timing restrictions. One of these is the time from 
the deassertion of the card reset to the beginning of the ATR sequence. The SIM module general purpose 
counter can verify that the SIM card begins its ATR within the 400 to 40,000 clock cycle range.

12. Set general purpose counter comparator to 0x9C40 using SIM_GPCNT.

13. Enable the general purpose counter interrupt by clearing SIM_IMR[GPCNTM].

14. Enable the general purpose counter by programming SIM_CR[GPCNT_CLKSEL] to 01 so the 
card clock is used for counting.

The ISO7816-3 spec states that the maximum allowed time between two characters during the ATR is 
9600 ETUs (initial waiting time). The character wait time (CWT) counter should be setup to detect any 
errors for this condition.

15. Set CWT counter comparator to 9600 using SIM_CWTR.

16. Enable the CWT counter interrupt by clearing SIM_IMR[CWTM].

17. Enable the CWT counter by setting SIM_CR[CWTEN].

The last step in preparing for ATR reception is to enable the receiver.
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18. Set SIM_EN[RXEN].

The SIM module generates interrupts once a threshold number of characters is received. The software 
should react to these interrupts and read the characters from the receive FIFO (SIM_RBUFn) until the 
complete ATR is received. If a general purpose counter interrupt occurs before the final ATR character is 
received, then the card should be deactivated according to ISO 7816-3. Otherwise, once a valid ATR is 
received, the software knows from the ATR information the specific characteristics for this card (refer to 
the ISO 7816-3 spec for details).

28.5.4.2 Programming Considerations for Geldkarte Cards

Geldkarte SIM cards do not send the ATR in 12 ETU mode or support NACKs. This creates an issue with 
detecting a valid ATR. As a result, the software and hardware do not know how to begin communication. 
Basically, if the card fails to send a valid ATR on the first try, disable NACKs, configure the SIM module 
for 11 ETU, and try again. The software should toggle between 12 and 11 ETU modes with and without 
NACKs enabled until a valid ATR is received, or the number of attempts to communicate passes a 
predetermined error threshold. Figure 28-42 shows the flow chart for the suggested Geldkarte-compliant 
SIM initialization.

Figure 28-42. Suggested T=1, EMV, Geldkarte Compliant SIM Initialization
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28.5.4.3 Programming Considerations for T=0 SIM Cards

If using a T=0 card, software should adjust the following parameters according to the information in the 
ATR:

1. Adjust the baud rate by changing the values of SIM_CR[BAUD_SEL, SAMPLE12]

2. Adjust the guard time between characters by changing the value of SIM_TGCR[GETU].

3. Adjust NACK capability by modifying the values of SIM_CR[ONACK, ANACK].

4. Adjust the stop clock polarity by modifying the values of SIM_PCRn[SCSP].

5. Adjust the level of transmit NACK re-transmissions allowed by modifying SIM_TTHR[XTH].

6. Adjust the level for the receive NACK threshold by modifying SIM_RTHR[RTH].

If a negotiation with the SIM card is desired, the software sends a PPS response to the SIM card. To send 
the response, the following steps must be performed:

1. Set the desired transmit FIFO threshold level by writing SIM_TTHR[TDT].

2. Write the characters to be sent as response (max 16) to the transmit FIFO using SIM_TBUFn.

3. Clear all transmit interrupt flags in SIM_TSR by writing a one to them.

4. Enable the desired transmit interrupts by clearing the mask bits in SIM_IMR. If more than 16 
characters are sent, use the TDTF interrupt to signify when to write more characters to the 
transmit FIFO. This results in the most efficient transfer times to the SIM card.

5. Enable the transmitter by setting SIM_EN[TXEN].

At this point, the SIM module transmits the characters in the transmit FIFO. If more than 16 characters are 
sent, the transmit threshold interrupt is set when the threshold number of characters are remaining in the 
FIFO. The software can then write an additional number of characters without interrupting transmission 
to the SIM card.

Once the transmission is complete, the SIM module must be completely configured for standard operation 
with the T=0 SIM card. The software can continue to service RDRF interrupts for received characters, and 
TDTF interrupts for transmitted characters.

28.5.4.4 Programming Considerations for T=1 SIM Cards

If using a T=1 card, software should adjust the following parameters according to the information in the 
ATR:

1. Adjust the baud rate by changing the values of SIM_CR[BAUD_SEL, SAMPLE12]

2. Adjust the guard time between characters by changing the value of SIM_TGCR[GETU]. Setting 
GETU to 0xFF configures the SIM transmitter for 11 ETU transmissions.

3. Disable NACK capability by clearing SIM_CR[ONACK, ANACK]. T=1 cards do not allow 
NACKs.

4. Adjust the stop clock polarity by modifying the values of SIM_PCRn[SCSP].

5. Set character wait time counter comparator to value specified in the ATR by using SIM_CWTR.

6. Enable the character wait time counter interrupt by clearing SIM_IMR[CWTM].

7. Enable the character wait time counter by setting SIM_CR[CWTEN].
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8. Enable CRC or LRC error checking according to the ATR information by setting either 
SIM_CR[CRCEN or LRCEN]. Never set these bits at the same time.

For T=1 cards, the ATR is sent using a T=0 type of structure (12 ETU, no LRC or CRC). If a negotiation 
with the SIM card is desired, software must send a PPS response to the SIM card. Otherwise, the protocol 
is initiated with a block transfer from the SIM module. To send the response or the first block, the 
following steps must be performed:

1. Set the desired transmit FIFO threshold level by writing to SIM_TTHR[TDT].

2. Write the characters to be sent as response (max 16) to the transmit FIFO using SIM_TBUFn

3. Clear all transmit interrupt flags in SIM_TSR by writing a one to them.

4. Enable the transmit interrupts desired by clearing the mask bits in SIM_IMR. If more than 16 
character are sent, use the TDTF interrupt to signify when to write more characters to the transmit 
FIFO. This results in the most efficient transfer times to the SIM card.

5. Enable transmission of the error checking characters (LRC or CRC) by setting 
SIM_CR[XMT_CRC_LRC].

NOTE
If the card supports PPS, the software may not be allowed to send the 
LRC/CRC information until the PPS exchange is completed. If so, do not 
set the XMT_CRC_LRC bit during the PPS exchange.

6. Enable the transmitter by setting SIM_EN[TXEN].

At this point, the SIM module transmits the characters in the transmit FIFO. If more than 16 characters are 
sent, the transmit threshold interrupt is set when the threshold number of characters are remaining in the 
FIFO. The software can then write an additional number of characters without interrupting transmission 
to the SIM card.

Once the transmission is complete, the SIM module must be completely configured for standard operation 
with the T=1 SIM card. The software can continue to service RDRF interrupts for received characters, and 
TDTF interrupts for transmitted characters.
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Chapter 29  
Analog Digital Converter (ADC)

29.1 Introduction
The analog-to-digital (ADC) converter block consists of two separate analog to digital converters, each 
with four analog inputs and their own sample and hold (S/H) circuit. A common digital control module 
configures and controls the converters. The module is instantiated as a dual 12-bit ADC with both 
converters sharing a common voltage reference and control block. This is illustrated in Figure 29-1.

29.1.1 Features

ADC characteristics include:

• 12-bit resolution

• Maximum ADC clock frequency is 10 MHz with 100 ns period

• Sampling rate up to 4 million samples per second1

• Single conversion time of 8.5 ADC clock cycles (8.5  100 ns = 708.30 ns)

• Additional conversion time of 6 ADC clock cycles (6  100 ns = 499.98 ns)

• Eight conversions in 26.5 ADC clock cycles (26.5  100 ns = 2.21 s) using parallel mode

• Can be synchronized to the PWM via the PWM_SYNC0/1 input signal

• Sequentially scan and store up to 8 measurements

• While operating simultaneously and in parallel, scan and store up to four measurements on each 
ADC converter

• While operating asynchronously in parallel, scan and store up to four measurements on each ADC 
converter 

• Optional interrupts at end of scan if an out-of-range limit is exceeded or at zero crossing

• Optional sample correction by subtracting a pre-programmed offset value

• Signed or unsigned result

• Single-ended or differential inputs

• PWM outputs with hysteresis for three of the analog inputs

1. While in loop mode, the time between each conversion is six ADC clock cycles (499.98 ns). Using simultaneous conversion, 
two samples can be obtained in 499.98 ns. Samples per second is calculated according to 499.98 ns per two samples or 
4,000,160 samples per second.
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29.2 Block Diagram
Figure 29-1 illustrates the dual ADC configuration.

Figure 29-1. Dual ADC Block Diagram

29.3 External Signal Description
Table 29-1 shows the ADC signal interface.

29.4 Memory Map/Register Definition
Do not reconfigure the ADC during scan operations, as this can lead to unpredictable results. The 
following accesses are allowed during scan operations:

• Reading status

• Reading conversion results

• Clearing interrupts

Table 29-1. ADC Signal Description

Signal I/O Function

ADC_IN[7:0] I Analog input to be converted.

ADC_VDD — Dedicated power supply pins to reduce noise coupling and to improve 
accuracy. The power provided to these pins is suggested to come from 
a low noise filtered source. Connect uncoupling capacitors between 
ADC_VDD and ADC_VSS. ADC_VSS is shared among the analog and 
digital circuitry.
Note: On this device, the ADC reference voltages are internally 

connected to this supply.

ADC_VSS —
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• Clearing zero crossing and limit status flags

• Starting/stopping scans using START and STOP bits. 

29.4.1 ADC Control Register 1 (ADC_CR1)

This register controls all types of scans except parallel scans in the B converter when 
ADC_CR2[SIMULT] is cleared. Non-simultaneous parallel scan modes allow independent parallel 
scanning in the A and B converter. Bits 14, 13, 12, and 11 in ADC_CR2 register control converter B scans 
in non-simultaneous parallel scan modes.

Table 29-2. ADC Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xFC09_4000 Control register 1 (ADC_CR1) 16 R/W 0x5005 29.4.1/29-3

0xFC09_4002 Control register 2 (ADC_CR2) 16 R/W 0x5080 29.4.2/29-6

0xFC09_4004 Zero crossing control register (ADC_ZCCR) 16 R/W 0x0000 29.4.3/29-7

0xFC09_4006 Channel list register 1 (ADC_LST1) 16 R/W 0x3210 29.4.4/29-7

0xFC09_4008 Channel list register 2 (ADC_LST2) 16 R/W 0x7654 29.4.4/29-7

0xFC09_400A Sample disable register (ADC_SDIS) 16 R/W 0x0000 29.4.5/29-9

0xFC09_400C Status register (ADC_SR) 16 R/W 0x0000 29.4.6/29-9

0xFC09_400E Limit status register (ADC_LSR) 16 R/W 0x0000 29.4.7/29-11

0xFC09_4010 Zero crossing status register (ADC_ZCSR) 16 R/W 0x0000 29.4.8/29-12

0xFC09_4012
+ 2n

Result registers (ADC_RSLTn)
n = 0–7

16 R/W 0x0000 29.4.9/29-13

0xFC09_4022
+ 2n

Low limit 0–7 registers (ADC_LLMTn)

n = 0–7

16 R/W 0x0000 29.4.10/29-13

0xFC09_4032
+ 2n

High limit 0-7 registers (ADC_HLMTn)
n = 0–7

16 R/W 0x7FF8 29.4.10/29-13

0xFC09_4042
+ 2n

Offset 0–7 registers (ADC_OFSn)
n = 0–7

16 R/W 0x0000 29.4.11/29-14

0xFC09_4052 Power control register (ADC_PWR) 16 R/W 0x3D8F 29.4.12/29-15

0xFC09_4054 Calibration register (ADC_CAL) 16 R/W 0x0000 29.4.13/29-18

0xFC09_4056 Power control register 2 (ADC_PWR2) 16 R/W 0x0005 29.4.14/29-18

0xFC09_4058 Conversion divisor register (ADC_DIV) 16 R/W 0x0505 29.4.15/29-19

0xFC09_405A Auto-standby divisor register (ADC_ASDIV) 16 R/W 0x0137 29.4.16/29-20
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Address: 0xFC09_4000 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA
EN

STOP
0

0
SYNC

0
EOS
IE0

ZC
IE

LLMT
IE

HLMT
IE

CHNCFG
0

SMODEW START
0

Reset 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1

Figure 29-2. Control Register 1 (ADC_CR1)

Table 29-3. ADC_CR1 Field Descriptions

Field Description

15
DMAEN

DMA enable. Enables DMA use, instead of interrupts. Also when set, all bits and signals related to the 
interrupt interface are redundant. This bit is used for both the converters
0 DMA disabled
1 DMA enabled

14
STOP0

ADC stop enable. When set, the current scan is stopped and no further scans can begin. Any further 
SYNC0 input pulses or writes to the START0 bit are ignored until this bit is cleared. After the ADC is in 
stop mode, you can change the result registers, and these changes are treated as if the analog core 
supplied the data. Therefore, limit checking, zero crossing, and associated interrupts can occur when 
authorized.
0 Normal operation
1 Stop mode
Note: This is not the same as the processor’s low-power stop mode.

13
START0

Start conversion. A scan is started by setting the START0 bit. This is a write-only bit. Writing one to the 
START0 bit again while the scan remains in process is ignored.
0 No action
1 Start command is issued
Note: The ADC must be in a stable power configuration prior to writing this bit. Refer to the functional 

description of power modes for further details.

12
SYNC0

SYNC0 enable. If set, a conversion may be initiated by asserting a positive edge on the SYNC0 input. 
Any subsequent SYNC0 input pulses while the scan remains in process are ignored.
0 Scan is initiated by setting the START0 bit only
1 Use a SYNC0 input pulse or START0 bit to initiate a scan
Note: The ADC must be in a stable power mode prior to SYNC0 input assertion. Refer to the functional 

description of power modes for further details.
Note: In once-scan modes, only the first SYNC0 input pulse is honored. Subsequent SYNC0 input pulses 

are ignored until the SYNC0 input is re-armed by writing to ADC_CR1. This can be done at any 
time, including while the scan remains in process.

11
EOSIE0

End of scan interrupt 0 enable. Enables an EOSI0 interrupt to be generated upon completion of the scan. 
For loop scan modes, the interrupt triggers after the completion of each iteration of the loop.
0 Interrupt disabled
1 Interrupt enabled

10
ZCIE

Zero crossing interrupt enable. Enables the zero crossing interrupt if the current result value has a sign 
change from the previous result as configured by the ADC_ZCCR register. 
0 Interrupt disabled
1 Interrupt enabled
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9
LLMTIE

Low limit interrupt enable. Enables the low limit exceeded interrupt when the current result value is less 
than the low limit register value. The raw result value is compared to ADC_LLMT, before the offset register 
value is subtracted.
0 Interrupt disabled
1 Interrupt enabled

8
HLMTIE

High limit interrupt enable. Enables the high limit exceeded interrupt if the current result value is greater 
than the high limit register value. The raw result value is compared to ADC_HLMT, before the offset 
register value is subtracted.
0 Interrupt disabled
1 Interrupt enabled

7–4
CHNCFG

Channel configure. Configures the analog inputs for single-ended or differential conversions.

Differential measurements:
 • return the max value (212 –1) when the positive input is VREFH and the negative input is VREFLO
 • return zero when the + input is at VREFLO and the negative input is at VREFH
 • scale linearly between based on the voltage difference between the two signals

Single-ended measurements:
 • return the max value when the input is at VREFH
 • return zero when the input is at VREFLO
 • scale linearly between based on the amount by which the input exceeds VREFLO

3 Reserved, must be cleared.

2–0
SMODE

Scan mode control. This bit:
 • Determines whether the slots perform one long sequential scan or two shorter parallel scans, each 

performed by one of the two converters
 • Controls how these scans are initiated and terminated
 • Controls if the scans are performed once or repeatedly

See Section 29.5.1, “Scan Modes”, for detailed descriptions of these modes.
000 Once sequential
001 Once parallel
010 Loop sequential
011 Loop parallel
100 Triggered sequential
101 Triggered parallel
110 Reserved
111 Reserved

Table 29-3. ADC_CR1 Field Descriptions (continued)

Field Description

 

CHNCFG Inputs Description

xxx1 ADC_IN0 – 
ADC_IN1

Differential pair (ADC_IN0 is + and ADC_IN1 is –)

xxx0 Single-ended inputs

xx1x ADC_IN2 – 
ADC_IN3

Differential pair (ADC_IN2 is + and ADC_IN3 is –)

xx0x Single-ended inputs

x1xx ADC_IN4 – 
ADC_IN5

Differential pair (ADC_IN4 is + and ADC_IN5 is –)

x0xx Single-ended inputs

1xxx ADC_IN6 – 
ADC_IN7

Differential pair (ADC_IN6 is + and ADC_IN7 is –)

0xxx Single-ended inputs
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29.4.2 ADC Control Register 2 (ADC_CR2)

ADC_CR2[14:11] and the SYNC1 module input only control converter B during parallel scan modes 
when SIMULT = 0 (non-simultaneous parallel scan modes).

Address: 0xFC09_4002 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
STOP

1

0
SYNC

1
EOS
IE1

0 0 0
SIM
ULT

0 0 0 0 0 0 0

W STAR
T1

Reset 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0

Figure 29-3. Control Register 2 (ADC_CR2)

Table 29-4. ADC_CR2 Field Descriptions

Field Description

15 Reserved, must be cleared.

14
STOP1

During parallel scan modes when SIMULT = 0, setting STOP1 stops parallel scans in the B converter and 
prevents new ones from starting. Any further SYNC1 input pulses or writes to the START1 bit are ignored 
until the STOP1 bit is cleared. After the ADC is in stop mode, you can change the B converter 
ADC_RSLTn, and these changes are treated as if the analog core supplied the data. Therefore, limit 
checking, zero crossing, and associated interrupts can occur when authorized.
0 Normal operation
1 Stop command issued
Note: This is not the same as the processor’s low power stop mode.

13
START1

Start conversion 1. During parallel scan modes when SIMULT = 0, a B converter parallel scan is started 
by writing one to the START1 bit. This is a write-only bit. Writing one to the START1 bit again while the 
scan remains in process, is ignored. 
0 No action
1 Start a B converter parallel scan
Note: The ADC must be in a stable power configuration prior to writing the START bit. Refer to the 

functional description of power modes for further details.

12
SYNC1

SYNC1 enable. During parallel scan modes when SIMULT = 0, setting SYNC1 permits a B converter 
parallel scan to be initiated by asserting the SYNC1 input for at least one ADC clock cycle. Any SYNC1 
input pulses while the scan remains in process are ignored.
0 B converter parallel scan is initiated by setting the START1 bit only
1 Use a SYNC1 input pulse or START1 bit to initiate a B converter parallel scan
Note: The ADC must be in a stable power mode prior to SYNC1 input assertion. Refer to the functional 

description of power modes for further details.
Note: In once-scan modes, only the first SYNC1 input pulse is honored. Subsequent SYNC1 input pulses 

are ignored until the SYNC1 input is re-armed by writing to ADC_CR2. This can be done at any 
time, including while the scan remains in process.

11
EOSIE1

End of scan interrupt 1 enable. During parallel scan modes when SIMULT = 0, this bit enables an EOSI1 
interrupt to be generated upon completion of a B converter parallel scan. For loop scan mode, the 
interrupt triggers upon the completion of each iteration of the loop.
0 Interrupt disabled

1 Interrupt enabled

10–8 Reserved, must be cleared.
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29.4.3 ADC Zero Crossing Control Register (ADC_ZCCR)

ADC_ZCCR monitors the selected channels and determines the direction of zero crossing triggering the 
optional interrupt. Zero-crossing logic monitors only the sign change between the current and previous 
sample. ZCE0 monitors the sample stored in ADC_RSLT0 and bit ZCE7 monitors ADC_RSLT7. When 
zero crossing is disabled for a selected ADC_RSLTn, sign changes are not monitored or updated in 
ADC_ZCSR.

Zero crossing functionality is only available on the first eight conversions in sequential mode and only 
available on the first four conversions assoicated with each converter in parallel modes.

29.4.4 Channel List n Registers (ADC_LST1–2)

The ADC_LSTn registers contain an ordered list of the channels to be converted when the next scan is 
initiated. If all samples are enabled in ADC_SDIS, a sequential scan of inputs proceeds in order of: 
SAMPLE0–7. If one of the parallel sampling modes is selected instead, the converter A sampling order is 
SAMPLE0–3 and the converter B sampling order is SAMPLE4–7.

7
SIMULT

Simultaneous mode. This bit only affects parallel scan modes. 
0 Parallel scans in the A and B converters operate independently. Each converter’s scan continues until 

its sample list is exhausted (four samples) or a disabled sample in its list is encountered. For loop 
parallel scan mode, each converter starts its next iteration when the previous iteration in that converter 
is complete and continues until the STOP bit for that converter is asserted.

1 Parallel scans in the A and B converters operate simultaneously and always result in pairs of 
simultaneous conversions. START0, STOP0, START1, and STOP1 control bits and the SYNC0 input 
are used to start and stop scans in both converters simultaneously. A scan ends in both converters 
when either converter encounters a disabled sample slot. When the parallel scan completes, the 
EOSI0 triggers if EOSIEN0 is set. The CIP0 status bit indicates a parallel scan is in process.

6–0 Reserved, must be cleared.

Address: 0xFC09_4004 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ZCE7 ZCE6 ZCE5 ZCE4 ZCE3 ZCE2 ZCE1 ZCE0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-4. Zero Crossing Control Register (ADC_ZCCR)

Table 29-5. ADC_ZCCR Field Descriptions

Field Description

15–0
ZCEn

Zero crossing enable. For each channel n setting the ZCEn field allows detection of the indicated 
zero-crossing condition.
00 Disabled
01 Enabled for positive to negative sign change
10 Enabled for negative to positive sign change
11 Enabled for any sign change

Table 29-4. ADC_CR2 Field Descriptions (continued)

Field Description
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In sequential conversion mode full functionality (offset subtraction and high/low limit checks) is only 
available on the first eight conversion slots, SAMPLE0–7. In parallel conversion mode full functionality 
is only available on the first four conversion slots of each channel, SAMPLE0–3 for converter A and 
SAMPLE4–7 for converter B.

Address: 0xFC09_4006 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
SAMPLE3

0
SAMPLE2

0
SAMPLE1

0
SAMPLE0

W

Reset 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0

Figure 29-5. Channel List Register 1 (ADC_LST1)

Address: 0xFC09_4008 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
SAMPLE7

0
SAMPLE6

0
SAMPLE5

0
SAMPLE4

W

Reset 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0

Figure 29-6. Channel List Register 2 (ADC_LST2)

Table 29-6. ADC_LSTn Field Descriptions

Field Description

SAMPLEn Selects the input channel to be sampled.

In sequential modes, the sample slots are converted in order from SAMPLE0 to SAMPLE7. Any sample 
slot may reference any analog input (may contain a binary value between 000–111).

In parallel modes, converter A processes sample slots SAMPLE0–3 while converter B processes sample 
slots SAMPLE4–7. Because converter A only has access to analog inputs ADC_IN0–3, sample slots 
SAMPLE0–3 should only contain binary values between 000 and 011. Likewise, because converter B 
only has access to analog inputs ADC_IN4–7, sample slots SAMPLE4–7 should only contain binary 
values between 100 and 111. No damage occurs if this constraint is violated but results are undefined.

When inputs are configured as differential pairs, a reference to either analog input in a differential pair by 
a sample slot implies a differential measurement on the pair. The details of single-ended and differential 
measurement are described in the CHNCFG bit field.
Disable sample slots using the ADC_SDIS register.

SAMPLEn Single Ended Differential

000 ADC_IN0 ADC_IN0+, ADC_IN1–

001 ADC_IN1 ADC_IN0+, ADC_IN1–

010 ADC_IN2 ADC_IN2+, ADC_IN3–

011 ADC_IN3 ADC_IN2+, ADC_IN3–

100 ADC_IN4 ADC_IN4+, ADC_IN5–

101 ADC_IN5 ADC_IN4+, ADC_IN5–

110 ADC_IN6 ADC_IN6+, ADC_IN7–

111 ADC_IN7 ADC_IN6+, ADC_IN7–
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29.4.5 Sample Disable Register (ADC_ SDIS)

This register is an extension to ADC_LSTn. It allows you to enable only the desired samples programmed 
in the SAMPLE0–7 fields. At reset all samples are enabled.

29.4.6 Status Register (ADC_SR)

This register provides the current status of the ADC module. RDYn bits are cleared by reading their 
corresponding result (ADC_RSLTn) registers. HLMTI and LLMTI bits are cleared by writing one to all 
asserted bits in the limit status register (ADC_LSR). Likewise, ZCI is cleared by writing one to all asserted 
bits in ADC_ZCSR. The EOSIn bits are cleared by writing one to them.

Except for CIP0 and CIP1, the register bits are sticky. When set, they require some specific action to clear 
them. They are not cleared automatically on the next scan sequence.

Address: 0xFC09_400A Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
DS7 DS6 DS5 DS4 DS3 DS2 DS1 DS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-7. Sample Disable Register (ADC_SDIS)

Table 29-7. ADC_SDISn Field Descriptions

Field Description

15–8 Reserved, must be cleared.

7–0
DSn

Disable sample.
0 Enable SAMPLEn
1 Disable SAMPLEn and all subsequent samples. Which samples are actually disabled depends on the 

conversion mode (sequential/parallel) and the value of SIMULT.

Address: 0xFC09_400C Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CIP0 CIP1 0 EOSI1 EOSI0 ZCI LLMTI HLMT RDY

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-8. Status Register (ADC_SR)
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Table 29-8. ADC_SR Field Descriptions

Field Description

15
CIP0

Conversion in progress 0.
0 Idle state
1 A scan cycle is in progress. The ADC ignores all sync pulses or start commands.
Note: This refers to any scan except a B converter scan in non-simultaneous parallel scan modes.

14
CIP1

Conversion in progress 1.
0 Idle state
1 A scan cycle is in progress. The ADC ignores all sync pulses or start commands.
Note: This refers only to a B converter scan in non-simultaneous parallel scan modes.

13 Reserved, must be cleared.

12
EOSI1

End of scan interrupt 1. Indicates if a scan of analog inputs was completed since the last read of the status 
register or since a reset. If DMA is enabled (ADC_CR1[DMAEN] = 1), this bit is cleared by the DMA 
engine. Otherwise, EOSI1 is cleared by writing one to it. This bit cannot be set by software.
0 A scan cycle was not completed; no end of scan interrupt/DMA pending
1 A scan cycle was completed; end of scan interrupt/DMA pending
In looping scan modes, this interrupt is triggered at the completion of each iteration of the loop.
This interrupt is triggered only by the completion of a B converter scan in non-simultaneous parallel scan 
modes.

11
EOSI0

End of scan interrupt 0. Indicates if a scan of analog inputs was completed since the last read of the status 
register, or since a reset. If DMA is enabled (ADC_CR1[DMAEN] = 1), this bit is cleared by the DMA 
engine. Otherwise, EOSI1 is cleared by writing one to it. This bit cannot be set by software. EOSI0 is the 
preferred bit to poll for scan completion if interrupts are not enabled.
0 A scan cycle was not completed; no end of scan interrupt/DMA pending
1 A scan cycle was completed; end of scan interrupt/DMA pending

In loop scan modes, this interrupt is triggered at the completion of each iteration of the loop mode.
This interrupt is triggered upon the completion of any scan except for the completion of a B converter scan 
in non-simultaneous parallel scan modes.

10
ZCI

Zero crossing interrupt. If the respective offset register is configured by having a value greater than 
0x0000, zero crossing checking is enabled. If ADC_OFSn register is 0x7FF8, the result always is less 
than or equal to zero. On the other hand, if ADC_OFSn is 0x0000, the result is always greater than or 
equal to zero and no zero crossing can occur because the sign of the result does not change. This 
interrupt asserts at the completion of an individual conversion which may or may not be the end of a scan.

The ZCI bit is cleared by writing one to all active ADC_ZCSR[ZCSn] bits.
0 No ZCI interrupt request
1 Zero crossing encountered; interrupt pending if ZCIE is set

9
LLMTI

Low limit interrupt. If the respective low limit register is enabled by having a value other than 0x0000, low 
limit checking is enabled. This interrupt asserts at the completion of an individual conversion which may 
or may not be the end of a scan.

The LLMTI bit is cleared by writing one to all active ADC_LSR[LLSn] bits.
0 No low limit interrupt request
1 Low limit exceeded; interrupt pending if LLMTIE is set
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Figure 29-9. ADC Interrupt

29.4.7 Limit Status (ADC_LSR) Register

ADC_LSR latches in the result of the comparison between the result of the sample and the respective limit 
register (ADC_HLMTn, ADC_LLMTn). For example, if the result for the channel programmed in 
SAMPLE0 is greater than the value programmed in ADC_HLMT0, then HLS0 is set. An interrupt is 
generated if ADC_CR1[HLMTIE] is set. An ADC_LSR bit is cleared by writing a value of one to that 
specific bit. These bits are sticky. When set, they require a specific modification to clear them and are not 
cleared automatically by subsequent conversions.

8
HLMTI

High limit interrupt. If the respective high limit register is enabled by having a value other than 0x7FF8, 
high limit checking is enabled. This interrupt asserts at the completion of an individual conversion which 
may or may not be the end of a scan.
The HLMTI bit is cleared by writing one to all active ADC_LSR[HLSn] bits.
0 No high limit interrupt request
1 High limit exceeded; interrupt pending if HLMTIE is set

7–0
RDYn

Ready sample 7–0. Indicate samples 7–0 are ready to be read. These bits are cleared after a read from 
the respective result register. The RDYn bits are set as the individual channel conversions are completed. 
If polling the RDYn bits to determine if a particular sample is completed, do not to start a new scan until 
all enabled samples are done.
0 Sample not ready or was read
1 Sample ready to read

Table 29-8. ADC_SR Field Descriptions (continued)

Field Description

EOSI1

EOSIE1

ZCI

ZCIE

LLMTI

LLMTIE

HLMTI

HLMTIE

ADC_ERR_INT

ADC_CC1_INT

EOSI0

EOSIE0
ADC_CC0_INT
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29.4.8 Zero Crossing Status Register (ADC_ZCSR)

ADC_ZCSR latches the result of the comparison between the current result of the sample and the previous 
result of the same sample register. For example, if the result for the channel programmed in SAMPLE0 
changes sign from the previous conversion and the respective ADC_ZSR[ZCEn] field is 11 (any edge 
change) then the ZCS0 bit is set. An interrupt is generated if ADC_CR1[ZCIE] is set. A bit can only be 
cleared by writing one to that specific bit. These bits are sticky. When set, they require a write to clear 
them. They are not cleared automatically by subsequent conversions.

Address: 0xFC09_400E Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HLS LLS

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-10. Limit Status Register (ADC_LSR)

Table 29-9. ADC_LSRn Field Descriptions

Field Description

15–8
HLS

High limit status 7–0. Indicates if the result for the channel is greater than the value programmed in the 
corresponding ADC_HLMTn register.

7–0
LLS

Low limit status 7–0. Indicates if the result for the channel is less than the value programmed in the 
corresponding ADC_HLMTn register.

Address: 0xFC09_4010 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 ZCS

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-11. Zero Crossing Status Register (ADC_ZCSR)

Table 29-10. ADC_ZCSRn Field Descriptions

Field Description

15–8 Reserved, must be cleared.

7–0
ZCS

Zero crossing status. The zero crossing condition is determined by examining the ADC value after it is 
adjusted by the offset for the ADC_RSLTn register. Please see Figure 29-26. Each bit of the register is 
cleared by writing one to that bit.
0 A sign change did not occur in a comparison between the current channeln result and the previous 

channel result, or zero crossing control is disabled for channel n in ADC_ZCCR.
1 In a comparison between the current channel n result and the previous channel n result, a sign change 

condition occurred as defined in ADC_ZCCR.
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29.4.9 ADC Result Registers (ADC_RSLT0–7)

These eight result registers contain the converted results from a scan. The SAMPLE0 result is loaded into 
ADC_RSLT0, SAMPLE1 result in ADC_RSLT1, etc. In a parallel scan mode, the first channel pair 
designated by SAMPLE0 and SAMPLE4 in register ADC_LST1–2 are stored in ADC_RSLT0 and 
ADC_RSLT4 respectively.

NOTE
When writing to this register, only the RESULT portion of the value written 
is used. This value is modified, illustrated in Figure 29-26 and the result of 
the subtraction is stored. The SEXT bit is only set as a result of this 
subtraction and is not directly determined by the value written.

29.4.10 Low and High Limit Registers (ADC_LLMT0–7 & ADCHLMT0–7)

Each ADC sample is compared against its corresponding limit registers. The comparison is based upon the 
raw conversion value with no offset correction applied. Please refer to Figure 29-26.

Address: 0xFC09_4012 (ADC_RSLT0)
0xFC09_4014 (ADC_RSLT1)

0xFC09_4016 (ADC_RSLT2)
0xFC09_4018 (ADC_RSLT3)

0xFC09_401A (ADC_RSLT4)
0xFC09_401C (ADC_RSLT5)

0xFC09_401E (ADC_RSLT6)
0xFC09_4020 (ADC_RSLT7)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SEXT RESULT 0 0 0

W TEST_DATA

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-12. Result Registers (ADC_RSLTn)

Table 29-11. ADC_RSLTn Field Descriptions

Field Description

15
SEXT

Sign extend bit of the result. If all positive results are required, set the respective ADC_OFSn register to 
zero.
0 Positive result
1 Negative result

14–3
RESULT

Digital result of the conversion. The ADC_RSLTn register can be interpreted as:
 • Signed fractional number — the RSLTn can be used directly.
 • Signed integer — you may right shift with sign extend, arithmetic shift right (ASR) three places and 

interpret the number, or accept the number as presented, knowing there are missing codes. The lower 
three bits of this register are always zero.

Negative results (SEXT = 1) are always presented in two’s compliment format. If the ADC_RSLTn 
registers must always be positive, clear ADC_OFSn.
The interpretation of the numbers programmed into the ADC_LLMTn, ADC_HLMTn, and ADC_OFSn 
registers should match the interpretation of ADC_RSLTn.
See Section 29.5.4, “ADC Data Processing for a description of reading this field and how/when it can be 
used.

2–0 Reserved, must be cleared.
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The ADC tests if the result is greater than the high limit or less than the low limit. Disable limit checking 
by programming the respective high limit register with 0x7FF8 and the low limit register with 0x0000. At 
reset, limit checking is disabled.

29.4.11 Offset Registers (ADC_OFS0–7)

The ADC_OFSn registers correct the ADC result before it is stored in the ADC_RSLTn registers.

Address: 0xFC09_4022 (ADC_LLMT0)
0xFC09_4024 (ADC_LLMT1)

0xFC09_4026 (ADC_LLMT2)
0xFC09_4028 (ADC_LLMT3)

0xFC09_402A (ADC_LLMT4)
0xFC09_402C (ADC_LLMT5)

0xFC09_402E (ADC_LLMT6)
0xFC09_4030 (ADC_LLMT7)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
LIMIT

0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-13. Low Limit Registers (ADC_LLMTn)

Address: 0xFC09_4032 (ADC_HLMT0)
0xFC09_4034 (ADC_HLMT1)

0xFC09_4036 (ADC_HLMT2)
0xFC09_4038 (ADC_HLMT3)

0xFC09_403A (ADC_HLMT4)
0xFC09_403C (ADC_HLMT5)

0xFC09_403E (ADC_HLMT6)
0xFC09_4040 (ADC_HLMT7)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
LIMIT

0 0 0

W

Reset 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

Figure 29-14. High Limit Registers (ADC_HLMTn)

Table 29-12. ADC_LLMTn & ADC_HLMTn Field Descriptions

Field Description

15 Reserved, must be cleared.

14–3
LIMIT

High or low limit to compare the ADC sample result.

2–0 Reserved, must be cleared.

Address: 0xFC09_4042 (ADC_OFS0)

0xFC09_4044 (ADC_OFS1)
0xFC09_4046 (ADC_OFS2)
0xFC09_4048 (ADC_OFS3)

0xFC09_404A (ADC_OFS4)

0xFC09_404C (ADC_OFS5)
0xFC09_404E (ADC_OFS6)
0xFC09_4050 (ADC_OFS7)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
OFFSET

0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-15. Offset Registers (ADC_OFSn)
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29.4.12 Power Control Register (ADC_PWR)

This register controls the power management features of the ADC module. There are individual manual 
power down controls for the two ADC converters and the voltage reference generator. There are also five 
distinct power modes. The following terms are used to describe power modes and their related controls.

• Power down state — Each converter and the voltage reference generator can individually be put 
into a power down state. When powered down, the unit consumes no power. Results of scans 
referencing a powered down converter are undefined. The voltage reference generator and at least 
one converter must be powered up to use the ADC module.

• Manual power down controls — Each converter and the voltage reference generator have a manual 
power control bit capable of putting that component into the power down state. Converters have 
other mechanisms with the capacity to automatically put them into the power down state.

• Idle state — The ADC module is idle when neither of the two converters has a scan in process.

• Active state — The ADC module is active when at least one of the two converters has a scan in 
process.

• Current mode — Both converters share a common current mode. Normal current mode is used to 
power the converters at clock rates above 600 kHz.

• Start-up delay — Auto-power down modes cause a start-up delay when the ADC module goes 
between the idle and active states to allow time to switch clocks or power configurations.

See Section 29.5.7, “Power Management” for details of the five power modes and how to configure them. 
See Section 29.5.12, “Interrupt Operation” for a more detailed description of the clocking system and the 
control of current mode.

Table 29-13. ADC_OFSn Field Descriptions

Field Description

15 Reserved, must be cleared.

14–3
OFFSET

The offset value is subtracted from the ADC result. To obtain unsigned results, program the respective 
ADC_OFSn register with a value of 0x0000. This results in a range of 0x0000 to 0x7FF8.

qa Reserved, must be cleared.

Address: 0xFC09_4052 (ADC_PWR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ASB APD

PSTS
3

PSTS
2

PSTS
1

PSTS
0 PUDELAY

PD
3

PD
2

PD
1

PD
0

W

Reset 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1

Figure 29-16. Power Control Register (ADC_PWR)
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Table 29-14. ADC_PWR Field Descriptions

Field Description

15
ASB

Auto standby mode enable. This bit is ignored if APD is set. When the ADC is idle, ASB mode selects the 
standby clock as the ADC clock source, putting the converters into standby current mode. At the start of 
any scan, the conversion clock is selected as the ADC clock and then a delay of PUDELAY ADC clock 
cycles is imposed for current levels to stabilize. After this delay, the ADC initiates the scan. When the ADC 
returns to the idle state, the standby clock is again selected and the converters revert to the standby 
current state.
0 ASB mode disabled
1 ASB mode enabled
Note: This mode is not recommended for conversion clock rates at or below 200 kHz. Instead, clear ASB 

and APD, and use standby power mode (normal mode with a sufficiently slow conversion clock so 
standby current mode automatically engages). This provides the advantages of standby current 
mode while avoiding the clock switching and PUDELAY.

Note: Ideally, you should set this bit before clearing PD0 and PD1 to get the benefit of this power-saving 
mode right after power-up.

14
APD

Auto power down. Powers down the converters when not in use for a scan. When a scan is started in 
APD mode, a delay of PUDELAY ADC clock cycles is imposed during which the needed converters, if 
idle, are powered up. The ADC then initiates a scan equivalent to that when APD is not active. When the 
scan completes, the converters are powered down again.
0 Auto power down mode is not active
1 Auto power down mode is active
Note: If ASB or APD is set while a scan is in progress, that scan is unaffected and the ADC waits to enter 

its low power state until after all conversions are complete and both ADCs are idle.
Note: ASB and APD are not useful in loop modes. The continuous nature of scanning means the low 

power state can never be entered.

13
PSTS3

Voltage reference converter B power status.
0 Voltage reference circuit is currently powered up
1 Voltage reference circuit is currently powered down

12
PSTS2

Voltage reference converter A power status.
0 Voltage reference circuit is currently powered up
1 Voltage reference circuit is currently powered down

11
PSTS1

Converter B Power status. PSTS1 is set immediately following a write of one to PD1. It is de-asserted 
PUDELAY ADC clock cycles after a write of 0 to PD1 if ADP is cleared. This bit can be read as a status 
bit to determine when the ADC is ready for operation. During auto-powerdown mode, this bit indicates the 
current powered state of converter B.
0 Converter B is currently powered up
1 Converter B is currently powered down

10
PSTS0

Converter A power status. PSTS0 is set immediately following a write of one to PD0. It is de-asserted 
PUDELAY ADC clock cycles after a write of 0 to PD0 if ADP is cleared. This bit can be read as a status 
bit to determine when the ADC is ready for operation. During auto-powerdown mode, this bit indicates the 
current powered state of converter A.
0 Converter A is currently powered up
1 Converter A is currently powered down
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9–4
PUDELAY

Power-up delay. Determines the number of ADC clocks provided to power up an ADC converter (after 
clearing PD0 or PD1) before allowing a scan to start. It also determines the number of ADC clocks of 
delay provided in APD and ASB modes between when the ADC goes from the idle to active state and 
when the scan is allowed to start. The default value is 24 ADC clocks for a 10 MHz conversion clock as 
a 2 s delay is required after PD2/PD3 is cleared. Accuracy of the initial conversions in a scan is 
degraded if PUDELAY is set to too small of a value. After power-up, you can reprogram PUDELAY to 13 
for minimal delay in APD and lesser in ASB. 

The value required for PUDELAY depends on the power down state chosen:
 • Power down state 1, PD0/1 = 1, PD2/3 = 1

The entire ADC is in power down mode. Upon clearing PDn, there is a delay of 2 s before the ADC 
can start making conversions. Value of 24 is required for a 10 MHz conversion clock.

 • Power down state 2, PD0/1 = 1, PD2/3 = 0
In this partial power down state only the amplifiers in the recursive sub-ranging sections (RSD) are 
powered off, which significantly reduces the power consumption of the ADC. Upon clearing PD0/1, 
there is a delay of 13 clock cycles before the ADC can start making conversions.

 • Power down state 3, PD0/1 = 0, PD2/3 = 1
In this partial power down state only the bias reference generator, switch reference generator and the 
over rant reference generator are turned off. Upon releasing PD2/3, there is a delay of 2 s before the 
ADC can start making conversions.

Note: PUDELAY defaults to a value typically sufficient for any power mode. The latency of a scan can be 
reduced by decreasing PUDELAY to the lowest value that accuracy is not degraded. Refer to the 
processor’s data sheet for further details.

3
PD3

Voltage reference converter B power down enable. Forces the voltage reference circuit to power down.
0 Manually power up
1 Power down controlled by PD1. The voltage reference is activated when PD1 is cleared.
Note: After clearing this bit, wait at least 2s (use PUDELAY to enforce this delay) before initiating a scan 

to stabilize the current levels within the converter.

2
PD2

Voltage reference converter A power down enable. Forces the voltage reference circuit to power down.
0 Manually power up
1 Power down controlled by PD0. The voltage reference is activated when PD0 is cleared.
Note: After clearing this bit, wait at least 2s (use PUDELAY to enforce this delay) before initiating a scan 

to stabilize the current levels within the converter.

1
PD1

Manual converter B power down.
0 Manually power up. This converter is powered up continuously (APD = 0) or automatically when 

needed (APD = 1). Do not clear this bit unless PD3 is cleared.
1 Immediately power down converter B. The results of a scan using this converter are invalid.
Note: In any power mode except auto-powerdown (APD=1), when clearing PD1, wait PUDELAY ADC 

clock cycles before initiating a scan to stabilize power levels within the converter. Poll PSTS1 to 
determine when the PUDELAY time has elapsed. Failure to do this results in loss of accuracy of 
the first two samples.

0
PD0

Manual converter A power down.
0 Manually power up. This converter is powered up continuously (APD = 0) or automatically when 

needed (APD = 1). Do not clear this bit unless PD2 is cleared.
1 Immediately power down converter A. The results of a scan using this converter are invalid.
Note: In any power mode except auto-powerdown (APD=1), when clearing PD0, wait PUDELAY ADC 

clock cycles before initiating a scan to stabilize power levels within the converter. Poll PSTS0 to 
determine when the PUDELAY time has elapsed. Failure to do this results in loss of accuracy of 
the first two samples.

Table 29-14. ADC_PWR Field Descriptions (continued)

Field Description
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29.4.13 Calibration Register (ADC_CAL)

The ADC provides for off-chip references used for ADC conversions.

29.4.14 Power Control Register 2 (ADC_PWR2)

Address: 0xFC09_4054 (ADC_CAL) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R VREF
H1

VREF
L1

VREF
H0

VREF
L0

0 0 0 0 0 0 0 0 0 0 DAC
1

DAC
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-17. Calibration Register (ADC_CAL)

Table 29-15. ADC_CAL Field Descriptions

Field Description

15
VREFH1

VREFH source 1. Selects the source of the VREFH reference for all conversions in converter 1.
0 Internal VDDA
1 ADC_IN4

14
VREFL1

VREFLO source 1. Selects the source of the VREFLO reference for all conversions in converter 1.
0 Internal VSSA
1 ADC_IN5

13
VREFH0

VREFH source 0. Selects the source of the VREFH reference for all conversions in converter 0.
0 Internal VDDA
1 ADC_IN0

12
VREFL0

VREFLO source 0. Selects the source of the VREFLO reference for all conversions in converter 0.
0 Internal VSSA
1 ADC_IN1

11–2 Reserved, must be cleared.

1
DAC1

DAC1 alternate source 1. Selects the source of the ADCB3 input as DAC1 output.
0 Normal operation
1 ADC_IN7 input is replaced with DAC1 output

0
DAC0

DAC0 alternate source 0. Selects the source of the ADCA3 input as DAC0 output.
0 Normal operation
1 ADC_IN3 input is replaced with DAC0 output

Address: 0xFC09_4056 (ADC_PWR2) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 STN
BY

SPEEDB SPEEDA
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Figure 29-18. Power Control Register 2 (ADC_PWR2)
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29.4.15 Conversion Divisor Register (ADC_DIV)

Table 29-16. ADC_PWR2 Descriptions

Field Description

15–5 Reserved, must be cleared.

4
STNBY

Standby mode enable.
0 Not in standby mode
1 Enable standby mode. The ADC converters are placed into low power mode. Set ADC_DIV such that 

the conversion clock is in the 200 – 600 kHz range. Only set this bit when the bus clock is running at 
a lower frequency as the dividers are not large enough to generate a 200-kHz conversion clock from 
a 125-MHz bus clock.

3–2
SPEEDB

Converter B speed control. Configures the clock speed the ADCB operates. Faster conversion speeds 
require greater current consumption. Default value is set to 01 for conversion up to 10 MHz.
Note: If the conversion clock frequency remains in a range for a specific SPEEDB setting, you can 

change the frequency of the conversion clock without any wait period. However, if the conversion 
clock frequency change is significant enough that it falls into a different SPEEDB setting, then you 
must wait 2 s after changing the SPEEDB setting before using the ADC.

Note: Before changing SPEEDB, set ADC_PWR[PD3] or ADC_PWR[PD1]. After changing SPEEDB, 
clear ADC_PWR[PD3,PD1]. This sequence is followed by PUDELAY(which should be set to 24) 
which forces a 2 s delay. 

1–0
SPEEDA

Converter A speed control. Configures the clock speed that the ADCA operates. Faster conversion 
speeds require greater current consumption. Default value is set to 01 for conversion up to 10 MHz.
Note: If the conversion clock frequency remains in a range for a specific SPEEDA setting, you can 

change the frequency of the conversion clock without any wait period. However, if the conversion 
clock frequency change is significant enough that it falls into a different SPEEDA setting, then you 
must wait 2 s after changing the SPEEDA setting before using the ADC.

Note: Before changing SPEEDA, set ADC_PWR[PD2] or ADC_PWR[PD0]. After changing SPEEDA, 
clear ADC_PWR[PD2,PD0]. This sequence is followed by PUDELAY(which should be set to 24) 
which forces a 2 s delay. 

Address: 0xFC09_4058 (ADC_DIV) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
DIV1

0
DIV0

W

Reset 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

Figure 29-19. Conversion Divisor Register (ADC_DIV)

Table 29-17. ADC_DIV Descriptions

Field Description

15 Reserved, must be cleared.

14–8
DIV1

Same as the DIV0 description, but DIV1 is used to generate the clock for converter B during parallel 
non-simultaneous scan modes. See the DIV0 description for details.
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29.4.16 Auto-Standby Divisor Register (ADC_ASDIV)

7 Reserved, must be cleared.

6–0
DIV0

Clock divisor select. The divider circuit generates the ADC clock by dividing the system clock by 
2  (DIV0 + 1). Select a DIV0 value so the ADC clock does not exceed 10 MHz or go below 600 KHz. The 
following table shows ADC clock frequency based on the value of DIV0 for various configurations. Default 
value is set for an internal clock of 125 Mhz with maximum valid conversion clock below 10 MHz.

Note: When ADC_PWR2[STNBY] is set, program values in both dividers so that a 200 – 600 kHz 
conversion clock is generated.

Address: 0xFC09_405A (ADC_ASDIV) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
ASDIV

W

Reset 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1

Figure 29-20. Auto-Standby Divisor Register (ADC_ASDIV)

Table 29-17. ADC_DIV Descriptions (continued)

Field Description

DIVn Divisor

ADC Conversion Clock
(MHz)

125MHz
60MHz

(Limp Mode)

0x00 2 62.5 30

0x01 4 31.25 15

0x02 6 20.83 10

0x03 8 15.62 7.5

0x04 10 12.5 6

0x05 12 10 5

... ... ... ...

0x67 208 0.6 —
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29.5 Functional Description
The ADC block consists of two 4-channel input select function, two independent sample and hold (S/H) 
circuits feeding two separate 12-bit ADCs. The two separate converters store their results in an accessible 
buffer, awaiting further processing.

The conversion process is initiated by a SYNC signal from one of the on-chip timer channels (see 
Chapter 10, “Chip Configuration Module (CCM)) or by writing one to a ADC_CRn[START] bit.

Starting a single conversion actually begins a sequence of conversions, or a scan. A conversion takes up 
to eight-single ended or differential samples, one at a time in sequential scan mode. In parallel scan mode, 
the eight samples are allocated, four to converter A and four to converter B. In parallel scan modes, 
converter A can only sample analog inputs ADC_IN0–3 while converter B can only sample analog inputs 
ADC_IN4–7. Each converter can take up to four samples.

The scan sequence is determined by defining eight sample slots, processed in order SAMPLE0–7 during 
sequential scan mode. In parallel scan mode, the SAMPLE0–3 are processed in order by converter A, and 
SAMPLE4–7 are processed in order by converter B. Sample slots may be disabled using the ADC_SDIS 
register to terminate a scan early. 

The following pairs of analog inputs can be configured as a differential pair: ADC_IN0–1, ADC_IN2–3, 
and ADC_IN4–5, ADC_IN6–7. When configured as a differential pair, a reference to either member of 
the pair by a sample slot results in a differential measurement using that differential pair.

Table 29-18. ADC_ASDIV Descriptions

Field Description

15–7 Reserved, must be cleared.

6–0
ASDIV

Clock divisor select. The divider circuit generates the ADC auto-standby clock by dividing the system 
clock by 2  (ASDIV + 1). Select a ASDIV value so the ADC auto-standby clock is in the 200–600 kHz 
range. The following table shows the ADC auto-standby clock frequency based on the value of ASDIV for 
various configurations. Default value is set for an internal clock of 125Mhz.

ASDIV
ADC Clock In

(MHz)
Divisor

Auto-Standby 
Clock (kHz)

0x137 125 624 200

0x12B 120 600 200

0x0F9 100 500 200

0x0EF 96 480 200

... ... ... ...

0x03B 24 120 200

0x027 16 80 200

0x013 8 60 200
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The ADC can perform a single scan and halt, perform a scan when triggered, or perform the scan sequence 
repeatedly until manually stopped. These modes are described in the following section.

29.5.1 Scan Modes

The various scan modes defined by ADC_CR1[SMODE] are described in Table 29-19.

Table 29-19. Scan Modes

SMODE Scan Description

000 Once sequential Upon start or an enabled sync signal, samples are taken one at a time starting 
with SAMPLE0, until the first disabled sample is encountered. If no disabled 
sample is encountered, conversion concludes after SAMPLE7. If the scan is 
initiated by a SYNC signal only one scan is completed until the converter is 
rearmed by writing to ADC_CR1.

001 Once parallel Upon start or an enabled sync signal, converter A converts SAMPLE0–3 and 
converter B converts SAMPLE4–7 in parallel. When SIMULT is set, scanning 
stops when either converter encounters a disabled sample or both converters 
complete their 4 samples. When SIMULT is cleared, scanning stops in a 
converter when that converter encounters a disabled sample or that 
converter completes its four samples. If the scan is initiated by a SYNC 
signal, only one scan is completed until the converter is rearmed by writing to 
ADC_CR1. If SIMULT is cleared, then the B converter must be rearmed by 
writing to ADC_CR2.

010 Loop sequential Upon an initial start or enabled sync pulse, up to eight samples in order 
SAMPLE0–7 are taken one at a time until a disabled sample is encountered. 
The process repeats until the STOP0 bit is set. While a loop mode is running, 
do not give any additional start commands or sync pulses. If ASB or APD is 
the selected power mode control, PUDELAY is only applied on the first 
conversion.

011 Loop parallel Upon an initial start or enabled sync pulse, converter A converts SAMPLE0–3 
and converter B converts SAMPLE4–7. Each time a converter completes its 
current scan, it immediately restarts its scan sequence. This continues until 
the STOP bit is set. While a loop mode is running, do not give any additional 
start commands or sync pulses. When SIMULT is set, scanning restarts when 
either converter encounters a disabled sample. When SIMULT is cleared, 
scanning restarts in a converter when that converter encounters a disabled 
sample. If auto-standby (ASB) or auto-power down (APD) is the selected 
power mode control, PUDELAY is only applied on the first conversion.

100 Triggered sequential Upon start or an enabled sync signal, samples are taken one at a time starting 
with SAMPLE0, until a disabled sample is encountered. If no disabled sample 
is encountered, conversion concludes after SAMPLE7. If external sync is 
enabled, new scans are started for each SYNC pulse that is non-overlapping 
with a current scan in progress.

101 Triggered parallel  Upon start or an enabled sync signal, converter A converts SAMPLE0–3 and 
converter B converts SAMPLE4–7 in parallel. When SIMULT is set, scanning 
stops when either converter encounters a disabled sample. When SIMULT is 
cleared, scanning stops in a converter when that converter encounters a 
disabled sample. If external sync is enabled new scans are started for each 
non-overlapping SYNC pulse with a current scan in progress.
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The parallel scan modes can be simultaneous or non-simultaneous, as defined by ADC_CR2[SIMULT]:

• Simultaneous scan mode — the parallel scans in the two converters are executed simultaneously, 
always resulting in simultaneous pairs of conversions: one by converter A and one by converter B. 
The two converters share the same start, stop, sync, end-of-scan interrupt enable control, and 
interrupt. Scanning in both converters is terminated when either converter encounters a disabled 
sample.

• Non-simultaneous scan mode — the parallel scans in the two converters are done independently. 
The two converters have their own start, stop, sync, end-of-scan interrupt enable controls and 
interrupts. Scanning in either converter terminates only when that converter encounters a disabled 
sample.

Figure 29-21. ADC Sequential Operation Mode
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Figure 29-22. ADC Parallel Operation Mode

29.5.2 Input Mux Function

The input mux function is illustrated in Figure 29-23. The channel select and single-ended differential 
switches are indirectly controlled based on settings within the ADC_LSTn, ADC_SDIS, and 
ADC_CR[CHNCFG] fields.

• MUXing for sequential, single-ended mode conversions — During each conversion cycle (sample), 
any one input of the two eight input groups can be directed to its corresponding output.

• MUXing for sequential, differential mode conversions — During any conversion cycle (sample), 
either member of a differential pair may be referenced resulting in a differential measurement on 
that pair.

• MUXing for parallel, single ended mode conversions — During any conversion cycle (sample), any 
of ADC_IN0–3 can be directed to the converter A input and any of ADC_IN4–7 can be directed 
to the converter B input.

• MUXing for parallel, differential mode conversions — During any conversion cycle (sample), 
either member of differential pair ADC_IN0/1, ADC_IN2/3 can be referenced resulting in a 
differential measurement of that pair at converter A input. Likewise, either member of differential 
pair ADC_IN4/5, ADC_IN6/7 can be referenced resulting in a differential measurement of that 
pair at the converter B input.

RSLT0

RSLT1

RSLT2

RSLT3

RSLT4

RSLT5

RSLT6

RSLT7

ADC_IN4

ADC_IN5

ADC_IN6

ADC_IN7

ADC_IN0

ADC_IN1

ADC_IN2

ADC_IN3

CAL REF

CAL0

SAMPLEn

4–
1 

an
al

og
 m

ux

2 
– 

1 
m

ux

A/D#0

1–
4 

m
ux

SAMPLEn

SAMPLEn is from ADC_LST1 or 3.

CAL REF

SAMPLEm

CAL1

A/D#1
2–

1 
m

ux

1–
4 

m
ux

SAMPLEm4–
1 

an
al

og
 m

ux

SAMPLEm is from ADC_LST2 or 4.



Analog Digital Converter (ADC)

NXP Semiconductors 29-25

Figure 29-23. Input Select MUX

Details of single-ended and differential measurement from user perspective, are described under the 
CHNCFG bit fields. Internally, all measurements are performed differentially. During single-ended 
measurements, (VREFH + VREFLO)/2 is used as the negative input voltage while the selected analog input 
is used as the positive input.

 

Table 29-20. Analog MUX Controls for Each Conversion Mode

Conversion Mode Channel Select Switches Single-Ended Differential Switches

General Comments — The two lower switches within the dashed 
box are controlled such that one switch is 
always closed and the other open.

Sequential, 
Single-Ended

The two 1-of-4 select muxes can be set for 
the appropriate input line.

The lower switch is closed, providing 
(VREFH+VREFLO)/2 to the differential input of 
the A/D. In this mode, the upper switch is 
always closed so that any of the four inputs 
can get to the A/D input.

(VREFH + VREFLO) 2

To Interface

Function
Converter A

ADC_IN0

ADC_IN1
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ADC_IN3
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Differential
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(VREFH + VREFLO) 2
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Channel
Select
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Differential
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29.5.3 ADC Sample Conversion Modes of Operation

The ADC consists of a cyclic, algorithmic architecture using two recursive sub-ranging sections (RSD#1 
and RSD#2), shown in Figure 29-24. Each sub-ranging section resolves a single bit for each conversion 
clock, resulting in an overall conversion rate of two bits per clock cycle. Each sub-ranging section is 
designed to run at a maximum clock speed of 10 MHz so a complete 12-bit conversion can be completed 
in six conversion clocks, not including sample or post-processing time.

Sequential, Differential The channel select switches are turned on in 
pairs, providing a dual 1-of-2 select function, 
such that either of the two differential 
channels can be routed to the A/D input.

The upper and lower switches are open and 
the middle switch is closed, providing the 
differential channel to the differential input of 
the A/D.

Parallel, Single Ended The two 1-of-4 select muxes can be set for 
the appropriate input line.

The lower switch is closed, providing VREF/2 
to the differential input of the A/D. In this 
mode, the upper switch is always closed so 
that any of the four inputs can get to the A/D 
input.

Parallel, Differential The channel select switches are turned on in 
pairs, providing a dual 1-of-4 select function, 
such that either of the two differential 
channels can be routed to the A/D input.

The upper and lower switches are open and 
the middle switch is closed, providing the 
differential channel to the differential input of 
the A/D.

Table 29-20. Analog MUX Controls for Each Conversion Mode (continued)

Conversion Mode Channel Select Switches Single-Ended Differential Switches
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Figure 29-24. Cyclic ADC — Top Level Block Diagram

29.5.3.1 Normal Mode Operation

The mode of operation for a given sample is determined by ADC_CR1[CHNCFG]. The two normal modes 
of operation are:

• Single-ended mode (CHNCFG = 0) — The input mux of the ADC selects one of the four analog 
inputs and directs it to the plus terminal of the A/D core. The minus terminal of the A/D core is 
connected to the VREFLO reference during this mode. The ADC measures the voltage of the 
selected analog input and compares it against the (VREFH – VREFLO) reference voltage range.

• Differential mode (CHNCFG = 1) — The ADC measures the voltage difference between two 
analog inputs and compares that against the (VREFH – VREFLO) voltage range. The input is selected 
as an input pair: ADC_IN0/1, ADC_IN2/3, ADC_IN4/5, or ADC_IN6/7. In this mode, the plus 
terminal of the A/D core is connected to the even analog input while the minus terminal is 
connected to the odd analog input.

A mix and match combination of single-ended and differential configurations may exist. For example: 

• ADC_IN0 and ADC_IN1 differential, ADC_IN2 and ADC_IN3 single-ended

• ADC_IN4 and ADC_IN5 differential, and ADC_IN6 and ADC_IN7 single-ended
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29.5.3.1.1 Single-Ended Samples

The ADC module performs a ratio-metric conversion. For single-ended measurements, the digital result is 
proportional to the ratio of the analog input to the reference voltage in the following diagram.

Eqn. 29-1

VIN = Applied voltage at the input pin

VREFH and VREFLO = Voltage at the external reference pins on the device (typically VREFH = VSS 
and VREFLO = VDD)

NOTE
The 12-bit result is rounded to the nearest LSB.

The ADC is a 12-bit function with 4096 possible states. However, the 12 bits 
have been left shifted three bits on the 16-bit data bus so its magnitude, as 
read from the data bus, is now 32,760.

29.5.3.1.2 Differential Samples

For differential measurements, the digital result is proportional to the ratio of the difference in the inputs 
to the difference in the reference voltages (VREFH and VREFLO).

When converting differential measurements, the following formula is useful:

Eqn. 29-2

VIN = Applied voltage at the input pin

VREFH and VREFLO = Voltage at the external reference pins on the device (typically VREFH = VSS 
and VREFLO = VDD)

NOTE
The 12-bit result is rounded to the nearest LSB.

The ADC is a 12-bit function with 4096 possible states. However, the 12 bits 
have been left shifted three bits on the 16-bit data bus so its magnitude, as 
read from the data bus, is now 32,760.

Single-ended value round
VIN VREFLO–

VREFH VREFLO–
------------------------------------------ 4096 
  8=

Differential value round
VIN+ VIN-–

VREFH VREFLO–
------------------------------------------ 4096 
  8=
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Figure 29-25. Typical Connections for Differential Measurements

29.5.4 ADC Data Processing

As shown in Figure 29-26, the result of the ADC conversion process is normally sent to an adder for offset 
correction. The adder subtracts the ADC_OFSn register value from each sample and the resultant value is 
then stored in the ADC_RSLTn registers. At the same time, the raw ADC value and the ADC_RSLTn 
values are checked for limit violations and zero-crossing. Appropriate interrupts are asserted, if enabled.

The result value sign is determined from the ADC unsigned result minus the respective ADC_OFSn 
register value. If the ADC_OFSn register is zero, the ADC_RSLTn register value is unsigned and equals 
the cyclic converter unsigned result. The range of the ADC_RSLTn register is 0x0000–0x7FF8 if the 
entire ADC_OFSn register is zero. This is equal to the raw value of the ADC core.

The processor may write to the ADC_RSLTn registers when the STOP bit for that scan is set. This write 
operation is treated as if it came from the ADC analog core Therefore, the limit-checking, zero-crossing, 
and the ADC_OFSn registers function as if in normal mode. For example, if the STOP bit is set and the 
processor writes to ADC_RSLT5, the data written to the ADC_RSLT5 is muxed to the ADC digital logic 
inputs, processed, and stored into ADC_RSLT5 as if the analog core had provided the data. This test data 
must be justified, as illustrated by the ADC_RSLTn definition and does not include the sign bit.
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Figure 29-26. Result Register Data Manipulation

29.5.5 Sequential vs. Parallel Sampling

All scan modes use the eight sample slots in the ADC_LSTn registers. Slots define which input or 
differential pair to measure at each step in a scan sequence. The ADC_SDIS register defines which of these 
sample slots are enabled. Input pairs ADC_IN0/1, ADC_IN2/3, ADC_IN4/5, and ADC_IN6/7 can be 
measured differentially using the CHNCFG field. If a sample refers to an input not configured as a member 
of a differential pair, a single-ended measurement is made. If a sample refers to either member of a 
differential pair, a differential measurement is made. Refer to CHNCFG field description for details of 
differential and single-ended measurement.

Scan modes are sequential or parallel. In sequential scans, up to eight sample slots are sampled one at a 
time in order SAMPLE 0–7. Each sample may refer to any of the eight analog inputs ADC_IN0–7, thus 
the same input may be referenced by more than one sample slot. Scanning is initiated when the START0 
bit is set or, if the SYNC0 bit is set, when the SYNC0 input is asserted. A scan ends when the first disabled 
sample slot is encountered per the SDIS register. Completion of the scan triggers the EOSI0 interrupt if 
the EOSIEN0 bit is set. The START0 bit and SYNC0 input are ignored while a scan is in process. When 
STOP0 is set, scanning stops and cannot restart.

Parallel scans differ in that converter A performs up to four samples (SAMPLE 0–3) in parallel to 
converter B (SAMPLE 4–7). Samples 0–3 may only reference inputs ADC_IN0–3, while samples 4–7 
may only reference inputs ADC_IN4–7. Within that constraint, any sample may reference any pin and the 
same input may be referenced by more than one sample slot. If SIMULT is set, the scans in both converters 
are initiated when the START0 bit is set or, if the SYNC0 bit is set, when the SYNC0 input is asserted. 
The scan in both converters terminates when either converter encounters a disabled sample slot. 
Completion of a scan triggers the EOSI0 interrupt if the EOSIEN0 bit is set. Samples are always taken 
simultaneously in both converters. When STOP0 is set, scanning stops and cannot restart.
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Setting non-simultaneous mode (SIMULT = 0) causes parallel scanning to operate independently in each 
converter. Each converter has its own set of STARTn, STOPn, SYNCn, and EOSIENn control bits, 
SYNCn input, EOSIn interrupt, and conversion in progress (CIPn) status indicators (n = 0 for converter 
A, n = 1 for converter B). Though still operating in parallel, the scans in the A and B converter start and 
stop independently according to their own controls and may be simultaneous, phase-shifted, or 
asynchronous depending on when scans are initiated on the respective converters. The A and B converter 
may be of different length (still up to a maximum of four) and each converter’s scan completes when a 
disabled sample is encountered in that converters sample list only. STOP0 stops converter A only, while 
STOP1 stops converter B only. Loop scan modes iterate independently. Converter A processes input 
selections from SAMPLE 0–3 and converter B processes input selections from SAMPLE 4–7. Each 
converter independently restarts its scan after completing its list or encountering a disabled sample slot.

29.5.6 Scan Sequencing

Scan modes break down into three types based on how they repeat. See Section 29.5.5, “Sequential vs. 
Parallel Sampling” to understand the operation of sequential and parallel scan modes and their related 
controls. These types are: 

1. Once scan modes — Execute a sequential or parallel scan only once each time it is started. All scan 
modes ignore sync pulses occurring while a scan is in process. However, once scan modes continue 
to ignore sync pulses until the sync input is re-armed. Re-arming, however, can occur any time after 
a scan has started by writing to the ADC_CRn register.

2. Triggered scan modes — Identical to the once scan modes except re-arming of sync inputs is not 
necessary.

3. Loop scan modes — Automatically restart a scan, parallel or sequential, when the previous scan 
completes. In parallel loop scan modes, the converter A scan restarts as soon as the converter A 
scan completes and the converter B scan restarts when the converter B scan completes. All 
subsequent start and sync pulses are ignored after the scan begins. Scanning is only terminated by 
setting the appropriate STOPn bit.

29.5.7 Power Management

The five supported power modes are described below. They are presented in order from highest to lowest 
power utilization at the expense of increased conversion latency and/or startup delay.

29.5.7.1 Manual Power Down of Unused Converters

If the channel list registers (see Section 29.4.4, “Channel List n Registers (ADC_LST1–2)”) do not use 
input pins ADC_IN4–7, then converter B is never used. Similarly, if ADC_IN0–3 are not used, then 
converter A is never used. In such cases the unused ADC can be manually powered down using the 
ADC_PWR[PDn] bits. Please see Section 29.4.12, “Power Control Register (ADC_PWR)”.

Since the default value of the PD0 and PD1 bits is powered down, this technique can be used in most 
applications by simply not powering up the unused ADC.
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29.5.7.2 Normal Power Mode

This mode operates when:

1. At least one ADC converter is powered up (ADC_PWR[PD0 or PD1] = 0)

2. Both auto power down and auto-standby modes are disabled (ADC_PWR[APD, ASB] = 0)

3. The ADC’s clock is enabled (PPMRH0[CD37] = 1. See Chapter 9, “Power Management”.)

In this mode the ADC uses the conversion clock as the ADC clock source when active or idle. To minimize 
conversion latency configure the conversion clock to near 10 MHz. No startup delay 
(ADC_PWR[PUDELAY]) is imposed.

29.5.7.3 Auto Standby Mode

This mode operates when:

1. At least one ADC converter is powered up (ADC_PWR[PD0 or PD1] = 0)

2. Auto power down is disabled (ADC_PWR[APD] = 0)

3. Auto standby is enabled (ADC_PWR[ASB] = 1)

4. The ADC’s clock is enabled (PPMRH0[CD37] = 1. See Chapter 9, “Power Management”.)

In auto standby mode, the ADC uses the conversion clock when active and the 200–600 kHz standby clock 
when idle. The standby (low current) state automatically engages when the ADC is idle. Configure the 
conversion clock to near 10 MHz to minimize conversion latency. The ADC executes a startup delay of 
PUDELAY ADC clocks at the start of all scans, allowing the ADC to switch to the conversion clock and 
to revert from standby to normal current mode.

Auto-standby is a compromise between normal and auto-power down modes offering moderate power 
savings at the cost of moderate latency when leaving the idle state to start a new scan.

29.5.7.4 Auto Power Down Mode

This mode operates when:

1. At least one ADC converter is powered up (ADC_PWR[PD0 or PD1] = 0)

2. Auto power down mode enabled (ADC_PWR[APD] = 1)

3. The ADC’s clock is enabled (PPMRH0[CD37] = 1. See Chapter 9, “Power Management”.)

In this mode, the ADC uses the conversion clock when active and gates off the conversion clock and 
powers down the converters when idle. Configure the conversion clock to near 10 MHz to minimize 
conversion latency when active. A startup delay of PUDELAY ADC clocks is executed at the start of all 
scans, allowing the ADC to stabilize when switching to normal current mode from a completely 
powered-off condition. This mode uses less power than auto standby. However, it requires more startup 
latency when leaving the idle state to start a scan (higher PUDELAY value). 
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29.5.7.5 Standby Mode

This mode operates when:

1. At least one ADC converter is powered up (ADC_PWR[PD0 or PD1] = 0)

1. Standby mode is enabled (ADC_PWR2[STNBY] = 1)

2. The ADC’s clock is enabled (PPMRH0[CD37] = 1. See Chapter 9, “Power Management”.)

In this mode, the conversion clock must be in the range of 200–600 kHz. Program ADC_DIV accordingly.

29.5.7.6 Power Down Mode

This mode operates when:

1. Both ADC converters are powered down (ADC_PWR[PD0, PD1] = 1)

2. Both voltage references are powered down (ADC_PWR[PD2, PD3] = 1)

3. The ADC’s clock is disabled (PPMRH0[CD37] = 1. See Chapter 9, “Power Management”.)

In this configuration, the clock trees to the ADC and its analog components are shut down and the ADC 
uses no power.

29.5.8 Power Management Details

The ADC voltage reference and converters are powered down (ADC_PWR[PDn] = 1) on reset. Individual 
converters can be manually powered down when not in use and the voltage references can be manually 
powered down when no converter is in use. When the ADC reference is powered down the output 
reference voltages are set to low (VSSA) and the ADC data output is driven low.

A delay of PUDELAY ADC clock cycles is imposed when PD0 or PD1 are cleared to power up a regulator 
and also whenever going from an idle (neither converter has a scan in process) to an active state (at least 
one converter has a scan in process). The ADC recommends using two PUDELAY values: a large value 
for full power up and a moderate value for going from standby current levels to full power up. The 
following is an explanation of how to use PUDELAY when starting the ADC or changing modes.

When starting up in normal mode:

1. Set PUDELAY to the large power up value.

2. Clear auto standby (ASB) and auto power down (APD) bits.

3. Clear PD0 and PD1 to power up the required converters.

4. Poll ADC_PWR[PSTSn] until all required converters are powered up.

This provides a full power-up delay before scans begin. Scan operations can now be started. Normal mode 
does not use PUDELAY at the start of scan; thus, no further delay is imposed.

When starting up in ASB mode:

1. Follow the normal mode steps.

2. Before starting scan operations, set PUDELAY to the moderate standby recovery value.

3. Set ASB bit. 
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Auto-standby mode automatically reduces current levels until active, and then imposes the PUDELAY to 
allow current levels to rise from standby to full power levels.

When starting up in APD mode:

1. Set PUDELAY to the large power up value.

2. Clear ASB and set APD.

3. Clear PD0 and PD1 bits for the required converters.

The converters remain powered off until scanning is active. Then, the large PUDELAY is imposed to move 
from powered down to fully powered, before starting scan operations.

NOTE
Power off both regulators (PD0 = PD1 = 1) when re-configuring clocking or 
power controls to avoid ambiguity and ensure the proper delays are applied 
when powering up or starting scans.

Attempts to start a scan during the PUDELAY is ignored until the appropriate ADC_PWR[PSTSn] are 
cleared.

Any attempt to use a converter when powered down or with the voltage reference disabled results in 
invalid results. You may read the result registers after a converter powers down for results calculated 
before the power down. A new scan sequence must be started with a SYNC pulse or a write to the START 
bit before new valid results are available.

In APD mode, when the ADC goes from idle to active, a converter is only powered up if it is required for 
the scan as determined by the ADC_LSTn and ADC_SDIS registers.

29.5.8.1 Stop Mode Operation

Any conversion sequence in progress can be stopped by setting the relevant STOPn bit. Any further sync 
pulses or writes to the STARTn bit are ignored until the STOPn bit is cleared. While in stop mode, the 
ADC_RSLTn registers can be modified by writes from the processor. Any write to ADC_RSLTn in the 
ADC stop mode is treated as if the analog core supplied the data. Therefore, limit checking, zero crossing, 
and associated interrupts can occur if enabled.

29.5.9 Clock Operation

The ADC has one external clock input to drive two clock domains within the ADC module.

As shown in Figure 29-27, the conversion clock is the primary source for the ADC clock and is always 
selected as the ADC clock when conversions are in process. Configure ADC_DIV so that conversion clock 
frequency is between 600 kHz and 10 MHz. Operating the ADC at out-of-spec conversion clock 

Table 29-21. ADC Clock Summary

Clock Direction Characteristics

Peripheral clock Input Max rate is 125 MHz. Generates the reference and conversion clocks

Conversion clocks Output A 600 kHz – 10 MHz conversion clock for each converter.



Analog Digital Converter (ADC)

NXP Semiconductors 29-35

frequencies or reconfiguring clock rates or power modes while the regulators are powered 
(ADC_PWR[PD0 or PD1] = 0) degrades conversion accuracy.

The conversion clock that the ADC uses for sampling is calculated using the internal bus clock and the 
clock divisor bits in ADC_DIV. The ADC clock is active while in looping modes or if power management 
is set to normal mode. It is also active during all ADC power-up sequences for a period of time determined 
by ADC_PWR[PUDELAY]. If a conversion is being initiated in power savings mode, then the ADC clock 
continues until the conversion sequence completes.

The following diagram shows the structure of the clocking system.

Figure 29-27. ADC Clock Generation

The internal bus clock feeds a divider to generate the auto-standby clock. This clock is selected only during 
auto-standby power mode and when both converters are idle. The logic which selects the standby clock 
also asserts standby current mode. Standby current mode is only available at an ADC clock rate of 
200–600 kHz. It provides substantial power savings, yet requires less latency when switching back to the 
conversion clock at the start of a scan than auto-powerdown mode. APD mode only uses the conversion 
clock as the ADC clock source, but fully powers down the converters when idle.

The standby current mode is also engaged when ADC_PWR2[STNBY] is set and the internal bus clock 
frequency is low enough to generate less than 600 kHz from DIV. This insures a 200–600kHz ADC 
conversion clock rate while a conversion is in process. This configuration, referred to as standby power 
mode, provides accurate conversion without startup latency at the reduced power levels of standby current 
mode.

The ADC clock is an output of the gasket used to operate the two converters during scan operations. It is 
derived by muxing the conversion clock (divided version of the conversion clock source) and the standby 
clock.

29.5.10 Voltage Reference Pins VREFH & VREFLO 

The voltage difference between VREFH and VREFLO provides the reference voltage all analog inputs are 
measured against. VREFH is nominally set to VDDA. VREFLO is nominally set to 0 V. An external reference 
voltage should be provided from a low-noise, filtered source capable of providing up to 1 mA of reference 
current.
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When tying VREFH to the same potential as VDDA relative measurements are made with respect to the 
amplitude of VDDA. Ensure the voltage applied to VREFH is as noise free as possible. Any noise residing 
on VREFH is directly transferred to the digital result.

Figure 29-28 illustrates a minimum configuration for a noise-filtered VREFH.

Figure 29-28. ADC Voltage Reference Circuit

29.5.11 Supply Pins VDDA and VSSA 

Dedicated power supply pins are provided for reducing noise coupling and to improve accuracy. The 
power provided to these pins should come from a low noise filtered source. Uncoupling capacitors should 
be connected between VDDA and VSSA.

29.5.12 Interrupt Operation

The ADC generates an interrupt under three conditions as shown in Table 29-22. These interrupts are 
optional and enabled through ADC_CR1.

NOTE
Additional bits need to be configured in the interrupt control module to 
enable the CPU to acknowledge the ADC interrupts. See Chapter 17, 
“Interrupt Controller Modules (INTC)”, for details.

VREFH

VREFLO

0.1F

External
reference voltage

To ADC

1.0 mH
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Table 29-22. Interrupt Summary

Interrupt Description

Threshold  • Zero-crossing — The current result value has a sign change from the 
previous result as configured by the ADC_ZCCR register.

 • Low limit — The current result value is less than the low limit register 
value. The raw result value is compared to ADC_LLMT before 
ADC_OFSn value is subtracted.

 • High limit — The current result value is greater than the high limit register 
value. The raw result value is compared to ADC_HLMT before 
ADC_OFSn value is subtracted.

Converter A
conversion 
complete

Generated upon completion of any scan and convert sequence when 
EOSIE0 is set. See ADC_SR[EOSI0] bit descriptions

Converter B 
conversion 
complete

Generated upon completion of any scan and convert sequence when 
EOSIE1 is set. See ADC_SR[EOSI1] bit descriptions
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Chapter 30
Digital-to-Analog Converter (DAC)

30.1 Introduction
The DAC accepts a 12-bit digital signal and creates a monotonic 12-bit analog output varying from 
~DAC_VREFL to ~DAC_VREFH. The DAC module consists of a conversion unit, an output amplifier, 
and the associated digital control blocks.

NOTE
On this device, the DAC_VREFH and DAC_VREFL signals are internally 
connected to the DAC/ADC supply voltages, VDDA_DAC_ADC and 
VSSA_DAC_ADC, respectively.

30.1.1  Features

DAC features include:

• 12-bit resolution

• Guaranteed 6-sigma monoticity over input word 497–3599

• High- and low-speed conversions

— 1 s conversion rate for high speed, 2 s for low speed

• Power-down mode

• DAC can drive 3-k, 400-pF load

• Choice of asynchronous or synchronous updates

—  Sync input can be connected to the on-chip PWM, timers, and edge port modules

• Automatic mode allows the DAC to generate its own output waveforms including square, triangle, 
and sawtooth

• Automatic mode allows programmable period, update rate, and range

• DMA support with configurable watermark level
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30.1.2 Block Diagram

The digital-to-analog converter (DAC) configuration is provided in the following block diagram.
 

Figure 30-1. DAC Block Diagram

30.2 External Signal Descriptions
Table 30-1. External Signal Properties

Name I/O Function

DACn_OUT O Analog output. Each DAC has a single current mode analog output pin. The digital words to be 
converted are 12 bits long with an lsb representing 0.806 mV. Analog output ranges from 
~VSSA + 40 mV to ~VDDA 40 mV (actual output range can be found in the device’s data sheet) and 
can drive a 3-k load.

DAC_VREF
H

— DAC reference voltages
Note: On this device, the DAC_VREFH and DAC_VREFL signals are internally connected to the 

DAC/ADC supply voltages, VDDA_DAC_ADC and VSSA_DAC_ADC, respectively.
DAC_VREFL —
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30.3 Memory Map/Register Definition
Table 30-2 lists the DAC registers.

30.3.1 DAC Control Register (DACn_CR)

Table 30-2. DAC Memory Map

Address

Register
Width
(bits)

Access Reset Value Section/Page
DAC0
DAC1

0xFC09_8000
0xFC09_C000

Control register (DACn_CR) 16 R/W 0x1101 30.3.1/30-3

0xFC09_8002
0xFC09_C002

Buffered data register (DACn_DATA) 16 R/W 0x0000 30.3.2/30-5

0xFC09_8004
0xFC09_C004

Step size register (DACn_STEP) 16 R/W 0x0000 30.3.3/30-5

0xFC09_8006
0xFC09_C006

Minimum value register (DACn_MIN) 16 R/W 0x0000 30.3.4/30-6

0xFC09_8008
0xFC09_C008

Maximum value register (DACn_MAX) 16 R/W 0xFFFF 30.3.5/30-6

0xFC09_800A
0xFC09_C00A

Status register (DACn_SR) 16 R 0x0001 30.3.6/30-7

0xFC09_800C
0xFC09_C00C

Filter count register (DACn_FILTCNT) 16 R/W 0x001D 30.3.7/30-7

Address: 0xFC09_8000 (DAC0_CR)
0xFC09_C000 (DAC1_CR)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 FILT
_EN

0 0
WMLVL

DMA
EN

HSLS UP DOWN AUTO
SYNC
_EN

FOR
MAT

PDN
W

Reset 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

Figure 30-2. Control Register (DACn_CR)

Table 30-3. DACn_CR Field Descriptions

Field Description

15–13 Reserved, must be cleared.

12
FILT_EN

Glitch filter enable. Enables the glitch suppression filter, which introduces a latency equivalent to 
DACn_FILTCNT internal bus clock cycles for DAC updates.
0 Filter disabled (not a use case)
1 Filter enabled
Note: Always set this bit.

11–10 Reserved, must be cleared.
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9–8
WMLVL

Watermark level. Represents the FIFO level when a DMA request is sent.
00 0
01 2
10 4
11 6

7
DMAEN

DMA enable. Enables DMA support. When set, the analog DAC input fetches data from the FIFO.
 • If SYNC_EN is cleared, data is read from the FIFO and presented to the DAC input every clock cycle.
 • If SYNC_EN is set, the data is read from FIFO on the SYNC_IN trigger and causes a delay of the data 

being presenting to the DAC input.
The data is written to the FIFO each clock cycle. Therefore, if DMAEN is set, always set SYNC_EN.
0 Disabled
1 Enabled

6
HSLS

High speed/low speed. Allows you to choose between DAC speed and power consumption. When 
cleared, high-speed mode is selected and the settling time of the DAC is 1 s, but consumes more power. 
When set, low-speed mode is selected, which saves power but the settling time increases to 2 s.
0 High speed mode
1 Low speed mode

5
UP

Enable up counting. Enables counting up in automatic mode. See Section 30.4.2, “Automatic Mode” for 
details.
0 Disabled
1 Enabled

4
DOWN

Enable down counting. enables counting down in automatic mode. See Section 30.4.2, “Automatic 
Mode” for details.
0 Disabled
1 Enabled

3
AUTO

Automatic waveform generation mode. When set, an external source driving SYNC_IN determines the 
data update rate, while the DACn_STEP, DACn_MIN, and DACn_MAX registers and the UP and DOWN 
bits shape the waveform. See Section 30.4.2, “Automatic Mode” for a full description.
If SYNC_EN is cleared in this mode, the data input to the DAC is updated every clock cycle. However, 
the DAC output is not able to keep up with this update rate. Therefore, never set this bit when SYNC_EN 
is cleared.
0 Normal mode, automatic waveform generation disabled
1 Automatic waveform generation enabled

2
SYNC_EN

Synchronization enable. Enables the SYNC_IN input to trigger an update of the buffered data being 
presented to the DAC input. If cleared, then asynchronous mode is selected and data written to 
DACn_DATA is presented to the DAC input in the following internal bus clock cycle.
0 Asynchronous mode — Data written to DACn_DATA is presented to DAC inputs on next clock cycle
1 Synchronous mode — Rising edge of SYNC_IN updates data presented to DAC input
Note: If DMAEN is set, always set SYNC_EN.

1
FORMAT

Data format. Selects right or left justification of the 12-bit data words.
0 Right justified
1 Left justified

0
PDN

Power down. Removes power from the analog portion of the DAC when it is not used, resulting in its 
output being pulled low. This bit does not reset the registers and upon clearing of PDN the DAC outputs 
the value currently presented to its inputs (if DACOUT is set). The analog block requires 12 μs to recover 
from the power down state before proper operation is guaranteed.
0 DAC is operational
1 DAC is powered down

Table 30-3. DACn_CR Field Descriptions (continued)

Field Description
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30.3.2 Buffered Data Register (DACn_DATA)

30.3.3 Step Size Register (DACn_STEP)

Address: 0xFC09_8002 (DAC0_DATA)
0xFC09_C002 (DAC1_DATA)

Access: User read/write

FORMAT = 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
DATA

W

FORMAT = 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATA

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-3. Buffered Data Register (DACn_DATA)

Table 30-4. DACn_DATA Field Descriptions

Field Description

DATA When the DAC is in operational mode (PDN = 0), the digital data contained in this register is presented 
to the DAC upon the rising edge of the SYNC_IN signal (or at the next clock cycle if SYNC_EN is clear) 
and converted to analog and output by the DAC. The data in this register can be updated at any rate, but 
the DAC is only guaranteed to operate at a maximum update rate of 0.5 MHz for low speed and 1 MHz 
for high speed.
Note: Reading this register returns the value of the data presented to the analog DAC at that time, not 

the value in this register.

Address: 0xFC09_8004 (DAC0_STEP)
0xFC09_C004 (DAC1_STEP)

Access: User read/write

FORMAT = 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
STEP

W

FORMAT = 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
STEP

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-4. Step Size Register (DACn_STEP)
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30.3.4 Minimum Value Register (DACn_MIN)

30.3.5 Maximum Value Register (DACn_MAX)

Table 30-5. DACn_STEP Field Descriptions

Field Description

STEP Step size. When the DAC is in automatic mode (DACn_CR[AUTO] = 1), the step size contained in this 
register is added to, or subtracted from, the current value creating the next value presented to the DAC 
inputs. This register is not used in normal mode operation.

Address: 0xFC09_8006 (DAC0_MIN)

0xFC09_C006 (DAC1_MIN)

Access: User read/write

FORMAT = 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
MIN

W

FORMAT = 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MIN

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-5. Minimum Value Register (DACn_MIN)

Table 30-6. DACn_MIN Field Descriptions

Field Description

MIN Minimum value. When the DAC is in automatic mode (DACn_CR[AUTO] = 1), the minimum value 
contained in this register acts as the lower range limit during automatic waveform generation. See 
Section 30.4.2, “Automatic Mode” for more details. This register is not used in normal mode operation. 
Refer to the device’s data sheet for limitations on the low end voltage output of the DAC.

Address: 0xFC09_8008 (DAC0_MAX)
0xFC09_C008 (DAC1_MAX)

Access: User read/write

FORMAT = 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 1 1 1 1
MAX

W

FORMAT = 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MAX

1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 30-6. Maximum Value Register (DACn_MAX)
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30.3.6 Status Register (DACn_SR)

30.3.7 Filter Count Register (DACn_FILTCNT)

Table 30-7. DACn_MAX Field Descriptions

Field Description

MAX Maximum value. When the DAC is in automatic mode (DACn_CR[AUTO] = 1), the maximum value 
contained in this register acts as the upper range limit during automatic waveform generation. See 
Section 30.4.2, “Automatic Mode” for more details. This register is not used in normal mode operation. 
Refer to the device’s data sheet for limitations on the high end voltage output of the DAC.

Address: 0xFC09_800A (DAC0_SR)
0xFC09_C00A (DAC1_SR)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FULL EMPTY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 30-7. Status Register (DACn_SR)

Table 30-8. DACn_SR Field Descriptions

Field Description

15–2 Reserved, must be cleared.

1
FULL

Indicates full status of DMA FIFO.
0 FIFO is not full
1 FIFO is full

0
EMPTY

Indicates empty status of DMA FIFO.
0 FIFO is not empty
1 FIFO is empty

Address: 0xFC09_800C (DAC0_FILTCNT)

0xFC09_C00C (DAC1_FILTCNT)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
FILTCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 30-8. Filter Count Register (DACn_FILTCNT)
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30.4 Functional Description

30.4.1 Normal Mode

The DAC receives data words via the DACn_DATA register. This digital word is applied to the DAC 
inputs based on DACn_CR[SYNC_EN]. The analog DAC generates an analog representation of the digital 
word in less than two microseconds.

30.4.2 Automatic Mode

This mode allows the automatic generation of triangle, sawtooth, and square waveforms without CPU 
intervention. The update rate, incremental step size, and minimum and maximum values are 
programmable.

1. The value in the DACn_DATA register is used as a starting point.

2. When the SYNC_IN input triggers an update of the data presented to the DAC, the DACn_STEP 
value is added to or subtracted from the current DACn_DATA value.

3. If DACn_CR[UP] is set, then DACn_STEP is added to DACn_DATA each update until maximum 
value (DACn_MAX) is reached.

4. If DACn_CR[DOWN] is set, the generator begins subtracting STEP from DATA.
If DACn_CR[DOWN] is cleared, the generator reloads the minimum value (DACn_MIN).

5. Similarly, upon the data reaching DACn_MIN while counting down, the generator resumes up 
counting if DACn_CR[UP] is set, or reloads MAXVAL if DACn_CR[UP] is cleared.

6. The initial direction of the count depends on which bit (UP or DOWN) is set last. The following 
figures illustrate several examples of automatically-generated waveforms.

NOTE
The waveforms shown are ideal. Actual waveforms are limited by the slew 
rate of the DAC output.

Table 30-9. DACn_FILTCNT Field Descriptions

Field Description

15–6 Reserved, must be cleared.

5–0
FILTCNT

Glitch filter count. Represents the number of internal bus clock cycles that the DAC output is held 
unchanged after new data is presented to the DAC’s inputs. The number of clock cycles for which DAC 
output is held unchanged is FILT_CNT + 1. Approximately 240 ns is needed for worst case settling of the 
DAC output. Therefore, use a value of 29 for 125 MHz operation and a value of 33 for 140 MHz operation. 
The reset value is 29.
Note: When using the glitch filter ensure that the filter count is less than the update count otherwise the 

DAC output is never updated.
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Figure 30-9. Sawtooth Waveform Example with UP = 1 and DOWN = 0

 

Figure 30-10. Triangle Waveform Example with UP = 1 and DOWN = 1

SYNC_IN

DACn_MIN

DACn_MAX

DACn_STEP

VDD

VSS

SYNC_IN

DACn_MIN

DACn_MAX

DACn_STEP

VDD

VSS
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Figure 30-11. Square Wave Waveform Example with UP = 1 and DOWN = 0

The above examples show the waveform period is a function of the difference between DACn_MAX and 
DACn_MIN, DACn_STEP, and the update rate as shown below.

Eqn. 30-1

• Increasing DACn_STEP decreases the resolution of the output steps.

• Increasing the update rate decreases the waveform period.

• Varying DACn_MIN and DACn_MAX changes the DC offset and the amplitude of the waveform.

30.4.3 Sources of Waveform Distortion

30.4.3.1 Switching Glitches

When a new digital value is presented to the DAC input, some glitches may appear on the output as the 
new values propagate through the circuitry. Eventually, these glitches settle out and the output slews to its 
new value. These glitches can be avoided by setting DACn_CR[FILT_EN] and a suitable value for 
DACn_FILTCNT. This causes the DAC to hold its current output for a number of clock cycles equal to 
DACn_FILTCNT while the switching glitches settle out. After the filter time is satisfied, the output 
smoothly slews to the new value.

30.4.3.2 Slew Effects

The example waveforms are ideal waveforms and show transitions as step functions. In reality the DAC 
output has a finite slew rate designed to round off the steps. Whether this rounding off is noticeable 
depends on the output step size (larger output changes require longer settling times) and on the update 
period (longer dwell times make the settling times less noticeable).

SYNC_IN

DACn_MIN

DACn_MAX

DACn_STEP

VDD

VSS

Period 2 DACn_MAX DACn_MIN–
DACn_STEP

----------------------------------------------------------------------- UpdatePeriod=
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30.4.3.3 Clipping Effects (Auto Mode Only)

One form of clipping can occur during automatic waveform generation when the difference between 
DACn_MAX and DACn_MIN is not a near even multiple of the DACn_STEP value. This results in a less 
than whole step as the waveform approaches DACn_MAX and DACn_MIN. An example is drawn below.

 

Figure 30-12. Triangle Waveform Example with Clipping

Another form of clipping occurs when DACn_MAX or DACn_MIN is beyond the output range of the 
DAC. The maximum and minimum voltages potentially driven out are defined in the device’s data sheet.

30.5 Initialization/Application Information
Assume the desire to create a waveform to go down from 3.0 to 1.5 V in 1 millisecond.

1. Calculate DACn_MAX and DACn_MIN. Based on each DAC least significant bit (lsb) 
representing 0.806 mV the results are:

DACn_MAX = 1.5/0.000806 = 0xE8A

DACn_MIN = 3.0/0.000806 = 0x745

2. This represents a difference of:

0xE8A – 0x745 = 1861 lsbs to be accomplished in one millisecond

3. A one-millisecond time period means the DAC can safely update 500 times since the DAC has a 
two-microsecond conversion time.

4. To go from DACn_MAX to DACn_MIN in 500 steps requires:

DACn_STEP = round{1861/500} = 0x004

5. To go from DACn_MAX to DACn_MIN with a DACn_STEP size of 0x004 requires:

1861 / 4 = 465 steps

6. To keep the waveform period of one millisecond using 465 updates calls for an update period of:

465 / 1 ms = 465 kHz

SYNC_IN

DACn_MIN

DACn_MAX

DACn_STEP

VDD

VSS

Clipped
Step



Digital-to-Analog Converter (DAC)

s

30-12 NXP Semiconductors

7. Assuming operation is using a 32 MHz system clock, program a timer module to pulse the 
SYNC_IN input every:

32,000,000 / 465,000 = 69 counts

When the timer module is programmed, along with the DACn_MAX, DACn_MIN, and DACn_STEP 
registers:

1. Write DACn_DATA with a value equal to DACn_MAX (because only a count down is occurring) 
as a starting point.

NOTE
When writing to the DAC registers, be certain DACn_CR[FORMAT] is the 
desired value and the data values are properly justified to match this bit.

2. Set DACn_CR[SYNC_EN, DOWN, AUTO].

3. Optionally, set DACn_FILTCNT and DACn_CR[FILT_EN] to suppress glitches on the output.

4. Set DACn_CR[DACOUT] and clear DACn_CR[UP, PDN].

5. The desired waveform begins within 12 microseconds from the clearing of PDN and continues 
until PDN is set or the timer is stopped.
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Chapter 31  
10/100Mbps Ethernet MAC-NET Core

31.1 Introduction
The MAC-NET core, in conjunction with a 10/100 MAC, implements layer 3 network acceleration 
functions. These functions are designed to accelerate the processing of various common networking 
protocols, such as IP, TCP, UDP and ICMP, providing wire speed services to client applications.

NOTE
This device contains two MAC-NET modules. However, MAC-NET1 is 
only available when both MAC-NETs operate in RMII mode.

31.1.1 Overview

The core implements a dual speed 10/100 Mbps Ethernet MAC compliant with the IEEE802.3-2002 
standard. The MAC layer provides compatibility with half- or full-duplex 10/100Mbps Ethernet and Fast 
Ethernet LANs.

The MAC operation is fully programmable and can be used in NIC (Network Interface Card), bridging, or 
switching applications. The core implements the remote network monitoring (RMON) counters according 
to IETF RFC 2819.

The core also implements a hardware acceleration block to optimize the performance of network 
controllers providing IP and TCP, UDP, ICMP protocol services. The acceleration block performs critical 
functions in hardware, which are typically implemented with large software overhead.

The core implements programmable embedded FIFOs that can provide buffering on the receive path for 
loss-less flow control

Advanced power management features are available with magic packet detection and programmable 
power-down modes.

For industrial automation application, the IEEE 1588 standard is becoming the main technology for 
precise time synchronization on Ethernet networks. This provides accurate clock synchronization for 
distributed control nodes to overcome one of the drawbacks of Ethernet.

The programmable 10/100 Ethernet MAC with IEEE 1588 support integrates a standard IEEE 802.3 
Ethernet MAC with a time-stamping module.

The core provides a flexible and evolutive solution for a large number of applications, such as SAN 
(storage area network), NAS (network attached storage), enterprise file servers, firewalls, gateways, or 
routers.
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31.1.2 Features

The MAC-NET core includes the following features.

31.1.2.1 Ethernet MAC Features

• Implements the full 802.3 specification with preamble/SFD generation, frame padding generation, 
CRC generation and checking

• Dynamically configurable to support 10/100 Mbps operation

• Supports full duplex and configurable half duplex operation

• Supports AMD magic packet detection with interrupt for node remote power management 

• Seamless interface to commercial Fast Ethernet PHY device via a 4-bit medium independent 
interface (MII) operating at 25 MHz

• Simple 64-Bit FIFO interface to user application

• CRC-32 checking at full speed with optional forwarding of the frame check sequence (FCS) field 
to the client

• CRC-32 generation and append on transmit or forwarding of user application provided FCS 
selectable on a per-frame basis

• When operating in full duplex mode

— Implements automated pause frame (802.3 x31A) generation and termination providing flow 
control without user application intervention

— Pause quanta used to form pause frames, dynamically programmable

— Pause frame generation additionally controllable by user application offering flexible traffic 
flow control

— Optional forwarding of received pause frames to the user application

— Implements standard flow-control mechanism

• In half-duplex mode, provides full collision support, including jamming, backoff, and automatic 
retransmission

• Support for VLAN-tagged frames according to IEEE 802.1Q

• Programmable MAC address: Insertion on transmit; discards frames with mismatching destination 
address on receive (except broadcast and pause frames)

• Programmable group of four supplemental MAC addresses to filter unicast traffic 

• Programmable promiscuous mode support to omit MAC destination address checking on receive

• Multicast and unicast address filtering on receive based on 64 entries hash table reducing higher 
layer processing load

• Programmable frame maximum length providing support for any standard or proprietary frame 
length

• Statistics indicators for frame traffic and errors (alignment, CRC, length) and pause frames 
providing for IEEE 802.3 basic and mandatory management information database (MIB) package 
and remote network monitoring (RFC 2819)
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• Simple handshake user application FIFO interface with fully programmable depth and threshold 
levels ensuring data rates of 1Gbps

• 64-bit client FIFO interface

• Separate status word available for each received frame on the user interface providing information 
such as frame length, frame type, VLAN tag, and error information

• Multiple internal loopback options

• MDIO master interface for PHY device configuration and management with two programmable 
MDIO base addresses

• Supports legacy FEC buffer descriptors

31.1.2.2 IP Protocol Performance Optimization Features

• Operates on TCP/IP and UDP/IP and ICMP/IP protocol data or IP header only

• Enables wire-speed processing

• IPv4 and IPv6 support

• Transparent passing of frames of other types and protocols

• Support for VLAN tagged frames according to IEEE 802.1q with transparent forwarding of VLAN 
tag and control field

• Automatic IP-header and payload (protocol specific) checksum calculation and verification on 
receive

• Automatic IP-header and payload (protocol specific) checksum generation and automatic insertion 
on transmit configurable on a per-frame basis

• Support for IP and TCP, UDP, ICMP data for checksum generation and checking

• Full header options support for IPv4 and TCP protocol headers

• IPv6 support limited to datagrams with base header only. Datagrams with extension headers are 
passed transparently unmodified/unchecked.

• Statistics information for received IP and protocol errors

• Configurable automatic discard of erroneous frames

• Configurable automatic host-to-network (RX) and network-to-host (TX) byte order conversion for 
IP and TCP/UDP/ICMP headers within the frame

• Configurable padding remove for short IP datagrams on receive

• Configurable Ethernet payload alignment to allow for 32-bit word aligned header and payload 
processing

• Programmable store-and-forward operation with clock and rate decoupling FIFOs 

31.1.2.3 IEEE 1588 Functions

• Support for all IEEE 1588 frames

• Reference clock can be chosen independently of the network speed

• Software-programmable precise time-stamping of ingress and egress frames

• Timer monitoring capabilities for system calibration and timing accuracy management
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• Precise time-stamping of external events with programmable interrupt generation

• Programmable event and interrupt generation for external system control

• Hardware- and software-controllable timer synchronization

31.1.3 Block Diagram

Figure 31-1. 10/100 Ethernet MAC-NET Core Block Diagram

31.2 External Signal Description

Table 31-2. ENET Signal Descriptions

Signal
Description

MII RMII

MII_COL — Asserted upon detection of a collision and remains asserted while the collision persists. This 
signal is not defined for full-duplex mode.

MII_CRS — Carrier sense. When asserted, indicates transmit or receive medium is not idle.
In RMII mode, this signal is present on the RMII_CRS_DV pin.

MII_MDC RMII_MDC Output clock provides a timing reference to the PHY for data transfers on the MDIO signal.

MII_MDIO RMII_MDIO Transfers control information between the external PHY and the media-access controller. 
Data is synchronous to MDC. This signal is an input after reset.

MII_RXCLK — Provides a timing reference for RXDV, RXD[3:0], and RXER.
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31.3 Memory Map/Register Definition
The MAC with its corresponding management counters implements a register space of 512 32-bit 
registers. All writes must provide 32-bit of data and all reads return 32-bits of data.

Reserved bits should be written with 0 and ignored on read to allow future extension.

Unused registers read back 0 and a write has no effect.

MII_RXDV RMII_CRS_DV Asserting this input indicates the PHY has valid nibbles present on the MII. RXDV must 
remain asserted from the first recovered nibble of the frame through to the last nibble. 
Asserting RXDV must start no later than the SFD and exclude any EOF.
In RMII mode, this pin also generates the CRS signal.

MII_RXD0 RMII_RXD0 Contains the Ethernet input data transferred from PHY to the media-access controller when 
RXDV is asserted.MII_RXD1 RMII_RXD1

MII_RXD[3:2] —

MII_RXER RMII_RXER When asserted with RXDV, indicates the PHY detects an error in the current frame. When 
RXDV is negated, RXER has no effect.

MII_TXCLK — Input clock which provides a timing reference for TXEN, TXD[3:0], and TXER.

MII_TXD0 RMII_TXD0 The serial output Ethernet data and only valid during the assertion of TXEN.

MII_TXD1 RMII_TXD1

MII_TXD[3:2] —

MII_TXEN RMII_TXEN Indicates when valid nibbles are present on the MII. This signal is asserted with the first 
nibble of a preamble and is negated before the first TXCLK following the final nibble of the 
frame.

MII_TXER — When asserted for one or more clock cycles while TXEN is also asserted, PHY sends one or 
more illegal symbols. TXER has no effect at 10 Mbps or when TXEN is negated.

— RMII_REF_CLK In RMII mode, this signal is the reference clock for receive, transmit, and the control 
interface.

Table 31-3. Register Map Summary

Address Section Description

MACNET0

0xFC0D_4000 Configuration Core control and status registers

0xFC0D_4200 Statistics counters MIB block counters.

0xFC0D_4400 1588 control 1588 adjustable timer (TSM) and 1588 frame control.

0xFC0D_4500 MAC addresses Supplemental unicast MAC addresses

MACNET1

0xFC0D_8000 Configuration Core control and status registers

Table 31-2. ENET Signal Descriptions (continued)

Signal
Description

MII RMII
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0xFC0D_8200 Statistics counters MIB block counters.

0xFC0D_8400 1588 control 1588 adjustable timer (TSM) and 1588 frame control.

0xFC0D_8500 MAC addresses Supplemental unicast MAC addresses

Table 31-4. MACNET Memory Map

Address

Register
Width
(bits)

Access Reset Value Section/Page
MACNET0
MACNET1

Core and Configuration Registers

0xFC0D_4004
0xFC0D_8004

Interrupt event register (ENETn_EIR) 32 R/W 0x00000000 31.3.1/31-12

0xFC0D_4008
0xFC0D_8008

Interrupt mask register (ENETn_EIMR) 32 R/W 0x00000000 31.3.2/31-13

0xFC0D_4010
0xFC0D_8010

Receive descriptor active register (ENETn_RDAR) 32 R/W 0x00000000 31.3.3/31-14

0xFC0D_4014
0xFC0D_8014

Transmit descriptor active register (ENETn_TDAR) 32 R/W 0x00000000 31.3.4/31-15

0xFC0D_4024
0xFC0D_8024

Ethernet control register (ENETn_ECR) 32 R/W 0xF000_0000 31.3.5/31-16

0xFC0D_4040
0xFC0D_8040

MII management frame register (ENETn_MMFR) 32 R/W 0x0000_0000 31.3.6/31-17

0xFC0D_4044
0xFC0D_8044

MII speed control register (ENETn_MSCR) 32 R/W 0x0000_0000 31.3.7/31-18

0xFC0D_4064
0xFC0D_8064

MIB control/status register (ENETn_MIBC) 32 R/W 0xC000_0000 31.3.8/31-19

0xFC0D_4084
0xFC0D_8084

Receive control register (ENETn_RCR) 32 R/W 0x05EE_0001 31.3.9/31-20

0xFC0D_40C4
0xFC0D_80C4

Transmit control register (ENETn_TCR) 32 R/W 0x0000_0000 31.3.10/31-21

0xFC0D_40E4
0xFC0D_80E4

Physical address low register (ENETn_PALR) 32 R/W 0x0000_0000 31.3.11/31-22

0xFC0D_40E8
0xFC0D_80E8

Physical address high register (ENETn_PAUR) 32 R/W 0x0000_8808 31.3.12/31-23

0xFC0D_40EC
0xFC0D_80EC

Opcode/pause duration (ENETn_OPD) 32 R/W 0x0001_0000 31.3.13/31-23

0xFC0D_4118
0xFC0D_8118

Descriptor individual upper address register (ENETn_IAUR) 32 R/W 0x0000_0000 31.3.14/31-24

0xFC0D_411C
0xFC0D_811C

Descriptor individual lower address register (ENETn_IALR) 32 R/W 0x0000_0000 31.3.15/31-24

Table 31-3. Register Map Summary (continued)

Address Section Description
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0xFC0D_4120
0xFC0D_8120

Descriptor group upper address register (ENETn_GAUR) 32 R/W 0x0000_0000 31.3.16/31-25

0xFC0D_4124
0xFC0D_8124

Descriptor group upper address register (ENETn_GALR) 32 R/W 0x0000_0000 31.3.17/31-25

0xFC0D_4144
0xFC0D_8144

Transmit FIFO watermark and store/forward control 
(ENETn_TFWR)

32 R/W 0x0000_0000 31.3.18/31-26

0xFC0D_414C
0xFC0D_814C

FIFO receive bound register (ENETn_FRBR)
Note: Not implemented. Available for 

software-compatibility.

32 R 0x0000_0600 —

0xFC0D_4150
0xFC0D_8150

FIFO receive start register (ENETn_FRSR)
Note: Not implemented. Available for 

software-compatibility.

32 RW 0x0000_0500 —

0xFC0D_4180
0xFC0D_8180

Receive descriptor ring start register (ENETn_RDSR) 32 R/W 0x0000_0000 31.3.19/31-26

0xFC0D_4184
0xFC0D_8184

Transmit descriptor ring start register (ENETn_TDSR) 32 R/W 0x0000_0000 31.3.20/31-27

0xFC0D_4188
0xFC0D_8188

Maximum receive buffer size (ENETn_MRBR) 32 R/W 0x0000_0000 31.3.21/31-27

0xFC0D_4190
0xFC0D_8190

Receive FIFO section full threshold (ENETn_RSFL) 32 R/W 0x0000_0000 31.3.22/31-28

0xFC0D_4194
0xFC0D_8194

Receive FIFO section empty threshold (ENETn_RSEM) 32 R/W 0x0000_0000 31.3.23/31-29

0xFC0D_4198
0xFC0D_8198

Receive FIFO almost empty threshold (ENETn_RAEM) 32 R/W 0x0000_0004 31.3.24/31-29

0xFC0D_419C
0xFC0D_819C

Receive FIFO almost full threshold (ENETn_RAFL) 32 R/W 0x0000_0004 31.3.25/31-29

0xFC0D_41A0
0xFC0D_81A0

Transmit FIFO section empty threshold (ENETn_TSEM) 32 R/W 0x0000_0000 31.3.26/31-30

0xFC0D_41A4
0xFC0D_81A4

Transmit FIFO almost empty threshold (ENETn_TAEM) 32 R/W 0x0000_0004 31.3.27/31-30

0xFC0D_41A8
0xFC0D_81A8

Transmit FIFO almost full threshold (ENETn_TAFL) 32 R/W 0x0000_0008 31.3.28/31-31

0xFC0D_41AC
0xFC0D_81AC

Transmit inter-packet gap (ENETn_TIPG) 32 R/W 0x0000_000C 31.3.29/31-31

0xFC0D_41B0
0xFC0D_81B0

Frame truncation length (ENETn_FTRL) 32 R/W 0x0000_07FF 31.3.30/31-32

0xFC0D_41C0
0xFC0D_81C0

Transmit accelerator function configuration (ENETn_TACC) 32 RW 0x0000_0000 31.3.31/31-32

Table 31-4. MACNET Memory Map (continued)

Address

Register
Width
(bits)

Access Reset Value Section/Page
MACNET0
MACNET1
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0xFC0D_41C4
0xFC0D_81C4

Receive accelerator function configuration (ENETn_RACC) 32 RW 0x0000_0000 31.3.32/31-33

Statistics Counters
(see Table 31-5)

IEEE 1588 Control and Adjustable Timer Module (TSM)

0xFC0D_4400
0xFC0D_8400

Timer control register (ENETn_ATCR) 32 RW 0x0000_0000 31.3.33/31-34

0xFC0D_4404
0xFC0D_8404

Timer value register (ENETn_ATVR) 32 RW 0x0000_0000 31.3.34/31-35

0xFC0D_4408
0xFC0D_8408

Offset value for one-shot event generation 
(ENETn_ATOFF)

32 RW 0x0000_0000 31.3.35/31-36

0xFC0D_440C
0xFC0D_840C

Timer period (ENETn_ATPER) 32 RW 0x3B9A_CA00 31.3.36/31-36

0xFC0D_4410
0xFC0D_8410

Correction counter wrap-around value (ENETn_ATCOR) 32 RW 0x0000_0000 31.3.37/31-36

0xFC0D_4414
0xFC0D_8414

Timestamp clock period and correction increment 
(ENETn_ATINC)

32 RW 0x0000_0000 31.3.38/31-37

0xFC0D_4418
0xFC0D_8418

Timestamp of last transmitted frame (ENETn_ATSTMP) 32 R 0x0000_0000 31.3.39/31-37

Optional Supplemental MAC Addresses

0xFC0D_4500
0xFC0D_8500

Supplemental MAC address lower 0 (ENETn_SMACL0) 32 RW Undefined 31.3.40/31-38

0xFC0D_4504
0xFC0D_8504

Supplemental MAC address upper 0 (ENETn_SMACU0) 32 RW Undefined 31.3.41/31-38

0xFC0D_4508
0xFC0D_8508

Supplemental MAC address lower 1 (ENETn_SMACL1) 32 RW Undefined 31.3.40/31-38

0xFC0D_450C
0xFC0D_850C

Supplemental MAC address upper 1 (ENETn_SMACU1) 32 RW Undefined 31.3.41/31-38

0xFC0D_4510
0xFC0D_8510

Supplemental MAC address lower 2 (ENETn_SMACL2) 32 RW Undefined 31.3.40/31-38

0xFC0D_4514
0xFC0D_8514

Supplemental MAC address upper 2 (ENETn_SMACU2) 32 RW Undefined 31.3.41/31-38

0xFC0D_4518
0xFC0D_8518

Supplemental MAC address lower 3 (ENETn_SMACL3) 32 RW Undefined 31.3.40/31-38

0xFC0D_451C
0xFC0D_851C

Supplemental MAC Address Upper 3 (ENETn_SMACU3) 32 RW Undefined 31.3.41/31-38

Table 31-4. MACNET Memory Map (continued)

Address

Register
Width
(bits)

Access Reset Value Section/Page
MACNET0
MACNET1
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Table 31-5. Statistic Event Counters

Address

Register
MACNET0
MACNET1

0xFC0D_4200
0xFC0D_8200

Count of frames not counted correctly (RMON_T_DROP)
Note: Counter not implemented (read 0 always) as not applicable

0xFC0D_4204
0xFC0D_8204

RMON Tx packet count (RMON_T_PACKETS)

0xFC0D_4208
0xFC0D_8208

RMON Tx Broadcast Packets (RMON_T_BC_PKT)

0xFC0D_420C
0xFC0D_820C

RMON Tx Multicast Packets (RMON_T_MC_PKT)

0xFC0D_4210
0xFC0D_8210

RMON Tx Packets w CRC/Align error (RMON_T_CRC_ALIGN)

0xFC0D_4214
0xFC0D_8214

RMON Tx Packets < 64 bytes, good CRC (RMON_T_UNDERSIZE)

0xFC0D_4218
0xFC0D_8218

RMON Tx Packets > MAX_FL bytes, good CRC (RMON_T_OVERSIZE)

0xFC0D_421C
0xFC0D_821C

RMON Tx Packets < 64 bytes, bad CRC (RMON_T_FRAG)

0xFC0D_4220
0xFC0D_8220

RMON Tx Packets > MAX_FL bytes, bad CRC (RMON_T_JAB)

0xFC0D_4224
0xFC0D_8224

RMON Tx collision count (RMON_T_COL)

0xFC0D_4228
0xFC0D_8228

RMON Tx 64 byte packets (RMON_T_P64)

0xFC0D_422C
0xFC0D_822C

RMON Tx 65 to 127 byte packets (RMON_T_P65TO127n)

0xFC0D_4230
0xFC0D_8230

RMON Tx 128 to 255 byte packets (RMON_T_P128TO255n)

0xFC0D_4234
0xFC0D_8234

RMON Tx 256 to 511 byte packets (RMON_T_P256TO511)

0xFC0D_4238
0xFC0D_8238

RMON Tx 512 to 1023 byte packets (RMON_T_P512TO1023)

0xFC0D_423C
0xFC0D_823C

RMON Tx 1024 to 2047 byte packets (RMON_T_P1024TO2047)

0xFC0D_4240
0xFC0D_8240

RMON Tx packets w > 2048 bytes (RMON_T_P_GTE2048)

0xFC0D_4244
0xFC0D_8244

RMON Tx Octets (RMON_T_OCTETS)

0xFC0D_4248
0xFC0D_8248

Count of frames not counted correctly (IEEE_T_DROP)
Note: Counter not implemented (read 0 always) as not applicable



10/100Mbps Ethernet MAC-NET Core

31-10 NXP Semiconductors

0xFC0D_424C
0xFC0D_824C

Frames Transmitted OK (IEEE_T_FRAME_OK)

0xFC0D_4250
0xFC0D_8250

Frames Transmitted with Single Collision (IEEE_T_1COL)

0xFC0D_4254
0xFC0D_8254

Frames Transmitted with Multiple Collisions (IEEE_T_MCOL)

0xFC0D_4258
0xFC0D_8258

Frames Transmitted after Deferral Delay (IEEE_T_DEF)

0xFC0D_425C
0xFC0D_825C

Frames Transmitted with Late Collision (IEEE_T_LCOL)

0xFC0D_4260
0xFC0D_8260

Frames Transmitted with Excessive Collisions (IEEE_T_EXCOL)

0xFC0D_4264
0xFC0D_8264

Frames Transmitted with Tx FIFO Underrun (IEEE_T_MACERR)

0xFC0D_4268
0xFC0D_8268

Frames Transmitted with Carrier Sense Error (IEEE_T_CSERR)

0xFC0D_426C
0xFC0D_826C

Frames Transmitted with SQE Error (IEEE_T_SQE)
Note: Counter not implemented (read 0 always) as no SQE information is available

0xFC0D_4270
0xFC0D_8270

Flow Control Pause frames transmitted (IEEE_T_FDXFC)

0xFC0D_4274
0xFC0D_8274

Octet count for Frames Transmitted w/o Error (IEEE_T_OCTETS_OK)
Note: Counts total octets (includes header and FCS fields)

0xFC0D_4284
0xFC0D_8284

RMON Rx packet count (RMON_R_PACKETS)

0xFC0D_4288
0xFC0D_8288

RMON Rx Broadcast Packets (RMON_R_BC_PKT)

0xFC0D_428C
0xFC0D_828C

RMON Rx Multicast Packets (RMON_R_MC_PKT)

0xFC0D_4290
0xFC0D_8290

RMON Rx Packets w CRC/Align error (RMON_R_CRC_ALIGN)

0xFC0D_4294
0xFC0D_8294

RMON Rx Packets < 64 bytes, good CRC (RMON_R_UNDERSIZE)

0xFC0D_4298
0xFC0D_8298

RMON Rx Packets > MAX_FL, good CRC (RMON_R_OVERSIZE)

0xFC0D_429C
0xFC0D_829C

RMON Rx Packets < 64 bytes, bad CRC (RMON_R_FRAG)

0xFC0D_42A0
0xFC0D_82A0

RMON Rx Packets > MAX_FL bytes, bad CRC (RMON_R_JAB)

Table 31-5. Statistic Event Counters (continued)

Address

Register
MACNET0
MACNET1
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0xFC0D_42A4
0xFC0D_82A4

Reserved (RMON_R_RESVD_0)

0xFC0D_42A8
0xFC0D_82A8

RMON Rx 64 byte packets (RMON_R_P64)

0xFC0D_42AC
0xFC0D_82AC

RMON Rx 65 to 127 byte packets (RMON_R_P65TO127)

0xFC0D_42B0
0xFC0D_82B0

RMON Rx 128 to 255 byte packets (RMON_R_P128TO255)

0xFC0D_42B4
0xFC0D_82B4

RMON Rx 256 to 511 byte packets (RMON_R_P256TO511)

0xFC0D_42B8
0xFC0D_82B8

RMON Rx 512 to 1023 byte packets (RMON_R_P512TO1023)

0xFC0D_42BC
0xFC0D_82BC

RMON Rx 1024 to 2047 byte packets (RMON_R_P1024TO2047)

0xFC0D_42C0
0xFC0D_82C0

RMON Rx packets w > 2048 bytes (RMON_R_P_GTE2048)

0xFC0D_42C4
0xFC0D_82C4

RMON Rx Octets (RMON_R_OCTETS)

0xFC0D_42C8
0xFC0D_82C8

Count of frames not counted correctly (IEEE_R_DROP)
Note: Counter increments if a frame with invalid/missing SFD character is detected and has been 

dropped. None of the other counters increments if this counter increments.

0xFC0D_42CC
0xFC0D_82CC

Frames Received OK (IEEE_R_FRAME_OK)

0xFC0D_42D0
0xFC0D_82D0

Frames Received with CRC Error (IEEE_R_CRC)

0xFC0D_42D4
0xFC0D_82D4

Frames Received with Alignment Error (IEEE_R_ALIGN)

0xFC0D_42D8
0xFC0D_82D7

Receive Fifo Overflow count (IEEE_R_MACERR)

0xFC0D_42DC
0xFC0D_82DC

Flow Control Pause frames received (IEEE_R_FDXFC)

0xFC0D_42E0
0xFC0D_82E0

Octet count for Frames Rcvd w/o Error (IEEE_R_OCTETS_OK)
Note: Counts total octets (includes header and FCS fields)

Table 31-5. Statistic Event Counters (continued)

Address

Register
MACNET0
MACNET1
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31.3.1 Interrupt Event Register (ENETn_EIR)

When an event occurs that sets a bit in ENETn_EIR, an interrupt occurs if the corresponding bit in the 
interrupt mask register (ENETn_EIMR) is also set. Writing a 1 to an ENETn_EIR bit clears it; writing 0 
has no effect. This register is cleared upon hardware reset.

Address: 0xFC0D_4004 (ENET0_EIR)
0xFC0D_8004 (ENET1_EIR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
0 BABR BABT GRA TXF TXB RXF RXB MII

EB
ERR

LC RL UN PLR
WAK
EUP

TS
AVAIL

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TS
TIMER

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-2. Interrupt Event Register (ENETn_EIR)

Table 31-6. ENETn_EIR Field Descriptions

Field Description

31 Reserved, must be cleared.

30
BABR

Babbling receive error. Indicates a frame was received with length in excess of ENETn_RCR[MAX_FL] bytes.

29
BABT

Babbling transmit error. Indicates the transmitted frame length exceeds ENETn_RCR[MAX_FL] bytes. Usually this 
condition is caused by a frame that is too long is placed into the transmit data buffer(s). Truncation does not occur.

28
GRA

Graceful stop complete. This interrupt is asserted after the transmitter is put into a pause state after completion of 
the frame currently being transmitted. See Section 31.4.9.4.1, “Graceful Transmit Stop (GTS)” for conditions that 
lead to graceful stop.
Note: The GRA interrupt is asserted only when the TX transitions into the stopped state. If this bit is cleared (by 

writing 1) and the TX is still stopped, the bit is not set again.

27
TXF

Transmit frame interrupt. Indicates a frame has been transmitted and the last corresponding buffer descriptor has 
been updated.

26
TXB

Transmit buffer interrupt. Indicates a transmit buffer descriptor has been updated.

25
RXF

Receive frame interrupt. Indicates a frame has been received and the last corresponding buffer descriptor has been 
updated.

24
RXB

Receive buffer interrupt. Indicates a receive buffer descriptor not the last in the frame has been updated.

23
MII

MII interrupt. Indicates the MII has completed the data transfer requested.
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31.3.2 Interrupt Mask Register (ENETn_EIMR)

The ENETn_EIMR register controls which interrupt events are allowed to generate actual interrupts. A 
hardware reset clears this register. If the corresponding bits in the ENETn_EIR and ENETn_EIMR 
registers are set, an interrupt is generated. The interrupt signal remains asserted until a 1 is written to the 
ENETn_EIR bit (write 1 to clear) or a 0 is written to the ENETn_EIMR bit.

22
EBERR

Ethernet bus error. Indicates a system bus error occurred when a DMA transaction is underway. When this bit is set, 
ENETn_ECR[ETHER_EN] is cleared, halting frame processing by the MAC. When this occurs, software must 
ensure proper actions (possibly resetting the system) to resume normal operation.

21
LC

Late collision. Indicates a collision occurred beyond the collision window (slot time) in half-duplex mode. The frame 
truncates with a bad CRC and the remainder of the frame is discarded.

20
RL

Collision retry limit. Indicates a collision occurred on each of 16 successive attempts to transmit the frame. The frame 
is discarded without being transmitted and transmission of the next frame commences. This error can only occur in 
half duplex mode.

19
UN

Transmit FIFO underrun. Indicates the transmit FIFO became empty before the complete frame was transmitted. A 
bad CRC is appended to the frame fragment and the remainder of the frame is discarded.

18
PLR

Payload receive error. This bit indicates a frame was received with a payload length error.

17
WAKEUP

Node wake-up request indication. Read only status bit to indicate that a magic packet has been detected. Acts only 
if ENETn_ECR[MAGICEN] is set.

16
TS_AVAIL

Transmit timestamp available. Indicates that the timestamp of the last transmitted timing frame is available in the 
ENETn_ATSTMP register.

15
TS_TIMER

The adjustable timer reached the period event. See Section 31.4.10.1, “Adjustable Timer Module”.
Note: TS_TIMER will set a flag on the period event but will not generate an interrupt to the core.

14–0 Reserved, must be cleared.

Address: 0xFC0D_4008 (ENET0_EIMR)
0xFC0D_8008 (ENET1_EIMR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0
BABR BABT GRA TXF TXB RXF RXB MII

EB
ERR

LC RL UN PLR
WAK
EUP

TS
AVAILW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TS
TIMER

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-3. Interrupt Mask Register (ENETn_EIMR)

Table 31-6. ENETn_EIR Field Descriptions (continued)

Field Description
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31.3.3 Receive Descriptor Active Registers (ENETn_RDAR)

ENETn_RDAR is a command register, written by the user, indicating the receive descriptor ring is updated 
(the driver produced empty receive buffers with the empty bit set).

When the register is written, the RDAR bit is set. This is independent of the data actually written by the 
user. When set, the MAC polls the receive descriptor ring and processes receive frames (provided 
ENETn_ECR[ETHER_EN] is also set). After the MAC polls a receive descriptor whose empty bit is not 
set, MAC clears RDAR and ceases receive descriptor ring polling until the user sets the bit again, 
signifying that additional descriptors are placed into the receive descriptor ring.

The ENETn_RDAR registers are cleared at reset and when ENETn_ECR[ETHER_EN] transitions from 
set to cleared or when ENETn_ECR[RESET] is set.

Table 31-7. ENETn_EIMR Field Descriptions

Field Description

31 Reserved, must be cleared.

30–15
See 

Figure 31-3
and Table 31-6

Interrupt mask. Each bit corresponds to an interrupt source defined by the ENETn_EIR register. The 
corresponding ENETn_EIMR bit determines whether an interrupt condition can generate an interrupt. At every 
processor clock, the ENETn_EIR samples the signal generated by the interrupting source. The corresponding 
ENETn_EIR bit reflects the state of the interrupt signal even if the corresponding ENETn_EIMR bit is cleared.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is not masked.

14–0 Reserved, must be cleared.

Address: 0xFC0D_4010 (ENET0_RDAR)
0xFC0D_8010 (ENET1_RDAR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
RDAR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-4. Receive Descriptor Active Register (ENETn_RDAR)

Table 31-8. ENETn_RDAR Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
RDAR

Set to 1 when this register is written, regardless of the value written. Cleared by the MAC device when no additional 
empty descriptors remain in the receive ring. Also cleared when ENETn_ECR[ETHER_EN] transitions from set to 
cleared or when ENETn_ECR[RESET] is set.

23–0 Reserved, must be cleared.
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31.3.4 Transmit Descriptor Active Registers (ENETn_TDAR)

The ENETn_TDAR are command registers which the user writes to indicate the transmit descriptor ring 
is updated (transmit buffers have been produced by the driver with the ready bit set in the buffer 
descriptor).

When the register is written, the TDAR bit is set. This value is independent of the data actually written by 
the user. When set, the MAC polls the transmit descriptor ring and processes transmit frames (provided 
ENETn_ECR[ETHER_EN] is also set). After the MAC polls a transmit descriptor that contains a ready 
bit that is not set, MAC clears TDAR and ceases transmit descriptor ring polling until the user sets the bit 
again, signifying additional descriptors are placed into the transmit descriptor ring.

The ENETn_TDAR registers are cleared at reset, when ENETn_ECR[ETHER_EN] transitions from set 
to cleared, or when ENETn_ECR[RESET] is set.

Address: 0xFC0D_4014 (ENET0_TDAR)
0xFC0D_8014 (ENET1_TDAR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
TDAR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-5. Transmit Descriptor Active Register (ENETn_TDAR)

Table 31-9. ENETn_TDAR Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
TDAR

Set to 1 when this register is written, regardless of the value written. Cleared by the MAC device when no additional 
ready descriptors remain in the transmit ring. Also cleared when ENETn_ECR[ETHER_EN] transitions from set to 
cleared or when ENETn_ECR[RESET] is set.

23–0 Reserved, must be cleared.
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31.3.5 Ethernet Control Register (ENETn_ECR)

ENETn_ECR is a read/write user register, though hardware may alter fields in this register as well. It 
controls many of the high level features of the Ethernet MAC, including legacy FEC support through the 
1588EN bit.

Address: 0xFC0D_4024 (ENET0_ECR)
0xFC0D_8024 (ENET1_ECR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 STOP
EN

DBG
EN

0 1588
EN

SLEEP
MAGIC

EN
ETHER

EN
RESET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-6. Ethernet Control Register (ENETn_ECR)

Table 31-10. ENETn_ECR Field Descriptions

Field Description

31–28 Reserved, must be set.

27–8 Reserved, must be cleared.

7
STOPEN

Controls device behavior in doze mode.
In doze mode, if this bit is set then all the clocks of the ENET assembly are disabled (except the RMII/MII 
clock). Doze mode is like a conditional stop mode entry the ENET assembly depending on ECR[STOPEN].
Note: If module clocks are gated in this mode, the module can still wake the system after receiving a magic 

packet in stop mode. MAGICEN must be set prior to entering sleep/stop mode.

6
DBGEN

Enables the MAC to enter hardware freeze mode when the device enters debug mode. See Section 31.4.9.3, 
“Hardware Freeze”.
0 MAC continues operation in debug mode
1 MAC enters hardware freeze mode when the processor is in debug mode

5 Reserved, must be cleared.

4
1588EN

IEEE1588 enable. Enables enhanced functionality of the MAC. 
0 Legacy FEC buffer descriptors and functions enabled
1 Enhanced frame time-stamping functions enabled

3
SLEEP

Sleep mode enable.
0 Normal operating mode
1 Sleep mode
Note: MAGICEN must be set to allow the MAC to interrupt the processor from sleep mode.

2
MAGICEN

Magic packet detection enable.
0 Magic detection logic disabled
1 The MAC core detects magic packets and asserts ENETn_EIR[WAKEUP] when a frame is detected
Note: MAGICEN is relevant only if the SLEEP bit is set. If MAGICEN is set, changing the SLEEP bit 

enables/disables sleep mode and magic packet detection.
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31.3.6 MII Management Frame Register (ENETn_MMFR)

Performing a write to ENETn_MMFR triggers a management frame transaction to the PHY device unless 
ENETn_MSCR is programmed to zero.

If, while writing to ENETn_MMFR, ENETn_MSCR is changed from zero to non-zero, an MII frame is 
generated with the data previously written to the ENETn_MMFR. This allows ENETn_MMFR and 
ENETn_MSCR to be programmed in either order if ENETn_MSCR is currently zero.

If the ENETn_MMFR register is written while frame generation is in progress, the frame contents are 
altered. Software must use the ENETn_EIR[MII] interrupt indication to avoid writing to the 
ENETn_MMFR register while frame generation is in progress.

1
ETHEREN

0 Reception immediately stops and transmission stops after a bad CRC is appended to any currently 
transmitted frame. The buffer descriptors for an aborted transmit frame are not updated. The DMA, buffer 
descriptor, and FIFO control logic are reset, including the buffer descriptor and FIFO pointers (see 
Section 31.4.9.2, “Soft Reset”).

1 MAC is enabled, and reception and transmission are possible.

Hardware clears this bit under the following conditions:
 • RESET is set by software
 • An error condition causes the EBERR bit to set

0
RESET

When the bit is set, it has no other effect on the MAC except that it clears the ETHER_EN bit.

Address: 0xFC0D_4040 (ENET0_MMFR)
0xFC0D_8040 (ENET1_MMFR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ST OP PA RA TA DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-7. MII Management Frame Register (ENETn_MMFR)

Table 31-11. ENETn_MMFR Field Descriptions

Field Description

31–30
ST

Start of frame delimiter. These bits must be programmed to 01 for a valid MII management frame.

29–28
OP

Operation code.
00 Write frame operation, but not MII compliant
01 Write frame operation for a valid MII management frame
10 Read frame operation for a valid MII management frame
11 Read frame operation, but not MII compliant

27–23
PA

PHY address. Specifies one of up to 32 attached PHY devices.

Table 31-10. ENETn_ECR Field Descriptions (continued)

Field Description
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31.3.7 MII Speed Control Register (ENETn_MSCR)

The ENETn_MSCR provides control of the MII clock (MDC pin) frequency and allows a preamble drop 
on the MII management frame.

The MII_SPEED field must be programmed with a value to provide an MDC frequency of less than or 
equal to 2.5 MHz to be compliant with the IEEE 802.3 MII specification. The MII_SPEED must be set to 
a non-zero value to source a read or write management frame. After the management frame is complete, 
the ENETn_MSCR register may optionally be cleared to turn off MDC. The MDC signal generated has a 

22–18
RA

Register address. Specifies one of up to 32 registers within the specified PHY device.

17–16
TA

Turn around. This field must be programmed to 10 to generate a valid MII management frame.

15–0
DATA

Management frame data. This is the field for data to be written to or read from the PHY register.

Address: 0xFC0D_4044 (ENET0_MSCR)
0xFC0D_8044 (ENET1_MSCR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HOLD
TIME

DIS_
PRE

MII_SPEED
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-8. MII Speed Control Register (ENETn_MSCR)

Table 31-12. ENETn_MSCR Field Descriptions

Field Description

31–11 Reserved, must be cleared.

10–8
HOLDTIME

IEEE802.3 clause 22 defines a minimum of 10 ns for the holdtime on the MDIO output. Depending on the host 
bus frequency the setting may need to be increased.
000 1 internal bus cycle
001 2 internal bus cycles
010 3 internal bus cycles
...
111 8 internal bus cycles

7
DIS_PRE

Disable preamble.
0 Preamble enabled
1 Preamble (32 ones) is not prepended to the MII management frame. The MII standard allows the preamble to 

be dropped if the attached PHY devices do not require it.

6–1
MII_SPEED

MII speed. Controls the frequency of the MII management interface clock (MDC) relative to the internal bus clock. 
A value of 0 in this field turns off MDC and leaves it in low voltage state. Any non-zero value results in the MDC 
frequency of 1/((MII_SPEED + 1)  2) of the internal bus frequency.

0 Reserved, must be cleared.

Table 31-11. ENETn_MMFR Field Descriptions (continued)

Field Description
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50% duty cycle except when MII_SPEED changes during operation (change takes effect following a rising 
or falling edge of MDC).

If the internal bus clock is 25 MHz, programming this register to 0x0000_0004 results in an MDC as stated 
the equation below.

Eqn. 31-1

Table 31-13 shows the optimum values for MII_SPEED as a function of internal bus clock frequency.

31.3.8 MIB Control Register (ENETn_MIBC)

ENETn_MIBC is a read/write register controlling and observing the state of the MIB block. Access this 
register to disable the MIB block operation or clear the MIB counters.

The MIB_DIS bit resets to 1. See Table 31-5 for the locations of the MIB counters.

Table 31-13. Programming Examples for ENETn_MSCR

Internal MAC
clock frequency

ENETn_MSCR
[MII_SPEED]

MDC frequency

25 MHz 0x4 2.50 MHz

33 MHz 0x6 2.36 MHz

40 MHz 0x7 2.50 MHz

50 MHz 0x9 2.50 MHz

66 MHz 0xD 2.36 MHz

Address: 0xFC0D_4064 (ENET0_MIBC)
0xFC0D_8064 (ENET1_MIBC)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MIB_
DIS

MIB_
IDLE MIB_

CLEAR
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-9. MIB Control Register (ENETn_MIBC)

Table 31-14. ENETn_MIBC Field Descriptions

Field Description

31
MIB_DIS

A read/write control bit. If set, the MIB logic halts and not update any MIB counters.

30
MIB_IDLE

A read-only status bit. If set the MIB block is not currently updating any MIB counters.

29
MIB_CLEAR

A read/write control bit. If set all statistics counters are reset to 0.

28–0 Reserved, must be cleared.

25 MHz 1
4 1+  2

--------------------------- 2.5 MHz=
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31.3.9 Receive Control Register (ENETn_RCR)

Address: 0xFC0D_4084 (ENET0_RCR)
0xFC0D_8084 (ENET1_RCR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R GRS
NLC MAX_FL

W

Reset 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CF
EN

CRC
FWD

PAU
FWD

PAD
EN

0 0 RMII_
10T

RMII_
MODE

0 0
FCE

BC_
REJ

PROM
MII_

MODE
DRT LOOP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 31-10. Receive Control Register (ENETn_RCR)

Table 31-15. ENETn_RCR Field Descriptions

Field Description

31
GRS

Graceful receive stopped. Read-only status indicating that the MAC receive datapath is stopped (see 
Section 31.4.9.4.2, “Graceful Receive Stop (GRS)”).

30
NLC

Payload length check disable.
0 The payload length check is disabled
1 The core checks the frame's payload length with the frame length/type field

29–16
MAX_FL

Maximum frame length. Resets to decimal 1518. Length is measured starting at DA and includes the CRC at the 
end of the frame. Transmit frames longer than MAX_FL causes the BABT interrupt to occur. Receive frames 
longer than MAX_FL causes the BABR interrupt to occur and sets the LG bit in the end of frame receive buffer 
descriptor. The recommended default value to be programmed is 1518 or 1522 if VLAN tags are supported.

15
CFEN

MAC control frame enable.
0 MAC control frames with any opcode other than 0x0001 are accepted and forwarded to the client interface
1 MAC control frames with any opcode other than 0x0001 (pause frame) are silently discarded

14
CRCFWD

Terminate/forward received CRC.
0 The CRC field of received frames is transmitted to the user application
1 The CRC field is stripped from the frame
Note: If padding function is enabled (PADEN = 1), CRCFWD is ignored and the CRC field is checked and always 

terminated and removed.

13
PAUFWD

Terminate/forward pause frames.
0 Pause frames are terminated and discarded in the MAC
1 Pause frames are forwarded to the user application

12
PADEN

Enable frame padding remove on receive.
1 Padding is removed from received frames
0 No padding is removed on receive by the MAC

11–10 Reserved, must be cleared.

9
RMII_10T

RMII 10-Base T. Enables 10-Mbps mode of the RMII.
0 100 Mbps operation. The 50 MHz RMII reference clock (RMII_REF_CLK) is sent to the RMII, while a 

divided-by-2 version (25 MHz) is sent to the MAC.
1 10 Mbps operation. The 50 MHz RMII reference clock (RMII_REF_CLK) is divided by 10 (5 MHz) and used in 

the RMII, while a divided-by-20 version (2.5 MHz) is sent to the MAC.
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31.3.10 Transmit Control Register (ENETn_TCR)

ENETn_TCR is read/write and configures the transmit block. This register is cleared at system reset. 
FDEN can only be modified when ENETn_ECR[ETHER_EN] is cleared.

8
RMII_MODE

RMII mode enable.
0 MAC configured for MII mode.
1 MAC configured for RMII operation

7–6 Reserved, must be cleared.

5
FCE

Flow control enable. If set, the receiver detects PAUSE frames. Upon PAUSE frame detection, the transmitter 
stops transmitting data frames for a given duration.

4
BC_REJ

Broadcast frame reject. If set, frames with DA (destination address) equal to FFFF_FFFF_FFFF are rejected 
unless the PROM bit is set. If BC_REJ and PROM are set, frames with broadcast DA are accepted and the M 
(MISS) is set in the receive buffer descriptor.

3
PROM

Promiscuous mode. All frames are accepted regardless of address matching.

2
MII_MODE

Media independent interface mode. This bit must always be set.
0 Reserved
1 MII or RMII mode, as indicated by the RMII_MODE bit

1
DRT

Disable receive on transmit.
0 Receive path operates independently of transmit (use for full duplex or to monitor transmit activity in half duplex 

mode).
1 Disable reception of frames while transmitting (normally used for half duplex mode).

0
LOOP

Internal loopback.
0 Loopback disabled
1 Transmitted frames are looped back internal to the device and transmit MII output signals are not asserted. The 
internal bus clock substitutes for the TXCLK. DRT must be cleared.

Address: 0xFC0D_40C4 (ENET0_TCR)
0xFC0D_80C4 (ENET1_TCR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 CRC

FWD
ADD
INS

ADDSEL

RFC_
PAUS

E

TFC_
PAUS

E
FDEN

0
GTS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-11. Transmit Control Register (ENETn_TCR)

Table 31-15. ENETn_RCR Field Descriptions (continued)

Field Description
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31.3.11 Physical Address Lower Register (ENETn_PALR)

ENETn_PALR contains the lower 32 bits (bytes 0,1,2,3) of the 48-bit address used in the address 
recognition process to compare with the DA (destination address) field of receive frames with an 
individual DA. In addition, this register is used in bytes 0 through 3 of the six-byte source address field 
when transmitting PAUSE frames. This register is not reset and you must initialize it.

Table 31-16. ENETn_TCR Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9
CRCFWD

Forward frame from application with CRC.
0 TxBD[TC] controls if the frame has a CRC from the application
1 The transmitter does not append any CRC to transmitted frames as it is expecting a frame with CRC from the 

application

8
ADDINS

Set MAC address on transmit.
0 The source MAC address is not modified by the MAC
1 The MAC overwrites the source MAC address with the programmed MAC address according to ADDSEL

7–5
ADDSEL

Source MAC address select on transmit. If ADDINS is set, indicates the MAC address that overwrites the source 
MAC address:
000 Node MAC address programmed on ENETn_PADDR1/2 registers
100 Supplemental MAC address 0 (ENETn_SMACx0)
101 Supplemental MAC address 1 (ENETn_SMACx1)
110 Supplemental MAC address 2 (ENETn_SMACx2)
Else Supplemental MAC address 3 (ENETn_SMACx3)

4
RFC_PAUS

E

Receive frame control pause. This read-only status bit is set when a full duplex flow control pause frame is 
received and the transmitter pauses for the duration defined in this pause frame. This bit automatically clears when 
the pause duration is complete.

3
TFC_PAUSE

Transmit frame control pause.
0 No PAUSE frame transmitted.
1 The MAC stops transmission of data frames after the current transmission is complete. At this time, 

ENETn_EIR[GRA] is set. With transmission of data frames stopped, the MAC transmits a MAC control PAUSE 
frame. Next, the MAC clears TFC_PAUSE and resumes transmitting data frames. If the transmitter pauses due 
to user assertion of GTS or reception of a PAUSE frame, the MAC may continue transmitting a MAC control 
PAUSE frame.

2
FDEN

Full duplex enable. If set, frames transmit independent of carrier sense and collision inputs. This bit should only 
be modified when ENETn_ECR[ETHER_EN] is cleared.

1 Reserved, must be cleared.

0
GTS

Graceful transmit stop. When this bit is set, MAC stops transmission after any frame currently transmitted is 
complete and ENETn_EIR[GRA] is set. If frame transmission is not currently underway, the GRA interrupt is 
asserted immediately. After transmission finishes, clear GTS to restart. The next frame in the transmit FIFO is then 
transmitted. If an early collision occurs during transmission when GTS is set, transmission stops after the collision. 
The frame is transmitted again after GTS is cleared. There may be old frames in the transmit FIFO that transmit 
when GTS is reasserted. To avoid this, clear ENETn_ECR[ETHER_EN] following the GRA interrupt.
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31.3.12 Physical Address Upper Register (ENETn_PAUR)

ENETn_PAUR contains the upper 16 bits (bytes 4 and 5) of the 48-bit address used in the address 
recognition process to compare with the DA (destination address) field of receive frames with an 
individual DA. In addition, this register is used in bytes 4 and 5 of the six-byte source address field when 
transmitting PAUSE frames. Bits 15:0 of ENETn_PAUR contain a constant type field (0x8808) for 
transmission of PAUSE frames. The upper 16 bits of this register are not reset and you must initialize it.

31.3.13 Opcode/Pause Duration Register (ENETn_OPD)

The ENETn_OPD is read/write accessible. This register contains the 16-bit opcode and 16-bit pause 
duration fields used in transmission of a PAUSE frame. The opcode field is a constant value, 0x0001. 
When another node detects a PAUSE frame, that node pauses transmission for the duration specified in the 
pause duration field. The lower 16 bits of this register are not reset and you must initialize them.

Address: 0xFC0D_40E4 (ENET0_PALR)
0xFC0D_80E4 (ENET1_PALR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PADDR1

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Figure 31-12. Physical Address Low Register (ENETn_PALR)

Table 31-17. ENETn_PALR Field Descriptions

Field Description

31–0
PADDR

1

Bytes 0 (bits 31:24), 1 (bits 23:16), 2 (bits 15:8), and 3 (bits 7:0) of the 6-byte individual address are used for exact 
match and the source address field in PAUSE frames.

Address: 0xFC0D_40E8 (ENET0_PAUR)
0xFC0D_80E8 (ENET1_PAUR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PADDR2

TYPE

W

Reset — — — — — — — — — — — — — — — — 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Figure 31-13. Physical Address Upper Register (ENETn_PAUR)

Table 31-18. ENETn_PAUR Field Descriptions

Field Description

31–16
PADDR

2

Bytes 4 (bits 31:24) and 5 (bits 23:16) of the 6-byte individual address used for exact match, and the source address 
field in PAUSE frames.

15–0
TYPE

Type field in PAUSE frames. These 16 read-only bits are a constant value of 0x8808.
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31.3.14 Descriptor Individual Upper Address Register (ENETn_IAUR)

ENETn_IAUR contains the upper 32 bits of the 64-bit individual address hash table. The address 
recognition process uses this table to check for a possible match with the destination address (DA) field of 
receive frames with an individual DA. This register is not reset and you must initialize it.

31.3.15 Descriptor Individual Lower Address Register (ENETn_IALR)

ENETn_IALR contains the lower 32 bits of the 64-bit individual address hash table. The address 
recognition process uses this table to check for a possible match with the DA field of receive frames with 
an individual DA. This register is not reset and you must initialize it.

Address: 0xFC0D_40EC (ENET0_OPD)
0xFC0D_80EC (ENET1_OPD)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OPCODE
PAUSE_DUR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 — — — — — — — — — — — — — — — —

Figure 31-14. Opcode/Pause Duration Register (ENETn_OPD)

Table 31-19. ENETn_OPD Field Descriptions

Field Description

31–16
OPCODE

Opcode field used in PAUSE frames. These read-only bits are a constant, 0x0001.

15–0
PAUSE_DU

R

Pause duration field used in PAUSE frames.

Address: 0xFC0D_4118 (ENET0_IAUR)
0xFC0D_8118 (ENET1_IAUR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IADDR1

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Figure 31-15. Descriptor Individual Upper Address Register (ENETn_IAUR)

Table 31-20. ENETn_IAUR Field Descriptions

Field Description

31–0
IADDR1

The upper 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a unicast 
address. Bit 31 of IADDR1 contains hash index bit 63. Bit 0 of IADDR1 contains hash index bit 32.
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31.3.16 Descriptor Group Upper Address Register (ENETn_GAUR)

ENETn_GAUR contains the upper 32 bits of the 64-bit hash table used in the address recognition process 
for receive frames with a multicast address. You must initialize this register.

31.3.17 Descriptor Group Lower Address Register (ENETn_GALR)

ENETn_GALR contains the lower 32 bits of the 64-bit hash table used in the address recognition process 
for receive frames with a multicast address. You must initialize this register.

Address: 0xFC0D_411C (ENET0_IALR)
0xFC0D_811C (ENET1_IALR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IADDR2

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Figure 31-16. Descriptor Individual Lower Address Register (ENETn_IALR)

Table 31-21. ENETn_IALR Field Descriptions

Field Description

31–0
IADDR2

The lower 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a unicast 
address. Bit 31 of IADDR2 contains hash index bit 31. Bit 0 of IADDR2 contains hash index bit 0.

Address: 0xFC0D_4120 (ENET0_GAUR)
0xFC0D_8120 (ENET1_GAUR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GADDR1

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Figure 31-17. Descriptor Group Upper Address Register (ENETn_GAUR)

Table 31-22. ENETn_GAUR Field Descriptions

Field Description

31–0
GADDR1

Contains the upper 32 bits of the 64-bit hash table used in the address recognition process for receive frames with 
a multicast address. Bit 31 of GADDR1 contains hash index bit 63. Bit 0 of GADDR1 contains hash index bit 32.

Address: 0xFC0D_4124 (ENET0_GALR)
0xFC0D_8124 (ENET1_GALR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GADDR2

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Figure 31-18. Descriptor Group Lower Address Register (ENETn_GALR)
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31.3.18 Transmit FIFO Watermark Register (ENETn_TFWR)

If ENETn_TFR[STRFWD] is cleared, ENETn_TFWR[TFWR] controls the amount of data required in the 
transmit FIFO before transmission of a frame can begin. This allows you to minimize transmit latency 
(TFWR = 00 or 01) or allow for larger bus access latency (TFWR = 11) due to contention for the system 
bus. Setting the watermark to a high value minimizes the risk of transmit FIFO underrun due to contention 
for the system bus. The byte counts associated with the TFWR field may need to be modified to match a 
given system requirement (worst case bus access latency by the transmit data DMA channel).

31.3.19 Receive Descriptor Ring Start Register (ENETn_RDSR)

ENETn_RDSR points to the start of the circular receive buffer descriptor queue in external memory. This 
pointer must be 64-bit aligned (bits 2–0 must be zero); however, it is recommended to be 128-bit aligned 
(evenly divisible by 16).

This register is not reset and must be initialized prior to operation.

Table 31-23. ENETn_GALR Field Descriptions

Field Description

31–0
GADDR2

Contains the lower 32 bits of the 64-bit hash table used in the address recognition process for receive frames with 
a multicast address. Bit 31 of GADDR2 contains hash index bit 31. Bit 0 of GADDR2 contains hash index bit 0.

Address: 0xFC0D_4144 (ENET0_TFWR)
0xFC0D_8144 (ENET1_TFWR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 STR
FWD

0 0
TFWR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-19. Transmit FIFO Watermark Register (ENETn_TFWR)

Table 31-24. ENETn_TFWR Field Descriptions

Field Description

31–9 Reserved, must be cleared.

8
STRFWD

Store and forward enable.
0 Disabled, the transmission start threshold is programmed in TFWR
1 Enabled

7–6 Reserved, must be cleared.

5–0
TFWR

If STRFWD is cleared, indicates number of bytes written to transmit FIFO before transmission of a frame begins:
0x00 64 bytes written
0x01 64 bytes written
0x02 128 bytes written
0x03 192 bytes written
...
0x3F 4032 bytes written
Note: If a frame with less than the threshold is written it is still sent, independently of this threshold setting. The 

threshold is only relevant if the frame is larger than the threshold given.
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31.3.20 Transmit Buffer Descriptor Ring Start Register (ENETn_TDSR)

ENETn_TDSR provides a pointer to the start of the circular transmit buffer descriptor queue in external 
memory. This pointer must be 64-bit aligned (bits 2–0 must be zero); however, it is recommended to be 
128-bit aligned (evenly divisible by 16).

This register is undefined at reset and must be initialized prior to operation.

31.3.21 Maximum Receive Buffer Size Register (ENETn_MRBR)

The ENETn_MRBR is a user-programmable register that dictates the maximum size of all receive buffers. 
This value should take into consideration that the receive CRC is always written into the last receive buffer. 
To allow one maximum size frame per buffer, ENETn_MRBR must be set to ENETn_RCR[MAX_FL] or 

Address: 0xFC0D_4180 (ENET0_RDSR)
0xFC0D_8180 (ENET1_RDSR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
R_DES_START

0 0 0

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Table 31-25. Ethernet Receive Descriptor Ring Start Register (ENETn_RDSR)

Table 31-26. ENETn_RDSR Field Descriptions

Field Description

31–3
R_DES_
START

Pointer to start of receive buffer descriptor queue.

2–0 Reserved, must be cleared.

Address: 0xFC0D_4184 (ENET0_TDSR)
0xFC0D_8184 (ENET1_TDSR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
X_DES_START

0 0 0

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Table 31-27. Transmit Buffer Descriptor Ring Start Register (ENETn_TDSR)

Table 31-28. ENETn_TDSR Field Descriptions

Field Description

31–3
X_DES_
START

Pointer to start of transmit buffer descriptor queue.

2–0 Reserved, must be cleared.
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larger. To properly align the buffer, ENETn_MRBR must be evenly divisible by 16. To ensure this, bits 
3–0 are forced low.

To minimize bus utilization (descriptor fetches), set ENETn_MRBR greater than or equal to 256 bytes.

The ENETn_MRBR register is undefined at reset and must be initialized by the user.

31.3.22 Receive FIFO Section Full Threshold (ENETn_RSFL)

Address: 0xFC0D_4188 (ENET0_MRBR)
0xFC0D_8188 (ENET1_MRBR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R_BUF_SIZE

0 0 0 0

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Table 31-29. Maximum Receive Buffer Size Register (ENETn_MRBR)

Table 31-30. ENETn_MRBR Field Descriptions

Field Description

31–14 Reserved, must be cleared.

13–4
R_BUF_

SIZE

Receive buffer size in bytes.

3–0 Reserved, must be cleared.

Address: 0xFC0D_4190 (ENET0_RSFL)
0xFC0D_8190 (ENET1_RSFL)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RX_SECTION_FULL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-31. Receive FIFO Section Full Threshold (ENETn_RSFL)

Table 31-32. ENETn_RSFL Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
RX_SECTION_FULL

Value, in 64-bit words, of the receive FIFO section full threshold. Clear this field to enable store and 
forward on the RX FIFO. When programming a value greater than 0 (cut-through operation), it must be 
greater than RX_ALMOST_EMPTY.
See Table 31-88 for more details on the receive FIFO thresholds.
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31.3.23 Receive FIFO Section Empty Threshold (ENETn_RSEM)

31.3.24 Receive FIFO Almost Empty Threshold (ENETn_RAEM)

31.3.25 Receive FIFO Almost Full Threshold (ENETn_RAFL)

Address: 0xFC0D_4194 (ENET0_RSEM)
0xFC0D_8194 (ENET1_RSEM)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RX_SECTION_EMPTY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-33. Receive FIFO Section Empty Threshold (ENETn_RSEM)

Table 31-34. ENETn_RSEM Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
RX_SECTION_EMPTY

Value, in 64-bit words, of the receive FIFO section empty threshold.
See Table 31-88 for more details on the receive FIFO thresholds.

Address: 0xFC0D_4198 (ENET0_RAEM)
0xFC0D_8198 (ENET1_RAEM)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RX_ALMOST_EMPTY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-35. Receive FIFO Almost Empty Threshold (ENETn_RAEM)

Table 31-36. ENETn_RAEM Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
RX_ALMOST_EMPTY

Value, in 64-bit words, of the receive FIFO almost empty threshold.
See Table 31-88 for more details on the receive FIFO thresholds.

Address: 0xFC0D_419C (ENET0_RAFL)
0xFC0D_819C (ENET1_RAFL)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RX_ALMOST_FULL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-37. Receive FIFO Almost Full Threshold (ENETn_RAFL)
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31.3.26 Transmit FIFO Section Empty Threshold (ENETn_TSEM)

31.3.27 Transmit FIFO Almost Empty Threshold (ENETn_TAEM)

Table 31-38. ENETn_RAFL Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
RX_ALMOST_FULL

Value, in 64-bit words, of the receive FIFO almost full threshold.
See Table 31-88 for more details on the receive FIFO thresholds.

Address: 0xFC0D_41A0 (ENET0_TSEM)
0xFC0D_81A0 (ENET1_TSEM)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TX_SECTION_EMPTY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-39. Transmit FIFO Section Empty Threshold (ENETn_TSEM)

Table 31-40. ENETn_TSEM Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
TX_SECTION_EMPTY

Value, in 64-bit words, of the transmit FIFO section empty threshold.
See Table 31-89 for more details on the transmit FIFO thresholds.

Address: 0xFC0D_41A4 (ENET0_TAEM)
0xFC0D_81A4 (ENET1_TAEM)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TX_ALMOST_EMPTY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-41. Transmit FIFO Almost Empty Threshold (ENETn_TAEM)

Table 31-42. ENETn_TAEM Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
TX_ALMOST_EMPTY

Value, in 64-bit words, of the transmit FIFO almost empty threshold.
See Table 31-89 for more details on the transmit FIFO thresholds.



10/100Mbps Ethernet MAC-NET Core

NXP Semiconductors 31-31

31.3.28 Transmit FIFO Almost Full Threshold (ENETn_TAFL)

31.3.29 Transmit Inter-Packet Gap (ENETn_TIPG)

Address: 0xFC0D_41A8 (ENET0_TAFL)
0xFC0D_81A8 (ENET1_TAFL)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TX_ALMOST_FULL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-43. Transmit FIFO Almost Full Threshold (ENETn_TAFL)

Table 31-44. ENETn_TAFL Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
TX_ALMOST_FULL

Value, in 64-bit words, of the transmit FIFO almost full threshold.
A minimum value of six is required. A recommended value of at least 8 should be set allowing a latency 
of two clock cycles to the application. If more latency is required the value can be increased as necessary 
(latency = ENETn_TAFL  5).
See Table 31-89 for more details on the transmit FIFO thresholds.
Note: A FIFO overflow is a fatal error and requires a global reset on the transmit datapath or at least 

deassertion of ETHER_EN.

Address: 0xFC0D_41AC (ENET0_TIPG)
0xFC0D_81AC (ENET1_TIPG)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IPG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-45. Transmit Inter-Packet Gap (ENETn_TIPG)

Table 31-46. ENETn_TIPG Field Descriptions

Field Description

31–5 Reserved, must be cleared.

4–0
IPG

Transmit inter-packet gap. Indicates the IPG, in bytes, between transmitted frames. Can be set between 8 and 27. 
If set to less than 8, the IPG is 8. If set to greater than 27, the IPG is 27.
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31.3.30 Frame Truncation Length (ENETn_FTRL)

31.3.31 Transmit Accelerator Function Configuration (ENETn_TACC)

ENETn_TACC controls accelerator actions when sending frames. The register can be changed before or 
after each frame, but must stay unmodified during frame writes into the transmit FIFO.

Address: 0xFC0D_41B0 (ENET0_FTRL)
0xFC0D_81B0 (ENET1_FTRL)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRUNC_FL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-47. Frame Truncation Length (ENETn_FTRL)

Table 31-48. ENETn_FTRL Field Descriptions

Field Description

31–14 Reserved, must be cleared.

13–0
TRUNC_FL

Frame truncation length. Indicates the value a receive frame is truncated, if it is greater than this value. Should be 
greater than or equal to ENETn_RCR[MAX_FL].
Note: Truncation happens at TRUNC_FL. However, when truncation occurs, the application (FIFO) may receive 

less data, guaranteeing that it never receives more than the set limit.

Address: 0xFC0D_41C0 (ENET0_TACC)
0xFC0D_81C0 (ENET1_TACC)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PRO
CHK

IP
CHK

0 0 SHIFT
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-49. Transmit Accelerator Function Configuration (ENETn_TACC)

Table 31-50. ENETn_TACC Field Descriptions

Field Description

31–5 Reserved, must be cleared.

4
PROCHK

Enables insertion of protocol checksum.
0 Checksum not inserted
1 If an IP frame with a known protocol is transmitted, the checksum is inserted automatically into the frame. The 

checksum field should be cleared. The other frames are not modified.

3
IPCHK

Enables insertion of IP header checksum.
0 Checksum not inserted
1 If an IP frame is transmitted, the checksum is inserted automatically. The IP header checksum field should be 

cleared. If a non-IP frame is transmitted the frame is not modified.



10/100Mbps Ethernet MAC-NET Core

NXP Semiconductors 31-33

31.3.32 Receive Accelerator Function Configuration (ENETn_RACC)

2–1 Reserved, must be cleared.

0
SHIFT16

TX FIFO shift-16.
0 Disabled
1 Indicates to the transmit data FIFO, that the written frames contain two additional octets before the frame data. 

This means the actual frame starts at bit 16 of the first word written into the FIFO. This function allows putting the 
frame payload on a 32-bit boundary in memory, as the 14-byte Ethernet header is extended to a 16-byte header. 
See Section 31.4.8.3, “32-bit Ethernet Payload Alignment”.

Address: 0xFC0D_41C4 (ENET0_RACC)
0xFC0D_81C4 (ENET1_RACC)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SHIFT
16

LINE
DIS

0 0 0 PRO
DIS

IP
DIS

PAD
REMW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-51. Receive Accelerator Function Configuration (ENETn_RACC)

Table 31-52. ENETn_RACC Field Descriptions

Field Description

31–5 Reserved, must be cleared.

7
SHIFT16

RX FIFO shift-16.
0 Disabled
1 Instructs the MAC to write two additional bytes in front of each frame received into the RX FIFO. The actual frame 

data then starts at bit 16 of the first word read from the RX FIFO aligning the Ethernet payload on a 32-bit 
boundary. See Section 31.4.8.3, “32-bit Ethernet Payload Alignment”.

Note: This function only affects the FIFO storage and has no influence on the statistics, which use the actual length 
of the frame received.

6
LINEDIS

Enable discard of frames with MAC layer errors.
0 Frames with errors are not discarded
1 Any frame received with a CRC, length, or PHY error is automatically discarded and not forwarded to the user 

application interface. See Section 31.4.8.4, “Received Frame Discard”.

5–3 Reserved, must be cleared.

2
PRODIS

Enable discard of frames with wrong protocol checksum.
0 Frames with wrong checksum are not discarded
1 If a TCP/IP, UDP/IP, or ICMP/IP frame is received that has a wrong TCP, UDP, or ICMP checksum, the frame is 

discarded. Discarding is only available when the RX FIFO operates in store and forward mode (ENETn_RSFL 
cleared). See Section 31.4.8.4, “Received Frame Discard.”

Table 31-50. ENETn_TACC Field Descriptions (continued)

Field Description
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31.3.33 Timer Control Register (ENETn_ATCR)

The command bits can trigger the corresponding events directly. It is not necessary to preserve any of the 
configuration bits when a command bit is set in the register (i.e. no read-modify-write is required). The 
bits are automatically cleared after the command completes.

1
IPDIS

Enable discard of frames with wrong IPv4 header checksum.
0 Frames with wrong IPv4 header checksum are not discarded
1 If an IPv4 frame is received with a mismatching header checksum, the frame is discarded. IPv6 has no header 

checksum and is not affected by this setting. Discarding is only available when the RX FIFO operates in store and 
forward mode (ENETn_RSFL cleared). See Section 31.4.8.4, “Received Frame Discard.”

0
PADREM

Enable padding removal for short IP frames.
0 Padding not removed
1 Any bytes following the IP payload section of the frame are removed from the frame

Address: 0xFC0D_4400 (ENET0_ATCR)
0xFC0D_8400 (ENET1_ATCR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 SLA
VE

0 CAP
TURE

0 RES
TART

0 PIN
PER

0 0 PER
EN

OFF
RST

OFF
EN

0
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-20. Timer Control Register (ENETn_ATCR)

Table 31-53. ENETn_ATCR Field Descriptions

Field Description

13
SLAVE

Enable timer slave mode.
0 The timer is active and all configuration bits in this register are relevant
1 The internal timer is disabled and the externally provided timer value is used. All other bits, except CAPTURE, 

in this register have no effect. CAPTURE can still be used to capture the current timer value.

12 Reserved, must be cleared.

11
CAPTURE

Capture timer value.
0 No effect
1 The current time is captured and can be read from the ATIMER register

10 Reserved, must be cleared.

9
RESTART

Resets the timer to zero. This has no effect on the counter enable. If the counter is enabled when this bit is set, 
the timer is reset to zero and starts counting from there. When set, all other bits are ignored during a write.

8 Reserved, must be cleared.

Table 31-52. ENETn_RACC Field Descriptions (continued)

Field Description
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31.3.34 Timer Value Register (ENETn_ATVR)

7
PINPER

Enable MAC output assertion on period event.
0 Disable
1 Enable

6 Reserved, must be cleared.

5 Reserved, must be set.

4
PEREN

Enable periodical event.
0 Disable
1 A period event interrupt can be generated (ENETn_EIR[TS_TIMER]) and the MAC output is asserted when the 

timer wraps around according to the periodic setting ENETn_ATPER. Set the timer period value before setting 
this bit.

3
OFFRST

Reset timer on offset event.
0 The timer is not affected and no action occurs (besides clearing OFFEN) when the offset is reached
1 If OFFEN is set, the timer resets to zero when the offset setting is reached
Note: The offset event does not cause a timer interrupt.

2
OFFEN

Enable one-shot offset event.
0 Disable
1 The timer can be reset to zero when the given offset time is reached (offset event). The bit is cleared when the 

offset event is reached, so no further event occurs until the bit is set again. Set the timer offset value before 
setting this bit.

1 Reserved, must be cleared.

0
EN

Enable timer.
0 The timer stops at the current value
1 The timer starts incrementing

Address: 0xFC0D_4404 (ENET0_ATVR)
0xFC0D_8404 (ENET1_ATVR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ATIME

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-54. Timer Value Register (ENETn_ATVR)

Table 31-55. ENETn_ATVR Field Descriptions

Field Description

31–0
ATIME

A write sets the timer.
A read returns the last captured value. To read the current value, issue a capture command (set 
ENETn_ATCR[CAPTURE]) prior to reading this register.

Table 31-53. ENETn_ATCR Field Descriptions (continued)

Field Description
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31.3.35 Timer Offset Register (ENETn_ATOFF)

31.3.36 Timer Period Register (ENETn_ATPER)

31.3.37 Timer Correction Register (ENETn_ATCOR)

Address: 0xFC0D_4408 (ENET0_ATOFF)
0xFC0D_8408 (ENET1_ATOFF)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
OFFSET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-56. Timer Offset Register (ENETn_ATOFF)

Table 31-57. ENETn_ATOFF Field Descriptions

Field Description

31–0
OFFSET

Offset value for one-shot event generation. When the timer reaches the value an event can be generated to reset 
the counter.
If the increment value in ENETn_ATINC is given in true nanoseconds, this value is also given in true nanoseconds.

Address: 0xFC0D_440C (ENET0_ATPER)
0xFC0D_840C (ENET1_ATPER)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PERIOD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-58. Timer Period Register (ENETn_ATPER)

Table 31-59. ENETn_ATPER Field Descriptions

Field Description

31–0
PERIOD

Value for generating periodic events. Each instance the timer reaches this value, the period event occurs and the 
timer restarts.
If the increment value in ENETn_ATINC is given in true nanoseconds, this value is also given in true nanoseconds.
The value should be initialized to 1,000,000,000 (1109) to represent a timer wrap around of one second. The 
increment value set in ENETn_ATINC should be set to the true nanoseconds of the period of clock ts_clk, hence 
implementing a true 1 second counter.
See Section 31.4.10.1, “Adjustable Timer Module” for a description of the timer implementation.

Address: 0xFC0D_4410 (ENET0_ATCOR)
0xFC0D_8410 (ENET1_ATCOR)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
COR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-60. Timer Correction Register (ENETn_ATCOR)
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31.3.38 Time-Stamping Clock Period Register (ENETn_ATINC)

31.3.39 Timestamp of Last Transmitted Frame (ENETn_ATSTMP)

Table 31-61. ENETn_ATCOR Field Descriptions

Field Description

31 Reserved, must be cleared.

30–0
COR

Correction counter wrap-around value. Defines after how many timer clock cycles the correction counter should be 
reset and trigger a correction increment on the timer. The amount of correction is defined in 
ENETn_ATINC[INC_CORR].
A value of 0 disables the correction counter and no corrections occur.
Note: This value is given in clock cycles, not in nanoseconds as all other values.
See Section 31.4.10.1, “Adjustable Timer Module” for a description of the timer implementation.

Address: 0xFC0D_4414 (ENET0_ATINC)
0xFC0D_8414 (ENET1_ATINC)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INC_CORR

0
INC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-62. Clock Period for the Time Stamping Clock (ENETn_ATINC)

Table 31-63. ENETn_ATINC Field Descriptions

Field Description

31–15 Reserved, must be cleared.

14–8
INC_CORR

Correction increment value. This value is added every time the correction timer expires (every clock cycle given 
in ENETn_ATCOR).
A value smaller than INC slows the timer, while a value larger than INC speeds the timer.

7 Reserved, must be cleared.

6–0
INC

Clock period of the timestamping clock in nanoseconds. The timer increments by this amount each clock cycle. 
For example, set to 10 for 100 MHz, 8 for 125 MHz, 5 for 200 MHz.
Note: For highest precision, use a value that is an integer fraction of the period set in ENETn_ATPER.

Address: 0xFC0D_4418 (ENET0_ATSTMP)
0xFC0D_8418 (ENET1_ATSTMP)

Access: User read-only

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TIMESTAMP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-64. Timestamp of Last Transmitted Frame (ENETn_ATSTMP)
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31.3.40 Supplemental MAC Address Lower Registers (ENETn_SMACLx)

ENETn_SMACLx contains the lower 32 bits (bytes 0, 1, 2, 3) of the 48-bit individual address used for 
exact match. These registers are not reset and you must initialize them. If the supplemental MAC addresses 
are not used, set them to the same value as the ENETn_PALR/PAUR registers.

31.3.41 Supplemental MAC Address Upper Registers (ENETn_SMACUx)

ENETn_SMACUx contains the upper 16 bits (bytes 4 and 5) of the 48-bit individual address used for exact 
match. The upper 16 bits of this register are not reset and you must initialize them. If the supplemental 
MAC addresses are not used, set them to the same value as the ENETn_PALR/PAUR registers.

Table 31-65. ENETn_ATSTMP Field Descriptions

Field Description

31–0
TIMESTAMP

Timestamp of the last frame transmitted by the core that had TxBD[TS] set. This register is only valid when 
ENETn_EIR[TS_AVAIL] is set.

Address: 0xFC0D_4500 (ENET0_SMACL0)
0xFC0D_4508 (ENET0_SMACL1)
0xFC0D_4510 (ENET0_SMACL2)
0xFC0D_4518 (ENET0_SMACL3)

0xFC0D_8500 (ENET1_SMACL0)
0xFC0D_8508 (ENET1_SMACL1)
0xFC0D_8510 (ENET1_SMACL2)
0xFC0D_8518 (ENET1_SMACL3)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SMACL

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Table 31-66. Supplemental MAC Address Lower Registers (ENETn_SMACLx)

Table 31-67. ENETn_SMACLx Field Descriptions

Field Description

31–0
SMACL

Lower 32 bits (bytes 0,1,2,3) of the 48-bit individual address used for exact match

Address: 0xFC0D_4504 (ENET0_SMACU0)
0xFC0D_450C (ENET0_SMACU1)
0xFC0D_4514 (ENET0_SMACU2)
0xFC0D_451C (ENET0_SMACU3)

0xFC0D_8504 (ENET1_SMACU0)
0xFC0D_850C (ENET1_SMACU1)
0xFC0D_8514 (ENET1_SMACU2)
0xFC0D_851C (ENET1_SMACU3)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SMACU

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset – – – – – – – – – – – – – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31-68. Supplemental MAC Address Upper Registers (ENETn_SMACUx)



10/100Mbps Ethernet MAC-NET Core

NXP Semiconductors 31-39

31.4 Functional Description
The following sections describe functional details of the MAC-NET core.

31.4.1 Ethernet MAC Frame Formats

The IEEE 802.3 standard defines the Ethernet frame format as follows:

• Minimum length of 64 bytes

• Maximum length of 1518 bytes, excluding the preamble and the SFD bytes

An Ethernet frame consists of the following fields:

• Seven bytes preamble

• Start frame delimiter (SFD)

• Two address fields

• Length or type field

• Data field

• Frame check sequence (CRC value)

Figure 31-21. MAC Frame Format Overview

Optionally, MAC frames can be VLAN-tagged with an additional four-byte field inserted between the 
MAC source address and the type/length field. VLAN tagging is defined by the IEEE P802.1q 
specification. VLAN-tagged frames have a maximum length of 1522 bytes, excluding the preamble and 
the SFD bytes.

Table 31-69. ENETn_SMACUx Field Descriptions

Field Description

31–16
SMACH

Upper 16 bits (bytes 4 and 5) of the 48-bit individual address used for exact match

15–0 Reserved, must be cleared.

7 octets Preamble

1 octet SFD

6 octets Destination address

6 octets Source address

2 octets Length/type

0–1500/9000 octets Payload data

0–46 octets Pad

4 octets Frame check sequence (FCS)

Frame Length

Payload Length



10/100Mbps Ethernet MAC-NET Core

31-40 NXP Semiconductors

Figure 31-22. VLAN-Tagged MAC Frame Format Overview

NOTE
Although the IEEE specification defines a maximum frame length, the 
MAC core provides the flexibility to program any value for the frame 
maximum length.

31.4.1.1 Pause Frames

The receiving device generates a pause frame to indicate a congestion to the emitting device, which should 
stop sending data.

Pause frames are indicated by the length/type set to 0x8808. The two first bytes of a pause frame following 
the type, defines a 16-bit opcode field set to 0x0001 always. A 16-bit pause quanta is defined in the frame 
payload bytes 2 (P1) and 3 (P2) as defined in the following table. The P1 pause quanta byte is the most 
significant.

Table 31-70. MAC Frame definition

Term Description

Frame length Defines the length, in octets, of the complete frame without preamble and SFD. A frame has a valid length 
if it contains at least 64 octets and does not exceed the programmed maximum length (typical 1518).

Payload 
length

The length/type field indicates the length of the frame's payload section. The most significant byte is 
sent/received first.
 • If the length/type field is set to a value less than 46, the payload is padded so that the minimum frame 

length requirement (64 bytes) is met. For VLAN-tagged frames, a value less than 42 indicates a 
padded frame.

 • If the length/type field is set to a value larger than the programmed frame maximum length (e.g. 1518) 
it is interpreted as a type field.

Destination 
and source 

address

48-bit MAC addresses. The least significant byte is sent/received first and the first two least significant 
bits of the MAC address distinguish MAC frames as detailed in Section 31.4.4.3, “MAC Address Check”.

7 octets Preamble

1 octet SFD

6 octets Destination address

6 octets Source address

2 octets VLAN tag (0x8100)

2 octets VLAN info

2 octets Length/type

0–1500/9000 octets Payload data

0–42 octets Pad

4 octets Frame check sequence (FCS)

Frame Length
Payload Length
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There is no payload length field found within a pause frame and a pause frame is always padded with 42 
bytes (0x00).

If a pause frame with a pause value greater zero (XOFF condition) is received, the MAC stops transmitting 
data as soon the current frame transfer is completed. The MAC stops transmitting data for the value 
defined in pause quanta. One pause quanta fraction refers to 512 bit times.

If a pause frame with a pause value of zero (XON condition) is received, the transmitter is allowed to send 
data immediately (see Section 31.4.6, “Full Duplex Flow Control Operation” for details).

31.4.1.2 Magic Packets

A magic packet is a unicast, multicast, or broadcast packet, which carries a defined sequence in the payload 
section. Magic packets are received and inspected only under specific conditions as described in 
Section 31.4.7, “Magic Packet Detection”.

The defined sequence to decode a magic packet is formed with a synchronization stream (six consecutive 
0xFF bytes) followed by sequence of six consecutive unicast MAC addresses of the node to be awakened.

The sequence can be located anywhere in the magic packet payload and the magic packet is formed with 
standard Ethernet header and optional padding and CRC.

31.4.2 IP and Higher Layers Frame Format

The following sections use the term datagram to describe the protocol specific data unit that is found within 
the payload section of its container entity.

For example, an IP datagram specifies the payload section of an Ethernet frame. A TCP datagram specifies 
the payload section within an IP datagram.

Table 31-71. Pause Frame Format (Values in Hex)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

55 55 55 55 55 55 55 D5 01 80 C2 00 00 01

Preamble SFD Multicast Destination Address

15 16 17 18 19 20 21 22 23 24 25 26 27 – 68

00 00 00 00 00 00 88 08 00 01 hi lo 00

Source Address Type Opcode P1 P2 pad (42)

69 70 71 72

26 6B AE 0A

CRC-32
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31.4.2.1 Ethernet Types

IP datagrams are carried in the payload section of an Ethernet frame. The Ethernet frame type/length field 
discriminates several datagram types. The following table lists the types of interest:

31.4.2.2 IPv4 Datagram Format

The following figure shows the IP Version 4 (IPv4) header, which is located at the beginning of an IP 
datagram. It is organized in 32-bit words. The first byte sent/received is the leftmost byte of the first word 
(i.e. version/IHL field).

The IP header can contain further options, which are always padded if necessary to guarantee the payload 
following the header is aligned to a 32-bit boundary.

The IP header is followed by the payload immediately, which can contain further protocol headers 
(e.g., TCP or UDP as indicated by the protocol field value). The complete IP datagram is transported in 
the payload section of an Ethernet frame.

Table 31-72. Ethernet Type Value Examples

Type Description

0x8100 VLAN-tagged frame. The actual type is found 4 octets later in the frame

0x0800 IP

0x0806 ARP

0x86DD IPv6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Version IHL TOS Length

Fragment ID Flags Fragment offset

TTL Protocol Header checksum

Source Address

Destination Address

Options

Figure 31-23. IPv4 Header Format
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31.4.2.3 IPv6 Datagram Format

The following figure shows the IP version 6 (IPv6) header, which is located at the beginning of an IP 
datagram. It is organized in 32-bit words and has a fixed length of ten words (40 bytes). The next header 
field identifies the type of the header to follow the IPv6 header. It is defined identical to the protocol 
identifier within IPv4 with new definitions for identifying extension headers, which can be inserted 
between the IPv6 header and the protocol header, shifting the protocol header accordingly. The accelerator 
currently only supports IPv6 without extension headers (i.e. next header identifies TCP, UDP, or ICMP 
protocol).

The first byte sent/received is the leftmost byte of the first word (i.e. version/traffic class fields).

Table 31-73. IPv4 Header Fields

Field Name Description

Version 4-bit IP version information. 0x4 for IPv4 frames.

IHL 4-bit internet header length information. Determines number of 32-bit words found within the IP header. 
If no options are present, the default value is 0x5.

TOS Type of service/DiffServ field

Length Total length of the datagram in bytes, including all octets of header and payload

Fragment ID, flags, 
fragment offset

Fields used for IP fragmentation

TTL Time-to-live. If zero, datagram must be discarded

Protocol Protocol identifier of protocol that follows in the datagram

Header checksum Checksum over all IP header fields

Source address Source IP address

Destination address Destination IP address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Version TrafficClass Flow label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Start of next header/payload

Figure 31-24. IPv6 Header Format
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31.4.2.4 Internet Control Message Protocol (ICMP) Datagram Format

Following the IP header, an internet control message protocol (ICMP) datagram is found when the protocol 
identifier is 1. The ICMP datagram has a four octet header followed by additional message data.

31.4.2.5 User Datagram Protocol (UDP) Datagram Format

Following the IP header, a user datagram protocol header is found when the protocol identifier is 17.

Following the UDP header is the payload of the datagram. The header byte order follows the conventions 
given for the IP header above.

Table 31-74. IPv6 Header Fields

Field Name Description

Version 4-bit IP version information. 0x6 for all IPv6 frames

Traffic class 8-bit field defining the traffic class

Flow label 20-bit flow label identifying frames of the same flow

Payload 
length

16-bit length of the datagram payload in bytes. It includes all octets following the IPv6 header.

Next header Identifies the header that follows the IPv6 header. This can be the protocol header or any IPv6 defined 
extension header.

Hop limit Hop counter, decremented by one by each station that forwards the frame. If hop limit is 0 the frame must 
be discarded.

Source 
address

128-bit IPv6 source address

Destination 
address

128-bit IPv6 destination address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type Code Checksum

ICMP message data

Figure 31-25. ICMP Header Format

Table 31-75. IP Header Fields

Field Name Description

Type 8-bit type information

Code 8-bit code that is related to the message type

Checksum 16-bit one's complement checksum over the complete ICMP datagram



10/100Mbps Ethernet MAC-NET Core

NXP Semiconductors 31-45

31.4.2.6 TCP Datagram Format

Following the IP Header, a TCP header is found when the protocol identifier has a value of 6.

The TCP payload immediately follows the TCP header.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Port Destination Port

Length Checksum

Figure 31-26. UDP Header Format

Table 31-76. UDP Header Fields

Field Name Description

Source port Source application port

Destination 
port

Destination application port

Length Length of user data which follows immediately the header including the UDP header. That is, the 
minimum value is 8.

Checksum Checksum over the complete datagram and some IP header information

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source port Destination port

Sequence number

Acknowledgment number

Offset Flags Window

Checksum Urgent pointer

Options

Figure 31-27. TCP Header Format

Table 31-77. TCP Header Fields

Field Name Description

Source port Source application port

Destination 
port

Destination application port

Sequence
number

Transmit sequence number

Ack. number Receive sequence number

Offset Data offset. Number of 32-bit words within the TCP header. If no options, a value of 5.

Flags URG, ACK, PSH, RST, SYN, FIN flags

Window TCP receive window size information
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31.4.3 IEEE 1588 Message Formats

The following sections describe the IEEE 1588 message formats.

31.4.3.1 Transport Encapsulation

The precision time protocol (PTP) datagrams are encapsulated in Ethernet frames using the UDP/IP 
transport mechanism, or optionally, with the newer 1588v2 directly in Ethernet frames (layer 2). Typically, 
multicast addresses are used to allow efficient distribution of the synchronization messages.

31.4.3.1.1 UDP/IP

The 1588 messages (v1 and v2) can be transported using UDP/IP multicast messages. The following IP 
multicast groups are defined for PTP. The table also shows their respective MAC layer multicast address 
mapping according to RFC 1112 (last three octets of IP follow the fixed value of 01-00-5E).

31.4.3.1.2 Native Ethernet (PTPv2)

In addition to using UDP/IP frames, IEEE 1588v2 defines a native Ethernet frame format that uses 
ethertype = 0x88F7. The payload of the Ethernet frame immediately contains the PTP datagram, starting 
with the PTPv2 header.

Besides others, version 2 adds a peer delay mechanism to allow delay measurements between individual 
point-to-point links along a path over multiple nodes. The following multicast domains are additionally 
defined in PTPv2.

Checksum Checksum over the complete datagram (TCP header and data) and IP header information

Options Additional 32-bit words for protocol options

Table 31-78. UDP/IP Multicast Domains

Name IP Address
MAC Address 

mapping

DefaultPTPdomain 224.0.1.129 01-00-5E-00-01-81

AlternatePTPdomain1 224.0.1.130 01-00-5E-00-01-82

AlternatePTPdomain2 224.0.1.131 01-00-5E-00-01-83

AlternatePTPdomain3 224.0.1.132 01-00-5E-00-01-84

Table 31-79. UDP Port Numbers

Message Type UDP Port Note

Event 319 Used for SYNC and DELAY_REQUEST messages

General 320 All other messages (e.g., follow-up, delay-response)

Table 31-77. TCP Header Fields (continued)

Field Name Description
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31.4.3.2 PTP Header

All PTP frames contain a common header, which determines the protocol version and the type of message, 
which defines the further content of the message. All multi-octet fields are transmitted in big-endian order 
(the most significant byte is transmitted/received first).

The version field's (versionPTP) last four bits are at the same position (i.e. second byte) for PTPv1 and 
PTPv2 headers, allowing a correct identification by inspecting the first two bytes of the message.

31.4.3.2.1 PTPv1 Header

The type of message is encoded in the messageType and control fields as follows:

Table 31-80. PTPv2 Multicast Domains

Name MAC Address

Normal messages 01-1B-19-00-00-00

Peer delay messages 01-80-C2-00-00-0E

Table 31-81. Common PTPv1 Message Header

Offset Octets
Bits

7 6 5 4 3 2 1 0

0 2 versionPTP = 0x0001

2 2 versionNetwork

4 16 subdomain

20 1 messageType

21 1 sourceCommunicationTechnology

22 6 sourceUuid

28 2 sourcePortId

30 2 sequenceId

32 1 control

33 1 0x00

34 2 flags

36 4 reserved

Table 31-82. PTPv1 Message Type Identification

messageType control Message Name Message

0x01 0x0 SYNC Event message

0x01 0x1 DELAY_REQ Event message
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The field sequenceId is used to non-ambiguously identify a message.

31.4.3.2.2 PTPv2 Header

The type of message is encoded in the field messageId as follows:

0x02 0x2 FOLLOW_UP General message

0x02 0x3 DELAY_RESP General message

0x02 0x4 MANAGEMENT General message

other other — Reserved

Table 31-83. Common PTPv2 message Header

Offset Octets
Bits

7 6 5 4 3 2 1 0

0 1 transportSpecific messageId

1 1 reserved versionPTP = 0x2

2 2 messageLength

4 1 domainNumber 

5 1 reserved

6 2 flags

8 8 correctionField

16 4 reserved

20 10 sourcePortIdentity

30 2 sequenceId

32 1 control

33 1 logMeanMessageInterval

Table 31-84. PTPv2 Message Type Identification

messageId Message Name Message

0x0 SYNC Event message

0x1 DELAY_REQ Event message

0x2 PATH_DELAY_REQ Event message

0x3 PATH_DELAY_RESP Event message

0x4–0x7 — reserved

Table 31-82. PTPv1 Message Type Identification (continued)

messageType control Message Name Message
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The PTPv2 flags field contains further details on the type of message, especially if one-step or two-step 
implementations are used. The flags field consists of two octets with the following meanings for the bits. 
Reserved bits are cleared (false).

31.4.4 MAC Receive

The MAC receive engine performs the following tasks:

• Check frame framing

• Remove frame preamble and frame SFD field

• Frame discarding based on frame destination address field

• Terminate pause frames

• Check frame length

• Remove payload padding if it exists

• Calculate and verify CRC-32

• Write received frames in the core receive FIFO

0x8 FOLLOW_UP General message

0x9 DELAY_RESP General message

0xa PATH_DELAY_FOLLOW_U
P

General message

0xb ANNOUNCE General message

0xc SIGNALING General message

0xd MANAGEMENT General message

Table 31-85. PTPv2 Message Flags Field Definitions

Bit Name Description

0 ALTERNATE_MASTE
R

See IEEE 1588 Clause 17.4

1 TWO_STEP 1 Two-step clock
0 One-step clock

2 UNICAST 1 Transport layer address uses a unicast destination address
0 Multicast is used

3 — Reserved

4 — Reserved

5 Profile specific

6 Profile specific

7 — Reserved

Table 31-84. PTPv2 Message Type Identification (continued)

messageId Message Name Message
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If the MAC is programmed to operate in half duplex mode, the MAC performs the following additional 
action:

• Check if the frame is received with a collision

Figure 31-28. MAC Receive Flow

31.4.4.1 Collision Detection in Half Duplex Mode

If the packet is received with a collision detected during reception of the first 64 bytes, the packet is 
discarded (if frame size was less than ~14 octets) or transmitted to the user application with an error and 
RxBD[CE] set.

31.4.4.2 Preamble Processing

The IEEE 802.3 standard allows a maximum size of 56 bits (seven bytes) for the preamble, while the MAC 
core allows any arbitrary preamble length. The MAC core checks for the start frame delimiter (SFD) byte. 
If the next byte of the preamble, which is different from 0x55, is not 0xD5, the frame is discarded.

Although the IEEE specification specifies that frames should be separated by at least 96 bits (inter-packet 
gap), the MAC core is designed to accept frames only separated by 64 MII (10/100 Mbps operation) bits.

The MAC core removes the preamble and SFD bytes.

31.4.4.3 MAC Address Check

The destination address bit 0 differentiates between multicast and unicast addresses:

Detect Preamble

Collision

Compare destination address
with local/multicast/broadcast

Discriminate length/type
information

Receive payload
Remove padding

Verify CRC

Verify frame length

Write data FIFO
and frame status

Half duplex only

Discard

Discard

Discard

Discard
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• If bit 0 is 0, the MAC address is an individual (unicast) address

• If bit 0 is 1, the MAC address defines a group (multicast) address

• If all 48 bits of the MAC address are set, it indicates a broadcast address

31.4.4.3.1 Unicast Address Check

If a unicast address is received, the destination MAC address is compared to the node MAC address 
programmed by the host in the ENETn_PADDR1/2 registers. In addition, it is compared to the 
supplemental MAC addresses programmed in the ENETn_SMACn registers. If the destination address 
matches any of the programmed MAC addresses, the frame is accepted.

If only one MAC address is required, the supplemental MAC addresses should be programmed with the 
node MAC address.

If promiscuous mode is enabled (ENETn_RCR[PROM] = 1) no address checking is performed and all 
unicast frames are accepted.

31.4.4.3.2 Multicast and Unicast Address Resolution

The hash table algorithm used in the group and individual hash filtering operates as follows. The 48-bit 
destination address is mapped into one of 64 bits, represented by 64 bits in ENETn_GAUR/GALR (group 
address hash match) or ENETn_IAUR/IALR (individual address hash match). This mapping is performed 
by passing the 48-bit address through the on-chip 32-bit CRC generator and selecting the six most 
significant bits of the CRC-encoded result to generate a number between 0 and 63. The msb of the CRC 
result selects ENETn_GAUR (msb = 1) or ENETn_GALR (msb = 0). The five lsbs of the hash result 
select the bit within the selected register. If the CRC generator selects a bit set in the hash table, the frame 
is accepted; else, it is rejected.

For example, if eight group addresses are stored in the hash table and random group addresses are received, 
the hash table prevents roughly 56/64 (or 87.5%) of the group address frames from reaching memory. 
Those that do reach memory must be further filtered by the processor to determine if they truly contain 
one of the eight desired addresses.

The effectiveness of the hash table declines as the number of addresses increases.

The user must initialize the hash table registers. Use this CRC32 polynomial to compute the hash:

• FCS(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1

If promiscuous mode is enabled (ENETn_RCR[PROM] = 1) all unicast and multicast frames are accepted 
regardless of ENETn_GAUR/GALR and ENETn_IAUR/IALR settings.

31.4.4.3.3 Broadcast Address Reject

All broadcast frames are accepted if BC_REJ is cleared or ENETn_RCR[PROM] is set. If PROM is 
cleared when ENETn_RCR[BC_REJ] is set, all broadcast frames are rejected.
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31.4.4.3.4 Miss-Bit Implementation

For higher layer filtering purposes, RxBD[M] indicates an address miss when the MAC operates in 
promiscuous mode and accepted a frame that would otherwise be rejected.

If a group/individual hash or exact match does not occur and promiscuous mode is enabled 
(ENETn_RCR[PROM] = 1), the frame is accepted and the M bit is set in the buffer descriptor; otherwise, 
the frame is rejected.

This means the status bit is set in any of the following conditions during promiscuous mode:

• A broadcast frame is received when BC_REJ is set.

• A unicast is received that does not match either of:

— Node address (ENETn_PALR[PADDR1] and ENETn_PAUR[PADDR2])

— Supplemental unicast addresses (ENETn_SMACUx and ENETn_SMACLx)

— Hash table for unicast (ENETn_IAUR[IADDR1] and ENETn_IALR[IADDR2])

• A multicast is received that does not match the ENETn_GAUR[GADDR1] and 
ENETn_GALR[GADDR2] hash table entries

31.4.4.4 Frame Length/Type Verification: Payload Length Check

If the length/type is less than 0x600 and NLC is set, the MAC checks the payload length and reports any 
error in the frame status word  and interrupt bit PLR.

If the length/type is greater than or equal to 0x600, the MAC interprets the field as a type and no payload 
length check is performed.

The length check is performed on VLAN and stacked VLAN frames. If a padded frame is received, no 
length check can be performed due to the extended frame payload (i.e. padded frames can never have a 
payload length error). 

31.4.4.5 Frame Length/Type Verification: Frame Length Check

When the receive frame length exceeds MAX_FL bytes, the BABR interrupt is generated and the 
RxBD[LG] bit is set.

The frame is not truncated unless the frame length exceeds the value programmed in 
ENETn_FTRL[TRUNC_FL]. If the frame is truncated, RxBD[TR] is set. In addition, a truncated frame 
always has the CRC error indication set (RxBD[CR]).

Table 31-86. Broadcast Address Reject Programming

PROM BC_REJ Broadcast Frames

0 0 Accepted

0 1 Rejected

1 0 Accepted

1 1 Accepted
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31.4.4.6 VLAN Frames Processing

VLAN frames have a length/type field set to 0x8100 immediately followed by a 16-Bit VLAN control 
information field. VLAN-tagged frames are received as normal frames (the VLAN tag is not interpreted 
by the MAC function) and are completely (including the VLAN tag) pushed to the user application. If the 
length/type field of the VLAN-tagged frame, which is found four octets later in the frame, is less than 42, 
the padding is removed. In addition, the frame status word (RxBD[NO]) indicates that the current frame 
is VLAN tagged.

31.4.4.7 Pause Frame Termination

The receive engine terminates pause frames and they are not transferred to the receive FIFO. The quanta 
is extracted and sent to the MAC transmit path via a small internal clock rate decoupling asynchronous 
FIFO.

The quanta is written only if a correct CRC and frame length are detected by the control state machine. If 
not, the quanta is discarded and the MAC transmit path is not paused.

Good pause frames are ignored if ENETn_RCR[FCE] is cleared and are forwarded to the client interface 
when ENETn_RCR[PAUFWD] is set.

31.4.4.8 CRC Check

The CRC-32 field is checked and forwarded to the core FIFO interface if ENETn_RCR[CRCFWD] is 
cleared and ENETn_RCR[PADEN] is set. When CRCFWD is set (regardless of PADEN), the CRC-32 
field is checked and terminated (not transmitted to the FIFO). 

The CRC polynomial, as specified in the 802.3 standard, is:

• FCS(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1

The 32 bits of the CRC value are placed in the frame check sequence (FCS) field with the x31 term as 
right-most bit of the first octet. The CRC bits are thus received in the following order: x31, x30,..., x1, x0.

If a CRC error is detected, the frame is marked invalid and RxBD[CR] is set.

31.4.4.9 Frame Padding Removal

When a frame is received with a payload length field set to less than 46 (42 for VLAN-tagged frames and 
38 for frames with stacked VLANs), the zero padding can be removed before the frame is written into the 
data FIFO depending on the setting of ENETn_RCR[PADEN].

NOTE
If a frame is received with excess padding (i.e. the length field is set as 
mentioned above, but the frame has more than 64 octets) and padding 
removal is enabled, the padding is removed as normal and no error is 
reported if the frame is otherwise correct (e.g. good CRC, less than 
maximum length, and no other error).
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31.4.5 MAC Transmit

Frame transmission starts when the transmit FIFO holds enough data. Once a transfer starts, the MAC 
transmit function performs the following tasks:

• Generates preamble and SFD field before frame transmission

• Generates XOFF pause frames if the receive FIFO reports a congestion or if 
ENETn_TCR[TFC_PAUSE] is set with ENETn_OPD[PAUSE_DUR] set to a non-zero value

• Generates XON pause frames if the receive FIFO congestion condition is cleared or if 
TFC_PAUSE is set with PAUSE_DUR cleared

• Suspends Ethernet frame transfer (XOFF) if a non-zero pause quanta is received from the MAC 
receive path

• Adds padding to the frame if required

• Calculates and appends CRC-32 to the transmitted frame

• Send frame with correct inter-packet gap (IPG) (deferring)

When the MAC is configured to operate in half duplex mode, the following additional tasks are performed:

• Collision detection

• Frame retransmit after back-off timer expires

Figure 31-29. Frame Transmit Overview

31.4.5.1 Frame Payload Padding

The IEEE specification defines a minimum frame length of 64 bytes. If the frame sent to the MAC from 
the user application has a size smaller than 60 bytes, the MAC automatically adds padding bytes (0x00) to 
comply with the Ethernet minimum frame length specification. Transmit padding is always performed and 
cannot be disabled.

If the MAC is not allowed to append a CRC (TxBD[TC] = 1), the user application is responsible for 
providing frames with a minimum length of 64 octets.

Send Preamble

Send destination address

Send local MAC address

Send payload

(overwrite FIFO data)

Send padding
(if necessary)

Send CRC
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31.4.5.2 MAC Address Insertion

On each frame received from the core transmit FIFO interface, the source MAC address is either:

• Replaced by the address programmed in the PADDR1/2 fields (ENETn_TCR[ADDINS] = 1)

• Transparently forwarded to the Ethernet line (ENETn_TCR[ADDINS] = 0)

31.4.5.3 CRC-32 generation

The CRC-32 field is optionally generated and appended at the end of a frame. The CRC polynomial, as 
specified in the 802.3 standard, is:

• FCS(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1

The 32 bits of the CRC value are placed in the FCS field so that the x31 term is the right-most bit of the 
first octet. The CRC bits are thus transmitted in the following order: x31, x30,..., x1, x0.

31.4.5.4 Inter-Packet Gap

In full duplex mode, after frame transmission and before transmission of a new frame, an inter-packet gap 
(programmed in ENETn_TIPG) is maintained. The minimum IPG can be programmed between 8 and 27 
byte-times (64 and 216 bit-times).

In half duplex mode, the core constantly monitors the line. Actual transmission of the data onto the 
network occurs only if it has been idle for a 96-bit time period and any back-off time requirements have 
been satisfied. In accordance with the standard, the core begins to measure the IPG from MII_CRS 
de-assertion.

31.4.5.5 Collision Detection and Handling—Half Duplex Operation Only

A collision occurs on a half-duplex network when concurrent transmissions from two or more nodes take 
place. During transmission, the core monitors the line condition and detects a collision when the PHY 
device asserts MII_COL.

When the core detects a collision while transmitting, it stops transmission of the data and transmits a 32-bit 
jam pattern. If the collision is detected during the preamble or the SFD transmission, the jam pattern is 
transmitted after completing the SFD, which results in a minimum 96-bit fragment. The jam pattern is a 
fixed pattern that is not compared to the actual frame CRC and has a very low probability (0.532) of having 
a jam pattern identical to the CRC.

If a collision occurs before transmission of 64 bytes (including preamble and SFD), the MAC core waits 
for the back-off period and retransmits the packet data (stored in a 64-byte re-transmit buffer) already sent 
on the line. The backoff period is generated from a pseudo-random process (truncated binary exponential 
backoff).

If a collision occurs after transmission of 64 bytes (including preamble and SFD), the MAC discards the 
remainder of the frame, optionally sets the LC interrupt bit, and sets TxBD[LCE].
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Figure 31-30. Packet Re-Transmit Overview

The back-off time is represented by an integer multiple of slot times (one slot is equal to a 512-bit time 
period). The number of the delay slot times, before the nth re-transmission attempt, is chosen as a 
uniformly-distributed random integer in the range:

• 0 < r < 2k

• k = min(n, N); where n is the number of retransmissions and N = 10

For example, after the first collision, the backoff period is 0 or 1 slot time. If a collision occurs on the first 
retransmission, the backoff period is 0, 1, 2, or 3 and so on.

The maximum backoff time (in 512-bit time slots) is limited by N = 10 as specified in the IEEE 802.3 
standard.

If a collision occurs after 16 consecutive retransmissions, the core reports an excessive collision condition 
(ENETn_EIR[RL] interrupt bit and TxBD[EE]) and discards the current packet from the FIFO.

In networks violating the standard requirements, a collision may occur after transmission of the first 64 
bytes. In this case, the core stops the current packet transmission and discards the rest of the packet from 
the transmit FIFO. The core resumes transmission with the next packet available in the core transmit FIFO.

31.4.6 Full Duplex Flow Control Operation

Three conditions are handled by the core's flow control engine:

• Remote device congestion — The remote device connected to the same Ethernet segment as the 
core reports a congestion requesting the core to stop sending data
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• Core FIFO congestion — When the core's receive FIFO reaches a user-programmable threshold 
(RX section empty), the core sends a pause frame back to the remote device requesting the data 
transfer to stop

• Local device congestion — Any device connected to the core can request (typically, via the host 
processor) the remote device to stop transmitting data

31.4.6.1 Remote Device Congestion

When the MAC transmit control gets a valid pause quanta from the receive path and if ENETn_RCR[FCE] 
is set, the MAC transmit logic:

• Completes the transfer of the current frame

• Stops sending data for the amount of time specified by the pause quanta in 512 bit time increments

• Sets ENETn_TCR[RFC_PAUSE]

Frame transfer resumes when the time specified by the quanta expires and if no new quanta value is 
received or if a new pause frame with a quanta value set to 0x0000 is received. The MAC also resets 
RFC_PAUSE to zero.

If ENETn_RCR[FCE] cleared, the MAC ignores received pause frames.

Optionally and independent of ENETn_RCR[FCE], pause frames are forwarded to the client interface if 
PAUFWD is set.

31.4.6.2 Local Device/FIFO Congestion

The MAC transmit engine generates pause frames when the local receive FIFO is not able to receive more 
than a pre-defined number of words (FIFO programmable threshold) or when pause frame generation is 
requested by the local host processor:

• To generate a pause frame, the host processor sets ENETn_TCR[TFC_PAUSE]. A single pause 
frame is generated when the current frame transfer is completed and TFC_PAUSE is automatically 
cleared. Optionally, an interrupt is generated.

• A XOFF pause frame is generated when the receive FIFO asserts its section empty flag (internal). 
A XOFF pause frame is generated automatically, when the current frame transfer completes.

• A XON pause frame is generated when the receive FIFO deasserts its section empty flag (internal). 
A XON pause frame is generated automatically, when the current frame transfer completes.

When a XOFF pause frame is generated, the pause quanta (payload byte P1 and P2) is filled with the value 
programmed in ENETn_OPD[PAUSE_DUR].
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Figure 31-31. Pause Frame Generation Overview

NOTE
Although the flow control mechanism should prevent any FIFO overflow on 
the MAC core receive path, the core receive FIFO is protected. When an 
overflow is detected on the receive FIFO, the current frame is truncated with 
an error indication set in the frame status word. The frame should 
subsequently be discarded by the user application.

31.4.7 Magic Packet Detection

Magic packet detection wakes a node that is put is power-down mode by the node management agent. 
Magic packet detection is supported only if the MAC is configured in sleep mode.

31.4.7.1 Sleep Mode

To put the MAC in sleep mode, set ENETn_ECR[SLEEP] and ensure that ENETn_ECR[MAGICEN] is 
set to enable magic packet detection.

In addition, when the processor is in stop mode, sleep mode is entered, without affecting the ENETn_ECR 
register bits.

When the core is in sleep mode:

• The MAC transmit logic is disabled

• The core FIFO receive/transmit functions are disabled

• The MAC receive logic is kept in normal mode, but it ignores all traffic from the line except magic 
packets. They are detected so that a remote agent can wake the node.

31.4.7.2 Magic Packet Detection

The core is designed to detect magic packets (see Section 31.4.1.2, “Magic Packets”) with the destination 
address set to:

• Any multicast address
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• The broadcast address

• The unicast address programmed in PADDR1/2

• If enabled, to any of the unicast addresses programmed in the core supplemental MAC address 
registers (ENETn_SMACLx and ENETn_SMACUx)

When a magic packet is detected, ENETn_EIR[WAKEUP] is set and none of the statistic registers are 
incremented.

31.4.7.3 Wake-up

When a magic packet is detected, indicated by ENETn_EIR[WAKEUP], ENETn_ECR[SLEEP] should be 
cleared to resume normal operation of the MAC. Clearing the SLEEP bit automatically masks 
ENETn_ECR[MAGICEN], disabling magic packet detection.

31.4.8 IP Accelerator Functions

The following sections describe the IP accelerator functions.

31.4.8.1 Checksum Calculation

The IP and ICMP, TCP, UDP checksums are calculated with one's complement arithmetic summing up 
16-bit values.

• For ICMP the checksum is calculated over the complete ICMP datagram (i.e. without IP header).

• For TCP and UDP the checksums contain the header and data sections and values from the IP 
header, which can be seen as a pseudo header that is not actually present in the datastream.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source address

Destination Address

Zero Protocol TCP/UDP length

Figure 31-32.  IPv4 Pseudo Header for Checksum calculation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source address

Destination Address

TCP/UDP length

Zero Next header

Figure 31-33. IPv6 Pseudo Header for Checksum Calculation
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The TCP/UDP length value is the length of the TCP or UDP datagram, which is equal to the payload of 
an IP datagram. It is derived by subtracting the IP header length from the complete IP datagram length that 
is given in the IP header (IPv4) or directly taken from the IP header (IPv6). The protocol field is the 
corresponding value from the IP header and Zero is filled with zeroes.

For IPv6 the complete 128-bit addresses are considered. The next header value identifies the upper layer 
protocol (TCP or UDP) and may differ from the IPv6 header's actual next header value if extension headers 
are inserted before the protocol header.

The checksum calculation uses 16-bit words in network byte order: The first byte sent/received is the 
MSB, and the second byte sent/received is the LSB of the 16-bit value to add to the checksum. If the frame 
ends on an odd number of bytes, a zero byte is appended for checksum calculation only (not actually 
transmitted).

31.4.8.2 Additional Padding Processing

According to IEEE 802.3, any Ethernet frame must have a minimum length of 64 octets. The MAC usually 
removes padding on receive when a frame with length information is received. As IP frames have a type 
value instead of length, the MAC does not remove padding for short IP frames, as it is not aware of the 
frame contents.

The IP accelerator function can be configured to remove the Ethernet padding bytes that might follow the 
IP datagram.

On transmit, the MAC automatically adds padding as necessary to fill any frame to a 64-byte length.

31.4.8.3 32-bit Ethernet Payload Alignment

The data FIFOs allow inserting two additional arbitrary bytes in front of a frame. This extends the 14-byte 
Ethernet header to a 16-byte header, which leads to alignment of the Ethernet payload, following the 
Ethernet header, on a 32-bit boundary.

This function can be enabled for transmit and receive independently with the corresponding SHIFT16 bits 
in the ENETn_TACC and ENETn_RACC registers.

When enabled, the valid frame data is arranged as shown in this table.

31.4.8.3.1 Receive Processing

When ENETn_RACC[SHIFT16] is set, each frame is received with two additional bytes in front of the 
frame. The user application must ignore these first two bytes and find the first byte of the frame in bits 
23–16 of the first word from the RX FIFO.

Table 31-87. 64-Bit Interface Data Structure with SHIFT16 Enabled

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Any value Any value

Byte 13 Byte 12 Byte 11 Byte 10 Byte 9 Byte 8 Byte 7 Byte 6

...
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NOTE
SHIFT16 must be set during initialization and kept set during the complete 
operation, as it influences the FIFO write behavior.

31.4.8.3.2 Transmit Processing

When ENETn_TACC[SHIFT16] is set, the first two bytes of the first word written (bits 15–0) are 
discarded immediately by the FIFO write logic. The SHIFT16 bit can be enabled/disabled for each frame 
individually if required, but can be changed only between frames.

31.4.8.4 Received Frame Discard

As the receive FIFO must be operated in store and forward mode (ENETn_RSFL cleared), received frames 
can be discarded based on the following errors:

• The MAC function receives the frame with an error:

— The frame has an invalid payload length

— Frame length is greater than MAX_FL

— Frame received with a CRC-32 error

— Frame truncated due to receive FIFO overflow

— Frame is corrupted as PHY signaled an error (MII_RX_ERR asserted during reception)

• An IP frame is detected and the IP header checksum is wrong

• An IP frame with a valid IP header and a valid IP header checksum is detected, the protocol is 
known but the protocol specific checksum is wrong

If one of the errors occurs and the IP accelerator function is configured to discard frames (ENETn_RACC), 
the frame is automatically discarded. Statistics are maintained normally and are not affected by this discard 
function.

31.4.8.5 IPv4 Fragments

When an IP (IPv4) fragment frame is received only the IP header is inspected and its checksum verified. 
32-bit alignment operates on fragments as on normal IP frames, as specified above.

The IP fragment frame payload is not inspected for any protocol headers. As such, a protocol header would 
only exist in the very first fragment. To assist in protocol-specific checksum verification, the 
one's-complement sum is calculated on the IP payload (all bytes following the IP header) and provided 
with the frame status word.

The frame fragment status bit, RxBD[FRAG], is set to indicate a fragment reception and the 
one's-complement sum of the IP payload is available in RxBD[Payload checksum].

NOTE
The application software can take advantage of the payload checksum 
delivered with the frame's status word to calculate the protocol-specific 
checksum of the datagram after all fragments have been received and 
reassembled.
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For example, if a TCP payload is delivered by multiple IP fragments, the application software can calculate 
the pseudo-header checksum value from the first fragment and add the payload checksums delivered with 
the status for all fragments to verify the TCP datagram checksum.

31.4.8.6 IPv6 Support

The following sections describe the IPv6 support.

31.4.8.6.1 Receive Processing

An Ethernet frame of type 0x86DD identifies an IP Version 6 frame (IPv6) frame. If an IPv6 frame is 
received, the first IP header is inspected (first ten words) which is available in every IPv6 frame.

If the receive SHIFT16 function is enabled, the IP header is aligned on a 32-bit boundary allowing more 
efficient processing (see Section 31.4.8.3, “32-bit Ethernet Payload Alignment”).

For TCP and UDP datagrams the pseudo-header checksum calculation is performed and verified.

To assist in protocol-specific checksum verification, the one's-complement sum is always calculated on 
the IP payload (all bytes following the IP header) and provided with the frame status word. For example, 
if extension headers were present, their sums can be subtracted in software from the checksum to isolate 
the TCP/UDP datagram checksum, if required.

31.4.8.6.2 Transmit Processing

For IPv6 transmission the SHIFT16 function is supported to process 32-bit aligned datagrams.

IPv6 has no IP header checksum; therefore, the IP checksum insertion configuration is ignored.

The protocol checksum is inserted only if the next header of the IP header is a known protocol (TCP, UDP, 
or ICMP). If a known protocol is detected, the checksum over all bytes following the IP header is 
calculated and inserted in the correct position.

The pseudo-header checksum calculation is performed for TCP and UDP datagrams accordingly.

31.4.9 Resets and Stop Controls

The following sections describe the resets and stop controls.

31.4.9.1 Hardware Reset

To reset the core, set ENETn_ECR[RESET].

31.4.9.2 Soft Reset

When ENETn_ECR[ETHER_EN] is cleared during operation, the following occurs:

• DMA, buffer descriptor, and FIFO control logic are reset, including the buffer descriptor and FIFO 
pointers

• A currently ongoing transmit is terminated by asserting MII_TXER to the PHY
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• A currently ongoing transmit FIFO write from the application is terminated by stopping the write 
to the FIFO, and all further data from the application is ignored. All subsequent writes are ignored 
until reenabled.

• A currently ongoing receive FIFO read is terminated. The RxBD has arbitrary values in this case.

31.4.9.3 Hardware Freeze

When the processor enters debug mode and ENETn_ECR[DBGEN] is set, the MAC enters a freeze state 
where it stops all transmit and receive activities gracefully. The following happens when the MAC enters 
hardware freeze:

• A currently ongoing receive transaction on the receive application interface is completed as 
normal. No further frames are read from the FIFO.

• A currently ongoing transmit transaction on the transmit application interface is completed as 
normal (i.e. until writing end-of-packet (eop)).

• A currently ongoing MII frame receive is completed normally. After that, no further frames are 
accepted from the MII.

• A currently ongoing MII frame transmit is completed normally. After that, no further frames are 
transmitted.

31.4.9.4 Graceful Stop

During a graceful stop any currently ongoing transactions are completed normally and no further frames 
are accepted. The MAC can resume from a graceful stop without the need for a reset (e.g. clearing 
ETHER_EN is not required). The following conditions lead to a graceful stop of the MAC transmit or 
receive datapaths.

31.4.9.4.1 Graceful Transmit Stop (GTS)

When gracefully stopped, the MAC is no longer reading frame data from the transmit FIFO and has 
completed any ongoing transmission. In any of the following conditions, the transmit datapath stops after 
an ongoing frame transmission has been completed normally.

• ENETn_TCR[GTS] is set by software

• ENETn_TCR[TFC_PAUSE] is set by software requesting a pause frame transmission. The status 
(and register bit) is cleared after the pause frame has been sent.

• A pause frame was received stopping the transmitter. The stopped situation is terminated when the 
pause timer expires or a pause frame with zero quanta is received.

• MAC is placed in sleep mode by software or the processor entering stop mode (see 
Section 31.4.7.1, “Sleep Mode”).

• The MAC is in hardware freeze mode

When the transmitter has reached its stopped state, the following events occur:

• The GRA interrupt is asserted, when transitioned into stopped

• In hardware freeze mode, the GRA interrupt does not wait for the application write completion and 
asserts when the transmit state machine (line side of TX FIFO) reaches its stopped state.
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31.4.9.4.2 Graceful Receive Stop (GRS)

When gracefully stopped, the MAC is no longer writing frames into the receive FIFO. The receive 
datapath stops after any ongoing frame reception has been completed normally, if any of the following 
conditions occur:

• MAC is placed in sleep mode (by software or the processor is in stop mode). The MAC continues 
to receive frames and hunt for magic packets if enabled (see Section 31.4.7, “Magic Packet 
Detection”). However, no frames are written into the receive FIFO, and therefore are not forwarded 
to the application.

• The MAC is in hardware freeze mode. The MAC does not accept any frames from the MII.

When the receive datapath is stopped the following events occur:

• If the RX is in the stopped state, ENETn_RCR[GRS] is set

• The GRA interrupt is asserted when the transmitter and receiver are stopped

• Any ongoing receive transaction to the application (RX FIFO read) continues normally until the 
frame is completed (end of packet (eop)). After this, the following occurs:

— When sleep mode is active, all further frames are discarded, flushing the RX FIFO

— In hardware freeze mode, no further frames are delivered to the application and they stay in the 
receive FIFO.

NOTE
The assertion of GRS does not wait for an ongoing transaction on the 
application side of the FIFO (FIFO read).

31.4.9.4.3 Graceful Stop Interrupt (GRA)

The graceful stopped interrupt (GRA) is asserted for the following conditions:

• In sleep mode, the interrupt asserts only after both TX and RX datapaths are stopped

• In hardware freeze mode, the interrupt asserts only after both TX and RX datapaths are stopped

• The MAC transmit datapath is stopped for any other condition (GTS, TFC_PAUSE, pause 
received)

The GRA interrupt is triggered only once when the stopped state is entered. If the interrupt is cleared while 
the stop condition persists, no further interrupt is triggered.

31.4.10 IEEE 1588 Functions

To allow for IEEE 1588 or similar time synchronization protocol implementations, the MAC is combined 
with a time-stamping module to support precise time stamping of incoming and outgoing frames. Set 
ENETn_ECR[1588EN] to enable 1588 support.
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Figure 31-34. IEEE 1588 Functions Overview

31.4.10.1 Adjustable Timer Module

The adjustable timer module (TSM) implements the free running counter (FRC), which generates the 
timestamps. The FRC operates with the time-stamping clock, which can be set to any value depending on 
your system requirements. However, choose a period which is an integer value (e.g. 5ns, 6ns, 8ns) to 
implement a precise timer.

Through dedicated correction logic, the timer can be adjusted to allow synchronization to a remote master 
and provide a synchronized timing reference to the local system. The timer can be configured to cause an 
interrupt after a fixed time period to allow synchronization of software timers or perform other 
synchronized system functions.

The timer is usually used to implement a period of one second; hence, its value ranges from 0 to (1109)1. 
The period event can trigger an interrupt and software can maintain the seconds and hours time values as 
necessary.

31.4.10.1.1 Adjustable Timer Implementation

The adjustable timer consists of a programmable counter/accumulator and a correction counter. The 
periods of both counters and its increment rate are freely configurable allowing very fine tuning of the 
timer. See Section 31.4.10.2, “Timer Synchronization for Multi-Port Implementations,” for external clock 
input options.
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Figure 31-35. Adjustable Timer Implementation Detail

The counter produces the current time. During each time-stamping clock cycle a constant value is added 
to the current time as programmed in ENETn_ATINC. The value depends on the chosen time-stamping 
clock frequency. For example, if it operates at 125 MHz setting the increment to eight represents 8 ns.

The period, configured in ENETn_ATPER, defines the modulo when the counter wraps. In a typical 
implementation the period is set to 1109 so the counter wraps every second, and hence all timestamps 
represent the absolute nanoseconds within the one second period. When the period is reached, the counter 
wraps to start again respecting the period modulo. This means it does not necessarily start from zero, but 
instead the counter is loaded with the value (Current + Inc – (1109)), assuming the period is set to 1109.

The correction counter operates fully independently and increments by one with each time-stamping clock 
cycle. When it reaches the value configured in ENETn_ATCOR, it restarts and instructs the timer once to 
increment by the correction value, instead of the normal value. The normal and correction increments are 
configured in ENETn_ATINC. To speed up the timer, set the correction increment more than the normal 
increment value. To slow down the timer, set the correction increment less than the normal increment 
value. The correction counter only defines the distance of the corrective actions, not the amount. This 
allows very fine corrections and low jitter (in the range of 1 ns) independent of the chosen clock frequency.

By enabling slave mode (ENETn_ATCR[SLAVE] = 1) the timer is ignored and the current time is 
externally provided from one of the external modules as defined by MISCCR3[ENETCLK] in the CCM 
module. This is useful if multiple modules within the system must operate from a single timer (see 
Section 31.4.10.2, “Timer Synchronization for Multi-Port Implementations”). When slave mode is 
enabled, you still must set ENETn_ATINC[INC] to the value of the master, since it is used for internal 
comparisons.

31.4.10.2 Timer Synchronization for Multi-Port Implementations

Additional inputs are available to provide a timer value for all time-stamping functions. This is necessary 
to synchronize the two MACs to a single reference timer. MISCCR3[ENETCLK] in the CCM module 
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configures the clock used as an input to the time-stamping functions.  To operate the MAC in slave mode, 
ENETn_ATCR[SLAVE] disables the internal adjustable timer and uses the externally provided timer.

Figure 31-36. 1588 Multiple MAC implementation

31.4.10.3 Transmit Timestamping

Only 1588 event frames need to be time-stamped on transmit. The client application (e.g. the MAC driver) 
should detect 1588 event frames and set TxBD[TS] together with the frame.

If TxBD[TS] is set, the MAC records the timestamp for the frame in ENETn_ATSTMP. 
ENETn_EIR[TS_AVAIL] is set to indicate that a new timestamp is available.

Software implements a handshaking procedure by setting TxBD[TS] when it transmits the frame it needs 
a timestamp for and then waits for ENETn_EIR[TS_AVAIL] to know when the timestamp is available. It 
then can read the timestamp from ENETn_ATSTMP. This is done for all event frames. Other frames do 
not use TxBD[TS] and, therefore, do not interfere with the timestamp capture.

31.4.10.4 Receive Timestamping

When a frame is received, the MAC latches the value of the timer when the frame’s SFD field is detected 
and provides the captured timestamp on RxBD[1588 timestamp]. This is done for all received frames.

31.4.10.5 Time Synchronization

The adjustable timer module is available to synchronize the local clock of a node to a remote master. It 
implements a free running 32-bit counter, and also contains an additional correction counter. The 
correction counter increases or decreases the rate of the free running counter, enabling very fine granular 
changes of the timer for synchronization, yet adding only very low jitter when performing corrections.

The application software implements, in a slave scenario, the required control algorithm setting the 
correction to compensate for local oscillator drifts and locking the timer to the remote master clock on the 
network.

The timer and all timestamp-related information should be configured to show the true nanoseconds value 
of a second (i.e. the timer is configured to have a period of one second). Hence, the values range from 0 to 
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(1109)1. In this application, the seconds counter is implemented in software using an interrupt function 
that is executed when the nanoseconds counter wraps at 1109.

31.4.11 FIFO Thresholds

The core FIFO thresholds are fully programmable to dynamically change the FIFO operation. For 
example, store and forward transfer can be enabled by a simple change in the FIFO threshold registers. 
The thresholds are defined in 64-bit words.

31.4.11.1 Receive FIFO

Four programmable thresholds are available, which can be set to any value to control the core operation 
as follows.

Table 31-88. Receive FIFO Thresholds Definition

Register Description

ENETn_RSFL
[RX_SECTION

_FULL]

When the FIFO level reaches the ENETn_RSFL value, the MAC status signal is asserted to indicate that 
data is available in the receive FIFO (cut-through operation). Once asserted, if the FIFO empties below 
the threshold set with ENETn_RAEM and if the end-of-frame is not yet stored in the FIFO, the status 
signal is deasserted again.

If a frame has a size smaller than the threshold (i.e. an end-of-frame is available for the frame), the status 
is also asserted.

To enable store and forward on the receive path, clear ENETn_RSFL. the MAC status signal is asserted 
only when a complete frame is stored in the receive FIFO.

When programming a non-zero value to ENETn_RSFL (cut-through operation) it should be greater than 
ENETn_RAEM.

ENETn_RAEM
[RX_ALMOST

_EMPTY]

When the FIFO level reaches the ENETn_RAEM value, and the end-of-frame has not been received, the 
core receive read control stops the FIFO read (and subsequently stops transferring data to the MAC 
client application).

It continues to deliver the frame, if again more data than the threshold or the end-of-frame is available in 
the FIFO.

Set ENETn_RAEM to a minimum of six.

ENETn_RAFL
[RX_ALMOST

_FULL]

When the FIFO level comes close to the maximum, so that there is no more space for at least 
ENETn_RAFL number of words, the MAC control logic stops writing data in the FIFO and truncates 
the received frame to avoid FIFO overflow.

The corresponding error status is set when the frame is delivered to the application.
Set ENETn_RAFL to a minimum of 4.

ENETn_RSEM
[RX_SECTION

_EMPTY]

When the FIFO level reaches the ENETn_RSEM value, an indication is sent to the MAC transmit logic, 
which generates a XOFF pause frame. This indicates FIFO congestion to the remote Ethernet client.

When the FIFO level goes below the value programmed in ENETn_MRBR, an indication is sent to the 
MAC transmit logic, which generates a XON pause frame. This indicates the FIFO congestion is 
cleared to the remote Ethernet client.

Clearing ENETn_RSEM disables any pause frame generation.
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Figure 31-37. Receive FIFO Overview

31.4.11.2 Transmit FIFO

Four programmable thresholds are available which control the core operation as described below.

Table 31-89. Transmit FIFO Thresholds Definition

Register Description

ENETn_TAEM
[TX_ALMOST

_EMPTY]

When the FIFO level reaches the ENETn_TAEM value and no end-of-frame is available for the frame, the 
MAC transmit logic avoids a FIFO underflow by stopping FIFO reads and transmitting the Ethernet 
frame with an MII error indication.

Set ENETn_TAEM to a minimum of 4.

ENETn_TAFL
[TX_ALMOST

_FULL]

When the FIFO level approaches the maximum, so that there is no more space for at least ENETn_TAFL 
number of words, the MAC deasserts its control signal to the application.

If the application does not react on this signal, the FIFO write control logic avoids FIFO overflow by 
truncating the current frame and setting the error status. As a result, the frame is transmitted with an 
MII error indication.

Set ENETn_TAFL to a minimum of 4. Larger values allow more latency for the application to react on the 
MAC control signal deassertion, before the frame is truncated. A typical setting is 8, which offers 3–4 
clock cycles of latency to the application to react on the MAC control signal deassertion.
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MAC receive
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(FIFO read control)
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Figure 31-38. Transmit FIFO Overview

31.4.12 Loopback Options

The core implements external and internal loopback options, which are controlled by the following 
ENETn_RCR register bits:

ENETn_TSEM
[TX_SECTION

_EMPTY]

When the FIFO level reaches the ENETn_TSEM value, a MAC status signal is deasserted to indicate that 
the transmit FIFO is getting full.

This gives the application an indication to slow or stop its write transaction to avoid a buffer overflow.
This is a pure indication function to the application. It has no effect within the MAC.
When ENETn_TSEM is 0, the signal is never deasserted.

ENETn_TFWR When the FIFO level reaches the ENETn_TFWR value and when STRFWD is cleared, the MAC transmit 
control logic starts frame transmission before the end-of-frame is available in the FIFO (cut-through 
operation).

If a complete frame has a size smaller than the ENETn_TFWR threshold, the MAC also transmits the 
frame to the line.

To enable store and forward on the transmit path, set STRFWD. In this case, the MAC starts to transmit 
data only when a complete frame is stored in the transmit FIFO.

Table 31-90. Loopback Options

Register Bit Description

LOOP Internal MII loopback. The MAC transmit is returned to the MAC receive. No data is transmitted to the 
external interfaces.

Table 31-89. Transmit FIFO Thresholds Definition (continued)

Register Description

MAC transmit

FIFO write control

Almost full

Almost empty

Section empty

Section full
(MAC read control)(MAC transmit start)

(Core FIFO status) (FIFO write control)
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Figure 31-39. Loopback Options

31.4.13 Legacy Buffer Descriptors

To support the Ethernet controller on previous ColdFire devices, legacy FEC buffer descriptors are 
available. To enable legacy support, clear ENETn_ECR[1588EN].

31.4.13.1 Legacy Receive Buffer Descriptor

The following figure shows the legacy FEC receive buffer descriptor. Table 31-91 contains the 
descriptions for each field.

31.4.13.2 Legacy Transmit Buffer Descriptor

The following figure shows the legacy FEC transmit buffer descriptor. Table 31-92 contains the 
descriptions for each field.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset + 0 E RO1 W RO2 L — — M BC MC LG NO — CR OV TR

Offset + 2 Data length

Offset + 4 Rx data buffer pointer - A[31:16]

Offset + 6 Rx data buffer pointer - A[15:0]

Figure 31-40. Legacy FEC Receive Buffer Descriptor (RxBD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset + 0 R TO1 W TO2 L TC ABC1 — — — — — — — — —

Offset + 2 Data Length

Offset + 4 Tx Data Buffer Pointer - A[31:16]

Offset + 6 Tx Data Buffer Pointer - A[15:0]

Figure 31-41. Legacy FEC Transmit Buffer Descriptor (TxBD)
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31.4.14 Enhanced Buffer Descriptors

This section provides a description of the enhanced operation of the driver/DMA via the buffer descriptors. 
It is followed by a detailed description of the receive and transmit descriptor fields. To enable the enhanced 
features, set ENETn_ECR[1588EN].

31.4.14.1 Enhanced Receive Buffer Descriptor

This section discusses the enhanced uDMA receive buffer descriptor.

1 This bit is not supported by the uDMA.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset + 0 E RO1 W RO2 L — — M BC MC LG NO — CR OV TR

Offset + 2 Data length

Offset + 4 Rx data buffer pointer - A[31:16]

Offset + 6 Rx data buffer pointer - A[15:0]

Offset + 8 ME — — — — PE CE UC INT — — — — — — —

Offset + A — — — — — — — — — — ICE PCR — VLAN IPV6 FRA
G

Offset + C Header length — — — Protocol type

Offset + E Payload checksum

Offset + 10 BDU — — — — — — — — — — — — — — —

Offset + 12 — — — — — — — — — — — — — — — —

Offset + 14 1588 timestamp [31:16]

Offset + 16 1588 timestamp [15:0]

Offset + 18 — — — — — — — — — — — — — — — —

Offset + 1A — — — — — — — — — — — — — — — —

Offset + 1C — — — — — — — — — — — — — — — —

Offset + 1E — — — — — — — — — — — — — — — —

Figure 31-42. Enhanced uDMA Receive Buffer Descriptor (RxBD)
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Table 31-91. Receive Buffer Descriptor Field Definitions

Word Field Description

Offset + 0 15
E

Empty. Written by the MAC (=0) and user (=1). 
0 The data buffer associated with this BD is filled with received data, or data reception has aborted 

due to an error condition. The status and length fields have been updated as required.
1 The data buffer associated with this BD is empty, or reception is currently in progress.

Offset + 0 14
RO1

Receive software ownership. This field is reserved for use by software. This read/write bit is not 
modified by hardware, nor does its value affect hardware.

Offset + 0 13
W

Wrap. Written by user.
0 The next buffer descriptor is found in the consecutive location
1 The next buffer descriptor is found at the location defined in ENETn_RDSR

Offset + 0 12
RO2

Receive software ownership. This field is reserved for use by software. This read/write bit is not 
modified by hardware, nor does its value affect hardware.

Offset + 0 11
L

Last in frame. Written by the uDMA.
0 The buffer is not the last in a frame.
1 The buffer is the last in a frame. 

Offset + 0 10–9 Reserved, must be cleared.

Offset + 0 8
M

Miss. Written by the MAC. This bit is set by the MAC for frames accepted in promiscuous mode, but 
flagged as a miss by the internal address recognition. Therefore, while in promiscuous mode, you 
can use the M-bit to quickly determine whether the frame was destined to this station. This bit is 
valid only if the L and PROM bits are set.
0 The frame was received because of an address recognition hit
1 The frame was received because of promiscuous mode

Offset + 0 7
BC

Set if the DA is broadcast (FFFF_FFFF_FFFF).

Offset + 0 6
MC

Set if the DA is multicast and not BC.

Offset + 0 5
LG

Rx frame length violation. Written by the MAC. A frame length greater than RCR[MAX_FL] was 
recognized. This bit is valid only if the L bit is set. The receive data is not altered in any way unless 
the length exceeds TRUNC_FL bytes.

Offset + 0 4
NO

Receive non-octet aligned frame. Written by the MAC. A frame that contained a number of bits not 
divisible by 8 was received, and the CRC check that occurred at the preceding byte boundary 
generated an error or a PHY error occurred. This bit is valid only if the L bit is set. If this bit is set, 
the CR bit is not set.

Offset + 0 3 Reserved, must be cleared.

Offset + 0 2
CR

Receive CRC or frame error. Written by the MAC. This frame contains a PHY or CRC error and is 
an integral number of octets in length. This bit is valid only if the L bit is set.

Offset + 0 1
OV

Overrun. Written by the MAC. A receive FIFO overrun occurred during frame reception. If this bit is 
set, the other status bits, M, LG, NO, CR, and CL lose their normal meaning and are zero. This bit 
is valid only if the L bit is set.

Offset + 0 0
TR

Set if the receive frame is truncated (frame length > TRUNC_FL). If the TR bit is set, the frame must 
be discarded and the other error bits must be ignored as they may be incorrect.

Offset + 2 15–0
Data 

Length

Data length. Written by the MAC. Data length is the number of octets written by the MAC into this 
BD’s data buffer if L is cleared (the value is equal to EMRBR), or the length of the frame including 
CRC if L is set. It is written by the MAC once as the BD is closed.
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0ffset + 4 15–0
A[31:16]

RX data buffer pointer, bits [31:16]1

Offset + 6 15–0
A[15:0]

RX data buffer pointer, bits [15:0] 

Offset + 8 15
ME

MAC error. This bit is written by the uDMA. This bit means that the frame stored in the system 
memory was received with an error. This bit is only valid when the L bit is set.

Offset + 8 14–11 Reserved, must be cleared.

Offset + 8 10
PE

PHY Error. This bit is written by the uDMA. Set to “1” when the frame was received with an Error 
character on the PHY interface. The frame is invalid. This bit is valid only when the L bit is set.

Offset + 8 9
CE

Collision. This bit is written by the uDMA. Set when the frame was received with a collision detected 
during reception. The frame is invalid and sent to the user application. This bit is valid only when 
the L bit is set.

Offset + 8 8
UC

Unicast. This bit is written by the uDMA. This bit means that the frame is unicast. This bit is valid 
regardless of if the L bit is set.

Offset + 8 7
INT

Generate RXB/RXF interrupt. This bit is set by the user. This bit indicates that the uDMA is to 
generate an interrupt on the dma_int_rxb / dma_int_rxf event.

Offset + 8 6–0 Reserved, must be cleared.

Offset + A 15–6 Reserved, must be cleared.

Offset + A 5
ICE

IP header checksum error. This is an accelerator option. This bit is written by the uDMA. Set when 
either a non-IP frame is received or the IP header checksum was invalid. This bit is only valid if the 
L bit is set.

Offset + A 4
PCR

Protocol checksum error. This is an accelerator option. This bit is written by the uDMA. Set when 
the checksum of the protocol is invalid or an unknown protocol is found and checksumming could 
not be performed. This bit is only valid if the L bit is set.

Offset + A 3 Reserved, must be cleared.

Offset + A 2
VLAN

VLAN. This is an accelerator option. This bit is written by the uDMA. This bit means that the frame 
has a VLAN tag. This bit is valid only if the L bit is set.

Offset + A 1
IPV6

IPV6 Frame. This bit is written by the uDMA. This bit indicates that the frame has a IPv6 frame type. 
If this bit is not set it means that an IPv4 or other protocol frame was received. This bit is valid only 
if the L bit is set.

Offset + A 0
FRAG

IPv4 Fragment.This is an accelerator option.This bit is written by the uDMA.This bit indicates that 
the frame is an IPv4 fragment frame. This bit is only valid when the L bit is set.

Offset + C 15–11
Header 
length

Header length. This is an accelerator option. This field is written by the uDMA. This field is the sum 
of 32 bit words found within the IP and its following protocol headers. If an IP datagram with an 
unknown protocol is found the value is the length of the IP header. If no IP frame or an erroneous 
IP header is found, the value is 0. The following values are minimum values if no header options 
exist in the respective headers:
 • ICMP/IP: 6 (5 IP header, 1 ICMP header)
 • UDP/IP: 7 (5 IP header, 2 UDP header)
 • TCP/IP: 10 (5 IP header, 5 TCP header)
This field is only valid if the L bit is set.

Offset + C 10–8 Reserved, must be cleared.

Table 31-91. Receive Buffer Descriptor Field Definitions (continued)

Word Field Description
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Offset + C 7–0
Protocol 

type

Protocol type. This is an accelerator option. The 8-bit protocol field found within the IP header of 
the frame. Only valid if ICE is cleared. This bit is only valid if the L bit is set.

Offset + E 15–0
Payload 

checksum

Internet payload checksum. This is an accelerator option. The one’s complement sum of the 
payload section of the IP frame. The sum is calculated over all data following the IP header until the 
end of the IP payload. This field is valid only when the L bit is set.

Offset + 10 15
BDU

Last buffer descriptor update done. Indicates that the last BD data has been updated by uDMA. This 
bit is written by the user (=0) and uDMA (=1). 

Offset + 10 14–0 Reserved, must be cleared.

Offset + 12 15–0 Reserved, must be cleared.

Offset + 14 15–0
1588 

timestamp

This value is written by the uDMA. It is only valid if the L bit is set.

Offset + 16

Offset + 18
–

Offset + 1E

15–0 Reserved, must be cleared.

1 The receive buffer pointer, containing the address of the associated data buffer, must always be evenly divisible by 16. The 
buffer must reside in memory external to the MAC. The Ethernet controller never modifies this value.

Table 31-91. Receive Buffer Descriptor Field Definitions (continued)

Word Field Description
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31.4.14.2 Enhanced Transmit Buffer Descriptor

This section discusses the enhanced uDMA transmit buffer descriptor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset + 0 R TO1 W TO2 L TC — — — — — — — — — —

Offset + 2 Data Length

Offset + 4 Tx Data Buffer Pointer - A[31:16]

Offset + 6 Tx Data Buffer Pointer - A[15:0]

Offset + 8 — INT TS PINS IINS — — — — — — — — — — —

Offset + A TXE — UE EE FE LCE OE TSE — — — — — — — —

Offset + C — — — — — — — — — — — — — — — —

Offset + E — — — — — — — — — — — — — — — —

Offset + 10 BDU — — — — — — — — — — — — — — —

Offset + 12 — — — — — — — — — — — — — — — —

Offset + 14 1588 timestamp [31:16]

Offset + 16 1588 timestamp [15:0]

Offset + 18 — — — — — — — — — — — — — — — —

Offset + 1A — — — — — — — — — — — — — — — —

Offset + 1C — — — — — — — — — — — — — — — —

Offset + 1E — — — — — — — — — — — — — — — —

Figure 31-43. Enhanced Transmit Buffer Descriptor (TxBD)

Table 31-92. Enhanced Transmit Buffer Descriptor Field Definitions

Word Field Description

Offset + 0 15
R

Ready. Written by the MAC and you.
0 The data buffer associated with this BD is not ready for transmission. You are free to manipulate 

this BD or its associated data buffer. The MAC clears this bit after the buffer has been transmitted 
or after an error condition is encountered.

1 The data buffer, prepared for transmission by you, has not been transmitted or currently transmits. 
You may write no fields of this BD after this bit is set.

Offset + 0 14
TO1

Transmit software ownership. This field is reserved for software use. This read/write bit is not 
modified by hardware nor does its value affect hardware.

Offset + 0 13
W

Wrap. Written by user.
0 The next buffer descriptor is found in the consecutive location
1 The next buffer descriptor is found at the location defined in ETDSR.

Offset + 0 12
TO2

Transmit software ownership. This field is reserved for use by software. This read/write bit is not 
modified by hardware nor does its value affect hardware.
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Offset + 0 11
L

Last in frame. Written by user.
0 The buffer is not the last in the transmit frame
1 The buffer is the last in the transmit frame

Offset + 0 10
TC

Transmit CRC. Written by user (only valid if L is set).
0 End transmission immediately after the last data byte
1 Transmit the CRC sequence after the last data byte
This bit is valid only when the L bit is set.

Offset + 0 9
ABC

Append bad CRC.
Note: This bit is not supported by the uDMA and is ignored.

Offset + 0 8–0 Reserved, must be cleared.

Offset + 2 15–0
Data 

Length

Data length, written by user.
Data length is the number of octets the MAC should transmit from this BD’s data buffer. It is never 
modified by the MAC. Bits [15:5] are used by the DMA engine; bits[4:0] are ignored.

Offset + 4 15–0
A[31:16]

Tx data buffer pointer, bits [31:16]. The transmit buffer pointer, containing the address of the 
associated data buffer, must always be evenly divisible by 8. The buffer must reside in memory 
external to the MAC. This value is never modified by the Ethernet controller.

Offset + 6 15–0
A[15:0]

Tx data buffer pointer, bits [15:0]

Offset + 8 15 Reserved, must be cleared.

Offset + 8 14
INT

Generate interrupt. This bit is written by the user. This bit is valid regardless of the L bit and must be 
the same for all EBD for a given frame. The uDMA does not update this value.

Offset + 8 13
TS

Timestamp. This bit is written by the user. This indicates that the uDMA is to generate a timestamp 
frame to the MAC. This bit is valid regardless of the L bit and must be the same for all EBD for the 
given frame. The uDMA does not update this value.

Offset + 8 12
PINS

Insert protocol specific checksum. This bit is written by the user. If set, the MAC’s IP accelerator 
calculates the protocol checksum and overwrites the corresponding checksum field with the 
calculated value. The checksum field must be cleared by the application generating the frame. The 
uDMA does not update this value. This bit is valid regardless of the L bit and must be the same for 
all EBD for a given frame.

Offset + 8 11
IINS

Insert IP header checksum. This bit is written by the user. If set, the MAC’s IP accelerator calculates 
the IP header checksum and overwrites the corresponding header field with the calculated value. The 
checksum field must be cleared by the application generating the frame. The uDMA does not update 
this value. This bit is valid regardless of the L bit and must be the same for all EBD for a given frame.

Offset + 8 10–0 Reserved, must be cleared.

Offset + A 15
TXE

Transmit error occurred. This bit is written by the uDMA. This bit indicates that there was a transmit 
error of some sort reported with the frame. Effectively this bit is an OR of the other error bits including 
UE, EE, FE, LCE, OE, and TSE. This bit is only valid when the L bit is set.

Offset + A 14 Reserved, must be cleared.

Offset + A 13
UE

Underflow error. This bit is written by the uDMA. This bit indicates that the MAC reported an underflow 
error on transmit. This bit is only valid when the L bit is set.

Offset + A 12
EE

Excess Collision error. This bit is written by the uDMA. This bit indicates that the MAC reported an 
excess collision error on transmit. This bit is only valid when the L bit is set.

Table 31-92. Enhanced Transmit Buffer Descriptor Field Definitions (continued)

Word Field Description
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31.4.15 Client FIFO Application Interface

The FIFO interface is completely asynchronous from the Ethernet line, and the transmit and receive 
interface can operate at a different clock rate.

All transfers to/from the user application are handled independent of the core operation, and the core 
provides a simple interface to user applications based on a two-signal handshake.

31.4.15.1 Data Structure Description

The data structure defined in the following tables for the FIFO interface must be respected to ensure proper 
data transmission on the Ethernet line. Byte 0 is sent to and received from the line first.

Offset + A 11
FE

Frame with error. This bit is written by the uDMA. This bit indicates that the MAC reported that the 
uDMA reported an error when providing the packet. This bit is only valid when the L bit is set.

Offset + A 10
LCE

Late collision error. This bit is written by the uDMA. This bit indicates that the MAC reported that there 
was a Late Collision on transmit. This bit is only valid when the L bit is set.

Offset + A 9
OE

Overflow error. This bit is written by the uDMA. This bit indicates that the MAC reported that there 
was a FIFO overflow condition on transmit. This bit is only valid when the L bit is set.

Offset + A 8
TSE

Timestamp error. This bit is written by the uDMA. This bit indicates that the MAC reported a different 
frame type then a timestamp frame. This bit is only valid when the L bit is set.

Offset + A 7–0 Reserved, must be cleared.

Offset + C 15–0 Reserved, must be cleared.

Offset + E 15–0 Reserved, must be cleared.

Offset + 10 15
BDU

Last buffer descriptor update done. Indicates that the last BD data has been updated by uDMA. This 
bit is written by the user (=0) and uDMA (=1). 

Offset + 10 14–0 Reserved, must be cleared.

Offset + 12 15–0 Reserved, must be cleared.

Offset + 14 15–0
1588 

timestamp

This value is written by the uDMA. It is only valid if the L bit is set.

Offset + 16

Offset + 18
–

Offset + 1E

15–0 Reserved, must be cleared.

Table 31-93. FIFO Interface Data Structure

63              56 55              48 47              40 39              32 31              24 23              16 15                8 7                  0

Word 0 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Word 1 Byte 15 Byte 14 Byte 13 Byte 12 Byte 11 Byte 10 Byte 9 Byte 8

... ...

Table 31-92. Enhanced Transmit Buffer Descriptor Field Definitions (continued)

Word Field Description
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The size of a frame on the FIFO interface may not be a modulo of 64-bit.The user application may not care 
about the Ethernet frame formats in full detail. It needs to provide and receive an Ethernet frame with the 
following structure:

• Ethernet MAC destination address

• Ethernet MAC source address

• Optional 802.1q VLAN Tag (VLAN type and info field)

• Ethernet length/type field

• Payload

Frames on the FIFO interface do not contain preamble and SFD fields, which are inserted and discarded 
by the MAC on transmit and receive, respectively.

• On receive, CRC and frame padding can be stripped or passed through transparently.

• On transmit, padding and CRC can be provided by the user application, or appended automatically 
by the MAC independent for each frame. No size restrictions apply.

NOTE
On transmit, if ENETn_TCR[ADDINS] is set, bytes 6–11 of each frame can 
be set to any value, since the MAC overwrites the bytes with the MAC 
address programmed in the ENETn_PAUR and ENETn_PALR registers.

VLAN-tagged frames are also supported on both transmit and receive and implement additional 
information (VLAN type and info).

Table 31-94. FIFO Interface Frame Format

Byte Number Field

0–5 Destination MAC address

6–11 Source MAC address

12–13 Length/type field

14–N Payload data

Table 31-95. FIFO Interface VLAN Frame Format

Byte Number Field

0–5 Destination MAC address

6–11 Source MAC address

12–15 VLAN tag and info

16–17 Length/type field

18–N Payload data
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NOTE
The standard defines that the LSB of the MAC address is sent/received first, 
while for all the other header fields (i.e. length/type, VLAN tag, VLAN info 
and pause quanta), the MSB is sent/received first.

31.4.15.2 Data Structure Examples

Figure 31-44. Normal Ethernet Frame 64-bit Mapping Example

Figure 31-45. Figure 24: VLAN tagged Frame 64-bit Mapping Example

If CRC forwarding is enabled (CRCFWD = 0), the last four valid octets of the frame contain the FCS field. 
The non-significant bytes of the last word can have any value.

31.4.15.3 Frame Status

A MAC layer status word and an accelerator status word is available in the receive buffer descriptor. See 
Section 31.4.14, “Enhanced Buffer Descriptors” for details. The status is available with each frame with 
the last data of the frame.

If the frame status contains a MAC layer error (e.g., CRC or length error), RxBD[ME] is also set with the 
last data of the frame.

63 55 47 39 31 23 15 7

Word 0 Source address Destination address

1 Payload Length
(low)

Length
(high)

Source address (cont.)

2 Payload (cont.)

3 Payload (cont.)

... ...

N Unused (0x00) Payload
(last)

Payload
(last-1)

Payload
(last-2)

Bits 0–7
transmitted
first

63 55 47 39 31 23 15 7

Word 0 Source address Destination address

1 VLAN info 
(low)

VLAN info
(high)

VLAN tag
(0x00)

VLAN tag
(0x81)

Source address (cont.)

2 Payload Length
(low)

Length
(high)

3 Payload (cont.)

... ...

N Unused (0x00) Payload
(last)

Payload
(last-1)

Payload
(last-2)

Bits 0–7
transmitted
first
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31.4.16 FIFO Protection

The following sections describe the FIFO protection mechanisms.

31.4.16.1 Transmit FIFO Underflow

During a frame transfer, when the transmit FIFO reaches the almost empty threshold with no end-of-frame 
indication stored in the FIFO, the MAC logic:

• Stops reading data from the FIFO

• Asserts the MII error signal (MII_TXER) (1) to indicate that the fragment already transferred is 
not valid

• Deasserts the MII transmit enable signal (MII_TXEN) to terminate the frame transfer (2)

After an underflow, when the application completes the frame transfer (3), the MAC transmit logic 
discards any new data available in the FIFO until the end of packet is reached (4) and sets TxBD[UE].

The MAC starts to transfer data on the MII interface when the application sends a new frame with a start 
of frame indication (5).

Figure 31-46. Transmit FIFO Underflow Protection

31.4.16.2 Transmit FIFO Overflow

On the transmit path, when the FIFO reaches the programmable almost full threshold, the MAC ready 
signal is deasserted. The application should stop sending new data. However, if the application keeps 
sending data, the transmit FIFO overflows, corrupting previously-stored contents. The core logic sets 
TxBD[OE] for the next frame transmitted to indicate this overflow occurrence.

Transmit FIFO

ff_tx_clk

ff_tx_rdy

ff_tx_septy

ff_tx_wren

ff_tx_sop

ff_tx_eop

ff_tx_data

ff_tx_err

MII Transmit

tx_clk

mii_tx_en

mii_tx_data 55 55

mii_tx_err

1 2

3

5

4

MII_TXCLK

MII_TXD[3:0]

MII_TXEN

MII_TXER

TX CLK

Write enable

TX ready

Start of packet

End of packet

TX data

TX error

Section empty



10/100Mbps Ethernet MAC-NET Core

31-82 NXP Semiconductors

NOTE
Overflow is a fatal error and must be addressed by resetting the core or 
clearing ENETn_ECR[ETHER_EN] to clear the FIFOs and prepare for 
normal operation again.

31.4.16.3 Receive FIFO Overflow

During a frame reception, if the client application is not able to receive data (1), the MAC receive control 
truncates the incoming frame, when the FIFO reaches the programmable almost full threshold to avoid an 
overflow. The frame is subsequently received on the FIFO interface with an error indication (RxBD[ME] 
set together with receive end-of-packet) (2) with the truncation error status bit set (3).

Figure 31-47. Receive FIFO Overflow Protection

31.4.17 PHY Management Interface

The MDIO interface is a two-wire management interface. The MDIO management interface implements 
a standardized method to access the PHY device management registers. The core implements a master 
MDIO interface, which can be connected to up to 32 PHY devices.

31.4.17.1 MDIO Frame Format

The core MDIO master controller communicates with the slave (PHY device) using frames that are 
defined in the following table. A complete frame has a length of 64 bits (optional 32-bit preamble, 14-bit 
command, 2-bit bus direction change, 16-bit data). Each bit is transferred on the rising edge of the MDIO 
clock (MDC signal). The core PHY management interface supports the standard MDIO specification 
(IEEE803.2 Clause 22).
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31.4.17.2 MDIO Clock Generation

The MDC clock is generated from the internal bus clock divided by the value programmed in 
ENETn_MSCR[MII_SPEED].

31.4.17.3 MDIO Operation

To perform a MDIO access, set the MDIO command register (ENETn_MMFR) according to the 
description provided in Section 31.3.6, “MII Management Frame Register (ENETn_MMFR)”. To check 
when the programmed access completes, read the ENETn_EIR[MII] bit.

Table 31-96. MDIO Frame Formats (Read/Write)

Type
Command

TA
Data

Idle
PRE ST OP Addr1 Addr2 MSB LSB

Read 1…1 01 10 xxxxx xxxxx Z0 xxxxxxxxxxxxxxxx Z

Write 1…1 01 01 xxxxx xxxxx 10 xxxxxxxxxxxxxxxx Z

Table 31-97. MDIO Frame Field Descriptions

Field Description

PRE Preamble. 32 bits of logical ones sent prior to every transaction when ENETn_MSCR[DIS_PRE] is 
cleared. If DIS_PRE is set, the preamble is not generated.

ST Start indication, programmed with ENETn_MMFR[ST]
 • Standard MDIO (Clause 22): 01

OP Opcode defines if a read or write operation is performed, programmed with ENETn_MMFR[OP].
01 Write operation
10 Read operation

Addr1 The PHY device address, programmed with ENETn_MMFR[PA]. Up to 32 devices can be addressed.

Addr2 Register address, programmed with ENETn_MMFR[RA]. Each PHY can implement up to 32 registers.

TA Turnaround time, programmed with ENETn_MMFR[TA]. Two bit-times are reserved for read operations 
to switch the data bus from write to read for read operations. The PHY device presents its register 
contents in the data phase and drives the bus from the second bit of the turnaround phase.

Data 16 bits of data, set to ENETn_MMFR[DATA], written to or read from the PHY

Idle Between frames the MDIO data signal is tri-stated.
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Figure 31-48. MDIO Access Overview

31.4.18 MII Interface

31.4.18.1 MII Interface — Transmit

On transmit, all data transfers are synchronous to MII_TXCLK rising edge. The MII data enable signal 
MII_TXEN is asserted to indicate the start of a new frame and remains asserted until the last byte of the 
frame is present on the MII_TXD[3:0] bus. Between frames, MII_TXEN remains deasserted.

Figure 31-49. MII Transmit Operation

If a frame is received on the FIFO interface with an error (e.g., RxBD[ME] set) the frame is subsequently 
transmitted with the MII_TXER error signal for one clock cycle at any time during the packet transfer.
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Figure 31-50. MII Transmit Operation — Errored Frame

31.4.18.1.1 Transmit with Collision — Half Duplex

When a collision is detected during a frame transmission (MII_COL asserted), the MAC stops the current 
transmission, sends a 32-bit jam pattern, and re-transmits the current frame (see Section 31.4.4.1, 
“Collision Detection in Half Duplex Mode” for details).

Figure 31-51. MII Transmit Operation — Transmission with Collision

31.4.18.2 MII Interface — Receive

On receive all signals are sampled on the MII_RXCLK rising edge. The MII data enable signal, 
MII_RXDV, is asserted by the PHY to indicate the start of a new frame and remains asserted until the last 
byte of the frame is present on MII_RXD[3:0] bus. Between frames, MII_RXDV remains de-asserted.
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Figure 31-52. MII Receive Operation

If the PHY detects an error on the frame received from the line, the PHY asserts the MII error signal, 
MII_RXER, for at least one clock cycle at any time during the packet transfer.

Figure 31-53. MII Receive Operation — Errored Frame

A frame received on the MII interface with a PHY error indication is subsequently transferred on the FIFO 
interface with RxBD[ME] set.
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Chapter 32  
Ethernet Switch

32.1 Introduction
The switch core is seamlessly connected to the MAC-NET core and DMA controllers. For control and 
configuration, the switch implements a register interface and multiple maskable interrupts.

The switch port assignment is listed in Table 32-1.

Table 32-1. Port Assignment

Switch Port Assignment

0 DMA 0

1 MAC-NET 0

2 MAC-NET 1

3
(bypass port)

DMA 1

Switch

MAC-NET1MAC-NET0

uDMA1uDMA0

Interrupts

1

0 3

2Crossbar switch 
bus
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32.1.1 Block Diagram

Figure 32-1. Block Diagram

NOTE
• The left side is termed “Transmit Interfaces” as the interfaces are driven by the DMA transmit 

interfaces in pass-through mode. If the switch is enabled, these interfaces connect to the switch 
internal receive interfaces. The right side is named “Receive Interfaces” as the interfaces represent 
(are driven from) the respective MAC receive interfaces in pass-through mode connected to the 
DMA RX. If the switch is enabled these are driven by the switch internal transmit interfaces. See 
Section 32.1, “Introduction” for a description of the operational modes.

• All descriptions related to switch functions refer to the switch internal receive/transmit interfaces.

• Receive Frame buffer (DMA0 TX interface). Can hold at least one complete frame transferred 
from DMA0 to the switch. This is a local 64-bit wide FIFO to absorb a burst from the DMA, 
provide the necessary transaction handshake to the DMA, and forward the frame then to the switch 
logic.
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• Decoupling buffer only (DMA0 RX interface) to absorb switch latency (e.g. 16/32 words) resulting 
from a rdy deassertion from DMA0.

• The APB host interface module implements an indirect addressing scheme to the internal registers 
to allow arbitrary length access cycles (e.g. address table read/write and configuration register 
read/write). However the DMA control registers are directly mapped and accessed through APB.

32.1.2 Features
• Integrated Ethernet switch engine compatible with 10/100 MAC-NET core

• Three port switch with a fourth DMA bypass port

• Can be configured to operate as a 3-port switch (switch mode) or as two independent ports 
(passthrough mode)

• Filters and forward traffic at wire-speed on all ports

• Per-queue tail-drop congestion management

• Implements hardware switching look-up mechanism providing a learning capacity of up to 2K 
MAC addresses

• Supports configurable VLAN switching when MAC address lookup should be omitted

• Classification and priority assignment based on port number, MAC address, IPv4 DiffServ code 
point field, IPv6 Class of Service and VLAN Priority (IEEE802.1q)

• Efficient output queue frame buffering with shared Frame buffer of 24 Kbyte

• Each port implements four priority queues with configurable weighted round-robin selection

• Support Ethernet multicast and broadcast with flooding control to avoid unnecessary duplication 
of frames

• Programmable multicast destination port mask to restrict frame duplication for individual multicast 
addresses

• Multicast and broadcast resolution with VLAN domain filtering providing a strict separation of up 
to 32 VLANs

• IP snooping with programmable protocol and port number registers

• Programmable ingress and egress VLAN tag addition, removal and manipulation supporting single 
and double-tagged VLAN frames

• Event and status signals which can monitor port activity, severe error conditions, or any 
user-specific event

• Programmable firmware operation with static or dynamic (learning, aging) switching tables

• Switch firmware source available to provide customer-specific software development capability

• Support for IEEE 1588 precise time-stamping applications

• Supports aggregation and redundant backplane applications

32.2 Modes of Operation
The switch, controlled with the configuration pin sx_ena, can be programmed to operate is two modes:

• Passthrough mode — The switch logic is disabled and bypassed
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• Switch mode — The switch logic is enabled

32.2.1 Passthrough Mode

When the sx_ena configuration signal is negated, the switch logic is bypassed and can be totally powered 
down and disabled with, for example, the switch clocks clk and pclk stopped and the switch reset signals 
reset_clk and reset_pclk asserted.

The switch APB interface and interrupt signals are disabled and should not be used. To control the frame 
transfer from DMA0 and DMA1, the MAC-NET 0 and the MAC-NET 1 APB interfaces and interrupt 
signals should be used.

Figure 32-2. Passthrough Mode Configuration Overview

32.2.2 Switch Mode

When the switch is programmed to operate in switch mode (sx_ena set to 1), the bypass mode (port 1) 
interface is disabled and should not be used.

Frame transfers to and from the line are performed on port 0 only (DMA 0). The transmit status signals 
are generated from the switch port 0 receive buffer and the DMA control signals from the switch register 
space. The MAC-NET 0 and MAC-NET 1 transmit status and DMA control signals are not used.

The MAC-NET 0 and MAC-NET 1 APB interfaces and interrupts are enabled and can monitor the line 
activity and gather the line statistic information.
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Figure 32-3. Switch Mode Configuration Overview

32.2.2.1 Port 0 Input Buffer

A dedicated input buffer of at least 2 KB storage is implemented at the port 0 (DMA 0) input interface, 
when the switch is operating in switch mode. In bypass mode, this buffer is bypassed.

The input buffer is normally operated in store-and-forward mode, absorbing a DMA burst and forwarding 
the frame to the switch (internally) when the complete frame is stored in the input buffer.

32.2.2.2 Port 0 Input Backpressure/Congestion Indication

When frames are transferred from DMA0 to the switch’s port 0 transmit interface, the input buffer 
indicates when data is to be written to the port 0 input. When the buffer reaches an almost full threshold, 
it indicates a stop request to DMA0. DMA0 may write a few more words (typically up to four), and then 
stops writing.

In addition, a special backpressure mechanism for port 0 is included to pause DMA0 transfers when the 
output queues' shared memory (see Section 32.4.10, “Output Frame Queuing”) becomes full to a 
programmable threshold. Respecting the output queues' shared memory fill level can avoid the switch (due 
to memory congestion) discarding frames written by the DMA0. The threshold is configured through 
ESW_P0BCT.

If the shared memory has less than ESW_P0BCT number of free cells available, the switch stops serving 
port 0. That is, the switch does not start to read a frame from the port 0 input buffer. The port 0 input buffer 
continues to accept data from DMA0 until it becomes full.

Switch

MAC-NET1MAC-NET0

uDMA0

Ethernet
port 1

Ethernet
port 0

and interrupts

Crossbar
switch bus

sx_ena = 1
Register

map
Rx

buffer



Ethernet Switch

32-6 NXP Semiconductors

NOTE
The backpressure only considers the total amount of memory available, not 
a specific queue. Hence, it may still happen that an outgoing frame from 
DMA0 is discarded by the switch, if the output queue for the frame is 
congested while the total amount of memory has free space available.

The backpressure threshold (ESW_P0BCT) should be set higher than the memory full threshold 
(ESW_LMT) to stop the DMA0 before a memory full situation.

32.3 Memory Map/Register Definition
Table 32-2. Switch Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

Ethernet Switch Configuration and Control

0xFC0D_C000 Revision (ESW_REV) 32 R See section 32.3.1/32-9

0xFC0D_C004 Scratch register (ESW_SCR) 32 R/W 0x0000_0000 32.3.2/32-9

0xFC0D_C008 Port enable register (ESW_PER) 32 R/W 0x0000_0000 32.3.3/32-9

0xFC0D_C010 VLAN verify (ESW_VLANV) 32 R/W 0x0000_0000 32.3.4/32-10

0xFC0D_C014 Default broadcast resolution (ESW_DBCR) 32 R/W 0x0000_0000 32.3.5/32-10

0xFC0D_C018 Default multicast resolution (ESW_DMCR) 32 R/W 0x0000_0000 32.3.6/32-11

0xFC0D_C01C Blocking and learning enable (ESW_BKLR) 32 R/W 0x0000_0000 32.3.7/32-11

0xFC0D_C020 Bridge management port configuration (ESW_BMPC) 32 R/W 0x0000_0000 32.3.8/32-12

0xFC0D_C024 Mode configuration (ESW_MODE) 32 R/W 0x0000_0000 32.3.9/32-13

0xFC0D_C028 VLAN input manipulation select (ESW_VIMSEL) 32 R/W 0x0000_0000 32.3.10/32-14

0xFC0D_C02C VLAN output manipulation select (ESW_VOMSEL) 32 R/W 0x0000_0000 32.3.11/32-14

0xFC0D_C030 VLAN input manipulation enable (ESW_VIMEN) 32 R/W 0x0000_0000 32.3.12/32-15

0xFC0D_C034 VLAN tag ID (ESW_VID) 32 R/W 0x0000_8100 32.3.13/32-15

Mirroring Control

0xFC0D_C040 Mirror control register (ESW_MCR) 32 R/W 0x0000_0000 32.3.14/32-16

0xFC0D_C044 Egress port definitions (ESW_EGMAP) 32 R/W 0x0000_0000 32.3.15/32-17

0xFC0D_C048 Ingress port definitions (ESW_INGMAP) 32 R/W 0x0000_0000 32.3.16/32-17

0xFC0D_C04C Ingress source MAC address low (ESW_INGSAL) 32 R/W 0x0000_0000 32.3.17/32-18

0xFC0D_C050 Ingress source MAC address high (ESW_INGSAH) 32 R/W 0x0000_0000 32.3.17/32-18

0xFC0D_C054 Ingress destination MAC address low (ESW_INGDAL) 32 R/W 0x0000_0000 32.3.17/32-18

0xFC0D_C058 Ingress destination MAC address high (ESW_INGDAH) 32 R/W 0x0000_0000 32.3.17/32-18

0xFC0D_C05C Egress source MAC address low (ESW_EGSAL) 32 R/W 0x0000_0000 32.3.17/32-18
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0xFC0D_C060 Egress source MAC address high (ESW_EGSAH) 32 R/W 0x0000_0000 32.3.17/32-18

0xFC0D_C064 Egress destination MAC address low (ESW_EGDAL) 32 R/W 0x0000_0000 32.3.17/32-18

0xFC0D_C068 Egress destination MAC address high (ESW_EGDAH) 32 R/W 0x0000_0000 32.3.17/32-18

0xFC0D_C06C Mirror count value (ESW_MCVAL) 32 R/W 0x0000_0000 32.3.18/32-18

Output Queue Memory Manager Status and Configuration

0xFC0D_C080 Memory manager status (ESW_MMSR) 32 R/W 0x0060_00zA
(z=0 or 4)

32.3.19/32-19

0xFC0D_C084 Low memory threshold (ESW_LMT) 32 R/W 0x0000_0009 32.3.20/32-20

0xFC0D_C088 Lowest number of free cells (ESW_LFC) 32 R/W 0x0000_0000 32.3.21/32-21

0xFC0D_C08C Port congestion status (ESW_PCSR) 32 R Undefined 32.3.22/32-21

0xFC0D_C090 Switch input and output interface status (ESW_IOSR) 32 R Undefined 32.3.23/32-21

0xFC0D_C094 Queue weights (ESW_QWT) 32 R/W 0x0000_0000 32.3.24/32-22

0xFC0D_C09C Por 0 Backpressure Congestion Threshold 
(ESW_P0BCT)

32 R/W 0x0000_0009 32.3.25/32-23

Forced Forwarding for Port 0

0xFC0D_C0BC Port 0 forced forwarding enable (ESW_FFEN) 32 R/W 0x0000_0000 32.3.26/32-23

TCP/UDP Port Snooping

0xFC0D_C0C0
–

0xFC0D_C0DC

Port snooping registers (ESW_PSNP1–8) 32 R/W 0x0000_0000 32.3.27/32-24

IP Snooping

0xFC0D_C0E0
–

0xFC0D_C0FC

IP snooping registers (ESW_IPSNP1–8) 32 R/W 0x0000_0000 32.3.28/32-25

Port Configurations

0xFC0D_C100
–

0xFC0D_C108

Port 0–2 VLAN priority resolution map (ESW_PnVRES) 32 R/W 0x0000_0000 32.3.29/32-25

0xFC0D_C140 IPv4/v6 priority resolution table (ESW_IPRES) 32 R/W 0x0000_0000 32.3.30/32-26

0xFC0D_C180
–

0xFC0D_C188

Port n priority resolution configuration (ESW_PnRES) 32 R/W 0x0000_0000 32.3.31/32-27

0xFC0D_C200
–

0xFC0D_C208

Port n VLAN ID (ESW_PnID) 32 R/W 0x0000_0000 32.3.32/32-28

Table 32-2. Switch Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page
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0xFC0D_C280
–

0xFC0D_C2FC

VLAN domain resolution entry 0–31 (ESW_VRES0–31) 32 R/W 0x0000_0000 32.3.33/32-28

Statistics

0xFC0D_C300 Number of discarded frames (ESW_DISCN) 32 R 0x0000_0000 32.3.34/32-29

0xFC0D_C304 Bytes of discarded frames (ESW_DISCB) 32 R 0x0000_0000 32.3.34/32-29

0xFC0D_C308 Number of non-discarded frames (ESW_NDISCN) 32 R 0x0000_0000 32.3.34/32-29

0xFC0D_C30C Bytes of non-discarded frames (ESW_NDISCB) 32 R 0x0000_0000 32.3.34/32-29

Port Statistics

0xFC0D_C310
+ n  0x10

Port n output queue congestion (ESW_PnOQC) 32 R 0x0000_0000 32.3.35/32-29

0xFC0D_C314
+ n  0x10

Port n mismatching VLAN ID (ESW_PnMVID) 32 R 0x0000_0000 32.3.35/32-29

0xFC0D_C318
+ n  0x10

Port n missing VLAN tag (ESW_PnMVTAG) 32 R 0x0000_0000 32.3.35/32-29

0xFC0D_C31C
+ n  0x10

Port n blocked (ESW_PnBL) 32 R 0x0000_0000 32.3.35/32-29

Interrupts and DMA Control

0xFC0D_C400 Interrupt status register (ESW_ISR) 32 R/W 0x0000_0000 32.3.36/32-29

0xFC0D_C404 Interrupt mask register (ESW_IMR) 32 R/W 0x0000_0000 32.3.37/32-31

0xFC0D_C408 Receive descriptor ring pointer (ESW_RDSR) 32 R/W 0x0000_0000 32.3.38/32-31

0xFC0D_C40C Transmit descriptor ring pointer (ESW_TDSR) 32 R/W 0x0000_0000 32.3.39/32-32

0xFC0D_C410 Maximum receive buffer size (ESW_MRBR) 32 R/W 0x0000_0000 32.3.40/32-32

0xFC0D_C414 Receive descriptor active (ESW_RDAR) 32 R/W 0x0000_0000 32.3.41/32-33

0xFC0D_C418 Transmit descriptor active (ESW_TDAR) 32 R/W 0x0000_0000 32.3.42/32-33

Learning Interface

0xFC0D_C500 Learning records A0 & B1 (ESW_LREC0) 32 R 0x0000_0000 32.3.43/32-34

0xFC0D_C504 Learning record B1 (ESW_LREC1) 32 R 0x0000_0000 32.3.43/32-34

0xFC0D_C508 Learning data available status (ESW_LSR) 32 R 0x0000_0000 32.3.44/32-35

MAC Address Lookup Memory

0xFC0E_0000
–

0xFC0E_3FFC

MAC address lookup table 32 RW Undefined 32.3.45/32-35

Table 32-2. Switch Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page
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32.3.1 Revision Register (ESW_REV)

32.3.2 Scratch Register (ESW_SCR)

The scratch register provides a memory location to test register access. It returns all data written to it in 
inverted form.

32.3.3 Port Enable Register (ESW_PER)

The port enable register independently enables the transmit and receive direction for each port.

Address: 0xFC0D_C000 (ESW_REV) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Customer Revision Core Revision

W

Reset Device dependent

Figure 32-4. Revision Register (ESW_REV)

Address: 0xFC0D_C004 (ESW_SCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SCRATCH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-5. Scratch Register (ESW_SCR)

Address: 0xFC0D_C008 (ESW_PER) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 RE
2

RE
1

RE
0

0 0 0 0 0 0 0 0 0 0 0 0 0 TE
2

TE
1

TE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-6. Port Enable Register (ESW_PER)

Table 32-3. ESW_PER Field Descriptions

Field Description

31–19 Reserved, must be cleared.

18, 17, 16
REn

Enable receive on port n.
0 Disable. The input is ignored and never selected for frame reception.
1 Enable. The port is selected and a frame is accepted if it indicates data available. 

15–3 Reserved, must be cleared.

2, 1, 0
TEn

Enable transmit on port n.
0 Disable. All frames forwarded to the port are discarded.
1 Enable. A frame can be forwarded to the port.
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32.3.4 VLAN Verify (ESW_VLANV)

32.3.5 Default Broadcast Resolution (ESW_DBCR)

The default output port list for broadcast/flooding resolution (see Section 32.4.9.2, 
“Broadcast/Multicast/VLAN Domain Resolution”).

Address: 0xFC0D_C010 (ESW_VLANV) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 DU
2

DU
1

DU
0

0 0 0 0 0 0 0 0 0 0 0 0 0 VV
2

VV
1

VV
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-7. VLAN Verify Register (ESW_VLANV)

Table 32-4. ESW_VLANV Field Descriptions

Field Description

31–19 Reserved, must be cleared.

18, 17, 16
DUn

Discard unknown.
0 Received frames with unknown VLAN IDs are not discarded
1 Received frames with an unknown VLAN ID or no VLAN tag are discarded and not forwarded (i.e. the 

default bcast is ignored)

15–3 Reserved, must be cleared.

2, 1, 0
VVn

Verify VLAN domain.
0 Frames are routed to the output port without VLAN domain checking
1 A frame is accepted from the port as valid only when the input and output ports are members of the 

VLAN domain of the frame.

Address: 0xFC0D_C014 (ESW_DBCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2 P1 P0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-8. Default Broadcast Resolution Register (ESW_DBCR)

Table 32-5. ESW_DBCR Field Descriptions

Field Description

31–3 Reserved, must be cleared.

2, 1, 0
Pn

Default broadcast resolution
0 A frame with the corresponding VLAN ID is not switched to that port
1 Indicates that each port is a member of the VLAN and frames with the corresponding VLAN ID can be 

switched to the port
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32.3.6 Default Multicast Resolution (ESW_DMCR)

ESW_DMCR is used for broadcast/flooding resolution (see Section 32.4.9.2, 
“Broadcast/Multicast/VLAN Domain Resolution”).

32.3.7 Blocking and Learning Enable (ESW_BKLR)

ESW_BKLR independently defines the blocking and learning states for each port.

Address: 0xFC0D_C018 (ESW_DMCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2 P1 P0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-9. Default Multicast Resolution Register (ESW_DMCR)

Table 32-6. ESW_DMCR Field Descriptions

Field Description

31–3 Reserved, must be cleared.

2, 1, 0
Pn

Default multicast resolution. When the received frame carries a multicast address, the default output port 
list used instead of ESW_DBCR.

Address: 0xFC0D_C01C (ESW_BKLR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 LD
2

LD
1

LD
0

0 0 0 0 0 0 0 0 0 0 0 0 0 BE
2

BE
1

BE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-10. Default Blocking and Learning Enable Register (ESW_BKLR)

Table 32-7. ESW_BKLR Field Descriptions

Field Description

31–19 Reserved, must be cleared.

18, 17, 16
LDn

Disable learning.
0 Enable. 
1 Disable. Only bridge protocol data unit frames are learned. Other frames are ignored for learning.

15–3 Reserved, must be cleared.

2, 1, 0
BEn

Enable blocking.
0 Disable. 
1 Enable. Only bridge protocol data units are accepted on that input, all other frames are discarded.
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32.3.8 Bridge Management Port Configuration (ESW_BMPC)

ESW_BMPC enables and defines the management port that receives bridge protocol frames.

Address: 0xFC0D_C020 (ESW_BMPC) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0
PORTMASK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PRIORITY

0 0 0 0 0
DIS EN

MSG
TX

0
PORT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-11. Bridge Management Port Configuration Register (ESW_BMPC)

Table 32-8. ESW_BMPC Field Descriptions

Field Description

31–19 Reserved, must be cleared.

18–16
PORTMASK

Portmask for transmission of BPDU frames as defined in Section 32.4.9.5.4, “Management Frame 
Forwarding”. When the management port transmits a BPDU frame to the switch, it is forwarded to all ports 
in this portmask (bit16=port0, bit17=port1, bit 18=port2).

15–13
PRIORITY

Priority to use for transmitted management frames. Used to e.g. put a management frame in a 
high-priority output queue for fast delivery.

12–8 Reserved, must be cleared.

7
DIS

If set, BPDU frames are discarded always. Setting has no effect, when the enable bit is set.

6
EN

If set, all BPDU frames are forwarded exclusively to the management port specified in bits 3:0. If cleared, 
BPDU frames are forwarded as any other frame, or discarded if the discard bit is set.

5
MSGTX

Set (latched) when a BPDU frame as defined in Section 32.4.9.5.4, “Management Frame Forwarding” 
was transmitted from the management port to any output port. Bit is reset by writing into the register.

4 Reserved, must be cleared.

3–0
PORT

The Port number of the port that should act as a management port. Relevant to all functions that forward 
frames to the management port (i.e. BPDU processing, snooping). Note: It must be set 0 in this switch 
configuration (Port 0 to DMA0 is the management port).
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32.3.9 Mode Configuration Register (ESW_MODE)

ESW_MODE defines several global configuration settings.

Address: 0xFC0D_C024 (ESW_MODE) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R STAT
RST

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
P0CT

CRC
TRAN

STOP
0 0 0 0 0 SW

EN
SW
RSTW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-12. Mode Configuration Registers (ESW_MODE)

Table 32-9. ESW_MODE Field Descriptions

Field Description

31
STATRST

Reset Statistics Counters Command. When set during a write, all statistics counters are cleared. When 
set, all other bits are ignored and do not influence the currently stored value in the register (i.e. it is not 
necessary to read/preserve the register contents prior to writing this bit).

30–10 Reserved, must be cleared.

9
P0CT

Enable Port0 input buffer cut-through mode. When cleared (0, default) the input buffer operates in 
store&forward mode, which is the recommended mode of operation.

8
CRCTRAN

When enabled (1) the MAC ports are expected to process frames to/from the switch including CRC. 
Frames from a MAC port to a MAC port will then have their respective ff_rx_crc_fwd1/2 pin (wired to 
MAC's ff_tx_crc_fwd) asserted, indicating that no CRC should be appended. However, even when 
enabled, the DMA0 port is not expected to provide frames with crc: Frames from port 0 (DMA0 transmit) 
are always forwarded with the crc option as defined by the input ff_tx_crc_fwd0, independent of the 
CRCTRAN setting. This means, if the DMA0 port will never transmit frames with CRC, ff_tx_crc_fwd0 can 
be wired to permanently 0. Note that the MAC configuration bit RCR(CRC_FWD) must be set to ensure 
the MAC forwards received frames with CRC to the switch. When disabled (0, default) the output pins 
ff_rx_crc_fwd1/2 to the MACs are always 0 to ensure a CRC is appended to outgoing frames no matter 
from which port they were received. DMA0 still can influence the crc append through its ff_tx_crc_fwd0 
input pin if required. Note: The ff_tx_crc_fwd0 input to the switch must be valid throughout the complete 
frame (from sop to eop). This is in contrast to the MAC definition for this signal, which requires validity 
during eop only.

7
STOP

Controls toplevel output pin stop_en. No internal function.

6–2 Reserved, must be cleared.

1
SWEN

Controls toplevel output pin switch_en. When deasserted (0), all DMA registers are cleared.

0
SWRST

Controls toplevel output pin switch_reset. No internal function.
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32.3.10 VLAN Input Manipulation Select (ESW_VIMSEL)

ESW_VIMSEL defines behavior of the VLAN input manipulation function, if such a function is present 
on an input port. ESW_VIMSEL has effect only if enabled by the corresponding port bit in ESW_VIMEN.

32.3.11 VLAN Output Manipulation Select (ESW_VOMSEL)

ESW_VOMSEL defines behavior of the VLAN output manipulation function, if such a function is present 
on an output port.

Address: 0xFC0D_C028 (ESW_VIMSEL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IM
2

IM
1

IM
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-13. VLAN Input Manipulation Select Register (ESW_VIMSEL)

Table 32-10. ESW_VIMSEL Field Descriptions

Field Description

31–6 Reserved, must be cleared.

5–4, 3–2, 1–0
IMn

Input manipulation select for port n.
00 Mode 1, single tag passthrough
01 Mode 2, single tag overwrite
10 Mode 3, double tag passthrough
11 Mode 4, double tag overwrite

Address: 0xFC0D_C02C (ESW_VOMSEL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OM
2

OM
1

OM
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-14. VLAN Output Manipulation Select Register (ESW_VOMSEL)

Table 32-11. ESW_VOMSEL Field Descriptions

Field Description

31–6 Reserved, must be cleared.

5–4, 3–2, 1–0
OMn

Output manipulation select for port n.
00 No output manipulation
01 Mode 1, strip mode
10 Mode 2, tag through
11 Mode 3, transparent
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32.3.12 VLAN input manipulation enable (ESW_VIMEN)

ESW_VIMEN enables the input processing according to the ESW_VIMSEL for a port.

32.3.13 VLAN Tag ID (ESW_VID)

The VLAN type field value to expect to identify a VLAN-tagged frame. A valid 802.1Q VLAN-tagged 
frame must use the value 0x8100.

Address: 0xFC0D_C030 (ESW_VIMSEL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EN
2

EN
1

EN
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-15. VLAN Input Manipulation Enable Register (ESW_VIMEN)

Table 32-12. ESW_VIMEN Field Descriptions

Field Description

31–3 Reserved, must be cleared.

2, 1, 0
ENn

Input manipulation enable for port n.
0 Disable. ESW_VIMSEL has no effect and the frames are processed unmodified.
1 Enable

Address: 0xFC0D_C034 (ESW_VID) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TAG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 32-16. VLAN Tag ID Register (ESW_VID)

Table 32-13. ESW_VID Field Descriptions

Field Description

31–0
TAG

ID to identify a VLAN-tagged frame. A valid 802.1Q VLAN-tagged frame must use the value 0x8100.
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32.3.14 Mirror control register (ESW_MCR)

The mirror control register defines port mirroring and filtering conditions.

Address: 0xFC0D_C040 (ESW_MCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 EG
DA

EG
SA

ING
DA

ING
SA

EG
MAP

ING
MAP

MEN PORT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-17. Mirror Control Register (ESW_MCR)

Table 32-14. ESW_MCR Field Descriptions

Field Description

31–11 Reserved, must be cleared.

10
EGDA

If set, only frames transmitted on an egress port with a destination address matching the value in 
ESW_EGDA{L,H} are mirrored. Other frames are not mirrored.
Note: If the egress map is not enabled (EGMAP = 0) then any frame with a matching destination address 

is mirrored.

9
EGSA

If set, only frames transmitted on an egress port with a source address matching the value in 
ESW_EGSA{L,H} are mirrored. Other frames are not mirrored.
Note: If the egress map is not enabled (EGMAP = 0) then any frame with a matching source address is 

mirrored.

8
INGDA

If set, only frames received on an ingress port with a destination address matching the value in 
ESW_INGDA{L,H} are mirrored. Other frames are not mirrored.
Note: If the ingress map is not enabled (INGMAP = 0) then any frame with a matching destination 

address is mirrored.

7
INGSA

If set, only frames received on an ingress port with a source address matching the value in 
ESW_INGSA{L,H} are mirrored. Other frames are not mirrored.
Note: If the ingress map is not enabled (INGMAP = 0) then any frame with a matching source address is 

mirrored.

6
EGMAP

Egress map enable.
0 Egress port map has no effect
1 Egress map is enabled. A frame forwarded to an output port that has a bit set in the egress map is 

mirrored.

5
INGMAP

Ingress map enable.
0 Ingress port map has no effect
1 Ingress map is enabled. A frame received on an ingress port that has a bit set in the ingress map is 

mirrored.
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32.3.15 Egress Port Definitions (ESW_EGMAP)

32.3.16 Ingress Port Definitions (ESW_INGMAP)

4
MEN

Mirroring enable.
0 Disabled
1 Enabled

3–0
PORT

The port number that should act as the mirror port and receive all mirrored frames.

Address: 0xFC0D_C044 (ESW_EGMAP) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EG
2

EG
1

EG
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-18. Egress Port Definitions Register (ESW_EGMAP)

Table 32-15. ESW_EGMAP Field Descriptions

Field Description

31–3 Reserved, must be cleared.

2, 1, 0
EGn

Port mirroring egress for port n.
0 Disable
1 Enabled. Frames destined for this port are mirrored to the mirror port.

Address: 0xFC0D_C048 (ESW_INGMAP) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ING
2

ING
1

ING
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-19. Ingress Port Definitions Register (ESW_INGMAP)

Table 32-16. ESW_INGMAP Field Descriptions

Field Description

31–3 Reserved, must be cleared.

2, 1, 0
INGn

Port mirroring ingress for port n.
0 Disable
1 Enabled. Frames from this port are mirrored to the mirror port.

Table 32-14. ESW_MCR Field Descriptions (continued)

Field Description
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32.3.17 Ingress and Egress MAC Address Registers

32.3.18 Mirror Count Value (ESW_MCVAL)

NOTE
If the egress filtering port map is active, every forwarded frame is 
considered. Otherwise, frames are counted only if the mirroring decision 
indicated that the frame should be mirrored.

Address: 0xFC0D_C04C (ESW_INGSAL)
0xFC0D_C054 (ESW_INGDAL)
0xFC0D_C05C (ESW_EGSAL)
0xFC0D_C064 (ESW_EGDAL)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDLOW

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-20. Ingress and Egress MAC Address Low Registers

Table 32-17. ESW_ING{S,D}AL and ESW_EG{S,D}AL Field Descriptions

Field Description

31–0
ADDLOW

First four bytes of the ingress/egress MAC address for mirror filtering.

Address: 0xFC0D_C050 (ESW_INGSAH)
0xFC0D_C058 (ESW_INGDAH)
0xFC0D_C060 (ESW_EGSAH)
0xFC0D_C068 (ESW_EGDAH)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADDHIGH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-21. Ingress and Egress MAC Address High Register

Table 32-18. ESW_ING{S,D}AH and ESW_EG{S,D}AH Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
ADDHIGH

First two bytes of the ingress/egress MAC address for mirror filtering.
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32.3.19 Memory Manager Status Register (ESW_MMSR)

All latched bits are cleared upon a write with any content to the register.

Address: 0xFC0D_C06C (ESW_MCVAL) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-22. Mirror Count Value Register (ESW_MCVAL)

Table 32-19. ESW_MCVAL Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
COUNT

Count value for mirror filtering. Every nth frame is forwarded to the mirror port if enabled.
0x00 Every frame forwarded
0x01 Every frame forwarded
0x02 Every second frame forwarded
...
0xFF Every 255th frame forwarded

Address: 0xFC0D_C080 (ESW_MMSR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0
CELLS_AVAIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 DQ
GRNT

0 0 MF
LATCH

MEM
FULL

NO
CELL

BUSY
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-23. Memory Manager Status Register (ESW_MMSR)

Table 32-20. ESW_MMSR Field Descriptions

Field Description

31–24 Reserved, must be cleared.

23–16
CELLS_AVAIL

Real-time indication of currently available cells in memory.

15–7 Reserved, must be cleared.

6
DQGRNT

Indication of if currently inputs are de-queued. Should be set always and is cleared when the memory 
becomes full (see the MEMFULL bit).
Note: The bit is cleared upon reset. However, set shortly after when the memory manager completes 

initialization.

5–4 Reserved, must be cleared.
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32.3.20 Low Memory Threshold (ESW_LMT)

If the number of cells available in memory is less than ESW_LMT, the switch discards frames. Choose a 
value for at least two full-sized frames. A memory overflow due to a too low threshold is a fatal error and 
may require a device reset.

3
MFLATCH

Latched version of mem_full. Is kept set even when mem_full is cleared again. The bit is cleared when 
the register is written.

2
MEMFULL

Current memory full indication. The memory is full when less than the programmed minimum cell 
threshold is available in memory. This is not an error and the memory controller is working fine. It just 
indicates that the switch does no longer serve its input ports to avoid memory overrun (no_cell error).

1
NOCELL

Set, when memory has exceeded the maximum available number of cells. The event is latched and the 
bit stays set if the event is no longer active. This is a fatal error and must never happen during operation. 
The minimum cells threshold must be increased if it happens.The bit is always set after reset (during 
initialization) and must be cleared when the busy initialization (see bit 0) indication is cleared. 
IMPORTANT NOTE: When this bit is set any time during operation (after initialization completed) the 
switch is in an inoperable state and must be reset completely to restore correct operation. If such an event 
happens the ESW_LMT setting must be increased during initialization to avoid such situation. The bit is 
cleared when the register is written.

0
BUSY

When set (1), Memory controller is initializing. The initialization is only preparing the internal data 
structures within the controller, it does not initialize the shared memory used for frame storage as this is 
not required. It is asserted after reset and stays set until the memory controller is ready to store frames. 
The switch must not be enabled before initialization of the memory controller has been completed.

Address: 0xFC0D_C084 (ESW_LMT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
THRESH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Figure 32-24. Low Memory Threshold Register (ESW_LMT)

Table 32-21. ESW_LMT Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
THRESH

Low memory threshold. The value of this field is the number of 256 bytes.
0x01 0.25 KB (1  256 bytes)
0x02 0.5 KB (2  256 bytes)
...
0x09 2.25 KB (9  256 bytes)
...
Note: Choose a value for at least two full-sized frames.

Table 32-20. ESW_MMSR Field Descriptions (continued)

Field Description
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32.3.21 Lowest Number of Free Cells (ESW_LFC)

ESW_LFC indicates the lowest number of free cells reached in memory during operation since it was last 
cleared.

32.3.22 Port Congestion Status (ESW_PCSR)

32.3.23 Input/Output Interface Status Register (ESW_IOSR)

Address: 0xFC0D_C088 (ESW_LFC) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-25. Low Number of Free Cells Register (ESW_LFC)

Table 32-22. ESW_LFC Field Descriptions

Field Description

31–0
COUNT

Lowest number of free cells reached in memory during operation since it was last cleared. This register 
is reset to the maximum by writing any value to it.

Address: 0xFC0D_C08C (ESW_PCSR) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC
2

PC
1

PC
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-26. Port Congestion Status Register (ESW_PCSR)

Table 32-23. ESW_PCSR Field Descriptions

Field Description

31–3 Reserved, must be cleared.

2, 1, 0
PCn

Port congestion status for port n.
0 Not congested
1 Congested

Address: 0xFC0D_C090 (ESW_IOSR) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0 0 0 0 0 0 0

IR
2

IR
1

IR
0

0 0 0 0 0 0 0 0 0 0 0 0 0
OR
2

OR
1

OR
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-27. Input/Output Interface Register (ESW_IOSR)
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32.3.24 Queue Weights (ESW_QWT)

ESW_QWT defines the weight for the corresponding queue for all ports. Setting all weights to zero 
implements a strict priority scheme.

Table 32-24. ESW_IOSR Field Descriptions

Field Description

31–19 Reserved, must be cleared.

18, 17, 16
IRn

Input data available for port n.
0 Not available
1 Data available

15–3 Reserved, must be cleared.

2, 1, 0
ORn

Output ready to accept data for port n.
0 Not ready
1 Ready

Address: 0xFC0D_C094 (ESW_QWT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Q3WT Q2WT Q1WT Q0WT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-28. Queue Weights Register (ESW_QWT)

Table 32-25. ESW_QWT Field Descriptions

Field Description

31–29 Reserved, must be cleared

28–24
Q3WT

Queue 3 weight. Defines the weight for the corresponding queue for all ports. A higher weight gives more 
priority to the queue. Queue 3 is the highest priority queue. Valid values are 0–30.

23–21 Reserved, must be cleared

20–16
Q2WT

Queue 2 weight. Defines the weight for the corresponding queue for all ports. A higher weight gives more 
priority to the queue. Valid values are 0–30.

15–13 Reserved, must be cleared

12–8
Q1WT

Queue 1 weight. Defines the weight for the corresponding queue for all ports. A higher weight gives more 
priority to the queue. Valid values are 0–30.

7–5 Reserved, must be cleared

4–0
Q0WT

Queue 2 weight. Defines the weight for the corresponding queue for all ports. A higher weight gives more 
priority to the queue. Valid values are 0–30.
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32.3.25 Port 0 Backpressure Congestion Threshold (ESW_P0BCT)

ESW_P0BCT defines the congestion threshold for port 0 backpressure. If the total output queues’ shared 
memory (see Section 32.4.10, “Output Frame Queuing”) has less than this amount of free cells available, 
the switch stops serving the port 0 input buffer. This eventually fills the input buffer.

32.3.26 Port 0 Forced Forwarding Enable (ESW_FFEN)

ESW_FFEN forces forwarding for port 0 frames (i.e. frames transmitted from the DMA0 to the port 0 of 
the switch).

Address: 0xFC0D_C09C (ESW_P0BCT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
THRESH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Figure 32-29. Port 0 Backpressure Congestion Threshold Register (ESW_P0BCT)

Table 32-26. ESW_P0BCT Field Descriptions

Field Description

31–8 Reserved, must be cleared.

7–0
THRESH

Defines the congestion threshold for port 0 backpressure. Clearing this field disables the function (no 
backpressure).

Note: Set this field higher than the memory full threshold (ESW_LMT) to stop the DMA0 before a memory 
full situation.

Address: 0xFC0D_C0BC (ESW_FFEN) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FD

0
FEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-30. Forced Forwarding Port 0 Register (ESW_FFEN)

Table 32-27. ESW_FFEN Field Descriptions

Field Description

31–4 Reserved, must be cleared.

3–2
FD

When FEN is set, this field defines if the port 0 frame should be forwarded to the MAC at ports 1 and 2.
00 Do not forward. Frame is processed normally.
01 Forward to port 1 only
10 Forward to port 2 only
11 Forward to both ports
Note: It is possible to forward to one or both MAC ports. If neither bit is set, FEN is ignored and the frame 

is processed normally. This can be used to implement a handshake, as FEN is still reset but no 
further action occurs.
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32.3.27 Port Snooping Registers (ESW_PSNP1–8)

ESW_PSNPn defines the TCP/UDP port number snooping function configuration. There are eight 
registers available to set independent snooping destinations.

1 Reserved, must be cleared.

0
FEN

When set, the next frame received from port 0 (the local DMA port) is forwarded to the ports defined in 
FD. The bit resets to zero automatically when one frame from port 0 has been processed by the switch 
(i.e. has been read from the port 0 input buffer; see Figure 32-1). Therefore, the bit must be set again as 
necessary. See alsoSection 32.4.8.2, “Forced Forwarding” for a description.

Address: 0xFC0D_C0C0 (ESW_PSNP1)
0xFC0D_C0C4 (ESW_PSNP2)
0xFC0D_C0C8 (ESW_PSNP3)
0xFC0D_C0CC (ESW_PSNP4)

0xFC0D_C0D0 (ESW_PSNP5)
0xFC0D_C0D4 (ESW_PSNP6)
0xFC0D_C0D8 (ESW_PSNP7)
0xFC0D_C0DC (ESW_PSNP8)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PORT_COMPARE

0 0 0 0 0 0 0 0 0 0 0
CS CD MODE EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-31. Port Snoop Registers (ESW_PSNPn)

Table 32-28. ESW_PSNPn Field Descriptions

Field Description

31–16
PORT_COMP

ARE

The 16-bit port number to compare within the TCP or UDP header of a frame. Note: it is possible to set 
both the compare source/dest bits. The result is OR'ed, meaning if any of the fields match the compare 
value, the frame is processed as defined by the mode bits.

15–5 Reserved, must be cleared.

4
CS

When set, the TCP or UDP source port number field within the frame is compared with the compare value 
provided in 31:16.

3
CD

When set, the TCP or UDP destination port number field within the frame is compared with the compare 
value provided in PORT_COMPARE.

2–1
MODE

Defines the forwarding that should occur, when an IP frame is received and the protocol field matches the 
protocol value.
00 Forward frame to designated management port only
01 Copy to management port and forward normally
10 Discard
11 Reserved
Note: The management port is defined in ESW_BMPC register.

0
EN

When set (1) the entry contains valid data and the function is active. If a match with the TCP/UDP 
destination port value occurs, the frame is processed as defined by the mode setting. All other bits of the 
register are interpreted by the snooping function only if the enable bit is set. Otherwise the settings are 
ignored. When written with 0 will also force bits 3,4 to 0. Defaults to 0 upon reset.

Table 32-27. ESW_FFEN Field Descriptions (continued)

Field Description
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32.3.28 IP snooping registers (ESW_IPSNP1–8)

ESW_IPSNPn defines the IP snooping function configuration. There are eight registers available to set 
independent snooping for different protocols.

32.3.29 Port 0–2 VLAN Priority Resolution Map (ESW_PnVRES)

The ESW_PnVRES registers implement a 3-bit to 3-bit VLAN priority mapping capability. For each port, 
one register is provided. The current frame's 3-bit VLAN priority field is used as an index and the 

Address: 0xFC0D_C0E0 (ESW_IPSNP1)
0xFC0D_C0E4 (ESW_IPSNP2)
0xFC0D_C0E8 (ESW_IPSNP3)
0xFC0D_C0EC (ESW_IPSNP4)

0xFC0D_C0F0 (ESW_IPSNP5)
0xFC0D_C0F4 (ESW_IPSNP6)
0xFC0D_C0F8 (ESW_IPSNP7)
0xFC0D_C0FC (ESW_IPSNP8)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PROTOCOL

0 0 0 0 0
MODE EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-32. IP Snoop Register (ESW_IPSNPn)

Table 32-29. ESW_IPSNPn Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–8
PROTOCOL

The 8-bit protocol value to match with the incoming frame's IP header protocol field. 

7–3 Reserved, must be cleared.

2–1
MODE

Defines the forwarding that should occur, when an IP frame is received and the protocol field matches the 
protocol value (see the PROTOTCOL bits).

00 Forward frame to designated management port only
01 Copy to management port and forward normally

10 Discard
11 Reserved
Note: The management port is defined in register ESW_BMPC.

0
EN

When set (1) the entry contains valid data and the function is active. If a match with the protocol value 
occurs, the frame is processed as defined by the mode setting. All other bits of the register are interpreted 
by the IP snooping function only if the enable bit is set. Otherwise the settings are ignored. Defaults to 0 
upon reset.
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corresponding priority is taken from the respective position of the register giving the final classification 
for the frame.

32.3.30 IPv4/v6 Priority Resolution Table (ESW_IPRES)

Address: 0xFC0D_C100 (ESW_P0VRES)
0xFC0D_C104 (ESW_P1VRES)
0xFC0D_C108 (ESW_P2VRES)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
PRI7 PRI6 PRI5 PRI4 PRI3 PRI2 PRI1 PRI0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-33. VLAN Priority Registers (ESW_PnVRES)

Table 32-30. ESW_PnVRES Field Descriptions

Field Description

31–24 Reserved, must be cleared.

23–0
PRIn

The current frame's 3-bit VLAN priority field is an index to the corresponding PRIn field to give the final 
priority classification for the frame.

Address: 0xFC0D_C140 (ESW_IPRES) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
READ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
PRI2 PRI1 PRI0

IPV4
SEL

ADDRESS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-34. IP Priority Resolution Register (ESW_IPRES)

Table 32-31. ESW_IPRES Field Descriptions

Field Description

31
READ

Must be cleared to write values in the tables. When set during register writes, the IPv6 select and address 
bits are stored in the register only and the priority bits are ignored and not written into the addressed table. 
When the register is read, the priority bits represent the value read from the table always.

30–15 Reserved, must be cleared.

14–13
PRI2

The priority information to write into the addressed table entry. These 2 bits represent the output priority 
selected when the frame is received on port 2. When reading from the register, the bits show the value 
from the addressed table entry (address from last write operation).

12–11
PRI1

The priority information to write into the addressed table entry. These 2 bits represent the output priority 
selected when the frame is received on port 1. When reading from the register, the bits show the value 
from the addressed table entry (address from last write operation).
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32.3.31 Port n Priority Resolution Configuration (ESW_PnRES)

ESW_PnRES defines which priority information should be used for priority resolution.

10–9

PRI0

The priority information to write into the addressed table entry. These 2 bits represent the output priority 
selected when the frame is received on port 0. 00=priority 0 (will be forwarded to output queue 0) 
01=priority 1 (output queue 1) 10=priority 2 (output queue 2) 11=priority 3 (output queue 3) When reading 
from the register, the bits show the value from the addressed table entry (address from last write 
operation).

8
IPV4SEL

If set during a write, the IPv4 table is accessed. Valid address values range from 0 to 63. If cleared, the 
IPv6 table is accessed. Valid address values range from 0 to 255.

7–0
ADDRESS

The address of the priority entry to read or write for a frame received on port n. The IPv4 priority table has 
64 entries. The IPv6 table has 256 entries. See also Section 32.4.5.2.1, “Classification Table 
Programming Model” for a description of the mapping table.

Address: 0xFC0D_C180 (ESW_P0RES)
0xFC0D_C184 (ESW_P1RES)
0xFC0D_C188 (ESW_P2RES)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0
DFLT_PRI

0
MAC IP VLAN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-35. Priority Configuration Registers (ESW_PnRES)

Table 32-32. ESW_PnRES Field Descriptions

Field Description

31–4 Reserved, must be cleared.

6–4
DFLT_PRI

The default priority of a frame received on port n, if none of the priority resolutions could define a priority 
of the frame. Up to 3 bits can be implemented.

3 Reserved, must be cleared.

2
MAC

Enable MAC based priority resolution for frame received on port n. If set, the priority information found 
within the MAC address table is used.

1
IP

Enable IP priority resolution for frame received on port n. If set, the IP DiffServ/COS field is used and 
priority is resolved according to the ESW_IPRES setting for the port. If cleared, IP Diffserv/COS fields are 
ignored.

0
VLAN

Enable VLAN priority resolution for frame received on port n. If set, the VLAN tag field of a frame is 
inspected and priority is resolved according to the setting programmed in ESW_PnVRES for the port on 
which the frame was received. If cleared, VLAN priority is ignored.

Table 32-31. ESW_IPRES Field Descriptions (continued)

Field Description
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32.3.32 Port n VLAN ID (ESW_PnID)

ESW_PnID defines the VLAN ID field for VLAN input manipulation function of a port (if it exists).

32.3.33 VLAN Domain Resolution 0–31 (ESW_VRES0–31)

NOTE
The VLAN table is always searched completely. Therefore, the table entries 
do not need to be written in any order.

Address: 0xFC0D_C200 (ESW_P0ID)
0xFC0D_C204 (ESW_P1ID)
0xFC0D_C208 (ESW_P2ID)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VLANID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-36. VLAN Priority Registers (ESW_PnID)

Table 32-33. ESW_PnID Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
VLANID

VLAN ID field for the VLAN input manipulation function.

Address: 0xFC0D_C280 (ESW_VRES0)
0xFC0D_C284 (ESW_VRES1)
...
0xFC0D_C2FC (ESW_VRES31)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VLANID P2 P1 P0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-37. VLAN Priority Registers (ESW_VRESn)

Table 32-34. ESW_VRESn Field Descriptions

Field Description

31–15 Reserved, must be cleared.

14–3
VLANID

VLAN identifier

2, 1, 0
Pn

One bit per port that is member of the VLAN identified with the 12-bit VLAN ID of the entry.
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32.3.34 Statistics Registers
• ESW_DISCN — Total number of incoming frames processed but discarded in the switch

• ESW_DISCB — Sum of bytes of frames counted in ESW_DISCN

• ESW_NDISCN — Total number of incoming frames processed and not discarded

• ESW_NDISCB — Sum of bytes of frames counted in ESW_NDISCN

32.3.35 Port Statistics Registers
• ESW_PnOQC — Port 0 outgoing frames discarded due to output queue congestion

• ESW_PnMVID — Port 0 incoming frames discarded due to mismatching or missing VLAN ID 
while VLAN verification was enabled. See ESW_VLANV.

• ESW_PnMVTAG — Port 0 incoming frames discarded due to missing VLAN tag. See 
ESW_VLANV.

• ESW_PnBL — Port 0 incoming frames discarded (after learning) as port is configured in blocking 
mode

32.3.36 Interrupt Status Register (ESW_ISR)

ESW_ISR indicates the interrupt status. To clear a bit write a one to it. The bit stays set if the event 
condition persists.

Address: 0xFC0D_C300 (ESW_DISCN)
0xFC0D_C304 (ESW_DISCB)
0xFC0D_C308 (ESW_NDISCN)
0xFC0D_C30C (ESW_NDISCB)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-38. Statistics Registers

Address: 0xFC0D_C310 (ESW_P0OQC)
0xFC0D_C314 (ESW_P0MVID)
0xFC0D_C318 
(ESW_P0MVTAG)
0xFC0D_C31C (ESW_P0BL)

0xFC0D_C320 (ESW_P1OQC)
0xFC0D_C324 (ESW_P1MVID)
0xFC0D_C328 
(ESW_P1MVTAG)
0xFC0D_C32C (ESW_P1BL)

0xFC0D_C330 (ESW_P2OQC)
0xFC0D_C334 (ESW_P2MVID)
0xFC0D_C338 
(ESW_P2MVTAG)
0xFC0D_C33C (ESW_P2BL)

Access: User
read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-39. Port Statistics Registers
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Address: 0xFC0D_C400 (ESW_ISR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 LRN OD2 OD1 OD0 QM TXF TXB RXF RXB

EB
ERR

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-40. Interrupt Status Register (ESW_ISR)

Table 32-35. ESW_ISR Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9
LRN

Learning Record available in registers LNR_REC_0 and LNR_REC_1 (Signal ipi_lrn_int asserted). Note: 
this interrupt can be very frequent on a heavy loaded network. It is not recommended to use this interrupt 
source as interrupt but rather implement a slow background task polling the bit to perform learning.

8
OD2

Outgoing frames discarded due to output Queue congestion on Port 2 or port is disabled (ESW_PER). 
Asserts ipi_od2_int

7
OD1

Outgoing frames discarded due to output Queue congestion on Port 1or port is disabled (ESW_PER). 
Asserts ipi_od1_int

6
OD0

Outgoing frames discarded due to output Queue congestion on Port 0 or port is disabled (ESW_PER). 
Asserts ipi_od0_int

5
QM

Low Memory Threshold. Asserted if the memory became congested and number of free cells dropped 
below threshold  ESW_LMT (Signal ipi_qm_int asserted). Note: will become asserted after reset 
immediately due to memory initialization.

4
TXF

Transmit frame interrupt. This bit indicates a frame has been transmitted and the last corresponding buffer 
descriptor has been updated (Signal ipi_txf_int asserted).

3
TXB

Transmit buffer interrupt. This bit indicates a transmit buffer descriptor has been updated (Signal 
ipi_txb_int asserted).

2
RXF

Receive frame interrupt. This bit indicates a frame has been received and the last corresponding buffer 
descriptor has been updated (Signal ipi_rxf_int asserted).

1
RXB

Receive buffer interrupt. This bit indicates a receive buffer descriptor not the last in the frame has been 
updated (Signal ipi_rxb_int asserted).

0
EBERR

Ethernet bus error. This bit indicates a system bus error occurs when a DMA transaction is underway 
(Signal ipi_eberr_int asserted).
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32.3.37 Interrupt Mask Register (ESW_IMR)

32.3.38 Receive Descriptor Ring Pointer (ESW_RDSR)

ESW_RDSR points to the start of the circular receive buffer descriptor queue in external memory. This 
pointer must be 32-bit aligned; however, it is recommended it be made 128-bit aligned (evenly divisible 
by 16).This register is not reset and must be initialized prior to operation.

Address: 0xFC0D_C404 (ESW_IMR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
LRN OD2 OD1 OD0 QM TXF TXB RXF RXB

EB
ERRW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-41. Interrupt Mask Register (ESW_IMR)

Table 32-36. ESW_IMR Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9–0
See 

Figure 32-41

Each bit corresponds to an interrupt source defined by the ESW_ISR register. The corresponding 
ESW_IMR bit determines whether an interrupt condition can generate an interrupt. At each processor 
clock, ESW_ISR samples the signal generated by the interrupting source. Each ESW_ISR bit reflects the 
state of the interrupt signal even if the corresponding ESW_IMR bit is set.
0 The corresponding interrupt source is masked
1 The corresponding interrupt source is not masked and an interrupt can occur

Address: 0xFC0D_C308 (ESW_RDSR) Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDRESS

0 0

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Figure 32-42. Receive Descriptor Ring Start Register (ESW_RDSR)

Table 32-37. ESW_RDSR Field Descriptions

Field Description

31–2
ADDRESS

Pointer to start of receive buffer descriptor queue.

3–0 Reserved, must be cleared.
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32.3.39 Transmit Descriptor Ring Pointer (ESW_TDSR)

ESW_TSDR provides a pointer to the start of the circular transmit buffer descriptor queue in external 
memory. This pointer must be 32-bit aligned; however, it is recommended it be made 128-bit aligned 
(evenly divisible by 16). You should write zeros to bits 1 and 0. Hardware ignores non-zero values in these 
two bit positions.

This register is undefined at reset and must be initialized prior to operation.

32.3.40 Maximum receive buffer size (ESW_MRBR)

The ESW_MRBR dictates the maximum size of all receive buffers. This value should take into 
consideration that the receive CRC is always written into the last receive buffer. To allow one maximum 
size frame per buffer, ESW_MRBR must be set to ENETn_RCR[MAX_FL] or larger. To properly align 
the buffer, ESW_MRBR must be evenly divisible by 16. To ensure this, bits 3–0 are forced low.

To minimize bus utilization (descriptor fetches), it is recommended that ESW_MRBR be greater than or 
equal to 256 bytes.

The ESW_MRBR register is undefined at reset and must be initialized by the user.

Address: 0xFC0D_C40C (ESW_TSDR) Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDRESS

0 0

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Figure 32-43. Transmit Buffer Descriptor Ring Start Register (ESW_TDSR)

Table 32-38. ESW_TDSR Field Descriptions

Field Description

31–2
ADDRESS

Pointer to start of transmit buffer descriptor queue.

1–0 Reserved, must be cleared.

Address: 0xFC0D_C410 (ESW_MRBR) Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SIZE

0 0 0 0

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Figure 32-44. Receive Buffer Size Register (ESW_MRBR)
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32.3.41 Receive Descriptor Active Register (ESW_RDAR)

ESW_RDAR is a command register, written by the user, indicating the receive descriptor ring is updated 
(the driver produced empty receive buffers with the empty bit set).

When the register is written, the RDAR bit is set. This is independent of the data actually written by the 
user. When set, the FEC polls the receive descriptor ring and processes receive frames (provided 
ENETn_ECR[ETHER_EN] is also set). After the MAC polls a receive descriptor whose empty bit is not 
set, the MAC clears the RDAR bit and ceases receive descriptor ring polling until the user sets the bit 
again, signifying that additional descriptors are placed into the receive descriptor ring.

The ESW_RDAR register is cleared at reset and when ENETn_ECR[ETHER_EN] is cleared.

32.3.42 Transmit Descriptor Active Register (ESW_TDAR)

The ENETn_TDAR are command registers which the user writes to indicate the transmit descriptor ring 
is updated (transmit buffers have been produced by the driver with the ready bit set in the buffer 
descriptor).

Table 32-39. ESW_MRBR Field Descriptions

Field Description

31–14 Reserved, must be cleared.

13–4
SIZE

Maximum size of receive buffer size in bytes. To minimize bus utilization (descriptor fetches), set this field to 
256 bytes (0x10) or larger.
0x010 256 + 15 bytes (minimum size recommended)
0x011 272 + 15 bytes
...
0x3FF 16,368 + 15 bytes

3–0 Reserved, must be cleared.

Address: 0xFC0D_C414 (ESW_RDAR) Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
RDAR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-45. Receive Descriptor Active Register (ESW_RDAR)

Table 32-40. ESW_RDAR Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
RDAR

Set to 1 when this register is written, regardless of the value written. Cleared by the FEC device when no additional 
empty descriptors remain in the receive ring. Also cleared when ENETn_ECR[ETHER_EN] is cleared.

23–0 Reserved, must be cleared.
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When the register is written, the TDAR bit is set. This value is independent of the data actually written by 
the user. When set, the MAC polls the transmit descriptor ring and processes transmit frames (provided 
ENETn_ECR[ETHER_EN] is also set). After the MAC polls a transmit descriptor that is a ready bit not 
set, MAC clears TDAR and ceases transmit descriptor ring polling until you set the bit again, signifying 
additional descriptors are placed into the transmit descriptor ring.

The ENETn_TDAR registers are cleared at reset, when ENETn_ECR[ETHER_EN] is cleared, or when 
ENETn_ECR[RESET] is set.

32.3.43 Learning Record Registers (ESW_LREC0 and ESW_LREC1)

ESW_LREC0 must be read first, followed by reading ESW_LREC1.

Address: 0xFC0D_C418 (ESW_TDAR) Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
TDAR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-46. Transmit Descriptor Active Register (ENETn_TDAR)

Table 32-41. ENETn_TDAR Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
TDAR

Set to 1 when this register is written, regardless of the value written. Cleared by the MAC device when no additional 
ready descriptors remain in the transmit ring. Also cleared when ENETn_ECR[ETHER_EN] is cleared.

23–0 Reserved, must be cleared.

Address: 0xFC0D_C500 (ESW_LREC0) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MACADDR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-47. Learning Record Register 0 (ESW_LREC0)

Table 32-42. ESW_LREC0 Field Descriptions

Field Description

31–0
MAC_ADDR0

Lower 32-Bit of the Frame MAC Address. 7:0 = first octet, 31:24=4th octet. Note: this register must be 
read first, before reading ESW_LREC1
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32.3.44 Learning Data Status Register (ESW_LSR)

32.3.45 Look-up Memory Table

This is the 2048  64-bit entry MAC address lookup table. An entry of 64 bits is split into two 32-bit 
words. The low address (0xFC0E_0000, 0xFC0E_0008, 0xFC0E_0010, ...) represents the lower 32 bits 
(31:0) and the high address (0xFC0E_0004, 0xFC0E_000c, 0xFC0E_0014, ... ) represents the higher 32 
bits (63:32) of an entry. See Section 32.4.7.2, “Address Memory” for the structure of a 64-bit entry. 

Each entry must be written or read with the low address accessed first followed by the high address. The 
table should be initialized by software during system startup.

Address: 0xFC0D_C504 (ESW_LREC1) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 SW
PORT

HASH MACADDR1
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-48. Learning Record Register 1 (ESW_LREC1)

Table 32-43. ESW_LREC1 Field Descriptions

Field Description

31–26 Reserved, must be cleared.

25–24
SWPORT

Port number on which the Frame is received.

23–16
HASH

The 8-bit Hash value

15–0
MAC_ADDR1

Upper 16-Bit of the Frame MAC Address. 7:0=5th octet, 15:8=6th octet.

Address: 0xFC0D_C508 (ESW_LSR) Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-49. Learning Data Status (ESW_LSR)

Table 32-44. ESW_LSR Field Descriptions

Field Description

31–1 Reserved, must be cleared.

0
DA

Indicates if the learning record is valid and can be read.
0 Learning record invalid
1 Learning record valid
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32.4 Functional Description
The switch implements the following main functions:

• Input/output VLAN processing

• IP snooping

• Input frame parsing and priority extraction

• Input port selection

• Output port(s) resolution

• Frame queuing

• Output queue scheduling

32.4.1 VLAN Input Processing Function

The VLAN input processing function is used on each switch input port to inspect and manipulate the 
VLAN tag of frames entering the switch. It performs the following functions:

• Input frame parsing

• VLAN tag insertion or manipulation

Based on the information of the input processing function the frame can be switched to the corresponding 
output port or is discarded.

32.4.1.1 Terms and Definitions

• VLAN information — The 16-bit field following the VLAN type field within a frame

• VLAN ID — The lower 12 bits of the VLAN information field

• VLAN priority — The upper 3 bits of the VLAN information field that prioritizes incoming 
frames. A value of 0 represents lowest priority; a value of 7 represents highest priority.

32.4.1.2 Configuration Information

The switch management provides the following information to configure and control the operation of the 
function:

• ESW_PnID — 16 bit value. The VLAN information field (VLAN-ID and priority) used for tag 
insertion operations.

• Mode of operation —There are different modes of operation, which define how incoming frames 
must be processed for a port. The function can be enabled and configured individually per port. See 
the ESW_VIMEN and ESW_VIMSEL registers.

NOTE
If the VLAN input processing function is not enabled (ESW_VIMEN = 0) 
the mode setting has no effect.



Ethernet Switch

NXP Semiconductors 32-37

32.4.1.3 Modes of Operation

32.4.1.3.1 Frame Processing

The VLAN input processing function modifies the frames before they enter the switching engine. If a 
VLAN tag is inserted, the switch only acts on the inserted VLAN tag (e.g. priority). Any original tag that 
was found in the frame before the modification, if any, has no effect within the switch.

In addition, if VLAN verification is enabled for a port (see the ESW_VLANV register), the VLAN ID used 
for insertion (ESW_PnID) must also be configured in the global VLAN resolution table (see the 
ESW_VRESn register). This ensures the switch accepts frames, which contain the inserted tag.

When a tag is inserted in any of the modes, it is always inserted as the first tag (outer) and its information 
field is set as programmed in the ESW_PnID register for the port n where the frame is received.

32.4.1.3.2 Mode 1 — Single Tagging with Passthrough

Mode 1 inserts a tag only if the frame is untagged. If the frame is already tagged, the frame is unmodified.

32.4.1.3.3 Mode 2 — Single Tagging with Replace

If untagged, add the tag. If single tagged, overwrite it.

32.4.1.3.4 Mode 3 — Double Tagging with Passthrough

Insert a tag on untagged and tagged frames. This results in a single-tagged frame when an untagged is 
received, and a double-tagged frame, when a single-tagged frame is received. When a double-tagged frame 
is received, the frame is unmodified.

32.4.1.3.5 Mode 4 — Double Tagging with Replace

Insert tag on untagged and single-tagged frames. If a double-tagged frame is received, overwrite the outer 
tag.

32.4.2 IP Snooping

The switch supports programmable snooping for up to eight programmable IP protocols. If the protocol 
field of an IPv4 or IPv6 frame matches one of the programmed values and snooping is enabled for that 
entry, the frame can be processed as follows:

• Forward to designated management port only

• Copy to management port and normal forward/flood

• Discard on match

The management port is identified by the port number set in the ESW_BMPC register. The function is 
configured using ESW_IPSNP1–8.

The snooping function can be enabled/disabled individually for each of the entries. If no protocol matches, 
a match occurs but snooping is disabled, or the frame is coming from the management port itself, the frame 
is processed normally.
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NOTE
Snooping respects any optional VLAN tags (i.e. extracts next after last 
VLAN tag).

32.4.3 TCP/UDP Port Number Snooping

Programmable snooping for up to eight programmable TCP or UDP port numbers. If the source or 
destination port number field within an TCP/IP or UDP/IP frame (IPv4 and IPv6) matches the compare 
value and snooping is enabled for that entry, the frame can be processed as follows:

• Forward to designated management port only

• Copy to management port and normal forward/flood

• Discard on match

The management port is identified by the port number set in the ESW_BMPC register. The function is 
configured using ESW_IPSNP1–8.

The snooping function can be enabled/disabled individually for each of the entries. If no entry matches, a 
match occurs but snooping is disabled, or the frame is coming from the management port itself, the frame 
is processed normally.

NOTE
Port number snooping is possible only if the IP header ends up to ten words 
(40 bytes) after the MAC header. If the IP header ends later (e.g. 
IPv6 + VLAN or IPv4 + >20 byte options) the port numbers cannot be 
parsed any more and the port number snooping is ignored (protocol-based 
snooping is not affected by this limit).

For IPv6 frames the port number can only be compared if the UDP or TCP 
header is the very next header to the IPv6 header (i.e. it does not detect such 
headers if any extension headers are present in an IPv6 frame before the 
TCP or UDP header).

32.4.4 VLAN Output Processing Function

The VLAN output processing function is used on a switch output port to manipulate the VLAN tag of the 
outgoing frames that leave the switch. Frames are processed based on the output processing mode and the 
number of tags in the frame.

32.4.4.1 Configuration Information

The switch management provides the information on operating mode to configure and control the 
operation of the function using the ESW_VOMSEL register of a port. There are three different modes of 
operation, which define how the outgoing frames should be processed.

32.4.4.1.1 Mode 0 — Disabled

No frame manipulation occurs.
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32.4.4.1.2 Mode 1 — Strip Mode

In strip mode, all the tags (single or double) are removed from incoming frame.

32.4.4.1.3 Mode 2 — Tag Through Mode

In tag through mode, the inner tag is passed through while the outer tag is removed for a double-tagged 
frame. The following rules apply:

• When a single-tagged frame is received, strip the tag from the frame.

• When a double-tagged frame is received, strip the outer tag from the frame.

32.4.4.1.4 Mode 3 — Transparent Mode

In transparent mode, a single-tagged frame is unchanged. The following rules apply:

• When a single-tagged frame is received, frame is unchanged.

• When a double-tagged frame is received, strip the outer tag from the frame.

32.4.5 Frame Classification and Priority Resolution

When a frame is received on an input port, several pieces are extracted from the frame (Ethernet MAC 
address, VLAN tag, and IP headers) to determine the frame type and perform the relevant classification 
actions.

In addition, the MAC address table can provide a priority indication for the destination MAC address if 
the switch management has programmed the address table accordingly (static entry). 

The frame is classified in up to four priority levels (0 = lowest, 3 = highest) and is eventually queued in 
the corresponding priority queue at the output port.

32.4.5.1 VLAN Priority Look-Up

An eight-entry programmable priority table is implemented on each port. The ESW_PnVRES registers 
contain the priority mapping for port n.

The switch uses 3-bit priority field from the VLAN tag information to extract the corresponding bits from 
the table, which indicates which priority the frame is finally classified.

The index in the mapping table is the three bits of the first octet of the VLAN tag data (bit 5 (prio0) is the 
lsb and bit 7 (prio2) is the msb).
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Figure 32-50. VLAN Table Overview

32.4.5.2 IPv4 and IPv6 Priority Look Up

The switch can classify IPv4 and IPv6 frames:

• A 64-entry table is implemented per port to classify the IPv4 frames

— The frame's six-bit DiffServ field is provided and the table returns the 3-bit priority information

• A 256-entry table is implemented per port to classify IPv6 Frames (IP COS tables)

— The eight-bit class of service field is provided and the table returns the 3-bit priority 
information

Figure 32-51. IP COS Tables Overview

32.4.5.2.1 Classification Table Programming Model

An indirect addressing scheme is implemented to program the mapping tables using a single register 
(ESW_IPRES).

8-entry
VLAN table

Priority
resolution

3VLAN
priority

3

VLAN table
programming interface

256-entry
IPv6 COS table

IP header
data

8 Priority
resolution

256-entry
IPv6 COS table

IP COS table
programming interface
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Figure 32-52. ESW_IPRES Mapping Table Programming Model

The table is implemented in a single 320-deep table used for IPv4 6-bit TOS and IPv6 8-bit COS mappings.

• The first 256 entries represent the IPv6 COS field mapping. The received COS field of a frame is 
used to address a row from 0–255. The value stored is read and used as priority for the frame.

• The last 64 entries represent the IPv4 DiffServ field mapping. The received DiffServ (upper 6-bits 
of TOS) value of a frame is used to address a row from 256–319.

• Each entry of the table provides the priority mapping in bits 1:0 for port 0 (00 = queue0, 
01 = queue1, 10 = queue2, 11 = queue3), bits 3:2 for port 1, and bits 5:4 for port 2.

To write a table row into the table the address is provided in bits 8:0 and the data in bits 13:9, where bit 9 
represents bit 0 of the data and bit 13 represents bit 5 of the data.

To read a table row, the read bit must be set when writing into the ESW_IPRES register. This triggers a 
read transaction to the address provided in bits 8:0 of the register. After this, reading the register provides 
the data returned from the table for this address.

When writing an entry into the table, software can only write the mapping for all ports in one write 
transaction. Therefore software must implement a read-modify-write scheme, to:

1. Read the current table contents

2. Modify the priority bits for the port of interest without modifying the other ports bits

3. Write back the complete data word into the table

32.4.5.3 Priority Resolution

The priority resolution function is, on each port independently, programmable with the registers 
ESW_PnRES to enable or disable VLAN, IP, or MAC address-based classification (see Section 32.3.31, 
“Port n Priority Resolution Configuration (ESW_PnRES)”).

31 9 8 0

AddressPer port data
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Read
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The priority resolution follows the following ruleset depending on which classifications are enabled 
(ESW_PnRES) and which fields are found within the frame:

• If IP classification is enabled and an IP header found, map the priority according to the 
ESW_IPRES table

• Else, if VLAN classification is enabled and a VLAN tag is found, map the priority according to the 
ESW_PnVRES table

• Else, if MAC classification is enabled and MAC address found, take the priority from address 
table, if it is a static entry

• Else, use default priority as specified in ESW_PnRES

32.4.5.4 Bridge Control Protocol Identification

To allow for implementation of bridge control protocols like the spanning tree protocol, all control frames 
(bridge protocol data units, BPDU) are marked when they enter the switch. The mark then can be used by 
the input port blocking function to drop the frame after the address learning (see Section 32.4.9.4, 
“Protocol Snooping”).

In addition, the function can be configured to pass all frames or to pass only control frames (e.g. covering 
spanning tree port states blocking, listening, and learning) and discard all other frames.

32.4.6 Input Port Selection

The port selection constantly polls all input ports for available data. If any data is available, the port is 
selected and frame data is read from the input. After one frame is read, another port is selected, even if 
more data is available on the current port.

This means for the application on a port atlantic input interface, that it is not allowed to perform 
back-to-back frame transfers to the switch. Instead the application must wait for a new selection after one 
frame has been transferred.

32.4.7 Layer 2 Look-Up Engine

A hash code is calculated using the frame destination’s MAC address. It is used as an entry (address) to a 
table, which contains MAC addresses with destination port number and validity information.

As one hash code value can represent more than one MAC address, the memory implements for each 
pointer, up to eight MAC address entries, which are searched linearly.
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Figure 32-53. Port Look-Up Overview

32.4.7.1 Hash Code

For a MAC address table up to 2048 entries, an 8-bit hash value is calculated from the 48-bit destination 
MAC address. The hash code uses a CRC-8:

x^8 + x^2 + x + 1  (0x07)

32.4.7.2 Address Memory

The address memory is divided into blocks. Each block contains eight records, which contain 64 bits of 
information each. Each record contains the 48-bit MAC address and provides the necessary forwarding 
information, and priority or timestamp information.

Two types of records are defined:

• Dynamic record — The dynamic entry provides the MAC address together with a 10-bit timestamp 
and destination port number. These entries are created by the learning function based on received 
frames to enable forwarding of frames to dedicated ports. Dynamic entries are deleted by the aging 
function if not updated.

• Static multiport/priority record — Switch management can also write static entries in the table, 
which can include priority information and multiple destination ports for forwarding. The MAC 
address can be unicast or multicast. These records can be used to specify the ports to participate in 
a specific multicast domain or to assign a MAC address based priority to a frame. The aging and 
learning functions ignore static records.
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Figure 32-54. Address Memory Record Types

The record's bit 49 decides which type of record is found in the table:

• If 0, a dynamic entry is available. The 10-bit timestamp and 4-bit port number are given in the 
upper bits of the record.

• If 1, a static entry is available with a 3-bit priority field followed by a 3-bit port bit mask. The 
record bit 53 represents port 0, bit 54 port 1, and bit 55 port 2. The frame is forwarded to all ports 
whose port bitmask is set. The source port is removed dynamically from the bitmask during 
forwarding (a frame is never forwarded to the port where it came from).

The 48-bit MAC address is stored with the first octet in bits 7:0 and the sixth octet in 47:40 of the record.

32.4.8 Layer 2 Lookup Tasks Overview

32.4.8.1 MAC Address Lookup

The 48-bit destination MAC address of each frame received by the switch, on any of its interfaces, is 
extracted by the hardware and provided to the look-up engine together with the physical interface number. 
If the frame carries a VLAN tag, the tag information is also extracted and provided to the look-up engine.

If the received frame is a unicast or multicast frame, a two-stage lookup process is implemented. The 
look-up engine first calculates the hash value from the MAC address. The hash code is used as an entry to 
the switch address table. The look-up function can provide three results with tree different associated 
actions performed by the switch hardware:

1. The address is in the table and associated with a correct port number:

The switch forwards the frame only to the looked up port.

2. The address is in the table but is associated with the port on which it was received:

The switch discards the frame and does not forward it to any port.

3. The address is not found in the table: 

Record valid

Priority

63 60 59 50 47 0

Port # Timestamp 0 MAC address

Record type

63 53

Port bitmask 1

Dynamic entry

Static entry



Ethernet Switch

NXP Semiconductors 32-45

The switch engine sends the received frame to all ports except the port on which it was received 
(flooding).

If a broadcast frame is received, the switch hardware sends the received frame to all output ports, except 
the one from which it was received (flooding).

NOTE
Flooding and additional frame filtering can be controlled (for example, to 
avoid the duplication of critical information to unwanted destinations) with 
the mechanism described in Section 32.4.9.2, “Broadcast/Multicast/VLAN 
Domain Resolution”.

32.4.8.2 Forced Forwarding

The MAC address lookup result can be overwritten using the forced forwarding configuration available in 
the ESW_FFEN register. This feature is available only for frames coming from the local port (port 0).

When forced forwarding is enabled for a frame, the frame is forwarded to the forced destination ports, 
ignoring any results from the MAC destination address lookup. Forced forwarding only replaces the MAC 
lookup function, all other filtering functions (e.g. VLAN verification) act as normal.

32.4.8.3 Learning

The switch hardware extracts the source MAC address of each frame received on each of the switch ports 
and provides it (via the ESW_LREC0 and ESW_LREC1 registers) to the switch firmware which 
implements the learning task. The ESW_LSR register indicates availability of learning data.

32.4.8.3.1 Learning Interface

The interface implements a FIFO buffer that stores up to 32 words of 32-bit each.

Figure 32-55. Learning Interface Overview

For each frame processed by the switch engine, two 32-bit records (record A0 and record B1) are written 
in the information FIFO. Record A is written first.

Dequeuing control

Learning Interface



Ethernet Switch

32-46 NXP Semiconductors

The MAC address available in records A0 and B1 is the source MAC address of the frame. Record A holds 
the first four bytes of the frame source address, and record B contains the last two bytes.

The hash code in record B is calculated with the source MAC address and the same hash polynomial used 
for look-up, as defined in Section 32.4.7.1, “Hash Code”.

The 4-bit port number defines the port/MAC address association.

Figure 32-56. Frame Information Records — 8-Bit Hash Values

When information for at least one frame (two records) is available, the status indication in ESW_LSR 
register is set. To read the frame records, read the ESW_LREC0 register (record A) first followed by the 
ESW_LREC1 register (record B).

NOTE
Reading ESW_LREC1 triggers the retrieval of the next record pair from the 
FIFO, if any.

The learning task (software) uses this information and then executes as follows:

1. For every frame received, the source address with port and timestamp information is stored in the 
address lookup table. The following information is stored for each entry:

— MAC address

— Time stamp: a 10-bit value, determines the age of an entry

— Port number: a 4-bit value, indicates the port the frame was received

2. If the MAC address table is full, a new entry replaces the oldest entry with an identical matching 
hash value.

32.4.8.4 Migration

If the firmware receives a MAC address, which is already in the switch table but is associated to a different 
physical port number, the current entry is overwritten with the new information and the timestamp is set 
to the current time.

32.4.8.5 Aging

Aging refers to deleting old entries within the table. It proceeds as follows:

1. The 10-bit timestamp is stored with all the entries and is updated each time the source address 
appears.

2. If a record is not updated for a longer period of time, it is removed from the table if it is a dynamic 
entry.

3. Static entries are not affected by the aging process and are always kept.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Frame record A MAC address

Frame record B Reserved Port # Hash code MAC address (cont’d)
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This process runs continuously in the background of the firmware. The aging period is software-controlled 
and programmable, defaulting to four seconds per step. This gives a range of 4 seconds to 68 minutes.

32.4.9 Frame-Forwarding Tasks

When an input port is selected the frame is forwarded to its corresponding output port. Output port 
resolution and switching is based on the information from the two-stage MAC address look-up (see 
Section 32.4.8, “Layer 2 Lookup Tasks Overview”) followed by additional resolution functions to allow 
frame duplication and flooding control. These are described in the following sections.

Figure 32-57. Frame Forwarding Tasks Overview

32.4.9.1 VLAN Domain Verification

When the L2 MAC address lookup is successful and identifies a dedicated output port for the frame, the 
output and input port can be verified to be in the correct VLAN domain if VLAN verification is enabled 
for the port and the frame contains a VLAN tag. The VLAN resolution table (see Section 32.4.9.2.1, 
“VLAN Resolution Table”) is used as follows:

• If the frame's VLAN ID is in the table but the output port number is not a member of the VLAN 
domain, or the input port is not a member of the VLAN domain, the frame is marked invalid and 
is eventually discarded.

• If the frame's VLAN ID is in the table and the output and input ports are members of the VLAN 
domain, the frame is forwarded normally.

• If the frame's VLAN ID is not found in the VLAN table or the frame has no VLAN tag, the frame 
is forwarded normally (default broadcast domain), or if the discard bit for the port is set (also in 
register ESW_VLANV) it is discarded.
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32.4.9.2 Broadcast/Multicast/VLAN Domain Resolution

To ensure that traffic within VLAN channels are always routed to the correct ports, for example to avoid 
the duplication of critical information through a network, the switch implements a resolution mechanism 
that, for any frame that is switched to multiple ports, checks the VLAN ID provided with the current frame.

The VLAN resolution mechanism searches the VLAN resolution table (see ESW_VRESn registers), 
which stores up to 32 unique VLAN IDs, each associated to a port bit mask. The resolution mechanism is 
used for the following conditions:

• Unicast frames with a destination MAC address that are not in the table of the layer 2 engine

• Multicast frames with a destination MAC address that are not in the table of the layer 2 engine

• Any broadcast frame

32.4.9.2.1 VLAN Resolution Table

The VLAN resolution table (ESW_VRESn) provides a unique VLAN ID/port bit mask association for up 
to 32 VLANs. A default entry (ESW_DBCR) provides an additional port bit mask. The port bit mask 
implements one bit for each port. 

Each port bit indicates, if set, that it is member of the VLAN and frames with the corresponding VLAN 
ID can be switched to the port. If the port bit is cleared, a frame with the corresponding VLAN ID is not 
switched to that port. If no VLAN ID matches, the default mask is applied.

Figure 32-58. VLAN Resolution Table Overview

32.4.9.2.2 VLAN Switching / Resolution Mechanism

The VLAN table is used for VLAN domain verification (see Section 32.4.9.1, “VLAN Domain 
Verification”) and VLAN resolution. Once the frame has passed any VLAN domain verification (i.e. will 
not be discarded by the verification function already) the forwarding resolution applies.

• If the destination MAC address (Unicast or Multicast) is found in the MAC address table and

— the frame carries a VLAN tag that is found in the VLAN table, the frame can be forwarded only 
to the ports within the VLAN domain and will be discarded if the destination port is not 
member of the VLAN domain.

Port mask
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— else if the frame carries a VLAN tag that is not found in the VLAN table, or does not contain 
a VLAN tag, it is forwarded as indicated by the lookup table (note that VLAN domain 
verification can be configured to discard the frame in this case if enabled).

• If the destination MAC address (Unicast or Multicast) is not found in the MAC address table, or if 
the destination address is the Broadcast address, the frame is forwarded according to the following 
rules:

— If the frame carries a VLAN tag, the VLAN resolution table is searched for a matching VLAN 
ID and the frame is sent to all ports that are associated with the VLAN ID.

— If the frame carries a VLAN tag and the VLAN ID does not match any entry in the VLAN 
Resolution Table, the frame is forwarded to all ports that are enabled to receive broadcast 
frames by the default entry.

— If the frame does not carry a VLAN tag the frame is forwarded to all ports that are enabled to 
receive broadcast frames by the default entry.

— The frame is discarded, if it cannot be associated with any VLAN group and if the default 
(broadcast) group has been set to all zero.

To disable the VLAN resolution set all VLAN IDs to 0xFFF or (0x000 if that ID is not used) and all port 
mask bits to 1. If the VLAN resolution is disabled, normal port flooding is implemented as described in 
Section 32.4.5, “Frame Classification and Priority Resolution”. The default entry can still be used to 
restrict broadcast to only dedicated ports, if not programmed to all 1s.

32.4.9.3 Port Mirroring

The function allows duplicating traffic to a dedicated mirror port. Any one of the ports can be assigned to 
act as a mirror port (register ESW_MCR).

The mirror port then is always added to the list of output ports and therefore receives a copy of the frame, 
if any of the following rules matches with the currently processed frame:

• Ingress Port Number Match

When a frame is received on port N and the corresponding bit in the register ESW_INGMAP is set 
to 1, the frame is mirrored.

• Egress Port Number Match

When a frame is forwarded to port N and the corresponding bit in the register ESW_EGMAP is set 
to 1, the frame will be mirrored.

• MAC Ingress SA Match

When the Ingress Port Number match succeeded (see above) and the MAC source address matches 
the ESW_INGSA{L,H}, the frame will be mirrored.

• MAC Ingress DA Match

When the Ingress Port Number match succeeded (see above) and the MAC destination address 
matches the ESW_INGDA{L,H}, the frame will be mirrored.

• MAC Egress SA Match

When the Egress Port Number match succeeded (see above) and the MAC source address matches 
the ESW_EGSA{L,H}, the frame will be mirrored.
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• MAC Egress DA Match

When the Egress Port Number match succeeded (see above) and the MAC destination address 
matches the ESW_EGDA{L,H}, the frame will be mirrored.

In addition, a counter is implemented (Register MIRROR_COUNT) that allows specifying that only every 
Nth frame that matches any of the above criteria is mirrored. If the counter is set to 1 or 0, every frame is 
mirrored that matches any of the above criteria.

32.4.9.4 Protocol Snooping

The incoming frames are parsed for IPv4 and IPv6 headers and UDP/TCP if available. The snooping 
function can be programmed to redirect specific protocols exclusively to the management port. See 
Section 32.4.2, “IP Snooping” and Section 32.4.3, “TCP/UDP Port Number Snooping” for a description 
of the snooping options.

The snooping is active only for frames received from the external ports. When a frame is transmitted from 
the management port itself, snooping does not apply and the frames are forwarded normally (MAC 
lookup).

32.4.9.5 Bridge Protocol Frame Resolution

To implement bridge control protocols like the Spanning Tree protocol, the following control functions are 
performed by the Protocol Frame Resolution function:

32.4.9.5.1 Input Port Blocking

The input port blocking function is used to avoid forwarding of frames after address learning. The 
firmware can program the ESW_BKLR register and if a frame is received on port n that should be blocked 
(BEn = 1) and the frame is not a bridge protocol frame (see below), the frame is marked for discard and is 
not forwarded to any output port.

32.4.9.5.2 Input Port Learning Disable

To reduce processing load from the firmware, a port can be configured for exclusion from learning (see 
the ESW_BKLR register).

When learning is disabled on a port no source address extraction happens for incoming frames, with the 
exception of incoming BPDU frames. BPDU frame source addresses are always extracted and forwarded 
to the learning interface.

32.4.9.5.3 Management Port Forwarding

If enabled, bridge protocol frames are always forwarded to the dedicated management port (see the 
ESW_BMPC register) independent of any address lookup or other resolution functions.

Bridge protocol frames are identified by its destination address being any of the following:

• 01-80-C2-00-00-00 to 01-80-C2-00-00-0F (Spanning Tree, IEEE 802.1d, Table 7-9)

• 01-80-C2-00-00-10 (Bridge Management Address, 802.1d, Table 7-10)
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• 01-80-C2-00-00-20 to 01-80-C2-00-00-2F (Generic Attribute Registration Protocol, 802.1d, Table 
12-1)

32.4.9.5.4 Management Frame Forwarding

If the management port transmits Frames, they are forwarded according to the port mask defined in the 
configuration register ESW_BMPC. A handshaking mechanism is implemented that can be used by the 
firmware to configure the destination port mask on a frame-by-frame basis for management frames.

Note: VLAN domain verification/discard (see the ESW_VLANV register) should be switched off for the 
management port to avoid that the switch discards management frames.

32.4.9.6 Congestion Resolution

The congestion resolution function is used whenever an output port is not available and data needs to be 
sent to that port. An output port is defined to be available if the port is enabled (bit in ESW_PER set 1) and 
the output buffer (shared memory) is not congested. If, for a port, one of these conditions is not valid, the 
port is not available and frames cannot be switched to that port.

The congestion resolution function determines whether the frame should be processed further or discarded 
according to the following rules:

32.4.9.6.1 Unique Destination (one input to one output)

If the output port is enabled and can accept a frame the frame will be forwarded normally.

In any other case the frame will be discarded. If a frame switched to port N, the counter ESW_PnOQC is 
incremented.

32.4.9.6.2 Multiple Destinations (Flooding)

After broadcast / flooding resolution a frame needs to be switched to multiple output ports.

• Output disabled: All disabled ports are removed from the list of outputs.

• Output congestion: If any of the outputs cannot accept a frame (As indicated by the output queue 
management for the port, implementation specific) it is also removed from the list of outputs.

If no output port is left in the list of outputs, the frame is discarded.

If a frame switched to port N, the counter ESW_PnOQC is incremented.

32.4.9.7 Switching

After the output port(s) have been determined, the switch control enables the corresponding path though 
the Switch Matrix and the frame is forwarded to the output queue(s).

In a similar fashion, if a Frame should be switched to multiple ports (e.g. Broadcast), the switch control 
enables the corresponding paths though the Switch Matrix and the frame is forwarded to all the destination 
output ports.
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32.4.10 Output Frame Queuing

The memory controller implements a shared memory architecture to store Frames of arbitrary size for 
multiple destination ports.

Each destination port implements 4 priority queues. The memory controller implements a single write 
input port and three output ports with the capability to perform virtual frame duplication on the output ports 
(Multiple reads on multiple ports of a single frame stored in the buffer).

A single large memory, partitioned in 256 byte cells, is implemented to efficiently share the available space 
for small and large frames without leaving large unused spaces when storing small frames.

Figure 32-59. Memory Controller Overview

32.4.10.1 Cell and Queue Concept

The shared memory is partitioned in 256 byte cells using a 32-bit datapath implementation. This results in 
a cell holding 64 32-bit words.

Incoming frames are stored, partitioned in cells, in the shared memory and only the cell numbers are 
managed by the individual port queues.

Due to the arbitrary length of incoming frames, the last cell may not be fully utilized. A frame can spread 
from one to any number of cells. The number of bytes used in the last cell is also stored in the queue FIFO 
together with the individual cell numbers.

Cells can be stored anywhere in the shared memory. A single frame must not necessarily be stored in 
consecutive cells but instead can be scattered over the complete memory at arbitrary positions. The start 
of a cell is fixed to a 64-word boundary (i.e. the memory start address of a cell is simply the cell # 
multiplied by 64).
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Per port, a queue FIFO is implemented that stores the cell numbers for the frames The number of bytes 
used in the last cell is also stored in the queue FIFO together with the individual cell numbers.

Figure 32-60. Cell Storage Concept

The example in Figure 32-60 shows the storage of 3 frames with one frame duplicated and stored in 2 
queues (orange in above picture).

32.4.10.2 Write Control Module

The Write Control Module receives frames from the Switch engine, partitions and stores the frames in the 
shared memory. The cell numbers used to store the frame are forwarded to the port output managers.

32.4.10.3 Cell Factory Module

The Cell Factory implements the cell management, it always provides a free cell number to the write 
control module so the write control module can immediately start writing into memory to avoid any write 
latency. 

32.4.10.4 Output Queue Manager

The Output Queue Manager implements, per port, the individual queue FIFOs (One queue FIFO per 
priority). The queue FIFOs are addressed by the priority information extracted by the Switch classification 
engine. Per port, eight prioritized queues are implemented.
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When more than one queue has data available, the read logic selects one of the queues with a Weighted 
Fair Queuing scheduling algorithm.

32.4.10.4.1 Weighted Fair Queuing Scheduling Algorithm

The weight of each queue, common for all ports, can be configured between 0 and 30 with the register 
ESW_QWT. A Queue with a higher weight is served more often than a queue with lower weight.

Queue 0 represents the lowest priority, Queue 3 the highest priority queue.

The scheduler first serves the queue with the highest weight. Each time the scheduler serves a queue, the 
weight of the other queues is increased and the weight of the selected queue is reset (decreased) to its 
programmed weight value. This guarantees that all queues are served eventually.

When multiple queues have the same weight the queue with the higher number is served first.

If all weights are programmed to 0 (default) a strict priority scheme is active where the higher priority 
queues are served as long as they are not empty.

32.4.10.5 Congestion Management

The Write control logic is protected against memory overflow. When data is written is the cell factory has 
no more free cells (Number of available cells less than value programmed in register ESW_LMT), the 
frame is discarded or terminated with an error (i.e. forwarded to the output queue manager with the 
end-of-packet and error indication).

If the congestion persists, the switch resolves the congestion as specifies in Section 32.4.9.6, “Congestion 
Resolution”.

32.4.11 Reset and Stop Functions

32.4.11.1 Stop Controls

The register ESW_MODE offers several bits that control output pins. In addition some controls have an 
effect on internal logic functions:

• stop_en: no internal function.

• switch_en: when de-asserted, all DMA registers are cleared.

• switch_reset: no internal function.

An external logic may use the controls to disable or enable the switch function as necessary.

32.4.11.2 Port Disable

The switch toplevel offers a disable input for each port (port_dis(2:0). When a pin is asserted (1), the 
corresponding port enable bits within register ESW_PER for both transmit and receive will be cleared.
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This results in the following behavior:

• If the port-enable bits of port0 are cleared, it also resets the input buffer and output buffer at the 
port0 DMA interface.

— The ready output to DMA0 (ff_tx_rdy0) will be asserted allowing the application to continue 
writing data at the interface, which will be ignored (application flush). No further transmitted 
frame status (tx_ts_val0) will be given (i.e. for any currently stored if any, as well as the 
currently ignored).

— If the transmit enable is cleared while the interface is currently transferring a frame to the 
DMA, the frame is aborted (output buffer reset). The eop is not produced. Therefore the 
connected DMA module must be reset to ensure proper restart after re-enabling the port.

• If any port's transmit enable bit is cleared, the shared memory will continue delivering the frames 
stored currently for a port as normal (i.e. flushing the memory). New frames will be discarded 
before they are written into the shared memory. That is, no invalid frame will appear on the MAC 
interfaces after disabling or re-enabling a port.

• If any port's receive enable bit is cleared while a frame is transferred, this frame will be aborted 
with an error internally. The port's ready indication will stay asserted (output ff_tx_rdy=1) to flush 
any application data. Reenabling the port at any time will ignore any input data until a sop starts a 
new frame. 

32.4.11.3 Port 0 Input Protection

The port 0 input buffer is protected for application errors that abort a frame without writing a proper eop 
to the interface. The next frame then written to the port 0 transmit interface will be concatenated with 
whatever data was already written before, but the frame will be marked with an error and hence will be 
forwarded and transmitted with an error indication (mii tx error).

If the port0 input buffer is reset (by deasserting ESW_PER receive enable bit) while a frame is transferred 
to the switch internally, the frame transfer will be aborted in a clean way (producing an eop with error 
indication) to avoid blocking the switch.

32.4.11.4 Port 1/2 Input Protection

Ports 1 and 2 are protected for a 2nd SOP in case the MAC is reset in the middle of a receive transaction 
to the switch hence did not produce a proper EOP to the switch. The next frame will be concatenated with 
whatever was provided to the switch before and marked with an error.

If the MAC is stopped in the middle of a transaction, the switch is blocked, waiting for the EOP, not serving 
any of the other ports. Clearing the ESW_PER receive enable bit in this situation will terminate the frame 
with an error internally to the switch hence remove the blocking condition.

32.4.11.5 DMA Bus Error

When the DMA bus error input (dma_eberr_int) is asserted, the DMA registers are all cleared. If the 
corresponding interrupt was enabled the ipi_eberr_int pin will be asserted.
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Chapter 33  
FlexCAN

33.1 Introduction
The MCF5441x devices contain two FlexCAN modules. 

The FlexCAN is a communication controller implementing the controller area network (CAN) protocol, 
an asynchronous communications protocol used in automotive and industrial control systems. It is a high 
speed (1 Mbps), short distance, priority-based protocol that can communicate using a variety of mediums 
(such as fiber optic cable or an unshielded twisted pair of wires). The FlexCAN supports the standard and 
extended identifier (ID) message formats specified in the CAN protocol specification, revision 2.0, part B. 

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting 
the specific requirements of this field: real-time processing, reliable operation in the EMI environment of 
a vehicle, cost-effectiveness, and required bandwidth. A general working knowledge of the CAN protocol 
revision 2.0 is assumed in this document. For details, refer to the CAN protocol revision 2.0 specification.

33.1.1 Block Diagram

A block diagram describing the various submodules of the FlexCAN module is shown in Figure 33-1. 
Each submodule is described in detail in subsequent sections.

Figure 33-1. FlexCAN Block Diagram
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The message buffer architecture is shown in Figure 33-2 and Figure 33-3. Figure 33-3 shows the MB 
architecture when individual masks are used, while Figure 33-2 shows the legacy configuration.

Figure 33-2. FlexCAN Message Buffer Architecture (CANMCR[BCC] = 0)

Figure 33-3. FlexCAN Message Buffer Architecture (CANMCR[BCC] = 1)

33.1.1.1 The CAN System

A typical CAN system is shown below in Figure 33-4. Each CAN station is connected physically to the 
CAN bus through a transceiver. The transceiver provides the transmit drive, waveshaping, and 
receive/compare functions required for communicating on the CAN bus. It can also provide protection 
against damage to the FlexCAN caused by a defective CAN bus or defective stations.

Data

Buffer 0

ID

Time Stamp

Data Length

Data

••••

••••

Mask 15

Mask 14

Transparent to User

Rx Shifter

Tx Shifter

Serial Buffers

Tx

Rx

Control

Global Mask

Interrupt Request

Data

•
•
•

•
•
•

16
 T

ra
ns

m
it/

R
ec

ei
ve

M
es

sa
ge

 B
uf

fe
rs

Buffer 13

Buffer 14

Buffer 15

Data

Buffer 0

Buffer 14

ID

Time Stamp

Data Length

Data

Buffer 15

••••

••••

Mask 15

Mask 14

Transparent to User

Rx Shifter

Tx Shifter

Serial Buffers

Tx

Rx

Control

Mask 13

Interrupt Request

Data

•
•
•

•
•
•

Mask 0

16
 T

ra
ns

m
it/

R
ec

ei
ve

M
es

sa
ge

 B
uf

fe
rs

Buffer 13



FlexCAN

NXP Semiconductors 33-3

Figure 33-4. Typical CAN System

33.1.2 Features

Following are the main features of the FlexCAN module:

• Full implementation of the CAN protocol specification version 2.0B

— Standard data and remote frames (up to 109 bits long)

— Extended data and remote frames (up to 127 bits long)

— 0–8 bytes data length

— Programmable bit rate up to 1 Mbps

— Content-related addressing

• Up to 16 flexible message buffers of zero to eight bytes data length, each configurable as Rx or Tx, 
all supporting standard and extended messages

• Listen-only mode capability

• Individual mask registers for each message buffer

• Reception queue support

• Programmable transmission priority scheme: lowest ID or lowest buffer number

• Time stamp based on 16-bit, free-running timer

• Global network time, synchronized by a specific message

• Maskable interrupts

• Independent of the transmission medium (an external transceiver is assumed)

• Open network architecture

• Multimaster bus

• High immunity to EMI

• Short latency time due to an arbitration scheme for high-priority messages
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33.1.3 Modes of Operation

33.1.3.1 Normal Mode

In normal mode, the module operates receiving and/or transmitting message frames, errors are managed 
normally, and all the CAN protocol functions are enabled. User and supervisor modes differ in the access 
to some restricted control registers.

33.1.3.2 Freeze Mode

Freeze mode is entered by setting:

• CANMCRn[FRZ], and

• CANMCRn[HALT], or by asserting the BKPT signal. 

After entry into freeze mode is requested, the FlexCAN waits until an intermission or idle condition exists 
on the CAN bus, or until the FlexCAN enters the error passive or bus off state. After one of these 
conditions exists, the FlexCAN waits for the completion of all internal activity such as arbitration, 
matching, move-in, and move-out. When this happens, the following events occur:

• The FlexCAN stops transmitting/receiving frames.

• The prescaler is disabled, thus halting all CAN bus communication.

• The FlexCAN ignores its Rx pins and drives its Tx pins as recessive.

• The FlexCAN loses synchronization with the CAN bus and the NOTRDY and FRZACK bits in 
CANMCRn are set.

• The CPU is allowed to read and write the error counter registers (in other modes they are 
read-only).

After engaging one of the mechanisms to place the FlexCAN in freeze mode, the user must wait for the 
FRZACK bit to be set before accessing any other registers in the FlexCAN; otherwise, unpredictable 
operation may occur. In freeze mode, all memory mapped registers are accessible.

To exit freeze mode, the BKPT line must be negated or the HALT bit in CANMCRn must be cleared. After 
freeze mode is exited, the FlexCAN resynchronizes with the CAN bus by waiting for 11 consecutive 
recessive bits before beginning to participate in CAN bus communication.

33.1.3.3 Module Disabled Mode

This mode disables the FlexCAN module; it is entered by setting CANMCRn[MDIS]. If the module is 
disabled during freeze mode, it shuts down the system clocks, sets the LPMACK bit, and clears the 
FRZACK bit. 

If the module is disabled during transmission or reception, FlexCAN does the following:

• Waits to be in idle or bus-off state, or else waits for the third bit of intermission and then checks it 
to be recessive

• Waits for all internal activities such as arbitration, matching, move-in, and move-out to finish

• Ignores its Rx input pin and drives its Tx pin as recessive
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• Shuts down the system clocks 

The bus interface unit continues to operate, enabling the CPU to access memory-mapped registers, except 
the free-running timer, the error counter register, and the message buffers, which cannot be accessed when 
the module is disabled. Exiting from this mode is done by negating the MDIS bit, which resumes the clocks 
and negate the LPMACK bit.

33.1.3.4 Loop-back Mode

The module enters this mode when the LPB bit in the control register is set. In this mode, FlexCAN 
performs an internal loop back that can be used for self test operation. The bit stream output of the 
transmitter is internally fed back to the receiver input. The Rx CAN input pin is ignored and the Tx CAN 
output goes to the recessive state (logic 1). FlexCAN behaves as it normally does when transmitting and 
treats its own transmitted message as a message received from a remote node. In this mode, FlexCAN 
ignores the bit sent during the ACK slot in the CAN frame acknowledge field to ensure proper reception 
of its own message. Transmit and receive interrupts are generated.

33.1.3.5 Listen-only Mode

In listen-only mode, transmission is disabled, all error counters are frozen and the module operates in a 
CAN error passive mode. Only messages acknowledged by another CAN station are received. If FlexCAN 
detects a message that has not been acknowledged, it flags a BIT0 error (without changing the REC), as if 
it was trying to acknowledge the message. Because the module does not influence the CAN bus in this 
mode, the device is capable of functioning like a monitor or for automatic bit-rate detection.

33.2 External Signal Description
Each FlexCAN module has two I/O signals connected to the external MPU pins: CAN0TX, CAN0RX, 
CAN1TX, and CAN1RX. CANnTX transmits serial data to the CAN bus transceiver, while CANnRX 
receives serial data from the CAN bus transceiver. 

33.3 Memory Map/Register Definition
The FlexCAN module address space is split into 128 bytes starting at the base address, 256 bytes starting 
at the base address + 0x80, and 256 bytes starting at the base address + 0x880. Out of the lower 128 bytes, 
only part is occupied by various registers. The second block of 256 bytes are fully used for the message 
buffer structures, as described in Section 33.3.9, “Message Buffer Structure.” The upper 256 bytes is used 
by the individual masking registers.



FlexCAN

33-6 NXP Semiconductors

NOTE
The FlexCAN has no hard-wired protection against invalid bit/field 
programming within its registers. Specifically, no protection is provided if 
the programming does not meet CAN protocol requirements.

Programming the FlexCAN control registers is typically done during system initialization, prior to the 
FlexCAN becoming synchronized with the CAN bus. The configuration registers can be changed after 
synchronization by halting the FlexCAN module. This is done when the user sets the CANMCRn[HALT] 
bit. The FlexCAN responds by setting the CANMCRn[NOTRDY] bit. 

Table 33-1. FlexCAN Memory Map

Address

Register
Width
(bits)

Affected
by Hard
Reset

Affected
by Soft
Reset

Access Reset Value Section/Page
FlexCAN0
FlexCAN1

Supervisor-only Access Registers

0xFC02_0000
0xFC02_4000

FlexCAN Module Configuration 
Register (CANMCRn)

32 Y Y R/W 0xD890_000F 33.3.1/33-7

Supervisor/User Access Registers

0xFC02_0004
0xFC02_4004

FlexCAN Control Register 
(CANCTRLn)

32 Y N R/W 0x0000_0000 33.3.2/33-9

0xFC02_0008
0xFC02_4008

Free Running Timer (TIMERn) 32 Y Y R/W 0x0000_0000 33.3.3/33-12

0xFC02_0010
0xFC02_4010

Rx Global Mask (RXGMASKn) 32 Y N R/W 0x1FFF_FFFF 33.3.4/33-13

0xFC02_0014
0xFC02_4014

Rx Buffer 14 Mask (RX14MASkn) 32 Y N R/W 0x1FFF_FFFF 33.3.4/33-13

0xFC02_0018
0xFC02_4018

Rx Buffer 15 Mask (RX15MASKn) 32 Y N R/W 0x1FFF_FFFF 33.3.4/33-13

0xFC02_001C
0xFC02_401C

Error Counter Register (ERRCNTn) 32 Y Y R/W 0x0000_0000 33.3.6/33-16

0xFC02_0020
0xFC02_4020

Error and Status Register 
(ERRSTATn)

32 Y Y R/W 0x0000_0000 33.3.6/33-16

0xFC02_0028
0xFC02_4028

Interrupt Mask Register (IMASKn) 32 Y Y R/W 0x0000_0000 33.3.7/33-18

0xFC02_0030
0xFC02_4030

Interrupt Flag Register (IFLAGn) 32 Y Y R/W 0x0000_0000 33.3.8/33-18

0xFC02_0080
0xFC02_4080

Message Buffers 0–15 (MB0–15) 2048 N N R/W — 33.3.9/33-19

0xFC02_0880
0xFC02_4880

Rx Individual Mask Registers 
(RXIMRn0–15)

2048 N N R/W — 33.3.11/33-25
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33.3.1 FlexCAN Configuration Register (CANMCRn)

CANMCRn defines global system configurations, such as the module operation mode and maximum 
message buffer configuration. Most of the fields in this register can be accessed at any time, except the 
MAXMB field, which should only be changed while the module is in freeze mode.

Address: 0xFC02_0000 (CANMCR0)
0x000 (CANMCR1)

Access: Supervisor
read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MDIS FRZ FEN HALT

NOT
RDY

0 SOFT
RST

FRZ
ACK SUPV

0 WARN
_EN

LPM
ACK

0
DOZE

SRX_
DIS

BCC
W

Reset 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 LPRI
O_EN

AEN
0 0

IDAM
0 0 0 0

MAXMB
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Figure 33-5. FlexCAN Configuration Register (CANMCRn)

Table 33-2. CANMCRn Field Descriptions

Field Description

31
MDIS

Module disable. This bit controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the 
FlexCAN clocks that drive the CAN interface and Message Buffer sub-module. This is the only bit in CANMCRn not 
affected by soft reset. See Section 33.1.3.3, “Module Disabled Mode,” for more information.
0 Enable the FlexCAN module, clocks enabled
1 Disable the FlexCAN module, clocks disabled

30
FRZ

Freeze mode enable. When set, the FlexCAN can enter freeze mode when the BKPT line is asserted or the HALT 
bit is set. Clearing this bit causes the FlexCAN to exit freeze mode. Refer to Section 33.1.3.2, “Freeze Mode,” for 
more information.
0 FlexCAN ignores the BKPT signal and the CANMCRn[HALT] bit.
1 FlexCAN module enabled to enter debug mode.

29
FEN

FIFO enable. Controls whether the FIFO  is enabled or not. When FEN is set, MBs 0 to 7 cannot be used for normal 
reception and transmission because the corresponding memory region (0x80–0xFF) is used by the FIFO engine.
0 FIFO not enabled
1 FIFO enabled

28
HALT

Halt FlexCAN. Setting this bit puts the FlexCAN module into freeze mode. It has the same effect as assertion of the 
BKPT signal. This bit is set after reset and should be cleared after initializing the message buffers and control 
registers. FlexCAN message buffer receive and transmit functions are inactive until this bit is cleared. While in 
freeze mode, the CPU has write access to the error counter register (ERRCNTn) that is otherwise read-only.
0 The FlexCAN operates normally
1 FlexCAN enters freeze mode if FRZ equals 1 

27
NOTRDY

FlexCAN not ready. This bit indicates that the FlexCAN is in disable or freeze mode. This bit is read-only and it is 
cleared after the FlexCAN exits these modes.
0 FlexCAN is in normal mode, listen-only mode, or loop-back mode.
1 FlexCAN is in disable or freeze mode.

26 Reserved, must be cleared.
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25
SOFTRST

Soft reset. When set, the FlexCAN resets its internal state machines (sequencer, error counters, error flags, and 
timer) and the host interface registers (CANMCRn [except the MDIS bit], TIMER, ERRCNT, ERRSTAT, IMASK, and 
IFLAG).
The configuration registers that control the interface with the CAN bus are not changed (CANCTRLn, RXGMASKn, 
RX14MASKn, RX15MASKn). Message buffers are also not changed. This allows SOFTRST to be used as a debug  
while the system is running.
Because soft reset is synchronous and has to follow a request/acknowledge procedure across clock domains, it 
may take some time to fully propagate its effect. The SOFTRST bit remains set while reset is pending and is 
automatically cleared when reset completes. The user should poll this bit to know when the soft reset has 
completed.
0 Soft reset cycle completed
1 Soft reset cycle initiated

24
FRZACK

Freeze acknowledge. Indicates that the FlexCAN module has entered freeze mode. The user should poll this bit 
after freeze mode has been requested, to know when the module has actually entered freeze mode. When freeze 
mode is exited, this bit is cleared after the FlexCAN prescaler is enabled. This is a read-only bit.
0 The FlexCAN has exited freeze mode and the prescaler is enabled.
1 The FlexCAN has entered freeze mode, and the prescaler is disabled.

23
SUPV

Supervisor/user data space. Places the FlexCAN registers in supervisor or user data space. 
0 Registers with access controlled by the SUPV bit are accessible in user or supervisor privilege mode.
1 Registers with access controlled by the SUPV bit are restricted to supervisor mode.

22 Reserved, must be cleared.

21
WRN_EN

Warning interrupt enable. Enables the generation of the TWRN_INT and RWRN_INT flags in the Error and Status 
Register.
0 TWRN_INT and RWRN_INT bits are always zero, independent of the values in the error counters. No warning 

interrupt is ever generated.
1 TWRN_INT and RWRN_INT bits are set when the respective error counter transition from <96 to 96

20
LPMACK

Low power mode acknowledge. Indicates that FlexCAN is disabled. Disabled mode cannot be entered until all 
current transmission or reception processes have finished, so the CPU can poll the LPMACK bit to know when the 
FlexCAN has actually entered low power mode. See Section 33.1.3.3, “Module Disabled Mode,” and Chapter 9, 
“Power Management,” for more information. This bit is read-only.
0 FlexCAN not disabled.
1 FlexCAN is in disabled mode.

18
DOZE

Doze mode enable. This bit defines whether FlexCAN is allowed to enter low power mode when doze mode is 
requested at MPU level. This bit is automatically reset when FlexCAN wakes up from doze mode upon detecting 
activity on the CAN bus (self wake-up enabled).
0 FlexCAN is not enabled to enter low power mode when doze mode is requested
1 FlexCAN is enabled to enter low power mode when doze mode is requested

19 Reserved, must be cleared.

17
SRX_DIS

Self reception disable. Defines whether FlexCAN is allowed to receive frames transmitted by itself. If this bit is set, 
frames transmitted by the module are not stored in any MB, regardless if the MB is programmed with an ID that 
matches the transmitted frame, and no interrupt flag or interrupt signal is generated due to the frame reception.
0 Self reception enabled
1 Self reception disabled

Table 33-2. CANMCRn Field Descriptions (continued)

Field Description
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33.3.2 FlexCAN Control Register (CANCTRLn)

CANCTRLn is defined for specific FlexCAN control features related to the CAN bus, such as bit-rate, 
programmable sampling point within an Rx bit, loop back mode, listen-only mode, bus off recovery 
behavior, and interrupt enabling. It also determines the division factor for the clock prescaler. Most of the 
fields in this register should only be changed while the module is disabled or in freeze mode. Exceptions 
are the BOFFMSK, ERRMSK, and BOFFREC bits, which can be accessed at any time.

16
BCC

Backwards compatibility configuration. This bit is provided to support backwards compatibility with legacy FlexCAN 
software. When this bit is cleared, the following configuration is applied:
 • Individual Rx ID masking is disabled. Instead of individual ID masking per MB, the FlexCAN uses its previous 

masking scheme with RXGMASK, RX14MASK, and RX15MASK.
 • The reception queue  is disabled. Upon receiving a message, if the first MB with a matching ID remains occupied 

by a previous unread message, FlexCAN does not look for another matching MB. It overrides this MB with the 
new message and set the CODE field to 0110 (overrun).

Upon reset this bit is cleared, allowing legacy software to work without modification.
0 Individual Rx masking and queue  are disabled
1 Individual Rx masking and queue  are enabled

15–14 Reserved, must be cleared.

13
LPRIO_EN

Local priority enable. This bit is provided for backwards compatibility reasons. It controls whether the local priority  
is enabled or not. It is used to extend the ID used during the arbitration process. With this extended ID concept, the 
arbitration process is done based on the full 32-bit word, but the actual transmitted ID still has 11-bit for standard 
frames and 29-bit for extended frames.
0 Local priority disabled
1 Local priority enabled

12
AEN

Abort enable. This bit is supplied for backwards compatibility reasons. When asserted, it enables the Tx abort . This  
guarantees a safe procedure for aborting a pending transmission, so that no frame is sent in the CAN bus without 
notification.
0 Abort disabled
1 Abort enabled

11–10 Reserved, must be cleared.

9–8
IDAM

ID acceptance mode. Identifies the format of the elements of the Rx FIFO filter table All elements below are 
configured at the same time by this field (they are all the same format).
00 Format A — One full ID (standard or extended) per filter element
01 Format B — Two full standard IDs or two partial 14-bit extended IDs per filter element
10 Format C — Four partial 8-bit IDs (standard or extended) per filter element
11 Format D — All frames rejected

7–4 Reserved, must be cleared.

3–0
MAXMB

Maximum number of message buffers. Defines the maximum number of message buffers that take part in the 
matching and arbitration process. The reset value (0xF) is equivalent to16 message buffer (MB) configuration. This 
field should be changed only while the module is in freeze mode.
Note:

Table 33-2. CANMCRn Field Descriptions (continued)

Field Description

Maximum MBs in Use = MAXMB + 1
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Address: 0xFC02_0004 (CANCTRL0)
0xFC02_4004 (CANCTRL1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PRESDIV RJW PSEG1 PSEG2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BOFF
MSK

ERR
MSK

CLK_
SRC

LPB
TWRN
_MSK

RWRN
_MSK

0 0
SMP

BOFF
REC

TSYN LBUF LOM PROPSEG
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-6. FlexCAN Control Register (CANCTRLn)

Table 33-3. CANCTRLn Field Descriptions

Field Description

31–24
PRESDIV

Prescaler division factor. Defines the ratio between the clock source frequency (set by CLK_SRC bit) and the serial 
clock (S clock) frequency. The S clock period defines the time quantum of the CAN protocol. For the reset value, 
the S clock frequency is equal to the clock source frequency. The maximum value of this register is 0xFF, that gives 
a minimum S clock frequency equal to the clock source frequency divided by 256. For more information refer to 
Section 33.3.21, “Protocol Timing.”

Eqn. 33-1

23–22
RJW

Resynchronization jump width. Defines the maximum number of time quanta (one time quantum is equal to the S 
clock period) that a bit time can be changed by one resynchronization. The valid programmable values are 0–3.

Eqn. 33-2

21–19
PSEG1

Phase buffer segment 1. Defines the length of phase buffer segment 1 in the bit time. The valid programmable 
values are 0–7.

Eqn. 33-3

18–16
PSEG2

Phase buffer segment 2. Defines the length of phase buffer segment 2 in the bit time. The valid programmable 
values are 1–7. 

Eqn. 33-4

15
BOFFMSK

Bus off interrupt mask.
0 Bus off interrupt disabled
1 Bus off interrupt enabled

14
ERRMSK

Error interrupt mask.
0 Error interrupt disabled
1 Error interrupt enabled

13
CLK_SRC

Clock source. Selects the clock source for the CAN interface to be fed to the prescalar. This bit should only be 
changed while the module is disabled.
0 Clock source is EXTAL
1 Clock source is the internal bus clock, fsys/2

S clock frequency
fsys/2 or EXTAL

PRESDIV + 1
------------------------------------------=

Resync jump width = (RJW + 1) time quanta

Phase buffer segment 1 (PSEG1 + 1) time quanta=

Phase buffer segment 2 (PSEG2 + 1) time quanta =
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12
LPB

Loop back. Configures FlexCAN to operate in loop-back mode. In this mode, FlexCAN performs an internal loop 
back that can be used for self test operation. The bit stream output of the transmitter is fed back internally to the 
receiver input. The Rx CAN input pin is ignored and the Tx CAN output goes to the recessive state (logic 1). 
FlexCAN behaves as it normally does when transmitting, and treats its own transmitted message as a message 
received from a remote node. In this mode, FlexCAN ignores the bit sent during the ACK slot in the CAN frame 
acknowledge field, generating an internal acknowledge bit to ensure proper reception of its own message. Transmit 
and receive interrupts are generated.
0 Loop back disabled
1 Loop back enabled

11
TWRN_

MSK

Tx warning interrupt mask. Provides a mask for the Tx warning interrupt associated with the TWRN_INT flag in the 
Error and Status Register. This bit has no effect if the WRN_EN bit in CANMCR is cleared and it is read as zero 
when WRN_EN is cleared.
0 Tx warning interrupt disabled
1 Tx warning interrupt enabled

10
RWRN_

MSK

Rx warning interrupt mask. Provides a mask for the Rx warning interrupt associated with the RWRN_INT flag in the 
Error and Status Register. This bit has no effect if the WRN_EN bit in CANMCR is cleared and it is read as zero 
when WRN_EN is cleared.
0 Rx warning interrupt disabled
1 Rx warning interrupt enabled

9–8 Reserved, must be cleared.

7
SMP

Sampling mode. Determines whether the FlexCAN module samples each received bit one time or three times to 
determine its value.
0 One sample, taken at the end of phase buffer segment 1, is used to determine the value of the received bit.
1 Three samples are used to determine the value of the received bit. The samples are taken at the normal sample 

point and at the two preceding periods of the S-clock; a majority rule is used.

6
BOFFREC

Bus off recovery mode. Defines how FlexCAN recovers from bus off state. If this bit is cleared, automatic recovering 
from bus off state occurs according to the CAN Specification 2.0B. If the bit is set, automatic recovering from bus 
off is disabled and the module remains in bus off state until the bit is cleared by the user. If the bit is cleared before 
128 sequences of 11 recessive bits are detected on the CAN bus, then bus off recovery happens as if the 
BOFFREC bit had never been set. If the bit is cleared after 128 sequences of 11 recessive bits occurred, FlexCAN 
re-synchronizes to the bus by waiting for 11 recessive bits before joining the bus. After clearing, the BOFFREC bit 
can be set again during bus off, but it is only effective the next time the module enters bus off. If BOFFREC was 
cleared when the module entered bus off, setting it during bus off is not effective for the current bus off recovery.
0 Automatic recovering from bus off state enabled, according to CAN Spec 2.0B
1 Automatic recovering from bus off state disabled

5
TSYN

Timer synchronize mode. Enables the mechanism that resets the free-running timer each time a message is 
received in Message Buffer 0. This  provides the means to synchronize multiple FlexCAN stations with a special 
SYNC message (global network time).
0 Timer synchronization disabled.
1 Timer synchronization enabled.
Note: There can be a bit clock skew of four to five counts between different FlexCAN modules that are using this  

on the same network.

4
LBUF

Lowest buffer transmitted first. Defines the ordering mechanism for message buffer transmission.
0 Message buffer with lowest ID is transmitted first
1 Lowest numbered buffer is transmitted first

Table 33-3. CANCTRLn Field Descriptions (continued)

Field Description
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33.3.3 FlexCAN Free Running Timer Register (TIMERn)

This register represents a 16-bit free running counter that can be read and written to by the CPU. The timer 
starts from 0x0000 after reset, counts linearly to 0xFFFF, and wraps around.

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus). During a 
message transmission/reception, it increments by one for each received or transmitted bit. When there is 
no message on the bus, it counts using the previously programmed baud rate. During freeze mode, the 
timer is not incremented.

The timer value is captured at the beginning of the identifier (ID) field of any frame on the CAN bus. This 
captured value is written into the TIMESTAMP entry in a message buffer after a successful reception or 
transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register, then an internal 
request/acknowledge procedure across clock domains is executed. All this is transparent to the user, except 
for the fact that the data takes some time to be actually written to the register. If desired, software can poll 
the register to discover when the data was actually written.

3
LOM

Listen-only mode. Configures FlexCAN to operate in listen-only mode. In this mode transmission is disabled, all 
error counters are frozen, and the module operates in a CAN error passive mode. Only messages acknowledged 
by another CAN station is received. If FlexCAN detects a message that has not been acknowledged, it flags a BIT0 
error (without changing the REC), as if it was trying to acknowledge the message. 
0 FlexCAN module is in normal active operation; listen-only mode is deactivated
1 FlexCAN module is in listen-only mode operation

2–0
PROPSEG

Propagation segment. Defines the length of the propagation segment in the bit time. The valid programmable 
values are 0–7.

Eqn. 33-5

Note: A time-quantum equals 1 S clock period.

Address: 0xFC02_0008 (TIMER0)
0xFC02_4008 (TIMER1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-7. FlexCAN Timer Register (TIMERn)

Table 33-3. CANCTRLn Field Descriptions (continued)

Field Description

Propagation segment time (PROPSEG + 1) time-quanta=
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33.3.4 Rx Mask Registers (RXGMASKn, RX14MASKn, RX15MASKn)

NOTE
These registers are provided for legacy software by clearing. For more 
configurability use the individual masking registers instead by setting 
CANMCR[BCC]. See Section 33.3.11, “Rx Individual Masking Registers 
(RXIMR0–15),” for more details.

These registers are used as acceptance masks for received frame IDs if CANMCR[BCC] is cleared. (If 
CANMCR[BCC] is set, these registers are reserved and do not affect FlexCAN operation.) Three masks 
are defined: a global mask (RXGMASKn) used for Rx buffers 0–13 and two separate masks for buffers 
14 (RX14MASKn) and 15 (RX15MASKn). The meaning of each mask bit is the following: 

MIn bit = 0: The corresponding incoming ID bit is don’t care.

MIn bit = 1: The corresponding ID bit is checked against the incoming ID bit, to see if a match exists.

These masks are used for standard and extended ID formats. The value of the mask registers should not be 
changed while in normal operation (only while in freeze mode), as locked frames that matched a message 
buffer (MB) through a mask may be transferred into the MB (upon release) but may no longer match.

See Section 33.4.2, “Mask Misalignment for Rx FIFO”, for an issue regarding the mask registers when 
using the receive FIFO.

Table 33-4. TIMERn Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
TIMER

Free running timer. Captured at the beginning of the identifier (ID) field of any frame on the CAN bus. This captured 
value is written into the TIMESTAMP entry in a message buffer after a successful reception or transmission of a 
message.

Table 33-5. Mask Examples for Normal/Extended Messages

Base ID
ID28.................ID18

IDE
Extended ID 

ID17......................................ID0
Match

MB2-ID 1 1 1 1 1 1 1 1 0 0 0 0

MB3-ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MB4-ID 0 0 0 0 0 0 1 1 1 1 1 0

MB5-ID 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MB14-ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Rx_Global_Mask 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

Rx_Msg in1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 MB31

Rx_Msg in2 1 1 1 1 1 1 1 1 0 0 1 0 MB22

Rx_Msg in3 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 3

Rx_Msg in4 0 1 1 1 1 1 1 1 0 0 0 0 4
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33.3.5 FlexCAN Error Counter Register (ERRCNTn)

This register has two 8-bit fields reflecting the value of two FlexCAN error counters: transmit error counter 
(TXECTR) and receive error counter (RXECTR). The rules for increasing and decreasing these counters 
are described in the CAN protocol and are completely implemented in the FlexCAN module. Both 
counters are read-only, except in freeze mode, where they can be written by the CPU.

Writing to the ERRCNTn register while in freeze mode is an indirect operation. The data is first written to 
an auxiliary register, then an internal request/acknowledge procedure across clock domains is executed. 

Rx_Msg in5 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 MB145

RX14MASK 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Rx_Msg in6 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 6

Rx_Msg in7 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 MB147

1 Match for Extended Format (MB3).
2 Match for Normal Format. (MB2).
3 Mismatch for MB3 because of ID0.
4 Mismatch for MB2 because of ID28.
5 Mismatch for MB3 because of ID28, Match for MB14 (Uses RX14MASKn).
6 Mismatch for MB14 because of ID27 (Uses RX14MASKn).
7 Match for MB14 (Uses RX14MASKn).

Address: 0xFC02_0010 (RXGMASK0)
0xFC02_0014 (RX14MASK0)
0xFC02_0018 (RX15MASK0)
0xFC02_4010 (RXGMASK1)
0xFC02_4014 (RX14MASK1)
0xFC02_4018 (RX15MASK1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 MI
Standard ID

MI
Extended IDW

Reset 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 33-8. FlexCAN Rx Mask Registers (RXGMASKn, RX14MASKn, RX15MASKn)

Table 33-6. RXxxMASKn Field Descriptions

Field Description

31–29 Reserved, must be cleared.

28–18
MI28–18

Standard ID mask bits. These bits are the same mask bits for the Standard and Extended Formats. 

17–0
MI17–0

Extended ID mask bits. These bits are used to mask comparison only in Extended Format. 

Table 33-5. Mask Examples for Normal/Extended Messages (continued)

Base ID
ID28.................ID18

IDE
Extended ID 

ID17......................................ID0
Match
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All this is transparent to the user, except for the fact that the data takes some time to be actually written to 
the register. If desired, software can poll the register to discover when the data was actually written.

FlexCAN responds to any bus state as described in the protocol, e.g. transmit error-active or error-passive 
flag, delay its transmission start time (error-passive), and avoid any influence on the bus when in bus off 
state. The following are the basic rules for FlexCAN bus state transitions:

• If the value of TXECTR or RXECTR increases to be greater than or equal to 128, the FLTCONF 
field in the error and status register (ERRSTATn) is updated to reflect error-passive state. 

• If the FlexCAN state is error-passive, and TXECTR or RXECTR decrements to a value less than 
or equal to 127 while the other already satisfies this condition, the ERRSTATn[FLTCONF] field is 
updated to reflect error-active state.

• If the value of TXECTR increases to be greater than 255, the ERRSTATn[FLTCONF] field is 
updated to reflect bus off state, and an interrupt may be issued. The value of TXECTR is then reset 
to zero.

• If FlexCAN is in bus off state, then TXECTR is cascaded together with another internal counter to 
count the 128th occurrences of 11 consecutive recessive bits on the bus. Hence, TXECTR is reset 
to zero and counts in a manner where the internal counter counts 11 such bits and then wraps 
around while incrementing the TXECTR. When TXECTR reaches the value of 128, the 
ERRSTATn[FLTCONF] field is updated to be error-active, and both error counters are reset to 
zero. At any instance of a dominant bit following a stream of less than 11 consecutive recessive 
bits, the internal counter resets itself to zero without affecting the TXECTR value.

• If during system start-up, only one node is operating, then its TXECTR increases in each message 
it is trying to transmit, as a result of acknowledge errors (indicated by the ERRSTATn[ACKERR] 
bit). After the transition to error-passive state, the TXECTR does not increment anymore by 
acknowledge errors. Therefore, the device never goes to the bus off state.

• If the RXECTR increases to a value greater than 127, it is not incremented further, even if more 
errors are detected while being a receiver. At the next successful message reception, the counter is 
set to a value between 119 and 127 to resume to error-active state.

Address: 0xFC02_001C (ERRCNT0)
0xFC02_401C (ERRCNT1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RXECTR TXECTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-9. FlexCAN Error Counter Register (ERRCNTn)

Table 33-7. ERRCNTn Field Descriptions

Field Description

31–16 Reserved, must be cleared.
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33.3.6 FlexCAN Error and Status Register (ERRSTATn)

ERRSTATn reflects various error conditions, some general status of the device, and is the source of three 
interrupts to the CPU. The reported error conditions (bits 15:10) are those occurred since the last time the 
CPU read this register. The read action clears bits 15-10. Bits 9–3 are status bits.

Most bits in this register are read only, except for BOFFINT and ERRINT, which are interrupt flags that 
can be cleared by writing 1 to them. Writing 0 has no effect. Refer to Section 33.4.1, “Interrupts.”

15–8
RXECTR

Receive error counter. Indicates current number of receive errors.

7–0
TXECTR

Transmit error counter. Indicates current number of transmit errors.

Address: 0xFC02_0020 (ERRSTAT0)
0xFC02_4020 (ERRSTAT1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWRN
_INT

RWRN
_INT

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BIT1
ERR

BIT0
ERR

ACK
ERR

CRC
ERR

FRM
ERR

STF
ERR

TX
WRN

RX
WRN

IDLE TXRX
FLT

CONF
0

BOFF
INT

ERR
INT

0

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-10. FlexCAN Error and Status Register (ERRSTATn)

Table 33-8. ERRSTATn Field Descriptions

Field Description

31–18 Reserved, must be cleared.

17
TWRN_INT

Tx warning interrupt flag. If the WRN_EN bit in MCR is set, the TWRN_INT bit is set when the TX_WRN flag 
transitions from 0 to 1, meaning that the Tx error counter reached 96. If the corresponding mask bit in the Control 
Register (TWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by writing one to it. Writing 
zero has no effect.
0 No such occurrence
1 The Tx error counter transition from < 96 to 96

16
RWRN_INT

Rx warning interrupt flag. If the WRN_EN bit in MCR is set, the RWRN_INT bit is set when the RX_WRN flag 
transitions from 0 to 1, meaning that the Rx error counters reached 96. If the corresponding mask bit in the Control 
Register (RWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by writing one to it. Writing 
zero has no effect.
0  No such occurrence
1 The Rx error counter transition from < 96 to 96

Table 33-7. ERRCNTn Field Descriptions (continued)

Field Description
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15
BIT1ERR

Bit1 error. Indicates inconsistency between the transmitted and received bit in a message.
0 No transmit bit error
1 At least one bit sent as recessive was received as dominant
Note: The transmit bit error field is not modified during the arbitration field or the ACK slot bit time of a message, 

or by a transmitter that detects dominant bits while sending a passive error frame.

14
BIT0ERR

Bit0 error. Indicates inconsistency between the transmitted and received bit in a message.
0 No transmit bit error
1 At least one bit sent as dominant was received as recessive

13
ACKERR

Acknowledge error. Indicates whether an acknowledgment has been correctly received for a transmitted message.
0 No ACK error was detected since the last read of this register.
1 An ACK error was detected since the last read of this register.

12
CRCERR

Cyclic redundancy check error. Indicates whether or not a CRC error has been detected by the receiver.
0 No CRC error was detected since the last read of this register.
1 A CRC error was detected since the last read of this register.

11
FRMERR

Message form error. Indicates that a form error has been detected by the receiver node, i.e. a fixed-form bit field 
contains at least one illegal bit.
0 No form error was detected since the last read of this register.
1 A form error was detected since the last read of this register.

10
STFERR

Bit stuff error. 
0 No bit stuffing error was detected since the last read of this register.
1 A bit stuffing error was detected since the last read of this register.

9
TXWRN

Transmit error status flag. Reflects the status of the FlexCAN transmit error counter.
0 Transmit error counter  96
1 TXErrCounter  96

8
RXWRN

Receiver error status flag. Reflects the status of the FlexCAN receive error counter.
0 Receive error counter  96
1 RxErrCounter 96

7
IDLE

Idle status. Indicates when there is activity on the CAN bus.
0 The CAN bus is not idle.
1 The CAN bus is idle.

6
TXRX

Transmit/receive status. Indicates when the FlexCAN module is transmitting or receiving a message. TXRX has no 
meaning when IDLE equals 1.
0 The FlexCAN is receiving a message if IDLE equals 0.
1 The FlexCAN is transmitting a message if IDLE equals 0.

5–4
FLTCONF

Fault confinement state. Indicates the confinement state of the FlexCAN module, as shown below. If the 
CANCTRLn[LOM] bit is set, FLTCONF indicates error-passive. Because the CANCTRLn register is not affected by 
soft reset, the FLTCONF field is not affected by soft reset if the LOM bit is set.
00 Error active
01 Error passive
1x Bus off

3 Reserved, must be cleared.

2
BOFFINT

Bus off interrupt. Used to request an interrupt when the FlexCAN enters the bus off state. The user must write a 1 
to clear this bit. Writing 0 has no effect.
0 No bus off interrupt requested.
1 This bit is set when the FlexCAN state changes to bus off. If the CANCTRLn[BOFFMSK] bit is set an interrupt 

request is generated. This interrupt is not requested after reset.

Table 33-8. ERRSTATn Field Descriptions (continued)

Field Description
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33.3.7 Interrupt Mask Register (IMASKn)

IMASKn contains one interrupt mask bit per buffer. It enables the CPU to determine which buffer 
generates an interrupt after a successful transmission/reception (when the corresponding IFLAGn bit is 
set).

33.3.8 Interrupt Flag Register (IFLAGn)

IFLAGn contains one interrupt flag bit per buffer. Each successful transmission/reception sets the 
corresponding IFLAGn bit and, if the corresponding IMASKn bit is set, generates an interrupt. 

The interrupt flag is cleared by writing a 1, while writing 0 has no effect.

When the AEN bit in the CANMCR is set (Abort enabled), while the IFLAG2 bit is set for a MB 
configured as Tx, the writing access done by CPU into the corresponding MB will be blocked.

When the FEN bit in the MCR is set (FIFO enabled), the function of the 8 least significant interrupt flags 
(BUF7I - BUF0I) is changed to support the FIFO operation. BUF7I, BUF6I and BUF5I indicate operating 
conditions of the FIFO, while BUF4I to BUF0I are not used.

1
ERRINT

Error interrupt. Indicates that at least one of the ERRSTATn[15:10] bits is set. The user must write a 1 to clear this 
bit. Writing 0 has no effect.
0 No error interrupt request.
1 At least one of the error bits is set. If the CANCTRLn[ERRMSK] bit is set, an interrupt request is generated.

0 Reserved, must be cleared.

Address: 0xFC02_0028 (IMASK0)
0xFC02_4028 (IMASK1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BUFnM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-11. FlexCAN Interrupt Mask Register (IMASKn)

Table 33-9. IMASKn Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
BUFnM

Buffer interrupt mask. Enables the respective FlexCAN message buffer (MB0 to MB15) interrupt. These bits allow 
the CPU to designate which buffers generate interrupts after successful transmission/reception.
0 The interrupt for the corresponding buffer is disabled.
1 The interrupt for the corresponding buffer is enabled.
Note: Setting or clearing an IMASKn bit can assert or negate an interrupt request, if the corresponding IFLAGn bit 

it is set.

Table 33-8. ERRSTATn Field Descriptions (continued)

Field Description
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33.3.9 Message Buffer Structure

The message buffer memory map starts at an offset of 0x80 from the FlexCAN’s base address (CAN0: 
0xFC02_0000 or CAN1: 0xFC02_4000)). The 256-byte message buffer space is fully used by the16 
message buffer structures.

Each message buffer consists of a control and status field that configures the message buffer, an identifier 
field for frame identification, and up to 8 bytes of data.

Address: 0xFC02_0030 (IFLAG0)
0xFC02_4030 (IFLAG1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BUFnI

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-12. FlexCAN Interrupt Flags Register (IFLAGn)

Table 33-10. IFLAGn Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–8
BUF15I–

BUF8I

Buffer interrupt flag. Indicates a successful transmission/reception for the corresponding message buffer. If the 
corresponding IMASKn bit is set, an interrupt request is generated. The user must write a 1 to clear an interrupt 
flag; writing 0 has no effect.
0 No such occurrence.
1 The corresponding buffer has successfully completed transmission or reception.

7
BUF7I

If the FIFO is not enabled, this bit flags the interrupt for MB7. If the FIFO is enabled, this flag indicates an overflow 
condition in the FIFO (frame lost because FIFO is full).

0 No such occurrence
1 MB7 completed transmission/reception or FIFO overflow

6
BUF6I

 If the FIFO is not enabled, this bit flags the interrupt for MB6. If the FIFO is enabled, this flag indicates that 5 out 
of 6 buffers of the FIFO are already occupied (FIFO almost full).
0 No such occurrence
1 MB6 completed transmission/reception or FIFO almost full

5
BUF5I

If the FIFO is not enabled, this bit flags the interrupt for MB5. If the FIFO is enabled, this flag indicates that at least 
one frame is available to be read from the FIFO.
0 No such occurrence
1 MB5 completed transmission/reception or frames available in the FIFO

4–0
BUF4I–
BUF0I

If the FIFO is not enabled, these bits flag the interrupts for MB0 toMB4. If the FIFO is enabled, these flags are not 
used and must be considered as reserved locations.
0 No such occurrence
1 Corresponding MB completed transmission/reception
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Figure 33-13. FlexCAN Message Buffer Memory Map

The message buffer structure used by the FlexCAN module is shown in Figure 33-14. Standard and 
extended frames used in the CAN Specification Version 2.0, Part B are represented. A standard frame is 
represented by the 11-bit standard identifier, and an extended frame is represented by the combined 29-bits 
of the standard identifier (11 bits) and the extended identifier (18 bits).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 CODE SRR IDE RTR LENGTH TIME STAMP

0x4 PRIO Standard ID[28:18] Extended ID[17:0]

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

Figure 33-14. Message Buffer Structure for Extended and Standard Frames

Control/Status

8 byte Data fields

0x80

0x84

0x88
Message Buffer 0

Message Buffer 1

Message Buffer 2

0x8F

0x90

0xA0

0x9F

0xAF

0xB0

FlexCAN Base 
Address Offset

Message Buffer 3

Identifier

Message Buffer 14

Message Buffer 15

0x17F

0x170

0x16F
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Table 33-11. Message Buffer Field Descriptions

Field Description

31–28 Reserved, must be cleared.

27–24
CODE

Message buffer code. Can be accessed (read or write) by the CPU and by the FlexCAN module itself, as part of 
the message buffer matching and arbitration process. The encoding is shown in Table 33-12 and Table 33-13. See 
Section 33.3.12, “Functional Overview,” for additional information.

23 Reserved, must be cleared.

22
SRR

Substitute remote request. Fixed recessive bit, used only in extended format. It must be set by the user for 
transmission (Tx Buffers) and is stored with the value received on the CAN bus for Rx receiving buffers. It can be 
received as recessive or dominant. If FlexCAN receives this bit as dominant, then it is interpreted as arbitration loss.
0 Dominant is not a valid value for transmission in Extended Format frames
1 Recessive value is compulsory for transmission in Extended Format frames

21
IDE

ID extended bit. Identifies whether the frame format is standard or extended.
0 Standard frame format
1 Extended frame format

20
RTR

Remote transmission request. Used for requesting transmissions of a data frame. If FlexCAN transmits this bit as 
1 (recessive) and receives it as 0 (dominant), it is interpreted as arbitration loss. If this bit is transmitted as 0 
(dominant), then if it is received as 1 (recessive), the FlexCAN module treats it as bit error. If the value received 
matches the value transmitted, it is considered as a successful bit transmission.
0 Indicates the current MB has a data frame to be transmitted
1 Indicates the current MB has a remote frame to be transmitted

19–16
LENGTH

Length of data in bytes. Indicates the length (in bytes) of the Rx or Tx data; data is located in offset 0x8 through 
0xF of the MB space (see Figure 33-14). In reception, this field is written by the FlexCAN module, copied from the 
DLC (data length code) field of the received frame. DLC is defined by the CAN Specification and refers to the data 
length of the actual frame before it is copied into the message buffer. In transmission, this field is written by the CPU 
and is used as the DLC field value of the frame to be transmitted. 
When RTR is set, the frame to be transmitted is a remote frame and is transmitted without the DATA field, 
regardless of the LENGTH field.

15–-0
TIME 

STAMP

Free-running counter time stamp. Stores the value of the free-running timer which is captured when the beginning 
of the identifier (ID) field appears on the CAN bus.

31–29
PRIO

Local priority. Only used when LPRIO_EN bit is set in CANMCR and it only makes sense for Tx buffers. These bits 
are not transmitted. They are appended to the regular ID to define the transmission priority. See Section 33.3.14, 
“Arbitration Process”.

28–0
ID

Standard frame identifier: In standard frame format, only the 11 most significant bits (28 to 18) are used for frame 
identification in receive and transmit cases. The 18 least significant bits are ignored.

Extended frame identifier: In extended frame format, all bits (the 11 bits of the standard frame identifier and the 18 
bits of the extended frame identifier) are used for frame identification in receive and transmit cases.

31–24, 
23–16, 

15–8, 7–0
DATA

Data field. Up to eight bytes can be used for a data frame. For Rx frames, the data is stored as it is received from 
the CAN bus. For Tx frames, the CPU provides the data to be transmitted within the frame.
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Table 33-12. Message Buffer Code for Rx Buffers

Rx Code 
BEFORE

Rx New Frame
Description

Rx Code 
AFTER

Rx New Frame
Comment

0000
INACTIVE: MB is not 

active.
—

MB does not participate in the matching process.

0100
EMPTY: MB is active 

and empty.
0010

MB participates in the matching process. When a 
frame is received successfully, the code is 
automatically updated to FULL.

0010 FULL: MB is full.

0010

The act of reading the control & status (C/S) word 
followed by unlocking the MB does not make the 
code return to EMPTY. It remains FULL. If a new 
frame is written to the MB after the C/S word was 
read and the MB was unlocked, the code remains 
FULL.

0110

If the MB is FULL and a new frame should be written 
into this MB before the CPU had time to read it, the 
MB is overwritten, and the code is automatically 
updated to OVERRUN.

0110
OVERRUN: A frame 

was overwritten into a 
full buffer.

0010
If the code indicates OVERRUN but the CPU reads 
the C/S word and then unlocks the MB, when a new 
frame is written to the MB, the code returns to FULL.

0110
If the code already indicates OVERRUN, and yet 
another new frame must be written, the MB is 
overwritten again, and the code remains OVERRUN.

0XY11

1 For transmit message buffers (see Table 33-13), the BUSY bit should be ignored upon read, except when 
CANMCR[AEN] is set.

BUSY: Flexcan is 
updating the contents 
of the MB with a new 

receive frame.
The CPU should not try 

to access the MB.

0010
An EMPTY buffer was written with a new frame (XY 
was 01).

0110
A FULL/OVERRUN buffer was overwritten (XY was 
11).

Table 33-13. Message Buffer Code for Tx Buffers

MBn[RTR] Initial Tx 
Code

Code After 
Successful 

Transmission
Description

X 1000 — INACTIVE: Message buffer not ready for transmit and 
participates in the arbitration process.

X 1001 — ABORT: MB was configured as Tx and CPU aborted the 
transmission. This code is only valid when AEN bit in CANMCR 
is set. MB does not participate in the arbitration process.

0 1100 1000 Data frame to be transmitted once, unconditionally. After 
transmission, the MB automatically returns to the INACTIVE 
state.
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33.3.10 Rx FIFO Structure

When the FEN bit is set in the CANMCR, the memory area from 0x80–0xFC (which is normally occupied 
by MBs 0 to 7) is used by the reception FIFO engine. Figure 33-15 shows the Rx FIFO data structure. The 
region 0x80–0x8C contains an MB structure which is the port through which the CPU reads data from the 
FIFO (the oldest frame received and not read yet). The region 0x90–0xDC is reserved for internal use of 
the FIFO engine. The region 0xE0–0xFC contains an 8-entry ID table that specifies filtering criteria for 
accepting frames into the FIFO. Figure 33-16 shows the three different formats that the elements of the ID 
table can assume, depending on the IDAM field of the MCR. Note that all elements of the table must have 
the same format. See Section 33.3.18, “Rx FIFO”, for more information.

1 1100 0100 Remote frame to be transmitted unconditionally once, and 
message buffer becomes an Rx message buffer with the same 
ID for data frames.

0 1010 1010 Transmit a data frame when a remote request frame with the 
same ID is received. This message buffer participates 
simultaneously in the matching and arbitration processes. The 
matching process compares the ID of the incoming remote 
request frame with the ID of the MB. If a match occurs, this 
message buffer is allowed to participate in the current arbitration 
process and the CODE field is automatically updated to 1110 to 
allow the MB to participate in future arbitration runs. When the 
frame is eventually transmitted successfully, the code 
automatically returns to 1010 to restart the process again.

0 1110 1010 This is an intermediate code automatically written to the 
message buffer as a result of match to a remote request frame. 
The data frame is transmitted unconditionally once, and then 
the code automatically returns to 1010. The CPU can also write 
this code with the same effect.

Table 33-13. Message Buffer Code for Tx Buffers (continued)

MBn[RTR] Initial Tx 
Code

Code After 
Successful 

Transmission
Description
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 SRR IDE RTR LENGTH TIME STAMP

0x4 Standard ID[28:18] Extended ID[17:0]

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

0x90

Reservedto

0xDC

0xE0 ID Table 0

0xE4 ID Table 1

0xE8 ID Table 2

0xEC ID Table 3

0xF0 ID Table 4

0xF4 ID Table 5

0xF8 ID Table 6

0xFC ID Table 7

Figure 33-15. Rx FIFO Structure

Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A
R
E
M

E
X
T

RXIDA
(Standard = 29–19, Extended = 29–1)

B
R
E
M

E
X
T

RXIDB_0
(Standard = 29–19, Extended = 29–16)

R
E
M

E
X
T

RXIDB_1
(Standard = 13–3, Extended = 13–0)

C
RXIDC_0

(Std/Ext = 31–24)
RXIDC_1

(Std/Ext = 23–16)
RXIDC_2

(Std/Ext = 15–8)
RXIDC_3

(Std/Ext = 7–0)

Figure 33-16. ID Table 0–7

Table 33-14. Message Buffer Field Descriptions

Field Description

REM Remote frame. specifies if Remote Frames are accepted into the FIFO if they match the target ID.
0 Remote Frames are rejected and data frames can be accepted
1 Remote Frames can be accepted and data frames are rejected

EXT Extended frame. Specifies whether extended or standard frames are accepted into the FIFO if they match the target 
ID.
0 Extended frames are rejected and standard frames can be accepted
1 Extended frames can be accepted and standard frames are rejected

RXIDA Rx frame identifier (Format A). Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame 
format, only the 11 most significant bits are used for frame identification. In the extended frame format, all bits are 
used.



FlexCAN

NXP Semiconductors 33-25

33.3.11 Rx Individual Masking Registers (RXIMR0–15)

These registers are used as acceptance masks for received frame IDs if CANMCR[BCC] is set. (If 
CANMCR[BCC] is clear, these registers are reserved and do not affect FlexCAN operation.) One mask 
register is provided for each message buffer for individual ID masking per MB. The meaning of each mask 
bit is the following: 

MIn bit = 0: The corresponding incoming ID bit is don’t care.

MIn bit = 1: The corresponding ID bit is checked against the incoming ID bit, to see if a match exists.

The individual Rx mask registers are implemented in RAM, so they are not affected by reset and must be 
explicitly initialized prior to any reception. Also, they can only be accessed by the CPU while the module 
is in freeze mode (CANMCR[FRZ, HALT] are set). Out of freeze mode, write accesses are blocked and 
read accesses return all zeros. Furthermore, if the CANMCR[BCC] bit cleared, any read or write operation 
to these registers results in access error.

These masks are used for standard and extended ID formats.

RXIDB_0, 
RXIDB_1

Rx frame identifier (Format B). Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame 
format, the 11 most significant bits (a full standard ID) are used for frame identification. In the extended frame 
format, all 14 bits of the field are compared to the 14 most significant bits of the received ID.

RXIDC_0, 
RXIDC_1, 
RXIDC_2, 
RXIDC_3

Rx frame identifier (Format C). Specifies an ID to be used as acceptance criteria for the FIFO. In both standard and 
extended frame formats, all 8 bits of the field are compared to the 8 most significant bits of the received ID.

Address: 0xFC02_0880 (RXIMR00)
0xFC02_0884 (RXIMR01)
...
0xFC02_08B8 (RXIMR014)
0xFC02_08BC (RXIMR015)

0xFC02_4880 (RXIMR10)
0xFC02_4884 (RXIMR11)
...
0xFC02_48B8 (RXIMR114)
0xFC02_48BC (RXIMR115)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 MI
Standard ID

MI
Extended IDW

Reset 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 33-17. FlexCAN Rx Individual Masking Registers (RXIMR0–15)

Table 33-15. RXxxMASKn Field Descriptions

Field Description

31–29 Reserved, must be cleared.

28–18
MI28–18

Standard ID mask bits. These bits are the same mask bits for the Standard and Extended Formats. 

17–0
MI17–0

Extended ID mask bits. These bits are used to mask comparison only in Extended Format. 

Table 33-14. Message Buffer Field Descriptions (continued)

Field Description
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33.3.12 Functional Overview

The FlexCAN module is flexible in that each one of its 16 message buffers (MBs) can be assigned as a 
transmit buffer or a receive buffer. Each MB, which is up to 8 bytes long, is also assigned an interrupt flag 
bit that indicates successful completion of transmission or reception. 

An arbitration algorithm decides the prioritization of MBs to be transmitted based on the message ID or 
the MB ordering. A matching algorithm makes it possible to store received frames only into MBs that have 
the same ID programmed on its ID field. A masking scheme makes it possible to match the ID programmed 
on the MB with a range of IDs on received CAN frames. A reception queue can be implemented by 
programming the same ID on more than one receiving MB. Data coherency mechanisms are implemented 
to guarantee data integrity during MB manipulation by the CPU.

Before proceeding with the functional description, an important concept must be explained. A message 
buffer is said to be active at a given time if it can participate in the matching and arbitration algorithms that 
are happening at that time. An Rx MB with a 0000 code is inactive (refer to Table 33-12). Similarly, a Tx 
MB with a 1000 code is inactive (refer to Table 33-13). An MB not programmed with 0000 or 1000 is 
temporarily deactivated (does not participate in the current arbitration/matching run) when the CPU writes 
to the C/S field of that MB.

33.3.13 Transmit Process

The CPU prepares or changes an MB for transmission by writing the following:

1. Control/status word to hold Tx MB inactive (CODE = 1000)

2. ID word

3. Data bytes

4. Control/status word (active CODE, LENGTH)

NOTE
The first and last steps are mandatory.

The first write to the control/status word is important in case there was pending reception or transmission. 
The write operation immediately deactivates the MB, removing it from any currently ongoing arbitration 
or ID matching processes, giving time for the CPU to program the rest of the MB (see Section 33.3.17.2, 
“Message Buffer Deactivation”). After the MB is activated in the fourth step, it participates in the 
arbitration process and eventually be transmitted according to its priority. At the end of the successful 
transmission, the value of the free running timer (TIMERn) is written into the message buffer’s time stamp 
field, the code field in the control and status word is updated, a status flag is set in the IFLAGn register, 
and an interrupt is generated if allowed by the corresponding IMASKn register bit. The new code field 
after transmission depends on the code that was used to activate the MB in step four (see Table 33-13).

33.3.14 Arbitration Process

The arbitration process is an algorithm executed by the message buffer management (MBM) that scans the 
entire MB memory looking for the highest priority message to be transmitted. All MBs programmed as 
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transmit buffers are scanned to find the lowest ID or the lowest MB number or the highest priority, 
depending on the CANCTRLn[LBUF, LPRIO_EN] bits.

NOTE
If CANCTRLn[LBUF] is cleared, the arbitration considers not only the ID, 
but also the RTR and IDE bits placed inside the ID at the same positions they 
are transmitted in the CAN frame.

The arbitration process is triggered in the following events:

• During the CRC field of the CAN frame

• During the error delimiter field of the CAN frame

• During intermission, if the winner MB defined in a previous arbitration was deactivated, or if there 
was no MB to transmit, but the CPU wrote to the C/S word of any MB after the previous arbitration 
finished

• When MBM is in idle or bus off state and the CPU writes to the C/S word of any MB

• Upon leaving freeze mode

When LBUF is set, the LPRIO_EN bit has no effect and the lowest numbered buffer is transmitted first.

When LBUF and LPRIO_EN are cleared, the MB with the lowest ID is transmitted first but.

When LBUF is cleared and LPRIO_EN is set, the PRIO bits augment the ID used during the arbitration 
process. With this extended ID concept, arbitration is based on the full 32-bit ID and the PRIO bits define 
which MB should be transmitted first. Therefore, MBs with PRIO = 000 have higher priority. If two or 
more MBs have the same priority, the regular ID determines the priority of transmission. If two or more 
MBs have the same priority (3 extra bits) and the same regular ID, the lowest MB is transmitted first.

After the highest priority MB is selected, it is transferred to a temporary storage space called serial 
message buffer (SMB), which has the same structure as a normal MB but is not user accessible. This 
operation is called move-out and after it is done, write access to the corresponding MB is blocked (if the 
AEN bit in MCR is asserted). The write access is released in the following events:

• After the MB is transmitted

• FlexCAN enters in HALT or BUS OFF

• FlexCAN loses the bus arbitration or there is an error during the transmission

At the first opportunity window on the CAN bus, the message on the SMB is transmitted according to the 
CAN protocol rules. FlexCAN transmits up to 8 data bytes, even if the data length code (DLC) value is 
bigger. 

33.3.15 Receive Process

The CPU prepares or changes an MB for frame reception by writing the following:

1. If the MB has a pending transmission, write an ABORT code (‘1001’) to the Code field of the 
Control and Status word to request an abortion of the transmission. Then, read back the Code field 
and the IFLAG register to check if the transmission was aborted. If backwards compatibility is 
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desired (AEN in MCR cleared), write ‘1000’ to the Code field to inactivate the MB, but then the 
pending frame may be transmitted without notification. If the MB already programmed as a 
receiver, write ‘0000’ to the Code field of the Control and Status word to keep the MB inactive.

2. ID word

3. Control/status word to mark the Rx MB as active and empty (CODE = 0100)

NOTE
The first and last steps are mandatory.

After the MB is activated in the third step, it is able to receive CAN frames that match the programmed 
ID. At the end of a successful reception:

• The value of the free running timer (TIMERn) is written into the time stamp field,

• The received ID, data (8 bytes at most) and length fields are stored,

• The CODE field in the control and status word is updated (see Table 33-12), and 

• A status flag is set in the IFLAGn register and an interrupt is generated if allowed by the 
corresponding IMASKn bit.

The CPU should read a receive frame from its MB by reading the following:

1. Control/status word (mandatory—activates internal lock for this buffer)

2. ID (optional—needed only if a mask was used)

3. Data field words

4. Free-running timer (Releases internal lock —optional)

Upon reading the control and status word, if the BUSY bit is set in the CODE field, then the CPU should 
defer the access to the MB until this bit is negated. Reading the free running timer is not mandatory. If not 
executed the MB remains locked, unless the CPU reads the C/S word of another MB. Only a single MB is 
locked at a time. The only mandatory CPU read operation is the one on the control and status word to 
assure data coherency.

The CPU should synchronize to frame reception by an IFLAGn bit for the specific MB (see Section 33.3.8, 
“Interrupt Flag Register (IFLAGn)”), and not by the control/status word CODE field for that MB. Polling 
the CODE field does not work because after a frame was received and the CPU services the MB (by 
reading the C/S word followed by unlocking the MB), the CODE field does not return to EMPTY. It 
remains FULL, as explained in Table 33-12. If the CPU tries to workaround this behavior by writing to the 
C/S word to force an EMPTY code after reading the MB, the MB is actually deactivated from any currently 
ongoing matching process. As a result, a newly received frame matching the ID of that MB may be lost. 
In summary, never poll by directly reading the C/S word of the MBs. Instead, read the IFLAGn register.

The received identifier field is always stored in the matching MB, thus the contents of the ID field in an 
MB may change if the match was due to masking.

33.3.15.1 Self-Received Frames

Self-received frames are frames that are sent by the FlexCAN and received by itself. The FlexCAN sends 
a frame externally through the physical layer onto the CAN bus. If the ID of the frame matches the ID of 
the FlexCAN MB, the frame is received by the FlexCAN. Such a frame is a self-received frame. FlexCAN 
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does not receive frames transmitted by itself if another device on the CAN bus has an ID that matches the 
FlexCAN Rx MB ID. Also, if SRX_DIS in CANMCR is set, FlexCAN does not store frames transmitted 
by itself in any MB, even if it contains a matching MB, and no interrupt flag or interrupt signal is generated 
due to the frame reception.

33.3.16 Matching Process

The matching process is an algorithm that scans the entire MB memory looking for Rx MBs programmed 
with the same ID as the one received from the CAN bus. Only MBs programmed to receive participate in 
the matching process for received frames.

While the ID, DLC and data fields are retrieved from the CAN bus, they are stored temporarily in the serial 
message buffer. The matching process takes place during the CRC field. If a matching ID is found in one 
of the MBs, the contents of the SMB are transferred to the matched MB during the sixth bit of the 
end-of-frame field of the CAN protocol. This operation is called move-in. If any protocol error (CRC, 
ACK, etc.) is detected, than the move-in operation does not happen.

An MB with a matching ID is free to receive a new frame if the MB is not locked (see Section 33.3.17.3, 
“Locking and Releasing Message Buffers”). The CODE field is EMPTY, FULL, or OVERRUN but the 
CPU has already serviced the MB (read the C/S word and then unlocked the MB).

For example, suppose that there are two MBs with the same ID and FlexCAN starts receiving messages 
with that ID. These MBs are the second and the fifth in the array. When the first message arrives, the 
matching algorithm finds the first match in MB number 2. The code of this MB is EMPTY, so the mes-
sage is stored there. When the second message arrives, the matching algorithm finds MB number 2 again, 
However, it is not free to receive, so it keeps looking and find MB number 5 and store the message there. 
If yet another message with the same ID arrives, the matching algorithm finds out that there are no match-
ing MBs that are free to receive, so it decides to overwrite the last matched MB, which is number 5. In 
doing so, it sets the code field of the MB to indicate OVERRUN.

The ability to match the same ID in more than one MB can be exploited to implement a reception queue 
to allow more time to the CPU for servicing the MBs. By programming more than one MB with the same 
ID, received messages are queued into the MBs. The CPU can examine the time stamp field of the MBs 
to determine the order in which the messages arrived.

The matching algorithm described above can be changed to be the same one used in previous versions of 
the FlexCAN module. When the CANMCR[BCC] bit is cleared, the matching algorithm stops at the first 
MB with a matching ID that it founds, whether this MB is free or not. As a result, the message queueing  
does not work if the BCC bit is cleared.

Matching to a range of IDs is possible by using ID acceptance masks. FlexCAN supports individual 
masking per MB. Please refer to Section 33.3.11, “Rx Individual Masking Registers (RXIMR0–15).” 
FlexCAN also supports an alternate masking scheme with only three mask registers (RXGMASK, 
RX14MASK, and RX15MASK) for backwards compatibility. This alternate masking scheme is enabled 
when the CANMCR[BCC] bit is cleared. During the matching algorithm, if a mask bit is asserted, then 
the corresponding ID bit is compared. If the mask bit is negated, the corresponding ID bit is don’t care.
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See Section 33.4.2, “Mask Misalignment for Rx FIFO”, for an issue regarding the mask registers when 
using the receive FIFO.

33.3.17 Message Buffer Managing

To maintain data coherency and FlexCAN proper operation, the CPU must obey the rules described in 
Section 33.3.13, “Transmit Process” and Section 33.3.15, “Receive Process.” Any form of CPU accessing 
a MB structure within FlexCAN other than those specified may cause FlexCAN to behave in an 
unpredictable way.

33.3.17.1 Transmission Abort Mechanism

The abort mechanism provides a safe way to request the abortion of a pending transmission. A feedback 
mechanism is provided to inform the CPU if the transmission was aborted or if the frame could not be 
aborted and was transmitted instead. In order to maintain backwards compatibility, the abort mechanism 
must be explicitly enabled by setting the AEN bit in the CANMCR.

To abort a transmission, the CPU must write a specific abort code (1001) to the Code field of the Control 
and Status word. When the abort mechanism is enabled, the active MBs configured as transmission must 
be aborted first and then they may be updated. If the abort code is written to an MB that is currently being 
transmitted, or to an MB that was already loaded into the SMB for transmission, the write operation is 
blocked and the MB is not deactivated, but the abort request is captured and kept pending until one of the 
following conditions are satisfied:

• The module loses the bus arbitration

• There is an error during the transmission

• The module is put into Freeze Mode

If none of conditions above are reached, the MB is transmitted correctly, the interrupt flag is set in the 
IFLAG register and an interrupt to the CPU is generated (if enabled). The abort request is automatically 
cleared when the interrupt flag is set. In the other hand, if one of the above conditions is reached, the frame 
is not transmitted, therefore the abort code is written into the Code field, the interrupt flag is set in the 
IFLAG and an interrupt is (optionally) generated to the CPU.

If the CPU writes the abort code before the transmission begins internally, then the write operation is not 
blocked, therefore the MB is updated and no interrupt flag is set. In this way the CPU just needs to read 
the abort code to make sure the active MB was deactivated. Although the AEN bit is set and the CPU wrote 
the abort code, in this case the MB is deactivated and not aborted, because the transmission did not start 
yet. One MB is only aborted when the abort request is captured and kept pending until one of the previous 
conditions are satisfied.

The abort procedure can be summarized as follows:

• CPU writes 1001 into the code field of the C/S word

• CPU reads the CODE field and compares it to the value that was written

• If the CODE field that was read is different from the value that was written, the CPU must read the 
corresponding IFLAG to check if the frame was transmitted or it is being currently transmitted. If 
the corresponding IFLAG is set, the frame was transmitted. If the corresponding IFLAG is reset, 
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the CPU must wait for it to be set, and then the CPU must read the CODE field to check if the MB 
was aborted (CODE=1001) or it was transmitted (CODE=1000).

33.3.17.2 Message Buffer Deactivation

If the CPU wants to change the function of an active MB, the recommended procedure is to put the module 
into freeze mode and then change the CODE field of that MB. This is a safe procedure because the 
FlexCAN waits for pending CAN bus and MB moving activities to finish before entering freeze mode. 
Nevertheless, a mechanism is provided to maintain data coherence when the CPU writes to the control and 
status word of active MBs out of freeze mode.

Any CPU write access to the C/S word of an MB causes that MB to be excluded from the transmit or 
receive processes during the current matching or arbitration round. This mechanism is called MB 
deactivation. It is temporary, affecting only for the current match/arbitration round.

The purpose of deactivation is data coherency. The match/arbitration process scans the MBs to decide 
which MB to transmit or receive. If the CPU updates the MB in the middle of a match or arbitration 
process, the data of that MB may no longer be coherent; therefore, that MB is deactivated.

Even with the coherence mechanism described above, writing to the C/S word of active MBs when not in 
freeze mode may produce undesirable results. Examples are:

• Matching and arbitration are one-pass processes. If MBs are deactivated after they are scanned, no 
re-evaluation is done to determine a new match/winner. If an Rx MB with a matching ID is 
deactivated during the matching process after it was scanned, then this MB is marked as invalid to 
receive the frame, and FlexCAN continues looking for another matching MB within the ones it has 
not scanned yet. If it can not find one, the message is lost. Suppose, for example, that two MBs 
have a matching ID to a received frame, and the user deactivated the first matching MB after 
FlexCAN has scanned the second. The received frame is lost even if the second matching MB was 
free to receive.

• If a Tx MB containing the lowest ID is deactivated after the FlexCAN has scanned it, the FlexCAN 
looks for another winner within the MBs that it has not yet scanned. Therefore, it may transmit an 
MB that may not have the lowest ID at the time because a lower ID might be present that it had 
already scanned before the deactivation.

• There is a point in time until which the deactivation of a Tx MB causes it not to be transmitted (end 
of move-out). After this point, it is transmitted, but no interrupt is issued and the CODE field is not 
updated.

33.3.17.3 Locking and Releasing Message Buffers

Besides MB deactivation, FlexCAN has another data coherence mechanism for the receive process. When 
the CPU reads the control and status word of an active not empty Rx MB, FlexCAN assumes that the CPU 
wants to read the whole MB in an atomic operation, and thus it sets an internal lock flag for that MB.

The lock is released when the CPU reads the free running timer (global unlock operation), or when it reads 
the control and status word of another MB. The MB locking is done to prevent a new frame to be written 
into the MB while the CPU is reading it.
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NOTE
The locking mechanism only applies to Rx MBs which have a code different 
than INACTIVE (0000) or EMPTY1 (0100). Also, Tx MBs can not be 
locked.

Suppose, for example, that the second and the fifth MBs of the array are programmed with the same ID, 
and FlexCAN has already received and stored messages into these two MBs. Suppose now that the CPU 
decides to read MB number 5 at the same time another message with the same ID is arriving. When the 
CPU reads the control and status word of MB number 5, this MB is locked. The new message arrives and 
the matching algorithm finds out that there are no free to receive MBs, so it decides to override MB number 
5. However, this MB is locked, so the new message can not be written there. It remains in the SMB waiting 
for the MB to be unlocked, and only then, is it written to the MB. If the MB is not unlocked in time and 
yet another new message with the same ID arrives, then the new message overwrites the one on the SMB 
and there is no indication of lost messages in the code field of the MB or in the error and status register.

While the message is being moved-in from the SMB to the MB, the BUSY bit on the code field is set. If 
the CPU reads the control and status word and finds out that the BUSY bit is set, it should defer accessing 
the MB until the BUSY bit is cleared.

If the BUSY bit is set or if the MB is empty, then reading the control and status word does not lock the MB.

NOTE
Deactivation takes precedence over locking. If the CPU deactivates a locked 
Rx MB, then its lock status is negated, and the MB is marked as invalid for 
the current matching round. Any pending message on the SMB is not 
transferred to the MB anymore.

33.3.18 Rx FIFO

The receive-only FIFO is enabled by asserting the FEN bit in the CANMCR. The reset value of this bit is 
zero to maintain software backwards compatibility with previous versions of the module that did not have 
the FIFO . When the FIFO is enabled, the memory region normally occupied by the first 8 MBs 
(0x80–0xFF) is now reserved for use of the FIFO engine (see Section 33.3.10, “Rx FIFO Structure”). 
Management of read and write pointers is done internally by the FIFO engine. The CPU can read the 
received frames sequentially, in the order they were received, by repeatedly accessing a Message Buffer 
structure at the beginning of the memory.

The FIFO can store up to six frames pending service by the CPU. An interrupt is sent to the CPU when 
new frames are available in the FIFO. Upon receiving the interrupt, the CPU must read the frame 
(accessing an MB in the 0x80 address) and then clear the interrupt. The act of clearing the interrupt triggers 
the FIFO engine to replace the MB in 0x80 with the next frame in the queue, and then issue another 
interrupt to the CPU. If the FIFO is full and more frames continue to be received, an OVERFLOW 
interrupt is issued to the CPU and subsequent frames are not accepted until the CPU creates space in the 
FIFO by reading one or more frames. A warning interrupt is also generated when five frames are 
accumulated in the FIFO.

A powerful filtering scheme is provided to accept only frames intended for the target application, thus 
reducing the interrupt servicing work load. The filtering criteria is specified by programming a table of 



FlexCAN

NXP Semiconductors 33-33

eight 32-bit registers that can be configured to one of the following formats (see also Section 33.3.10, “Rx 
FIFO Structure”):

• Format A: 8 extended or standard IDs (including IDE and RTR)

• Format B: 16 standard IDs or 16 extended 14-bit ID slices (including IDE and RTR)

• Format C: 32 standard or extended 8-bit ID slices

NOTE
A chosen format is applied to all 8 registers of the filter table. It is not 
possible to mix formats within the table.

The eight elements of the filter table are individually affected by the first eight Individual Mask Registers 
(RXIMR0–RXIMR7), allowing very powerful filtering criteria to be defined. The rest of the RXIMR, 
starting from RXIM8, continue to affect the regular MBs, starting from MB8. If the BCC bit is negated (or 
if the RXIMR are not available for the particular MCU), then the FIFO filter table is affected by the legacy 
mask registers as follows: element 6 is affected by RX14MASK, element 7 is affected by RX15MASK 
and the other elements (0 to 5) are affected by RXGMASK.

33.3.19 CAN Protocol Related Frames

33.3.19.1 Remote Frames

The remote frame is a message frame transmitted to request a data frame. The FlexCAN can be configured 
to transmit a data frame automatically in response to a remote frame, or to transmit a remote frame and 
then wait for the responding data frame to be received.

When transmitting a remote frame, the user initializes a message buffer as a transmit message buffer with 
the RTR bit set. After this remote frame is transmitted successfully, the transmit message buffer 
automatically becomes a receive message buffer, with the same ID as the remote frame that was 
transmitted.

When a remote frame is received by the FlexCAN, the remote frame ID is compared to the IDs of all 
transmit message buffers programmed with a CODE of 1010. If there is an exact matching ID, the data 
frame in that message buffer is transmitted. If the RTR bit in the matching transmit message buffer is set, 
the FlexCAN transmits a remote frame as a response.

A received remote frame is not stored in a receive message buffer. It is only used to trigger the automatic 
transmission of a frame in response. The mask registers are not used in remote frame ID matching. All ID 
bits (except RTR) of the incoming received frame must match for the remote frame to trigger a response 
transmission. The matching message buffer immediately enters the internal arbitration process, but is 
considered as a normal Tx MB, with no higher priority. The data length of this frame is independent of the 
data length code (DLC) field in the remote frame that initiated its transmission.

33.3.19.2 Overload Frames

Overload frame transmissions are not initiated by the FlexCAN unless certain conditions are detected on 
the CAN bus. These conditions include detection of a dominant bit in the following:
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• First or second bit of intermission

• Seventh (last) bit of the end-of-frame (EOF) field in receive frames

• Eighth (last) bit of the error frame delimiter or overload frame delimiter

33.3.20 Time Stamp

The value of TIMERn is sampled at the beginning of the identifier field on the CAN bus. For a message 
being received, the time stamp is stored in the TIMESTAMP entry of the receive message buffer at the 
time the message is written into that buffer. For a message being transmitted, the TIMESTAMP entry is 
written into the transmit message buffer after the transmission has completed successfully.

The free-running timer can optionally be reset upon the reception of a frame into message buffer 0. This  
allows network time synchronization to be performed. See the CANCTRLn[TSYN] bit.

33.3.21 Protocol Timing

The FlexCAN module CANCTRLn register configures the bit timing parameters required by the CAN 
protocol. The CLK_SRC, PRESDIV, RJW, PSEG1, PSEG2, and the PROPSEG fields allow the user to 
configure the bit timing parameters.

The CANCTRLn[CLK_SRC] bit defines whether the module uses the internal bus clock or the output of 
the crystal oscillator via the EXTAL pin. The crystal oscillator clock should be selected when a tight 
tolerance (up to 0.1%) is required for the CAN bus timing. The crystal oscillator clock has better jitter 
performance than PLL generated clocks. The value of this bit should not be changed, unless the module is 
in disable mode (CANMCRn[MDIS] bit is set)

The PRESDIV field controls a prescaler that generates the serial clock (S-clock), whose period defines the 
time quantum used to compose the CAN waveform. A time quantum is the atomic unit of time managed 
by the CAN engine.

Figure 33-18. CAN Engine Clocking Scheme

Eqn. 33-6

A bit time is subdivided into three segments1 (see Figure 33-19 and Table 33-16):

• SYNC_SEG: Has a fixed length of one time quantum. Signal edges are expected to happen within 
this section.

1. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference also the Bosch 
CAN 2.0A/B protocol specification dated September 1991 for bit timing.

Oscillator Clock (EXTAL)

Prescaler
(1 .. 256)

S clock1

0

(fsys/2)
Internal Bus Clock

CANCTRLn[CLK_SRC]

fTq

fsys/2 or EXTAL
PRESDIV + 1 

---------------------------------------=



FlexCAN

NXP Semiconductors 33-35

• Time Segment 1: Includes the propagation segment and the phase segment 1 of the CAN standard. 
It can be programmed by setting the PROPSEG and the PSEG1 fields of the CANCTRLn register 
so that their sum (plus 2) is in the range of 4 to 16 time quanta.

• Time Segment 2: Represents the phase segment 2 of the CAN standard. It can be programmed by 
setting the PSEG2 field of the CANCTRLn register (plus 1) to be 2 to 8 time quanta long.

Eqn. 33-7

Figure 33-19. Segments within the Bit Time

Table 33-17 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE
It is the user’s responsibility to ensure the bit time settings are in compliance 
with the CAN standard. For bit time calculations, use an IPT (Information 
Processing Time) of 2, which is the value implemented in the FlexCAN 
module

Table 33-16. Time Segment Syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this 
point.

Sample Point A node samples the bus at this point. If the three samples per bit 
option is selected, then this point marks the position of the third 
sample.

Bit Rate
fTq

(number of Time Quanta)
-------------------------------------------------------------=

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8 

8 ... 25 Time Quanta
= 1 Bit Time

NRZ Signal

Sample Point 
(single or triple sampling)

 (PROP_SEG + PSEG1 + 2)  (PSEG2 + 1)

Transmit Point 
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33.3.22 Arbitration and Matching Timing

During normal transmission or reception of frames, the arbitration, matching, move-in and move-out 
processes are executed during certain time windows inside the CAN frame, as shown in the following 
figure.

Figure 33-20. Figure 19. Arbitration, Match and Move Time Windows

When doing matching and arbitration, FlexCAN needs to scan the whole Message Buffer memory during 
the available time slot. In order to have sufficient time to do that, the following requirements must be 
observed:

• A valid CAN bit timing must be programmed, as indicated in Table 33-17

• The peripheral clock frequency can not be smaller than the oscillator clock frequency, i.e. the PLL 
can not be programmed to divide down the oscillator clock

• There must be a minimum ratio between the peripheral clock frequency and the CAN bit rate, as 
specified in Table 33-18

Table 33-17. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Re-synchronization 

Jump Width

5 .. 10 2 1 .. 2

4 .. 11 3 1 .. 3

5 .. 12 4 1 .. 4

6 .. 13 5 1 .. 4

7 .. 14 6 1 .. 4

8 .. 15 7 1 .. 4

9 .. 16 8 1 .. 4

Table 33-18. Minimum Ratio Between Peripheral Clock Frequency and CAN Bit Rate

Number of Message
Buffers

Minimum Ratio

16 8

IntermEOF (7)CRC (15)

Matching/arbitration window (24 bits) Move window

Start move
(bit 6)
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A direct consequence of the first requirement is that the minimum number of time quanta per CAN bit must 
be 8, so the oscillator clock frequency should be at least 8 times the CAN bit rate. The minimum frequency 
ratio specified in Table 33-18 can be achieved by choosing a high enough peripheral clock frequency when 
compared to the oscillator clock frequency, or by adjusting one or more of the bit timing parameters 
(PRESDIV, PROPSEG, PSEG1, PSEG2). As an example, taking the case of 64 MBs, if the oscillator and 
peripheral clock frequencies are equal and the CAN bit timing is programmed to have 8 time quanta per 
bit, then the prescaler factor (PRESDIV + 1) should be at least 2. For prescaler factor equal to one and 
CAN bit timing with 8 time quanta per bit, the ratio between peripheral and oscillator clock frequencies 
should be at least 2.

33.4 Initialization/Application Information
Initialization of the FlexCAN includes the initial configuration of the message buffers and configuration 
of the CAN communication parameters following a reset, as well as any reconfiguration that may be 
required during operation. The FlexCAN module may be reset in three ways:

• Device level hard reset—resets all memory mapped registers asynchronously

• Device level soft reset—resets some of the memory mapped registers synchronously (refer to 
Table 33-1 to see which registers are affected by soft reset)

• CANMCRn[SOFT_RST] bit—has the same effect as the device level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure across clock 
domains. Therefore, it may take some time to fully propagate its effects. The CANMCRn[SOFT_RST] bit 
remains asserted while soft reset is pending, so software can poll this bit to know when the reset has 
completed. Also, soft reset can not be applied while clocks are shut down in any of the low power modes. 
The low power mode should be exited and the clocks resumed before applying soft reset.

The clock source, CANCTRLn[CLK_SRC], should be selected while the module is in disable mode. After 
the clock source is selected and the module is enabled (CANMCRn[MDIS] bit cleared), the FlexCAN 
automatically enters freeze mode. In freeze mode, the FlexCAN is un-synchronized to the CAN bus, the 
CANMCRn register’s HALT and FRZ bits are set, the internal state machines are disabled, and the 
CANMCRn register’s FRZ_ACK and NOT_RDY bits are set. The CANnTX pin is in recessive state and 
the FlexCAN does not initiate any transmission or reception of CAN frames. The message buffers are not 
affected by reset, so they are not automatically initialized.

For any configuration change/initialization, the FlexCAN must be in freeze mode (see Section 33.1.3.2, 
“Freeze Mode”). The following is a generic initialization sequence applicable to the FlexCAN module:

1. Initialize the CANMCR register

a) Enable individual filtering per MB and reception queue features by setting the BCC bit

32 8

64 16

Table 33-18. Minimum Ratio Between Peripheral Clock Frequency and CAN Bit Rate (continued)

Number of Message
Buffers

Minimum Ratio
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b) Enable the warning interrupts by setting the WRN_EN bit

c) If required, disable frame self reception by setting the SRX_DIS bit

d) Enable the FIFO by setting the FEN bit

e) Enable the abort mechanism by setting the AEN bit

f) Enable the local priority  by setting the LPRIO_EN bit

2. Initialize all operation modes in the CANCTRL register.

a) Initialize the bit timing parameters PROPSEG, PSEGS1, PSEG2, and RJW.

b) Select the S-clock rate by programming the PRESDIV field.

c) Select the internal arbitration mode via the LBUF bit.

3. Initialize message buffers.

a) The control/status word of all message buffers must be written as an active or inactive message 
buffer

b) If FIFO was enabled, the 8-entry ID table must be initialized

c) All other entries in each message buffer should be initialized as required

4. Initialize the RX individual mask registers for acceptance mask as needed.

5. Initialize FlexCAN interrupt handler.

a) Initialize the interrupt controller registers for any needed interrupts. See Chapter 17, “Interrupt 
Controller Modules (INTC),” for more information.

b) Set the required mask bits in the IMASKn register (for all message buffer interrupts) and the 
CANCTRLn (for bus off and error interrupts).

6. Clear the CANMCRn[HALT] bit. At this point, the FlexCAN attempts to synchronize with the 
CAN bus.

33.4.1 Interrupts

There are 19 interrupt sources for the FlexCAN module. An interrupt for each of the 16 MBs. Plus, a 
combined interrupt for all 16 MBs is generated by logically OR’ing all the interrupt sources from the MBs. 
In this case, the CPU must read the IFLAGn register to determine which MB caused the interrupt. The 
other interrupt sources (bus off and error) act in the same manner, and are located in the ERRSTATn 
register. The bus off and error interrupt mask bits are located in the CANCTRLn register.

33.4.2 Mask Misalignment for Rx FIFO

During CAN message reception by FlexCAN, RXGMASK is an acceptance mask for most of the Rx 
Message Buffers (MB). When the FIFO enable bit in the FlexCAN Module Configuration Register 
(CANx_MCR[FEN]) is set, the RXGMASK also applies to most of the elements of the ID filter table. 
However, there is a misalignment between the position of the ID field in the Rx MB and in RXIDA, 
RXIDB and RXIDC fields of the ID Tables. In fact RXIDA filter in the ID Tables is shifted one bit to the 
left from Rx MBs ID position as shown below: 

• Rx MB ID = bits 28–0 of ID word corresponding to message ID bits 31–3

• RXIDA = bits 29–1 of ID Table corresponding to message ID bits 31–3
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Note that the mask bits’ one-to-one correspondence occurs with the filters bits, not with the incoming 
message ID bits. This leads the RXGMASK to affect Rx MB and Rx FIFO filtering in different ways. For 
example, if the user intends to mask bit 7 of the ID filter of Message Buffers then configure RXGMASK 
to 0xFFFF_FFEF. As result, bit 7of the ID field of the incoming message is ignored during filtering process 
for Message Buffers. This very same configuration of RXGMASK leads bit 7 of RXIDA to be “don't care” 
and thus bit 6 of the ID field of the incoming message is ignored during filtering process for Rx FIFO. 
Similarly, RXIDB and RXIDC filters have multiple misalignments with regards to position of ID field in 
Rx MBs, which can lead to erroneous masking during filtering process for either Rx FIFO or MBs. 
RX14MASK (Rx 14 Mask) and RX15MASK (Rx 15 Mask) have the same structure as the RXGMASK. 
This includes the misalignment problem between the position of the ID field in the Rx MBs and in RXIDA, 
RXIDB and RXIDC fields of the ID Tables.

33.4.2.1 Work Around

It is recommended that one of the following actions be taken to avoid problems:

• Do not enable the RxFIFO. If CANx_MCR[FEN]=0 then the Rx FIFO is disabled and thus the 
masks RXGMASK, RX14MASK and RX15MASK do not affect it.

• Enable Rx Individual Mask Registers. If the Backwards Compatibility Configuration bit in the 
FlexCAN Module Configuration Register (CANx_MCR[BCC]) is set then the Rx Individual Mask 
Registers (RXIMR0-63) are enabled and thus the masks RXGMASK, RX14MASK and 
RX15MASK are not used.

• Do not use masks RXGMASK, RX14MASK and RX15MASK (i.e. let them in reset value which 
is 0xFFFF_FFFF) when CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this case, filtering 
processes for both Rx MBs and Rx FIFO are not affected by those masks.

• Do not configure any MB as Rx (i.e. let all MBs as either Tx or inactive) when 
CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this case, the masks RXGMASK, 
RX14MASK and RX15MASK can be used to affect ID Tables without affecting filtering process 
for Rx MBs.
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Chapter 34  
Motor Control Pulse-Width Modulator (mcPWM)

34.1 Introduction

34.1.1 Overview

The pulse width modulator module (PWM) contains four PWM submodules, each able to control a single 
half-bridge power stage. There are also three fault channels.

This PWM is capable of controlling most motor types:

• AC induction motors (ACIM)

• Permanent magnet AC motors (PMAC)

• Brushless (BLDC) and brush DC motors (BDC)

• Switched (SRM) and variable reluctance motors (VRM)

• Stepper motors

NOTE
The PWM_Xn and OUT_TRIGn signals are not output from this device. 
However, they are available to the on-chip analog-to-digital convertor for 
triggering a conversion sequence.
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34.1.2 Block Diagram

Figure 34-1. PWM Block Diagram

34.1.3 Features
• 16-bit resolution for center-aligned, edge-aligned, and asymmetrical PWMs

• PWM outputs can operate as complimentary pairs or independent channels

• Can accept signed numbers for PWM generation

• Independent control of both edges of each PWM output

• Synchronization to external hardware or other PWM supported

• Double-buffered PWM registers

— Integral reload rates from 1 to 16

— Half-cycle reload capability

PWM_A0

PWM_B0

Fault
Channel 0

PWM_SYNC

F
au

lts

M
as

te
r 

R
el

oa
d

O
ut

pu
t T

rig
ge

rs

A
ux

 C
lo

ck

Sub-Module 1

Sub-Module 3

PWM_FAULT0–2

PWM_A1

PWM_B1

PWM_A3

PWM_B3

PWM_FORCE

In
te

rr
up

ts

M
as

te
r 

S
yn

c

M
as

te
r 

F
or

ce

Sub-Module 0



Motor Control Pulse-Width Modulator (mcPWM)

NXP Semiconductors 34-3

• Multiple output trigger events can be generated per PWM cycle via hardware

• Support for double-switching PWM outputs

• Fault inputs can be assigned to control multiple PWM outputs

• Programmable filters for fault inputs

• Independently programmable PWM output polarity

• Independent top and bottom deadtime insertion

• Each complementary pair can operate with its own PWM frequency and deadtime values

• Individual software-control for each PWM output

• All outputs can be programmed to change simultaneously via a “Force Out” event

• PWM_X signals can optionally output a third PWM signal from each submodule

• Channels not used for PWM generation can be used for buffered output compare functions

• Channels not used for PWM generation can be used for input capture functions

• Enhanced dual edge capture functionality

• The option to supply the source for each complementary PWM signal pair from any of the 
following:

— External digital pin

— Internal timer channel

— External ADC input, accounting for values set in ADC high and low limit registers

34.1.4 Modes of Operation

Take care when using this module in certain chip operating modes. Some motors (3-phase AC motors) 
require regular software updates for proper operation. Failure to do so could result in destroying the motor 
or inverter. Because of this, PWM outputs are placed in their inactive states in STOP mode, and optionally 
under WAIT and debug modes. PWM outputs are reactivated (assuming they were active to begin with) 
when these modes are exited.

Table 34-1. Modes When PWM Operation is Restricted

Mode Description

STOP Peripheral and CPU clocks are stopped. PWM outputs are driven inactive.

WAIT CPU clocks are stopped while peripheral clocks continue to run.
PWM outputs are driven inactive as a function of PWM_SMnCR2[WAITEN].

DEBUG CPU and peripheral clocks continue to run, but CPU may stall for periods of time.
PWM outputs are driven inactive as a function of the PWM_SMnCR2[DBGEN] 
bit.
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34.2 External Signal Descriptions

34.3 Memory Map/Register Description
Each of the four submodules contain a set of registers for configuring their respective PWM signals. The 
base addresses are indicated in Table 34-3. There are also a set of registers for configuring the PWM 
outputs and the fault channels.

Table 34-2. PWM Signal Descriptions

Signal I/O Description

PWM_A[3:0]
PWM_B[3:0]

I/O External PWM pair. They can be independent output PWM signals or a complementary pair. 
When not needed as an output, they can be used for input capture.

PWM_FAULT[2:0] I Fault inputs for disabling selected PWM outputs

PWM_SYNC I External synchronization signal. Allows a source external to the PWM to initialize the PWM 
counter.

PWM_FORCE I External output force signal. Allows a source external to the PWM to force an update of the 
PWM outputs.
For example, simultaneously switching all PWM outputs on a commutation boundary for 
trapezoidal control of a BLDC motor. The boundary can be established by external logic or an 
on-chip timer.

PWM_EXTA[3:0] I Alternate PWM control signals. These pins allow an alternate source to control the PWMA 
outputs. Although typically, the PWM_EXTAn input is used for the generation of a 
complementary pair. Typical connections include ADC results registers, timer outputs, GPIO 
inputs, and comparator outputs.

Table 34-3. Submodule Base Addresses

Submodule # Base Address

0 0xEC08_8000

1 0xEC08_8050

2 0xEC08_80A0

3 0xEC08_80F0

Table 34-4. PWM Memory Map

Address Register Width Access Reset Value Section/Page

Submodule n registers (n = 0–3)

0xEC08_8000
+ (n  0x50)

Counter register (PWM_SMnCNT) 16 R 0x0000 34.3.1/34-7

0xEC08_8002
+ (n  0x50)

Initial Count Register (PWM_SMnINIT) 16 R/W 0x0000 34.3.2/34-7

0xEC08_8004
+ (n  0x50)

Control Register 2 (PWM_SMnCR2) 16 R/W 0x0000 34.3.3/34-7
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0xEC08_8006
+ (n  0x50)

Control Register 1 (PWM_SMnCR1) 16 R/W 0x0000 34.3.4/34-9

0xEC08_8008
+ (n  0x50)

Value Register 0 (PWM_SMnVAL0) 16 R/W 0x0000 34.3.5/34-10

0xEC08_800A
+ (n  0x50)

Value Register 1 (PWM_SMnVAL1) 16 R/W 0x0000 34.3.5/34-10

0xEC08_800C
+ (n  0x50)

Value Register 2 (PWM_SMnVAL2) 16 R/W 0x0000 34.3.5/34-10

0xEC08_800E
+ (n  0x50)

Value Register 3 (PWM_SMnVAL3) 16 R/W 0x0000 34.3.5/34-10

0xEC08_8010
+ (n  0x50)

Value Register 4 (PWM_SMnVAL4) 16 R/W 0x0000 34.3.5/34-10

0xEC08_8012
+ (n  0x50)

Value Register 5 (PWM_SMnVAL5) 16 R/W 0x0000 34.3.5/34-10

0xEC08_8018
+ (n  0x50)

Output Control Register (PWM_SMnOCR) 16 R/W See Section 34.3.6/34-11

0xEC08_801A
+ (n  0x50)

Status Register (PWM_SMnSR) 16 R/W 0x0000 34.3.7/34-13

0xEC08_801C
+ (n  0x50)

Interrupt Enable Register (PWM_SMnIER) 16 R/W 0x0000 34.3.8/34-14

0xEC08_801E
+ (n  0x50)

DMA Enable Register (PWM_SMnDMAEN) 16 R/W 0x0000 34.3.9/34-14

0xEC08_8020
+ (n  0x50)

Output Trigger Control Register (PWM_SMnOTCR) 16 R/W 0x0000 34.3.10/34-15

0xEC08_8022
+ (n  0x50)

Fault Disable Mapping Register (PWM_SMnDISMAP) 16 R/W 0xFFFF 34.3.11/34-16

0xEC08_8024
+ (n  0x50)

Deadtime Count Register 0 (PWM_SMnDTCNT0) 16 R/W 0x07FF 34.3.12/34-17

0xEC08_8026
+ (n  0x50)

Deadtime Count Register 1 (PWM_SMnDTCNT1) 16 R/W 0x07FF 34.3.12/34-17

0xEC08_8028
+ (n  0x50)

Capture Control Register A (PWM_SMnCCRA) 16 R/W 0x0000 34.3.13/34-17

0xEC08_802A
+ (n  0x50)

Capture Compare Register A (PWM_SMnCCMPA) 16 R/W 0x0000 34.3.14/34-19

0xEC08_802C
+ (n  0x50)

Capture Control Register B (PWM_SMnCCRB) 16 R/W 0x0000 34.3.13/34-17

0xEC08_802E
+ (n  0x50)

Capture Compare Register B (PWM_SMnCCMPB) 16 R/W 0x0000 34.3.14/34-19

0xEC08_8030
+ (n  0x50)

Capture Control Register X (PWM_SMnCCRX) 16 R/W 0x0000 34.3.13/34-17

Table 34-4. PWM Memory Map (continued)

Address Register Width Access Reset Value Section/Page
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0xEC08_8032
+ (n  0x50)

Capture Compare Register X (PWM_SMnCCMPX) 16 R/W 0x0000 34.3.14/34-19

0xEC08_8034
+ (n  0x50)

Capture Value 0 Register (PWM_SMnCVAL0) 16 R 0x0000 34.3.15/34-20

0xEC08_8036
+ (n  0x50)

Capture Value 0 Cycle Register (PWM_SMnCCYC0) 16 R 0x0000 34.3.16/34-21

0xEC08_8038
+ (n  0x50)

Capture Value 1 Register (PWM_SMnCVAL1) 16 R 0x0000 34.3.15/34-20

0xEC08_803A
+ (n  0x50)

Capture Value 1 Cycle Register (PWM_SMnCCYC1) 16 R 0x0000 34.3.16/34-21

0xEC08_803C
+ (n  0x50)

Capture Value 2 Register (PWM_SMnCVAL2) 16 R 0x0000 34.3.15/34-20

0xEC08_803E
+ (n  0x50)

Capture Value 2 Cycle Register (PWM_SMnCCYC2) 16 R 0x0000 34.3.16/34-21

0xEC08_8040
+ (n  0x50)

Capture Value 3 Register (PWM_SMnCVAL3) 16 R 0x0000 34.3.15/34-20

0xEC08_8042
+ (n  0x50)

Capture Value 3 Cycle Register (PWM_SMnCCYC3) 16 R 0x0000 34.3.16/34-21

0xEC08_8044
+ (n  0x50)

Capture Value 4 Register (PWM_SMnCVAL4) 16 R 0x0000 34.3.15/34-20

0xEC08_8046
+ (n  0x50)

Capture Value 4 Cycle Register (PWM_SMnCCYC4) 16 R 0x0000 34.3.16/34-21

0xEC08_8048
+ (n  0x50)

Capture Value 5 Register (PWM_SMnCVAL5) 16 R 0x0000 34.3.15/34-20

0xEC08_804A
+ (n  0x50)

Capture Value 5 Cycle Register (PWM_SMnCCYC5) 16 R 0x0000 34.3.16/34-21

Configuration registers

0xEC08_8140 Output Enable Register (PWM_OUTEN) 16 R/W 0x0000 34.3.17/34-21

0xEC08_8142 Output Mask Register (PWM_MASK) 16 R/W 0x0000 34.3.18/34-22

0xEC08_8144 Software Controlled Output Register (PWM_SWCOUT) 16 R/W 0x0000 34.3.19/34-23

0xEC08_8146 Deadtime Source Select Register (PWM_DTSS) 16 R/W 0x0000 34.3.20/34-23

0xEC08_8148 Master Control Register (PWM_MCR) 16 R/W 0x0000 34.3.21/34-24

Fault channel registers

0xEC08_814C Fault Control Register (PWM_FCR) 16 R/W 0x0000 34.3.22/34-25

0xEC08_814E Fault Status Register (PWM_FSR) 16 R/W See Section 34.3.23/34-26

0xEC08_8150 Fault Filter Register (PWM_FFILT) 16 R/W 0x0000 34.3.24/34-27

Table 34-4. PWM Memory Map (continued)

Address Register Width Access Reset Value Section/Page
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34.3.1 Counter Register (PWM_SMnCNT)

34.3.2 Initial Count Register (PWM_SMnINIT)

34.3.3 Control Register 2 (PWM_SMnCR2)

Address: 0xEC08_8000 (PWM_SM0CNT)
0xEC08_8050 (PWM_SM1CNT)

0xEC08_80A0 (PWM_SM2CNT)
0xEC08_80F0 (PWM_SM3CNT)

Access: User read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-2. Counter Register (PWM_SMnCNT)

Table 34-5. PWM_SMnCNT Field Descriptions

Field Description

15–0
CNT

Displays the state of the signed 16-bit submodule counter. This register is not byte-accessible.

Address: 0xEC08_8002 (PWM_SM0INIT)
0xEC08_8052 (PWM_SM1INIT)

0xEC08_80A2 (PWM_SM2INIT)
0xEC08_80F2 (PWM_SM3INIT)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INIT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-3. Initial Count Register (PWM_SMnINIT)

Table 34-6. PWM_SMnINIT Field Descriptions

Field Description

15–0
INIT

Defines the initial count value for the PWM in PWM clock periods. This is the value loaded into the submodule 
counter when local sync, master sync, or master reload is asserted (based on PWM_SMnCR2[INIT_SEL]) or when 
PWM_FORCE is asserted and PWM_SMnCR2[FRCEN] is set. For PWM operation, the buffered contents of this 
register are loaded into the counter at the start of each PWM cycle. This register is not byte-accessible.
Note: This register is buffered. The value written does not take effect until PWM_MCR[LDOK] is set and the next 

PWM load cycle begins or PWM_SMnCR1[LDMOD] is set. This register cannot be written when LDOK is set. 
Reading INIT reads the value in a buffer and not necessarily the value the PWM generator is currently using.

Address: 0xEC08_8004 (PWM_SM0CR2)
0xEC08_8054 (PWM_SM1CR2)

0xEC08_80A4 (PWM_SM2CR2)
0xEC08_80F4 (PWM_SM3CR2)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DBG
EN

WAIT
EN

INDEP
PWM
23_
INIT

PWM
45_
INIT

PWM
X_

INIT
INIT_SEL

FRC
EN

0
FORCE_SEL

RELO
AD

_SEL
CLK_SELW FOR

CE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-4. Control Register 2 (PWM_SMnCR2)
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Table 34-7. PWM_SMnCR2 Field Descriptions

Field Description

15
DBGEN

Debug enable. 
0 The PWM outputs are disabled until debug mode is exited. At that point the PWM pins resume operation as 

programmed in the PWM registers.
1 The PWM continues to run while the processor is in debug mode
Note: For certain types of motors (3-phase AC), leave this bit cleared. Failure to do so could result in damage 

to the motor or inverter. For other types of motors (DC motors), this bit might safely be set. PWM 
parameter updates do not occur in debug mode. Any motors requiring such updates should be disabled 
during debug mode. If in doubt, leave this bit cleared.

14
WAITEN

Wait enable.
0 The PWM outputs are disabled until WAIT mode is exited. At that point the PWM pins resume operation as 

programmed in the PWM registers.
1 The PWM continues to run while the chip is in wait mode. In wait mode, the peripheral clock continues to run 

but the CPU clock does not.
Note: For certain types of motors (3-phase AC), leave this bit cleared. Failure to do so could result in damage 

to the motor or inverter. For other types of motors (DC motors), this bit might safely be set. PWM 
parameter updates do not occur in wait mode. Any motors requiring such updates should be disabled 
during wait mode. If in doubt, leave this bit cleared.

13
INDEP

Independent or complementary pair operation. Determines if the PWMA and PWMB channels are independent 
PWMs or a complementary PWM pair.
0 PWMA and PWMB form a complementary PWM pair
1 PWMA and PWMB outputs are independent PWMs

12
PWM23_INIT

PWM23 initial value. Determines the initial value for PWM23 and the value it is forced when FORCE_INIT is 
asserted. See Figure 34-39 for details on how FORCE_INIT is derived.

11
PWM45_INIT

PWM45 initial value. Determines the initial value for PWM45 and the value it is forced when FORCE_INIT is 
asserted. See Figure 34-39 for details on how FORCE_INIT is derived.

10
PWMX_INIT

PWMX initial value. Determines the initial value for PWMX and the value it is forced when FORCE_INIT is 
asserted. See Figure 34-39 for details on how FORCE_INIT is derived.

9–8
INIT_SEL

Initialization control select. Controls the source of the INIT signal which goes to the counter.
00 Local sync (PWM_X) causes initialization
01 Master reload from submodule 0 causes initialization. Do not use this setting in PWM_SM0CR2 as it forces 

the INIT signal to logic 0.
10 Master sync from submodule 0 causes initialization. Do not use this setting in PWM_SM0CR2 as it forces 

the INIT signal to logic 0.
11 PWM_SYNC causes initialization

7
FRCEN

Force initialization enable. Allows the FORCE signal to initialize the counter without regard to INIT_SEL. This is 
a software-controlled initialization.
0 Initialization from a force out event is disabled
1 Initialization from a force out event is enabled

6
FORCE

Force initialization. If FORCE_SEL is 000, setting this bit results in a force out event. This causes the following:
 • The PWMA and PWMB output pins assume values based on the SEL23 and SEL45 bits
 • If FRCEN is set, the counter value is initialized with the PWM_SMnINIT register value
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34.3.4 Control Register 1 (PWM_SMnCR1)

5–3
FORCE_SEL

Force source select. Determines the source of the force output signal for this submodule.
000 The local FORCE bit from this submodule
001 The master force signal from submodule 0. Do not use this setting in PWM_SM0CR2 as it holds the force 

output signal to logic 0.
010 The local reload signal from this submodule
011 The master reload signal from submodule 0. Do not use this setting in PWM_SM0CR2 as it holds the force 

output signal to logic 0.
100 The local sync signal from this submodule
101 The master sync signal from submodule 0. Do not use this setting in PWM_SM0CR2 as it holds the force 

output signal to logic 0.
110 The external force signal, PWM_FORCE, causes updates
111 Reserved

2
RELOAD_SEL

Reload source select. Determines the source of the reload signal for this submodule. 
0 The local reload signal is used to reload registers
1 The master reload signal from submodule 0 is used to reload registers. Use the LDOK bit in submodule 0, 

since the local LDOK is ignored. Do not use this setting in PWM_SM0CR2 as it forces the reload signal to 
logic 0.

1–0
CLK_SEL

Clock source select. Determines the source of the clock signal for this submodule’s prescaler and counter.
00 Peripheral bus clock
01 EXT_CLK. For this device, EXT_CLK is any of the DMA timer outputs as chosen by a register in the CCM 

module (MISCCR[PWM_ECS]). See Chapter 10, “Chip Configuration Module (CCM)”, for more details.
10 Submodule 0’s clock (AUX_CLK). Do not use this setting in PWM_SM0CR2 as it forces the clock to logic 0.
11 Reserved

Address: 0xEC08_8006 (PWM_SM0CR)
0xEC08_8056 (PWM_SM1CR)

0xEC08_80A6 (PWM_SM2CR)
0xEC08_80F6 (PWM_SM2CR)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
LDFQ HALF FULL

DT 0
PRSC

0 LDM
OD

0 DBL
ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-5. Control Register 1 (PWM_SMnCR1)

Table 34-7. PWM_SMnCR2 Field Descriptions (continued)

Field Description



Motor Control Pulse-Width Modulator (mcPWM)

34-10 NXP Semiconductors

34.3.5 Value Registers (PWM_SMnVAL0–5)

The six value registers per submodule define various counter values for PWM operation:

• PWM_SMnVAL0 — Defines the mid-cycle reload point for the PWM in PWM clock periods. This 
value also defines when the PWM_X signal is set and the local sync signal is reset.

Table 34-8. PWM_SMnCR1 Field Descriptions

Field Description

15–12
LDFQ

Load frequency. Selects the PWM load frequency. A PWM opportunity is determined by HALF and FULL.
Note: This field takes effect when the current load cycle is complete, regardless of the state of the LDOK bit. Reading 

this field reads the buffered values and not necessarily the values currently in effect.

0000 Every PWM opportunity
0001 Every 2 PWM opportunities
...
1111 Every 16 PWM opportunities

11
HALF

Half-cycle reload. A half cycle is defined by when the submodule counter matches PWM_SMnVAL0 and is not 
necessarily halfway through the PWM cycle. HALF or FULL must be set to move the buffered data into the registers 
used by the PWM generators. If both bits are set, then reloads can occur twice per cycle.
0 Half-cycle reloads disabled
1 Half-cycle reloads enabled

10
FULL

Full-cycle reload. A full cycle is defined by when the submodule counter matches the PWM_SMnVAL1 register. 
HALF or FULL must be set to move the buffered data into the registers used by the PWM generators. If both bits are 
set, then reloads can occur twice per cycle.
1 Full-cycle reloads enabled
0 Full-cycle reloads disabled

9–8
DT

Deadtime. Reflects the sampled values of the PWMX input at the end of each deadtime. Sampling occurs at the end 
of deadtime 0 for DT[0] and the end of deadtime 1 for DT[1].

7 Reserved, must be cleared.

6–4
PRSC

Prescaler. Selects the divide ratio of the PWM clock frequency selected by PWM_SMnCR2[CLK_SEL].
000 fclk
001 fclk/2
010 fclk/4
...
111 fclk/128
Note: Reading this field reads the buffered values and not necessarily the values currently in effect. This field takes 

affect at the beginning of the next PWM cycle and only when LDOK or LDMOD is set. This field cannot be 
written when LDOK is set.

3 Reserved, must be cleared.

2
LDMOD

Load mode select. Selects the timing of loading the buffered registers for this submodule.
0 At the next PWM reload if LDOK is set
1 Immediately upon LDOK being set

1 Reserved, must be cleared.

0
DBLEN

Double switching enable.
0 Disable
1 Enable
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• PWM_SMnVAL1 — Defines the modulo count value (maximum count) for the submodule 
counter. Upon reaching this count value, the counter reloads itself with the contents of 
PWM_SMnINIT and asserts the local sync signal while resetting PWM_X

• PWM_SMnVAL2 — Defines the count value to set PWM23 high

• PWM_SMnVAL3 — Defines the count value to set PWM23 low

• PWM_SMnVAL4 — Defines the count value to set PWM45 high

• PWM_SMnVAL5 — Defines the count value to set PWM45 low

34.3.6 Output Control Register (PWM_SMnOCR)

The PWM_SMnOCR registers control the output pins of each submodule.

Address: 0xEC08_8008 (PWM_SM0VAL0)
0xEC08_800A (PWM_SM0VAL1)
0xEC08_800C (PWM_SM0VAL2)
0xEC08_800E (PWM_SM0VAL3)
0xEC08_8010 (PWM_SM0VAL4)
0xEC08_8012 (PWM_SM0VAL5)

0xEC08_8058 (PWM_SM1VAL0)
0xEC08_805A (PWM_SM1VAL1)
0xEC08_805C (PWM_SM1VAL2)
0xEC08_805E (PWM_SM1VAL3)
0xEC08_8060 (PWM_SM1VAL4)
0xEC08_8062 (PWM_SM1VAL5)

0xEC08_80A8 (PWM_SM2VAL0)
0xEC08_80AA (PWM_SM2VAL1)
0xEC08_80AC (PWM_SM2VAL2)
0xEC08_80AE (PWM_SM2VAL3)
0xEC08_80B0 (PWM_SM2VAL4)
0xEC08_80B2 (PWM_SM2VAL5)

0xEC08_80F8 (PWM_SM3VAL0)
0xEC08_80FA (PWM_SM3VAL1)
0xEC08_80FC (PWM_SM3VAL2)
0xEC08_80FE (PWM_SM3VAL3)
0xEC08_8100 (PWM_SM3VAL4)
0xEC08_8102 (PWM_SM3VAL5)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
VAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-6. Value Registers (PWM_SMnVAL0–5)

Table 34-9. PWM_SMnVAL0–5 Field Descriptions

Field Description

15–0
VAL

These registers are not byte-accessible.
Note: The value registers are buffered. The value written does not take effect until the LDOK bit is set and the next 

PWM load cycle begins or LDMOD is set. They cannot be written when LDOK is set. Reading the value 
registers reads the value in a buffer, and is not necessarily the value the PWM generator is currently using.

Address: 0xEC08_8018 (PWM_SM0OCR)
0xEC08_8068 (PWM_SM1OCR)

0xEC08_80B8 (PWM_SM2OCR)
0xEC08_8108 (PWM_SM3OCR)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PWM
A_IN

PWM
B_IN

PWM
X_IN

0 0
POLA POLB POLX

0 0
PWMAFS PWMBFS PWMXFS

W

Reset U U U 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-7. Output Control Register (PWM_SMnOCR)
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Table 34-10. PWM_SMnOCR Field Descriptions

Field Description

15
PWMA_IN

Reflects the value currently being driven into the PWM_A input.

14
PWMB_IN

Reflects the value currently being driven into the PWM_B input.

13
PWMX_IN

Reflects the value currently being driven into the PWM_X input.

12–11 Reserved, must be cleared.

10
POLA

PWM_A output polarity.
0 Output not inverted. A high level on the pin represents the on/active state.
1 Output inverted. A low level on the pin represents the on/active state.

9
POLB

PWM_B output polarity.
0 Output not inverted. A high level on the pin represents the on/active state.
1 Output inverted. A low level on the pin represents the on/active state.

8
POLX

PWM_X output polarity.
0 Output not inverted. A high level on the pin represents the on/active state.
1 Output inverted. A low level on the pin represents the on/active state.

7–6 Reserved, must be cleared.

5–4
PWMAFS

PWM_A fault state. Determines the PWM output level during fault conditions and stop mode. If 
PWM_SMnCR2[WAITEN, DBGEN] are cleared, also defines the output state during wait and debug modes, 
respectively.
00 Output is forced to 0 prior to consideration of output polarity control
01 Output is forced to 1 prior to consideration of output polarity control
1x Output is tristated

3–2
PWMBFS

PWM_B fault state. Determines the PWM output level during fault conditions and stop mode. If 
PWM_SMnCR2[WAITEN, DBGEN] are cleared, also defines the output state during wait and debug modes, 
respectively.
00 Output is forced to 0 prior to consideration of output polarity control
01 Output is forced to 1 prior to consideration of output polarity control
1x Output is tristated

1–0
PWMXFS

PWM_X fault state. Determines the PWM output level during fault conditions and stop mode. If 
PWM_SMnCR2[WAITEN, DBGEN] are cleared, also defines the output state during wait and debug modes, 
respectively.
00 Output is forced to logic 0 state prior to consideration of output polarity control
01 Output is forced to logic 1 state prior to consideration of output polarity control
1x Output is tristated
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34.3.7 Status Register (PWM_SMnSR)

Address: 0xEC08_801A (PWM_SM0SR)
0xEC08_806A (PWM_SM1SR)

0xEC08_80BA (PWM_SM2SR)
0xEC08_810A (PWM_SM3SR)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 RUF REF
RF CFA1 CFA0 CFB1 CFB0 CFX1 CFX0

CMPF

W w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-8. Status Register (PWM_SMnSR)

Table 34-11. PWM_SMnSR Field Descriptions

Field Description

15 Reserved, must be cleared.

14
RUF

Registers updated. Indicates when one of the PWM_SMnINIT, PWM_SMnVALm, or PWM_SMnCR1[PRSC] 
registers has been written resulting in non-coherent data in the set of double-buffered registers. Clear this bit by a 
proper reload sequence: a reload signal while LDOK is set.
0 No register update has occurred since last reload
1 At least one of the double-buffered registers has been updated since the last reload

13
REF

Reload error. Indicates when a reload cycle occurs while LDOK is cleared and the double-buffered registers are in 
a non-coherent state (RUF is set). Write one to clear this bit.
0 No reload error occurred
1 Reload signal occurred with non-coherent data and LDOK is cleared

12
RF

Reload. Indicates the beginning of every reload cycle, regardless of the state of LDOK.
 • If PWM_SMnDMAEN[VALDE] is cleared (non-DMA mode), write one to this bit to clear it.
 • If PWM_SMnDMAEN[VALDE] is set (DMA mode), the DMA done signal clears this bit.
0 No new reload cycle since last RF clearing
1 New reload cycle since last RF clearing

11
CFA1

10
CFA0

Capture flag A1/A0. Indicates when the word count of CA1CNT or CA0CNT exceeds the value of the CFAWM field.
 • If PWM_SMnDMAEN[CA1DE/CA0DE] is cleared (non-DMA mode), write one to each bit to clear it.
 • If PWM_SMnDMAEN[CA1DE/CA0DE] is set (DMA mode), the DMA done signal clears each bit.

9
CFB1

8
CFB0

Capture flag B1/B0. Indicates when the word count of CB1CNT or CB0CNT exceeds the value of the CFBWM field.
 • If PWM_SMnDMAEN[CB1DE/CB0DE] is cleared (non-DMA mode), write one to each bit to clear it.
 • If PWM_SMnDMAEN[CB1DE/CB0DE] is set (DMA mode), the DMA done signal clears each bit.

7
CFX1

6
CFX0

Capture flag X1/X0. Indicates when the word count of CX1CNT or CX0CNT exceeds the value of the CFXWM field.
 • If PWM_SMnDMAEN[CX1DE/CX0DE] is cleared (non-DMA mode), write one to each bit to clear it.
 • If PWM_SMnDMAEN[CX1DE/CX0DE] is set (DMA mode), the DMA done signal clears each bit.

5–0
CMPF

Compare. Indicates when the submodule’s counter value matches the value of one of its PWM_SMnVALm registers. 
Clear these bits by writing a 1 to a bit position.
0 No compare event has occurred for a particular PWM_SMnVALm value
1 A compare event has occurred for a particular PWM_SMnVALm value
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34.3.8 Interrupt Enable Register (PWM_SMnIER)

Each bit in PWM_SMnSR requests an interrupt if the corresponding bit in the PWM_SMnIER is set.

34.3.9 DMA Enable Register (PWM_SMnDMAEN)

The PWM module may request DMA service for certain operations.

Address: 0xEC08_801C (PWM_SM0IER)
0xEC08_806C (PWM_SM1IER)

0xEC08_80AC (PWM_SM2IER)
0xEC08_810C (PWM_SM3IER)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0
REIE RIE

CA1
IE

CA0
IE

CB1
IE

CB0
IE

CX1
IE

CX0
IE

CMPIE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-9. Interrupt Enable Register (PWM_IER)

Table 34-12. PWM_IER Field Descriptions

Field Description

15–14 Reserved, must be cleared

13
REIE

Reload error interrupt enable.

12
RIE

Reload interrupt enable.

11
CA1IE

Capture A 1 interrupt enable.
Note: Do not set this bit and PWM_SMnDMAEN[CA1DE].

10
CA0IE

Capture A 0 interrupt enable.
Note: Do not set this bit and PWM_SMnDMAEN[CA0DE].

9
CB1IE

Capture B 1 interrupt enable.
Note: Do not set this bit and PWM_SMnDMAEN[CB1DE].

8
CB0IE

Capture B 0 interrupt enable.
Note: Do not set this bit and PWM_SMnDMAEN[CB0DE].

7
CX1IE

Capture X 1 interrupt enable.
Note: Do not set this bit and PWM_SMnDMAEN[CX1DE].

6
CX0IE

Capture X 0 interrupt enable.
Note: Do not set this bit and PWM_SMnDMAEN[CX0DE].

5–0
CMPIE

Compare interrupt enables.

Address: 0xEC08_801E (PWM_SM0DMAEN)
0xEC08_806E (PWM_SM1DMAEN)

0xEC08_80BE (PWM_SM2DMAEN)
0xEC08_810E (PWM_SM3DMAEN)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 VAL
DE

FAND CAPTDE
CA1
DE

CA0
DE

CB1
DE

CB0
DE

CX1
DE

CX0
DEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-10. DMA Enable Register (PWM_SMnDMAEN)
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34.3.10 Output Trigger Control Register (PWM_SMnOTCR)

This register enables the generation of OUT_TRIG0 and OUT_TRIG1 if the counter value matches one 
or more of the PWM_SMnVAL0–5 registers. The output triggers are assigned to the value registers as 
follows:

Table 34-13. PWM_SMnDMAEN Field Descriptions

Field Description

15–10 Reserved, must be cleared.

9
VALDE

Value registers DMA enable. Enables DMA write requests to the PWM_SMnVALm registers when 
PWM_SMnSR[RF] is set.
0 Disabled
1 Enabled

8
FAND

FIFO watermark AND control. If CAPTDE is set to watermark mode (CAPTDE = 01), this bit determines the operation 
of the FIFO watermarks selected in CAnDE, CBnDE, and CXnDE.
0 OR operation is used
1 AND operation is used

7–6
CAPTDE

Capture DMA enable source select. Selects the source of enabling the DMA read requests for the capture FIFOs.
00 Read DMA requests disabled
01 Exceeding a FIFO watermark sets the DMA read request. At least one of the CxnDE bits must be set to determine 

which watermarks the DMA request is sensitive to.
10 A local sync (PWM_SMnVAL1 matches counter) sets the read DMA request
11 A local reload (RF set) sets the read DMA request

5
CA1DE

Capture A1 FIFO DMA enable. Enables DMA read requests for the Capture A1 FIFO data when CFA1 is set.
Note: Do not set this bit and CA1IE.

4
CA0DE

Capture A0 FIFO DMA enable. Enables DMA read requests for the Capture A0 FIFO data when CFA0 is set.
Note: Do not set this bit and CA0IE.

3
CB1DE

Capture B1 FIFO DMA enable. Enables DMA read requests for the Capture B1 FIFO data when CFB1 is set.
Note: Do not set this bit and CB1IE.

2
CB0DE

Capture B0 FIFO DMA enable. Enables DMA read requests for the Capture B0 FIFO data when CFB0 is set.
Note: Do not set this bit and CB0IE.

1
CX1DE

Capture X1 FIFO DMA enable. Enables DMA read requests for the Capture X1 FIFO data when CFX1 is set.
Note: Do not set this bit and CX1IE.

0
CX0DE

Capture X0 FIFO DMA enable. Enables DMA read requests for the Capture X0 FIFO data when CFX0 is set.
Note: Do not set this bit and CX0IE.

Table 34-14. OUT_TRIGn vs. PWM_SMnVAL[5:0]

Output Trigger
PWM_SMnVAL[5:0]

5 4 3 2 1 0

OUT_TRIG0   

OUT_TRIG1   
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34.3.11 Fault Disable Mapping Register (PWM_SMnDISMAP)

This register determines which PWM pins are disabled by the fault protection inputs, illustrated in 
Section 34.4.8.11, “Fault Protection”.

Address: 0xEC08_8020 (PWM_SM0OTCR)
0xEC08_8070 (PWM_SM1OTCR)

0xEC08_80C0 (PWM_SM2OTCR)
0xEC08_8110 (PWM_SM3OTCR)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
OTEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-11. Output Trigger Control Register (PWM_SMnOTCR)

Table 34-15. PWM_SMnOTCR Field Descriptions

Field Description

15–6 Reserved, must be cleared

5–0
OTEN

Output trigger enables. The OUT_TRIGn signals are only asserted when the counter value matches the 
PWM_SMnVALm value. Therefore, up to six triggers can be generated per PWM cycle per submodule.
0 Disabled
1 Enabled

Address: 0xEC08_8022 (PWM_SM0DISMAP)
0xEC08_8072 (PWM_SM1DISMAP)

0xEC08_80C2 (PWM_SM2DISMAP)
0xEC08_8112 (PWM_SM3DISMAP)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 1 1 1 1
DISX DISB DISA

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 34-12. Fault Disable Mapping Register (PWM_SMnDISMAP)

Table 34-16. PWM_SMnDISMAP Field Descriptions

Field Description

15–12 Reserved, must be set.

11–8
DISX

PWM_X fault disable mask. Each of the bits of this field corresponds to the PWM_FAULTn inputs.
0 The corresponding PWM_FAULTn has no effect on the PWM_X output
1 If the corresponding PWM_FAULTn input signal is asserted, the PWM_X output is turned off

7–4
DISB

PWM_B fault disable mask. Each of the bits of this field corresponds to the PWM_FAULTn inputs.
0 The corresponding PWM_FAULTn has no effect on the PWM_B output
1 If the corresponding PWM_FAULTn input signal is asserted, the PWM_B output is turned off

3–0
DISA

PWM_A fault disable mask. Each of the bits of this field corresponds to the PWM_FAULTn inputs.
0 The corresponding PWM_FAULTn has no effect on the PWM_A output
1 If the corresponding PWM_FAULTn input signal is asserted, the PWM_A output is turned off
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34.3.12 Deadtime Count Registers (PWM_SMnDTCNTm)

Deadtime operation is only applicable to complementary channel operation 
(PWM_SMnCR2[INDEP] = 0). The 12-bit values written to these registers are in terms of peripheral bus 
clock cycles regardless of the setting of PWM_SMnCR1[PRSC] or PWM_SMnCR2[CLK_SEL]. Reset 
sets all bits of the field, selecting a deadtime of 4095 bus clock cycles. These registers are not 
byte-accessible.

34.3.13 Capture Control Registers (PWM_SMnCCRx)

Address: 0xEC08_8024 (PWM_SM0DTCNT0)
0xEC08_8026 (PWM_SM0DTCNT1)

0xEC08_8074 (PWM_SM1DTCNT0)
0xEC08_8076 (PWM_SM1DTCNT1)

0xEC08_80C4 (PWM_SM2DTCNT0)
0xEC08_80C6 (PWM_SM2DTCNT1)

0xEC08_8114 (PWM_SM3DTCNT0)
0xEC08_8116 (PWM_SM3DTCNT1)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
DT

W

Reset 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Figure 34-13. Deadtime Count Registers (PWM_SMnDTCNTm)

Table 34-17. PWM_SMnDTCNTm Field Descriptions

Field Description

15–11 Reserved, must be cleared.

10–0
DT

DTCNT0[DT] controls the deadtime during 0 to 1 transitions of the PWMA output (assuming normal polarity).
DTCNT1[DT] controls the deadtime during 0 to 1 transitions of the complementary PWMB output.

Address: 0xEC08_8028 (PWM_SM0CCRA)
0xEC08_802C (PWM_SM0CCRB)
0xEC08_8030 (PWM_SM0CCRX)

0xEC08_8078 (PWM_SM1CCRA)
0xEC08_807C (PWM_SM1CCRB)
0xEC08_8080 (PWM_SM1CCRX)

0xEC08_80C8 (PWM_SM2CCRA)
0xEC08_80CC (PWM_SM2CCRB)
0xEC08_80D0 (PWM_SM2CCRX)

0xEC08_8118 (PWM_SM3CCRA)
0xEC08_811C (PWM_SM3CCRB)
0xEC08_8120 (PWM_SM3CCRX)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R C1CNT C0CNT
CFWM

EDG
CNT_

EN

INP_
SEL

EDG1 EDG0
ONE

SHOT
ARMW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-14. Capture Control Registers (PWM_SMnCCRx)
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Table 34-18. PWM_SMnCCRx Field Descriptions

Field Description

15–13
C1CNT

Capture A1/B1/X1 FIFO word count. Reflects the number of words in the capture A1/B1/X1 FIFO.

12–10
C0CNT

Capture A0/B0/X0 FIFO word count. Reflects the number of words in the capture A0/B0/X0 FIFO.

9–8
CFWM

Capture FIFOs watermark. Defines the watermark level for capture A/B/X FIFOs. The capture flags in PWM_SMnSR 
are not set until the word count of the corresponding FIFO is greater than this watermark level.

7
EDGCNT

_EN

Edge counter A/B/X enable. Enables the edge counter which counts rising and falling edges on the PWM input 
signal.
0 Edge counter disabled and held in reset
1 Edge counter enabled

6
INP_SEL

Input select . Selects between the raw PWM input signal and the output of the edge counter/compare circuitry as the 
source for the input capture circuit.
0 Raw PWM input signal selected as source
1 Output of edge counter/compare selected as source
Note: When this bit is set, the internal edge counter is enabled and the rising or falling edges specified by the EDG0 

and EDG1 fields are ignored. The software must still write a value other than 00 in EDG0 or EDG1 to enable 
one or both of the capture registers.

5–4
EDG1

Edge 1. Determines which input edges cause a capture event on input capture 1.
00 Disabled
01 Capture falling edges
10 Capture rising edges
11 Capture any edge

3–2
EDG0

Edge 0. Determines which input edges cause a capture event on input capture 0.
00 Disabled
01 Capture falling edges
10 Capture rising edges
11 Capture any edge
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34.3.14 Capture Compare Registers (PWM_SMnCCMPx)

1
ONE

SHOT

One shot mode. Selects between free running and one shot mode for the input capture circuitry.

0
ARM

Arm. Starts the input capture process. This bit can be cleared at any time to disable input capture operation. This bit 
is self-cleared when in one-shot mode and the enabled capture circuit has had a capture event.
0 Input capture operation is disabled
1 Input capture operation as specified by the EDGn bits is enabled.

Address: 0xEC08_802A (PWM_SM0CCMPA)
0xEC08_802E (PWM_SM0CCMPB)
0xEC08_8032 (PWM_SM0CCMPX)

0xEC08_807A (PWM_SM1CCMPA)
0xEC08_807E (PWM_SM1CCMPB)
0xEC08_8082 (PWM_SM1CCMPX)

0xEC08_80CA (PWM_SM2CCMPA)
0xEC08_80CE (PWM_SM2CCMPB)
0xEC08_80D2 (PWM_SM2CCMPX)

0xEC08_811A (PWM_SM3CCMPA)
0xEC08_811E (PWM_SM3CCMPB)
0xEC08_8122 (PWM_SM3CCMPX)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R EDGCNT
EDGCMP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-15. Capture Compare Registers (PWM_SMnCCMPx)

Table 34-18. PWM_SMnCCRx Field Descriptions (continued)

Field Description

ONE
SHOT

EDG0 EDG1 Description

0

0 1  • Captures repeat indefinitely on the enabled capture circuit

1 0

1 1

 • Capture circuit 0 is armed after ARM is set
 • After capture circuit 0 performs a capture, it is disarmed and capture circuit 1 is armed
 • After capture circuit 1 performs a capture, it is disarmed and capture circuit 0 is 

re-armed
 • The process repeats indefinitely

1

0 1  • A single capture occurs on the enabled capture circuit and the ARM bit is cleared

1 0

1 1

 • Capture circuit 0 is armed after ARM is set
 • After capture circuit 0 performs a capture, it is disarmed and capture circuit 1 is armed
 • After capture circuit 1 performs a capture, it is disarmed and the ARM bit is cleared
 • No further captures are performed until the ARM bit is set again.
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34.3.15 Capture Value Registers (PWM_SMnCVALm)

Table 34-19. PWM_SMnCCMPx Field Descriptions

Field Description

15–8
EDGCNT

Edge counter. Reflects the edge counter value for each input capture circuitry.

7–0
EDGCMP

Edge compare. Indicates the compare value associated with the edge counter for the input capture circuitry.

Address: 0xEC08_8034 (PWM_SM0CVAL0)
0xEC08_8038 (PWM_SM0CVAL1)
0xEC08_803C (PWM_SM0CVAL2)
0xEC08_8040 (PWM_SM0CVAL3)
0xEC08_8044 (PWM_SM0CVAL4)
0xEC08_8048 (PWM_SM0CVAL5)

0xEC08_8084 (PWM_SM1CVAL0)
0xEC08_8088 (PWM_SM1CVAL1)
0xEC08_808C (PWM_SM1CVAL2)
0xEC08_8090 (PWM_SM1CVAL3)
0xEC08_8094 (PWM_SM1CVAL4)
0xEC08_8098 (PWM_SM1CVAL5)

0xEC08_80D4 (PWM_SM2CVAL0)
0xEC08_80D8 (PWM_SM2CVAL1)
0xEC08_80DC (PWM_SM2CVAL2)
0xEC08_80E0 (PWM_SM2CVAL3)
0xEC08_80E4 (PWM_SM2CVAL4)
0xEC08_80E8 (PWM_SM2CVAL5)

0xEC08_8124 (PWM_SM3CVAL0)
0xEC08_8128 (PWM_SM3CVAL1)
0xEC08_812C (PWM_SM3CVAL2)
0xEC08_8130 (PWM_SM3CVAL3)
0xEC08_8134 (PWM_SM3CVAL4)
0xEC08_8138 (PWM_SM3CVAL5)

Access: User read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CAPTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-16. Capture Value Registers (PWM_SMnCVALm)

Table 34-20. PWM_SMnCVALm Field Descriptions

Field Description

15–0
CAPTVAL

Capture value. Stores the value captured from the submodule counter. The corresponding 
PWM_SMnCCRx[EDG0,EDG1] bit shown below determines exactly when this capture occurs. This register is not 
byte-accessible.

Note: This is actually a 4-deep FIFO and not a single register.

Capture Register EDG bit

PWM_SMnCVAL0 PWM_SMnCCRX[EDG0]

PWM_SMnCVAL1 PWM_SMnCCRX[EDG1]

PWM_SMnCVAL2 PWM_SMnCCRA[EDGA0]

PWM_SMnCVAL3 PWM_SMnCCRA[EDGA1]

PWM_SMnCVAL4 PWM_SMnCCRB[EDGB0]

PWM_SMnCVAL5 PWM_SMnCCRB[EDGB1]
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34.3.16 Capture Value Cycle Registers (PWM_SMnCCYCm)

34.3.17 Output Enable Register (PWM_OUTEN)

Address: 0xEC08_8036 (PWM_SM0CCYC0)
0xEC08_803A (PWM_SM0CCYC1)
0xEC08_803E (PWM_SM0CCYC2)
0xEC08_8042 (PWM_SM0CCYC3)
0xEC08_8046 (PWM_SM0CCYC4)
0xEC08_804A (PWM_SM0CCYC5)

0xEC08_8086 (PWM_SM1CCYC0)
0xEC08_808A (PWM_SM1CCYC1)
0xEC08_808E (PWM_SM1CCYC2)
0xEC08_8092 (PWM_SM1CCYC3)
0xEC08_8096 (PWM_SM1CCYC4)
0xEC08_809A (PWM_SM1CCYC5)

0xEC08_80D6 (PWM_SM2CCYC0)
0xEC08_80DA (PWM_SM2CCYC1)
0xEC08_80DE (PWM_SM2CCYC2)
0xEC08_80E2 (PWM_SM2CCYC3)
0xEC08_80E6 (PWM_SM2CCYC4)
0xEC08_80EA (PWM_SM2CCYC5)

0xEC08_8126 (PWM_SM3CCYC0)
0xEC08_812A (PWM_SM3CCYC1)
0xEC08_812E (PWM_SM3CCYC2)
0xEC08_8132 (PWM_SM3CCYC3)
0xEC08_8136 (PWM_SM3CCYC4)
0xEC08_813A (PWM_SM3CCYC5)

Access: User read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 CYC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-17. Capture Value Registers (PWM_SMnCCYCm)

Table 34-21. PWM_SMnCCYCm Field Descriptions

Field Description

15–0
CYC

Stores the cycle number corresponding to the value captured in PWM_SMnCVALm. This field resets to 0 and 
increments each time the counter is loaded with the PWM_SMnINIT value.
Note: This is actually a 4-deep FIFO and not a single register.

Address: 0xEC08_8140 (PWM_OUTEN) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
PWMA_EN PWMB_EN PWMX_EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-18. Output Enable Register (PWM_OUTEN)

Table 34-22. PWM_OUTEN Field Descriptions

Field Description

15–12 Reserved, must be cleared.

11–8
PWMA_EN

PWMA output enable. Enables the PWM_A outputs of each submodule. Clear these bits when a PWM_A pin is 
configured for input capture.
0 Disabled
1 Enabled
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34.3.18 Mask Register (PWM_MASK)

NOTE
The MASKx bits are double buffered and do not take effect until a 
FORCE_OUT event occurs within the appropriate submodule. Refer to 
Figure 34-40 to see how FORCE_OUT is generated. Reading MASKx 
reads the buffered value and not necessarily the value currently in effect.

7–4
PWMB_EN

PWMB output enable. Enables the PWM_B outputs of each submodule. Clear these bits when a PWM_B pin is 
configured for input capture.
0 Disabled
1 Enabled

3–0
PWMX_EN

PWMX output enable. Enables the PWM_X outputs of each submodule. Clear these bits when a PWM_X pin is 
configured for input capture.
0 Disabled
1 Enabled

Address: 0xEC08_8142 (PWM_MASK) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
MASKA MASKB MASKX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-19. Mask Register (PWM_MASK)

Table 34-23. PWM_MASK Field Descriptions

Field Description

15–12 Reserved, must be cleared.

11–8
MASKA

PWMA masks. Masks the PWM_A outputs of each submodule forcing the output to logic 0 prior to consideration 
of the output polarity.
0 Output normal
1 Output masked

7–4
MASKB

PWMB masks. Masks the PWM_B outputs of each submodule forcing the output to logic 0 prior to consideration 
of the output polarity.
0 Output normal
1 Output masked

3–0
MASKX

PWMX masks. Masks the PWM_X outputs of each submodule forcing the output to logic 0 prior to consideration 
of the output polarity.
0 Output normal
1 Output masked

Table 34-22. PWM_OUTEN Field Descriptions (continued)

Field Description
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34.3.19 Software-Controlled Output Register (PWM_SWCOUT)

NOTE
These bits are double buffered and do not take effect until a FORCE_OUT 
event occurs within the appropriate submodule. Refer to Figure 34-40 to see 
how FORCE_OUT is generated. Reading these bits reads the buffered value 
and not necessarily the value currently in effect.

34.3.20 Deadtime Source Select Register (PWM_DTSS)

NOTE
The deadtime source select bits are double buffered and do not take effect 
until a FORCE_OUT event occurs within the appropriate submodule. Refer 
to Figure 34-40 to see how FORCE_OUT is generated. Reading these bits 
reads the buffered value and not necessarily the value currently in effect.

Address: 0xEC08_8144 (PWM_SWCOUT) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 OUT
23_3

OUT
45_3

OUT
23_2

OUT
45_2

OUT
23_1

OUT
45_1

OUT
23_0

OUT
45_0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-20. Software-Controlled Output Register (PWM_SWCOUT)

Table 34-24. PWM_SWCOUT Field Descriptions

Field Description

15–8 Reserved, must be cleared.

7
OUT23_3

Software controlled output 23_3. When SEL23 for submodule 3 is 0b10, this bit allows software control of the 
signal supplied to the submodule’s deadtime generator.
0 A logic 0 is supplied to the deadtime generator of submodule 3 instead of PWM23
1 A logic 1 is supplied to the deadtime generator of submodule 3 instead of PWM23

6
OUT45_3

Software controlled output 45_3. See OUT23_3 bit description.

5
OUT23_2

Software controlled output 23_2. See OUT23_3 bit description.

4
OUT45_2

Software controlled output 45_2. See OUT23_3 bit description.

3
OUT23_1

Software controlled output 23_1. See OUT23_3 bit description.

2
OUT45_1

Software controlled output 45_1. See OUT23_3 bit description.

1
OUT23_0

Software controlled output 23_0. See OUT23_3 bit description.

0
OUT45_0

Software controlled output 45_0. See OUT23_3 bit description.
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34.3.21 Master Control Register (PWM_MCR)

The PWM_MCR contains four 4-bit fields. Each bit within the fields controls the corresponding 
submodule.

Address: 0xEC08_8146 (PWM_DTSS) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SEL23_3 SEL45_3 SEL23_2 SEL45_2 SEL23_1 SEL45_1 SEL23_0 SEL45_0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-21. Deadtime Source Select Register (PWM_DTSS)

Table 34-25. PWM_DTSS Field Descriptions

Field Description

15–14
SEL23_3

PWM23_3 control select. Selects possible overrides to the generated PWM23 signal in submodule 3 that is passed 
to the deadtime logic upon the occurrence of a FORCE_OUT event in that submodule. See Figure 34-40.
00 Generated PWM23_3 signal is used by the deadtime logic
01 Inverted generated PWM23_3 signal is used by the deadtime logic
10 OUT23_3 bit is used by the deadtime logic
11 PWM_EXTA3 signal is used by the deadtime logic

13–12
OUT45_3

PWM45_3 control select. Selects possible overrides to the generated PWM45 signal in submodule 3 that is passed 
to the deadtime logic upon the occurrence of a FORCE_OUT event in that submodule. See Figure 34-40.
00 Generated PWM45_3 signal is used by the deadtime logic
01 Inverted generated PWM45_3 signal is used by the deadtime logic
10 OUT45_3 bit is used by the deadtime logic
11 Reserved

11–10
SEL23_2

PWM23_2 control select. See SEL23_3 bit description.

9–8
SEL45_2

PWM45_2 control select. See SEL45_3 bit description.

7–6
SEL23_1

PWM23_1 control select. See SEL23_3 bit description.

5–4
SEL45_1

PWM45_1 control select. See SEL45_3 bit description.

3–2
SEL23_0

PWM23_0 control select. See SEL23_3 bit description.

1–0
SEL45_0

PWM45_0 control select. See SEL45_3 bit description.

Address: 0xEC08_8148 (PWM_MCR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IPOL RUN

0 0 0 0
LDOK

W CLDOK

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-22. Master Control Register (PWM_MCR)
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34.3.22 Fault Control Register (PWM_FCR)

The PWM_FCR contains four 3-bit fields. Each bit within a field controls the corresponding 
PWM_FAULTn signal.

Table 34-26. PWM_MCR Field Descriptions

Field Description

15–12
IPOL

Current polarity. Selects between PWM23 and PWM45 as the source for the generation of the complementary 
PWM pair output. This bit is ignored in independent mode (PWM_SMnCR2[INDEP]=1).
0 PWM23
1 PWM45
Note: This bit does not take effect until a FORCE_OUT event takes place in the appropriate submodule. Reading 

this bit reads the buffered value and not necessarily the value currently in effect.

11–8
RUN

Enables the clocks to the PWM generator. In submodules other than 0, when CLK_SEL is 10 the local RUN bit is 
ignored; this indicates that the AUX_CLK from submodule 0 is being used by this submodule. A reset clears RUN.
0 PWM generator disabled. The corresponding submodule’s counter is reset.
1 PWM generator enabled
Note: For proper initialization of the LDOK and RUN bits, see Section 34.5, “Initialization/Application Information”.

7–4
CLDOK

Clear load okay. This bit is self clearing and always reads as a 0.
0 No effect
1 Write a 1 to clear the corresponding LDOK. If a reload occurs with LDOK set at the same time that CLDOK is 

written, then the reload is not performed and LDOK is cleared.

3–0
LDOK

Load okay. Loads PWM_SMnCR1[PRSC], PWM_SMnINIT, and PWM_SMnVALm into a set of buffers. The 
buffered prescaler divisor, submodule counter modulus value, and PWM pulse width take effect:
 • at the next PWM reload if LDMOD is cleared
 • immediately if LDMOD is set
Set LDOK by reading it when it is zero and then writing a logic one to it.
The PWM_SMnCR1[PRSC] , PWM_SMnINIT, and PWM_SMnVALm registers cannot be written while LDOK is 
set. LDOK is automatically cleared after the new values are loaded, or can be manually cleared by writing a 1 to 
CLDOK. This bit cannot be written with a zero. LDOK can be set in DMA mode when the DMA indicates that it has 
completed the update of the buffered registers.
Note: For proper initialization of the LDOK and RUN bits, see Section 34.5, “Initialization/Application Information”.

Address: 0xEC08_814C (PWM_FCR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
FLVL

0
FAUTO

0
FSAFE

0
FIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-23. Fault Control Register (PWM_FCR)

Table 34-27. PWM_FCR Field Descriptions

Field Description

15 Reserved, must be cleared.

14–12
FLVL

Fault level. Selects the active logic level of the individual fault inputs.
0 A logic 0 on the fault input indicates a fault condition
1 A logic 1 on the fault input indicates a fault condition

11 Reserved, must be cleared.
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34.3.23 Fault Status Register (PWM_FSR)

10–8
FAUTO

Automatic fault clearing. Selects automatic or manual clearing of faults.
0 Manual fault clearing. PWM outputs disabled by this fault are not enabled until the corresponding 

PWM_FSR[FFLAG] bit is cleared at the start of a half cycle or full cycle (depending on PWM_FSR[FFULL]. This 
is further controlled by the FSAFE bits.

1 Automatic fault clearing. PWM outputs disabled by this fault are enabled when PWM_FSR[FFPIN] is cleared at 
the start of a half cycle or full cycle (depending on PWM_FSR[FFULL]) without regard to PWM_FSR[FFLAG].

7 Reserved, must be cleared.

6–4
FSAFE

Fault safety mode. Selects the safety mode during manual fault clearing.
0 Normal mode. PWM outputs disabled by this fault are not enabled until PWM_FSR[FLAG] is cleared at the start 

of a half or full cycle (depending on PWM_FSR[FFULL]) without regard to PWM_FSR[FFPIN].
The PWM outputs are not re-enabled until the PWM_FAULTn signal deasserts since the fault input 
combinationally disables the PWM outputs (as programmed in PWM_SMnDISMAP).

1 Safe mode. PWM outputs disabled by this fault are not enabled until PWM_FSR[FFLAG] is cleared and 
PWM_FSR[FFPIN] is cleared at the start of a half or full cycle (depending on PWM_FSR[FFULL]).

Note: PWM_FSR[FFPIN] may indicate a fault condition still exists even though PWM_FAULTn pin is deasserted 
due to the fault filter latency.

3 Reserved, must be cleared.

2–0
FIE

Fault interrupt enables. Enables CPU interrupt requests generated by PWM_FAULTn.
0 Disabled
1 Enabled
Note: The fault protection circuit is independent of this field and is always active. If a fault is detected, the PWM 

outputs are disabled according to PWM_SMnDISMAP.

Address: 0xEC08_814E (PWM_FSR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0
FTEST

0 FFPIN 0
FFULL

0 FFLAG

W w1c w1c w1c

Reset 0 0 0 0 0 U U U 0 0 0 0 0 0 0 0

Figure 34-24. Fault Status Register (PWM_FSR)

Table 34-28. PWM_FSR Field Descriptions

Field Description

15–13 Reserved, must be cleared.

12
FTEST

Fault test. Simulates a fault condition.
0 Removes the simulated fault condition
1 Causes a simulated fault to be sent into the fault filters. The condition propagates to the fault flags and possibly 

the PWM outputs depending on PWM_SMnDISMAP.

11 Reserved, must be cleared.

10–8
FFPIN

Filtered fault pins. Reflects the current state of the filtered PWM_FAULTn pins converted to high polarity. A reset 
has no effect on FFPIN.
0 No fault
1 Fault exists on the filtered PWM_FAULTn pin

Table 34-27. PWM_FCR Field Descriptions (continued)

Field Description
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34.3.24 Fault Filter Register (PWM_FFILT)

The settings in this register are shared among each of the fault input filters.

7 Reserved, must be cleared.

6–4
FFULL

Full cycle. Controls the timing for re-enabling the PWM outputs after a fault condition. These bits apply to both 
automatic and manual clearing of a fault condition.
0 PWM outputs are re-enabled at the start of a full or half cycle
1 PWM outputs are re-enabled only at the start of a full cycle

3 Reserved, must be cleared.

2–0
FFLAG

Fault flags. Set within two CPU cycles after a transition to active on PWM_FAULTn. Clear a FFLAG bit by writing 
a logic one to it. A reset clears FFLAG.
0 No fault on the PWM_FAULTn pin
1 Fault on the PWM_FAULTn pin

Address: 0xEC08_8150 (PWM_FFILT) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GSTR

0 0 0 0
CNT PER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-25. Fault Filter Register (PWM_FFILT)

Table 34-29. PWM_FFILT Field Descriptions

Field Description

15
GSTR

Fault glitch stretch enable. Ensures that narrow fault glitches are stretched to at least two peripheral bus clock 
cycles wide. In some cases a narrow fault input can cause problems due to the short PWM output 
shutdown/re-activation time. The stretching logic ensures that when the fault filter is disabled, a glitch on the fault 
input is registered in the fault flags.
0 Disabled
1 Enabled

14–11 Reserved, must be cleared.

10–8
CNT

Fault filter count. Represents the number of consecutive samples that must agree prior to the input filter accepting 
an input transition. The value of this field affects the input latency as described in Section 34.3.24.1, “Input Filter 
Considerations”.
000 3 samples
001 4 samples
...
111 10 samples

7–0
PER

Fault filter period. Represents the sampling period (in peripheral bus clock cycles) of the fault pin input filter. Each 
input is sampled multiple times at the rate specified by PER. The value of this field affects the input latency as 
described in Section 34.3.24.1, “Input Filter Considerations”.
0x00 Input filter bypassed

Table 34-28. PWM_FSR Field Descriptions (continued)

Field Description
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34.3.24.1 Input Filter Considerations

Set the PER value so that the sampling period is larger than the period of the expected noise. This way a 
noise spike only corrupts one sample. Choose a CNT value to reduce the probability of noisy samples 
causing an incorrect transition to be recognized. The probability of an incorrect transition is defined as:

Eqn. 34-1

The values of PER and CNT must also be traded off against the desire for minimal latency in recognizing 
input transitions. Turning on the input filter (setting FILT_PER to a non-zero value) introduces a latency 
of ((FILT_CNT+4) x FILT_PER x IPBus clock period). Note that even when the filter is enabled, there is 
a combinational path to disable the PWM outputs. This is to ensure rapid response to fault conditions and 
also to ensure fault response if the PWM module loses its clock. The latency induced by the filter will be 
seen in the time to set the PWM_FSR[FFLAG, FFPIN] bits.

34.4 Functional Description

34.4.1 Center-Aligned PWMs

Each submodule has its own timer that is capable of generating PWM signals on two output pins. The 
edges of each of these signals are controlled independently as shown in Figure 34-26.

Figure 34-26. Center Aligned Example

The submodule timers only count in the up direction and then reset to the PWM_SMnINIT value. There are 
two values that must be specified:

• Turn-on edge

• Turn-off edge

This double-action edge generation gives you control over the pulse width and the relative alignment of 
the signal. As a result, there is no need to support separate PWM alignment modes since the PWM 
alignment mode is inherently a function of the turn on and turn off edge values.

Figure 34-26 also illustrates an additional enhancement to the PWM generation process. When the counter 
resets, it is reloaded with a user-specified value. If the value chosen is the two’s complement of the 
modulus value, then the PWM generator operates in signed mode. This means that if each PWM’s turn-on 
and turn-off edge values only differ in their sign, the on portion of the output signal is centered around a 
count value of zero. Therefore, calculate only one PWM value and load this value and its negative to the 

P incorrect transition  P incorrect sample CNT 3+=

PWM_SMnVAL1 ($0100)
PWM_SMnVAL3
PWM_SMnVAL5
PWM_SMnVAL0 ($0000)
PWM_SMnVAL4
PWM_SMnVAL2

PWM_A

PWM_B

PWM_SMnINIT ($FF00)
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submodule as the turn-off and turn-on edges, respectively. This technique results in a pulse width that 
always consists of an odd number of timer counts. If all PWM signal edge calculations follow this 
convention, the signals are center-aligned with respect to each other.

Center aligning the signals is not restricted to symmetry around the zero count value, as any other number 
also works. However, centering on zero provides the greatest range in signed mode and simplifies the 
calculations.

34.4.2 Edge-Aligned PWMs

When the turn-on edge for each pulse is the PWM_SMnINIT value, then the PWM signals are 
edge-aligned, as illustrated in Figure 34-27. Therefore, only the turn-off edge value must be updated to 
change the pulse width.

Figure 34-27. Edge-Aligned Example
(PWM_SMnINIT = PWM_SMnVAL2 = PWM_SMnVAL4)

Edge-aligned PWMs benefit from signed mode as well. For example, a common way to drive an H-bridge 
is to use bipolar PWMs where a 50% duty cycle results in zero volts on the load. Duty cycles less than 50% 
result in negative load voltages and duty cycles greater than 50% generate positive load voltages. If the 
module is set to signed mode (PWM_SMnINIT and PWM_SMnVAL1 only differ in their sign), then there 
is a direct proportionality between the PWM turn-off edge value and the motor voltage, including the sign. 
Since no offset calculations are required to translate the output variable control algorithm to the voltage on 
an H-bridge load, signed mode simplifies user PWM code.

34.4.3 Phase-Shifted PWMs

If numerical biases are applied to the turn-on and turn-off edges of different PWM signals, the signals are 
phase shifted with respect to each other, as illustrated in Figure 34-28. This results in certain advantages 
when applied to a power stage.

For example, when operating a multi-phase inverter at a low modulation index, all PWM switching edges 
from the different phases occur at nearly the same time. This can be troublesome from a noise standpoint, 
especially if ADC readings of the inverter must be scheduled near those times. Phase shifting the PWM 
signals can open timing windows between the switching edges for a signal to be sampled. However, phase 
shifting does not affect the duty cycle, so average load voltage is not affected.
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Figure 34-28. Phase-Shifted Outputs Example

Figure 34-29 illustrates an additional benefit of phase-shifted PWMs. In this case, an H-bridge circuit is 
driven by four PWM signals to control the voltage waveform on the transformer primary. Left- and 
right-side PWMs are configured to always generate a square wave with 50% duty cycle. No narrow pulse 
widths are generated, which reduces the high frequency switching requirements of the transistors.

Notice that the square wave on the right side of the H-bridge is phase shifted compared to the left side. As 
a result, the transformer primary sees the bottom waveform across its terminals. The RMS value of this 
waveform is controlled directly by the amount of phase shift of the square waves. Regardless of the phase 
shift, no DC component appears in the load voltage while the duty cycle of each square wave remains at 
50% making this technique ideally suited for transformer loads. As a result, this topology is frequently 
used in industrial welders to adjust the amount of energy delivered to the weld arc.
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Figure 34-29. Phase-Shifted PWMs Applied to a Transformer Primary

34.4.4 Double-Switching PWMs

Double-switching PWM aids in single shunt current measurement and three phase reconstruction. This 
method supports two independent rising edges and two independent falling edges per PWM cycle.

• PWM_SMnVAL2 and PWM_SMnVAL3 generate the even channel (PWM_A in Figure 34-30)

• PWM_SMnVAL4 and PWM_SMnVAL5 generate the odd channel (PWM_B in Figure 34-30)

The two channels are combined using XOR logic as shown in Figure 34-30. The DBLPWM signal can be 
run through the deadtime insertion logic.
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Figure 34-30. Double-Switching Output Example

34.4.5 ADC Triggering

When ADC trigger timing is critical, it must be scheduled as a hardware event instead of software 
activated. With this PWM module, multiple ADC triggers can be generated in hardware per PWM cycle 
without the requirement of another timer module, as shown in Figure 34-31. When using complimentary 
mode, only two edge comparators are required to generate the output PWM signals for a given submodule. 
The other comparators are free to perform other functions. In this example, the software doesn’t have to 
quickly respond after the first conversion to set up other conversions that must occur in the same PWM 
cycle.

Figure 34-31. Multiple Output Trigger Generation in Hardware

Since each submodule has its own timer, it is possible for each submodule to run at a different frequency. 
One of possible option is to have one or more submodules running at a lower frequency, but still 
synchronized to the timer in submodule 0. Figure 34-32 shows how this feature can schedule ADC triggers 
over multiple PWM cycles. A suggested use for this configuration is to use the lower frequency submodule 
to control the sampling frequency of the software control algorithm, where multiple ADC triggers can be 
scheduled over the entire sampling period. In Figure 34-32, all submodule comparators are shown being 
used for ADC trigger generation.
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Figure 34-32. Multiple Output Triggers Over Several PWM Cycles

34.4.6 Enhanced Capture Capabilities (E-Capture)

When a PWM pin is not used for PWM generation, it can perform input captures. Recall that for PWM 
generation the edges of the PWM signal are specified by separate compare register values. When 
programmed for input capture, both of these registers work on the same pin to capture multiple edges, 
toggling from one to the other in a free-running or one-shot fashion. By simply programming the desired 
edge of each capture circuit, the period and pulse width of an input signal can easily be measured without 
the requirement to re-arm the circuit.

In addition, each edge of the input signal can clock an 8-bit counter where the counter output is compared 
to a user-specified value (EDGCMP). When the counter output equals EDGCMP, the value of the 
submodule timer is captured and the counter is automatically reset. This feature allows the module to count 
a specified number of edge events, and then perform a capture and interrupt. Figure 34-33 illustrates some 
of the functionality of the E-Capture circuit.

Figure 34-33. Capture Capabilities of the E-Capture Circuit

When a submodule is used for PWM generation, its timer counts up to the modulus value that specifies the 
PWM frequency and then is re-initialized. Therefore, using this timer for input captures on one of the other 
pins (e.g, PWM_X) has limited utility since it does not count through all of the numbers and the timer reset 
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represents a discontinuity in the 16-bit number range. However, when measuring a signal that is 
synchronous to the PWM frequency, the timer modulus range is perfectly suited for the application.

For example, consider Figure 34-34. In this application the output of a PWM power stage is connected to 
the PWM_X pin, which is configured for free-running input captures:

• PWM_SMnCVAL0 capture circuitry is programmed for rising edges

• PWM_SMnCVAL1 capture circuitry is programmed for falling edges

This results in new load pulse width data being acquired every PWM cycle. To calculate the pulse width, 
subtract PWM_SMnCVAL0 from PWM_SMnCVAL1. This measurement is extremely beneficial when 
performing dead-time distortion correction on a half-bridge circuit driving an inductive load. Also, these 
values can be directly compared to the PWM_SMnVALm registers responsible for generating the PWM 
outputs to measure system propagation delays.

Figure 34-34. Output Pulse Width Measurement Possible with the E-Capture Circuit

34.4.7 Synchronous Switching of Multiple Outputs

Before the PWM signals are routed to the output pins, they are processed by a hardware block that permits 
all submodule outputs to be switched synchronously. This feature can be extremely useful in commutated 
motor applications, where the next commutation state can be laid in ahead of time and immediately 
switched to the outputs when the appropriate condition or time is reached. The changes occur 
synchronously on all submodule outputs and immediately after the trigger event occurs eliminating any 
interrupt latency.
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The synchronous output switching is accomplished via a signal called FORCE_OUT. This signal 
originates from either:

• The local FORCE bit within the submodule

• Submodule 0

• External to the PWM module. In most cases, supplied from an external timer channel configured 
for output compare.

In a typical application, software sets the desired states of the output pins in preparation for the next 
FORCE_OUT event. This selection lays dormant until the FORCE_OUT signal transitions and then all 
outputs are switched simultaneously. The signal switching is performed upstream from the deadtime 
generator so that any abrupt changes that might occur do not violate deadtime on the power stage when in 
complementary mode.

Figure 34-35 shows a popular application that can benefit from this feature. In most cases with a brushless 
DC motor, it is desirable to spin the motor without hall-effect sensor feedback. Instead, the back EMF of 
the motor phases is monitored and is used to schedule the next commutation event. The top waveforms of 
Figure 34-35 are a simplistic representation of these back EMF signals. Timer compare events 
(represented by the vertical dashes in the diagram) are scheduled based on the zero crossings of the 
back-EMF waveforms. The PWM module is configured ahead of time with the next state of the PWM pins 
in anticipation of the compare event. When it happens, the output compare of the timer drives the 
FORCE_OUT signal which immediately changes the state of the PWM pins to the next commutation state 
with no software latency.

Figure 34-35. Sensorless BLDC Commutation Using the Force Out Function
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34.4.8 Functional Details

This section describes the implementation of various sections of the PWM in greater detail.

34.4.8.1 PWM Clocking

Figure 34-36 shows the logic used to generate the main counter clock. Each submodule can select between 
three clock signals: 

• Peripheral bus clock

• EXT_CLK — generated by an on-chip resource and goes to all of the submodules. For this device, 
EXT_CLK is any of the DMA timer outputs as chosen by a register in the CCM module 
(MISCCR[PWM_ECS]). See Chapter 10, “Chip Configuration Module (CCM)”, for more details.

• AUX_CLK — broadcast from submodule 0 and can be selected as the clock source by other 
submodules. In this mode submodule 0’s 8-bit prescaler and RUN bit controls all of the 
submodules. The local RUN bits are ignored.

Figure 34-36. Submodule Clocking Diagram

To allow lower PWM frequencies, the prescaler produces the PWM clock frequency by dividing the 
peripheral bus clock frequency by 1–128. The prescaler bits, PWM_SMnCR1[PRSC], select the prescaler 
divisor. This prescaler is buffered and is not used by the PWM generator until LDOK is set and a new 
PWM reload cycle begins or PWM_SMnCR1[LDMOD] is set.

34.4.8.2 Register Reload Logic

The register reload logic determines when the outer set of registers for all double buffered register pairs 
are transferred to the inner set of registers. The register reload event can be scheduled to occur every n 
PWM cycles using the LDFQ and FULL bits. A half-cycle reload option is also supported (HALF) where 
the reload can take place in the middle of a PWM cycle. The half-cycle point is defined by 
PWM_SMnVAL0 and does not have to be exactly in the middle of the PWM cycle.

As illustrated in Figure 34-37 the reload signal from submodule 0 can be broadcast as the master reload 
signal to control the reload of registers in other submodules.
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Figure 34-37. Register Reload Logic

34.4.8.3 Counter Synchronization

Referring to Figure 34-38, the 16-bit counter is initialized to PWM_SMnINIT by one of four sources:

• Local sync

• Master reload

• Master sync

• PWM_SYNC

• FORCE_OUT (See Section 34.4.8.6, “Force Out Logic” for details on this signal.)

The counter counts up until its output equals PWM_SMnVAL1 which specifies the counter modulus value. 
The resulting compare causes a rising edge to occur on the local sync signal.

0

1

Reload
Logic

(counts PWM
cycles)

Local Reload

LDOK

Mod Compare

Half Compare Register Reload

Master Reload
(from submod0 only)

RELOAD_SEL

Reload opportunity
(to on-chip trigger unit)



Motor Control Pulse-Width Modulator (mcPWM)

34-38 NXP Semiconductors

Figure 34-38. Submodule Timer Synchronization

34.4.8.3.1 Using the Local Sync for Counter Initialization

If local sync is selected as the initialization trigger, then PWM_SMnVAL1 within the submodule 
effectively controls the timer period (and thus the PWM frequency generated by that submodule) and 
everything operates on a local level.

34.4.8.3.2 Using the Master Sync for Counter Initialization

The master sync signal originates as the local sync from submodule 0. If configured to do so, the timer 
period of any submodule can be locked to the period of the submodule 0 timer. The PWM_SMnVAL1 
register and associated comparator of the other submodules can then be freed up for other functions, such 
as:

• PWM generation

• Input captures

• Output compares

• Output triggers

34.4.8.3.3 Using the Master Reload for Counter Initialization

If the master reload signal is selected as the source for counter initialization, then the period of the counter 
is locked to the register reload frequency of submodule 0. Since the reload frequency is usually equal to 
the sampling frequency of the software control algorithm, the submodule counter period is equal the 
sampling period. As a result, this timer can be used to generate output compares or output triggers over the 
entire sampling period which may consist of several PWM cycles. The master reload signal only originates 
from submodule 0.
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34.4.8.3.4 Using PWM_SYNC for Counter Initialization

If the PWM_SYNC signal  is selected as the source for counter initialization, an external source can 
control the period of all submodules.

34.4.8.3.5 Using FORCE_OUT for Counter Initialization

The counter can optionally initialize upon FORCE_OUT assertion if FRCEN is set. As indicated by 
Figure 34-38, this constitutes a second initialization input into the counter which bypasses the other 
counter initialization signals. The FORCE_OUT signal is provided mainly for commutated applications.

When PWM signals are commutated on an inverter controlling a brushless DC motor, the PWM cycle must 
restart at the beginning of the commutation interval. This action effectively resynchronizes the PWM 
waveform to the commutation timing. Otherwise, the average voltage applied to a motor winding 
integrated over the entire commutation interval is a function of the timing between the asynchronous 
commutation event with respect to the PWM cycle. The effect is more critical at higher motor speeds 
where each commutation interval may consist of only a few PWM cycles. If the counter is not initialized 
at the start of each commutation interval, the result is an oscillation caused by the beating between the 
PWM frequency and the commutation frequency.

34.4.8.4 Generation Hardware

Figure 34-39 illustrates PWM generation in each submodule. Two comparators and associated 
PWM_SMnVALm registers are used for each PWM output signal: 

• First comparator and PWM_SMnVALm register control the turn-on edge

• Second comparator and PWM_SMnVALm register control the turn-off edge
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Figure 34-39. PWM Generation Hardware

The generation of the local sync signal is exactly the same as the other PWM signals in the submodule. 
While comparator 0 causes a rising edge of the local sync signal, comparator 1 generates a falling edge. 
Comparator 1 is also hardwired to the reload logic to generate the half cycle reload indicator.

If PWM_SMnVAL1 is controlling the modulus of the counter and PWM_SMnVAL0 is half of the 
PWM_SMnVAL1 register minus the PWM_SMnINIT value, then the half cycle reload pulse occurs 
exactly halfway through the timer count period and the local sync has a 50% duty cycle. Otherwise, if 
PWM_SMnVAL1 and PWM_SMnVAL0 are not required for register reloading or counter initialization, 
they can be used to modulate the duty cycle of the local sync signal. Effectively, this turns it into an 
auxiliary PWM signal (PWM_X) assuming that the PWM_X pin is not used for another function (such as 
input capture or deadtime distortion correction). Including the local sync signal, each submodule is capable 
of generating three PWM signals where software has complete control over each edge of each of the 
signals.
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If the comparators and edge value registers are not required for PWM generation, they can also be used 
for other functions such as:

• Output compares

• Generating output triggers

• Generating interrupts at timed intervals

The 16-bit comparators shown in Figure 34-39 are equal-to-or-greater-than (not just equal-to) 
comparators. In addition, if the set and reset of the flip-flop are asserted, then the flop output goes to zero.

34.4.8.5 Output Compare Capabilities

By using the PWM_SMnVALm registers in conjunction with the submodule timer and 16-bit comparators, 
you can perform buffered output compares with no additional hardware. Specifically, the following output 
compare functions are possible:

• An output compare sets the output high

• An output compare sets the output low

• An output compare generates an interrupt

• An output compare generates an output trigger

As shown in Figure 34-39, an output compare is initiated by programming a PWM_SMnVALm register 
for a timer compare, which causes the output of the D flip-flop to set or reset.

For example, if an output compare is desired that asserts the PWM_A signal:

1. Program PWM_SMnVAL2 with the counter value where the output compare should occur.

2. Program PWM_SMnVAL3 to a value outside of the modulus range of the counter to prevent the D 
flip-flop from resetting after the compare has occurred. 

Conversely, if an output compare is desired that negates the PWM_A signal:

1. Program PWM_SMnVAL3 with the appropriate count value.

2. Program PWM_SMnVAL2 with a value outside the counter modulus range.

Regardless of whether a high or low compare is programmed, a compare event can generate an interrupt 
or output trigger.

34.4.8.6 Force Out Logic

For each submodule software can select between seven signal sources for the FORCE_OUT signal:

• Local FORCE bit

• Master force signal from submodule 0

• Local reload signal

• Master reload signal from submodule 0

• Local sync signal

• Master sync signal from submodule 0

• PWM_FORCE signal
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Use the local signals when synchronization between modules is not desired. However, if all signals on all 
submodule outputs must change at the same time, use the master or PWM_FORCE signals.

Figure 34-40 illustrates the force out logic. The SEL23 and SEL45 fields choose from one of four signals 
that can be supplied to the submodule outputs: 

• PWM signal

• Inverted PWM signal

• Binary level specified by software via the OUT23 and OUT45 bits

• PWM_EXTA alternate external control signals

The selection can be determined ahead of time and, when a FORCE_OUT event occurs, these values are 
presented to the signal selection mux, which immediately switches the requested signal to the output of the 
mux for further processing.

Figure 34-40. Force Out Logic

The local FORCE bit of submodule 0 can be broadcast as the master force signal to other submodules. This 
allows submodule 0’s local FORCE bit to synchronously update all submodule outputs at the same time. 
The PWM_FORCE signal originates from outside the PWM module from a source such as a timer or 
digital comparators in the analog-to-digital converter.

34.4.8.7 Independent or Complementary Channel Operation

Setting PWM_SMnCR2[INDEP] configures the pair of PWM outputs as two independent PWM channels. 
Each PWM output is independently controlled by its own PWM_SMnVALm pair.
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Clearing PWM_SMnCR2[INDEP] configures the PWM output as a pair of complementary channels. The 
PWM pins are paired as shown in Figure 34-41. The IPOL bit determines which signal is connected to the 
output pin (PWM23 or PWM45).

Figure 34-41. Complementary Channel Pair

Use complementary channel operation for driving top and bottom transistors in a motor drive circuit, such 
as in Figure 34-42. Complementary operation allows the use of the deadtime insertion feature.

Figure 34-42. Typical 3-Phase AC Motor Drive

34.4.8.8 Deadtime Insertion Logic

When in complementary mode, each submodule’s deadtime insertion logic creates non-overlapping 
complementary signals. While in this mode, a PWM pair can drive top/bottom transistors, as shown in 
Figure 34-43. When the top PWM channel is active, the bottom PWM channel is inactive, and vice versa.
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Figure 34-43. Deadtime Insertion and Fine Control Logic

NOTE
To avoid short-circuiting the DC bus and endangering the transistor, there 
must be no overlap of conducting intervals between top and bottom 
transistors. But the transistor’s characteristics may make its switching-off 
time longer than its switching-on time. To avoid the conducting overlap, 
insert deadtime in the switching period as illustrated in Figure 34-44

The deadtime generators automatically insert software-selectable activation delays into the pair of PWM 
outputs. The deadtime registers (DTCNT0 and DTCNT1) specify the number of peripheral bus clock 
cycles to use for deadtime delay. Each time the deadtime generator inputs change state, deadtime is 
inserted, which forces both PWM outputs to the inactive state.

When deadtime is inserted in complementary PWM signals that are connected to an inverter driving an 
inductive load, the PWM waveform on the inverter output has a different duty cycle than what appears on 
the output pins of the PWM module. This results in a distortion in the voltage applied to the load. To correct 
this, add or subtract from the PWM value used, as discussed in Section 34.4.8.8.1, “Top/Bottom 
Correction”.
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Figure 34-44. Deadtime Insertion

34.4.8.8.1 Top/Bottom Correction

In complementary mode, the top or the bottom transistor controls the output voltage. However, deadtime 
must be inserted to avoid overlap of the conducting interval. In complementary mode both transistors are 
off during deadtime, allowing the output voltage to be determined by the current status of the load and to 
introduce distortion in the output voltage. On AC induction motors running open-loop, the distortion 
typically manifests itself as poor low-speed performance, such as torque ripple and rough operation.

Figure 34-45. Deadtime Distortion

During deadtime, load inductance distorts output voltage by keeping current flowing through the diodes. 
This deadtime current flow creates a load voltage that varies with current direction.

• Positive current flow — the load voltage during deadtime is equal to the bottom supply, putting the 
top transistor in control.

• Negative current flow — the load voltage during deadtime is equal to the top supply, putting the 
bottom transistor in control.
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Since the original PWM pulse widths are shortened by deadtime insertion, the averaged sinusoidal output 
is less than the desired value. However, when deadtime is inserted, it creates a distortion in the motor’s 
current waveform. This distortion is aggravated by dissimilar turn-on and turn-off delays of each of the 
transistors. This distortion can be corrected by giving the PWM module information on which transistor 
is controlling at a given time.

For a typical circuit in complementary channel operation, only one of the transistors is effective in 
controlling the output voltage at any given time. This depends on the direction of the motor current for that 
pair. To correct distortion one of two factors must be added to the desired PWM value, depending on 
whether the top or bottom transistor is controlling the output voltage. Therefore, user software is 
responsible for calculating both compensated PWM values prior to placing them in the PWM_SMnVALm 
registers. Either the PWM_SMnVAL2/3 or the PWM_SMnVAL4/5 register pair controls the pulse width 
at any given time, depending on either:

• The state of the current status pin, PWMx, for that driver

• The state of the odd/even correction bit, IPOL, for that driver

To correct deadtime distortion, decrease or increase the value in the appropriate PWM_SMnVALm 
register.

• Edge-aligned — decrease or increase PWM_SMnVALm by the deadtime

• Center-aligned — decrease or increase PWM_SMnVALm by half the deadtime

34.4.8.8.2 Manual Correction

To detect the current status, the voltage on each PWMx pin is sampled twice in a PWM period, at the end 
of each deadtime. The value is stored in PWM_SMnCR1[DT]. The DT bits are a timing marker indicating 
when to toggle between PWM value registers. You can then set the IPOL bit to switch between 
PWM_SMnVAL2/3 and PWM_SMnVAL4/5 register pairs according to DT values. 

Figure 34-46. Current-status Sense Scheme for Deadtime Correction

In Figure 34-46, during deadtime periods:

• If current is large and flowing out of the complementary circuit, both D flip-flops latch low
(DT0 = DT1 = 0).
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• If current is large and flowing into the complementary circuit, both D flip-flops latch high
(DT0 = DT1 = 1).

However, under low-current, the output voltage of the complementary circuit during deadtime is 
somewhere between the high and low levels. The current cannot free-wheel through the opposition 
anti-body diode, regardless of polarity, giving additional distortion when the current crosses zero. Sampled 
results are DT0 = 0 and DT1 = 1. Thus, the best time to change one PWM value register to another is just 
before the current zero crossing.

Figure 34-47. Output Voltage Waveforms

34.4.8.9 Output Logic

Figure 34-48 shows the output logic of each submodule, including how each PWM output has individual 
fault disabling, polarity control, and output enable. This allows for maximum flexibility when interfacing 
to the external circuitry.

The PWM23 and PWM45 signals, which are output from the deadtime logic in Figure 34-43, are positive 
true signals. A high level on these signals should result in the corresponding transistor in the PWM inverter 
being turned on. The voltage level required at the PWM output pin to turn the transistor on or off is a 
function of the logic between the pin and the transistor. Therefore, it is imperative to program the POLA 
and POLB bits before enabling the output pins. A fault condition can result in the PWM output being 
tri-stated, forced to a logic 1, or forced to a logic 0 depending on the values programmed into 
PWM_SMnOCR[PWMxFS]. 
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Figure 34-48. Output Logic Section

34.4.8.10 Enhanced Capture (E-Capture)

The enhanced capture (E-capture) logic measures both edges of an input signal. When a submodule pin is 
configured for input capture, the respective PWM_SMnCVALm registers record the edge values.

Figure 34-49 illustrates the block diagram of the E-capture circuit. Upon entering the pin input, the signal 
is split into two paths. 

• Mux input — software can select to pass the signal directly to the capture logic for processing

• 8-bit counter — counts the rising and falling edges of the signal. The output of this 8-bit counter is 
compared to EDGCMP and when equal, the comparator resets the counter. A pulse is also supplied 
to the mux input where software can select it to be processed by the capture logic.

This feature allows the E-capture circuit to count up to 256 edge events before initiating a capture event. 
This feature is useful for dividing high frequency signals for capture processing, so that capture interrupts 
do not overwhelm the CPU. Also, this feature can simply generate an interrupt after n events have been 
counted.
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Figure 34-49. Enhanced Capture (E-Capture) Logic

Based on the mode selection, the mux selects the pin input or the comparator output to be processed by the 
capture logic. The selected signal is routed to two separate capture circuits, which work in tandem to 
capture sequential edges of the signal. The type of edge to be captured by each circuit is determined by the 
EDG1 and EDG0 bits.

Also, the arming logic controls the operation of the capture circuits:

• Free running (continuous) — capture sequences are performed indefinitely. If both capture circuits 
are enabled, a capture event from one circuit arms the other, and vice versa. 

• One shot — only one capture sequence is performed. If both capture circuits are enabled, capture 
circuit 0 is armed and when a capture event occurs, capture circuit 1 is armed. Once the second 
capture occurs, further captures are disabled until another capture sequence is initiated. Both 
capture circuits are also capable of generating an interrupt.

34.4.8.11 Fault Protection

Fault protection can control any combination of PWM output pins. Faults are generated by assertion of any 
of the PWM_FAULTn pins. This polarity can be changed by PWM_FCR[FLVL]. Each PWM_FAULTn 
pin can be mapped arbitrarily to any of the PWM outputs. When the fault protection hardware disables the 
PWM outputs, the PWM generator continues to run. Only the output pins are forced to value specified in 
PWM_SMnOCR[PWMxFS].

The fault decoder disables PWM pins selected by the fault logic and the disable mapping register 
(PWM_SMnDISMAP). See Figure 34-50 for an example of the fault disable logic. Each bit field in 
PWM_SMnDISMAP controls the mapping for a single PWM pin as shown in Table 34-16.
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Fault protection is enabled even when the PWM module is not enabled. Therefore, if a fault is latched it 
must be cleared to prevent an interrupt when the PWM is re-enabled.

Figure 34-50. Fault Decoder for PWMA

34.4.8.11.1 Fault Pin Filter

Each fault pin has a programmable filter that can be bypassed. The sampling period of the filter can be 
adjusted with PWM_FFILT[PER]. The number of consecutive samples that must agree before an input 
transition is recognized is configured using PWM_FFILT[CNT]. Clearing PER disables the input filter for 
a given PWM_FAULTn pin.

Upon detecting a logic 0 on the filtered PWM_FAULTn pin (or a logic 1 if PWM_FCR[FLVL] is set), the 
corresponding PWM_FSR[FFPIN, FFLAG] bits are set. The FFPIN bit remains set as long as the filtered 
PWM_FAULTn pin is zero. Clear FFLAG by writing one to it.

If the PWM_FAULTn pin interrupt enable bit (PWM_FCR[FIE]) is set, FFLAG generates a CPU interrupt 
request. The interrupt request latch remains set until:

• Software clears FFLAG by writing one to it

• Software clears FIE by writing zero to it

• A reset occurs

Even with the filter enabled, there is a combinational path from the PWM_FAULTn inputs to the PWM 
pins. This logic is also capable of holding a fault condition if loss-of-clock to the PWM module occurs.

Table 34-30. Fault Mapping

PWM Pin Controlling Register Bits

PWMA DISA[3:0]

PWMB DISB[3:0]

PWMX DISX[3:0]

Disable PWMA

FAULT0

FAULT1

FAULT2

Wait Mode

WAITEN

Debug Mode

DBGEN

Stop Mode

DISA2 DISA1 DISA0
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34.4.8.11.2 Automatic Fault Clearing

Setting PWM_FCR[FAUTO] configures faults from the PWM_FAULTn pin for automatic clearing. When 
this bit is set, disabled PWM pins are enabled when the PWM_FAULTn pin returns to logic one and:

• If PWM_FSR[FFULL] is cleared, a new PWM full or half cycle begins

• If PWM_FSR[FFULL] is set, a new PWM full cycle begins

NOTE
When FAUTO is set, clearing the FFLAG flag does not affect disabled 
PWM pins.

Figure 34-51. Automatic Fault Clearing

34.4.8.11.3 Manual Fault Clearing

Clearing PWM_FCR[FAUTO] configures faults from the PWM_FAULTn pin for manual clearing:

• If the fault safety mode bits (PWM_FCR[FSAFE]) are cleared, the PWM pins disabled by the 
PWM_FAULTn pins are enabled:

— When software clears the corresponding FFLAG flag

— If FFULL is cleared, when the next PWM full or half cycle begins regardless of the logic level 
on the PWM_FAULTn pin

— If FFULL is set, when the next PWM full cycle begins regardless of the logic level on the 
PWM_FAULTn pin

Figure 34-52. Manual Fault Clearing (FSAFE = 0)
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• If the fault safety mode bits (PWM_FCR[FSAFE]) are set, the PWM pins disabled by the 
PWM_FAULTn pins are enabled:

— When software clears the corresponding FFLAG flag

— If FFULL is cleared, when the filter detects a logic one on the PWM_FAULTn pins at the start 
of the next PWM full or half cycle boundary

— If FFULL is set, when the filter detects a logic one on the PWM_FAULTn pins at the start of 
the next PWM full cycle boundary

Figure 34-53. Manual Fault Clearing (FSAFE = 1)

NOTE
Fault protection also applies during software output control when the 
SEL23 and SEL45 fields are set to select OUT23 and OUT45 bits or 
PWM_EXTAn. Fault clearing still occurs at half-cycle boundaries while the 
PWM generator is engaged (RUN = 1). But, the OUTxx bits can control the 
PWM pins while the PWM generator is off (RUN = 0). Thus, fault clearing 
occurs at peripheral bus cycles while the PWM generator is off and at the 
start of PWM cycles when the generator is engaged.

34.4.8.11.4 Fault Testing

Use the FTEST bit to simulate a fault condition on each of the fault inputs.

34.4.9 PWM Generator Loading

34.4.9.1 Load Enable

The PWM_MCR[LDOK] bit enables loading of the following PWM generator parameters:

• Prescaler divisor — PWM_SMnCR1[PRSC]

• PWM period and pulse width — PWM_SMnINIT and PWM_SMnVALm

LDOK allows software to finish calculating these PWM parameters so they can be synchronously updated.

• If PWM_SMnCR1[LDMOD] is cleared, setting LDOK transfers these values to the PWM 
generator at the beginning of the next PWM reload cycle

• If PWM_SMnCR1[LDMOD] is set, setting LDOK transfers these values immediately
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Set LDOK by reading it when it is cleared, and then writing a one to it. After loading the values, LDOK 
is automatically cleared.

34.4.9.2 Load Frequency

The PWM_SMnCR1[LDFQ] bits select an integral loading frequency of one to 16 PWM reload 
opportunities. The LDFQ bits take effect every PWM reload opportunity, regardless the state of LDOK. 

The PWM_SMnCR1[HALF, FUL] bits control reload timing:

• If FULL is set, a reload opportunity occurs at the end of every PWM cycle when the count equals 
PWM_SMnVAL1.

Figure 34-54. Full Cycle Reload Frequency Change

• If HALF is set, a reload opportunity occurs at the half cycle when the count equals 
PWM_SMnVAL0. 

Figure 34-55. Half Cycle Reload Frequency Change

• If both are set, a reload opportunity occurs twice per PWM cycle when the count equals 
PWM_SMnVAL1 and PWM_SMnVAL0.

Figure 34-56. Full and Half Cycle Reload Frequency Change
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34.4.9.3 Reload Flag

At every reload opportunity the reload flag (PWM_SMnSR[RF]) is set. Setting RF happens even if an 
actual reload is prevented by LDOK. 

• If PWM_SMnIER[RIE] is set, RF generates interrupt requests allowing software to calculate new 
PWM parameters in real-time.

• If PWM_SMnIER[RIE] is cleared, reloads still occur at the selected reload rate without generating 
interrupt requests.

Figure 34-57. PWMF Reload Interrupt Request

34.4.9.4 Reload Errors

When one of the PWM_SMnVALm,  or PSRC registers is updated, the PWM_SMnSR[RUF] flag is set to 
indicate that the data is not coherent. RUF is cleared by a successful reload, which consists of the reload 
signal while LDOK is set.

• If RUF is set and LDOK is cleared when the reload signal asserts, a reload error has taken place 
and REF is set

• If RUF is cleared when a reload signal asserts, then the data is coherent and no error is flagged

34.5 Initialization/Application Information
Initialize all registers and set the PWM_MCR[LDOK] bit before setting the PWM_MCR[RUN] bit.

NOTE
Even if LDOK is not set, setting RUN also sets the PWM_SMnSR[RF] flag. 
To prevent an interrupt request, clear PWM_SMnIER[RIE] before setting 
RUN.

While LDOK is cleared, if RUN is cleared and then set, the PWM generator uses the last values loaded.

When the RUN bit is cleared:

• RF and pending CPU interrupt requests are not cleared

• All fault circuitry remains active

• Software/external output control remains active

• Deadtime insertion continues during software/external output control
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34.5.1 Interrupt Requests

Each of the submodules within the mcPWM module can generate an interrupt from several sources. The 
fault logic can also generate interrupts. The interrupt service routine (ISR) must check the related interrupt 
enables and interrupt flags to determine the actual cause of the interrupt. See Chapter 17, “Interrupt 
Controller Modules (INTC)”, for more details on the interrupt controller.

Table 34-31. Interrupt Summary

INTC2
Source Number

Interrupt Flag
Interrupt 
Enable

Description

1
PWM_SM0SR

[CFxn]
PWM_SM0IER

[CxnIE]
Submodule 0 input capture interrupt

2
PWM_SM1SR

[CFxn]
PWM_SM1IER

[CxnIE]
Submodule 1 input capture interrupt

3
PWM_SM2SR

[CFxn]
PWM_SM2IER

[CxnIE]
Submodule 2 input capture interrupt

4
PWM_SM3SR

[CFxn]
PWM_SM3IER

[CxnIE]
Submodule 3 input capture interrupt

5
PWM_SM0SR

[RF]
PWM_SM0IER

[RIE]
Submodule 0 reload interrupt

6
PWM_SM1SR

[RF]
PWM_SM1IER

[RIE]
Submodule 1 reload interrupt

7
PWM_SM2SR

[RF]
PWM_SM2IER

[RIE]
Submodule 2 reload interrupt

8
PWM_SM3SR

[RF]
PWM_SM3IER

[RIE]
Submodule 3 reload interrupt

9
PWM_FSR

[FFLAG]
PWM_FCR

[FIE]
Fault input interrupt

10

PWM_SM0SR
[REF]

PWM_SM0IER
[REIE]

Submodule 0 reload error interrupt

PWM_SM1SR
[REF]

PWM_SM1IER
[REIE]

Submodule 1 reload error interrupt

PWM_SM2SR
[REF]

PWM_SM2IER
[REIE]

Submodule 2 reload error interrupt

PWM_SM3SR
[REF]

PWM_SM3IER
[REIE]

Submodule 3 reload error interrupt

19
PWM_SM0SR

[CMPF]
PWM_SM0IER

[CMPIE]
Submodule 0 compare interrupt

20
PWM_SM1SR

[CMPF]
PWM_SM1IER

[CMPIE]
Submodule 1 compare interrupt

21
PWM_SM2SR

[CMPF]
PWM_SM2IER

[CMPIE]
Submodule 2 compare interrupt

22
PWM_SM3SR

[CMPF]
PWM_SM3IER

[CMPIE]
Submodule 3 compare interrupt
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34.5.2 DMA Requests

Each submodule can request a DMA read access for its capture FIFOs and a DMA write request for its 
double-buffered PWM_SMnVALm registers. Due to the limited number of DMA channels available on 
this device, the DMA requests are OR’d into two read and write requests. See Chapter 19, “Enhanced 
Direct Memory Access (eDMA)”, for details on the DMA controller.

Table 34-32. DMA Summary

DMA
Request

DMA
Enable

Name Description

56
PWM_SMnDMAEN

[CxnDE]
Capture FIFO read 

request
Read PWM_SMnSR to determine which 
PWM_SMnCVALm contains a value to read.

57
PWM_SMnDMAEN

[VALDE]
PWM_SMnVALm write 

request
Read PWM_SMnSR[RF] to determine which 
PWM_SMnVALm registers updating
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Chapter 35  
Synchronous Serial Interface (SSI)

35.1 Introduction
This section presents the synchronous serial interface (SSI), and discusses the architecture, the 
programming model, the operating modes, and initialization of the SSI module. This device contains two 
identical SSI modules.

The SSI module, as shown in Figure 35-1, consists of separate transmit and receive circuits with FIFO 
registers and separate serial clock and frame sync generation for the transmit and receive sections. The 
second set of Tx and Rx FIFOs replicates the logic used for the first set of FIFOs.

NOTE
This device contains SSI bits to control the clock rate and the SSI DMA 
request sources within the chip configuration module (CCM). See 
Chapter 10, “Chip Configuration Module (CCM),” for detailed information 
on these bit fields.
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Figure 35-1. SSI Block Diagram

35.1.1 Overview

The SSI is a full-duplex serial port that allows the processor to communicate with a variety of serial 
devices. Such serial devices are:

• Standard codecs

• Digital signal processors (DSPs)

• Microprocessors

• Peripherals

• Audio codecs that implement the inter-IC sound bus (I2S) and the Intel® AC97 standards
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The SSI module typically transfers samples in a periodic manner. The SSI consists of independent 
transmitter and receiver sections with shared clock generation and frame synchronization.

NOTE
The pin multiplexing and control module must be configured to enable the 
peripheral function of the appropriate pins (refer to Chapter 15, 
“Pin-Multiplexing and Control”) prior to configuring the SSI.

35.1.2 Features

The SSI includes the following features:

• Synchronous transmit and receive sections with shared internal/external clocks and frame syncs, 
operating in master or slave mode.

• Normal mode operation using frame sync

• Network mode operation allowing multiple devices to share the port with up to 32 time slots

• Gated clock mode operation requiring no frame sync

• Two sets of transmit and receive FIFOs. Each FIFO is 15x32 bits, which can be used in network 
mode to provide two independent channels for transmission and reception

• Programmable data interface modes such as I2S, lsb, msb aligned

• Programmable word length (8, 10, 12, 16, 18, 20, 22 or 24 bits)

• Program options for frame sync and clock generation

• Programmable I2S modes (master or slave). Oversampling clock available as output from 
SSIn_MCLK in I2S master mode

• AC97 support

• Completely separate clock and frame sync selections. In the AC97 standard, the clock is taken from 
an external source and frame sync is generated internally.

• Programmable oversampling clock (SSI _MCLK) of the sampling frequency available as output 
in master mode

• Programmable internal clock divider

• Transmit and receive time slot mask registers for reduced CPU overhead

• SSI power-down feature

35.1.3 Modes of Operation

SSI has the following basic synchronous operating modes.

• Normal mode

• Network mode

• Gated clock mode

These modes can be programmed via the SSI control registers. Table 35-1 lists these operating modes and 
some of the typical applications in which they can be used:

n
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The transmit and receive sections of the SSI are only available in synchronous mode. In this mode, the 
transmitter and the receiver use a common clock and frame synchronization signal. The 
SSIn_RCR[RXBIT0, RSHFD] bits can continue affecting shifting-in of received data in synchronous 
mode. Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. 
In gated clock mode, the clock is only functioning during transmission.

Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of 
I/O per frame. In network mode, any number from two to thirty-two data words of I/O per frame can be 
used. Network mode is typically used in star or ring time-division-multiplex networks with other 
processors or codecs, allowing interface to time division multiplexed networks without additional logic. 
Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating 
modes that allow the SSI to communicate with a wide variety of devices.

Typically, normal and network modes are used in a periodic manner, where data transfers at regular 
intervals, such as at the sampling rate of an external codec. Both modes use the concept of a frame. The 
beginning of the frame is marked with a frame sync when programmed with continuous clock. The 

SSIn_CCR[DC] bits determine length of the frame, depending on whether data is being transmitted or 
received.

The number of words transferred per frame depends on the mode of the SSI. In normal mode, one data 
word transfers per frame. In network mode, the frame divides into two to 32 time slots. In each time slot, 
one data word is optionally transferred.

Apart from the above basic modes of operation, SSI supports the following modes that require some 
specific programming:

• I2S mode

• AC97 mode

— AC97 fixed mode

— AC97 variable mode

In non-I2S slave modes (external frame sync), the SSI’s programmed word length setting should be equal 
to the word length setting of the master. In I2S slave mode, the SSI’s programmed word length setting can 
be lesser than or equal to the word length setting of the I2S master (external codec).

In slave modes, the SSI’s programmed frame length setting (DC bits) can be lesser than or equal to the 
frame length setting of the master (external codec).

See Section 35.4.1, “Detailed Operating Mode Descriptions,” for more details on the above modes.

Table 35-1. SSI Operating Modes

TX, RX Sections Serial Clock Mode Typical Application

Synchronous Continuous Normal Multiple synchronous codecs

Synchronous Continuous Network TDM codec or DSP network

Synchronous Gated Normal SPI-type devices; DSP to MCU
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35.2 External Signal Description
The five SSI signals are explained below.

35.2.1 SSI_CLKIN — SSI Clock Input

The SSI module can be clocked by the internal core frequency derived from the PLL or this input clock. 
The source is selected by the MISCCR[SSISRC] bit in the CCM. See Chapter 10, “Chip Configuration 
Module (CCM),” and Figure 35-40.

35.2.2 SSIn_BCLK — Serial Bit Clock

This input or output signal is used by the transmitter and receiver and can be continuous or gated. During 
gated clock mode, data on the SSIn_BCLK port is valid only during the transmission of data; otherwise, 
it is pulled to the programmed inactive state. 

35.2.3 SSIn_MCLK — Serial Master Clock

This clock signal is output from the device when it is the master. When in I2S master mode, this signal is 
referred to as the oversampling clock. The frequency of SSIn_MCLK is a multiple of the frame clock.

35.2.4 SSIn_FS — Serial Frame Sync

The input or output frame sync is used by the transmitter and receiver to synchronize the transfer of data. 
The frame sync signal can be one bit or one word in length and can occur one bit before the transfer of data 
or right at the transfer of data. In gated clock mode, the frame sync signal is not used. If SSIn_FS is 
configured as an input, the external device should drive SSIn_FS during rising edge of SSIn_BCLK.

35.2.5 SSIn_RXD — Serial Receive Data

The SSIn_RXD port is an input and brings serial data into the receive data shift register.

Table 35-2. Signal Properties

Name Function Direction Reset State Pull up

SSI_CLKIN SSI Clock Input I I Passive

SSIn_BCLK Serial Bit Clock I/O 0 Passive

SSIn_MCLK Serial Master Clock O 0 Passive

SSIn_FS Serial Frame Sync I/O 0 Passive

SSIn_RXD Serial Receive Data I  —  —

SSIn_TXD Serial Transmit Data O 0 Passive
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35.2.6 SSIn_TXD — Serial Transmit Data

The SSIn_TXD port is an output and transmits data from the serial transmit shift register. The SSIn_TXD 
port is an output port when data is transmitted and disabled between data word transmissions and on the 
trailing edge of the bit clock after the last bit of a word is transmitted.

Figure 35-2 shows the main SSI configurations. These ports support all transmit and receive functions with 
continuous or gated clock as shown. Gated clock implementations do not require the use of the frame sync 
port (SSIn_FS).

Figure 35-2. Synchronous SSI Configurations—Continuous and Gated Clock

Figure 35-3 shows an example of the port signals for an 8-bit data transfer. Continuous and gated clock 
signals are shown, as well as the bit-length frame sync signal and the word-length frame sync signal. The 
shift direction can be defined as msb first or lsb first, and there are other options on the clock and frame 
sync.

SSI Internal Continuous Clock 

SSI External Continuous Clock

SSI Internal Gated Clock

SSI External Gated Clock

SSI I2S Master Mode

SSI I2S Slave Mode

(RXDIR=0, TXDIR=1, TFDIR=1, SYN=1, MCE=1)

(I2S_Mode=01, MCE)

(RXDIR=0, TXDIR=0, TFDIR=0, SYN=1)

(I2S_Mode=10)

(RXDIR=1, TXDIR=1, SYN=1)

(RXDIR=1, TXDIR=0, SYN=1)

SSIn_TXD

SSIn_RXD

SSIn_BCLK

SSIn_FS

SSIn_MCLK

SSIn_TXD

SSIn_RXD

SSIn_BCLK

SSIn_FS

SSIn_TXD

SSIn_RXD

SSIn_BCLK

SSIn_TXD

SSIn_RXD

SSIn_BCLK



Synchronous Serial Interface (SSI)

NXP Semiconductors 35-7

Figure 35-3. Serial Clock and Frame Sync Timing

35.3 Memory Map/Register Definition
This section consists of register descriptions in address order. Each description includes a standard register 
diagram with an associated figure number. Details of register bit and field function follow the register 
diagrams, in bit order.

Table 35-3. Clock and Frame Sync Pin Configuration

SSIn_CR
[SYN]

SSIn_RCR
[RXDIR]

SSIn_TCR
SSIn_BCLK SSIn_FS

TXDIR TFDIR

Synchronous Mode

1 0 0 0 Bit clock in FS in

1 0 0 1 Bit clock in FS out

1 0 1 0 Bit clock out FS in

1 0 1 1 Bit clock out FS out

1 1 0 x Gated clock in —

1 1 1 x Gated clock out —

Table 35-4. SSI Memory Map

Address

Register
Width
(bits)

Access Reset Value Section/Page
SSI0
SSI1

0xFC0B_C000
0xFC0C_8000

SSIn Transmit Data Register 0 (SSIn_TX0) 32 R/W 0x0000_0000 35.3.1/35-8

0xFC0B_C004
0xFC0C_8004

SSIn Transmit Data Register 1 (SSIn_TX1) 32 R/W 0x0000_0000 35.3.1/35-8

0xFC0B_C008
0xFC0C_8008

SSIn Receive Data Register 0 (SSIn_RX0) 32 R 0x0000_0000 35.3.4/35-11

Continuous

Gated

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

8-bit Data

7 6

7 6

Bit Length Frame Sync
Word Length Frame Sync

Early

(n
ot

 u
se

d 
in

ga
te

d 
cl

oc
k)

SSIn_TXD

SSIn_RXD

SSIn_BCLK

SSIn_FS

SSIn_FS

SSIn_BCLK
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35.3.1 SSI Transmit Data Registers 0 and 1 (SSIn_TX0/1)

The SSIn_TX0/1 registers store the data to be transmitted by the SSI. For details on data alignment see 
Section 35.4.4, “Supported Data Alignment Formats.”

0xFC0B_C00C
0xFC0C_800C

SSIn Receive Data Register 1 (SSIn_RX1) 32 R 0x0000_0000 35.3.4/35-11

0xFC0B_C010
0xFC0C_8010

SSIn Control Register (SSIn_CR) 32 R/W 0x0000_0000 35.3.7/35-13

0xFC0B_C014
0xFC0C_8014

SSIn Interrupt Status Register (SSIn_ISR) 32 R/W 0x0000_3003 35.3.8/35-15

0xFC0B_C018
0xFC0C_8018

SSIn Interrupt Enable Register (SSIn_IER) 32 R/W 0x0000_3003 35.3.9/35-21

0xFC0B_C01C
0xFC0C_801C

SSIn Transmit Configuration Register (SSIn_TCR) 32 R/W 0x0000_0200 35.3.10/35-23

0xFC0B_C020
0xFC0C_8020

SSIn Receive Configuration Register (SSIn_RCR) 32 R/W 0x0000_0200 35.3.11/35-24

0xFC0B_C024
0xFC0C_8024

SSIn Clock Control Register (SSIn_CCR) 32 R/W 0x0004_0000 35.3.12/35-25

0xFC0B_C02C
0xFC0C_802C

SSI FIFO Control/Status Register (SSIn_FCSR) 32 R/W 0x0081_0081 35.3.13/35-27

0xFC0B_C038
0xFC0C_8038

SSIn AC97 Control Register (SSIn_ACR) 32 R/W 0x0000_0000 35.3.14/35-33

0xFC0B_C03C
0xFC0C_803C

SSIn AC97 Command Address Register (SSIn_ACADD) 32 R/W 0x0000_0000 35.3.15/35-34

0xFC0B_C040
0xFC0C_8040

SSIn AC97 Command Data Register (SSIn_ACDAT) 32 R/W 0x0000_0000 35.3.16/35-34

0xFC0B_C044
0xFC0C_8044

SSIn AC97 Tag Register (SSIn_ATAG) 32 R/W 0x0000_0000 35.3.17/35-35

0xFC0B_C048
0xFC0C_8048

SSIn Transmit Time Slot Mask Register (SSIn_TMASK) 32 R/W 0x0000_0000 35.3.18/35-35

0xFC0B_C04C
0xFC0C_8048

SSIn Receive Time Slot Mask Register (SSIn_RMASK) 32 R/W 0x0000_0000 35.3.19/35-36

0xFC0B_C050
0xFC0C_8050

SSIn AC97 Channel Status Register (SSIn_ACCSR) 32 R 0x0000_0000 35.3.20/35-36

0xFC0B_C054
0xFC0C_8054

SSIn AC97 Channel Enable Register (SSIn_ACCEN) 32 R 0x0000_0000 35.3.21/35-37

0xFC0B_C058
0xFC0C_8058

SSIn AC97 Channel Disable Register (SSIn_ACCDIS) 32 R 0x0000_0000 35.3.22/35-37

Table 35-4. SSI Memory Map (continued)

Address

Register
Width
(bits)

Access Reset Value Section/Page
SSI0
SSI1
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35.3.2 SSI Transmit FIFO 0 and 1 Registers

The SSI transmit FIFO registers are 15x32-bit registers. These registers are not directly accessible. The 
transmit shift register (TXSR) receives its values from these FIFO registers. When the transmit interrupt 
enable (SSIn_IER[TIE]) bit and either of the transmit FIFO empty (SSIn_ISR[TFE0, TFE1]) bits are set, 
an interrupt is generated when the data level in of the SSI transmit FIFOs falls below the selected threshold.

35.3.3 SSI Transmit Shift Register (TXSR)

TXSR is a 24-bit shift register that contains the data transmitted and is not directly accessible. When a 
continuous clock is used, the selected bit clock shifts data out to the SSIn_TXD pin when the associated 
frame sync is asserted. When a gated clock is used, the selected gated clock shifts data out to the 
SSIn_TXD port.

The word length control bits (SSIn_CCR[WL]) determine the number of bits to shift out of the TXSR 
before it is considered empty and can be written to again. The data to be transmitted occupies the most 
significant portion of the shift register if SSIn_TCR[TXBIT0] is cleared. Otherwise, it occupies the least 
significant portion. The unused portion of the register is ignored.

NOTE
If TXBIT0 is cleared and the word length is less than 16 bits, data occupies 
the most significant portion of the lower 16 bits of the transmit register. 

Address: 0xFC0B_C000 (SSI0_TX0)
0xFC0B_C004 (SSI0_TX1)
0xFC0C_8000 (SSI1_TX0)
0xFC0C_8004 (SSI1_TX1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SSI_TX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-4. SSI Transmit Data Registers (SSIn_TX0, SSIn_TX1)

Table 35-5. SSIn_TX0/1 Field Descriptions

Field Description

31–0
SSI_TX

SSI transmit data. The SSIn_TX0/1 registers are implemented as the first word of their respective Tx FIFOs. Data 
written to these registers transfers to the transmit shift register (TXSR), when shifting of the previous data is 
complete. If both FIFOs are in use, data alternately transfers from SSI_TX0 and SSI_TX1 to TXSR. SSI_TX1 can 
only be used in two-channel mode.
Multiple writes to the SSIn_TX registers do not result in the previous data being over-written by the subsequent data. 
Instead, they are ignored. Protection from over-writing is present irrespective of whether the transmitter is enabled 
or not.

Example: If Tx FIFO0 is in use and you write Data1 – 16 to SSI_TX0, Data16 does not overwrite Data1. Data1 – 15 
are stored in the FIFO while Data16 is discarded.
Example: If Tx FIFO0 is not in use and you write Data1, Data2 to SSI_TX0, Data2 does not overwrite Data1 and is 
discarded.
Note: Enable SSI (SSIn_CR[SSI_EN] = 1) before writing to the SSI transmit data registers
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When SSIn_TCR[SHFD] is cleared, data is shifted out of this register with the most significant bit (msb) 
first. If this bit is set, the least significant bit (lsb) is shifted out first. The following figures show the 
transmitter loading and shifting operation. They illustrate some possible values for WL, which can be 
extended for the other values.

Figure 35-5. Transmit Data Path (TXBIT0=0, TSHFD=0) (msb Alignment)

Figure 35-6. Transmit Data Path (TXBIT0=0, TSHFD=1) (msb Alignment)

Figure 35-7. Transmit Data Path (TXBIT0=1, TSHFD=0) (lsb Alignment)

SSI_TX

31 0
24 bits

20 bits
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31 0

TXSR

15 11 7

12 bits

12 bits16 bits
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31 0

31 0

TXSR

12 bits20 bits 24 bits

24 bits

12 bits

20 bits

16 bits

15 11 7

15 11 7
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SSIn_TXD

SSI_TX

23 0
24 bits

11

12 bits
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23 0

TXSR

11 
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151931

SSIn_TXD
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Figure 35-8. Transmit Data Path (TXBIT0=1, TSHFD=1) (lsb Alignment)

35.3.4 SSI Receive Data Registers 0 and 1 (SSIn_RX0/1)

The SSIn_RX0/1 registers store the data received by the SSI. For details on data alignment see 
Section 35.3.6, “SSI Receive Shift Register (RXSR).”

35.3.5 SSI Receive FIFO 0 and 1 Registers

The SSI receive FIFO registers are 15x32-bit registers and are not directly accessible. They always accept 
data from the receive shift register (RXSR). If the associated interrupt is enabled, an interrupt is generated 
when the data level in either of the SSI receive FIFOs reaches the selected threshold.

35.3.6 SSI Receive Shift Register (RXSR)

RXSR is a 24-bit shift register receiving incoming data from the SSIn_RXD pin. This register is not 
directly accessible. When a continuous clock is used, data is shifted in by the bit clock when the associated 
frame sync is asserted. When a gated clock is used, data is shifted in by the gated clock. Data is assumed 
to be received msb first if SSIn_RCR[SHFD] is cleared. If this bit is set, the data is received lsb first. Data 
is transferred to the appropriate SSI receive data register or receive FIFOs (if the receive FIFO is enabled 

Address: 0xFC0B_C008 (SSI0_RX0)
0xFC0B_C00C (SSI0_RX1)
0xFC0C_8008 (SSI1_RX0)
0xFC0C_800C (SSI1_RX1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SSI_RX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-9. SSI Receive Data Registers (SSIn_RX0, SSIn_RX1)

Table 35-6. SSIn_RX0/1 Field Descriptions

Field Description

31–0
SSI_RX

SSI receive data. SSIn_RX0/1 are implemented as the first word of their respective Rx FIFOs. These bits receive 
data from RXSR depending on the mode of operation. If both FIFOs are in use, data is transferred to each data 
register alternately. SSIn_RX1 is only used in two-channel mode.

SSI_TX

23 015

TXSR

1119

24 bits

12 bits

20 bits

16 bits

23 011 151931

SSIn_TXD
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and the corresponding SSIn_RX is full) after a word has been shifted in. For receiving less than 24 bits of 
data, the lsb bits are appended with 0.

The following figures show the receiver loading and shifting operation. They illustrate some possible 
values for WL, which can be extended for the other values.

Figure 35-10. Receive Data Path (RXBIT0=0, RSHFD=0) (msb Alignment)

Figure 35-11. Receive Data Path (RXBIT0=0, RSHFD=1) (msb Alignment)

Figure 35-12. Receive Data Path (RXBIT0=1, RSHFD=0) (lsb Alignment)
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71115
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Figure 35-13. Receive Data Path (RXBIT0=1, RSHFD=1) (lsb Alignment)

35.3.7 SSI Control Register (SSIn_CR)

The SSI control register sets up the SSI modules. SSI operating modes are selected in this register (except 
AC97 mode, which is selected in SSIn_ACR register).

Address: 0xFC0B_C010 (SSI0_CR)
0xFC0C_8010 (SSI1_CR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
RCD TCD CIS TCH MCE I2S SYN NET RE TE

SSI
_ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-14. SSI Control Register (SSIn_CR)

Table 35-7. SSIn_CR Field Descriptions

Field Description

31–12 Reserved, must be cleared.

11
RCD

Receive frame clock disable. Disables the frame sync and clock after the current receive frame when the receiver is 
disabled (RE is cleared). Writing to this bit only has affect when RE is cleared.
0 Continue frame sync and clock generation after the current frame if RE is cleared. Use this setting when the frame 

sync and clocks are required, even when no data is received.
1 Stop frame sync and clock generation at the next frame boundary if RE is cleared.

10
TCD

Transmit frame clock disable. Disables the frame sync and clock after the current transmit frame when the transmitter 
is disabled (TE is cleared). Writing to this bit only has affect when TE is cleared.
0 Continue frame sync and clock generation after the current frame if TE is cleared. Use this setting when the frame 

sync and clocks are required, even when no data is transmitted.
1 Stop frame sync and clock generation at the next frame boundary if TE is cleared.

SSI_RX

23 0

24 bits 12 bits20 bits 16 bits

24 bits

12 bits

20 bits

16 bits

RXSR

111519

23 011 151931

31

SSIn_RXD
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9
CIS

Clock idle state. Controls the idle state of the transmit clock port (SSI_BCLK and SSI_MCLK) during internal gated 
clock mode.
0 Clock idle state is 1
1 Clock idle state is 0

8
TCH

Two channel operation enable. In this mode, two time slots are used out of the possible 32. Any two time slots 
(0 – 31) can be selected by the mask registers. The data in the two time slots is alternately handled by the two data 
registers (0 and 1). While receiving, RXSR transfers data to SSIn_RX0 and SSIn_RX1 alternately, and while 
transmitting, data is alternately transferred from SSIn_TX0 and SSIn_TX1 to TXSR.
Two channel operation can be enabled for an even number of slots larger than two to optimize usage of both FIFOs. 
However, TCH should be cleared for an odd number of time slots.
0 Two channel mode disabled
1 Two channel mode enabled

7
MCE

Master clock enable. Allows the SSI to output the master clock at the SSIn_MCLK port, if network mode and transmit 
internal clock mode are set. The DIV2, PSR, and PM bits determine the relationship between the bit clock 
(SSI_BCLK) and SSIn_MCLK. In I2S master mode, this bit is used to output the oversampling clock on SSIn_MCLK.
0 Master clock not output on the SSIn_MCLK pin
1 Master clock output on the SSIn_MCLK pin

6–5
I2S

I2S mode select. Selects normal, I2S master, or I2S slave mode. Refer to Section 35.4.1.4, “I2S Mode,” for a detailed 
description of I2S mode.
00 Normal mode
01 I2S master mode
10 I2S slave mode
11 Normal mode

4
SYN

Synchronous mode enable. In synchronous mode, transmit and receive sections of SSI share a common clock port 
(SSIn_BCLK) and frame sync port (SSIn_FS).
0 Reserved.
1 Synchronous mode selected.

3
NET

Network mode enable.
0 Network mode not selected
1 Network mode selected

2
RE

Receiver enable. When this bit is set, data reception starts with the arrival of the next frame sync. If data is received 
when this bit is cleared, data reception continues with the end of the current frame and then stops. If this bit is set 
again before the second to last bit of the last time slot in the current frame, reception continues without interruption.
0 Receiver disabled
1 Receiver enabled

Table 35-7. SSIn_CR Field Descriptions (continued)

Field Description
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35.3.8 SSI Interrupt Status Register (SSIn_ISR)

The SSI interrupt status register monitors the SSI. This register is used by the processor to interrogate the 
status of the SSI module. All receiver-related interrupts are generated only if the receiver is enabled 
(SSIn_CR[RE] = 1). Likewise, all transmitter-related interrupts are generated only if the transmitter is 
enabled (SSIn_CR[TE] = 1).

NOTE
Refer to Section 35.4.5, “Receive Interrupt Enable Bit Description,” and 
Section 35.4.6, “Transmit Interrupt Enable Bit Description,” for more 
details on SSI interrupt generation.

All flags in the SSIn_ISR are updated after the first bit of the next SSI word 
has completed transmission or reception. Some status bits (ROE0/1 and 
TUE0/1) are cleared by writing one to the corresponding bit in the SSI_ISR.

1
TE

Transmitter. Enables the transfer of the contents of the SSIn_TX registers to the TXSR, and also enables the internal 
transmit clock. The transmit section is enabled when this bit is set and a frame boundary is detected.
When this bit is cleared, the transmitter continues to send data until the end of the current frame and then stops. 
Data can be written to the SSIn_TX registers with the TE bit cleared (the corresponding TDE bit is cleared). If the 
TE bit is cleared and set again before the second to last bit of the last time slot in the current frame, data transmission 
continues without interruption.
The normal transmit enable sequence is to:

1. Write data to the SSIn_TX register(s)
2. Set the TE bit

The normal transmit disable sequence is to:
1. Wait for TDE to set
2. Clear the TE and TIE bits

In gated clock mode, clearing the TE bit results in the clock stopping after the data currently in TXSR has shifted out. 
When the TE bit is set, the clock starts immediately in internal gated clock mode.
0 Transmitter disabled
1 Transmitter enabled

0
SSI_EN

SSI enable. When disabled, all SSI status bits are reset to the same state produced by the power-on reset, all control 
bits are unaffected, and the contents of Tx and Rx FIFOs are cleared. When SSI is disabled, all internal clocks are 
disabled (except the register access clock).
0 SSI module is disabled
1 SSI module is enabled

Table 35-7. SSIn_CR Field Descriptions (continued)

Field Description
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Address: 0xFC0B_C014 (SSI0_ISR)
0xFC0C_8014 (SSI1_ISR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0
RFRC TFRC

0 0 0 0 CMDAU CMDDU RXT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RDR1 RDR0 TDE1 TDE0 ROE1 ROE0 TUE1 TUE0 TFS RFS TLS RLS RFF1 RFF0 TFE1 TFE0

W w1c w1c w1c w1c

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

Figure 35-15. SSI Interrupt Status Register (SSIn_ISR)

Table 35-8. SSIn_ISR Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
RFRC

Receive frame complete. Indicates the end of the frame when the receiver is disabled. If the receive frame and 
clock are not disabled in the same frame, this bit is also set at the end of the frame that the receive frame and 
clock are disabled. See the description of SSIn_CR[RCD] for more details on enabling/disabling the receive frame 
and clock after the receiver is disabled.
0 End of frame not reached
1 End of frame reached after clearing SSIn_CR[RE], or setting SSIn_CR[RCD] when RE is already cleared.

23
TFRC

Transmit frame complete. Indicates the end of the frame when the transmitter is disabled. If the transmit frame and 
clock are not disabled in the same frame, this bit is also set at the end of the frame that the transmit frame and 
clock are disabled. See the description of SSIn_CR[TCD] for more details on enabling/disabling the transmit frame 
and clock after the transmitter is disabled.
0 End of frame not reached
1 End of frame reached after clearing SSIn_CR[TE], or setting SSIn_CR[RCD] when TE is already cleared.

22–19 Reserved, must be cleared.

18
CMDAU

AC97 command address register updated. This bit causes the command address updated interrupt when the 
SSIn_IER[CMDAU] bit is set. This status bit is set each time there is a difference in the previous and current value 
of the received command address. This bit is cleared upon reading the SSIn_ACADD register.
0 No change in SSIn_ACADD register
1 SSIn_ACADD register updated with different value

17
CMDU

AC97 command data register updated. This bit causes the command data updated interrupt when the 
SSIn_IER[CMDDU] bit is set. This status bit is set each time there is a difference in the previous and current value 
of the received command data. This bit is cleared upon reading the SSIn_ACDAT register.
0 No change in SSIn_ACDAT register
1 SSIn_ACDAT register updated with different value

16
RXT

AC97 receive tag updated. This status bit is set each time there is a difference in the previous and current value 
of the received tag. It causes the receive tag interrupt if the SSIn_IER[RXT] bit is set. This bit is cleared upon 
reading the SSIn_ATAG register.
0 No change in SSIn_ATAG register
1 SSIn_ATAG register updated with different value
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15
RDR1

Receive data ready 1. Only valid in two-channel mode. Indicates new data is available for the processor to read.

14
RDR0

Receive data ready 0. Similar description as RDR1 but pertains to Rx FIFO 0 and it is not necessary to be in 
two-channel mode for this bit to be set.
0 No new data for core to read
1 New data for core to read

13
TDE1

Transmit data register empty 1. Only valid in two-channel mode. Indicates that data needs to be written to the SSI.

Table 35-8. SSIn_ISR Field Descriptions (continued)

Field Description

Rx FIFO1
Receive data 1 interrupt

Required conditions Trigger

Enabled  • SSIn_IER[RIE] set
 • SSIn_IER[RFF1] set

 • SSIn_ISR[RFF1] sets

Disabled  • SSIn_IER[RIE] set
 • SSIn_IER[RDR1] set

 • SSIn_RX1 loaded with new value

Rx FIFO1 RDR1 is set when
RDR1 is cleared during

any of the following

Enabled  • Rx FIFO1 loaded
with new value

 • Rx FIFO1 is empty
 • SSI reset
 • POR reset

Disabled  • SSIn_RX1 loaded
with new value

 • SSIn_RX1 is read
 • SSI reset
 • POR reset

Tx FIFO1
Transmit data 1 interrupt

Required conditions Trigger

Enabled  • SSIn_IER[TIE] set
 • SSIn_IER[TDE1] set

 • SSIn_ISR[TDE1] sets

Disabled  • SSIn_IER[TIE] set
 • SSIn_IER[TDE1] set

 • SSIn_TX1 data transferred to 
TXSR

Tx FIFO1 TDE1 is set when
TDE1 is cleared when

any of the following occur

Enabled  • At least one empty slot in Tx 
FIFO1

 • Tx FIFO1 is full
 • SSI reset
 • POR reset

Disabled  • SSIn_TX1 data transferred to 
TXSR

 • SSIn_TX1 is written
 • SSI reset
 • POR reset
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12
TDE0

Transmit data register empty 0. Similar description as TE1 but pertains to Tx FIFO 0 and it is not necessary to be 
in two-channel mode for this bit to be set.
0 Data available for transmission
1 Data needs to be written by the core for transmission

11
ROE1

Receiver overrun error 1. Only valid in two-channel mode. Indicates an overrun error has occurred.

Note: If Rx FIFO 1 is enabled, the RFF1 flag indicates the FIFO is full.
If Rx FIFO 1 is disabled, the RDR1 flag indicates the SSIn_RX1 register is full.

10
ROE0

Receiver overrun error 0. Similar description as ROE1 but pertains to Rx FIFO 0 and it is not necessary to be in 
two-channel mode for this bit to be set.
0 No overrun detected
1 Receiver 0 overrun error occurred

9
TUE1

Transmitter underrun error 1. Only valid in two-channel mode. When a transmit underrun error occurs, the previous 
data is retransmitted. In network mode, each time slot requires data transmission (unless masked through the 
SSIn_TMASK register), when the transmitter is enabled.

Table 35-8. SSIn_ISR Field Descriptions (continued)

Field Description

Rx FIFO1
Receiver overrun error 1 interrupt

Required conditions Trigger

Enabled  • SSIn_IER[RIE] set
 • SSIn_IER[ROE1] set

 • SSIn_ISR[ROE1] sets

Disabled

Rx FIFO1
ROE1 is set when

all of the following occur
ROE1 is cleared when

any of the following occur

Enabled  • RXSR is full
 • Rx FIFO1 is full

 • Writing a 1 to ROE1
 • SSI reset
 • POR reset

Disabled  • RXSR is full
 • SSIn_RX1 is full

Tx FIFO1
Transmit underrun error 1 interrupt

Required conditions Trigger

Enabled  • SSI_IER[TIE] set
 • SSI_IER[TUE1] set

 • SSI_ISR[TUE1] sets

Disabled

Tx FIFO1
TUE1 is set when

all of the following occur
TUE1 is cleared when

any of the following occur

Enabled  • TXSR is empty
 • SSIn_ISR[TDE1] set
 • Transmit time slot occurs

 • Writing a 1 to TUE1
 • SSI reset
 • POR resetDisabled
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8
TUE0

Transmitter underrun error 0. Similar description as TUE1 but pertains to TDE0 and it is not necessary to be in 
two-channel mode for this bit to be set.
0 No underrun detected
1 Transmitter 0 underrun error occurred

7
TFS

Transmit frame sync. Indicates occurrence of a transmit frame sync during transmission of the last word written to 
the SSIn_TX registers

Note: Data written to the SSIn_TX registers during the time slot when the TFS flag is set is sent during the second 
time slot (in network mode) or in the next first time slot (in normal mode).

6
RFS

Receive frame sync. Indicates occurrence of a receive frame sync during reception of the next word in SSIn_RX 
registers.

Table 35-8. SSIn_ISR Field Descriptions (continued)

Field Description

SSI Mode
Transmit frame sync interrupt

Required conditions Trigger

Normal  • SSIn_IER[TIE] set
 • SSIn_IER[TFS] set

 • SSIn_ISR[TFS] sets

Network

SSI Mode TFS is set when
TFS is cleared when

any of the following occur

Normal  • TFS is always set  • SSI reset
 • POR reset

Network  • First time slot transmission  • Starts transmitting next time slot
 • SSI reset
 • POR reset

SSI Mode
Receive frame sync interrupt

Required conditions Trigger

Normal  • SSIn_IER[RIE] set
 • SSIn_IER[RFS] set

 • SSIn_ISR[RFS] sets

Network

SSI Mode RFS is set when
RFS is cleared when

any of the following occur

Normal  • RFS is always set  • SSI reset
 • POR reset

Network  • First time slot received  • Starts receiving next time slot
 • SSI reset
 • POR reset
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5
TLS

4
RLS

Transmit/receive last time slot. Indicates the current time slot is the last time slot of the frame.

3
RFF1

Receive FIFO full 1. Only valid in two-channel mode and if Rx FIFO 1 is enabled. When Rx FIFO1 is full, all further 
data received (for storage in this FIFO) is ignored until the FIFO contents are read.

2
RFF0

Receive FIFO full 0. Similar to description of RFF1, but pertains to Rx FIFO 0 and is not necessary to be in 
two-channel mode for this bit to be set.
0 Space available in receive FIFO 0
1 Receive FIFO 0 is full

Table 35-8. SSIn_ISR Field Descriptions (continued)

Field Description

Last time slot interrupts

Required conditions Trigger

TLS
 • SSIn_IER[TIE] set
 • SSIn_IER[TLS] set

 • SSIn_ISR[TLS] sets

RLS
 • SSIn_IER[RIE] set
 • SSIn_IER[RLS] set

 • SSIn_ISR[RLS] sets

Is set when
Is cleared when

any of the following occur

TLS
 • Start of last transmit time slot  • SSIn_ISR is read with TLS set

 • SSI reset
 • POR reset

RLS
 • End of last receive time slot  • SSIn_ISR is read with RLS set

 • SSI reset
 • POR reset

Rx FIFO1
Receive FIFO full 1 interrupt

Required conditions Trigger

Enabled  • SSIn_IER[RIE] set
 • SSIn_IER[RFF1] set

 • SSIn_ISR[RFF1] sets

Rx FIFO1 RFF1 is set when
RFF1 is cleared when

any of the following occur

Enabled  • Rx FIFO 1 level reaches Rx FIFO 
watermark 1 (RFWM1) threshold

 • Rx FIFO 1 level falls below 
RFWM1 level

 • SSI reset
 • POR reset
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35.3.9 SSI Interrupt Enable Register (SSIn_IER)

The SSIn_IER register sets up the SSI interrupts and DMA requests.

1
TFE1

Transmit FIFO empty 1. Only valid when in two-channel mode and Tx FIFO 1 is enabled.

0
TFE0

Transmit FIFO empty 0. Similar to description of TFE1 but pertains to TX FIFO 0 and it is not necessary to be in 
two-channel mode for this bit to be set.
0 Transmit FIFO 0 has data for transmission
1 Transmit FIFO 0 is empty

Address: 0xFC0B_C018 (SSI0_IER)
0xFC0C_8018 (SSI1_IER)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0
RFRC TFRC RDMAE RIE TDMAE TIE

CMD
AU

CMDU RXT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RDR1 RDR0 TDE1 TDE0 ROE1 ROE0 TUE1 TUE0 TFS RFS TLS RLS RFF1 RFF0 TFE1 TFE0

W

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

Figure 35-16. SSI Interrupt Enable Register (SSIn_IER)

Table 35-8. SSIn_ISR Field Descriptions (continued)

Field Description

Tx FIFO1
Transmit FIFO full 1 interrupt

Required conditions Trigger

Enabled  • SSIn_IER[RIE] set
 • SSIn_IER[TFE1] set

 • SSIn_ISR[TFE1] sets

Tx FIFO1
TFE1 is set when

any of the following occur
TFE1 is cleared when

any of the following occur

Enabled  • Tx FIFO 1 level falls below 
Tx FIFO watermark 1 (TFWM1) 
threshold

 • SSI reset
 • POR reset

 • Tx FIFO 1 level is more than 
TFWM1 level
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Table 35-9. SSIn_IER Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24–23
RFRC
TFRC

Controls if the corresponding status bit in SSIn_ISR can issue an interrupt to the processor. See Section 35.3.8, 
“SSI Interrupt Status Register (SSIn_ISR),” for details on the individual bits.
0 Status bit cannot issue interrupt.
1 Status bit can issue interrupt.

22
RDMAE

Receive DMA enable.
 • If the Rx FIFO is enabled, a DMA request generates when either of the SSIn_ISR[RFF0/1] bits is set.
 • If the Rx FIFO is disabled, a DMA request generates when either of the SSIn_ISR[RDR0/1] bits is set.

0 SSI receiver DMA requests disabled.
1 SSI receiver DMA requests enabled.

21
RIE

Receive interrupt enable. Allows the SSI to issue receiver related interrupts to the processor. Refer to 
Section 35.4.5, “Receive Interrupt Enable Bit Description,” for a detailed description of this bit.
0 SSI receiver interrupt requests disabled.
1 SSI receiver interrupt requests enabled.

20
TDMAE

Transmit DMA enable.
 • If the Tx FIFO is enabled, a DMA request generates when either of the SSIn_ISR[TFE0/1] bits is set. 
 • If the Tx FIFO is disabled, a DMA request generates when either of the SSIn_ISR[TDE0/1] bits is set.

0 SSI transmitter DMA requests disabled.
1 SSI transmitter DMA requests enabled.

19
TIE

Transmit interrupt enable. Allows the SSI to issue transmitter data related interrupts to the core. Refer to 
Section 35.4.6, “Transmit Interrupt Enable Bit Description,” for a detailed description of this bit.
0 SSI transmitter interrupt requests disabled.
1 SSI transmitter interrupt requests enabled.

18–0 Controls if the corresponding status bit in SSIn_ISR can issue an interrupt to the processor. See Section 35.3.8, 
“SSI Interrupt Status Register (SSIn_ISR),” for details on the individual bits.
0 Status bit cannot issue interrupt.
1 Status bit can issue interrupt.
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35.3.10 SSI Transmit Configuration Register (SSIn_TCR)

The SSI transmit configuration register directs the transmit operation of the SSI. A power-on reset clears 
all SSIn_TCR bits. However, an SSI reset does not affect the SSIn_TCR bits.

Address: 0xFC0B_C01C (SSI0_TCR)
0xFC0C_801C (SSI1_TCR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 TX
BIT0

TFEN1 TFEN0 TFDIR TXDIR TSHFD TSCKP TFSI TFSL TEFS
W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure 35-17. SSI Transmit Configuration Register (SSIn_TCR)

Table 35-10. SSIn_TCR Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9
TXBIT0

Transmit bit 0 (Alignment). Allows SSI to transmit data word from bit position 0 or 15/31 in the transmit shift register. 
The shifting data direction can be msb or lsb first, controlled by the TSHFD bit.
0 msb-aligned. Shift with respect to bit 31 (if the word length is 16, 18, 20, 22 or 24) or bit 15 (if the word length is 

8, 10 or 12) of the transmit shift register
1 lsb-aligned. Shift with respect to bit 0 of the transmit shift register

8
TFEN1

Transmit FIFO enable 1.
 • When enabled, the FIFO allows eight samples to be transmitted by the SSI (per channel) (a ninth sample can be 

shifting out) before SSIn_ISR[TDE1] is set.
 • When the FIFO is disabled, SSIn_ISR[TDE1] is set when a single sample is transferred to the transmit shift 

register. This issues an interrupt if the interrupt is enabled.

0 Transmit FIFO 1 disabled
1 Transmit FIFO 1 enabled

7
TFEN0

Transmit FIFO enable 0. Similar description as TFEN1, but pertains to Tx FIFO 0.
0 Transmit FIFO 0 disabled
1 Transmit FIFO 0 enabled

6
TFDIR

Frame sync direction. Controls the direction and source of the frame sync signal on the SSIn_FS pin.
0 Frame sync is external
1 Frame sync generated internally

5
TXDIR

Clock direction. Controls the direction and source of the clock signal on the SSIn_BCLK pin. Refer to Table 35-3 for 
details of clock port configuration.
0 Clock is external
1 Clock generated internally

4
TSHFD

Transmit shift direction. Controls whether the msb or lsb is transmitted first in a sample.
0 Data transmitted msb first
1 Data transmitted lsb first
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35.3.11 SSI Receive Configuration Register (SSIn_RCR)

The SSIn_RCR directs the receive operation of the SSI. A power-on reset clears all SSIn_RCR bits. 
However, an SSI reset does not affect the SSIn_RCR bits.

3
TSCKP

Transmit clock polarity. Controls which bit clock edge is used to clock out data for the transmit section.
0 Data clocked out on rising edge of bit clock
1 Data clocked out on falling edge of bit clock

2
TFSI

Transmit frame sync invert. Controls the active state of the frame sync I/O signal for the transmit section of SSI.
0 Transmit frame sync is active high
1 Transmit frame sync is active low

1
TFSL

Transmit frame sync length. Controls the length of the frame sync signal generated or recognized for the transmit 
section. The length of a word-long frame sync is the same as the length of the data word selected by SSIn_CCR[WL].
0 Transmit frame sync is one-word long
1 Transmit frame sync is one-bit-clock-period long

0
TEFS

Transmit early frame sync. Controls when the frame sync is initiated for the transmit section. The frame sync signal 
is deasserted after one bit for a bit length frame sync (TFSL = 1) and after one word for word length frame sync 
(TFSL = 0). The frame sync can also be initiated upon receiving the first bit of data.
0 Transmit frame sync initiated as first bit of data transmits
1 Transmit frame sync is initiated one bit before the data transmits

Address: 0xFC0B_C020 (SSI0_RCR)
0xFC0C_8020 (SSI1_RCR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 RX
EXT

RX
BIT0

RFEN1 RFEN0
0

RXDIR RSHFD RSCKP RFSI RFSL REFS
W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure 35-18. SSI Receive Configuration Register (SSIn_RCR)

Table 35-11. SSIn_RCR Field Descriptions

Field Description

31–11 Reserved, must be cleared.

10
RXEXT

Receive data extension. Allows the SSI to store the received data word in sign-extended form. This bit affects data 
storage only if the received data is lsb-aligned (RXBIT0 = 1)
0 Sign extension disabled
1 Sign extension enabled

Table 35-10. SSIn_TCR Field Descriptions (continued)

Field Description
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35.3.12 SSI Clock Control Register (SSIn_CCR)

The SSI clock control register controls the SSI clock generator, bit and frame sync rates, word length, and 
number of words per frame for the serial data. The SSIn_CCR register controls the receive and transmit 
sections. Power-on reset clears all SSIn_CCR bits, while an SSI reset does not affect these bits.

9
RXBIT0

Receive bit 0 (Alignment). Allows SSI to receive the data word at bit position 0 or 15/31 in the receive shift register. 
The shifting data direction can be msb or lsb first, controlled by the RSHFD bit.
0 msb aligned. Shifting with respect to bit 31 (if word length equals 16, 18, 20, 22 or 24) or bit 15 (if word length 

equals 8, 10 or 12) of the receive shift register
1 lsb aligned. Shifting with respect to bit 0 of the receive shift register.

8
RFEN1

Receive FIFO enable 1.
 • When the FIFO is enabled, the FIFO allows eight samples to be received by the SSI (per channel) (a ninth sample 

can be shifting in) before the SSIn_ISR[RDR1] bit is set.
 • When the FIFO is disabled, SSIn_ISR[RDR1] is set when a single sample is received by the SSI.

0 Receive FIFO 1 disabled
1 Receive FIFO 1 enabled

7
RFEN0

Receive FIFO enable 0. Similar description as RFEN1 but pertains to Rx FIFO 0.
0 Receive FIFO 0 disabled
1 Receive FIFO 0 enabled

6 Reserved, must be cleared.

5
RXDIR

Gated clock enable. In synchronous mode, this bit enables gated clock mode.
0 Gated clock mode disabled
1 Gated clock mode enabled

4
RSHFD

Receive shift direction. Controls whether the msb or lsb is received first in a sample.
0 Data received msb first
1 Data received lsb first

3
RSCKP

Receive clock polarity. Controls which bit clock edge latches in data for the receive section.
0 Data latched on falling edge of bit clock
1 Data latched on rising edge of bit clock

2
RFSI

Receive frame sync invert. Controls the active state of the frame sync signal for the receive section of SSI.
0 Receive frame sync is active high
1 Receive frame sync is active low

1
RFSL

Receive frame sync length. Controls the length of the frame sync signal generated or recognized for the receive 
section. The length of a word-long frame sync is the same as the length of the data word selected by SSIn_CCR[WL].
0 Receive frame sync is one word long.
1 Receive frame sync is one bit-clock-period long.

0
REFS

Receive early frame sync. Controls when the frame sync is initiated for the receive section. The frame sync is 
disabled after one bit for bit length frame sync and after one word for word length frame sync.
0 Receive frame sync initiated as the first bit of data is received.
1 Receive frame sync is initiated one bit before the data is received.

Table 35-11. SSIn_RCR Field Descriptions (continued)

Field Description
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Address: 0xFC0B_C024 (SSI0_CCR)
0xFC0C_8024 (SSI1_CCR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0
DIV2 PSR WL DC PM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-19. SSI Clock Control Register (SSIn_CCR)

Table 35-12. SSIn_CCR Field Descriptions

Field Description

31–19 Reserved, must be cleared.

18
DIV2

Divide-by-2. Controls the divide-by-two divider in series with the rest of the prescalers.
0 Divider bypassed
1 Divider enabled to divide clock by 2

17
PSR

Prescaler range. Controls a fixed divide-by-eight prescaler in series with the variable prescaler. It extends the range 
of the prescaler for those cases where a slower bit clock is required.
0 Prescaler bypassed
1 Prescaler enabled to divide the clock by 8

16–13
WL

Word length. Controls:
 • the length of the data words transferred by the SSI
 • the word length divider in the clock generator
 • the frame sync pulse length when the FSL bit is cleared
In I2S master mode, the SSI works with a fixed word length of 32, and the WL bits control the amount of valid data 
in those 32 bits. Bits per word equal 2  (WL + 1). Refer to the below table for details of data word lengths supported 
by the SSI module.
Note: In AC97 mode, if WL is set to any value other than 16 bits, a word length of 20 bits is used.

WL Bits/word Supported? WL Bits/word Supported?

0000 2 No 1000 18 Yes

0001 4 No 1001 20 Yes

0010 6 No 1010 22 Yes

0011 8 Yes 1011 24 Yes

0100 10 Yes 1100 26 No

0101 12 Yes 1101 28 No

0110 14 No 1110 30 No

0111 16 Yes 1111 32 No
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35.3.13 SSI FIFO Control/Status Register (SSIn_FCSR)

See Figure 35-20 for illustration of valid bits in SSI FIFO Control/Status Register and Table 35-13 for 
description of the bit fields in the register.

12–8
DC

Frame rate divider control. Controls the divide ratio for the programmable frame rate dividers. The divide ratio works 
on the word clock.
 • In normal mode, the ratio determines the word transfer rate. Ranges from 1 to 32.
 • In network mode, this field sets the number of words per frame. Ranges from 2 to 32.
In normal mode, a divide ratio of 1 (DC = 00000) provides continuous periodic data word transfer. A bit-length frame 
sync must be used in this case; otherwise, in word-length mode the frame sync is always asserted.

7–0
PM

Prescaler modulus select. Controls the prescale divider in the clock generator. This prescaler is used only in internal 
clock mode to divide the SSI clock. The bit clock output is available at the SSI_BCLK clock pin.
A divide ratio from 1 to 256 (PM = 0x00 to 0xFF) can be selected. Refer to Section 35.4.2.2, “DIV2, PSR and PM Bit 
Description,” for details regarding settings.

0xBASE_2C (SFCSR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RFCNT1[3:0] TFCNT1[3:0] RFWM1[3:0] TFWM1[3:0]

W

RESET 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RFCNT0[3:0] TFCNT0[3:0] RFWM0[3:0] TFWM0[3:0]

W

RESET 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Figure 35-20. SSI FIFO Control/Status Register

Table 35-12. SSIn_CCR Field Descriptions (continued)

Field Description
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Table 35-13. SSI FIFO Control/Status Register Field Descriptions

Field Description

31–28
RFCNT1[3:0]

Receive FIFO Counter1. These bits indicate the number of data words in Receive FIFO 1. Refer to 
Table 35-14 for details regarding settings for receive FIFO counter bits.

Table 35-14. Receive FIFO Counter Bit Description

Bits Description

0000 0 data word in receive FIFO

0001 1 data word in receive FIFO

0010 2 data word in receive FIFO

0011 3 data word in receive FIFO

0100 4 data word in receive FIFO

0101 5 data word in receive FIFO

0110 6 data word in receive FIFO

0111 7 data word in receive FIFO

1000 8 data word in receive FIFO

1001 9 data word in receive FIFO

1010 10 data word in receive FIFO

1011 11 data word in receive FIFO

1100 12 data word in receive FIFO

1101 13 data word in receive FIFO

1110 14 data word in receive FIFO

1111 15 data word in receive FIFO
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27–24
TFCNT1[3:0]

Transmit FIFO Counter1. These bits indicate the number of data words in Transmit FIFO. Refer to 
Table 35-15 for details regarding settings for transmit FIFO counter bits.

Table 35-13. SSI FIFO Control/Status Register Field Descriptions (continued)

Field Description

Table 35-15. Transmit FIFO Counter Bit Description

Bits Description

0000 0 data word in transmit FIFO

0001 1 data word in transmit FIFO

0010 2 data word in transmit FIFO

0011 3 data word in transmit FIFO

0100 4 data word in transmit FIFO

0101 5 data word in transmit FIFO

0110 6 data word in transmit FIFO

0111 7 data word in transmit FIFO

1000 8 data word in transmit FIFO

1001 9 data word in transmit FIFO

1010 10 data word in transmit FIFO

1011 11 data word in transmit FIFO

1100 12 data word in transmit FIFO

1101 13 data word in transmit FIFO

1110 14 data word in transmit FIFO

1111 15 data word in transmit FIFO
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23–20
RFWM1[3:0]

Receive FIFO Full WaterMark 1. These bits control the threshold at which the RFF1 flag will be set. The 
RFF1 flag is set whenever the data level in Rx FIFO 1 reaches the selected threshold. Refer to 
Table 35-16 for details regarding settings for receive FIFO watermark bits.

Table 35-13. SSI FIFO Control/Status Register Field Descriptions (continued)

Field Description

Table 35-16. Receive FIFO WaterMark Bit Description

Bits Description

0000 Reserved

0001 RFF set when at least one data word have been written to the Receive FIFO
Set when RxFIFO = 1,2.....15 data words

0010 RFF set when more than or equal to 2 data word have been written to the Receive FIFO.
Set when RxFIFO = 2,3.....15 data words

0011 RFF set when more than or equal to 3 data word have been written to the Receive FIFO.
Set when RxFIFO = 3,4.....15 data words

0100 RFF set when more than or equal to 4 data word have been written to the Receive FIFO.
Set when RxFIFO = 4,5.....15 data words

0101 RFF set when more than or equal to 5 data word have been written to the Receive FIFO.
Set when RxFIFO = 5,6.....15 data words

0110 RFF set when more than or equal to 6 data word have been written to the Receive.
Set when RxFIFO = 6,7.....15 data words

0111 RFF set when more than or equal to 7 data word have been written to the Receive FIFO.
Set when RxFIFO = 7,8.....15 data words

1000 RFF set when more than or equal to 8 data word have been written to the Receive FIFO.
Set when RxFIFO = 8,9.....15 data words

1001 RFF set when more than or equal to 9 data word have been written to the Receive FIFO.
Set when RxFIFO = 9,10.....15 data words

1010 RFF set when more than or equal to 10 data word have been written to the Receive FIFO.
Set when RxFIFO = 10,11.....15 data words

1011 RFF set when more than or equal to 11 data word have been written to the Receive FIFO.
Set when RxFIFO = 11,12.....15 data words

1100 RFF set when more than or equal to 12 data word have been written to the Receive FIFO.
Set when RxFIFO = 12,13.....15 data words

1101 RFF set when more than or equal to 13 data word have been written to the Receive FIFO.
Set when RxFIFO = 13,14,15data words

1110 RFF set when more than or equal to 14 data word have been written to the Receive FIFO.
Set when RxFIFO = 14,15 data words

1111 RFF set when 15 data word have been written to the Receive FIFO (default).
Set when RxFIFO = 15 data words
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19–16
TFWM1[3:0]

Transmit FIFO Empty WaterMark 1. These bits control the threshold at which the TFE1 flag will be set. 
The TFE1 flag is set whenever the empty slots in Tx FIFO exceed or are equal to the selected threshold. 
Refer to Table 35-17 for details regarding settings for transmit FIFO watermark bits.

Table 35-13. SSI FIFO Control/Status Register Field Descriptions (continued)

Field Description

Table 35-17. Transmit FIFO WaterMark Bit Description

Bits Description

0000 Reserved

0001 TFE set when there are more than or equal to 1 empty slots in Transmit FIFO. (default)
Transmit FIFO empty is set when TxFIFO <= 14 data.

0010 TFE set when there are more than or equal to 2 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 13 data.

0011 TFE set when there are more than or equal to 3 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 12 data.

0100 TFE set when there are more than or equal to 4 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 11 data.

0101 TFE set when there are more than or equal to 5 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 10 data.

0110 TFE set when there are more than or equal to 6 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 9 data.

0111 TFE set when there are more than or equal to 7 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 8 data.

1000 TFE set when there are more than or equal to 8 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 7 data.

1001 TFE set when there are more than or equal to 9 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 6 data.

1010 TFE set when there are more than or equal to 10 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 5 data.

1011 TFE set when there are more than or equal to 11 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 4 data.

1100 TFE set when there are more than or equal to 12 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 3 data.

1101 TFE set when there are more than or equal to 13 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 2 data.

1110 TFE set when there are more than or equal to 14 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO <= 1 data.

1111 TFE set when there are 15 empty slots in Transmit FIFO.
Transmit FIFO empty is set when TxFIFO = 0 data.
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Table 35-18 indicates the status of the Transmit FIFO Empty flag, with different settings of the Transmit 
FIFO WaterMark bits and varying amounts of data in the Tx FIFO.

15–12
RFCNT0[3:0]

Receive FIFO Counter 0. These bits indicate the number of data words in Receive FIFO 0. Refer to 
Table 35-14 for details regarding settings for receive FIFO counter bits.

11–8
TFCNT0[3:0]

Transmit FIFO Counter 0. These bits indicate the number of data words in Transmit FIFO 0. Refer to 
Table 35-15 for details regarding settings for transmit FIFO counter bits.

7–4
RFWM0[3:0]

Receive FIFO Full WaterMark 0. These bits control the threshold at which the RFF0 flag will be set. The 
RFF0 flag is set whenever the data level in Rx FIFO 0 reaches the selected threshold. Refer to 
Table 35-16 for details regarding settings for receive FIFO watermark bits.

3–0
TFWM0[3:0]

Transmit FIFO Empty WaterMark 0. These bits control the threshold at which the TFE0 flag will be set. 
The TFE0 flag is set whenever the empty slots in Tx FIFO exceed or are equal to the selected threshold. 
Refer to Table 35-17 for details regarding settings for transmit FIFO watermark bits.

Table 35-18. Status of Transmit FIFO Empty Flag

Transmit FIFO Watermark 
(TFWM)

Number of data in Tx-Fifo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

4 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

6 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

8 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

9 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

10 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

12 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

13 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 35-13. SSI FIFO Control/Status Register Field Descriptions (continued)

Field Description
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35.3.14 SSI AC97 Control Register (SSIn_ACR)

SSIn_ACR controls various features of the SSI operating in AC97 mode.

Address: 0xFC0B_C038 (SSI0_ACR)
0xFC0C_8038 (SSI1_ACR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FRDIV WR RD TIF FV AC97EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-21. SSI AC97 Control Register (SSIn_ACR)

Table 35-19. SSIn_ACR Field Descriptions

Field Description

31–11 Reserved, must be cleared.

10–5
FRDIV

Frame rate divider. Controls the frequency of AC97 data transmission/reception. This field is programmed with the 
number of frames for which the SSI should be idle after operating in one frame. Through these bits, the AC97 
frequency of operation, from 48 KHz (000000) to 1 KHz (101111) can be achieved. 
E.g: 001010 (10 Decimal) equals SSI operates once every 11 frames.

4
WR

Write command. Specifies whether the next frame carries an AC97 write command or not. When this bit is set, the 
corresponding tag bits (corresponding to command address and command data slots of the next transmit frame) are 
automatically set. The SSI automatically clears this bit after completing transmission of a frame.
0 Next frame does not have a write command
1 Next frame does have a write command
Note: Do not set WR and RD at the same time. 

3
RD

Read command. Specifies whether the next frame carries an AC97 read command or not. When this bit is set, the 
corresponding tag bit (corresponding to command address slot of the next transmit frame) is automatically set. The 
SSI automatically clears this bit after completing transmission of a frame.
0 Next frame does not have a read command
1 Next frame does have a read command
Note: Do not set WR and RD at the same time. 

2
TIF

Tag in FIFO. Controls the destination of the information received in the AC97 tag slot (slot #0).
0 Tag information stored in SSIn_ATAG register
1 Tag information stored in Rx FIFO 0

1
FV

Fixed/variable operation.
0 AC97 fixed mode
1 AC97 variable mode

0
AC97EN

AC97 mode enable. Refer to Section 35.4.1.5, “AC97 Mode,” for details of AC97 operation.
0 AC97 mode disabled
1 AC97 mode enabled
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35.3.15 SSI AC97 Command Address Register (SSIn_ACADD)

SSIn_ACADD contains the command address slot information.

35.3.16 SSI AC97 Command Data Register (SSIn_ACDAT)

SSIn_ACDAT contains the outgoing command data slot.

Address: 0xFC0B_C03C (SSI0_ACADD)
0xFC0C_803C (SSI1_ACADD)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0
ACADD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-22. SSI AC97 Command Address Register (SSIn_ACADD)

Table 35-20. SSIn_ACADD Field Descriptions

Field Description

31–19 Reserved, must be cleared.

18–0
ACADD

AC97 command address. Stores the command address slot information (bit 19 of the slot is sent in accordance with 
the SSIn_ACR[WR and RD] bits). A direct write from the core or the information received in the incoming command 
address slot can update these bits. If contents of these bits change due to an update, the SSIn_ISR[CMDAU] bit is 
set.

Address: 0xFC0B_C040 (SSI0_ACDAT)
0xFC0C_8040 (SSI1_ACDAT)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0
ACDAT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-23. SSI AC97 Command Data Register (SSIn_ACDAT)

Table 35-21. SSIn_ACDAT Field Descriptions

Field Description

31–20 Reserved, must be cleared.

19–0
ACDAT

AC97 command data. The outgoing command data slot carries the information contained in these bits. A direct 
write from the core or the information received in the incoming command data slot can update these bits. If the 
contents of these bits change due to an update, the SSIn_ISR[CMDDU] bit is set. During an AC97 read 
command, 0x0_0000 in time slot #2.
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35.3.17 SSI AC97 Tag Register (SSIn_ATAG)

35.3.18 SSI Transmit Time Slot Mask Register (SSIn_TMASK)

This register controls the time slots that the SSI transmits data in network mode.

Address: 0xFC0B_C044 (SSI0_ATAG)
0xFC0C_8044 (SSI1_ATAG)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATAG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-24. SSI AC97 Tag Register (SSIn_ATAG)

Table 35-22. SSIn_ATAG Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
ATAG

AC97 tag. Writing to this register sets the value of the Tx tag (in AC97 fixed mode). On a read, the processor gets 
the last Rx tag value received. It is updated at the start of each received frame. The contents of this register also 
generate the transmit tag in AC97 variable mode. When the received tag value changes, the SSIn_ISR[RXT] bit is 
set, if enabled.
If the SSIn_ACR[TIF] bit is set, the TAG value is also stored in Rx FIFO. 
Note: Bits 1–0 convey the codec-ID. Because only primary codecs are supported, these bits must be cleared.

Address: 0xFC0B_C048 (SSI0_TMASK)
0xFC0C_8048 (SSI1_TMASK)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TMASK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-25. SSI Transmit Time Slot Mask Register (SSIn_TMASK)

Table 35-23. SSIn_TMASK Field Descriptions

Field Description

31–0
TMASK

Transmit mask. Indicates which transmit time slot has been masked in the current frame. Each bit corresponds 
to the respective time slot in the frame. If a change is made to the register contents, the transmission pattern is 
updated from the next time slot. Transmit mask bits should not be used in I2S slave mode.
0 Valid time slot
1 Time slot masked (no data transmitted in this time slot)



Synchronous Serial Interface (SSI)

35-36 NXP Semiconductors

35.3.19 SSI Receive Time Slot Mask Register (SSIn_RMASK)

This register controls the time slots that the SSI receives data in network mode.

35.3.20 SSI AC97 Channel Status Register (SSI _ACCSR)

SSI _ACCSR indicates which data slot is enabled in AC97 variable mode operation.

Address: 0xFC0B_C04C (SSI0_RMASK)
0xFC0C_804C (SSI1_RMASK)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RMASK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-26. SSI Receive Time Slot Mask Register (SSIn_RMASK)

Table 35-24. SSIn_RMASK Field Descriptions

Field Description

31–0
RMASK

Receive mask. Indicates which received time slot has been masked in the current frame. Each bit corresponds 
to the respective time slot in the frame. If a change is made to the register contents, the reception pattern is 
updated from the next time slot. Receive mask bits should not be used in I2S slave mode.
0 Valid time slot
1 Time slot masked (no data received in this time slot)

Address: 0xFC0B_C050 (SSI0_ACCSR)
0xFC0C_8050 (SSI1_ACCSR)

Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ACCSR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-27. SSI AC97 Channel Status Register (SSIn_ACCSR)

Table 35-25. SSIn_ACCSR Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9–0
ACCSR

AC97 channel status. Indicates which data slot is enabled in AC97 variable mode operation. This register is 
updated if the core enables or disables a channel through a write to SSIn_ACCEN or SSIn_ACCDIS or the 
external codec enables a channel by sending a 1 in the corresponding SLOTREQ bit.
Bit 0 corresponds to the first data slot in an AC97 frame (slot #3) and bit 9 corresponds to the tenth data slot (slot 
#12). 
Writes to this register result in an error response.
0 Data channel disabled
1 Data channel enabled

n

n
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35.3.21 SSI AC97 Channel Enable Register (SSI _ACCEN)

SSI _ACCEN enables data slots in AC97 variable mode operation.

35.3.22 SSI AC97 Channel Disable Register (SSI _ACCDIS)

SSI _ACCDIS disables data slots in AC97 variable mode operation.

Address: 0xFC0B_C054 (SSI0_ACCEN)
0xFC0C_8054 (SSI1_ACCEN)

Access: User write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W ACCEN

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-28. SSI AC97 Channel Enable Register (SSIn_ACCEN)

Table 35-26. SSIn_ACCEN Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9–0
ACCEN

AC97 channel enable. Enables a data channel in AC97 variable mode. Writing a zero has no effect.
Bit 0 corresponds to the first data slot in an AC97 frame (slot #3) and bit 9 corresponds to the tenth data slot (slot 
#12). These bits always read as zero.
0 No effect
1 Enables the corresponding data channel

Address: 0xFC0B_C058 (SSI0_ACCDIS)
0xFC0C_8058 (SSI1_ACCDIS)

Access: User write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W ACCDIS

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-29. SSI AC97 Channel Disable Register (SSIn_ACCDIS)

Table 35-27. SSIn_ACCDIS Field Descriptions

Field Description

31–10 Reserved, must be cleared.

9–0
ACCDIS

AC97 channel disable. Disables a data channel in AC97 variable mode. Writing a zero has no effect.
Bit 0 corresponds to the first data slot in an AC97 frame (slot #3) and bit 9 corresponds to the tenth data slot (slot 
#12). These bits always read as zero.
0 No effect
1 Disables the corresponding data channel

n

n

n

n
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35.4 Functional Description

35.4.1 Detailed Operating Mode Descriptions

The following sections describe in detail the main operating modes of the SSI module: normal, network, 
gated clock, I2S, and AC97.

35.4.1.1 Normal Mode

Normal mode is the simplest mode of the SSI. It transfers data in one time slot per frame. A time slot is a 
unit of data and the WL bits define the number of bits in a time slot. In continuous clock mode, a frame 
sync occurs at the beginning of each frame. The following factors determine the length of the frame:

• Period of the serial bit clock (DIV2, PSR, PM bits for internal clock or the frequency of the external 
clock on the SSIn_BCLK port)

• Number of bits per time slot (WL bits)

• Number of time slots per frame (DC bits)

If normal mode is configured with more than one time slot per frame, data transfers only in the first time 
slot of the frame. No data transfers in subsequent time slots. In normal mode, DC values corresponding to 
more than a single time slot in a frame only result in lengthening the frame.

35.4.1.1.1 Normal Mode Transmit

Conditions for data transmission from the SSI in normal mode are:

1. SSI enabled (SSIn_CR[SSI_EN] = 1)

2. Enable FIFO and configure transmit and receive watermark if the FIFO is used.

3. Write data to transmit data register (SSIn_TX0)

4. Transmitter enabled (TE = 1)

5. Frame sync active (for continuous clock case)

6. Bit clock begins (for gated clock case)

When the above conditions occur in normal mode, the next data word transfers into the transmit shift 
register (TXSR) from the transmit data register 0 (SSIn_TX0) or from the transmit FIFO 0 register, if 
enabled. The new data word transmits immediately.

If transmit FIFO 0 is not enabled and the transmit data register empty (TDE0) bit is set, a transmit 
interrupt 0 occurs if the TIE and SSIn_IER[TDE0] bits are set.

If transmit FIFO 0 is enabled and the transmit FIFO empty (TFE0) bit is set, transmit interrupt 0 occurs if 
the TIE and SSIn_IER[TFE0] bits are set. If transmit FIFO 0 is enabled and filled with data, eight data 
words can be transferred before the core must write new data to the SSIn_TX0 register. 

The SSIn_TXD port is disabled except during the data transmission period. For a continuous clock, the 
optional frame sync output and clock outputs are not disabled, even if receiver and transmitter are disabled.
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35.4.1.1.2 Normal Mode Receive

Conditions for data reception from the SSI are:

1. SSI enabled (SSIn_CR[SSI_EN] = 1)

2. Enable receive FIFO (optional)

3. Receiver enabled (RE = 1)

4. Frame sync active (for continuous clock case)

5. Bit clock begins (for gated clock case)

With the above conditions in normal mode with a continuous clock, each time the frame sync signal is 
generated (or detected), a data word is clocked in. With the above conditions and a gated clock, each time 
the clock begins, a data word is clocked in.

If receive FIFO 0 is not enabled, the received data word is transferred from the receive shift register 
(RXSR) to the receive data register 0 (SSIn_RX0), and the RDR0 flag is set. Receive interrupt 0 occurs if 
the RIE and SSIn_IER[RDR0] bits are set.

If receive FIFO 0 is enabled, the received data word is transferred to the receive FIFO 0. The RFF0 flag is 
set if the receive data register (SSIn_RX0) is full and receive FIFO 0 reaches the selected threshold. 
Receive interrupt 0 occurs if RIE and SSIn_IER[RFF0] bits are set.

The core has to read the data from the SSIn_RX0 register before a new data word is transferred from the 
RXSR; otherwise, receive overrun error 0 (ROE0) bit is set. If receive FIFO 0 is enabled, the ROE0 bit is 
set when the receive FIFO 0 data level reaches the selected threshold and a new data word is ready to 
transfer to the receive FIFO 0.

Figure 35-30 shows transmitter and receiver timing for an 8-bit word with two words per time slot in 
normal mode and continuous clock with a late word length frame sync. The Tx data register is loaded with 
the data to be transmitted. On arrival of the frame sync, this data is transferred to the transmit shift register 
and transmitted on the SSIn_TXD output. Simultaneously, the receive shift register shifts in the received 
data available on the SSIn_RXD input. At the end of the time slot, this data is transferred to the Rx data 
register.

Figure 35-30. Normal Mode Timing - Continuous Clock

Tx Data

Rx Data

Continuous

SSIn_TXD

SSIn_RXD

SSIn_BCLK

SSIn_FS
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Figure 35-31 shows a similar case for internal (SSI generates clock) gated clock mode, and Figure 35-32 
shows a case for external (SSI receives clock) gated clock mode. 

NOTE
A pull-down resistor is required in gated clock mode, because the clock port 
is disabled between transmissions.

The Tx data register is loaded with the data to be transmitted. On arrival of the clock, this data transfers to 
the transmit shift register and transmits on the SSIn_TXD output. Simultaneously, the receive shift register 
shifts in the received data available on the SSIn_RXD input, and at the end of the time slot, this data 
transfers to the Rx data register. In internal gated clock mode, the Tx data line and clock output port are 
tri-stated at the end of transmission of the last bit (at the completion of the complete clock cycle). Whereas, 
in external gated clock mode, the Tx data line is tri-stated at the last inactive edge of the incoming bit clock 
(during the last bit in a data word).

Figure 35-31. Normal Mode Timing - Internal Gated Clock

Figure 35-32. Normal Mode Timing - External Gated Clock

35.4.1.2 Network Mode

Network mode creates a time division multiplexed (TDM) network, such as a TDM codec network or a 
network of DSPs. In continuous clock mode, a frame sync occurs at the beginning of each frame. In this 
mode, the frame is divided into more than one time slot. During each time slot, one data word can be 
transferred (rather than in the frame sync time slot as in normal mode). Each time slot is then assigned to 

Tx Data
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an appropriate codec or DSP on the network. The processor can be a master device that controls its own 
private network or a slave device connected to an existing TDM network and occupies a few time slots.

The frame rate dividers, controlled by the DC bits, select two to thirty-two time slots per frame. The length 
of the frame is determined by:

• The period of the serial bit clock (PSR, PM bits for internal clock, or the frequency of the external 
clock on the SSIn_BCLK pin)

• The number of bits per sample (WL bits)

• The number of time slots per frame (DC bits)

In network mode, data can be transmitted in any time slot. The distinction of network mode is each time 
slot is identified with respect to the frame sync (data word time). This time slot identification allows the 
option of transmitting data during the time slot by writing to the SSIn_TX registers or ignoring the time 
slot as determined by the SSIn_TMASK register bits. The receiver is treated in the same manner and 
received data is only transferred to the receive data register/FIFO if the corresponding time slot is enabled 
through SSIn_RMASK.

By using the SSIn_TMASK and SSIn_RMASK registers, software only has to service the SSI during valid 
time slots. This eliminates any overhead associated with unused time slots. Refer to Section 35.3.18, “SSI 
Transmit Time Slot Mask Register (SSIn_TMASK),” and Section 35.3.19, “SSI Receive Time Slot Mask 
Register (SSIn_RMASK),” for more information on the SSIn_TMASK and SSIn_RMASK registers.

In two channel mode (SSIn_CR[TCH] = 1), the second set of transmit and receive FIFOs and data registers 
create two separate channels (for example, left and right channels for a stereo codec). These channels are 
completely independent with their own set of interrupts and DMA requests identical to the ones available 
for the default channel. In this mode, data is transmitted/received in enabled time slots alternately from/to 
FIFO 0 and FIFO 1, starting from FIFO 0. The first data word is taken from FIFO 0 and transmitted in the 
first enabled time slot and subsequently, data is loaded from FIFO 1 and FIFO 0 alternately and 
transmitted. Similarly, the first received data is sent to FIFO 0 and subsequent data is sent to FIFO 1 and 
FIFO 0 alternately. Time slots are selected through the transmit and receive time slot mask registers 
(SSIn_TMASK and SSIn_RMASK).

35.4.1.2.1 Network Mode Transmit

The transmit portion of SSI is enabled when the SSIn_CR[SSI_EN and TE] bits are set. However, for 
continuous clock when the TE bit is set, the transmitter is enabled only after detection of a new frame sync 
(transmission starts from the next frame boundary).

Normal start-up sequence for transmission:

• Write the data to be transmitted to the SSIn_TX register. This clears the TDE flag.

• Set the SSIn_CR[TE] bit to enable the transmitter on the next word boundary (for continuous 
clock).

• Enable transmit interrupts.

Alternately, the user may decide not to transmit in a time slot by writing to the SSIn_TMASK. The TDE 
flag is not cleared, but the SSIn_TXD port remains disabled during the time slot. When the frame sync is 
detected or generated (continuous clock), the first enabled data word is transferred from the SSIn_TX 
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register to the TXSR and is shifted out (transmitted). When the SSIn_TX register is empty, the TDE bit is 
set, which causes a transmitter interrupt (if the FIFO is disabled) to be sent if the TIE bit is set. Software 
can poll the TDE bit or use interrupts to reload the SSIn_TX register with new data for the next time slot. 
Failing to reload the SSIn_TX register before the TXSR is finished shifting (empty) causes a transmitter 
underrun error (the TUE bit is set). If the FIFO is enabled, the TFE flag is set in accordance with the 
watermark setting and this flag causes a transmitter interrupt to occur.

Clearing the TE bit disables the transmitter after completion of transmission of the current frame. Setting 
the TE bit enables transmission from the next frame. During that time the SSIn_TXD port is disabled. The 
TE bit should be cleared after the TDE bit is set to ensure that all pending data is transmitted.

To summarize, the network mode transmitter generates interrupts every enabled time slot and requires the 
processor to respond to each enabled time slot. These responses may be:

• Write data in data register to enable transmission in the next time slot.

• Configure the time slot register to disable transmission in the next time slot (unless the time slot is 
already masked by the SSIn_TMASK register bit).

• Do nothing—transmit underrun occurs at the beginning of the next time slot and the previous data 
is re-transmitted.

In two channel operation, both channels (data registers, FIFOs, interrupts, and DMA requests) operate in 
the same manner, as described above. The only difference is interrupts related to the second channel are 
generated only if this mode of operation is selected (TDE1 is low by default).

35.4.1.2.2 Network Mode Receive

The receiver portion of the SSI is enabled when both the SSIn_CR[SSI_EN and RE] bits are set. However, 
the receive enable only takes place during that time slot if RE is enabled before the second to last bit of the 
word. If the RE bit is cleared, the receiver is disabled at the end of the current frame. The SSI module is 
capable of finding the start of the next frame automatically. When the word is completely received, it is 
transferred to the SSIn_RX register, which sets the RDR bit. This causes a receive interrupt to occur if the 
the RIE bit is set. The second data word (second time slot in the frame) begins shifting in immediately after 
the transfer of the first data word to the SSIn_RX register. The processor has to read the data from the 
receive data register (which clears RDR) before the second data word is completely received (ready to 
transfer to RX data register) or a receive overrun error occurs (the ROE bit is set).

An interrupt can occur after the reception of each enabled data word or the user can poll the RDR flag. The 
processor response can be:

• Read RX and use the data.

• Read RX and ignore the data.

• Do nothing—the receiver overrun exception occurs at the end of the current time slot.
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NOTE
For a continuous clock, the optional frame sync output and clock output 
signals are not affected, even if transmitter or receiver is disabled. TE and 
RE do not disable the bit clock or the frame sync generation. To disable the 
bit clock and the frame sync generation, the SSIn_CR[SSI_EN] bit can be 
cleared or the port control logic external to the SSI (e.g. GPIO) can be 
reconfigured.

In two channel operation, both the channels (data registers, FIFOs, interrupts, and DMA requests) operate 
in the same manner as described above. The only difference is second channel interrupts are generated only 
in this mode of operation.

Figure 35-33 shows the transmitter and receiver timing for an 8-bit word with continuous clock, FIFO 
disabled, three words per frame sync in network mode.

NOTE
The transmitter repeats the value 0x5E because of an underrun condition.

For the transmit section, the SSIn_TMASK value is updated in the last time slot of frame 1 to mask the 
first two time slots (0x3). This value takes effect at the next time slot and, consequently, the next frame 
transmits data in the third time slot only.

For the receive section, data received on the SSIn_RXD pin is transferred to the SSIn_RX register at the 
end of each time slot. If the FIFO is disabled, RDR flag sets and causes a receiver interrupt if the RE, RIE, 
and SSIn_IER[RDR] bits are set. If the FIFO is enabled, the RFF flag generates interrupts (this flag is set 
in accordance with the watermark settings). In this example all time slots are enabled. The receive data 
ready flag is set after reception of the first data (0x55). Because the flag is not cleared (Rx data register is 
not read), the receive overrun error (ROE) flag is set on reception of the next data (0x5E). The ROE flag 
is cleared by writing one to the corresponding flag in the SSI _ISR.n
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Figure 35-33. Network Mode Timing - Continuous Clock

35.4.1.3 Gated Clock Mode

Gated clock mode often connects to SPI-type interfaces on microcontroller units (MCUs) or external 
peripheral devices. In gated clock mode, presence of the clock indicates that valid data is on the SSIn_TXD 
or SSIn_RXD signals. For this reason, no frame sync is needed in this mode. After transmission of data 
completes, the clock is pulled to the inactive state. Gated clocks are allowed for the transmit and receive 
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sections with internal or external clock and in normal mode. Gated clocks are not allowed in network 
mode. Refer to Table 35-3 for SSI configuration for gated mode operation.

The clock operates when the TE bit and/or the RE bit are appropriately enabled. For an internally generated 
clock, all internal bit clocks, word clocks, and frame clocks continue to operate. When a valid time slot 
occurs (such as the first time slot in normal mode), the internal bit clock is enabled onto the clock port. 
This allows data to be transferred out in periodic intervals in gated clock mode. With an external clock, the 
SSI module waits for a clock signal to be received. After the clock begins, valid data is shifted in. Care 
should be taken to clear all DC bits when the module is used in gated mode.

For gated clock operated in external clock mode, proper clock signalling must apply to SSIn_BCLK for it 
to function properly. If the SSI uses rising edge transition to clock data (TSCKP = 0) and falling edge 
transition to latch data (RSCKP = 0), the clock must be in an active low state when idle. If the SSI uses 
falling edge transition to clock data (TSCKP = 1) and rising edge transition to latch data (RSCKP = 1), the 
clock must be in a active high state when idle. The following diagrams illustrate the different edge 
clocking/latching.

Figure 35-34. Internal Gated Mode Timing - Rising Edge Clocking/Falling Edge Latching

Figure 35-35. Internal Gated Mode Timing - Falling Edge Clocking/Rising Edge Latching

Figure 35-36. External Gated Mode Timing - Rising Edge Clocking/Falling Edge Latching

TSCKP=0, RSCKP=0

SSIn_BCLK

SSIn_TXD

SSIn_RXD

TSCKP=1, RSCKP=1

SSIn_BCLK

SSIn_TXD
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TSCKP=0, RSCKP=0

SSIn_BCLK

SSIn_TXD

SSIn_RXD
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Figure 35-37. External Gated Mode Timing - Falling Edge Clocking/Rising Edge Latching

NOTE
The bit clock signals must not have timing glitches. If a single glitch occurs, 
all ensuing transfers are out of synchronization.

NOTE
In external gated mode, even though the transmit data line is tri-stated at the 
last non-active edge of the bit clock, the round trip delay should sufficiently 
take care of hold time requirements at the external receiver.

35.4.1.4 I2S Mode

The SSI is compliant to I2S bus specification from Philips Semiconductors (February 1986, Revised 
June 5, 1996). Figure 35-38 depicts basic I2S protocol timing.

Figure 35-38. I2S Mode Timing - Serial Clock, Frame Sync and Serial Data

I2S mode can be selected by the SSIn_CR[I2S] bits as follows:

In normal (non-I2S) mode operation, no register bits are forced to any particular state internally, and the 
user can program the SSI to work in any operating condition.

Table 35-28. I2S Mode Selection

SSIn_CR[I2S] Mode

00 Normal mode

01 I2S master mode

10 I2S slave mode

11 Normal mode

TSCKP=1, RSCKP=1

SSIn_BCLK

SSIn_TXD

SSIn_RXD

Serial Data

Serial Clock

msb msblsb

Word (n-1)
Right Channel

Word (n)
Left Channel

Word (n+1)
Right Channel

Frame Sync
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When I2S modes are entered (SSIn_CR[I2S] = 01 or 10), these settings are recommended:

• Synchonous mode (SSIn_CR[SYN] = 1)

• Tx shift direction: msb transmitted first (SSIn_TCR[TSHFD] = 0)

• Rx shift direction: msb received first (SSIn_RCR[RSHFD] = 0)

• Tx data clocked at falling edge of the clock (SSIn_TCR[TSCKP] = 1)

• Rx data latched at rising edge of the clock (SSIn_RCR[RSCKP] = 1)

• Tx frame sync active low (SSIn_TCR[TFSI] = 1)

• Rx frame sync active low (SSIn_RCR[RFSI] = 1)

• Tx frame sync initiated one bit before data is transmitted (SSIn_TCR[TEFS] = 1)

• Rx frame sync initiated one bit before data is received (SSIn_RCR[REFS] = 1)

35.4.1.4.1 I2S Master Mode

In I2S master mode (SSIn_CR[I2S]  = 01), these additional settings are recommended:

• Internal generated bit clock (SSIn_TCR[TXDIR] = 1)

• Internal generated frame sync (SSIn_TCR[TFDIR] = 1)

The processor automatically performs these settings when in I2S master mode:

• Network mode is selected (SSIn_CR[NET] = 1)

• Tx frame sync length set to one-word-long-frame (SSIn_TCR[TFSL] = 0)

• Rx frame sync length set to one-word-long-frame (SSIn_RCR[RFSL] = 0)

• Tx shifting w.r.t. bit 0 of TXSR (SSIn_TCR[TXBIT0] = 1)

• Rx shifting w.r.t. bit 0 of RXSR (SSIn_RCR[RXBIT0] = 1)

Set the SSIn_CCR[PM, PSR, DIV2, WL, DC] control bits to configure the bit clock and frame sync.

The word length is fixed to 32 in I2S master mode, and the WL bits determine the number of bits that 
contain valid data (out of the 32 transmitted/received bits in each channel). The fixing of word duration as 
32 simplifies the relation between oversampling clock (SSIn_MCLK) and the frame sync (SSIn_MCLK 
becomes an integer multiple of frame sync). The period of the oversampling clock must be at least 4x the 
internal bus clock period.

35.4.1.4.2 I2S Slave Mode

In I2S slave mode (SSIn_CR[I2S] = 10), the following additional settings are recommended:

• External generated bit clock (SSIn_TCR[TXDIR] = 0)

• External generated frame sync (SSIn_TCR[TFDIR] = 0)
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The following settings are done automatically by the processor when in I2S slave mode:

• Normal mode is selected (SSIn_CR[NET] = 0)

• Tx frame sync length set to one-bit-long-frame (SSIn_TCR[TFSL] = 1)

• Rx frame sync length set to one-bit-long-frame (SSIn_RCR[RFSL] = 1)

• Tx shifting w.r.t. bit 0 of TXSR (SSIn_TCR[TXBIT0] = 1)

• Rx shifting w.r.t. bit 0 of RXSR (SSIn_RCR[RXBIT0] = 1)

Set the SSIn_CCR[WL, DC] bits to configure the data transmission.

The word length is variable in I2S slave mode and the WL bits determine the number of bits that contain 
valid data. The actual word length is determined by the external codec. The external I2S master sends a 
frame sync according to the I2S protocol (early, word wide, and active low). The SSI internally operates 
so each frame sync transition is the start of a new frame (the WL bits determine the number of bits to be 
transmitted/received). After one data word has been transferred, the SSI waits for the next frame sync 
transition to start operation in the next time slot. Transmit and receive mask bits should not be used in I2S 
slave mode.

35.4.1.5 AC97 Mode

In AC97 mode, SSI transmits a 16-bit tag slot at the start of a frame and the rest of the slots (in that frame) 
are all 20-bits wide. The same sequence is followed while receiving data. Refer to the AC97 specification 
for details regarding transmit and receive sequences and data formats.

NOTE
Since the SSI has only one RxDATA pin, only one codec is supported. 
Secondary codecs are not supported.

When AC97 mode is enabled, the hardware internally overrides the following settings. The programmed 
register values are not changed by entering AC97 mode, but they no longer apply to the module’s 
operation. Writing to the programmed register fields updates their values. These updates can be seen by 
reading back the register fields. However, these settings do not take effect until AC97 mode is turned off.

The register bits within the bracket are equivalent settings.

• Synchronous mode is entered (SSIn_CR[SYN] = 1)

• Network mode is selected (SSIn_CR[NET] = 1)

• Tx shift direction is msb transmitted first (SSIn_TCR[TSHFD] = 0)

• Rx shift direction is msb received first (SSIn_RCR[RSHFD] = 0)

• Tx data is clocked at rising edge of the clock (SSIn_TCR[TSCKP] = 0)

• Rx data is latched at falling edge of the clock (SSIn_RCR[RSCKP] = 0)

• Tx frame sync is active high (SSIn_TCR[TFSI] = 0)

• Rx frame sync is active high (SSIn_RCR[RFSI] = 0)

• Tx frame sync length is one-word-long-frame (SSIn_TCR[TFSL] = 0)

• Rx frame sync length is one-word-long-frame (SSIn_RCR[RFSL] = 0)

• Tx frame sync initiated one bit before data is transmitted (SSIn_TCR[TEFS] = 1)
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• Rx frame sync initiated one bit before data is received (SSIn_RCR[REFS] = 1)

• Tx shifting w.r.t. bit 0 of TXSR (SSIn_TCR[TXBIT0] = 1)

• Rx shifting w.r.t. bit 0 of RXSR (SSIn_RCR[RXBIT0] = 1)

• Tx FIFO is enabled (SSIn_TCR[TFEN0] = 1)

• Rx FIFO is enabled (SSIn_RCR[RFEN0] = 1)

• Internally-generated frame sync (SSIn_TCR[TFDIR] = 1)

• Externally-generated bit clock (SSIn_TCR[TXDIR] = 0)

Any alteration of these bits does not affect the operational conditions of the SSI unless AC97 mode is 
deselected. Hence, the only control bits that need to be set to configure the data transmission/reception are 
the SSIn_CCR[WL, DC] bits. In AC97 mode, the WL bits can only legally take the values corresponding 
to 16-bit (truncated data) or 20-bit time slots. If the WL bits are set to select 16-bit time slots, while 
receiving, the SSI pads the data (four least significant bits) with 0s, and while receiving, the SSI stores only 
the 16 most significant bits in the Rx FIFO.

The following sequence should be followed for programming the SSI to work in AC97 mode:

1. Program the SSIn_CCR[WL] bits to a value corresponding to 16 or 20 bits. The WL bit setting is 
only for the data portion of the AC97 frame (slots #3 through #12). The tag slot (slot #0) is always 
16-bits wide and the command address and command data slots (slots #1 and #2) are always 20 bits 
wide.

2. Select the number of time slots through the SSIn_CCR[DC] bits. For AC97 operation, the DC bits 
should be set to a value of 0xC, resulting in 13 time slots per frame.

3. Write data to be transmitted in Tx FIFO 0 (through Tx data register 0)

4. Program the SSIn_ACR[FV, TIF, RD, WR and FRDIV] bits

5. Update the contents of SSIn_ACADD, SSIn_ACDAT and SSIn_ATAG (for fixed mode only) 
registers

6. Enable AC97 mode (SSIn_ACR[AC97EN] bit)

After the SSI starts transmitting and receiving data after being configured in AC97 mode, the processor 
needs to service the interrupts when they are raised (updates to command address/data or tag registers, 
reading of received data, and writing more data for transmission). Further details regarding fixed and 
variable mode implementation appear in the following sections.

While using AC97 in two-channel mode (TCH = 1), it is recommended that the received tag is not stored 
in the Rx FIFO (TIF = 0). If you need to update the SSIn_ATAG register and also issue a RD/WR 
command (in a single frame), it is recommended that the SSIn_ATAG register is updated prior to issuing 
a RD/WR command.

35.4.1.5.1 AC97 Fixed Mode (SSIn_ACR[FV]=0)

In fixed mode of operation, SSI transmits in accordance with the frame rate divider bits that decide the 
number of frames for which the SSI should be idle, after operating for one frame. The following shows the 
slot assignments in a valid transmit frame:

• Slot 0: The tag value (written by the user program)
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• Slot 1: If RD/WR command, command address

• Slot 2: If WR command, command data

• Slot 3–12: Transmit FIFO data, depending on the valid slots indicated by the TAG value

While receiving, bit 15 of the received tag slot (slot 0) is checked to see if the codec is ready. If this bit is 
set, the frame is received. The received tag provides the information about slots containing valid data. If 
the corresponding tag bit is valid, the command address (slot 1) and command data (slot 2) values are 
stored in the corresponding registers. The received data (slot 3–12) is then stored in the receive FIFO (for 
valid slots).

35.4.1.5.2 AC97 Variable Mode (SSIn_ACR[FV]=1)

In variable mode, the transmit slots that should contain data in the current frame are determined by the 
SLOTREQ bits received in slot 1 of the previous frame. While receiving, if the codec is ready, the frame 
is received and the SLOTREQ bits are stored for scheduling transmission in the next frame.

The SACCST, SACCEN and SACCDIS registers help determine which transmit slots are active. This 
information is used to ensure that SSI does not transmit data for powered-down/inactive channels.

35.4.2 SSI Clocking

The SSI uses the following clocks:

• SSI_CLOCK — This is the internal clock that drives the SSI’s clock generation logic, which can 
be a fraction of the internal core clock (fsys) or the clock input on the SSI_CLKIN pin. The CCM’s 
MISCCR register can select either of these sources. Having this choice allows the user to operate 
the SSI module at frequencies that would not be achievable if standard internal core clock 
frequencies are used. This is also the output master clock (SSIn_MCLK) when in master mode.

• Bit clock — Serially clocks the data bits in and out of the SSI port. This clock is generated 
internally or taken from external clock source (through SSIn_BCLK).

• Word clock — Counts the number of data bits per word (8, 10, 12, 16, 18, 20, 22 or 24 bits). This 
clock is generated internally from the bit clock.

• Frame clock (frame sync) — Counts the number of words in a frame. This signal can be generated 
internally from the bit clock or taken from external source (from SSIn_FS).

• Master clock — In master mode, this is an integer multiple of frame clock. It is used in cases when 
SSI has to provide a clock to the connected devices.

Take care to ensure that the bit clock frequency (internally generated or sourced from an external device) 
is never greater than 1/5 of the internal bus frequency (fsys/2).

In normal mode, the bit clock, used to serially clock the data, is visible on the serial clock (SSIn_BCLK) 
port. The word clock is an internal clock that determines when transmission of an 8, 10, 12, 16, 18, 20, 22, 
or 24-bit word has completed. The word clock then clocks the frame clock, which counts the number of 
words in the frame. The frame clock can be viewed on the SSIn_FS frame sync port because a frame sync 
generates after the correct number of words in the frame have passed. In master mode, the SSIn_MCLK 
signal is the serial master clock if enabled by the SSIn_CR[MCE] bit. This serial master clock is an 
oversampling clock of the frame sync clock (SSIn_FS). In this mode, the word length (WL), prescaler 
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range (PSR), prescaler modulus (PM), and frame rate (DC) selects the ratio of SSIn_MCLK to sampling 
clock, SSIn_FS. In I2S mode, the oversampling clock is available on this port if the SSIn_CR[MCE] bit is 
set. 

Figure 35-39 shows the relationship between the clocks and the dividers. The bit clock can be received 
from an SSI clock port or generated from the internal clock (SSI_CLOCK) through a divider, as shown in 
Figure 35-40.

Figure 35-39. SSI Clocking

35.4.2.1 SSI Clock and Frame Sync Generation

Data clock and frame sync signals can be generated internally or obtained from external sources. If 
internally generated, the SSI clock generator derives bit clock and frame sync signals from the 
SSI_CLOCK. The SSI clock generator consists of a selectable, fixed prescaler and a programmable 
prescaler for bit rate clock generation. A programmable frame rate divider and a word length divider are 
used for frame rate sync signal generation.

Figure 35-40 shows a block diagram of the clock generator for the transmit section. The serial bit clock 
can be internal or external, depending on the transmit direction (SSIn_TCR[TXDIR]) bit. 

Figure 35-40. SSI Transmit Clock Generator Block Diagram

Figure 35-41 shows the frame sync generator block for the transmit section. When internally generated, 
receive and transmit frame sync generate from the word clock and are defined by the frame rate divider 
(DC) bits and the word length (WL) bits of the SSIn_CCR.
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Figure 35-41. SSI Transmit Frame Sync Generator Block Diagram

35.4.2.2 DIV2, PSR and PM Bit Description

The bit clock frequency can be calculated from the SSI serial system clock (SSIn_CLOCK), using 
Equation 35-1.

NOTE
You must ensure that the bit-clock frequency is at most one-fifth the internal 
bus frequency (fsys/2). The oversampling clock frequency can go up to 
internal bus frequency. Bits DIV2, PSR, and PM must not be cleared at the 
same time.

Eqn. 35-1

From this, the frame clock frequency can be calculated:

Eqn. 35-2

For example, if the SSI working clock is 19.2 MHz, in 8-bit word normal mode with DC = 1, PM = 0x4A 
(74), PSR = 0, DIV2 = 1, a bit clock rate of 64 kHz is generated. Because the 8-bit word rate equals two, 
sampling rate (or frame sync rate) would then be 64/(28) = 4 kHz.

In the next example, SSI_CLOCK  is 12 MHz. A 16-bit word network mode with DC = 1, PM = 1, the 
PSR = 0, DIV2 = 1, a bit clock rate of 12/[142] = 1.5 MHz is generated. Because the 16-bit word rate 
equals two, sampling rate (or frame sync rate) would be 1.5/(216) = 46.875 kHz.

Table 35-29 shows the example of programming PSR and PM bits to generate different bit clock 
(SSIn_BCLK) frequencies. The SSI_CLKIN signal is used in this example (MISCCR[SSISRC] = 0) 
because when operating the processor at the typical 240 MHz frequency, the SSI module is not able to 
accurately produce standard bit and sample rates.

Table 35-29. SSI Bit Clock and Frame Rate as a Function of PSR, PM, and DIV2

SSI_CLKIN
freq (MHz)

(SSIn_MCLK)

SSIn_CCR
Bit Clk (kHz)
SSIn_BCLK

 Frame rate
(kHz)

DIV2 PSR PM WL DC

12.288 0 0 23 3 3 256 8

12.288 0 0 11 3 3 512 16

Frame
Rate

Frame 
Sync

TFSL

Tx
Control

TFSI

TFSI

Tx Frame Sync Out

Tx Frame Sync In

Word Clock

TFDIR(1=output)

TFDIR(0=input)

SSIn_FS

SSIn_CCR[DC]

fINT_BIT_CLK
SSI serial system clock

DIV2 1+  7 PSR 1+  PM 1+  2
-------------------------------------------------------------------------------------------------------------=

fFS_CLK

fINT_BIT_CLK

DC 1+  2 WL 1+  
-------------------------------------------------------------------=
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Table 35-30 shows the example of programming clock controller divider ratio to generate the 
SSIn_MCLK and SSIn_BCLK frequencies close to the ideal sampling rates. In these examples, setting the 
SSI to I2S master mode (SSIn_CR[I2S] = 01) or individually programming the SSI into network, transmit 
internal clock mode selects the master mode. (The table specifically illustrates the I2S mode 
frequencies/sample rates.) 

I2S master mode requires a 32-bit word length, regardless of the actual data type. Consequently, the fixed 
I2S frame rate of 64 bits per frame (word length (WL) can be any value) and DC = 1 are assumed.

35.4.3 External Frame and Clock Operation

When applying external frame sync and clock signals to the SSI module, at least four bit clock cycles 
should exist between the enabling of the transmit or receive section and the rising edge of the 
corresponding frame sync signal. The transition of SSIn_FS should be synchronized with the rising edge 
of external clock signal, SSIn_BCLK.

35.4.4 Supported Data Alignment Formats

The SSI supports three data formats to provide flexibility with managing data. These formats dictate how 
data is written to and read from the data registers. Therefore, data can appear in different places in 
SSIn_TX0/1 and SSIn_RX0/1 based on the data format and the number of bits per word. Independent data 
formats are supported for the transmitter and receiver (i.e. the transmitter and receiver can use different 
data formats).

12.288 0 0 5 3 3 1024 32

12.288 0 0 3 3 3 1536 48

12.288 0 0 23 7 3 256 4

12.288 0 0 11 7 3 512 8

12.288 0 0 5 7 3 1024 16

12.288 0 0 3 7 3 1536 24

Table 35-30. SSI Sys Clock, Bit Clock, Frame Clock in Master Mode

Sampling
/Frame

rate (kHz)

Over- 
sampling 

rate

SSI_CLKIN
freq (MHz)

(SSIn_MCLK)

SSIn_CCR
 Bit Clk (kHz)
SSIn_BCLK

DIV2 PSR PM

44.10 384 16.934 0 0 2 2822.33

22.05 384 16.934 0 0 5 1411.17

11.025 384 16.934 0 0 11 705.58

48.00 256 12.288 0 0 1 3072

Table 35-29. SSI Bit Clock and Frame Rate as a Function of PSR, PM, and DIV2 (continued)

SSI_CLKIN
freq (MHz)

(SSIn_MCLK)

SSIn_CCR
Bit Clk (kHz)
SSIn_BCLK

 Frame rate
(kHz)

DIV2 PSR PM WL DC
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The supported data formats are:

• msb alignment

• lsb alignment

— Zero-extended (receive data only) 

— Sign-extended (receive data only)

With msb alignment, the most significant byte is bits 31–24 of the data register if the word length is larger 
than, or equal to, 16 bits. If the word length is less than 16 bits and msb alignment is chosen, the most 
significant byte is bits 15–8. With lsb alignment, the least significant byte is bits 7–0. The 
SSIn_TCR[TXBIT0] and the SSIn_RCR[RXBIT0] bits control data alignment. Table 35-31 shows the bit 
assignment for all the data formats supported by the SSI module.

In addition, if lsb alignment is selected, the receive data can be zero-extended or sign-extended.

• In zero-extension, all bits above the most significant bit are 0s. This format is useful when data is 
stored in a pure integer format. 

• In sign-extension, all bits above the most significant bit are equal to the most significant bit. This 
format is useful when data is stored in a fixed-point integer format (which implies fractional 
values).

Table 35-31. Data Alignment

Format
Bit Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8-bit lsb Aligned 7 6 5 4 3 2 1 0

8-bit msb Aligned 7 6 5 4 3 2 1 0

10-bit lsb Aligned 9 8 7 6 5 4 3 2 1 0

10-bit msb Aligned 9 8 7 6 5 4 3 2 1 0

12-bit lsb Aligned 11 10 9 8 7 6 5 4 3 2 1 0

12-bit msb Aligned 11 10 9 8 7 6 5 4 3 2 1 0

16-bit lsb Aligned 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit msb Aligned 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit lsb Aligned 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit msb Aligned 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

20-bit lsb Aligned 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

20-bit msb Aligned 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

22-bit lsb Aligned 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

22-bit msb Aligned 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

24-bit lsb Aligned 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

24-bit msb Aligned 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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The SSIn_RCR[RXEXT] bit controls receive data extension. Transmit data used with lsb alignment has 
no concept of sign/zero-extension. Unused bits above the most significant bit are simply ignored.

When configured in I2S or AC97 mode, the SSI forces the lsb alignment. However, the 
SSIn_RCR[RXEXT] bit chooses zero-extension or sign-extension.

Refer to Section 35.3.10, “SSI Transmit Configuration Register (SSIn_TCR),” and Section 35.3.11, “SSI 
Receive Configuration Register (SSIn_RCR),” for more detail on the relevant bits in the SSIn_TCR and 
SSIn_RCR registers.

35.4.5 Receive Interrupt Enable Bit Description

If the receive FIFO is not enabled, an interrupt occurs when the corresponding SSI receive data ready 
(SSIn_ISR[RDR0/1]) bit is set. If the receive FIFO is enabled and the RIE and RE bit are set, the processor 
is interrupted when either of the SSI receives FIFO full (SSIn_ISR[RFF0/1]) bits is set. When the receive 
FIFO is enabled, a maximum of eight values are available to be read (eight values per channel in 
two-channel mode). If not enabled, one value can be read from the SSIn_RX register (one each in 
two-channel mode). 

If the RIE bit is cleared, these interrupts are disabled. However, the RFF0/1 and RDR0/1 bits indicate the 
receive data register full condition. Reading the SSIn_RX registers clears the RDR bits, thus clearing the 
pending interrupt. Two receive data interrupts (two per channel in two-channel mode) are available: 
receive data with exception status and receive data without exception. Table 35-32 shows the conditions 
these interrupts are generated.

35.4.6 Transmit Interrupt Enable Bit Description

The SSI transmit interrupt enable (TIE) bit controls interrupts for the SSI transmitter. If the transmit FIFO 
is enabled and the TIE and TE bits are set, the processor is interrupted when either of the SSI transmit FIFO 
empty (SSIn_ISR[TFE0/1]) flags is set. If the corresponding transmit FIFO is not enabled, an interrupt is 
generated when the corresponding SSIn_ISR[TDE0/1] flag is set and transmit enable (TE) bit is set.

When transmit FIFO 0 is enabled, a maximum of eight values can be written to the SSI (eight per channel 
in two-channel mode using Tx FIFO 1). If not enabled, then one value can be written to the SSIn_TX0 
register (one per channel in two-channel mode using SSIn_TX1). When the TIE bit is cleared, all transmit 
interrupts are disabled. However, the TDE0/1 bits always indicate the corresponding SSIn_TX register 

Table 35-32. SSI Receive Data Interrupts

Interrupt RIE ROEn RFFn/RDRn

Receive Data 0 Interrupts (n = 0)

Receive Data 0 (with exception status) 1 1 1

Receive Data 0 (without exception) 1 0 1

Receive Data 1 Interrupts (n = 1)

Receive Data 1 (with exception status) 1 1 1

Receive Data 1 (without exception) 1 0 1



Synchronous Serial Interface (SSI)

35-56 NXP Semiconductors

empty condition, even when the transmitter is disabled by the transmit enable (SSIn_CR[TE]) bit. Writing 
data to the SSIn_TX clears the corresponding TDE bit, thus clearing the interrupt. 

Two transmit data interrupts are available (two per channel in two-Channel mode): transmit data with 
exception status and transmit data without exceptions. Table 35-33 shows the conditions under which 
these interrupts are generated.

35.4.7 Internal Frame and Clock Shutdown

The frame sync and clock operation is determined by the SSI _CR[TCD, RCD] and SSI _CR[TE,RE] 
bits.

During transmit/receive operation, clearing TE/RE stops data transmission/reception when the current 
frame ends. If the SSI _CR[TCD or RCD] bit is set in the current or previous frames, the SSI stops driving 
the frame sync and clock signals when the current frame ends. After this, the SSI _ISR[TFRC, RFRC] 
status bits indicate the frame completion state.

Figure 35-42 illustrates a transmission case where:

• TXDIR and TFDIR are set

• TE is cleared

• TCD bit is set during the current frame

Figure 35-42. SSI _CR[TCD] Assertion in Same Frame as TE is Disabled

If SSI _CR[TCD or RCD] is not set while SSI _CR[TE or RE] is cleared, the SSI continues generating 
the frame sync and clock signals. Upon setting SSI _CR[TCD or RCD], the SSI stops driving these signals 

Table 35-33. SSI Transmit Data Interrupts

Interrupt TIE TUEn TFEn/TDEn

Transmit Data 0 Interrupts (n = 0)

Transmit Data 1 (with exception status) 1 1 1

Transmit Data 1 (without exception) 1 0 1

Transmit Data 1 Interrupts (n = 1)

Transmit Data 0 (with exception status) 1 1 1

Transmit Data 0 (without exception) 1 0 1

n n

n
n

SSI_CR[TE]

SSI_ISR[TFRC]

SSI_CR[TCD]

SSIn_BCLK

SSIn_TXD

SSIn_FS

n

n n
n
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at the end of the current frame. Following this, the TFRC/RFRC status bits are set to indicate the frame 
completion state.

Figure 35-43 illustrates a transmission case where:

• TXDIR and TFDIR are set

• SSI _CR[TCD] is set a few frames after clearing TE

• SSI _ISR[TFRC] is set at the frame boundary after TE is cleared. Once software services this 
interrupt and later sets SSI _CR[TCD], TFRC is again set at the following frame boundary.

Figure 35-43. SSI _CR[TCD] Assertion in Frame After Disabling TE

35.5 Initialization/Application Information
The following types of reset affected the SSI:

• Power-on reset—Asserting the RESET signal generates the power-on reset. This reset clears the 
SSIn_CR[SSI_EN] bit, which disables the SSI. All other status and control bits in the SSI are 
affected as described in Table 35-4

• SSI reset—The SSI reset is generated when the SSIn_CR[SSI_EN] bit is cleared. The SSI status 
bits are reset to the same state produced by the power-on reset. The SSI control bits, including those 
in SSIn_CR, are unaffected. The SSI reset is useful for selective reset of the SSI, without changing 
the present SSI control bits and without affecting the other peripherals.

The correct sequence to initialize the SSI is:

1. Issue a power-on or SSI reset (SSIn_CR[SSI_EN] = 0).

2. Set all control bits for configuring the SSI (refer to Table 35-34).

3. Enable appropriate interrupts/DMA requests through SSIn_IER.

4. Set the SSIn_CR[SSI_EN] bit to enable the SSI.

5. For AC97 mode, set the SSIn_ACR[AC97EN] bit after programming the SSIn_ATAG register (if 
needed, for AC97 fixed mode).

6. Set SSIn_CR[TE/RE] bits.

To ensure proper operation of the SSI, use the power-on or SSI reset before changing any of the control 
bits listed in Table 35-34.

n

n
n

SSI_CR[TE]

SSI_ISR[TFRC]

SSI_CR[TCD]

w1c

SSIn_BCLK

SSIn_TXD

SSIn_FS

n
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NOTE
These control bits should not be changed when the SSI module is enabled.

Table 35-34. SSI Control Bits Requiring SSI to be Disabled Before Change

Control Register Bit

SSIn_CR

[9]=CIS
[8]=TCH
[7]=MCE
[6:5]=I2S
[4]=SYN
[3]=NET

SSIn_IER
[22]=RDMAE
[20]=TDMAE

SSIn_RCR
SSIn_TCR

[9]=RXBIT0 and  TXBIT0
[8]=RFEN1 and  TFEN1
[7]=RFEN0 and  TFEN0

[6]=TFDIR
[5]=RXDIR and  TXDIR

[4]=RSHFD and  TSHFD
[3]=RSCKP and  TSCKP

[2]=RFSI and  TFSI
[1]=RFSL and  TFSL
[0]=REFS and  TEFS

SSIn_CCR [16:13]=WL

SSIn_ACR
[1]=FV

[10:5]=FRDIV
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Chapter 36  
1-Wire Module

36.1 Overview
The 1-Wire® module provides the communication link to a generic 1-Kbit add-only memory. The module 
sends or receives one bit at a time with an option for software to manage the data using bytes. The required 
protocol for accessing the generic 1-Wire device is defined by Maxim, and is fully described at 
www.maxim-ic.com/products/1-wire/ .

36.1.1 Block Diagram

Figure 36-1 shows a block diagram of the 1-Wire module.

Figure 36-1. 1-Wire Module Block Diagram

36.1.2 Features

The 1-Wire module includes the following features:

• Performs the 1-Wire bus protocol to communicate with an external 1-Wire device

• Clock divider to generate the 1-Wire bus reference clock from the peripheral bus clock

• Supports byte transfers with optional interrupts or DMA for more efficient programming

• Provides a search ROM accelerator mode to speed the search ROM protocol

OW_DAT

1-Wire Bus Protocol Functions

Main Clock

Interrupt Generation

Clock Divider

Interrupt
(for byte and SRA transfers only)

Reset/Presence-Detect

Bit Transfers

Byte Transfers

Time Base
(1 MHz)

to Registers

to Host

Peripheral Bus

Search ROM Accelerator (SRA)
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36.1.3 Modes of Operation

The 1-Wire module supports the following operations: 

• Normal operating modes

— Bit or byte Transfers

— Reset/presence-detect pulse

— Search ROM accelerator mode

• Low power mode

36.2 External Signals
Table 36-1 shows the signal that interfaces with a generic 1-Wire device.

36.3 Memory Map/Register Definition

Table 36-1. 1-Wire Module Signal

Signal I/O Function

OW_DAT I/O One-Wire bus Requires an external pull-up resistor. The recommended 
resistor value is specified by the generic 1-Wire device used in a given 
system.

Table 36-2. 1-Wire Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xEC00_8000 Control register (OW_CR) 8 R/W 0x00 36.3.1/36-3

0xEC00_8004 Time divider register (OW_DIV) 8 R/W 0x00 36.3.2/36-4

0xEC00_8008 Reset register (OW_RST) 8 R/W 0x00 36.3.3/36-4

0xEC00_800C Command register (OW_CMD) 8 R/W 0x00 36.3.4/36-5

0xEC00_8010 Transmit/receive register (OW_TXRX) 8 R/W 0x00 36.3.5/36-5

0xEC00_8014 Interrupt status register (OW_ISR) 8 R 0x0E 36.3.6/36-6

0xEC00_8018 Interrupt enable register (OW_IER) 8 R/W 0x00 36.3.7/36-7
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36.3.1 Control Register (OW_CR)

The control register is used to initiate the reset/presence-detect sequence and bit transfers. The register also 
provides the presence-detect status and bit-read status and DMA enable.

Address: 0xEC00_8000 (OW_CR) Access: User read/write

7 6 5 4 3 2 1 0

R
RPP

PST
WR0 WR1

RDST 0 0 DMA
ENW

Reset 0 0 0 0 0 0 0 0

Figure 36-2. 1-Wire Control Register (OW_CR)

Table 36-3. OW_CR Field Descriptions

Field Description

7
RPP

Reset/presence-detect pulse. This bit self-clears after the presence is determined.
When writing...
0 Do nothing
1 Generate reset pulse and sample the bus for the presence pulse from the external device

When reading...
0 Reset pulse complete
1 Sequence not complete

6
PST

Presence status. This bit is valid after the RPP bit self-clears.
0 Device is not present
1 Device is present

5
WR0

Write 0. This bit self-clears when the write of the bit is complete.
When writing...
0 Do nothing
1 Write a 0 bit to the interface

When reading...
0 Write sequence complete
1 Sequence not complete

4
WR1

Write-1/read. This bit self-clears when the write sequence completes.
When writing...
0 Do nothing
1 Write a 1 bit to the interface and sample the bus

When reading...
0 Sequence complete
1 Sequence not complete

3
RDST

Read status. This bit is valid after the WR1 bit self-clears.
0 A 0 is sampled
1 A 1 is sampled
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36.3.2 Time Divider Register (OW_DIV)

The time divider register divides the main clock input down to 1 MHz.

36.3.3 Reset Register (OW_RST)

The reset register performs a software reset of the 1-Wire module.

2–1 Reserved, must be cleared.

0
DMAEN

DMA request enable. Enables the 1-Wire DMA request if OW_IER[ERBF] is also set. When a single-byte 
transmit or receive transfer completes, a request is sent to the DMA controller.
0 Disable DMA request
1 If RBF interrupt is enabled, enable DMA request

Address: 0xEC00_8004 (OW_DIV) Access: User read/write

7 6 5 4 3 2 1 0

R
DVDR

W

Reset 0 0 0 0 0 0 0 0

Figure 36-3. 1-Wire Time Divider Register (OW_DIV)

Table 36-4. OW_DIV Field Descriptions

Field Description

7–0
DVDR

Divider factor. The internal clock divider uses this field to generate the required time base for the module.
0x00 1
0x01 2
...
0xFF 256

Address: 0xEC00_8008 (OW_RST) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
RST

W

Reset 0 0 0 0 0 0 0 0

Figure 36-4. 1-Wire Reset Register (OW_RST)

Table 36-3. OW_CR Field Descriptions (continued)

Field Description
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36.3.4 Command Register (OW_CMD)

The 1-Wire module can be configured to run in search ROM accelerator mode using the command register.

36.3.5 Transmit/Receive Register (OW_TXRX)

Data sent and received from the 1-Wire module passes through the transmit/receive (OW_TXRX) register. 
The 1-Wire module is double-buffered with separate transmit and receive buffers connected to the 
OW_TXRX register.

Table 36-5. OW_RST Field Descriptions

Field Description

7–1 Reserved, must be cleared.

0
RST

Software reset.
0 Do not perform a software reset
1 Initiate a software reset and hold the module in the software-reset state

Address: 0xEC00_800C (OW_CMD) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
SRA

0

W

Reset 0 0 0 0 0 0 0 0

Figure 36-5. 1-Wire Command Register (OW_CMD)

Table 36-6. OW_CMD Field Descriptions

Field Description

7–2 Reserved, must be cleared.

1
SRA

Search ROM Accelerator. This bit is cleared when the reset-presence-pulse bit OW_CR[RPP] is set. 
0 Deactivate the search ROM accelerator.
1 Switch to search ROM accelerator mode.

0 Reserved, must be cleared.

Address: 0xEC00_8010 (OW_TXRX) Access: User read/write

7 6 5 4 3 2 1 0

R
DATA

W

Reset 0 0 0 0 0 0 0 0

Figure 36-6. 1-Wire Transmit/Receive Register (OW_TXRX)
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36.3.6 Interrupt Register (OW_ISR)

OW_ISR contains flags for the reset/presence-detect sequence and byte transfer operations. These flags 
can generate an interrupt if the corresponding enable bit is set in OW_IER.

If interrupts are enabled, reading OW_ISR deactivates the interrupt even if all current flags are not cleared; 
therefore, the interrupt service routine should clear all pending flags during each routine call.

NOTE
When a byte is written to OW_TXRX, software then waits for a transmit 
shift register empty (TSRE) interrupt to occur. When TSRE sets, the receive 
buffer full (RBF) flag is also set. The RBF flag does not trigger an interrupt, 
assuming it is disabled. However, software should read the OW_TXRX to 
clear the RBF flag to give a proper status of the pending interrupts.

Table 36-7. OW_TXRX Field Descriptions

Field Description

7–0
DATA

Data byte.
When writing...
The data byte is written to the transmit buffer.

When reading...
A data byte is read from the receive buffer. The data is valid only when OW_ISR[RBF] is set.

Address: 0xEC00_8014 (OW_ISR) Access: User read-only

7 6 5 4 3 2 1 0

R 0 0 RSRF RBF TSRE TBE PDR PD

W

Reset 0 0 0 0 1 1 1 0

Figure 36-7. 1-Wire Interrupt Status Register (OW_ISR)

Table 36-8. OW_ISR Field Descriptions

Field Description

7–6 Reserved, must be cleared.

5
RSRF

Receive shift register full. Automatically clears when data in the receive shift register is transferred to the 
receive buffer.
0 The receive shift register is empty or currently receiving data
1 A byte is waiting in the receive shift register to be transferred to the receive buffer

4
RBF

Receive buffer full. Clears when software reads the byte from the OW_TXRX register. This flag prevents 
new data from being shifted into the receive buffer from the receive shift register.
0 No new data
1 A byte is waiting to be read from the OW_TXRX register
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36.3.7 Interrupt Enable Register (OW_IER)

The interrupt enable register allows you to specify the source of interrupts. During a reset (hardware or 
software), all bits in this register are cleared, disabling all interrupt sources.

3
TSRE

Transmit shift register empty. Automatically clears when data in the transmit buffer is transferred to the 
transmit shift register.
0 Sending data
1 The transmit shift register is empty and is ready to receive the next byte from the transmit buffer

2
TBE

Transmit buffer empty. Clears when software writes a byte to the OW_TXRX register.
0 The transmit buffer is currently sending data to the transmit shift register
1 Nothing to transmit

1
PDR

Presence detect result. When a presence-detect (PD) interrupt occurs, this bit reflects the result of the 
presence-detect sequence.
Note: This bit does not generate an interrupt.
0 Device found
1 Device not found

0
PD

Presence detect. After a 1-Wire reset is issued, this flag is set after the appropriate amount of time for a 
presence-detect pulse to have occurred. This flag is cleared when OW_ISR is read.
0 Reset/presence-detect sequence has not been issued
1 Reset/presence-detect sequence has completed and the result is indicated by the PDR bit.

Address: 0xEC00_8018 (OW_IER) Access: User read/write

7 6 5 4 3 2 1 0

R 0 0
ERSF ERBF ETSE ETBE IAS EPD

W

Reset 0 0 0 0 0 0 0 0

Figure 36-8. 1-Wire Interrupt Enable Register (OW_IER)

Table 36-9. OW_IER Field Descriptions

Field Description

7–6 Reserved, must be cleared.

5
ERSF

Enable receive shift register full interrupt.
0 Disable
1 Enable

4
ERBF

Enable receive buffer full interrupt.
0 Disable
1 Enable

3
ETSE

Enable transmit shift register empty interrupt.
0 Disable
1 Enable

Table 36-8. OW_ISR Field Descriptions (continued)

Field Description
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36.4 Functional Description
The 1-Wire module interfaces with a generic 1-Kbit add-only memory through a simple 1-bit bus. Use the 
1-Wire bus to program and read this memory.

The protocol involves first issuing one of four ROM function commands before the EPROM is accessible:

• Read ROM

• Match ROM

• Search ROM

• Skip ROM

Through the 1-Wire bus, the host (master) software interfaces with the generic 1-Wire device (slave) and 
issues the commands to control the device’s EPROM. The 1kb Add-Only Memory Data Sheet (DS2502) 
from Maxim Integrated Products, Inc. describes the generic 1-Wire device’s operation procedures. It can 
be found at:

• http://www.maxim-ic.com/products/1-wire/

36.4.1 Normal Operating Modes

The 1-Wire module supports the following 1-Wire bus protocol functions: 

• Reset/presence-detect pulse using the OW_CR register

• Bit transfers using the OW_CR register

• Byte transfers using the OW_TXRX register

• Search ROM accelerator mode using the command and OW_TXRX registers

36.4.1.1 Reset/Presence-Detect Pulse

The 1-Wire module supports an automated initialization sequence for the 1-Wire bus, which is initiated by 
by setting OW_CR[RPP]. The automated initialization sequence is as follows:

1. Generate a reset pulse.

2
ETBE

Enable transmit buffer empty interrupt.
0 Disable
1 Enable

1
IAS

Interrupt trigger active state. Determines the polarity for the 1-Wire interrupts.
Note: This bit is not an interrupt-enable bit.

0 Active high
1 Active low

0
EPD

Enable presence detect.
0 Disable
1 Enable

Table 36-9. OW_IER Field Descriptions (continued)

Field Description

http://www.maxim-ic.com/products/1-wire/
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2. Listen for a response from an external device by sampling for the 1-Wire device presence bit.

3. After an amount of time determined by the 1-Wire standard, latch the presence bit (true or false) in 
OW_CR[PST].

If an external device is detected (PST = 1), software can begin communication on the 1-Wire bus.

36.4.1.2 Bit Transfers 

After the initialization sequence described in Section 36.4.1.1, “Reset/Presence-Detect Pulse, software can 
write and read one bit at a time using OW_CR.

36.4.1.2.1 Write-0 Sequence

The write-0 sequence writes a zero bit to the 1-Wire device. Set OW_CR[WR0] to initiate the write-0 pulse 
sequence. When the write completes, WR0 automatically clears.

36.4.1.2.2 Write-1 / Read Sequence

The write-1 sequence writes a one to the generic 1-Wire device. Set OW_CR[WR1] to initiate the write-1 
pulse sequence. When the write completes, WR1 automatically clears.

Because the write-1 and read timings are identical, this sequence also reads a bit from the bus. The sampled 
value is stored in OW_CR[RDST] and is valid after WR1 self-clears.

36.4.1.3 Byte Transfers

After the initialization sequence described in Section 36.4.1.1, “Reset/Presence-Detect Pulse”, byte 
transfers can be performed using the OW_TXRX register. Writing to the register connects to the transmit 
buffer; reading to the register connects to the receive buffer. See Figure 36-9.

Figure 36-9. Byte Transfers

The transmit buffer connects to an internal transmit shift register where data is shifted serially onto the bus 
lsb first. Similarly, the receive buffer connects to an internal receive shift register where data is sampled 
serially from the bus.

You can read a byte from the generic 1-Wire device as follows:

1. Write 0xFF to OW_TXRX (connected to the transmit buffer).

OW_DAT

OW_TXRX Register

Tx Shift Register

Rx Shift Register

Tx Buffer

Rx Buffer
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2. Wait for the receive-buffer-full DMA request or interrupt (or poll OW_ISR[RBF] directly if the 
interrupt is disabled). During this time, the hardware is writing ones on the bus while sampling the 
wired-AND of the data from the device. The read data is shifted into the receive shift register. 
When a byte is collected in the receive shift register, the data is transferred to the receive buffer, 
and the RBF flag sets.

3. Read from OW_TXRX (connected to the receive buffer) upon receiving the RBF interrupt or DMA 
request.

If the receive buffer is full, new data is not shifted from the receive shift register until the current data is 
read. To prevent loss of data, software must read OW_TXRX to clear OW_ISR[RBF]. This allows the 
receive shift register to shift new data into the receive buffer.

36.4.1.4 Search ROM Accelerator Mode

In search ROM accelerator mode the 1-Wire module relieves you from having to perform single-bit 
operations on the bus and helps determine if more than one generic 1-Wire device exists.

Set OW_CMD[SRA] to enter search ROM accelerator mode. This protocol specifies that the bus master 
reads two bits (a bit and its complement), then writes a bit to specify which devices should remain on the 
bus for further processing.

NOTE
This mode requires that a reset, followed by the search ROM command 
(0xF0) has already been issued on the 1-Wire bus.

The 1-Wire module automatically exits search ROM accelerator mode if the 1-Wire bus is re-initialized.

36.4.2 Low Power Mode

The 1-Wire module automatically goes into low power mode when it is not communicating with a generic 
1-Wire device. The main clock is gated off in low power mode. When software writes to any register, the 
module exits low power mode.

36.4.3 Clocks

The 1-Wire module passes the peripheral bus clock through a clock divider. You must program the divider 
to generate a 1-MHz clock, which is the module’s time base, as given by:

Eqn. 36-1

For example, if the main clock frequency is 30 MHz, write 29 to OW_DIV. If the main clock input 
frequency is not an integer, ensure the time base frequency is within the range given by Equation 36-2.

Eqn. 36-2

NOTE

A main clock frequency below 10 MHz causes improper function of the 
module.

time_base
fsys/2

OW_DIV[DVDR] 1+
-----------------------------------------------------=

0.98 MHz time_base 1.02 MHz 
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36.4.3.1 Hardware Reset

When a device reset occurs, a hard reset is performed on the 1-Wire module. This clears all values written 
to the registers.

36.4.3.2 Software Reset

Set OW_RST[RST] to initiate a software reset. This clears all data written to the registers except for 
OW_CMD and OW_ISR.

NOTE
The reset register is not cleared during a software reset. You must clear 
OW_RST[RST] to release the software reset.

36.4.4 Interrupts

The 1-Wire generates the following interrupts through the programming of OW_IER:

• Receive shift register or buffer full

• Transmit shift register or buffer empty

• Presence detect

When any of these conditions are met, OW_ISR sets the corresponding bit and generates an interrupt if 
enabled in OW_IER. OW_IER[IAS] determines if the interrupt generated is active low or active high. By 
default all interrupts are active high, and you should not modify IAS.
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Chapter 37  
Robust Real Time Clock

37.1 Introduction
The robust real time clock provides the functionality of a basic RTC, such as time keeping and calendaring. 
It also contains many advanced features, including:

• Protection against spurious memory/register updates

• Automatic switching to battery operation

• Compensation of the 1 Hz clock against variations in the 32 kHz clock oscillator due to crystal or 
temperature

• A standby RAM to store any 16-bit data that must be retained when in battery operation mode

37.2 Overview
The robust RTC block uses second, minute, hour, date, day-of-week, month and year counters, with 
automatic adjustment for leap year and daylight saving. Reading these counters indicates the current date 
and time and writing to these registers sets the date and time. This can be done in binary-coded decimal 
(BCD) or binary format.

When the time counters match the alarm hour, minute, and second setting, an alarm flag is set and an 
interrupt is generated (if enabled). The alarm can additionally be configured to match the day, month, and 
year to generate the alarm interrupt. The alarm interrupt can also wake the processor from various low 
power modes.

A countdown timer with minute resolution is also provided for time keeping applications. An interrupt is 
generated at the expiration of this counter. The RTC module also provides seven sampling timer interrupts 
apart from normal interrupts for alarm and countdown timeout.

A frequency compensation block is integrated into the RTC to correct any error in the 1 Hz clock due to 
variations in the 32 kHz clock caused by crystal inaccuracy, board variations, or temperature change. The 
compensation value is set by software and the correction is accomplished in hardware.

A protection mechanism is built in the RTC to protect against spurious writes to the RTC by any run-away 
code. You must write a specific sequence of codes to the write enable bits to allow write access to the 
registers. When finished updating the registers write any value to these bits to enable the write protection. 
After unlocking the registers, the CPU has a window of two seconds for updating the register space. On 
power on reset a window of 15 seconds is available. After this time the registers are locked automatically. 
Any further updates would require the CPU to unlock the registers.
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The robust RTC battery supply maintains normal RTC functionality when the CPU power is removed. The 
battery supply allows RTC to keep functioning if the CPU is completely turned off. The RTC block is reset 
only when the battery supply and CPU power are removed and either is powered up.

The RTC is also equipped with a RAM that is powered by the battery supply if the main supply is removed. 
The processor can use this RAM to store any data it wants to preserve in case of power failure. This RAM 
loses its contents when the CPU and battery power are removed.

The RTC contains a 32-bit up-counter register that increments on writes, and reads of this register return 
the latest count value.

37.2.1 Block Diagram

Figure 37-1. Robust RTC Block Diagram

37.2.2 Features

The robust RTC supports the following features:

• Full clock – Hour, minutes, and seconds with option for storing values in binary-coded decimal 
(BCD) or binary format.

• Calendaring – Day, month, year, and day of the week with option for storing values in BCD or 
binary format.
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• Auto-adjustment for daylight saving time with user-defined parameters

• Automatic month and leap year adjustment

• RTC utilizes local time which implicitly contains the time zone offset

• Programmable alarm with interrupt

• Seven periodic interrupts

• Minute countdown timer with one minute resolution

• 32.768 kHz input clock

• Hardware compensation to compensate the 1 Hz clock to the counters against frequency variations 
in the oscillator clock due to temperature or crystal characteristics.

• Reset to the RTC block is generated only when both the battery supply and CPU power are 
removed and either is powered up.

• Battery operation (standby mode) ensures seamless RTC operation when CPU power is removed

• 2KB standby RAM

37.3 External Signal Description
The below table describes the RTC external signals.

37.4 Memory Map/Register Definition
The RTC contains 16-bit aligned registers and a standby RAM. Both can be accessed by 8-bit and 16-bit 
read/write cycles.

NOTE
All registers except RTC_CR[WE] are protected from spurious updates by 
any run-away code.

The RTC module does not check for correctness of values programmed into 
its registers. Programming illogical time and date entries results in 
undefined operation and normal functionality is not guaranteed.

Table 37-1. RTC Signal Summary

Signal Name Abbreviation Function I/O

RTC external clock In RTC_EXTAL Crystal input clock I

RTC crystal RTC_XTAL Oscillator output to crystal O

RTC standby voltage VSTBY_RTC Standby voltage supply —

Table 37-2. Real Time Clock Memory Map

Address Register
Width
(bits)

Access Reset Value Section/Page

0xFC0A_8000 Month and year counter register (RTC_YEARMON) 16 R/W 0x0001 37.4.1/37-4

0xFC0A_8002 Day and day-of-week counter register (RTC_DAYS) 16 R/W 0x0001 37.4.2/37-5



Robust Real Time Clock

37-4 NXP Semiconductors

37.4.1 RTC Year & Month Counter Register (RTC_YEARMON)

This register stores the value of the month and year counters. The year bits do not store the year value but 
calculate the increment in years. This is a signed value and ranges from –128 to +127. Software programs 
the offset from the base year of 2112 into this field. For example, if the current year is 2007, then write 
–105 or 0x97 to this field. The range of years supported is 1984 (2112 – 128) to 2239 (2112 + 127).

The month field stores the count value of the month. Writing to this field loads the month counter with this 
new value. The valid values are mentioned in table below. Writing any other value does not guarantee 
correct operation of RTC. Both month and year are unaffected on software reset.

In binary-coded decimal (BCD) mode, the value of month counter is represented in BCD format. Since the 
year value is a two’s complement value this is not converted to BCD, even in BCD mode.

0xFC0A_8004 Hour and minute counter register (RTC_HOURMIN) 16 R/W 0x0000 37.4.3/37-6

0xFC0A_8006 Second counter register (RTC_SECONDS) 16 R/W 0x0000 37.4.4/37-7

0xFC0A_8008 Year and month alarm register (RTC_ALM_YRMON) 16 R/W 0x0000 37.4.5/37-8

0xFC0A_800A Day alarm register (RTC_ALM_DAYS) 16 R/W 0x0000 37.4.6/37-9

0xFC0A_800C Hour and minute alarm register (RTC_ALM_HM) 16 R/W 0x0000 37.4.7/37-10

0xFC0A_800E Second alarm register (RTC_ALM_SEC) 16 R/W 0x0000 37.4.8/37-11

0xFC0A_8010 Control register (RTC_CR) 16 R/W 0x0000 37.4.9/37-12

0xFC0A_8012 Status register (RTC_SR) 16 R 0x0000 37.4.10/37-14

0xFC0A_8014 Interrupt status register (RTC_ISR) 16 R/W 0x0001 37.4.11/37-15

0xFC0A_8016 Interrupt enable register (RTC_IER) 16 R/W 0x0001 37.4.12/37-16

0xFC0A_8018 Countdown timer register (RTC_COUNT_DN) 16 R/W 0x0000 37.4.13/37-17

0xFC0A_8020 Configuration data register (RTC_CFG_DATA) 16 R/W 0x0000 37.4.14/37-18

0xFC0A_8022 Daylight saving time hour register (RTC_DST_HOUR) 16 R/W 0x0000 37.4.15/37-19

0xFC0A_8024 Daylight saving time month register (RTC_DST_MON) 16 R/W 0x0000 37.4.16/37-20

0xFC0A_8026 Daylight saving time day register (RTC_DST_DAY) 16 R/W 0x0000 37.4.17/37-20

0xFC0A_8028 Compensation register (RTC_COMPEN) 16 R/W 0x0000 37.4.18/37-21

0xFC0A_8032 Count up high register (RTC_UP_CNTRH) 16 R 0x0000 37.4.19/37-21

0xFC0A_8034 Count up low register (RTC_UP_CNTRL) 16 R 0x0000 37.4.20/37-22

0xFC0A_8040
–

0xFC0A_883E

Standby RAM 2KB R/W Undefined —

Table 37-2. Real Time Clock Memory Map (continued)

Address Register
Width
(bits)

Access Reset Value Section/Page
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Prior to reading or writing to RTC_YEARMON, read the RTC_SR[INVAL] bit to determine that the 
counters are stable and they can be changed. The INVAL bit ensures that no operation is done at the 
boundary of a second when counters change value.

37.4.2 RTC Day & Day-of-Week Counters Register (RTC_DAYS)

This read/write register contains the current value of the day-of-week and day counters. This register can 
be read at any time without affecting the counter count values. Writing to this register loads the value to 
the day-of-week and day counters and they continue to count from this new value. This register is 
unaffected by a software reset.

In BCD mode, the days counter value is converted to BCD format, while the day-of-week counter remains 
unchanged.

Address: 0xFC0A_8000 (RTC_YEARMON) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
YEAR MONTH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 37-2. RTC Year and Month Counter Register (RTC_YEARMON)

Table 37-3. RTC_YEARMON Field Descriptions

Field Description

15–8
YEAR

Year count value. Two’s complement value that indicates the offset in years from the base year, which is hard coded 
as 2112.
0x00 2112 + 0 = 2112
...
0x7F 2112 + 127 = 2239
0x80 2112 - 128 = 1984
...
0xFF 2112 - 1 = 2111
Note: This field does not show the actual year value.

7–0
MONTH

Month count value. Indicates the month, depending on the value of RTC_CR[BCDEN].

MONTH
Month

Binary BCD

0x00 0x00 Reserved

0x01 0x01 January

... ... ...

0x0A 0x10 October

0x0B 0x11 November

0x0C 0x12 December

0x0D–0xFF 0x13–0xFF Reserved
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Prior to reading or writing to RTC_DAYS, read the RTC_SR[INVAL] bit to determine that the counters 
are stable and they can be changed. The INVAL bit ensures that no operation is done at the boundary of a 
second when counters change value.

37.4.3 RTC Hour and Minute Counter Register (RTC_HOURMIN)

This read/write register contains the current value of the hour and minute counters. It can be read any time 
to get the current value of the counters. Only power-on reset resets this register. The hours counter can be 
set from 0 to 23. The minutes counter can be set from 0 to 59. This register is unaffected by software reset.

Prior to reading or writing to RTC_HOURMIN, read the RTC_SR[INVAL] bit to determine that the 
counters are stable and they can be changed. The INVAL bit ensures that no operation is done at the 
boundary of a second when counters change value.

Address: 0xFC0A_8002 (RTC_DAYS) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
DAYWEEK DAY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 37-3. RTC Day-of-Week and Day Counter Register (RTC_DAYS)

Table 37-4. RTC_DAYS Field Descriptions

Field Description

15–11 Reserved, must be cleared.

10–8
DAYWEEK

Day of the week count.
000 Sunday
001 Monday
...
110 Saturday
111 Reserved

7–0
DAY

Day of the month count. Indicates the day, depending on the value of RTC_CR[BCDEN].

DAY
Day of Month

Binary BCD

0x00 0x00 Reserved

0x01 0x01 1

... ... ...

0x0A 0x10 10

... ... ...

0x1F 0x31 31

0x20–0xFF 0x32–0xFF Reserved
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37.4.4 RTC Second Counter Register (RTC_SECONDS)

This read/write register contains the current value of the second counter. It can be read any time to get the 
current value of the counter. Only power-on reset can reset this register. The second counter can be set from 
0 to 59. This register is unaffected by software reset.

Address: 0xFC0A_8004 (RTC_HOURMIN) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
HOURS MINUTES

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-4. RTC Hour and Minute Counter Register (RTC_HOURMIN)

Table 37-5. RTC_HOURMIN Field Descriptions

Field Description

15–8
HOURS

Hour of day counter. Indicates the hour, depending on the value of RTC_CR[BCDEN].

7–0
MINUTES

Minute of hour counter. Indicates the minute, depending on the value of RTC_CR[BCDEN].

HOURS
Hour of day

Binary BCD

0x00 0x00 12:00 AM

0x01 0x01 1:00 AM

... ... ...

0x0A 0x10 10:00 AM

... ... ...

0x17 0x23 11:00 PM

0x18–0xFF 0x24–0xFF Reserved

MINUTES
Minute of hour

Binary BCD

0x00 0x00 0

0x01 0x01 1

... ... ...

0x0A 0x10 10

... ... ...

0x3B 0x59 59

0x3C–0xFF 0x5A–0xFF Reserved
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Prior to reading or writing to RTC_SECONDS, read the RTC_SR[INVAL] bit to determine that the 
counters are stable and they can be changed. The INVAL bit ensures that no operation is done at the 
boundary of a second when counters change value.

37.4.5 RTC Year & Month Alarm Register (RTC_ALM_YRMON)

RTC_ALM_YRMON configures the month and year setting of the alarm. The alarm setting can be read 
or written anytime. This register is reset to its default state on software reset. The alarm interrupt bit 
(RTC_ISR[ALM]) is set when all values of the alarm seconds, minutes, hours, days, month, and year 
match their respective counter values.

Address: 0xFC0A_8006 (RTC_SECONDS) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
SECONDS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-5. RTC Second Counter Register (RTC_SECONDS)

Table 37-6. RTC_SECONDS Field Descriptions

Field1 Description

15–8 Reserved, must be cleared.

15–8
SECONDS

Second of minute counter. Indicates the second, depending on the value of RTC_CR[BCDEN].

Address: 0xFC0A_8008 (RTC_ALM_YRMON) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
YEAR MONTH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-6. RTC Year & Month Alarm Register (RTC_ALM_YRMON)

SECONDS
Second of minute

Binary BCD

0x00 0x00 0

0x01 0x01 1

... ... ...

0x0A 0x10 10

... ... ...

0x3B 0x59 59

0x3C–0xFF 0x5A–0xFF Reserved
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37.4.6 RTC Days Alarm Register (RTC_ALM_DAYS)

RTC_ALM_DAYS configures the day setting of the alarm. The alarm setting can be read or written 
anytime. This register is reset to its default state on software reset. Alarm interrupt bit (RTC_ISR[ALM]) 
is set when all values of alarm seconds, minutes, hours, days, month, and year match their respective 
counter values.

Table 37-7. RTC_ALM_YRMON Field Descriptions

Field1 Description

15–8
YEAR

Year alarm value. Two’s complement value that indicates the offset in years from the base year, which is hard coded 
as 2112. This signed value does not show the actual year value.
0x00 2112 + 0 = 2112
...
0x7F 2112 + 127 = 2239
0x80 2112 - 128 = 1984
...
0xFF 2112 - 1 = 2111

7–0
MONTH

Month alarm value. Indicates the month, depending on the value of RTC_CR[BCDEN].

Address: 0xFC0A_800A (RTC_ALM_DAYS) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
DAY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-7. RTC Day-of-Week and Day Alarm Register (RTC_ALM_DAYS)

MONTH
Month

Binary BCD

0x00 0x00 Reserved

0x01 0x01 January

... ... ...

0x0A 0x10 October

0x0B 0x11 November

0x0C 0x12 December

0x0D–0xFF 0x13–0xFF Reserved
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37.4.7 RTC Hours and Minutes Alarm Register (RTC_ALM_HM)

RTC_ALM_HM configures the hour and minute setting of the alarm. The alarm setting can be read or 
written anytime. This register is reset to default state on software reset. In BCD mode, all eight bits of each 
field indicate the time.

Table 37-8. RTC_ALM_DAYS Field Descriptions

Field Description

15–8 Reserved, must be cleared.

7–0
DAY

Day of the month alarm. Indicates the day, depending on the value of RTC_CR[BCDEN].

Address: 0xFC0A_800C (RTC_ALM_HM) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
HOURS MINUTES

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-8. RTC Hours and Minutes Alarm Register (RTC_ALM_HM)

DAY
Day of Month

Binary BCD

0x00 0x00 Reserved

0x01 0x01 1

... ... ...

0x0A 0x10 10

... ... ...

0x1F 0x31 31

0x20–0xFF 0x32–0xFF Reserved



Robust Real Time Clock

NXP Semiconductors 37-11

37.4.8 RTC Seconds Alarm Register (RTC_ALM_SEC)

RTC_ALM_SEC configures the seconds setting of the alarm. The alarm setting can be read or written 
anytime. This register is reset to default value on software reset. In BCD mode, all eight bits indicate the 
time.

The INC and DEC bits provide the option for the MCU to perform a correction on seconds counter to 
compensate for leap seconds. Write to these bits adds or subtracts one from the seconds counter and read 
returns zeros.

Prior to reading or writing to INC or DEC, read the RTC_SR[INVAL] bit to determine that the counters 
are stable and they can be incremented or decremented. The INVAL bit ensures that no operation is done 
at the boundary of a second when counters change value.

Table 37-9. RTC_ALM_HM Field Descriptions

Field Description

15–8
HOURS

Hour of day alarm. Indicates the hour alarm, depending on the value of RTC_CR[BCDEN].

7–0
MINUTES

Minute of hour alarm. Indicates the minute alarm, depending on the value of RTC_CR[BCDEN].

HOURS
Hour of day

Binary BCD

0x00 0x00 12:00 AM

0x01 0x01 1:00 AM

... ... ...

0x0A 0x10 10:00 AM

... ... ...

0x17 0x23 11:00 PM

0x18–0xFF 0x24–0xFF Reserved

MINUTES
Minute of hour

Binary BCD

0x00 0x00 0

0x01 0x01 1

... ... ...

0x0A 0x10 10

... ... ...

0x3B 0x59 59

0x3C–0xFF 0x5A–0xFF Reserved
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37.4.9 RTC Control Register (RTC_CR)

The control register governs all operations inside the RTC. This register specifies software reset, 
compensation, and write protection. 

The write protect bits are the only bits that are freely writable. The rest of the bits, registers, and RAM are 
protected with a write protect mechanism. The write protect bits (RTC_CR[WE]) are self-clearing and 
always return zeros on reads.

Address: 0xFC0A_800E (RTC_ALM_SEC) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
SECONDS

W INC DEC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-9. RTC Seconds Alarm Register (RTC_ALM_SEC)

Table 37-10. RTC_ALM_SEC Field Descriptions

Field1 Description

15–10 Reserved, must be cleared.

9
INC

Increment one second. Increments the seconds counter to compensate for leap seconds or to perform fine 
trimming when needed.
0 No effect
1 Increments the seconds counter. This bit self-clears on next positive clock edge.

8
DEC

Decrement one second. Decrements the seconds counter to compensate for leap seconds or to perform fine 
trimming when needed.
0 No effect
1 Decrements the seconds counter. This bit self-clears on next positive clock edge.

7–0
SECONDS

Second of minute alarm. Indicates the second alarm, depending on the value of RTC_CR[BCDEN].

SECONDS
Second of minute

Binary BCD

0x00 0x00 0

0x01 0x01 1

... ... ...

0x0A 0x10 10

... ... ...

0x3B 0x59 59

0x3C–0xFF 0x5A–0xFF Reserved
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Depending on the BCD format enable bit, the width of time (seconds, minutes and hours) and day related 
registers changes and the values in the register becomes as follows:

Address: 0xFC0A_8010 (RTC_CR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 BCD
EN

DST
EN

0 0
AM

0 0

W SWR WE

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-10. RTC Control Register (RTC_CR)

Table 37-11. RTC_CR Field Descriptions

Field1 Description

15 Reserved, must be set.

14–9 Reserved, must be cleared.

8
SWR

Software reset. This self-clearing bit is automatically cleared on the next clock after a write.
0 No software reset
1 Software reset. Clears the contents of the alarm, interrupt (status & enable) registers and has no effect on DST, 

standby RAM, up counter, time, and calendaring registers.

7
BCDEN

BCD format enable. Controls whether the read/write value of the time and date registers is in binary or BCD format. 
0 Binary format
1 Binary-coded decimal (BCD) format

6
DSTEN

Daylight saving time enable. Enables automatic adjustment of time during daylight saving time.
0 Disabled
1 Enabled

5–4 Reserved, must be cleared.

3–2
AM

Alarm match. Defines which time and calendar counters are used for matching and generating an alarm.
00 Seconds, minutes, and hours matched
01 Seconds, minutes, hours, and days matched
10 Seconds, minutes, hours, days, and months matched
11 Seconds, minutes, hours, days, months, and year matched

1–0
WE

Write enable bits. Controls the entry and exit into/from the register/memory write protection mode. This field is self 
clearing.
To enable write protection:

Write 10 to this field.
To disable write protection:

Write 00 to this field, then
Write 01 to this field, then
Write 11 to this field, then
Write 10 to this field.

Note: When the registers are unlocked, they remain unlocked for two seconds and are then automatically locked. 
Also, immediately following power-on-reset, the registers are unlocked. After 15 seconds, they are 
automatically locked.
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The table below shows how data gets changed on reads. The reverse happens for writes. Data input is in 
BCD and converted to binary before storing in appropriate registers.

37.4.10 RTC Status Register (RTC_SR)

This register indicates the status of various processes inside the RTC. Status of crystal or temperature 
compensation can be obtained. This register also helps the MCU to read time or date register when their 
values are stable and not changing. A software reset clears this register. The compensation done bit is 
cleared on reads.

Table 37-12. Register Changes for BCD Format

Register Name
RTC_CR[BCDEN] = 0 RTC_CR[BCDEN] = 1

Values stored in Binary Values stored in BCD

RTC_HOURMIN Bits 12:8 – Hour
Bits 5:0 – Minutes

Bits 15:8 – Hour
Bits 7:0 – Minutes

RTC_SECONDS Bits 5:0 – Seconds Bits 7:0 – Seconds

RTC_DAYS Bits 4:0 – Days Bits 7:0 – Days

RTC_MONYEAR Bits 3:0 – Months Bits 7:0 – Months

RTC_ALM_HOURMIN Bits 12:8 – Hour
Bits 5:0 – Minutes

Bits 15:8 – Hour
Bits 7:0 – Minutes

RTC_ALM_SECONDS Bits 5:0 – Seconds Bits 7:0 – Seconds

RTC_ALM_DAYS Bits 4:0 – Days Bits 7:0 – Days

RTC_ALM_MONYR Bits 3:0 – Months Bits 7:0 – Months

RTC_DST_HOUR Bits 12:8 – Hour Start
Bits 4:0 – Hour End

Bits 15:8 – Hour Start
Bits 7:0 – Hour End

RTC_DST_DAY Bits 12:8 – Day Start
Bits 4:0 – Day End

Bits 15:8 – Day Start
Bits 7:0 – Day End

RTC_DST_MONTH Bits 11:8 – Months Start
Bits 3:0 – Months End

Bits 11:8 – Months Start
Bits 3:0 – Months End

RTC_TTSR_HM Bits 12:8 – Hour
Bits 5:0 – Minutes

Bits 15:8 – Hour
Bits 7:0 – Minutes

RTC_TTSR_SEC Bits 5:0 – Seconds Bits 7:0 – Seconds

RTC_COUNT_DN Bits 5:0 – Minutes Bits 7:0 – Minutes

Address: 0xFC0A_8012 (RTC_SR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 PORB 0 WPE 0 BERR CDON INVAL

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-11. RTC Status Register (RTC_SR)
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37.4.11 RTC Interrupt Status Register (RTC_ISR)

The RTC_ISR register indicates the status of the various real-time clock interrupts. When an event of the 
types included in this register occurs then the bit is set regardless of its corresponding RTC_IER bit. The 
status bits are cleared by writing one to them, which also clears the interrupt. Interrupts may occur while 
the system clock is idle or in standby mode. When the system enters the active power mode, an interrupt 
is generated to the CPU.

Table 37-13. RTC_SR Field Descriptions

Field1 Description

15–7 Reserved, must be cleared.

6
PORB

Boot source. Indicates if the device is booting after a power-on reset or standby mode exit.
0 Booting after standby mode exit
1 Booting after POR

5 Reserved, must be cleared.

4
WPE

Write protect enable. Indicates the registers are in locked mode and writes to the registers are disabled. Any write 
access made to the register space when write protection is enabled generates a transfer error.
0 Write protection disabled
1 Write protection enabled

3 Reserved, must be cleared.

2
BERR

Bus error. Indicates that a read or write cycle was started by the MCU while INVAL was set. Write access to 
time/date registers is nullified (terminate normally) and no register value is changed. Reads while INVAL is set 
returns 0xFFFF and no transfer error is generated.

1
CDON

Compensation done. Read-only bit that is cleared when one is written to it.
0 Compensation busy or not enabled
1 Compensation complete
Note: This bit is set a few oscillator cycles before the actual compensation interval completes, so that back-to-back 

compensation can be enabled.

0
INVAL

Invalid time bit. Indicates the time is invalid or changing and should not be read. This bit is set an oscillator clock 
cycle before and after the 1 Hz (seconds) boundary. Write access to time/date registers is nullified (terminate 
normally) and no register value is changed. Read during INVAL bit asserted returns 0xFFFF and no transfer error 
is generated.
0 Time is valid and can be read
1 Time/date is invalid and counter values are changing

Address: 0xFC0A_8014 (RTC_ISR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SAM7 SAM6 SAM5 SAM4 SAM3 SAM2 SAM1 SAM0 2HZ 1HZ MIN HR DAY ALM STW 1

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 37-12. RTC Interrupt Status Register (RTC_ISR)
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37.4.12 RTC Interrupt Enable Register (RTC_IER)

The real-time clock interrupt enable register (RTC_IER) enables/disables the various real-time clock 
interrupts. Disabling an interrupt bit has no effect on its corresponding status bit.

A single interrupt  is output from this module which is an OR’d version of all interrupts. Read RTC_ISR 
in the interrupt status routine to determine which interrupt has occurred.

Table 37-14. RTC_ISR Field Descriptions

Field1 Description

15–8
SAMn

Sampling timer 7–0 interrupt flags. Indicates an interrupt has occurred at the corresponding sampling rate, equal 
to 2n+2 Hz.
0 No SAM7–0 interrupt has occurred
1 A SAM7–0 interrupt has occurred

7
2HZ

2 Hz flag. Indicates an interrupt has occurred at a 2 Hz sampling rate.

6
1HZ

1 Hz flag. Indicates that the seconds counter has incremented.

5
MIN

Minutes flag. Indicates that the minutes counter has incremented.

4
HR

Hour flag. Indicates that the hour counter has incremented.

3
DAY

Day flag. Indicates that the day counter has incremented.

2
ALM

Alarm flag. Indicates that the alarm value programmed matches the counter values. Depending on the setting of 
RTC_CR[AM}, this interrupt flag is set only when the seconds, minutes, hours, days, month, and year counters 
match their respective alarm register values.

1
STW

Countdown timer expiration flag. Indicates that the programmed count in the countdown timer has expired.

0 Reserved, must be set.

RTC_CR[AM]
Counters Matched

Alarm Type
SEC MIN HOUR DAY MONTH YEAR

00    — — — Daily

01     — — Monthly

10      — Yearly

11       One-Time
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37.4.13 RTC Countdown Timer Register (RTC_COUNT_DN)

This counter can generate an interrupt on a minute boundary to, for example, turn off the LCD controller 
after five minutes of inactivity. The countdown timer is decremented by the minute tick output from the 
real-time clock; so, the average tolerance of the count is 0.5 minutes. For better accuracy, enable the 
countdown timer by waiting for RTC_ISR[MIN] to set. The actual delay includes the seconds from setting 
the countdown to the next minute tick. An interrupt is generated when the timer reaches 0. The value in 
the register shows the current value of the counter at all times. 

Address: 0xFC0A_8016 (RTC_IER) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAM7 SAM6 SAM5 SAM4 SAM3 SAM2 SAM1 SAM0 2HZ 1HZ MIN HR DAY ALM STW

1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 37-13. RTC Interrupt Enable Register (RTC_IER)

Table 37-15. RTC_IER Field Descriptions

Field1 Description

15–8
SAMn

Sampling timer 7–0 interrupt enable.
0 Disable
1 Enable

7
2Hz

2 Hz frequency interrupt enable.
0 Disable
1 Enable

6
1Hz

1 Hz frequency interrupt enable.
0 Disable
1 Enable

5
MIN

Minutes interrupt enable.
0 Disable
1 Enable

4
HR

Hour interrupt enable.
0 Disable
1 Enable

3
DAY

Day interrupt enable.
0 Disable
1 Enable

2
ALM

Alarm interrupt enable.
0 Disable
1 Enable

1
STW

Countdown timer expiration interrupt enable.
0 Disable
1 Enable

0 Reserved, must be set.
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Loading the countdown timer counter with 0 has no effect. A software reset clears the countdown timer 
count.

In BCD mode, the maximum countdown value is 99, since a value bigger than 99 cannot be displayed in 
eight bits. Programming a value bigger than 99 does not ensure correct reading in BCD mode. However 
the binary value can still be read.

37.4.14 RTC Configuration Data Register (RTC_CFG_DATA)

This register controls the 32-kHz oscillator. Software reset clears the register to its default state. This 
oscillator requires an external RTC crystal.

Address: 0xFC0A_8018 (RTC_COUNT_DN) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-14. RTC Countdown Timer Register (RTC_COUNT_DN)

Table 37-16. RTC_COUNT_DN Field Descriptions

Field1 Description

15–8 Reserved, must be cleared.

7–0
COUNT

Countdown counter value in minutes.
Note: In BCD mode, the valid values are 0–99. In binary mode, the valid values are 0x00–0x7F as shown below.

RTC_CR
[BCDEN]

COUNT Countdown counter value

1
(BCD mode)

0x00–0x09 0–9 minutes

0x0A–0x0F Reserved

0x10–0x19 10–19 minutes

0x1A–0x1F Reserved

... ...

0x90–0x99 90–99 minutes

0x9A–0xFF Reserved

0
(binary mode)

0x00–0x7F 0–127 minutes

0x80–FF Reserved
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37.4.15 RTC Daylight Saving Time Hour Register (RTC_DST_HOUR)

RTC_DST_HOUR stores the time in hours when the daylight savings is to be applied and reversed. 
Program the correct hour value (0–23) for your regional settings.

For example, if daylight saving time starts at 2:00 AM on March 25 and ends at 2:00 AM on October 28, 
then time advances or falls back at 1:59 AM. Therefore, write 0x0101 to this register, not 0x0202. The 59 
minute count is automatically checked inside the RTC and is not required to be programmed. This register 
has no effect from a software reset.

In BCD mode, all eight bits indicate the value of hours in both fields.

Address: 0xFC0A_8020 (RTC_CFG_DATA) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 OSC
BYP

OSC
EN

0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-15. RTC Configuration Data Register (RTC_CFG_DATA)

Table 37-17. RTC_CFG_DATA Field Descriptions

Field1 Description

15–5 Reserved, must be cleared.

4
OSCBYP1

1 Even in oscillator bypass mode, the on-chip oscillator must be enabled by setting the OSCEN bit.

Oscillator bypass.
0 On-chip 32-kHz oscillator not bypassed
1 On-chip 32-kHz oscillator bypassed

3
OSCEN

Oscillator enable
0 On-chip 32-kHz oscillator disabled
1 On-chip 32-kHz oscillator enabled

2–0 Reserved, must be cleared.

Address: 0xFC0A_8022 (RTC_DST_HOUR) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
START END

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-16. RTC Daylight Saving Time Hour Register (RTC_DST_HOUR)
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37.4.16 RTC Daylight Saving Time Month Register (RTC_DST_MON)

This register stores the month when daylight saving time starts and stops. Program the correct month value 
(1–12) for the regional settings. For example, if daylight saving time starts on March 25 and ends on 
October 28, write 0x030A to this register (in binary format mode). Software reset does not affect this 
register.

37.4.17 RTC Daylight Saving Time Day Register (RTC_DST_DAY)

This register stores the day when daylight saving time starts and starts. Program the correct day value 
(1–31) for the regional settings. For example, if daylight saving time starts on March 25 and ends on 
October 28, write 0x191C in this register (in binary format mode). Software reset does not affect this 
register.

Table 37-18. RTC_DST_HOUR Field Descriptions

Field1 Description

15–8
START

Hour value when daylight saving time is to start.
Note: In BCD mode, valid values are 0–23. In binary mode, valid values are 0x00–0x17

7–0
END

Hour value when daylight saving time is to end.
Note: In BCD mode, valid values are 0–23. In binary mode, valid values are 0x00–0x17

Address: 0xFC0A_8024 (RTC_DST_MON) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
START END

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-17. RTC Daylight Saving Time Month Register (RTC_DST_MON)

Table 37-19. RTC_DST_MON Field Descriptions

Field1 Description

15–8
START

Month value when daylight saving time is to start.
Note: In BCD mode, valid values are 1–12. In binary mode, valid values are 0x01–0x0C

7–0
END

Month value when daylight saving time is to end.
Note: In BCD mode, valid values are 1–12. In binary mode, valid values are 0x01–0x0C

Address: 0xFC0A_8026 (RTC_DST_DAY) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
START END

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-18. RTC Daylight Saving Time Day Register (RTC_DST_DAY)
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37.4.18 RTC Compensation Register (RTC_COMPEN)

RTC_COMPEN stores the compensation value to correct the 1 Hz clock. It indicates the number of 
oscillator clock cycles to be added or removed. The value that is stored is in two’s complement format with 
a range of –128 to +127. RTC_SR[CDON] is set when the compensation cycle is complete.

The RTC continues to compensate with this value until it is disabled by clearing the INTERVAL bit. When 
programmed a new value, it takes affect when the current compensation cycle completes.

37.4.19 RTC Up-Counter High Register (RTC_UP_CNTRH)

This register tracks the number of user-specified events. For example, the energy units consumed over a 
period. This register increments upon rollover from RTC_UP_CNTRL. Software reset has no effect on this 
counter.

Table 37-20. RTC_DST_DAY Field Descriptions

Field1 Description

15–8
START

Day of month value when Daylight saving time is to start.
Note: In BCD mode, valid values are 1–31. In binary mode, valid values are 0x01–0x1F

7–0
END

Day of month value when Daylight saving time is to end.
Note: In BCD mode, valid values are 0–31. In binary mode, valid values are 0x01–0x1F

Address: 0xFC0A_8028 (RTC_COMPEN) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INTERVAL VALUE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-19. RTC Compensation Register (RTC_COMPEN)

Table 37-21. RTC_COMPEN Field Descriptions

Field1 Description

15–8
INTERVAL

Compensation interval. Indicates the window in seconds when the compensation must be carried out. A bon-zero 
value starts the compensation logic. This register is cleared when RTC_SR[CDON] is set.
0x00 Compensation logic disabled
0x01 1 second
...
0xFF 255 seconds

7–0
VALUE

Compensation value. Two’s complement number which indicates the number of oscillator clock cycles the RTC 
requires to compensate for the specified compensation interval.
0x00 No compensation needed
0x01 +1 oscillator clock
...
0x7F +127 oscillator clocks
0x80 –128 oscillator clocks
...
0xFF –1 oscillator clocks
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37.4.20 RTC Up-Counter Low Register (RTC_UP_CNTRL)

This register tracks the number of user-specified events. For example, the energy units consumed over a 
period. Writing to the lower eight bits increments the value in this register. Overflows are carried into the 
RTC_UP_CNTRH register. Software reset has no effect on this counter.

Address: 0xFC0A_8032 (RTC_UP_CNTRH) Access: User read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-20. RTC Up-Counter High Register (RTC_UP_CNTRH)

Table 37-22. RTC_UP_CNTRH Field Descriptions

Field1 Description

15–0
COUNT

Up-counter register value. Upper 16 bits of the 32-bit counter. Value increments on rollover from RTC_UP_CNTRL.

Address: 0xFC0A_8034 (RTC_UP_CNTRL) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R COUNT
COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-21. RTC Up-Counter Low Register (RTC_UP_CNTRL)

Table 37-23. RTC_UP_CNTRL Field Descriptions

Field1 Description

15–0
COUNT

Up-counter register value. Lower 16 bits of the up counter. Only the lower byte is writable and a carry generated 
from this byte overflows and increments the upper byte and RTC_UP_CNTRH.
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37.5 Functional Description

37.5.1 Basic Data Flow

Figure 37-22. Top Level Data Flow

37.5.1.1 Configuration

The initial flow that must be completed after each power-on reset:

• Set the date and time in the RTC registers

Power-on reset

RTC enabled

32 kHz clock input
to RTC

Compensation
factor calculated

in software

Program compensation
interval time &

compensation factor
in RTC_COMPEN

Compensation
starts & continues
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• Set other control information needed for the RTC to function

• Enable the various interrupts and alarm time as required

• Store any critical data needed in the event of main voltage loss in the standby RAM. This can also 
be done during normal operation.

• The RTC has configuration bits that can be used for application dependent protocol and these bits 
need to retain state during main voltage removal. These are programmed by the CPU.

• After the RTC is configured, place it in the write protect state. If not, this is automatically done 
after 15 seconds of power on.

37.5.1.2 Normal Operation

During normal operation of the RTC:

• All write accesses to registers are blocked. You may gain write access to modify the contents on 
the registers by following the RTC_CR[WE] write sequence described in Section 37.4.9, “RTC 
Control Register (RTC_CR)”. This allows you to:

— Service any RTC interrupts 

— Update the standby RAM

— Change control information

• Interrupts can occur when:

— The counters match the alarm registers

— A sampling timer expires

Disable write-protect mode, service these interrupts, and place the RTC back in write-protect 
mode. If not, write protect is enabled two seconds after they are unlocked.

37.5.1.3 Standby Operation

Standby operation occurs when the RTC is on battery voltage only:

• When the main voltage falls below a certain threshold, the RTC switches to battery power and 
functions normally.

• When the MCU voltage is restored, the RTC switches back to this supply.

• If the battery drains and power is supplied again to the RTC (by a new battery or MCU power), a 
power on reset is sent to the RTC and all registers are reset. So, your application needs recalibrate 
the RTC.

37.5.1.4 Calibration

• Perform calculations external to the RTC to determine the correction factor in the 1 Hz clock to 
remove any variations that might creep into the 32 kHz oscillator clock due to temperature or the 
crystal used. 

• Program this correction factor into the RTC registers. Hardware within the RTC compensates the 
clock.

• The compensation is performed on a user-defined interval
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37.6 Initialization/Application Information

37.6.1 Compensation

The compensation circuit provides an accurate and wide compensation range, which is suitable for many 
crystals, and can correct errors as high as 3906 ppm and as low as 0.119 ppm. The same hardware logic 
supports temperature and frequency compensation.

To perform temperature compensation:

1. Maintain a look-up-table which lists the change in frequency for each degree change in 
temperature.

2. Measure the external temperature periodically via a temperature sensor connected to the A/D 
converter.

3. Use the look-up-table to determine the compensation factor and write the value to be compensated 
to the RTC_COMPEN register. Based on the value written the hardware add/remove pulses 
accordingly to adjust the 1 Hz frequency due to variation on temperature.

To perform crystal compensation:

1. Firmware calculates the correction using crystal characteristics.

2. Set the correction factor in two’s complement format in the RTC_COMPEN register. Based on the 
values written in the RTC_COMPEN register, the circuit compensates by adding/skipping pulses 
in the oscillator clock signal.

There are two important components in the compensation algorithm. These are defined as:

• Compensation/correction value — Two’s complement value that the RTC oscillator clock is 
modified by adding or removing pulses from it. 

• Compensation interval — Duration the correction value is applied. This is the time the RTC adds 
or removes pulses, ensuring that the compensation interval is close to the interval obtained with an 
ideal 1 Hz clock.

Vital statistics:

• Compensation range: –128 to +127 RTC oscillator clocks

• Compensation interval range: 1 to 255 seconds (0 disables compensation)

• Selection criteria: Compensation is enabled when RTC_COMPEN[INTERVAL] is non-zero. Clear 
this field to disable compensation.

37.6.1.1 Compensation Flow

The operation starts in an idle state waiting for the firmware to enable compensation. Since the same 
hardware logic is used for temperature and crystal compensation, the firmware provides a value that 
accounts for correction for both temperature and crystal. When enabled, the compensation cycles are 
added or removed until the compensation interval expires. When the compensation interval completes, the 
RTC_SR[CDON] bit is set and if compensation is still enabled, the next compensation cycle starts. The 
compensation state machine returns to the idle state when you clear the compensation interval. A newly 
programmed value is picked only when the current compensation cycle has completed.
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Figure below shows the flow chart for the logical compensation flow of the state machine which has been 
explained in subsequent pages.

Figure 37-23. Compensation Control Flow

37.6.1.2 Compensation Logic Hardware:

The compensation logic hardware comprises of a simple counter which divides the 32 kHz clock down to 
1 Hz by counting up to 32,767. To add or remove pulses the start point of the counter is shifted and the 
counter still counts up to 32,767 to generate a balanced 1 Hz clock. The state machine for this block 
controls the loading of correction value into the counter and ensures that each compensation window is 
always aligned to the seconds boundary. Switching to newly programmed compensation values is done 
when the compensation interval of current run is complete and CPU has not disabled the compensation 
logic. If no new value is programmed, the state machine continues to perform compensation with the 
previously programmed values until compensation is disabled by writing zero to the compensation 
interval. The figure below shows the block diagram for the compensation block.

Figure 37-24. Compensation Logic Block Diagram

37.6.1.3 Recommendation for Optimal Compensation
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factor and enable the compensation hardware every second for better accuracy. As a result, the 1 Hz clock 
generated has a uniform period.

37.6.2 Write Protection

This logic protects the RTC registers and standby RAM from any spurious updates that can occur with 
run-away code. The logic is based on a state machine that monitors the values written to RTC_CR[WE]. 
By default, unconditional write access is allowed to these bits only.

37.6.2.1 Write Protection Flow

To enable write protection, write 10 to these bits. To disable write protection, write the sequence 00, 01, 
11, 10 to these bits.

After a power-on reset, the write-protect mechanism is disabled, allowing user code to calibrate the RTC 
clock, set the time in the clock registers, and set the date in the calendar registers. When that is complete, 
enable write protection mode. If not, the registers are placed into write protect mode 15 seconds after 
power on. After disabling write protect mode to update registers, write protect mode is automatically 
enabled after two seconds.

The internal bus clock is essentially asynchronous to the 1 Hz clock that generates the timeouts. Hence 
after unlocking the registers, the actual duration of unlock is less than two seconds. To have a complete 
two second duration, unlock the registers at the seconds boundary indicated by the 1 Hz interrupt (see 
RTC_ISR[1HZ] in Section 37.4.11, “RTC Interrupt Status Register (RTC_ISR)”).

A write access made to the register space when write protection is enabled generates a transfer error.
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Figure 37-25. Write Protect State Machine
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Chapter 38  
Programmable Interrupt Timers (PIT0–PIT3)

38.1 Introduction
This chapter describes the operation of the four programmable interrupt timer modules: PIT0–PIT3.

38.1.1 Overview

Each PIT is a 16-bit timer that provides precise interrupts at regular intervals with minimal processor 
intervention. The timer can count down from the value written in the modulus register or it can be a 
free-running down-counter.

38.1.2 Block Diagram
 

Figure 38-1. PIT Block Diagram

38.1.3 Low-Power Mode Operation

This subsection describes the operation of the PIT modules in low-power modes and debug mode of 
operation. Low-power modes are described in the power management module, Chapter 9, “Power 
Management.” Table 38-1 shows the PIT module operation in low-power modes and how it can exit from 
each mode.
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NOTE
The low-power interrupt control register (LPICR) in the system control 
module specifies the interrupt level at or above which the device can be 
brought out of a low-power mode.

In wait mode, the PIT module continues to operate as in run mode and can be configured to exit the 
low-power mode by generating an interrupt request. In doze mode with the PCSRn[DOZE] bit set, PIT 
module operation stops. In doze mode with the PCSRn[DOZE] bit cleared, doze mode does not affect PIT 
operation. When doze mode is exited, PIT continues operating in the state it was in prior to doze mode. In 
stop mode, the internal bus clock is absent and PIT module operation stops.

In debug mode with the PCSRn[DBG] bit set, PIT module operation stops. In debug mode with the 
PCSRn[DBG] bit cleared, debug mode does not affect PIT operation. When debug mode is exited, the PIT 
continues to operate in its pre-debug mode state, but any updates made in debug mode remain.

38.2 Memory Map/Register Definition
This section contains a memory map (see Table 38-2) and describes the register structure for PIT0–PIT3.

NOTE
Longword accesses to any of the programmable interrupt timer registers 
results in a bus error. Only byte and word accesses are allowed.

Table 38-1. PIT Module Operation in Low-power Modes

Low-power Mode PIT Operation Mode Exit

Wait Normal N/A

Doze Normal if PCSRn[DOZE] cleared, 
stopped otherwise

Any interrupt at or above level in LPICR, exit 
doze mode if PCSRn[DOZE] is set. Otherwise 
interrupt assertion has no effect.

Stop Stopped No

Debug Normal if PCSRn[DBG] cleared, 
stopped otherwise

No. Any interrupt is serviced upon normal exit 
from debug mode

Table 38-2. Programmable Interrupt Timer Modules Memory Map

Address

Register
Width
(bits)

Access1 Reset Value Section/Page
PIT 0
PIT 1
PIT 2
PIT 3

Supervisor Access Only Registers2

0xFC08_0000
0xFC08_4000
0xFC08_8000
0xFC08_C000

PIT Control and Status Register (PCSRn) 16 R/W 0x0000 38.2.1/38-3
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38.2.1 PIT Control and Status Register (PCSRn)

The PCSRn registers configure the corresponding timer’s operation.

0xFC08_0002
0xFC08_4002
0xFC08_8002
0xFC08_C002

PIT Modulus Register (PMRn) 16 R/W 0xFFFF 38.2.2/38-5

User/Supervisor Access Registers

0xFC08_0004
0xFC08_4004
0xFC08_8004
0xFC08_C004

PIT Count Register (PCNTRn) 16 R 0xFFFF 38.2.3/38-5

1 Accesses to reserved address locations have no effect and result in a cycle termination transfer error.
2 User mode accesses to supervisor only addresses have no effect and result in a cycle termination transfer error.

Address: 0xFC08_0000 (PCSR0)
0xFC08_4000 (PCSR1)
0xFC08_8000 (PCSR2)
0xFC08_C000 (PCSR3)

Access: Supervisor
read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
PRE

0
DOZE DBG OVW PIE

PIF
RLD EN

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 38-2.  PCSRn Register

Table 38-2. Programmable Interrupt Timer Modules Memory Map (continued)

Address

Register
Width
(bits)

Access1 Reset Value Section/Page
PIT 0
PIT 1
PIT 2
PIT 3
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Table 38-3. PCSRn Field Descriptions

Field Description

15–12 Reserved, must be cleared.

11–8
PRE

Prescaler. The read/write prescaler bits select the internal bus clock divisor to generate the PIT clock. To accurately 
predict the timing of the next count, change the PRE[3:0] bits only when the enable bit (EN) is clear. Changing 
PRE[3:0] resets the prescaler counter. System reset and the loading of a new value into the counter also reset the 
prescaler counter. Setting the EN bit and writing to PRE[3:0] can be done in this same write cycle. Clearing the EN 
bit stops the prescaler counter.

7 Reserved, must be cleared.

6
DOZE

Doze Mode Bit. The read/write DOZE bit controls the function of the PIT in doze mode. Reset clears DOZE.
0 PIT function not affected in doze mode
1 PIT function stopped in doze mode. When doze mode is exited, timer operation continues from the state it was in 

before entering doze mode.

5
DBG

Debug mode bit. Controls the function of PIT in halted/debug mode. Reset clears DBG. During debug mode, register 
read and write accesses function normally. When debug mode is exited, timer operation continues from the state it 
was in before entering debug mode, but any updates made in debug mode remain.
0 PIT function not affected in debug mode
1 PIT function stopped in debug mode 
Note: Changing the DBG bit from 1 to 0 during debug mode starts the PIT timer. Likewise, changing the DBG bit 

from 0 to 1 during debug mode stops the PIT timer.

4
OVW

Overwrite. Enables writing to PMRn to immediately overwrite the value in the PIT counter.
0 Value in PMRn replaces value in PIT counter when count reaches 0x0000.
1 Writing PMRn immediately replaces value in PIT counter.

3
PIE

PIT interrupt enable. This read/write bit enables PIF flag to generate interrupt requests.
0 PIF interrupt requests disabled
1 PIF interrupt requests enabled

2
PIF

PIT interrupt flag. This read/write bit is set when PIT counter reaches 0x0000. Clear PIF by writing a 1 to it or by 
writing to PMR. Writing 0 has no effect. Reset clears PIF.
0 PIT count has not reached 0x0000.
1 PIT count has reached 0x0000.

PRE
Internal Bus Clock 

Divisor 
Decimal 

Equivalent

0000 20 1

0001 21 2

0010 22 4

... ... ...

1101 213 8192

1110 214 16384

1111 215 32768
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38.2.2 PIT Modulus Register (PMRn)

The 16-bit read/write PMRn contains the timer modulus value loaded into the PIT counter when the count 
reaches 0x0000 and the PCSRn[RLD] bit is set.

When the PCSRn[OVW] bit is set, PMRn is transparent, and the value written to PMRn is immediately 
loaded into the PIT counter. The prescaler counter is reset (0xFFFF) anytime a new value is loaded into 
the PIT counter and also during reset. Reading the PMRn returns the value written in the modulus latch. 
Reset initializes PMRn to 0xFFFF.

38.2.3 PIT Count Register (PCNTRn)

The 16-bit, read-only PCNTRn contains the counter value. Reading the 16-bit counter with two 8-bit reads 
is not guaranteed coherent. Writing to PCNTRn has no effect, and write cycles are terminated normally.

1
RLD

Reload bit. The read/write reload bit enables loading the value of PMRn into PIT counter when the count reaches 
0x0000.
0 Counter rolls over to 0xFFFF on count of 0x0000
1 Counter reloaded from PMRn on count of 0x0000

0
EN

PIT enable bit. Enables PIT operation. When PIT is disabled, counter and prescaler are held in a stopped state. This 
bit is read anytime, write anytime. 
0 PIT disabled
1 PIT enabled 

Address: 0xFC08_0002 (PMR0)
0xFC08_4002 (PMR1)
0xFC08_8002 (PMR2)
0xFC08_C002 (PMR3)

Access: Supervisor
read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PM

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 38-3.  PIT Modulus Register (PMRn)

Table 38-4. PMRn Field Descriptions

Field Description

15–0
PM

Timer modulus. The value of this register is loaded into the PIT counter when the count reaches zero and the 
PCSRn[RLD] bit is set. However, if PCSRn[OVW] is set, the value written to this field is immediately loaded into the 
counter. Reading this field returns the value written.

Table 38-3. PCSRn Field Descriptions (continued)

Field Description
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38.3 Functional Description
This section describes the PIT functional operation.

38.3.1 Set-and-Forget Timer Operation

This mode of operation is selected when the RLD bit in the PCSR register is set.

When PIT counter reaches a count of 0x0000, PIF flag is set in PCSRn. The value in the modulus register 
loads into the counter, and the counter begins decrementing toward 0x0000. If the PCSRn[PIE] bit is set, 
the PIF flag issues an interrupt request to the CPU.

When the PCSRn[OVW] bit is set, the counter can be directly initialized by writing to PMRn without 
having to wait for the count to reach 0x0000.

Figure 38-5. Counter Reloading from the Modulus Latch

38.3.2 Free-Running Timer Operation

This mode of operation is selected when the PCSRn[RLD] bit is clear. In this mode, the counter rolls over 
from 0x0000 to 0xFFFF without reloading from the modulus latch and continues to decrement.

When the counter reaches a count of 0x0000, PCSRn[PIF] flag is set. If the PCSRn[PIE] bit is set, PIF flag 
issues an interrupt request to the CPU. 

Address: 0xFC08_0004 (PCNTR0)
0xFC08_4004 (PCNTR1)
0xFC08_8004 (PCNTR2)
0xFC08_C004 (PCNTR3)

Access: User read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PC

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 38-4. PIT Count Register (PCNTRn)

Table 38-5. PCNTRn Field Descriptions

Field Description

15–0
PC

Counter value. Reading this field with two 8-bit reads is not guaranteed coherent. Writing to PCNTRn has no effect, 
and write cycles are terminated normally.

0x0002 0x0001 0x0000 0x0005

0x0005

PIT Clock

Counter

Modulus

PIF
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When the PCSRn[OVW] bit is set, counter can be directly initialized by writing to PMRn without having 
to wait for the count to reach 0x0000.

Figure 38-6. Counter in Free-Running Mode

38.3.3 Timeout Specifications

The 16-bit PIT counter and prescaler supports different timeout periods. The prescaler divides the internal 
bus clock period as selected by the PCSRn[PRE] bits. The PMRn[PM] bits select the timeout period.

Eqn. 38-1

38.3.4 Interrupt Operation

Table 38-6 shows the interrupt request generated by the PIT.

The PIF flag is set when the PIT counter reaches 0x0000. The PIE bit enables the PIF flag to generate 
interrupt requests. Clear PIF by writing a 1 to it or by writing to the PMR.

Table 38-6. PIT Interrupt Requests

Interrupt Request Flag Enable Bit

Timeout PIF PIE

0x0002 0x0001 0x0000 0xFFFF

0x0005

PIT CLOCK

COUNTER

MODULUS

PIF

Timeout period 2PCSRn[PRE] (PMRn[PM] 1)+
fsys/2

--------------------------------------------------------------------------=
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Chapter 39  
DMA Timers (DTIM0–DTIM3)

39.1 Introduction
This chapter describes the configuration and operation of the four direct memory access (DMA) timer 
modules (DTIM0, DTIM1, DTIM2, and DTIM3). These 32-bit timers provide input capture and reference 
compare capabilities with optional signaling of events using interrupts or DMA triggers. Additionally, 
programming examples are included.

NOTE
The designation n appears throughout this section to refer to registers or 
signals associated with one of the four identical timer modules: DTIM0, 
DTIM1, DTIM2, or DTIM3.

39.1.1 Overview

Each DMA timer module has a separate register set for configuration and control. The timers can be 
configured to operate from the internal bus clock (fsys) or from an external clocking source using the 
DTnIN signal. If the internal bus clock is selected, it can be divided by 16 or 1. The selected clock source 
is routed to an 8-bit programmable prescaler that clocks the actual DMA timer counter register (DTCNn). 
The Ethernet assembly’s IEEE 1588 timebase (which is asynchronous to the internal bus clock) can 
optionally drive the timers. Using the DTMRn, DTXMRn, DTCRn, and DTRRn registers, the DMA timer 
may be configured to assert an output signal, generate an interrupt, or request a DMA transfer on a 
particular event.

NOTE
The GPIO module must be configured to enable the peripheral function of 
the appropriate pins (refer to Chapter 15, “Pin-Multiplexing and Control”) 
prior to configuring the DMA Timers.
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Figure 39-1 is a block diagram of one of the four identical timer modules.

Figure 39-1. DMA Timer Block Diagram

39.1.2 Features

Each DMA timer module has:

• Maximum timeout period of 140,737 seconds at 125 MHz (~39 hours) 

• 8-ns resolution at 125 MHz

• Programmable sources for the clock input, including external clock

• Programmable prescaler

• Input-capture capability with programmable trigger edge on input pin

• Programmable mode for the output pin on reference compare

• Free run and restart modes

• Programmable interrupt or DMA request on input capture or reference-compare

• Ability to stop the timer from counting when the ColdFire core is halted

• Configuration bit to enable use of the 1588 timebase and count value

DMA Timer

Divider

DMA Timer Mode Register (DTMRn) 

Prescaler Mode Bits

DMA Timer Counter Register (DTCNn)

31 0

DMA Timer Reference Register (DTRRn)

31 0

DMA Timer Capture Register (DTCRn)

31 0

DMA Timer Event Register (DTERn)

Capture 

Detection

 

clock

(contains incrementing value)

(reference value for comparison with DTCN)

 

(indicates capture or when DTCN = DTRRn)
Interrupt Request

Clock
Generator

DMA Timer Extended Mode 
Register (DTXMRn) 

DMA Request

0015 7

7 0

Internal Bus Clock

(÷1 or ÷16)

DMA Timer

Internal Bus to/from DMA Timer Registers

(latches DTCN value when triggered byDTnIN)

DTnOUT

DTnIN

Ethernet 1588
Timebase
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39.2 Memory Map/Register Definition
The timer module registers, shown in Table 39-1, can be modified at any time.

NOTE
Due to the additional IEEE 1588 timebase logic, if DTXMRn[EN1588] is 
set, reads and writes to the timer registers may take multiple bus cycles.

Table 39-1. DMA Timer Module Memory Map

Address

Register
Width
(bits)

Access Reset Value Section/Page
DMA Timer 0
DMA Timer 1
DMA Timer 2
DMA Timer 3

0xFC07_0000
0xFC07_4000
0xFC07_8000
0xFC07_C000

DMA Timer n Mode Register (DTMRn) 16 R/W 0x0000 39.2.1/39-4

0xFC07_0002
0xFC07_4002
0xFC07_8002
0xFC07_C002

DMA Timer n Extended Mode Register (DTXMRn) 8 R/W 0x00 39.2.2/39-5

0xFC07_0003
0xFC07_4003
0xFC07_8003
0xFC07_C003

DMA Timer n Event Register (DTERn) 8 R/W 0x00 39.2.3/39-6

0xFC07_0004
0xFC07_4004
0xFC07_8004
0xFC07_C004

DMA Timer n Reference Register (DTRRn) 32 R/W 0xFFFF_FFFF 39.2.4/39-7

0xFC07_0008
0xFC07_4008
0xFC07_8008
0xFC07_C008

DMA Timer n Capture Register (DTCRn) 32 R/W 0x0000_0000 39.2.5/39-8

0xFC07_000C
0xFC07_400C
0xFC07_800C
0xFC07_C00C

DMA Timer n Counter Register (DTCNn) 32 R 0x0000_0000 39.2.6/39-8
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39.2.1 DMA Timer Mode Registers (DTMRn)

The DTMRn registers program the prescaler and various timer modes.

Address: 0xFC07_0000 (DTMR0)
0xFC07_4000 (DTMR1)
0xFC07_8000 (DTMR2)
0xFC07_C000 (DTMR3)

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PS CE OM ORRI FRR CLK RST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-2.  DTMRn Registers

Table 39-2. DTMRn Field Descriptions

Field Description

15–8
PS

Prescaler value. Divides the clock input (internal bus clock/(16 or 1) or clock on DTnIN). Unused when 
DTXMRn[EN1588] is set.
0x00 1
...
0xFF 256

7–6
CE

Capture edge.
00 Disable capture event output. Timer in reference mode.
01 Capture on rising edge only
10 Capture on falling edge only
11 Capture on any edge

5
OM

Output mode.
0 Active-low pulse for one internal bus clock cycle (8-ns resolution at 125 MHz) if DTXMRn[EN1588] is cleared or 

one 1588 timebase clock cycle if DTXMRn[EN1588] is set
1 Toggle output.

4
ORRI

Output reference request, interrupt enable. If ORRI is set when DTERn[REF] is set, a DMA request or an interrupt 
occurs, depending on the value of DTXMRn[DMAEN] (DMA request if set, interrupt if cleared).
0 Disable DMA request or interrupt for reference reached (does not affect DMA request or interrupt on capture 

function).
1 Enable DMA request or interrupt upon reaching the reference value.

3
FRR

Free run/restart. Unused when DTXMRn[EN1588] is set.
0 Free run. Timer count continues incrementing after reaching the reference value.
1 Restart. Timer count is reset immediately after reaching the reference value.
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39.2.2 DMA Timer Extended Mode Registers (DTXMRn)

The DTXMRn registers program DMA request and increment modes for the timers.

2–1
CLK

Input clock source for the timer. Avoid setting CLK when RST is already set. Doing so causes CLK to zero (stop 
counting). Unused when DTXMRn[EN1588] is set.
00 Stop count
01 Internal bus clock divided by 1
10 Internal bus clock divided by 16. This clock source is not synchronized with the timer; therefore, successive 

time-outs may vary slightly. 
11 DTnIN pin (falling edge)

0
RST

Reset timer. Performs a software timer reset similar to an external reset, although other register values can be written 
while RST is cleared. A transition of RST from 1 to 0 resets register values. The timer counter or 1588 timer logic is 
not clocked unless the timer is enabled. 
0 Reset timer (software reset)
1 Enable timer

Address: 0xFC07_0002 (DTXMR0)
0xFC07_4002 (DTXMR1)
0xFC07_8002 (DTXMR2)
0xFC07_C002 (DTXMR3)

Access: User read/write

7 6 5 4 3 2 1 0

R
DMAEN HALTED EN1588 EPD

0 0 0
MODE16

W

Reset: 0 0 0 0 0 0 0 0

Figure 39-3.  DTXMRn Registers

Table 39-3. DTXMRn Field Descriptions

Field Description

7
DMAEN

DMA request. Enables DMA request output on counter reference match or capture edge event.
0 DMA request disabled
1 DMA request enabled

6
HALTED

Controls the counter when the core is halted. This allows debug mode to be entered without timer interrupts affecting 
the debug flow. Unused when DTXMRn[EN1588] is set.
0 Timer function is not affected by core halt.
1 Timer stops counting while the core is halted.
Note: This bit is only applicable in reference compare mode, see Section 39.3.3, “Reference Compare.”

5
EN1588

Enable IEEE 1588 timebase support. 
0 Disable
1 Enable. Several bits in the DTXMRn and DTMRn registers are ignored. See the bit descriptions for which are not 

used.

4
EPD

Enable programmable delay. Unused when DTXMRn[EN1588] is set.
0 Disable
1 Enable

Table 39-2. DTMRn Field Descriptions (continued)

Field Description
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39.2.3 DMA Timer Event Registers (DTERn)

DTERn, shown in Figure 39-4, reports capture or reference events by setting DTERn[CAP] or 
DTERn[REF]. This reporting happens regardless of the corresponding DMA request or interrupt enable 
values, DTXMRn[DMAEN] and DTMRn[ORRI,CE].

Writing a 1 to DTERn[REF] or DTERn[CAP] clears it (writing a 0 does not affect bit value); both bits can 
be cleared at the same time. If configured to generate an interrupt request, clear REF and CAP early in the 
interrupt service routine so the timer module can negate the interrupt request signal to the interrupt 
controller. If configured to generate a DMA request, processing of the DMA data transfer automatically 
clears the REF and CAP flags via the internal DMA ACK signal.

3–1 Reserved, must be cleared.

0
MODE16

Selects the increment mode for the timer. Setting MODE16 is intended to exercise the upper bits of the 32-bit timer 
in diagnostic software without requiring the timer to count through its entire dynamic range. When set, the counter’s 
upper 16 bits mirror its lower 16 bits. All 32 bits of the counter remain compared to the reference value. Unused when 
DTXMRn[EN1588] is set.
0 Increment timer by 1
1 Increment timer by 65,537

Address: 0xFC07_0003 (DTER0)
0xFC07_4003 (DTER1)
0xFC07_8003 (DTER2)
0xFC07_C003 (DTER3)

Access: User read/write

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 REF CAP

W w1c w1c

Reset: 0 0 0 0 0 0 0 0

Figure 39-4.  DTERn Registers

Table 39-3. DTXMRn Field Descriptions (continued)

Field Description
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39.2.4 DMA Timer Reference Registers (DTRRn)

As part of the output-compare function, each DTRRn contains the reference value compared with the 
respective free-running timer counter (DTCNn) if DTXMRn[EN1588] is cleared or the 1588 timebase 
counter if DTXMRn[EN1588] is set.

If DTXMRn[EN1588] is cleared, the reference value is matched when DTCNn equals DTRRn. The 
prescaler indicates that DTCNn should be incremented again. Therefore, the reference register is matched 
after DTRRn + 1 time intervals.

Table 39-4. DTERn Field Descriptions

Field Description

7–2 Reserved, must be cleared.

1
REF

Output reference event. The counter value (DTCNn) equals DTRRn, or if DTXMRn[EN1588] is set the 1588 
timebase counter is greater than the reference value. Writing a 1 to REF clears the event condition. Writing a 0 has 
no effect.
To prevent spurious assertions of the reference compare, once set, the logic associated with the setting of this bit is 
not re-enabled until the DTRRn register is updated, the 1588 timebase counter rolls over, or a timer reset 
(DTMRn[RST] = 0) occurs.

0
CAP

Capture event. The counter value has been latched into DTCRn. Writing a 1 to CAP clears the event condition. 
Writing a 0 has no effect.

REF DTMRn[ORRI] DTXMRn[DMAEN]

0 X X No event

1 0 0 No request asserted

1 0 1 No request asserted

1 1 0 Interrupt request asserted

1 1 1 DMA request asserted

CAP DTMRn[CE]
DTXMRn
[DMAEN]

0 XX X No event

1 00 0 Disable capture event output

1 00 1 Disable capture event output

1 01 0 Capture on rising edge and trigger interrupt

1 01 1 Capture on rising edge and trigger DMA

1 10 0 Capture on falling edge and trigger interrupt

1 10 1 Capture on falling edge and trigger DMA

1 11 0 Capture on any edge and trigger interrupt

1 11 1 Capture on any edge and trigger DMA
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If DTXMRn[EN1588] is set, the reference value is matched when the 1588 timebase counter is greater 
than DTRRn. When the reference compare occurs and DTERn[REF] is set, the logic associated with the 
setting of this bit is not re-enabled until DTRRn is updated, the 1588 timebase counter rolls over, or a timer 
reset (DTMRn[RST] = 0) occurs. This prevents spurious assertions of DTERn[REF].

39.2.5 DMA Timer Capture Registers (DTCRn)

Each DTCRn latches the corresponding DTCNn or 1588 timebase count value during a capture operation 
when an edge occurs on DTnIN, as programmed in DTMRn. The internal bus clock is assumed to be the 
clock source. DTnIN cannot simultaneously function as a clocking source and as an input capture pin. 
Indeterminate operation results if DTnIN is set as the clock source when the input capture mode is used.

39.2.6 DMA Timer Counters (DTCNn)

The current value of the 32-bit timer counter or IEEE 1588 timebase counter can be read at anytime 
without affecting counting. Writes to DTCNn clear the timer counter if DTXMRn[EN1588] is cleared. If 

Address: 0xFC07_0004 (DTRR0)
0xFC07_4004 (DTRR1)
0xFC07_8004 (DTRR2)
0xFC07_C004 (DTRR3)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
REF (32-bit reference value)

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 39-5. DTRRn Registers

Table 39-5. DTRRn Field Descriptions

Field Description

31–0
REF

Reference value compared with the respective free-running timer counter (DTCNn) or 1588 timebase count value 
as part of the output-compare function.

Address: 0xFC07_0008 (DTCR0)
0xFC07_4008 (DTCR1)
0xFC07_8008 (DTCR2)
0xFC07_C008 (DTCR3)

Access: User read-only

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CAP (32-bit capture counter value)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-6.  DTCRn Registers

Table 39-6. DTCRn Field Descriptions

Field Description

31–0
CAP

Captures the corresponding DTCNn value during a capture operation when an edge occurs on DTnIN, as 
programmed in DTMRn. 
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EN1588 is set, writes are not allowed. The timer counter increments on the clock source rising edge 
(internal bus clock divided by 1, internal bus clock divided by 16, or DTnIN) if EN1588 is cleared.

39.3 Functional Description

39.3.1 Prescaler

The prescaler clock input is selected from the internal bus clock (fsys/2 divided by 1 or 16) or from the 
corresponding timer input, DTnIN. DTnIN is synchronized to the internal bus clock, and the 
synchronization delay is between two and three internal bus clocks. The corresponding DTMRn[CLK] 
selects the clock input source. A programmable prescaler divides the clock input by values from 1 to 256. 
The prescaler output is an input to the 32-bit counter, DTCNn.

If DTXMRn[EN1588] is set, the prescaler is not used.

39.3.2 Capture Mode

Each DMA timer has a 32-bit timer capture register (DTCRn) that latches the counter value when the 
corresponding input capture edge detector senses a defined DTnIN transition. The capture edge bits 
(DTMRn[CE]) select the type of transition that triggers the capture and sets the timer event register capture 
event bit, DTERn[CAP]. If DTERn[CAP] and DTXMRn[DMAEN] are set, a DMA request is asserted. If 
DTERn[CAP] is set and DTXMRn[DMAEN] is cleared, an interrupt is asserted.

39.3.3 Reference Compare

Each DMA timer can be configured to count up to a reference value. If DTXMRn[EN1588] is cleared, 
when the reference value is met, DTERn[REF] is set. If DTXMRn[EN1588] is set, the reference value is 
matched when the 1588 timebase counter is greater than DTRRn.

• If DTMRn[ORRI] is set and DTXMRn[DMAEN] is cleared, an interrupt is asserted.

• If DTMRn[ORRI] and DTXMRn[DMAEN] are set, a DMA request is asserted.

Address: 0xFC07_000C (DTCN0)
0xFC07_400C (DTCN1)
0xFC07_800C (DTCN2)
0xFC07_C00C (DTCN3)

Access: User read/write if EN1588 is cleared.
User read-only if EN1588 is set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CNT (32-bit timer counter value count)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-7. DMA Timer Counters (DTCNn)

Table 39-7. DTCNn Field Descriptions

Field Description

31–0
CNT

Timer counter. Can be read at anytime without affecting counting. Writes to this register are allowed only if 
DTXMRn[EN1588] is cleared and any write to this field clears it.
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If the free run/restart bit (DTMRn[FRR]) is set, a new count starts. If it is clear, the timer keeps running. 
This bit is not used in 1588 mode.

39.3.4 Output Mode

When a timer reaches the reference value selected by DTRR, it can send an output signal on DTnOUT. 
DTnOUT can be an active-low pulse or a toggle of the current output, as selected by the DTMRn[OM] bit.

39.3.5 Programmable Delay Mode

To properly enable programmable delay mode, the DTMR must be set appropriately as shown in 
Table 39-8.

Depending on the configured timer input edge capture (DTMR[CE]), when the trigger occurs, the timer 
counter (DTCN), operating at the platform frequency, starts incrementing and the DTnOUT signal is 
negated. When the timer counter reaches the reference value (DTRR), DTnOUT is asserted. The 
low-to-high edge of DTnOUT provides the programmable delay trigger.

The values in DTMR[ORRI] and DTXMR[DMAEN] control the timer interrupt and DMA requests in this 
mode. The only configurable feature in this mode is based on the value in DTMR[FRR]:

• If DTMR[FRR] = 0, the programmable delay function only occurs once. When the reference value 
is reached, the timer counter stops

• If DTMR[FRR] = 1, the programmable delay function restarts waiting for another edge to capture. 
For this case, the DTCN value resets immediately after reaching the reference value defined by 
DTRR.

Table 39-8. Valid DTMRn Values in Programmable Delay Mode

DTMR Field Valid Values

15–8 PS Don’t care

7–6 CE  00

5 OM 0

4 ORRI Don’t care

3 FRR 0 or 1

2–1 CLK 01

0 RST 1
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The following figures depict the programmable delay timing when FRR = 0 and FRR = 1, respectively.

Figure 39-8. Programmable Delay Timing (FRR = 0)

Figure 39-9. Programmable Delay Timing (FRR = 1)

NOTE
The time between the transition of the timer_in signal and the incrementing 
of the DTCN is fixed (4 IPS cycles) and is due to the cascaded registers 
performing the clock domain synchronization and input edge capture logic. 

If another capture edge occurs while the timer counter is incrementing, it is 
ignored.

39.3.6 IEEE 1588 Support

The DMA timers on this device can use the Ethernet assembly’s IEEE-1588 timebase count value as its 
clock source. This feature supports triggering events via processor interrupts or DMA requests based on 
network time values.

To use the 1588 timebase as the clock source follow the below sequence:

1. Clear/disable DTMRn (CE = 00, ORRI = 0, RST = 0)

2. Enable 1588 mode in DTXMRn (DTXMRn[EN1588] = 1)

3. Program the reference value in DTRRn

4. Program DTMRn with RST set
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NOTE
If the value programmed in DTRRn is less than the value of the 1588 
timebase count, then DTERn[REF] sets immediately after RST is set.

39.4 Initialization/Application Information
The general-purpose timer modules typically, but not necessarily, follow this program order:

• The DTMRn and DTXMRn registers are configured for the desired function and behavior.

— Count and compare to a reference value stored in the DTRRn register

— Capture the timer value on an edge detected on DTnIN

— Configure DTnOUT output mode

— Increment counter by 1 or by 65,537 (16-bit mode)

— Enable/disable interrupt or DMA request on counter reference match or capture edge

• The DTMRn[CLK] register is configured to select the clock source to be routed to the prescaler.

— Internal bus clock (can be divided by 1 or 16)

— DTnIN, the maximum value of DTnIN is 1/5 of the internal bus clock, as described in the 
device’s electrical characteristics

NOTE
DTnIN may not be configured as a clock source when the timer capture 
mode is selected or indeterminate operation results.

• The 8-bit DTMRn[PS] prescaler value is set.

• Using DTMRn[RST], counter is cleared and started.

• Timer events are managed with an interrupt service routine, a DMA request, or by a software 
polling mechanism.

39.4.1 Code Example

The following code provides an example of how to initialize and use DMA Timer0 for counting time-out 
periods.
DTMR0 EQU 0xFC07_0000 ;Timer0 mode register
DTMR1 EQU 0xFC07_4000 ;Timer1 mode register
DTRR0 EQU 0xFC07_0004 ;Timer0 reference register
DTRR1 EQU 0xFC07_4004 ;Timer1 reference register
DTCR0 EQU 0xFC07_0008 ;Timer0 capture register
DTCR1 EQU 0xFC07_4008 ;Timer1 capture register
DTCN0 EQU 0xFC07_000C ;Timer0 counter register
DTCN1 EQU 0xFC07_400C ;Timer1 counter register
DTER0 EQU 0xFC07_0003 ;Timer0 event register
DTER1 EQU 0xFC07_4003 ;Timer1 event register

* TMR0 is defined as: *
*[PS] = 0xFF, divide clock by 256
*[CE] = 00 disable capture event output
*[OM] = 0 output=active-low pulse
*[ORRI] = 0, disable ref. match output
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*[FRR] = 1, restart mode enabled 
*[CLK] = 10, internal bus clock/16
*[RST] = 0, timer0 disabled

move.w #0xFF0C,D0
move.w D0,TMR0

move.l #0x0000,D0;writing to the timer counter with any
move.l DO,TCN0 ;value resets it to zero

move.l #0xAFAF,DO ;set the timer0 reference to be
move.l #D0,TRR0 ;defined as 0xAFAF

The simple example below uses Timer0 to count time-out loops. A time-out occurs when the reference 
value, 0xAFAF, is reached.
timer0_ex

clr.l DO
clr.l D1
clr.l D2

move.l #0x0000,D0
move.l D0,TCN0 ;reset the counter to 0x0000
move.b #0x03,D0 ;writing ones to TER0[REF,CAP]
move.b D0,TER0 ;clears the event flags
move.w TMR0,D0 ;save the contents of TMR0 while setting
bset #0,D0 ;the 0 bit. This enables timer 0 and starts counting
move.w D0,TMR0 ;load the value back into the register, setting TMR0[RST]

T0_LOOP
move.b TER0,D1 ;load TER0 and see if 
btst #1,D1 ;TER0[REF] has been set
beq T0_LOOP

addi.l #1,D2 ;Increment D2
cmp.l #5,D2 ;Did D2 reach 5? (i.e. timer ref has timed)
beq T0_FINISH ;If so, end timer0 example. Otherwise jump back.

move.b #0x02,D0 ;writing one to TER0[REF] clears the event flag 
move.b D0,TER0 
jmp T0_LOOP

T0_FINISH
HALT ;End processing. Example is finished

39.4.2 Calculating Time-Out Values

Equation 39-1 determines time-out periods for various reference values:

Eqn. 39-1

When calculating time-out periods, add one to the prescaler to simplify calculating, because 
DTMRn[PS] equal to 0x00 yields a prescaler of one, and DTMRn[PS] equal to 0xFF yields a prescaler of 
256.

For example, if a 125-MHz timer clock is divided by 16, DTMRn[PS] equals 0x7F, and the timer is 
referenced at 0x1DCD6 (122,070 decimal), the time-out period is:

Eqn. 39-2

Timeout period 1 clock frequency  1 or 16  DTMRn[PS] 1+  DTRRn[REF] 1+ =

Timeout period 1

125 106
----------------------- 16 127 1+  122070 1+  2.00 seconds= =
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Chapter 40  
DMA Serial Peripheral Interface (DSPI)

40.1 Introduction
This chapter describes the DMA serial peripheral interface (DSPI), which provides a synchronous serial 
bus for communication between the MCU and an external peripheral device. This device contains four 
identical DSPI modules. However, the number of chip selects they contain may vary.

40.1.1 Block Diagram

Figure 40-1 shows a block diagram of the DSPI.

Figure 40-1. DSPI Block Diagram

40.1.2 Overview

The DMA serial peripheral interface (DSPI) block provides a synchronous serial bus for communication 
between an MCU and an external peripheral device. The DSPI supports up to 32 queued SPI transfers (16 
receive and 16 transmit) in the DSPI resident FIFOs eliminating CPU intervention between transfers.

CMD

DMA and Interrupt Control

TX FIFO RX FIFO

TX Data RX Data

16 16

Shift Register DSPI_SOUT

Baud Rate,
Delay and Transfer

Control

DSPI BIU

DSPI_SIN

DSPI_SCK

DSPI_PCS0/SS

INTCeDMA Internal Bus

DSPI_PCS[1:3]
3
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For queued operations, the SPI queues reside in system RAM external to the DSPI. Data transfers between 
the queues and the DSPI FIFOs are accomplished through the use of a DMA controller or through host 
software.

NOTE
The pin multiplexing and control module must be configured to enable the 
peripheral function of the appropriate pins (refer to Chapter 15, 
“Pin-Multiplexing and Control”) prior to configuring the DSPI.

40.1.3 Features

The DSPI module supports these SPI features:

• Full-duplex, three-wire synchronous transfers

• Master and slave mode

• Buffered transmit and receive operation using the TX and RX FIFOs, with depths of 16 entries

• Visibility into TX and RX FIFOs for ease of debugging

• FIFO bypass mode for low-latency updates to SPI queues

• Programmable transfer attributes on a per-frame basis

— Eight clock and transfer attribute registers

— Serial clock with programmable polarity and phase

— Programmable delays

– PCS to SCK delay

– SCK to PCS delay

– Delay between frames

— Programmable serial frame size of 4 to 16 bits, expandable with software control

— Continuously held chip select capability

• Up to four peripheral chip selects, expandable to 16 with external demultiplexer

• Two DMA conditions for SPI queues residing in RAM or Flash

— TX FIFO is not full (TFFF)

— RX FIFO is not empty (RFDF)

• Eight interrupt conditions

– End of queue reached (EOQF)

– TX FIFO is not full (TFFF)

– Transfer of current frame complete (TCF)

– FIFO underflow (slave only, the slave is asked to transfer data when the TX FIFO is empty) 
(TFUF)

– RX FIFO is not empty (RFDF)

– FIFO overflow (attempt to transmit with an empty TX FIFO or serial frame received while 
RX FIFO is full) (RFOF)

– FIFO overrun (logical OR of RX overflow and TX underflow interrupts)
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– General DSPI interrupt (logical OR of the seven above conditions)

• Modified SPI transfer formats for communication with slower peripheral devices

• Continuous serial communications clock (DSPI_SCK)

40.1.4 Modes of Operation

The DSPI module has four available distinct modes:

• Master mode

• Slave mode

• Module disable mode

• Debug mode

Master, slave, and module disable modes are module-specific modes while debug mode is a 
device-specific mode.

Bits in the DSPI_MCR register determine the module-specific modes. Debug mode is a mode that the 
entire device can enter in parallel with the DSPI being configured in one of its module-specific modes.

40.1.4.1 Master Mode

In master mode, the DSPI can initiate communications with peripheral devices. The DSPI operates as bus 
master when the DSPI_MCR[MSTR] bit is set. The serial communications clock (DSPI_SCK) is 
controlled by the master DSPI.

Master mode transfer attributes are controlled by the SPI command in the current TX FIFO entry. The 
CTAS field in the SPI command selects which of the eight DSPI_CTARs sets the transfer attributes. 
Transfer attribute control is on a frame by frame basis. See Section 40.4.2, “Serial Peripheral Interface 
(SPI) Configuration” for more details.

40.1.4.2 Slave Mode

In slave mode, the DSPI responds to transfers initiated by an SPI master. The DSPI operates as bus slave 
when the DSPI_MCR[MSTR] bit is cleared. A bus master selects the DSPI slave by having the slave’s 
DSPI_SS signal asserted. In slave mode, the bus master provides DSPI_SCK. The bus master controls all 
transfer attributes, but clock polarity, clock phase, and numbers of bits to transfer must be configured in 
the DSPI slave for proper communications.

In slave mode, data transfers MSB first. The LSBFE field of the associated CTAR register is ignored.

40.1.4.3 Module Disable Mode

The module disable mode is used for MCU power management. The clock to the non-memory mapped 
logic in the DSPI stops while in module disable mode. The DSPI enters the module disable mode when 
the DSPI_MCR[MDIS] bit is set. See Section 40.4.7, “Power Saving Features,” for more details on the 
module disable mode.
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40.1.4.4 Debug Mode

Debug mode is used for system development and debugging. If the device enters debug mode while the 
DSPI_MCR[FRZ] bit is set, the DSPI halts operation on the next frame boundary. If the device enters 
debug mode while the FRZ bit is cleared, the DSPI behavior is unaffected and remains dictated by the 
module-specific mode and configuration of the DSPI. See Figure 40-12 for a state diagram.

40.2 External Signal Description

40.2.1 Signal Overview

Table 40-1 lists the DSPI signals.

40.2.2 Peripheral Chip Select/Slave Select (DSPIx_PCS0/SS)

In master mode, the DSPIx_PCS0 signal is a peripheral chip select output that selects the slave device to 
which the current transmission is intended. In slave mode, the DSPIx_SS signal is a slave select input 
signal allowing an SPI master to select the DSPI as the target for transmission.

40.2.3 Peripheral Chip Selects 1–3 (DSPIx_PCS[1:3])

The DSPIx_PCS[1:3] signals are peripheral chip select output signals in master mode. In slave mode, these 
signals are not used.

40.2.4 Serial Input (DSPIx_SIN)

DSPIx_SIN is a serial data input signal.

40.2.5 Serial Output (DSPIx_SOUT)

DSPIx_SOUT is a serial data output signal.

Table 40-1. DSPI Signal Properties

Name
Function

Master Mode I/O Slave Mode I/O

DSPIx_PCS0/SS Peripheral chip select 0 Output Slave select Input

DSPIx_PCS[1:3] Peripheral chip select 1–3 Output Unused —

DSPIx_SIN Serial data in Input Serial data in Input

DSPIx_SOUT Serial data out Output Serial data out Output

DSPIx_SCK Serial clock Output Serial clock Input
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40.2.6 Serial Clock (DSPIx_SCK)

DSPIx_SCK is a serial communication clock signal. In master mode, DSPI generates DSPIx_SCK. In 
slave mode, DSPIx_SCK is an input from an external bus master.

40.3 Memory Map/Register Definition
This device contains four DSPI modules. Their base addresses is listed below:

Table 40-3 shows the DSPI memory map.

Table 40-2. DSPI Base Addresses

Base Address Module

0xFC05_C000 DSPI 0

0xFC03_C000 DSPI 1

0xEC03_8000 DSPI 2

0xEC03_C000 DSPI 3

Table 40-3. DSPI Module Memory Map

Address

Register Width Access Reset Value Section/PageDSPI 0
...

DSPI 3

0xFC05_C000
0xFC03_C000
0xEC03_8000
0xEC03_C000

DSPI module configuration register (DSPIx_MCR) 32 R/W 0x0000_4001 40.3.1/40-6

0xFC05_C008
0xFC03_C008
0xEC03_8008
0xEC03_C008

DSPI transfer count register (DSPIx_TCR) 32 R/W 0x0000_0000 40.3.2/40-9

0xFC05_C00C
+ (n 0x04)

0xFC03_C00C
+ (n 0x04)

0xEC03_800C
+ (n 0x04)

0xEC03_C00C
+ (n 0x04)

DSPI clock and transfer attributes registers 
(DSPIx_CTARn), n=0:7

32 R/W 0x7800_0000 40.3.3/40-9

0xFC05_C02C
0xFC03_C02C
0xEC03_802C
0xEC03_C02C

DSPI status register (DSPIx_SR) 32 R/W 0x0000_0000 40.3.4/40-14

0xFC05_C030
0xFC03_C030
0xEC03_8030
0xEC03_C030

DSPI DMA/interrupt request select and enable register 
(DSPIx_RSER)

32 R/W 0x0000_0000 40.3.5/40-16
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40.3.1 DSPI Module Configuration Register (DSPI_MCR)

The DSPI_MCR contains bits that configure various attributes associated with DSPI operation. The HALT 
and MDIS bits can be changed at any time, but only take effect on the next frame boundary. Only the HALT 
and MDIS bits in the DSPI_MCR may be changed while the DSPI is running.

NOTE
The DSPI_MCR[MDIS] bit is set at reset.

0xFC05_C034
0xFC03_C034
0xEC03_8034
0xEC03_C034

DSPI push TX FIFO register (DSPIx_PUSHR) 32 R/W 0x0000_0000 40.3.6/40-17

0xFC05_C038
0xFC03_C038
0xEC03_8038
0xEC03_C038

DSPI pop RX FIFO register (DSPIx_POPR) 32 R 0x0000_0000 40.3.7/40-19

0xFC05_C03C
+ (n 0x04)

0xFC03_C03C
+ (n 0x04)

0xEC03_803C
+ (n 0x04)

0xEC03_C03C
+ (n 0x04)

DSPI transmit FIFO registers (DSPIx_TXFRn), 
n=0:15

32 R 0x0000_0000 40.3.8/40-19

0xFC05_C07C
+ (n 0x04)

0xFC03_C07C
+ (n 0x04)

0xEC03_807C
+ (n 0x04)

0xEC03_C07C
+ (n 0x04)

DSPI receive FIFO registers (DSPIx_RXFRn), 
n=0:15

32 R 0x0000_0000 40.3.9/40-20

Table 40-3. DSPI Module Memory Map (continued)

Address

Register Width Access Reset Value Section/PageDSPI 0
...

DSPI 3
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Address: 0xFC05_C000 (DSPI0_MCR)
0xFC03_C000 (DSPI1_MCR)
0xEC03_8000 (DSPI2_MCR)
0xEC03_C000 (DSPI3_MCR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MSTR

C
O

N
T

_
S

C
K

E

DCONF FRZ MTFE
0 RO

OE
PCS
IS7

PCS
IS6

PCS
IS5

PCS
IS4

PCS
IS3

PCS
IS2

PCS
IS1

PCS
IS0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0

MDIS
DIS_
TXF

DIS_
RXF

0 0

SMPL_PT

0 0 0 0 0 0 0

HALTW CLR_
TXF

CLR_
RXF

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 40-2. DSPI Module Configuration Register (DSPIx_MCR)

Table 40-4. DSPIx_MCR Field Descriptions

Field Description

31
MSTR

Master/slave mode select. Configures the DSPI for master mode or slave mode.
Note: This bit’s value must only be changed when the DSPI_MCR[HALT] bit is set. Otherwise, improper operation 

may occur.

0 Slave mode
1 Master mode

30
CONT_
SCKE

Continuous SCK enable. Enables the serial communication clock (DSPI_SCK) to run continuously. See 
Section 40.4.5, “Continuous Serial Communications Clock,” for details.
0 Continuous SCK disabled
1 Continuous SCK enabled

29–28
DCONF

DSPI configuration. Selects between the different configurations of the DSPI.
00 SPI
01 Reserved
10 Reserved
11 Reserved
Note: All values except 00 are reserved. This field must be configured for SPI mode for the DSPI module to operate 

correctly.

27
FRZ

Freeze. Enables the DSPI transfers to be stopped on the next frame boundary when the device enters debug mode.
0 Do not halt serial transfers
1 Halt serial transfers

26
MTFE

Modified timing format enable. Enables a modified transfer format to be used. See Section 40.4.4.4, “Modified SPI 
Transfer Format (MTFE = 1, CPHA = 1),” for more information.
0 Modified SPI transfer format disabled
1 Modified SPI transfer format enabled

25 Reserved, must be cleared.
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24
ROOE

Receive FIFO overflow overwrite enable. Enables an RX FIFO overflow condition to ignore the incoming serial data 
or to overwrite existing data. If the RX FIFO is full and new data is received, data from the transfer that generated 
the overflow is ignored or shifted in to the shift register. If the ROOE bit is set, incoming data is shifted into the shift 
register. If the ROOE bit is cleared, incoming data is ignored. See Section 40.4.6.6, “Receive FIFO Overflow Interrupt 
Request (RFOF),” for more information.
0 Incoming data is ignored
1 Incoming data is shifted in to the shift register

23–16
PCSISn

Peripheral chip select inactive state. Determines the inactive state of the DSPI_PCSn signal. 
0 The inactive state of DSPI_PCSn is low
1 The inactive state of DSPI_PCSn is high
Note: The availability of the DSPI_PCSn signals varies depending upon which of the four DSPI modules are used. 

Specifically, DSPI0 contains DSPI0_PCS[3:0], DSPI1—DSPI1_PCS[2:0], DSPI2—DSPI2_PCS0, and 
DSPI3—DSPI3_PCS0. The corresponding unused bits are reserved.

Note: DSPI0_PCS0/SS must be configured as inactive high for slave mode operation.

15 Reserved, must be cleared.

14
MDIS

Module disable. Allows the clock to be stopped to non-memory mapped logic in DSPI effectively putting DSPI in a 
software controlled power-saving state. See Section 40.4.7, “Power Saving Features,” for more information. This bit 
is set at reset.
0 Enable DSPI clocks
1 Allow external logic to disable DSPI clocks

13
DIS_TXF

Disable transmit FIFO. When the TX FIFO is disabled, transmit part of the DSPI operates as a simplified 
double-buffered SPI. See Section 40.4.2.3, “FIFO Disable Operation,” for details.
0 TX FIFO is enabled
1 TX FIFO is disabled

12
DIS_RXF

Disable receive FIFO. When the RX FIFO is disabled, receive part of the DSPI operates as a simplified 
double-buffered SPI. See Section 40.4.2.3, “FIFO Disable Operation for details.”
0 RX FIFO is enabled
1 RX FIFO is disabled

11
CLR_TXF

Clear TX FIFO. Flushes the TX FIFO. The CLR_TXF bit is always read as zero.
0 Do not clear the TX FIFO counter
1 Clear the TX FIFO counter
Note: When the respective FIFO is disabled, this bit does has no effect.

10
CLR_RXF

Clear RX FIFO. Flushes the RX FIFO. The CLR_RXF bit is always read as zero.
0 Do not clear the RX FIFO counter
1 Clear the RX FIFO counter
Note: When the respective FIFO is disabled, this bit does has no effect.

9–8
SMPL_PT

Sample point. Allows host software to select when the DSPI master samples SIN in modified transfer format. 
Figure 40-16 shows where the master can sample the SIN pin.
00 0 system clocks between DSPI_SCK edge and DSPI_SIN sample
01 1 system clock between DSPI_SCK edge and DSPI_SIN sample
10 2 system clocks between DSPI_SCK edge and DSPI_SIN sample
11 Reserved

7–1 Reserved, must be cleared.

0
HALT

Halt. Starts and stops DSPI transfers. See Section 40.4.1, “Start and Stop of DSPI Transfers,” for details on the 
operation of this bit.
0 Start transfers
1 Stop transfers

Table 40-4. DSPIx_MCR Field Descriptions (continued)

Field Description
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40.3.2 DSPI Transfer Count Register (DSPIx_TCR)

The DSPI_TCR contains a counter that indicates the number of SPI transfers made. The transfer counter 
is intended to assist in queue management. Do not write to the DSPI_TCR while the DSPI is running.

40.3.3 DSPI Clock and Transfer Attributes Registers 0–7 (DSPIx_CTARn)

DSPI modules each contain eight clock and transfer attribute registers (DSPI_CTARn) used to define 
different transfer attribute configurations. Each DSPI_CTAR controls:

• Frame size

• Baud rate and transfer delay values

• Clock phase

• Clock polarity

• MSB/LSB first

DSPI_CTARs support compatibility with the QSPI module in the ColdFire family of MCUs. At the 
initiation of an SPI transfer, control logic selects the DSPI_CTAR that contains the transfer’s attributes. 
Do not write to the DSPI_CTARs while the DSPI is running.

In master mode, the DSPI_CTARn registers define combinations of transfer attributes such as frame size, 
clock phase and polarity, data bit ordering, baud rate, and various delays. When DSPI is configured as an 
SPI master, the DSPI_PUSHR[CTAS] field in the command portion of the TX FIFO entry selects which 
of the DSPI_CTAR registers is used on a per-frame basis.

In slave mode, a subset of the bit fields in the DSPI_CTAR0 registers sets the slave transfer attributes. See 
the individual bit descriptions for details on which bits are used in slave modes.

Address: 0xFC05_C008 (DSPI0_TCR)
0xFC03_C008 (DSPI1_TCR)
0xEC03_8008 (DSPI2_TCR)
0xEC03_C008 (DSPI3_TCR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SPI_TCNT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-3.  DSPI Transfer Count Register (DSPIx_TCR)

Table 40-5. DSPIx_TCR Field Descriptions

Field Description

31–16
SPI_TCNT

SPI transfer counter. Counts the number of SPI transfers the DSPI makes. The SPI_TCNT field increments every 
time the last bit of an SPI frame transmits. A value written to SPI_TCNT presets the counter to that value. 
SPI_TCNT is reset to 0 at the beginning of the frame when the CTCNT field is set in the executing SPI command. 
The transfer counter wraps around. Incrementing the counter past 65535 resets the counter to 0.

15–0 Reserved, must be cleared
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.

Address: 0xFC05_C00C (DSPI0_CTAR0)
0xFC05_C010 (DSPI0_CTAR1)
0xFC05_C014 (DSPI0_CTAR2)
0xFC05_C018 (DSPI0_CTAR3)
0xFC05_C01C (DSPI0_CTAR4)
0xFC05_C020 (DSPI0_CTAR5)
0xFC05_C024 (DSPI0_CTAR6)
0xFC05_C028 (DSPI0_CTAR7)

0xFC03_C00C + (n  0x04) (DSPI1_CTAR0–7)
0xEC03_800C + (n  0x04) (DSPI2_CTAR0–7)
0xEC03_C00C + (n  0x04) (DSPI3_CTAR0–7)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DBR FMSZ CPOL CPHA

LSB
FE

PCSSCK PASC PDT PBR
W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CSSCK ASC DT BR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-4. DSPI Clock and Transfer Attributes Registers 0–7 (DSPIx_CTARn)

Table 40-6. DSPIx_CTARn Field Description

Field Description

31
DBR

Double baud rate. The DBR bit doubles the effective baud rate of the serial communications clock (SCK). This field 
is only used in master mode. It effectively halves the baud rate division ratio supporting faster frequencies and odd 
division ratios for the serial communications clock (SCK). When the DBR bit is set, the duty cycle of the serial 
communications clock (SCK) depends on the value in the baud rate prescaler and the clock phase bit as listed below. 
See the BR field below and Section 40.4.3.1, “Baud Rate Generator” for details on how to compute the baud rate. If 
the overall baud rate is divided by two or three of the system clock, the continuous SCK enable or the modified timing 
format enable bits must not be set.
0 The baud rate is computed normally with a 50/50 duty cycle
1 Baud rate is doubled with the duty cycle depending on the baud rate prescaler

DBR CPHA PBR SCK Duty Cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43
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30–27
FMSZ

Frame size. Selects the number of bits transferred per frame. The FMSZ field is used in master mode and slave 
mode. The table below lists the frame sizes.

26
CPOL

Clock polarity. Selects the inactive state of the serial communications clock (DSPI_SCK). This bit is used in master 
and slave mode. For successful communication between serial devices, the devices must have identical clock 
polarities. When the continuous selection format is selected (CONT or DCONT is set), switching between clock 
polarities without stopping the DSPI can cause errors in the transfer due to the peripheral device interpreting the 
switch of clock polarity as a valid clock edge. For more information on continuous selection format, refer to 
Section 40.4.4.5, “Continuous Selection Format.”
0 The inactive state value of DSPI_SCK is low
1 The inactive state value of DSPI_SCK is high

25
CPHA

Clock phase. Selects which edge of DSPI_SCK causes data to change and which edge causes data to be captured. 
This bit is used in master and slave mode. For successful communication between serial devices, the devices must 
have identical clock phase settings. 
Note: When the continuous selection format is selected (CONT or DCONT is set), switching between clock phases 

without stopping the DSPI can cause errors in the transfer.

0 Data is captured on the leading edge of DSPI_SCK and changed on the following edge
1 Data is changed on the leading edge of DSPI_SCK and captured on the following edge

24
LSBFE

LSB first enable. Selects if the LSB or MSB of the frame is transferred first. This bit is only used in master mode.
0 Data is transferred MSB first
1 Data is transferred LSB first

23–22
PCSSCK

PCS to SCK delay prescaler. Selects the prescaler value for the delay between assertion of DSPI_PCS and the first 
edge of the DSPI_SCK. This field is only used in master mode. 
Note: When the continuous selection format is selected (CONT or DCONT is set), switching the PCS to SCK delay 

prescaler without stopping the DSPI can cause errors in the transfer.
Note: See Section 40.4.3.2, “PCS to SCK Delay (tCSC),” for details on calculating the PCS to SCK delay.
00 1 clock DSPI_PCS to DSPI_SCK delay prescaler
01 3 clock DSPI_PCS to DSPI_SCK delay prescaler
10 5 clock DSPI_PCS to DSPI_SCK delay prescaler
11 7 clock DSPI_PCS to DSPI_SCK delay prescaler

Table 40-6. DSPIx_CTARn Field Description (continued)

Field Description

FMSZ Framesize FMSZ Framesize

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

0100 5 1100 13

0101 6 1101 14

0110 7 1110 15

0111 8 1111 16
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21–20
PASC

After SCK delay prescaler. Selects the prescaler value for the delay between the last edge of DSPI_SCK and the 
negation of DSPI_PCS. This field is only used in master mode. The ASC field description in Table 40-6 explains how 
to compute the after SCK delay.
00 1 clock delay between last edge of DSPI_SCK and DSPI_PCS negation prescaler
01 3 clock delay between last edge of DSPI_SCK and DSPI_PCS negation prescaler
10 5 clock delay between last edge of DSPI_SCK and DSPI_PCS negation prescaler
11 7 clock delay between last edge of DSPI_SCK and DSPI_PCS negation prescaler

19–18
PDT

Delay after transfer prescaler. The PDT field selects the prescaler value for the delay between the negation of the 
DSPI_PCS signal at the end of a frame and the assertion of DSPI_PCS at the beginning of the next frame. The PDT 
field is only used in master mode. The DT field description in Table 40-6 explains how to compute the delay after 
transfer.
00 1 clock delay between negation of DSPI_PCS to assertion of next DSPI_PCS prescaler
01 3 clock delay between negation of DSPI_PCS to assertion of next DSPI_PCS prescaler
10 5 clock delay between negation of DSPI_PCS to assertion of next DSPI_PCS prescaler
11 7 clock delay between negation of DSPI_PCS to assertion of next DSPI_PCS prescaler

17–16
PBR

Baud rate prescaler. Selects the prescaler value for the baud rate. This field is only used in master mode. The baud 
rate is the frequency of the serial communications clock (DSPI_SCK). The system clock is divided by the prescaler 
value before the baud rate selection takes place. The description for Section 40.4.3.1, “Baud Rate Generator” details 
how to compute the baud rate.
00 2 clock prescaler to divide system clock
01 3 clock prescaler to divide system clock
10 5 clock prescaler to divide system clock
11 7 clock prescaler to divide system clock

15–12
CSSCK

PCS to SCK delay scaler. Selects the scaler value for the PCS to SCK delay. This field is only used in master mode. 
The PCS to SCK delay is the delay between the assertion of DSPI_PCS and the first edge of the DSPI_SCK. The 
table below lists the scaler values.
Note: When the continuous selection format is selected (CONT or DCONT is set), switching the PCS to SCK delay 

prescaler without stopping the DSPI can cause errors in the transfer.

Note: See Section 40.4.3.2, “PCS to SCK Delay (tCSC),” for details on calculating the PCS to SCK delay.

Table 40-6. DSPIx_CTARn Field Description (continued)

Field Description

CSSCK
PCS to SCK Delay 

Scaler Value
CSSCK

PCS to SCK Delay 
Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536
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11–8
ASC

After SCK delay scaler. Selects the scaler value for the after SCK delay. This field is only used in master mode. The 
after SCK delay is the delay between the last edge of DSPI_SCK and the negation of DSPI_PCS. The table below 
lists the scaler values.

Note: See Section 40.4.3.3, “After SCK Delay (tASC),” for more details on calculating the after SCK delay.

7–4
DT

Delay after transfer scaler. The DT field selects the delay after transfer scaler. This field is only used in master mode. 
The delay after transfer is the time between the negation of the DSPI_PCS signal at the end of a frame and the 
assertion of DSPI_PCS at the beginning of the next frame. The table below lists the scaler values.

Note: See Section 40.4.3.4, “Delay after Transfer (tDT),” for more details on calculating the delay after transfer.

Table 40-6. DSPIx_CTARn Field Description (continued)

Field Description

ASC
After SCK Delay 

Scaler Value
ASC

After SCK Delay 
Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

DT
Delay after Transfer 

Scaler Value
DT

Delay after 
Transfer Scaler 

Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536
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40.3.4 DSPI Status Register (DSPIx_SR)

The DSPI_SR contains status and flag bits. The bits reflect the status of the DSPI and indicate the 
occurrence of events that can generate interrupt or DMA requests. Software can clear flag bits in the 
DSPI_SR by writing a 1 to it. Writing a 0 to a flag bit has no effect. 

3–0
BR

Baud rate scaler. Selects the scaler value for the baud rate. This field is only used in master mode. The pre-scaled 
system clock is divided by the baud rate scaler to generate the frequency of the DSPI_SCK. The table below lists 
the baud rate scaler values.

Note: See Section 40.4.3.1, “Baud Rate Generator,” for more details on calculating the baud rate.

Address
:

0xFC05_C02C (DSPI0_SR)
0xFC03_C02C (DSPI1_SR)
0xEC03_802C (DSPI2_SR)
0xEC03_C02C (DSPI3_SR)

Access: User Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TCF TXRXS 0 EOQF TFUF 0 TFFF 0 0 0 0 0 RFOF 0 RFDF 0

W w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TXCTR TXNXTPTR RXCTR POPNXTPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-5.  DSPI Status Register (DSPIx_SR)

Table 40-6. DSPIx_CTARn Field Description (continued)

Field Description

BR
Baud Rate Scaler 

Value
BR

Baud Rate Scaler 
Value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768
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Table 40-7. DSPIx_SR Field Descriptions

Field Description

31
TCF

Transfer complete flag. Indicates all bits in a frame have been shifted out. The TCF bit is set after the last incoming 
databit is sampled, but before the tASC delay starts. Refer to Section 40.4.4.1, “Classic SPI Transfer Format (CPHA 
= 0)” for details. The TCF bit is cleared by writing 1 to it.
0 Transfer not complete
1 Transfer complete

30
TXRXS

TX and RX status. Reflects the status of the DSPI. See Section 40.4.1, “Start and Stop of DSPI Transfers” for 
information on what causes this bit to be cleared or set.
0 TX and RX operations are disabled (DSPI is in stopped state)
1 TX and RX operations are enabled (DSPI is in running state)

29 Reserved, must be cleared.

28
EOQF

End of queue flag. Indicates transmission in progress is the last entry in a queue. The EOQF bit is set when the TX 
FIFO entry has the EOQ bit set in the command halfword and after the last incoming databit is sampled, but before 
the tASC delay starts. Refer to Section 40.4.4.1, “Classic SPI Transfer Format (CPHA = 0)” for details. 

The EOQF bit is cleared by writing 1 to it. When the EOQF bit is set, the TXRXS bit is automatically cleared.
0 EOQ is not set in the executing SPI command
1 EOQ bit is set in the executing SPI command
Note: EOQF does not function in slave mode. 

27
TFUF

Transmit FIFO underflow flag. Indicates that an underflow condition in the TX FIFO has occurred. The transmit 
underflow condition is detected only for DSPI modules operating in slave mode. The TFUF bit is set when the TX 
FIFO of a DSPI operating in slave mode is empty, and a transfer is initiated by an external SPI master. The TFUF 
bit is cleared by writing 1 to it.
0 TX FIFO underflow has not occurred
1 TX FIFO underflow has occurred

26 Reserved, must be cleared.

25
TFFF

Transmit FIFO fill flag. Indicates that the TX FIFO can be filled. Provides a method for the DSPI to request more 
entries to be added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. Therefore, this bit is set after 
DSPI_MCR[MDIS] is cleared after a reset. The TFFF bit can be cleared by writing 1 to it or by an acknowledgment 
from the eDMA controller when the TX FIFO is full.
0 TX FIFO is full
1 TX FIFO is not full

24–20 Reserved, must be cleared.

19
RFOF

Receive FIFO overflow flag. Indicates that an overflow condition in the RX FIFO has occurred. The bit is set when 
the RX FIFO and shift register are full and a transfer is initiated. The bit is cleared by writing 1 to it.
0 RX FIFO overflow has not occurred
1 RX FIFO overflow has occurred

18 Reserved, must be cleared.

17
RFDF

Receive FIFO drain flag. Indicates that the RX FIFO can be drained. Provides a method for the DSPI to request that 
entries be removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF bit can be cleared 
by writing 1 to it or by an acknowledgment from the eDMA controller when the RX FIFO is empty.
0 RX FIFO is empty
1 RX FIFO is not empty
Note: In the interrupt service routine, RFDF must be cleared only after the DSPI_POPR register is read. 

16 Reserved, must be cleared.
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40.3.5 DSPI DMA/Interrupt Request Select and Enable Register 
(DSPIx_RSER)

The DSPI_RSER serves two purposes. It enables flag bits in the DSPI_SR to generate DMA requests or 
interrupt requests. The DSPI_RSER also selects the type of request to be generated. See the individual bit 
descriptions for information on the types of requests the bits support. Do not write to the DSPI_RSER 
while the DSPI is running.

15–12
TXCTR

TX FIFO counter. Indicates the number of valid entries in the TX FIFO. The TXCTR is incremented every time the 
DSPI _PUSHR is written. The TXCTR is decremented every time an SPI command is executed and the SPI data is 
transferred to the shift register.

11–8
TXNXTPTR

Transmit next pointer. Indicates which TX FIFO entry is transmitted during the next transfer. The TXNXTPTR field is 
updated every time SPI data is transferred from the TX FIFO to the shift register. See Section 40.4.2.4, “TX FIFO 
Buffering Mechanism,” for more details.

7–4
RXCTR

RX FIFO counter. Indicates the number of entries in the RX FIFO. The RXCTR is decremented every time the 
DSPI_POPR is read. The RXCTR is incremented after the last incoming databit is sampled, but before the tASC delay 
starts. Refer to Section 40.4.4.1, “Classic SPI Transfer Format (CPHA = 0)” for details.

3–0
POPNXTPTR

Pop next pointer. Contains a pointer to the RX FIFO entry that is returned when the DSPI_POPR is read. The 
POPNXTPTR is updated when the DSPI_POPR is read. See Section 40.4.2.5, “RX FIFO Buffering Mechanism” for 
more details.

Address
:

0xFC05_C030 (DSPI0_RSER)
0xFC03_C030 (DSPI1_RSER)
0xEC03_8030 (DSPI2_RSER)
0xEC03_C030 (DSPI3_RSER)

Access: User Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TCF
_RE

0 0 EOQF
_RE

TFUF
_RE

0 TFFF
_RE

TFFF
_DIRS

0 0 0 0 RFOF
_RE

0 RFDF
_RE

RFDF
_DIRSW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-6.  DSPI DMA/Interrupt Request Select and Enable Register (DSPIx_RSER)

Table 40-7. DSPIx_SR Field Descriptions (continued)

Field Description
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40.3.6 DSPI Push Transmit FIFO Register (DSPIx_PUSHR)

The DSPI_PUSHR provides a means to write to the TX FIFO. SPI commands and data written to this 
register is transferred to the TX FIFO. See Section 40.4.2.4, “TX FIFO Buffering Mechanism,” for more 
information. Write accesses of 8- or 16-bits to the DSPI_PUSHR transfer 32 bits to the TX FIFO.

NOTE
Only the TXDATA field is used for DSPI slaves. 

Table 40-8. DSPIx_RSER Field Descriptions

Field Description

31
TCF_RE

Transmission complete request enable. Enables DSPI_SR[TCF] flag to generate an interrupt request.
0 TCF interrupt requests are disabled
1 TCF interrupt requests are enabled

30–29 Reserved, must be cleared.

28
EOQF_RE

DSPI finished request enable. Enables the DSPI_SR[EOQF] flag to generate an interrupt request.
0 EOQF interrupt requests are disabled
1 EOQF interrupt requests are enabled

27
TFUF_RE

Transmit FIFO underflow request enable. Enables the DSPI_SR[TFUF] flag to generate an interrupt request.
0 TFUF interrupt requests are disabled
1 TFUF interrupt requests are enabled

26 Reserved, must be cleared.

25
TFFF_RE

Transmit FIFO fill request enable. Enables the DSPI_SR[TFFF] flag to generate a request. The TFFF_DIRS bit 
selects between generating an interrupt request or a DMA requests.
0 TFFF interrupt or DMA requests are disabled
1 TFFF interrupt or DMA requests are enabled

24
TFFF_DIRS

Transmit FIFO fill DMA or interrupt request select. Selects between generating a DMA request or an interrupt 
request. When the DSPI_SR[TFFF] flag bit and the DSPI_RSER[TFFF_RE] bit are set, this bit selects between 
generating an interrupt request or a DMA request.
0 TFFF flag generates interrupt requests
1 TFFF flag generates DMA requests

23–20 Reserved, must be cleared.

19
RFOF_RE

Receive FIFO overflow request enable. Enables the DSPI_SR[RFOF] flag to generate an interrupt request.
0 RFOF interrupt requests are disabled
1 RFOF interrupt requests are enabled

18 Reserved, must be cleared.

17
RFDF_RE

Receive FIFO drain request enable. Enables the DSPI_SR[RFDF] flag to generate a request. The RFDF_DIRS bit 
selects between generating an interrupt request or a DMA request.
0 RFDF interrupt or DMA requests are disabled
1 RFDF interrupt or DMA requests are enabled

16
RFDF_DIRS

Receive FIFO drain DMA or interrupt request select. Selects between generating a DMA request or an interrupt 
request. When the DSPI_SR[RFDF] flag bit and the DSPI_RSER[RFDF_RE] bit are set, the RFDF_DIRS bit selects 
between generating an interrupt request or a DMA request.
0 RFDF flag generates interrupt requests
1 RFDF flag generates DMA requests

15–0 Reserved, must be cleared.
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Address: 0xFC05_C034 (DSPI0_PUSHR)
0xFC03_C034 (DSPI1_PUSHR)
0xEC03_8034 (DSPI2_PUSHR)
0xEC03_C034 (DSPI3_PUSHR)

Access: User Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CONT CTAS EOQ

CT
CNT

0 0
PCS7 PCS6 PCS5 PCS4 PCS3 PCS2 PCS1 PCS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-7.  DSPI Push Transmit FIFO Register (DSPIx_PUSHR)

Table 40-9. DSPIx_PUSHR Field Descriptions

Field Description

31
CONT

Continuous peripheral chip select enable. Selects a continuous selection format. The bit is used in SPI master mode. 
The bit enables the selected PCS signals to remain asserted between transfers. See Section 40.4.4.5, “Continuous 
Selection Format,” for more information.
0 Return DSPI_PCSn signals to their inactive state between transfers
1 Keep DSPI_PCSn signals asserted between transfers

30–28
CTAS

Clock and transfer attributes select. Selects which of the DSPI_CTARn registers is used to set the transfer attributes 
for the associated SPI frame. This field is used only in SPI master mode. In SPI slave mode, DSPI_CTAR0 is used 
instead.
000 DSPI_CTAR0
001 DSPI_CTAR1
010 DSPI_CTAR2
011 DSPI_CTAR3
100 DSPI_CTAR4
101 DSPI_CTAR5
110 DSPI_CTAR6
111 DSPI_CTAR7

27
EOQ

End of queue. Provides a means for host software to signal to the DSPI that the current SPI transfer is the last in a 
queue. At the end of the transfer the DSPI_SR[EOQF] bit is set. This bit is used only in SPI master mode.
0 The SPI data is not the last data to transfer
1 The SPI data is the last data to transfer

26
CTCNT

Clear SPI_TCNT. Provides a means for host software to clear the SPI transfer counter. The CTCNT bit clears the 
DSPI_TCR[SPI_TCNT] field. The SPI_TCNT field is cleared before transmission of the current SPI frame begins. 
This bit is used only in SPI master mode.
0 Do not clear DSPI_TCR[SPI_TCNT] field
1 Clear DSPI_TCR[SPI_TCNT] field

25–24 Reserved, must be cleared.
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40.3.7 DSPI Pop Receive FIFO Register (DSPIx_POPR)

The DSPI_POPR provides a means to read the RX FIFO. See Section 40.4.2.5, “RX FIFO Buffering 
Mechanism” for a description of the RX FIFO operations. Eight or 16-bit read accesses to the DSPI_POPR 
read from the RX FIFO and update the counter and pointer.

40.3.8 DSPI Transmit FIFO Registers 0–15 (DSPIx_TXFRn)

The DSPI_TXFRn registers provide visibility into TX FIFO for debugging purposes. Each register is an 
entry in TX FIFO. The registers are read-only and cannot be modified. Reading the DSPI_TXFRn registers 
does not alter the state of TX FIFO. The 16-entry deep FIFO is implemented with 16 registers, 
DSPI_TXFR0–15.

23–16
PCSn

Peripheral chip select n. Selects which DSPI_PCSn signals are asserted for the transfer. This bit is used only in SPI 
master mode.
0 Negate the DSPI_PCSn signal
1 Assert the DSPI_PCSn signal
Note: The availability of the DSPI_PCSn signals varies depending upon which of the four DSPI modules are used. 

Specifically, DSPI0 contains DSPI0_PCS[3:0], DSPI1—DSPI1_PCS[2:0], DSPI2—DSPI2_PCS0, and 
DSPI3—DSPI3_PCS0. The corresponding unused bits are reserved.

15–0
TXDATA

Transmit data. Holds SPI data to be transferred according to the associated SPI command.
Note: TXDATA is used in slave mode.

Address: 0xFC05_C038 (DSPI_POPR)
0xFC03_C038 (DSPI1_POPR)
0xEC03_8038 (DSPI2_POPR)
0xEC03_C038 (DSPI3_POPR)

Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-8.  DSPI Pop Receive FIFO Register (DSPIx_POPR)

Table 40-10. DSPIx_POPR Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–0
RXDATA

Received data. Contains the SPI data from the RX FIFO entry pointed to by the pop next data pointer 
(DSPI_SR[POPNXTPTR]).

Table 40-9. DSPIx_PUSHR Field Descriptions (continued)

Field Description
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40.3.9 DSPI Receive FIFO Registers 0–15 (DSPIx_RXFRn)

The DSPI_RXFRn registers provide visibility into the RX FIFO for debugging purposes. Each register is 
an entry in the RX FIFO. The DSPI_RXFR registers are read-only. Reading the DSPI_RXFRn registers 
does not alter the state of the RX FIFO. The device uses 16 registers to implement the RX FIFO; 
DSPI_RXFR0–15 are used.

Address: 0xFC05_C03C (DSPI_TXFR0)
0xFC05_C040 (DSPI_TXFR1)
0xFC05_C044 (DSPI_TXFR2)
0xFC05_C048 (DSPI_TXFR3)
0xFC05_C04C (DSPI_TXFR4)
0xFC05_C050 (DSPI_TXFR5)
0xFC05_C054 (DSPI_TXFR6)
0xFC05_C058 (DSPI_TXFR7)

0xFC05_C05C (DSPI_TXFR8)
0xFC05_C060 (DSPI_TXFR9)
0xFC05_C064 (DSPI_TXFR10)
0xFC05_C068 (DSPI_TXFR11)
0xFC05_C06C (DSPI_TXFR12)
0xFC05_C070 (DSPI_TXFR13)
0xFC05_C074 (DSPI_TXFR14)
0xFC05_C078 (DSPI_TXFR15)

0xFC03_C03C + (n  0x04) 
(DSPI1_TXFR0–15)

0xEC03_803C + (n  0x04) 
(DSPI2_TXFR0–15)

0xEC03_C03C + (n  0x04) 
(DSPI3_TXFR0–15)

Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TXCMD TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-9. DSPI Transmit FIFO Registers 0–15 (DSPIx_TXFRn)

Table 40-11. DSPIx_TXFRn Field Descriptions

Field Description

31–16
TXCMD

Transmit command. Contains the command that sets the transfer attributes for the SPI data. See Section 40.3.6, 
“DSPI Push Transmit FIFO Register (DSPIx_PUSHR),” for details on the command field.

15–0
TXDATA

Transmit data. Contains the SPI data to be shifted out.

Address: 0xFC05_C07C (DSPI_RXFR0)
0xFC05_C080 (DSPI_RXFR1)
0xFC05_C084 (DSPI_RXFR2)
0xFC05_C088 (DSPI_RXFR3)
0xFC05_C08C (DSPI_RXFR4)
0xFC05_C090 (DSPI_RXFR5)
0xFC05_C094 (DSPI_RXFR6)
0xFC05_C098 (DSPI_RXFR7)

0xFC05_C09C (DSPI_RXFR8)
0xFC05_C0A0 (DSPI_RXFR9)
0xFC05_C0A4 (DSPI_RXFR10)
0xFC05_C0A8 (DSPI_RXFR11)
0xFC05_C0AC (DSPI_RXFR12)
0xFC05_C0B0 (DSPI_RXFR13)
0xFC05_C0B4 (DSPI_RXFR14)
0xFC05_C0B8 (DSPI_RXFR15)

0xFC03_C07C + (n  0x04) 
(DSPI1_RXFR0–15)

0xEC03_807C + (n  0x04) 
(DSPI2_RXFR0–15)

0xEC03_C07C + (n  0x04) 
(DSPI3_RXFR0–15)

Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-10.  DSPI Receive FIFO Registers (DSPIx_RXFRn)

Table 40-12. DSPI_RXFRn Field Description

Field Description

31–16 Reserved, must be cleared.

15–0
RXDATA

Receive data. Contains the received SPI data.
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40.4 Functional Description
The DSPI supports full-duplex, synchronous serial communications between the MCU and external 
peripheral devices. The DSPI supports up to 32 queued SPI transfers at once (16 transmit and 16 receive) 
in the DSPI resident FIFOs, thereby eliminating CPU intervention between transfers.

The DSPI_CTARn registers hold clock and transfer attributes. The SPI configuration can select which 
CTAR to use on a frame by frame basis by setting the DSPI_PUSHR[CTAS] field. See Section 40.3.3, 
“DSPI Clock and Transfer Attributes Registers 0–7 (DSPIx_CTARn),” for information on DSPI_CTARn 
fields.

The 16-bit shift register in the master and the 16-bit shift register in the slave are linked by the SOUT and 
SIN signals to form a distributed 32-bit register. When a data transfer operation is performed, data is 
serially shifted a pre-determined number of bit positions. Because the registers are linked, data exchanged 
between the master and the slave; the data that was in the master’s shift register is now in the shift register 
of the slave and vice versa. At the end of a transfer, the DSPI_SR[TCF] bit is set to indicate a completed 
transfer. Figure 40-11 illustrates how master and slave data is exchanged.

Figure 40-11. SPI Serial Protocol Overview

The DSPI has  peripheral chip select (DSPI_PCSn) signals that select which of the slaves to communicate 
with.

Transfer protocols and timing properties are shared by the three DSPI configurations; these properties are 
described independently of the configuration in Section 40.4.4, “Transfer Formats.” The transfer rate and 
delay settings are described in section Section 40.4.3, “DSPI Baud Rate and Clock Delay Generation.”

See Section 40.4.7, “Power Saving Features” for information on the power-saving features of the DSPI.

40.4.1 Start and Stop of DSPI Transfers

The DSPI has two operating states; stopped and running. The default state of the DSPI is stopped. In the 
stopped state, no serial transfers are initiated in master mode and no transfers are responded to in slave 
mode. The stopped state is also a safe state for writing the various configuration registers of the DSPI 
without causing undetermined results. Master/slave mode must only be changed when the DSPI is halted 
(DSPI_MCR[HALT] is set). The DSPI_SR[TXRXS] bit is cleared in this state. In the running state, serial 
transfers take place. The DSPI_SR[TXRXS] bit is set in the running state. Figure 40-12 shows a state 
diagram of the start and stop mechanism. The transitions are described in Table 40-13.

DSPI Master

Shift Register

Baud Rate Generator

DSPI Slave

Shift Register
SOUTSIN

SOUT SIN

SCK SCK

PCSn SS
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Figure 40-12. DSPI Start and Stop State Diagram

State transitions from running to stopped occur on the next frame boundary if a transfer is in progress or 
on the next system clock cycle if no transfers are in progress.

40.4.2 Serial Peripheral Interface (SPI) Configuration

The SPI configuration transfers data serially using a shift register and a selection of programmable transfer 
attributes. The SPI frames can be from 4–16 bits long. The data transmitted can come from queues stored 
in RAM external to the DSPI. Host software or the eDMA controller can transfer the SPI data from the 
queues to a first-in first-out (FIFO) buffer. The received data is stored in entries in the receive FIFO (RX 
FIFO) buffer. Host software or the eDMA controller transfers the received data from the RX FIFO to 
memory external to the DSPI. The FIFO buffer operations are described in Section 40.4.2.4, “TX FIFO 
Buffering Mechanism,” and Section 40.4.2.5, “RX FIFO Buffering Mechanism.” The interrupt and DMA 
request conditions are described in Section 40.4.6, “Interrupts/DMA Requests.”

The SPI configuration supports two module-specific modes; master mode and slave mode. The FIFO 
operations are similar for both modes. In master mode, the DSPI initiates and controls the transfer 
according to the SPI command field of the TX FIFO entry. In slave mode, the DSPI only responds to 
transfers initiated by a bus master external to the DSPI, and the SPI command field of the TX FIFO entry 
is ignored. For information on switching between master and slave modes see Section 40.5.2, “Switching 
Master and Slave Mode.”

Table 40-13. State Transitions for Start and Stop of DSPI Transfers

Transition # Current State Next State Description

0 RESET STOPPED Generic power-on-reset transition

1 STOPPED RUNNING The DSPI is started (DSPI transitions to running) when all of the 
following conditions are true:
 • EOQF bit is clear
 • Debug mode is unselected or the FRZ bit is clear
 • HALT bit is clear

2 RUNNING STOPPED The DSPI stops (transitions from running to stopped) after the 
current frame for any one of the following conditions:
 • EOQF bit is set
 • Debug mode is selected and the FRZ bit is set
 • HALT bit is set

RUNNING
TXRXS = 1

STOPPED
TXRXS = 0

RESET

Power-on-Reset 0

1

2
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40.4.2.1 Master Mode

In master mode, the DSPI initiates the serial transfers by controlling the serial communications clock 
(DSPI_SCK) and the peripheral chip select (DSPI_PCSn) signals. The SPI command field in the executing 
TX FIFO entry determines which DSPI_CTARn register sets the transfer attributes and which DSPI_PCSn 
signal to assert. The command field also contains various bits that help with queue management and 
transfer protocol. See Section 40.3.6, “DSPI Push Transmit FIFO Register (DSPIx_PUSHR),” for details 
on the SPI command fields. The data field in the executing TX FIFO entry is loaded into the shift register 
and shifted out on the serial out (DSPI_SOUT) pin. In master mode, each SPI frame to be transmitted has 
a command associated with it allowing for transfer attribute control on a frame by frame basis.

40.4.2.2 Slave Mode

In slave mode, the DSPI responds to transfers initiated by an SPI bus master. The DSPI does not initiate 
transfers. Certain transfer attributes such as clock polarity, clock phase, and frame size must be set for 
successful communication with an SPI master. The slave mode transfer attributes are set in the 
DSPI_CTAR0 register.

40.4.2.3 FIFO Disable Operation

The FIFO disable mechanisms allow SPI transfers without using the TX or RX FIFOs. The DSPI operates 
as a double-buffered simplified SPI when the FIFOs are disabled. The FIFOs are disabled separately; 
setting the DSPI_MCR[DIS_TXF] bit disables the TX FIFO, and setting the DSPI_MCR[DIS_RXF] bit 
disables the RX FIFO.

The FIFO disable mechanisms are transparent to the user and to host software; transmit data and 
commands are written to the DSPI_PUSHR and received data is read from the DSPI_POPR. When the TX 
FIFO is disabled, DSPI_SR[TFFF, TFUF, and TXCTR] fields behave as if there is a one-entry FIFO, but 
the contents of DSPI_TXFRs and TXNXTPTR are undefined. Likewise, when RX FIFO is disabled, 
DSPI_SR[RFDF, RFOF, and RXCTR] fields behave as if there is a one-entry FIFO, but the contents of 
DSPI_RXFRs and POPNXTPTR are undefined. 

The TX and RX FIFOs should be disabled only if the application's operating mode requires FIFO to be 
disabled. A FIFO must be disabled before it is accessed. Failure to disable a FIFO prior to a first FIFO 
access is not supported and may result in incorrect results.

NOTE
When the FIFOs are disabled, the respective 
DSPI_MCR[CLR_TXF, CLR_RXF] bits have no effect.

40.4.2.4 TX FIFO Buffering Mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX FIFO holds 
16 entries, each consisting of a command field and a data field. SPI commands and data are added to the 
TX FIFO by writing to the DSPI push TX FIFO register (DSPI_PUSHR). For more information on 
DSPI_PUSHR, refer to Section 40.3.6, “DSPI Push Transmit FIFO Register (DSPIx_PUSHR).” TX FIFO 
entries can only be removed from the TX FIFO by being shifted out or by flushing the TX FIFO. 
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The TX FIFO counter field (TXCTR) in the DSPI status register (DSPI_SR) indicates the number of valid 
entries in the TX FIFO. The TXCTR is updated every time the DSPI _PUSHR is written or SPI data 
transfers into the shift register from the TX FIFO. For more information on DSPI_SR, refer to 
Section 40.3.4, “DSPI Status Register (DSPIx_SR).”

The DSPI_SR[TXNXTPTR] field indicates which TX FIFO entry is transmitted during the next transfer. 
The TXNXTPTR contains the positive offset from DSPI_TXFR0 in number of 32-bit registers. For 
example, TXNXTPTR equal to two means DSPI_TXFR2 contains the SPI data and command for the next 
transfer. The TXNXTPTR field increments every time SPI data transfers from TX FIFO to shift register.

40.4.2.4.1 Filling the TX FIFO

Host software or the eDMA controller can add (push) entries to the TX FIFO by writing to the 
DSPI_PUSHR register. When the TX FIFO is not full, the TX FIFO fill flag, DSPI_SR[TFFF], is set. The 
TFFF bit is cleared when the TX FIFO is full and the eDMA controller indicates that a write to 
DSPI_PUSHR is complete. Host software writing a 1 to the DSPI_SR[TFFF] bit can also clear the TFFF 
bit. The TFFF can generate a DMA request or an interrupt request. See Section 40.4.6.2, “Transmit FIFO 
Fill Interrupt or DMA Request (TFFF),” for details.

The DSPI ignores attempts to push data to a full TX FIFO; in other words, the state of the TX FIFO is 
unchanged and no error condition is indicated.

40.4.2.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are 
transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the 
TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO counter 
decrements by one. At the end of a transfer, the DSPI_SR[TCF] bit is set to indicate completion of a 
transfer. The TX FIFO is flushed by writing a 1 to the DSPI_MCR[CLR_TXF] bit.

If an external SPI bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX FIFO is 
empty, the slave’s transmit FIFO underflow flag, DSPI_SR[TFUF], is set. See Section 40.4.6.4, “Transmit 
FIFO Underflow Interrupt Request (TFUF),”for details.

40.4.2.5 RX FIFO Buffering Mechanism

The RX FIFO functions as a buffer for data received on the DSPI_SIN pin. The RX FIFO holds 16 received 
SPI data frames. SPI data is added to the RX FIFO at the completion of a transfer when the received data 
in the shift register is transferred into the RX FIFO. SPI data is removed (popped) from the RX FIFO by 
reading the DSPI_POPR register. RX FIFO entries can only be removed from the RX FIFO by reading the 
DSPI_POPR or by flushing the RX FIFO. For more information on the DSPI_POPR, refer to 
Section 40.3.7, “DSPI Pop Receive FIFO Register (DSPIx_POPR).” 

The RX FIFO counter field, DSPI_SR[RXCTR], indicates the number of valid entries in the RX FIFO. 
The RXCTR is updated every time the DSPI _POPR is read or SPI data is copied from the shift register to 
the RX FIFO. 

The DSPI_SR[POPNXTPTR] field points to the RX FIFO entry returned when the DSPI_POPR is read. 
The POPNXTPTR contains the positive, 32-bit word offset from DSPI_RXFR0. For example, 



DMA Serial Peripheral Interface (DSPI)

NXP Semiconductors 40-25

POPNXTPTR equal to two means that the DSPI_RXFR2 contains the received SPI data that is returned 
when DSPI_POPR is read. The POPNXTPTR field increments every time the DSPI_POPR is read. 
POPNXTPTR rolls over every four frames on the MCU.

40.4.2.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full, 
SPI frames from the shift register are transferred to the RX FIFO. Every time an SPI frame is transferred 
to the RX FIFO, the RX FIFO counter increments by one.

If the RX FIFO and shift register are full and a transfer is initiated, the DSPI_SR[RFOF] bit is asserted 
indicating an overflow condition. Depending on the state of the DSPI_MCR[ROOE] bit, data from the 
transfer that generated the overflow is ignored or shifted in to the shift register. If the ROOE bit is set, 
incoming data is shifted in to the shift register. If the ROOE bit is cleared, the incoming data is ignored.

40.4.2.5.2 Draining the RX FIFO

Host software or the eDMA can remove (pop) entries from the RX FIFO by reading the DSPI_POPR. For 
more information on DSPI_POPR, refer to Section 40.3.7, “DSPI Pop Receive FIFO Register 
(DSPIx_POPR).” A read of the DSPI_POPR decrements the RX FIFO counter by one. Attempts to pop 
data from an empty RX FIFO are ignored, and the RX FIFO counter remains unchanged. The data returned 
from reading an empty RX FIFO is undetermined.

When the RX FIFO is not empty, the RX FIFO drain flag, DSPI_SR[RFDF], is set. The RFDF bit is cleared 
when the RX_FIFO is empty and the eDMA controller indicates that a read from DSPI_POPR is complete. 
Alternatively, the RFDF bit can be cleared by software writing a 1 to it.

40.4.3 DSPI Baud Rate and Clock Delay Generation

The DSPI_SCK frequency and the delay values for serial transfer are generated by dividing the system 
clock frequency by a prescaler and a scaler with the option of doubling the baud rate. Figure 40-13 shows 
conceptually how the DSPI_SCK signal is generated.

Figure 40-13. Communications Clock Prescalers and Scalers

40.4.3.1 Baud Rate Generator

The baud rate is the frequency of the serial communication clock (DSPI_SCK). The system clock is 
divided by a baud rate prescaler (defined by DSPI_CTARn[PBR]) and baud rate scaler (defined by 
DSPI_CTARn[BR]) to produce DSPI_SCK with the possibility of doubling the baud rate. The DBR, PBR, 
and BR fields in the DSPI_CTARn select the frequency of DSPI_SCK using the following formula:

Eqn. 40-1

Prescaler

1

Scaler

1+DBR
System Clock DSPI_SCK

SCK baud rate
fSYS/2

PBR Prescaler Value
-------------------------------------------------- 1 DBR+

BR Scaler Value
----------------------------------------=
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Table 40-14 shows an example of a computed baud rate.

40.4.3.2 PCS to SCK Delay (tCSC)

The PCS to SCK delay is the length of time from assertion of DSPI_PCS signal to the first DSPI_SCK 
edge. See Figure 40-14 for an illustration of the PCS to SCK delay. The DSPI_CTARn[PCSSCK, CSSCK] 
fields select the PCS to SCK delay, and the relationship is expressed by the following:

Eqn. 40-2

Table 40-15 shows an example of the computed PCS to SCK delay.

40.4.3.3 After SCK Delay (tASC)

The after SCK delay is the length of time between the last edge of DSPI_SCK and negation of DSPI_PCS. 
See Figure 40-14 and Figure 40-15 for illustrations of the after SCK delay. The DSPI_CTARn[PASC, 
ASC] fields select the after SCK delay. The relationship between these variables is given in the following:

Eqn. 40-3

Table 40-16 shows an example of the computed after SCK delay. 

40.4.3.4 Delay after Transfer (tDT)

The delay after transfer is the length of time between negation of DSPI_PCS signal for a frame and the 
assertion of DSPI_PCS signal for the next frame. See Figure 40-14 for an illustration of the delay after 
transfer. DSPI_CTARn[PDT, DT] fields select the delay after transfer by the formula:

Eqn. 40-4

Table 40-14. Baud Rate Computation Example

fSYS/2 PBR
Prescaler 

Value
BR

Scaler 
Value

DBR
Value

Baud Rate

100 MHz 00 2 0000 2 0 25 Mb/s

20 MHz 00 2 0000 2 1 10 Mb/s

Table 40-15. PCS to SCK Delay Computation Example

PCSSCK
Prescaler 

Value
CSSCK

Scaler 
Value

fSYS/2 PCS to SCK Delay

01 3 0100 32 100 MHz 0.96 s

Table 40-16. After SCK Delay Computation Example

PASC
Prescaler 

Value
ASC

Scaler 
Value

fSYS/2 After SCK Delay

01 3 0100 32 100 MHz 0.96 us

tCSC
1

fSYS/2
------------- PCSSCK CSSCK=

tASC
1

fSYS/2
------------- PASC ASC=

tDT
1

fSYS/2
------------- PDT DT=



DMA Serial Peripheral Interface (DSPI)

NXP Semiconductors 40-27

Table 40-17 shows an example of the computed delay after transfer.

40.4.4  Transfer Formats

The serial communications clock (DSPI_SCK) signal and the DSPI_PCSn signals control the SPI serial 
communication. The DSPI_SCK signal provided by the master device synchronizes shifting and sampling 
of the data by the DSPI_SIN and DSPI_SOUT pins. The DSPI_PCSn signals serve as enable signals for 
the slave devices.

When the DSPI is the bus master, the DSPI_CTARn[CPOL, CPHA] bits select the polarity and phase of 
the DSPI_SCK signal. The polarity bit selects the idle state of the DSPI_SCK. The clock phase bit selects 
if the data on DSPI_SOUT is valid before or on the first DSPI_SCK edge.

When the DSPI is the bus slave, the DSPI_CTAR0[CPOL, CPHA] bits select the polarity and phase of the 
serial clock. Even though the bus slave does not control the DSPI_SCK signal, clock polarity, clock phase, 
and number of bits to transfer must be identical for the master device and the slave device to ensure proper 
transmission.

The DSPI supports four different transfer formats: 

• Classic SPI with CPHA = 0

• Classic SPI with CPHA = 1

• Modified transfer format with CPHA = 0

• Modified transfer format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with peripherals that 
require longer setup times. The DSPI can sample the incoming data later than halfway through the cycle 
to give the peripheral more setup time. The DSPI_MCR[MTFE] bit selects between classic SPI format and 
modified transfer format. The classic SPI formats are described in Section 40.4.4.1, “Classic SPI Transfer 
Format (CPHA = 0)” and Section 40.4.4.2, “Classic SPI Transfer Format (CPHA = 1).” The modified 
transfer formats are described in Section 40.4.4.3, “Modified SPI Transfer Format (MTFE = 1, CPHA = 
0)” and Section 40.4.4.4, “Modified SPI Transfer Format (MTFE = 1, CPHA = 1).”

40.4.4.1 Classic SPI Transfer Format (CPHA = 0)

The transfer format shown in Figure 40-14 communicates with peripheral SPI slave devices where the first 
data bit is available on the first clock edge. In this format, the master and slave sample their DSPI_SIN 
pins on the odd-numbered DSPI_SCK edges and change the data on their DSPI_SOUT pins on the 
even-numbered DSPI_SCK edges.

Table 40-17. Delay after Transfer Computation Example

PDT
Prescaler 

Value
DT

Scaler 
Value

fSYS/2 Delay after Transfer

01 3 1110 32768 100 MHz 0.98 ms
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Figure 40-14. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 0, FMSZ = 8)

The master initiates the transfer by placing its first data bit on the DSPI_SOUT pin and asserting the 
appropriate peripheral chip select signals to the slave device. The slave responds by placing its first data 
bit on its DSPI_SOUT pin. After the tCSC delay elapses, the master outputs the first edge of DSPI_SCK. 
The master and slave devices use this edge to sample the first input data bit on their serial data input 
signals. At the second edge of the DSPI_SCK, the master and slave devices place their second data bit on 
their serial data output signals. For the rest of the frame, the master and the slave sample their DSPI_SIN 
pins on the odd-numbered clock edges and change the data on their DSPI_SOUT pins on the 
even-numbered clock edges. After the last clock edge occurs, a delay of tASC is inserted before the master 
negates the DSPI_PCSn signals. A delay of tDT is inserted before a new frame transfer can be initiated by 
the master.

If DSPI_CTARn[CPHA] is cleared:

• At the next to last serial clock edge of the frame (edge 15 of Figure 40-14)

— Master’s TCF and EOQF are set and RXCTR counter is updated

• At the last serial clock edge of the frame (edge 16 of Figure 40-14)

— Slave’s TCF is set and RXCTR counter is updated

40.4.4.2 Classic SPI Transfer Format (CPHA = 1)

The transfer format shown in Figure 40-15 communicates with peripheral SPI slave devices that require 
the first DSPI_SCK edge before the first data bit becomes available on the slave DSPI_SOUT pin. In this 
format, the master and slave devices change the data on their DSPI_SOUT pins on the odd-numbered 
DSPI_SCK edges and sample the data on their DSPI_SIN pins on the even-numbered DSPI_SCK edges. 

DSPI_SCK
(CPOL = 0)

DSPI_PCSn/SS

tASC

DSPI_SCK
(CPOL = 1)

Master and Slave
Sample

Master DSPI_SOUT/
Slave DSPI_SIN

Master DSPI_SIN/
Slave DSPI_SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT
tCSC

tCSC

MSB First (LSBFE = 0):
LSB First (LSBFE = 1):

tCSC = PCS to SCK delay. 
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS idle time).

 Master (CPHA = 0): TCF and EOQF are set and RXCTR counter
is updated at next to last DSPI_SCK edge of frame (edge 15)

Slave (CPHA = 0): TCF is set and RXCTR counter is updated at 
last DSPI_SCK edge of frame (edge 16)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615
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Figure 40-15. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 1, FMSZ = 8)

The master initiates the transfer by asserting the DSPI_PCSn signal to the slave. After the tCSC delay has 
elapsed, the master generates the first DSPI_SCK edge and places valid data on the master DSPI_SOUT 
pin. The slave responds to the first DSPI_SCK edge by placing its first data bit on its slave DSPI_SOUT 
pin.

At the second edge of the DSPI_SCK, the master and slave sample their DSPI_SIN pins. For the rest of 
the frame, the master and the slave change the data on their DSPI_SOUT pins on the odd-numbered clock 
edges and sample their DSPI_SIN pins on the even-numbered clock edges. After the last clock edge 
occurs,1 a delay of tASC is inserted before the master negates the DSPI_PCSn signal. A delay of tDT is 
inserted before a new frame transfer can be initiated by the master.

If DSPI_CTARn[CPHA] is set:

• At the last serial clock edge (edge 16 of Figure 40-15)

— Master’s EOQF and TCF are set

— Slave’s TCF is set

— Master’s and slave’s RXCTR counters are updated

40.4.4.3 Modified SPI Transfer Format (MTFE = 1, CPHA = 0)

In this modified transfer format, the master and the slave sample later in the DSPI_SCK period than in 
classic SPI mode to allow for delays in device pads and board traces. These delays become a more 
significant fraction of the DSPI_SCK period as the DSPI_SCK period decreases with increasing baud 
rates.

Slave (CPHA = 1): TCF is set and RXCTR counter is updated at
last DSPI_SCK edge of frame (edge 16)

DSPI_SCK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(CPOL = 0)

DSPI_PCSn/SS

tASC

DSPI_SCK
(CPOL = 1)

Master and Slave
Sample

Master DSPI_SOUT/
Slave DSPI_SIN

Master DSPI_SIN/
Slave DSPI_SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT

tCSC

MSB First (LSBFE = 0):
LSB First (LSBFE = 1):

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master (CPHA = 1): TCF and EOQF are set and RXCTR counter
is updated at last DSPI_SCK edge of frame (edge 16)

16
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NOTE
For correct operation of the modified transfer format, thoroughly analyze 
the SPI link timing budget.

The master and the slave place data on the DSPI_SOUT pins at the assertion of the DSPI_PCSn signal. 
After the PCS to SCK delay has elapsed, the first DSPI_SCK edge is generated. The slave samples the 
master DSPI_SOUT signal on every odd numbered DSPI_SCK edge. The slave also places new data on 
the slave DSPI_SOUT on every odd numbered clock edge.

The master places its second data bit on the DSPI_SOUT line one system clock after odd numbered 
SDSPI_CK edge. Writing to the DSPI_MCR[SMPL_PT] field selects the point where the master samples 
the slave DSPI_SOUT. Table 40-18 lists the number of system clock cycles between the active edge of 
DSPI_SCK and the master sample point for different values of the SMPL_PT bit field. The master sample 
point can be delayed by one or two system clock cycles.

Figure 40-16 shows the modified transfer format for CPHA is cleared. Only the condition where CPOL is 
cleared is illustrated. The delayed master sample points are indicated with a lighter shaded arrow.

Figure 40-16. DSPI Modified Transfer Format (MTFE = 1, CPHA = 0, Fsck = Fsys/4)

Table 40-18. Delayed Master Sample Point

SMPL_PT
Number of System Clock Cycles between 

Odd-numbered Edge of SCK and Sampling of SIN

00 0

01 1

10 2

11 Reserved

tCSC = PCS to SCK delay.
tASC = After SCK delay.

System Clock

1 2 3 4 5 6

DSPI_PCSn

tASC

DSPI_SCK

Master Sample

Slave DSPI_SOUT

Master DSPI_SOUT

System Clock
System Clock

Slave Sample

tCSC
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40.4.4.4 Modified SPI Transfer Format (MTFE = 1, CPHA = 1)

Figure 40-17 shows the modified transfer format for CPHA is set. Only the condition where CPOL is 
cleared is described. At the start of a transfer, the DSPI asserts the DSPI_PCSn signal to the slave device. 
After the PCS to SCK delay has elapsed the master and the slave put data on their DSPI_SOUT pins at the 
first edge of DSPI_SCK. The slave samples the master DSPI_SOUT signal on the even numbered edges 
of DSPI_SCK. The master samples the slave DSPI_SOUT signal on the odd numbered DSPI_SCK edges 
starting with the third DSPI_SCK edge. The slave samples the last bit on the last edge of the DSPI_SCK. 
The master samples the last slave DSPI_SOUT bit one half DSPI_SCK cycle after the last edge of 
DSPI_SCK. No clock edge is visible on the master DSPI_SCK pin during the sampling of the last bit. The 
SCK to PCS delay must be greater or equal to half of the DSPI_SCK period.

NOTE
For correct operation of the modified transfer format, the user must 
thoroughly analyze the SPI link timing budget.

Figure 40-17. DSPI Modified Transfer Format (MTFE = 1, CPHA = 1, Fsck = Fsys/4)

40.4.4.5 Continuous Selection Format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected 
between several sequential serial transfers. The continuous selection format provides the flexibility to 
handle both cases. The continuous selection format is enabled for the SPI configuration by setting the 
DSPI_PUSHR[CONT] bit.

When CONT is cleared, DSPI drives the asserted chip select signals to their idle states in between frames. 
The idle states of the chip select signals are selected by the DSPI_MCR[PCSIS] field. Figure 40-18 shows 
the timing diagram for two four-bit transfers with CPHA set and CONT cleared.

tCSC = PCS to SCK delay.
tASC = After SCK delay.

System Clock

1 2 3 4 5 6

DSPI_PCSn

tASC

DSPI_SCK

Master Sample

Master DSPI_SOUT

Slave DSPI_SOUT

Slave Sample

tCSC
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Figure 40-18. Example of Non-Continuous Format (CPHA=1, CONT=0)

When CONT is set and the DSPI_PCSn signal for the next transfer the same as for the current transfer, 
DSPI_PCSn signal remains asserted for the duration of the two transfers. The delay between transfers (tDT) 
is not inserted between the transfers. Figure 40-19 shows the timing diagram for two four-bit transfers with 
CPHA and CONT set.

Figure 40-19. Example of Continuous Transfer (CPHA = 1, CONT = 1)

In Figure 40-19, the period length at the start of the next transfer is the sum of tASC and tCSC. It does not 
include a half-clock period. The default settings for these provide a total of four system clocks. In many 
situations, tASC and tCSC must be increased if a full half-clock period is required. 

Switching DSPI_CTARn registers between frames while using continuous selection can cause errors in 
the transfer. The DSPI_PCSn signal must be negated before DSPI_CTAR is switched.

When CONT is set and the DSPI_PCSn signals for the next transfer are different from the present transfer, 
the DSPI_PCSn signals behave as if the CONT bit was cleared.
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(CPOL = 0)

DSPI_PCSn
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DSPI_SCK
(CPOL = 1)

Master DSPI_SOUT

tDT

tCSC

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master DSPI_SIN

tCSC

DSPI_SCK
(CPOL = 0)

DSPI_PCSn

tASC

DSPI_SCK
(CPOL = 1)

Master DSPI_SOUT

tCSC

tCSC

tCSC = PCS to SCK delay.
tASC = After SCK delay.

Master DSPI_SIN
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40.4.4.6 Clock Polarity Switching between DSPI Transfers

If it is desired to switch polarity between non-continuous DSPI frames, the edge generated by the change 
in the idle state of the clock occurs one system clock before the assertion of the chip select for the next 
frame. In Figure 40-20, time A shows the one clock interval. Time B is user programmable from a 
minimum of 2 system clocks. See Section 40.3.3, “DSPI Clock and Transfer Attributes Registers 0–7 
(DSPIx_CTARn).” 

Figure 40-20. Polarity Switching between Frames

40.4.5 Continuous Serial Communications Clock

The DSPI provides the option of generating a continuous DSPI_SCK signal for slave peripherals that 
require a continuous clock. Continuous SCK is enabled by setting the DSPI_MCR[CONT_SCKE] bit.

Continuous SCK is only supported if CPHA is set. Clearing CPHA is ignored if the CONT_SCKE bit is 
set. Continuous SCK is supported for modified transfer format.

Clock and transfer attributes for the continuous SCK mode are set according to the following rules:

• DSPI_CTAR0 is used initially. At the start of each SPI frame transfer, the DSPI_CTARn specified 
by the CTAS field for the frame is used.

• The currently selected DSPI_CTARn remains in use until the start of a frame with a different 
DSPI_CTARn specified, or the continuous SCK mode is terminated.

It is recommended that the baud rate is the same for all transfers made while using the continuous SCK. 
Switching clock polarity between frames while using continuous SCK can cause errors in the transfer. 
Continuous SCK operation is not guaranteed if the DSPI is put into module disable mode.

Enabling continuous SCK disables the PCS to SCK delay and the after SCK delay. The delay after transfer 
is fixed at one DSPI_SCK cycle. Figure 40-21 shows timing diagram for continuous SCK format with 
continuous selection disabled.

DSPI_PCSn

System Clock

DSPI_SCK

Frame 1Frame 0

CPOL = 0 CPOL = 1

A B
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Figure 40-21. Continuous SCK Timing Diagram (CONT= 0)

If the CONT bit in the TX FIFO entry is set, DSPI_PCSn remains asserted between the transfers when the 
DSPI_PCSn signal for the next transfer is the same as for the current transfer. Figure 40-22 shows timing 
diagram for continuous SCK format with continuous selection enabled.

Figure 40-22. Continuous SCK Timing Diagram (CONT=1)

40.4.6 Interrupts/DMA Requests

The DSPI has six conditions that can only generate interrupt requests and two conditions that can generate 
an interrupt or DMA request. Table 40-19 lists these conditions. On this device, the interrupt controller 
only supports the general DSPI condition for each DSPI module. The DSPIx_SR register must be read to 
determine the cause of the interrupt.

Table 40-19. Interrupt and DMA Request Conditions

Condition Flag Interrupt DMA

End of transfer queue has been reached (EOQ) EOQF X —

TX FIFO is not full TFFF X X

Current frame transfer is complete TCF X —

TX FIFO underflow has occurred TFUF X —

RX FIFO is not empty RFDF X X

RX FIFO overflow has occurred RFOF X —

DSPI_SCK
(CPOL = 0)

DSPI_PCSn

DSPI_SCK
(CPOL = 1)

Master DSPI_SOUT

tDT
tDT = 1 SCK.

Master DSPI_SIN

DSPI_SCK
(CPOL = 0)

DSPI_PCSn

DSPI_SCK
(CPOL = 1)

Master DSPI_SOUT

Master DSPI_SIN

Transfer 1 Transfer 2
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Each condition has a flag bit and a request enable bit. The flag bits are described in Section 40.3.4, “DSPI 
Status Register (DSPIx_SR),” and the request enable bits are described in Section 40.3.5, “DSPI 
DMA/Interrupt Request Select and Enable Register (DSPIx_RSER).” The TX FIFO fill flag (TFFF) and 
RX FIFO drain flag (RFDF) generate interrupt requests or DMA requests depending on the 
DSPI_RSER[TFFF_DIRS, RFDF_DIRS] bits.

40.4.6.1 End of Queue Interrupt Request (EOQF)

The end of queue request indicates end of a transmit queue is reached. The end of queue request is 
generated when the EOQ bit in the executing SPI command is asserted and the DSPI_RSER[EOQF_RE] 
bit is set. See the EOQ bit description in Section 40.3.4, “DSPI Status Register (DSPIx_SR).” Refer to 
Figure 40-14 and Figure 40-15 that illustrate when EOQF is set.

40.4.6.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)

The transmit FIFO fill request indicates TX FIFO is not full. The transmit FIFO fill request is generated 
when the number of entries in the TX FIFO is less than the maximum number of possible entries, and the 
DSPI_RSER[TFFF_RE] bit is set. The DSPI_RSER[TFFF_DIRS] bit selects whether a DMA request or 
an interrupt request is generated.

40.4.6.3 Transfer Complete Interrupt Request (TCF)

The transfer complete request indicates the end of the transfer of a serial frame. The transfer complete 
request is generated at the end of each frame transfer when the DSPI_RSER[TCF_RE] bit is set. See the 
TCF bit description in Section 40.3.4, “DSPI Status Register (DSPIx_SR).” Refer to Figure 40-14 and 
Figure 40-15 that illustrate when TCF is set.

40.4.6.4 Transmit FIFO Underflow Interrupt Request (TFUF)

The transmit FIFO underflow request indicates that an underflow condition in the TX FIFO has occurred. 
The transmit underflow condition is detected only for DSPI modules operating in slave mode. The TFUF 
bit is set when the TX FIFO of a DSPI operating in slave mode is empty, and a transfer is initiated from 
an external SPI master. If the TFUF bit is set while the DSPI_RSER[TFUF_RE] bit is set, an interrupt 
request is generated.

A FIFO overrun has occurred1 TFUF OR RFOF X —

General DSPI condition2 Any of the above X —

1 The FIFO overrun condition is created by OR-ing the TFUF and RFOF flags together.
2 OR’d condition of any of the six flags.

Table 40-19. Interrupt and DMA Request Conditions (continued)

Condition Flag Interrupt DMA
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40.4.6.5 Receive FIFO Drain Interrupt or DMA Request (RFDF)

The receive FIFO drain request indicates that the RX FIFO is not empty. The receive FIFO drain request 
is generated when the number of entries in the RX FIFO is not zero, and the DSPI_RSER[RFDF_RE] bit 
is set. The DSPI_RSER[RFDF_DIRS] bit selects whether a DMA request or an interrupt request is 
generated.

40.4.6.6 Receive FIFO Overflow Interrupt Request (RFOF)

The receive FIFO overflow request indicates that an overflow condition in the RX FIFO has occurred. A 
receive FIFO overflow request is generated when RX FIFO and shift register are full and a transfer is 
initiated. The DSPI_RSER[RFOF_RE] bit must be set for the interrupt request to be generated.

Depending on the state of the DSPI_MCR[ROOE] bit, data from the transfer that generated overflow is
ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is shifted in to the shift
register. If the ROOE bit is cleared, incoming data is ignored.

40.4.6.7 FIFO Overrun Request (TFUF) or (RFOF)

The FIFO overrun request indicates at least one of the FIFOs in the DSPI has exceeded its capacity. The 
FIFO overrun request is generated by logically OR’ing the RX FIFO overflow and TX FIFO underflow 
signals.

40.4.7 Power Saving Features

The DSPI supports two power-saving strategies:

• Module disable mode—clock gating of non-memory mapped logic

• Clock gating of slave interface signals and clock to memory-mapped logic

40.4.7.1 Module Disable Mode

Module disable mode is a mode the DSPI can enter to save power. Host software can initiate the module 
disable mode by setting DSPI_MCR[MDIS]. The MDIS bit is set at reset.

In module disable mode, the DSPI is in a dormant state, but the memory-mapped registers remain 
accessible. Certain read or write operations have a different affect when the DSPI is in the module disable 
mode. Reading the RX FIFO pop register does not change the state of the RX FIFO. Likewise, writing to 
the TX FIFO push register does not change the state of the TX FIFO. Clearing either of the FIFOs does 
not have any affect in module disable mode. Changes to the DSPI_MCR[DIS_TXF, DIS_RXF] fields do 
not have any affect in module disable mode. In module disable mode, all status bits and register flags in 
the DSPI return the correct values when read, but writing to them has no effect. Writing to the DSPI_TCR 
during module disable mode does not have any affect. Interrupt and DMA request signals cannot be 
cleared while in module disable mode.

40.4.7.2  Slave Interface Signal Gating

The DSPI’s module enable signal gates slave interface signals such as address, byte enable, read/write and 
data. This prevents toggling slave interface signals from consuming power unless the DSPI is accessed.
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40.5 Initialization/Application Information

40.5.1 How to Change Queues

DSPI queues are not part of the DSPI module, but the DSPI includes features in support of queue 
management. This section presents an example of how to change queues for the DSPI.

1. The last command word from a queue is executed. The EOQ bit in the command word is set to 
indicate to the DSPI that this is the last entry in the queue.

2. At the end of the transfer, corresponding to the command word with EOQ set is sampled, the EOQ 
flag, DSPI_SR[EOQF] is set.

3. The setting of the EOQF flag disables serial transmission and serial reception of data, putting the 
DSPI in the stopped state. The TXRXS bit is cleared to indicate the stopped state.

4. The eDMA continues to fill TX FIFO until it is full or step 5 occurs.

5. Disable DSPI DMA transfers by disabling the DMA enable request for the DMA channel assigned 
to TX FIFO and RX FIFO. This is done by clearing the corresponding DMA enable request bits in 
the eDMA controller.

6. Ensure all received data in RX FIFO has been transferred to memory receive queue by reading the 
DSPI_SR[RXCNT] bit or by checking the DSPI_SR[RFDF] bit after each read operation of the 
DSPI_POPR register.

7. Modify DMA descriptor of TX and RX channels for new queues.

8. Flush TX FIFO by writing a 1 to the DSPI_MCR[CLR_TXF] bit; Flush RX FIFO by writing a 1 
to the DSPI_MCR[CLR_RXF] bit.

9. Clear transfer count by setting the CTCNT bit in the command word of the first entry in the new 
queue or via CPU writing directly to the DSPI_TCR[SPI_TCNT] field.

10. Enable DMA channel by enabling the DMA enable request for the DMA channel assigned to the 
DSPI TX FIFO, and RX FIFO by setting the corresponding DMA set enable request bit.

11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

40.5.2 Switching Master and Slave Mode

When changing modes in the DSPI, follow the steps below to guarantee proper operation.

1. Halt the DSPI by setting DSPI_MCR[HALT].

2. Clear the transmit and receive FIFOs by writing a 1 to the CLR_TXF and CLR_RXF bits in 
DSPI_MCR.

3. Set the appropriate mode in DSPI_MCR[MSTR] and enable the DSPI by clearing 
DSPI_MCR[HALT].

40.5.3 Baud Rate Settings

Table 40-20 shows the baud rate generated based on the combination of the baud rate prescaler PBR and 
the baud rate scaler BR in the DSPI_CTARn registers. The values calculated assume a 100 MHz system 
frequency.
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40.5.4 Delay Settings

Table 40-21 shows the values for the delay after transfer (tDT) and CS to SCK delay (tCSC) that can be 
generated based on the prescaler values and the scaler values set in the DSPI_CTARn registers. The values 
calculated assume a 100 MHz system frequency.

Table 40-20. Baud Rate Values

Baud Rate Divider Prescaler Values
(DSPI_CTARn[PBR])

2 3 5 7
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TA
R

n
[B

R
])

2 25.0MHz 16.7MHz 10.0MHz 7.14MHz

4 12.5MHz 8.33MHz 5.00MHz 3.57MHz

6 8.33MHz 5.56MHz 3.33MHz 2.38MHz

8 6.25MHz 4.17MHz 2.50MHz 1.79MHz

16 3.12MHz 2.08MHz 1.25MHz 893kHz

32 1.56MHz 1.04MHz 625kHz 446kHz

64 781kHz 521kHz 312kHz 223kHz

128 391kHz 260kHz 156kHz 112kHz

256 195kHz 130kHz 78.1kHz 55.8kHz

512 97.7kHz 65.1kHz 39.1kHz 27.9kHz

1024 48.8kHz 32.6kHz 19.5kHz 14.0kHz

2048 24.4kHz 16.3kHz 9.77kHz 6.98kHz

4096 12.2kHz 8.14kHz 4.88kHz 3.49kHz

8192 6.10kHz 4.07kHz 2.44kHz 1.74kHz

16384 3.05kHz 2.04kHz 1.22kHz 872Hz

32768 1.53kHz 1.02kHz 610Hz 436Hz



DMA Serial Peripheral Interface (DSPI)

NXP Semiconductors 40-39

40.5.5 Calculation of FIFO Pointer Addresses

Complete visibility of the TX and RX FIFO contents is available through the FIFO registers, and valid 
entries can be identified through a memory mapped pointer and a memory mapped counter for each FIFO. 
The pointer to the first-in entry in each FIFO is memory mapped. For the TX FIFO, the first-in pointer is 
the transmit next pointer (TXNXTPTR). For the RX FIFO, the first-in pointer is the pop next pointer 
(POPNXTPTR).

Figure 40-23 illustrates the concept of first-in and last-in FIFO entries along with the FIFO counter. The 
TX FIFO is chosen for the illustration, but the concepts carry over to the RX FIFO. See Section 40.4.2.4, 
“TX FIFO Buffering Mechanism,” and Section 40.4.2.5, “RX FIFO Buffering Mechanism,” for details on 
the FIFO operation.

Table 40-21. Delay Values

Delay Prescaler Values
(DSPI_CTARn[PBR])

1 3 5 7
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2 20.0 ns 60.0 ns 100.0 ns 140.0 ns

4 40.0 ns 120.0 ns 200.0 ns 280.0 ns

8 80.0 ns 240.0 ns 400.0 ns 560.0 ns

16 160.0 ns 480.0 ns 800.0 ns 1.1 s

32 320.0 ns 960.0 ns 1.6 s 2.2 s

64 640.0 ns 1.9 s 3.2 s 4.5 s

128 1.3 s 3.8 s 6.4 s 9.0 s

256 2.6 s 7.7 s 12.8 s 17.9 s

512 5.1 s 15.4 s 25.6 s 35.8 s

1024 10.2 s 30.7 s 51.2 s 71.7 s

2048 20.5 s 61.4 s 102.4 s 143.4 s

4096 41.0 s 122.9 s 204.8 s 286.7 s

8192 81.9 s 245.8 s 409.6 s 573.4 s

16384 163.8 s 491.5 s 819.2 s 1.1 ms

32768 327.7 s 983.0 s 1.6 ms 2.3 ms

65536 655.4 s 2.0 ms 3.3 ms 4.6 ms
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Figure 40-23. TX FIFO Pointers and Counter

40.5.5.1 Address Calculation for the First-in and Last-in Entries in the TX FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

First-in entry address = TXFIFO base + 4  (TXNXTPTR)

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Last-in entry address = TX FIFO base + 4  [(TXCTR + TXNXTPTR - 1) modulo TX FIFO depth] 

where:
TX FIFO base: base address of TX FIFO

TXCTR: TX FIFO counter

TXNXTPTR: transmit next pointer

TX FIFO depth: 16

40.5.5.2 Address Calculation for the First-in and Last-in Entries in the RX FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

First-in entry address = RX FIFO base + 4  (POPNXTPTR)

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

Last-in entry address = RX FIFO base + 4  [(RXCTR + POPNXTPTR - 1) modulo RX FIFO 
depth]

RX FIFO base: base address of RX FIFO

RXCTR: RX FIFO counter

POPNXTPTR: pop next pointer

RX FIFO depth: 16
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Chapter 41  
UART Modules

41.1 Introduction
This chapter describes the use of the ten universal asynchronous receiver/transmitters (UARTs) and 
includes programming examples.

NOTE
The designation n appears throughout this section to refer to registers or 
signals associated with one of the ten identical UART modules: UART0, 
UART1,... UART9.

41.1.1 Overview

The internal bus clock can clock each of the ten independent UARTs, eliminating the need for an external 
UART clock. As Figure 41-1 shows, each UART module interfaces directly to the CPU and consists of:

• Serial communication channel

• Programmable clock generation

• Interrupt control logic and DMA request logic

• Internal channel control logic

Figure 41-1. UART Block Diagram
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NOTE
The DTnIN pin can clock UARTn. However, if the timers are operating and 
the UART uses DTnIN as a clock source, input capture mode is not available 
for that timer.

Here are the available connections between the ten UARTs and four DMA 
timers:

• DT0IN  UART0, 4, and 8

• DT1IN  UART1, 5, and 9

• DT2IN  UART2, 6

• DT3IN  UART3, 7

The serial communication channel provides a full-duplex asynchronous/synchronous receiver and 
transmitter deriving an operating frequency from the internal bus clock or an external clock using the timer 
pin. The transmitter converts parallel data from the CPU to a serial bit stream, inserting appropriate start, 
stop, and parity bits. It outputs the resulting stream on the transmitter serial data output (UnTXD). See 
Section 41.4.2.1, “Transmitter.” 

The receiver converts serial data from the receiver serial data input (UnRXD) to parallel format, checks 
for a start, stop, and parity bits, or break conditions, and transfers the assembled character onto the bus 
during read operations. The receiver may be polled, interrupt driven, or use DMA requests for servicing. 
See Section 41.4.2.2, “Receiver.”

NOTE
The GPIO module must be configured to enable the peripheral function of 
the appropriate pins (refer to Chapter 15, “Pin-Multiplexing and Control”) 
prior to configuring the UART module.

41.1.2 Features

The device contains ten independent UART modules with:

• Each clocked by external clock or internal bus clock (eliminates need for an external UART clock)

• Full-duplex asynchronous/synchronous receiver/transmitter

• Quadruple-buffered receiver

• Double-buffered transmitter

• Independently programmable receiver and transmitter clock sources

• Programmable data format:

— 5–8 data bits plus parity

— Odd, even, no parity, or force parity

— One, one-and-a-half, or two stop bits

• Each serial channel programmable to normal (full-duplex), automatic echo, local loopback, or 
remote loopback mode

• Single-wire mode with polarity control
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• Automatic wake-up mode for multidrop applications

• Four maskable interrupt conditions

• All ten UARTs have DMA request capability

• Parity, framing, and overrun error detection

• False-start bit detection

• Line-break detection and generation

• Detection of breaks originating in the middle of a character

• Start/end break interrupt/status

41.2 External Signal Description
Table 41-1 briefly describes the UART module signals.

Figure 41-2 shows a signal configuration for a UART/RS-232 interface.

Figure 41-2. UART/RS-232 Interface

41.3 Memory Map/Register Definition
This section contains a detailed description of each register and its specific function. Flowcharts in 
Section 41.5, “Initialization/Application Information,” describe basic UART module programming. 
Writing control bytes into the appropriate registers controls the operation of the UART module.

NOTE
UART registers are accessible only as bytes.

Table 41-1. UART Module External Signals

Signal Description

UnTXD Transmitter Serial Data Output. UnTXD is held high (mark condition) when the transmitter is 
disabled, idle, or operating in the local loopback mode. Data is shifted out on UnTXD on the 
falling edge of the clock source, with the least significant bit (lsb) sent first. 

UnRXD Receiver Serial Data Input. Data received on UnRXD is sampled on the rising edge of the clock 
source, with the lsb received first. 

UnCTS Clear-to- Send. This input can generate an interrupt on a change of state. 

UnRTS Request-to-Send. This output can be programmed to be negated or asserted automatically by 
the receiver or the transmitter. When connected to a transmitter’s UnCTS, UnRTS can control 
serial data flow. 
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NOTE
Interrupt can mean an interrupt request asserted to the CPU or a DMA 
request.

This device contains ten UART modules. Their base addresses are listed below:

Table 41-2. UART Module Base Addresses

Base Address Module Base Address Module

0xFC06_0000 UART 0 0xEC06_4000 UART 5

0xFC06_4000 UART 1 0xEC06_8000 UART 6

0xFC06_8000 UART 2 0xEC06_C000 UART 7

0xFC06_C000 UART 3 0xEC07_0000 UART 8

0xEC06_0000 UART 4 0xEC07_4000 UART 9

Table 41-3. UART Module Memory Map

UART Base 
Offset 

Register
Width
(bit)

Access Reset Value Section/Page

0x00 UART Mode Registers1 (UMR1n), (UMR2n)

1 UMR1n, UMR2n, and UCSRn must be changed only after the receiver/transmitter is issued a software reset command. If 
operation is not disabled, undesirable results may occur.

8 R/W 0x00 41.3.1/41-5
41.3.2/41-6

0x04 UART Status Register (USRn) 8 R 0x00 41.3.3/41-8

UART Clock Select Register1(UCSRn) 8 W See Section 41.3.4/41-9

0x08 UART Command Registers (UCRn) 8 W 0x00 41.3.5/41-10

0x0C UART Receive Buffers (URBn) 8 R 0xFF 41.3.6/41-12

UART Transmit Buffers (UTBn) 8 W 0x00 41.3.7/41-13

0x10 UART Input Port Change Register (UIPCRn) 8 R See Section 41.3.8/41-14

UART Auxiliary Control Register (UACRn) 8 W 0x00 41.3.9/41-14

0x14 UART Interrupt Status Register (UISRn) 8 R 0x00 41.3.10/41-15

UART Interrupt Mask Register (UIMRn) 8 W 0x00

0x18 UART Baud Rate Generator Register (UBG1n) 8 W2

2 Reading this register results in undesired effects and possible incorrect transmission or reception of characters. Register 
contents may also be changed.

0x00 41.3.11/41-16

0x1C UART Baud Rate Generator Register (UBG2n) 8 W2 0x00 41.3.11/41-16

0x34 UART Input Port Register (UIPn) 8 R 0xFF 41.3.12/41-17

0x38 UART Output Port Bit Set Command Register (UOP1n) 8 W2 0x00 41.3.13/41-18

0x3C UART Output Port Bit Reset Command Register (UOP0n) 8 W2 0x00 41.3.13/41-18
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41.3.1 UART Mode Registers 1 (UMR1n)

The UMR1n registers control UART module configuration. UMR1n can be read or written when the mode 
register pointer points to it, at RESET or after a RESET MODE REGISTER POINTER command using 
UCRn[MISC]. After UMR1n is read or written, the pointer points to UMR2n.

Address: 0xFC06_0000 (UMR10)
0xFC06_4000 (UMR11)
0xFC06_8000 (UMR12)
0xFC06_C000 (UMR13)
0xEC06_0000 (UMR14)

0xEC06_4000 (UMR15)
0xEC06_8000 (UMR16)
0xEC06_C000 (UMR17)
0xEC07_0000 (UMR18)
0xEC07_4000 (UMR19)

Access: User read/write1

7 6 5 4 3 2 1 0

R
RXRTS

RXIRQ/
FFULL

ERR PM PT B/C
W

Reset: 0 0 0 0 0 0 0 0

1 After UMR1n is read or written, the pointer points to UMR2n

Figure 41-3. UART Mode Registers 1 (UMR1n)

Table 41-4. UMR1n Field Descriptions

Field Description

7
RXRTS

Receiver request-to-send. Allows the UnRTS output to control the UnCTS input of the transmitting device to prevent 
receiver overrun. If the receiver and transmitter are incorrectly programmed for UnRTS control, UnRTS control is 
disabled for both. Transmitter RTS control is configured in UMR2n[TXRTS]. 
0 The receiver has no effect on UnRTS.
1 When a valid start bit is received, UnRTS is negated if the UART's FIFO is full. UnRTS is reasserted when the 

FIFO has an empty position available.

6
RXIRQ/
FFULL

Receiver interrupt select. 
0 RXRDY is the source generating interrupt or DMA requests. 
1 FFULL is the source generating interrupt or DMA requests.

5
ERR

Error mode. Configures the FIFO status bits, USRn[RB,FE,PE]. 
0 Character mode. The USRn values reflect the status of the character at the top of the FIFO. ERR must be 0 for 

correct A/D flag information when in multidrop mode.
1 Block mode. The USRn values are the logical OR of the status for all characters reaching the top of the FIFO since 

the last RESET ERROR STATUS command for the UART was issued. See Section 41.3.5, “UART Command 
Registers (UCRn).” 

4–3
PM

Parity mode. Selects the parity or multidrop mode for the UART. The parity bit is added to the transmitted character, 
and the receiver performs a parity check on incoming data. The value of PM affects PT, as shown below. 
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41.3.2 UART Mode Register 2 (UMR2n)

The UMR2n registers control UART module configuration. UMR2n can be read or written when the mode 
register pointer points to it, which occurs after any access to UMR1n. UMR2n accesses do not update the 
pointer.

2
PT

Parity type. PM and PT together select parity type (PM = 0x) or determine whether a data or address character is 
transmitted (PM = 11).

1–0
B/C

Bits per character. Selects the number of data bits per character to be sent. The values shown do not include start, 
parity, or stop bits.
00 5 bits
01 6 bits
10 7 bits
11 8 bits

Address: 0xFC06_0000 (UMR20)
0xFC06_4000 (UMR21)
0xFC06_8000 (UMR22)
0xFC06_C000 (UMR23)
0xEC06_0000 (UMR24)

0xEC06_4000 (UMR25)
0xEC06_8000 (UMR26)
0xEC06_C000 (UMR27)
0xEC07_0000 (UMR28)
0xEC07_4000 (UMR29)

Access: User read/write1

7 6 5 4 3 2 1 0

R
CM TXRTS TXCTS SB

W

Reset: 0 0 0 0 0 0 0 0

1 After UMR1n is read or written, the pointer points to UMR2n

Figure 41-4. UART Mode Registers 2 (UMR2n)

Table 41-4. UMR1n Field Descriptions (continued)

Field Description

PM Parity Mode Parity Type (PT= 0) Parity Type (PT= 1)

00 With parity Even parity Odd parity

01 Force parity Low parity High parity

10 No parity N/A

11 Multidrop mode Data character Address character
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Table 41-5. UMR2n Field Descriptions

Field Description

7–6
CM

Channel mode. Selects a channel mode. Section 41.4.3, “Looping Modes,” describes individual modes. 
00 Normal
01 Automatic echo
10 Local loopback
11 Remote loopback

5
TXRTS

Transmitter ready-to-send. Controls negation of UnRTS to automatically terminate a message transmission. 
Attempting to program a receiver and transmitter in the same UART for UnRTS control is not permitted and disables 
UnRTS control for both. 
0 The transmitter has no effect on UnRTS.
1 In applications where the transmitter is disabled after transmission completes, setting this bit automatically clears 

UOP[RTS] one bit time after any characters in the transmitter shift and holding registers are completely sent, 
including the programmed number of stop bits. 

4
TXCTS

Transmitter clear-to-send. If TXCTS and TXRTS are set, TXCTS controls the operation of the transmitter. 
0 UnCTS has no effect on the transmitter.
1 Enables clear-to-send operation. The transmitter checks the state of UnCTS each time it is ready to send a 

character. If UnCTS is asserted, the character is sent; if it is deasserted, the signal UnTXD remains in the high 
state and transmission is delayed until UnCTS is asserted. Changes in UnCTS as a character is being sent do 
not affect its transmission.

3–0
SB

Stop-bit length control. Selects length of stop bit appended to the transmitted character. Stop-bit lengths of 9/16 to 2 
bits are programmable for 6–8 bit characters. Lengths of 1-1/16 to 2 bits are programmable for 5-bit characters. In 
all cases, the receiver checks only for a high condition at the center of the first stop-bit position, one bit time after the 
last data bit or after the parity bit, if parity is enabled. If an external 1x clock is used for the transmitter, clearing bit 3 
selects one stop bit and setting bit 3 selects two stop bits for transmission. 

SB 5 Bits 6–8 Bits SB 5–8 Bits

0000 1.063 0.563 1000 1.563

0001 1.125 0.625 1001 1.625

0010 1.188 0.688 1010 1.688

0011 1.250 0.750 1011 1.750

0100 1.313 0.813 1100 1.813

0101 1.375 0.875 1101 1.875

0110 1.438 0.938 1110 1.938

0111 1.500 1.000 1111 2.000
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41.3.3 UART Status Registers (USRn)

The USRn registers show the status of the transmitter, the receiver, and the FIFO.

Address: 0xFC06_0004 (USR0)
0xFC06_4004 (USR1)
0xFC06_8004 (USR2)
0xFC06_C004 (USR3)
0xEC06_0004 (USR4)

0xEC06_4004 (USR5)
0xEC06_8004 (USR6)
0xEC06_C004 (USR7)
0xEC07_0004 (USR8)
0xEC07_4004 (USR9)

Access: User read-only

7 6 5 4 3 2 1 0

R RB FE PE OE TXEMP TXRDY FFULL RXRDY

W

Reset: 0 0 0 0 0 0 0 0

Figure 41-5. UART Status Registers (USRn)

Table 41-6. USRn Field Descriptions

Field Description

7
RB

Received break. The received break circuit detects breaks originating in the middle of a received character. However, 
a break in the middle of a character must persist until the end of the next detected character time. 
0 No break was received.
1 An all-zero character of the programmed length was received without a stop bit. Only a single FIFO position is 

occupied when a break is received. Further entries to the FIFO are inhibited until UnRXD returns to the high state 
for at least one-half bit time, which equals two successive edges of the UARTclock. RB is valid only when RXRDY 
is set.

6
FE

Framing error. 
0 No framing error occurred.
1 No stop bit was detected when the corresponding data character in the FIFO was received. The stop-bit check 

occurs in the middle of the first stop-bit position. FE is valid only when RXRDY is set.

5
PE

Parity error. Valid only if RXRDY is set. 
0 No parity error occurred.
1 If UMR1n[PM] equals 0x (with parity or force parity), the corresponding character in the FIFO was received with 

incorrect parity. If UMR1n[PM] equals 11 (multidrop), PE stores the received address or data (A/D) bit. PE is valid 
only when RXRDY is set.

4
OE

Overrun error. Indicates whether an overrun occurs. 
0 No overrun occurred.
1 One or more characters in the received data stream have been lost. OE is set upon receipt of a new character 

when the FIFO is full and a character is already in the shift register waiting for an empty FIFO position. When this 
occurs, the character in the receiver shift register and its break detect, framing error status, and parity error, if any, 
are lost. The RESET ERROR STATUS command in UCRn clears OE.

3
TXEMP

Transmitter empty. 
0 The transmit buffer is not empty. A character is shifted out, or the transmitter is disabled. The transmitter is 

enabled/disabled by programming UCRn[TC].
1 The transmitter has underrun (the transmitter holding register and transmitter shift registers are empty). This bit 

is set after transmission of the last stop bit of a character if there are no characters in the transmitter holding 
register awaiting transmission.
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41.3.4 UART Clock Select Registers (UCSRn)

The UCSRs select an external clock on the DTIN input (divided by 1 or 16) or a prescaled internal bus 
clock as the clocking source for the transmitter and receiver. See Section 41.4.1, “Transmitter/Receiver 
Clock Source.” The transmitter and receiver can use different clock sources. To use the internal bus clock 
for both, set UCSRn to 0xDD.

The DMA timers are assigned to the UARTs as follows:

• DT0IN  UART0, 4, and 8

• DT1IN  UART1, 5, and 9

• DT2IN  UART2, 6

• DT3IN  UART3, 7

2
TXRDY

Transmitter ready.
0 The CPU loaded the transmitter holding register, or the transmitter is disabled.
1 The transmitter holding register is empty and ready for a character. TXRDY is set when a character is sent to the 

transmitter shift register or when the transmitter is first enabled. If the transmitter is disabled, characters loaded 
into the transmitter holding register are not sent.

1
FFULL

FIFO full.
0 The FIFO is not full but may hold up to two unread characters.
1 A character was received and the receiver FIFO is now full. Any characters received when the FIFO is full are lost.

0
RXRDY

Receiver ready.
0 The CPU has read the receive buffer and no characters remain in the FIFO after this read.
1 One or more characters were received and are waiting in the receive buffer FIFO. 

Address: 0xFC06_0004 (UCSR0)
0xFC06_4004 (UCSR1)
0xFC06_8004 (UCSR2)
0xFC06_C004 (UCSR3)
0xEC06_0004 (UCSR4)

0xEC06_4004 (UCSR5)
0xEC06_8004 (UCSR6)
0xEC06_C004 (UCSR7)
0xEC07_0004 (UCSR8)
0xEC07_4004 (UCSR9)

Access: User write-only

7 6 5 4 3 2 1 0

R

W RCS TCS

Reset: See Note See Note

Note: The RCS and TCS reset values are set so the receiver and transmitter use the prescaled internal bus 
clock as their clock source.

Figure 41-6. UART Clock Select Registers (UCSRn)

Table 41-6. USRn Field Descriptions (continued)

Field Description
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41.3.5 UART Command Registers (UCRn)

The UCRs supply commands to the UART. Only multiple commands that do not conflict can be specified 
in a single write to a UCRn. For example, RESET TRANSMITTER and ENABLE TRANSMITTER cannot be 
specified in one command.

Table 41-7. UCSRn Field Descriptions

Field Description

7–4
RCS

Receiver clock select. Selects the clock source for the receiver.
1101 Prescaled internal bus clock (fsys/2)
1110 DTnIN divided by 16
1111 DTnIN

3–0
TCS

Transmitter clock select. Selects the clock source for the transmitter. 
1101 Prescaled internal bus clock (fsys/2)
1110 DTnIN divided by 16
1111 DTnIN

Address: 0xFC06_0008 (UCR0)
0xFC06_4008 (UCR1)
0xFC06_8008 (UCR2)
0xFC06_C008 (UCR3)
0xEC06_0008 (UCR4)

0xEC06_4008 (UCR5)
0xEC06_8008 (UCR6)
0xEC06_C008 (UCR7)
0xEC07_0008 (UCR8)
0xEC07_4008 (UCR9)

Access: User write-only

7 6 5 4 3 2 1 0

R

W 0 MISC TC RC

Reset: 0 0 0 0 0 0 0 0

Figure 41-7. UART Command Registers (UCRn)
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Table 41-8 describes UCRn fields and commands. Examples in Section 41.4.2, “Transmitter and Receiver 
Operating Modes,” show how these commands are used.

Table 41-8. UCRn Field Descriptions

Field Description

7 Reserved, must be cleared.

6–4
MISC

MISC Field (this field selects a single command)

Command Description

000 NO COMMAND —

001 RESET MODE 
REGISTER POINTER

Causes the mode register pointer to point to UMR1n.

010 RESET RECEIVER Immediately disables the receiver, clears USRn[FFULL,RXRDY], and reinitializes 
the receiver FIFO pointer. No other registers are altered. Because it places the 
receiver in a known state, use this command instead of RECEIVER DISABLE when 
reconfiguring the receiver.

011 RESET 
TRANSMITTER

Immediately disables the transmitter and clears USRn[TXEMP,TXRDY]. No other 
registers are altered. Because it places the transmitter in a known state, use this 
command instead of TRANSMITTER DISABLE when reconfiguring the transmitter. 

100 RESET ERROR 
STATUS

Clears USRn[RB,FE,PE,OE]. Also used in block mode to clear all error bits after 
a data block is received. 

101 RESET BREAK –  
CHANGE INTERRUPT

Clears the delta break bit, UISRn[DB]. 

110 START BREAK Forces UnTXD low. If the transmitter is empty, break may be delayed up to one bit 
time. If the transmitter is active, break starts when character transmission 
completes. Break is delayed until any character in the transmitter shift register is 
sent. Any character in the transmitter holding register is sent after the break. 
Transmitter must be enabled for the command to be accepted. This command 
ignores the state of UnCTS.

111 STOP BREAK Causes UnTXD to go high (mark) within two bit times. Any characters in the 
transmit buffer are sent.
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41.3.6 UART Receive Buffers (URBn)

The receive buffers contain one serial shift register and three receiver holding registers, which act as a 
FIFO. UnRXD is connected to the serial shift register. The CPU reads from the top of the FIFO while the 
receiver shifts and updates from the bottom when the shift register is full (see Figure 41-18). RB contains 
the character in the receiver.

3–2
TC

Transmit command field. Selects a single transmit command.

1–0
RC

Receive command field. Selects a single receive command.

Table 41-8. UCRn Field Descriptions (continued)

Field Description

Command Description

00 NO ACTION TAKEN Causes the transmitter to stay in its current mode: if the transmitter is enabled, it 
remains enabled; if the transmitter is disabled, it remains disabled.

01 TRANSMITTER 
ENABLE

Enables operation of the UART’s transmitter. USRn[TXEMP,TXRDY] are set. If the 
transmitter is already enabled, this command has no effect.

10 TRANSMITTER 
DISABLE

Terminates transmitter operation and clears USRn[TXEMP,TXRDY]. If a character 
is being sent when the transmitter is disabled, transmission completes before the 
transmitter becomes inactive. If the transmitter is already disabled, the command 
has no effect.

11 — Reserved, do not use.

Command Description

00 NO ACTION TAKEN Causes the receiver to stay in its current mode. If the receiver is enabled, it 
remains enabled; if disabled, it remains disabled.

01 RECEIVER ENABLE If the UART module is not in multidrop mode (UMR1n[PM]  11), RECEIVER ENABLE 
enables the UART's receiver and forces it into search-for-start-bit state. If the 
receiver is already enabled, this command has no effect.

10 RECEIVER DISABLE Disables the receiver immediately. Any character being received is lost. The 
command does not affect receiver status bits or other control registers. If the 
UART module is programmed for local loopback or multidrop mode, the receiver 
operates even though this command is selected. If the receiver is already 
disabled, the command has no effect.

11 — Reserved, do not use.
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41.3.7 UART Transmit Buffers (UTBn)

The transmit buffers consist of the transmitter holding register and the transmitter shift register. The 
holding register accepts characters from the bus master if UART’s USRn[TXRDY] is set. A write to the 
transmit buffer clears USRn[TXRDY], inhibiting any more characters until the shift register can accept 
more data. When the shift register is empty, it checks if the holding register has a valid character to be sent 
(TXRDY = 0). If there is a valid character, the shift register loads it and sets USRn[TXRDY] again. Writes 
to the transmit buffer when the UART’s TXRDY is cleared and the transmitter is disabled have no effect 
on the transmit buffer.

Figure 41-9 shows UTBn. TB contains the character in the transmit buffer.

Address: 0xFC06_000C (URB0)
0xFC06_400C (URB1)
0xFC06_800C (URB2)
0xFC06_C00C (URB3)
0xEC06_000C (URB4)

0xEC06_400C (URB5)
0xEC06_800C (URB6)
0xEC06_C00C (URB7)
0xEC07_000C (URB8)
0xEC07_400C (URB9)

Access: User read-only

7 6 5 4 3 2 1 0

R RB

W

Reset: 1 1 1 1 1 1 1 1

Figure 41-8. UART Receive Buffer (URBn)

Address: 0xFC06_000C (UTB0)
0xFC06_400C (UTB1)
0xFC06_800C (UTB2)
0xFC06_C00C (UTB3)
0xEC06_000C (UTB4)

0xEC06_400C (UTB5)
0xEC06_800C (UTB6)
0xEC06_C00C (UTB7)
0xEC07_000C (UTB8)
0xEC07_400C (UTB9)

Access: User write-only

7 6 5 4 3 2 1 0

R

W TB

Reset: 0 0 0 0 0 0 0 0

Figure 41-9. UART Transmit Buffer (UTBn)
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41.3.8 UART Input Port Change Registers (UIPCRn)

The UIPCRs hold the current state and the change-of-state for UnCTS.

41.3.9 UART Auxiliary Control Register (UACRn)

The UACRs control the input enable.

Address: 0xFC06_0010 (UIPCR0)
0xFC06_4010 (UIPCR1)
0xFC06_8010 (UIPCR2)
0xFC06_C010 (UIPCR3)
0xEC06_0010 (UIPCR4)

0xEC06_4010 (UIPCR5)
0xEC06_8010 (UIPCR6)
0xEC06_C010 (UIPCR7)
0xEC07_0010 (UIPCR8)
0xEC07_4010 (UIPCR9)

Access: User read-only

7 6 5 4 3 2 1 0

R 0 0 0 COS 1 1 1 CTS

W

Reset: 0 0 0 0 1 1 1 UnCTS

Figure 41-10. UART Input Port Changed Registers (UIPCRn)

Table 41-9. UIPCRn Field Descriptions

Field Description

7–5 Reserved

4
COS

Change of state (high-to-low or low-to-high transition). 
0 No change-of-state since the CPU last read UIPCRn. Reading UIPCRn clears UISRn[COS].
1 A change-of-state longer than 25–50 s occurred on the UnCTS input. UACRn can be programmed to generate 

an interrupt to the CPU when a change of state is detected.

3–1 Reserved

0
CTS

Current state of clear-to-send. Starting two serial clock periods after reset, CTS reflects the state of UnCTS. If UnCTS 
is detected asserted at that time, COS is set, which initiates an interrupt if UACRn[IEC] is enabled. 
0  The current state of the UnCTS input is asserted. 
1  The current state of the UnCTS input is deasserted.

Address: 0xFC06_0010 (UACR0)
0xFC06_4010 (UACR1)
0xFC06_8010 (UACR2)
0xFC06_C010 (UACR3)
0xEC06_0010 (UACR4)

0xEC06_4010 (UACR5)
0xEC06_8010 (UACR6)
0xEC06_C010 (UACR7)
0xEC07_0010 (UACR8)
0xEC07_4010 (UACR9)

Access: User write-only

7 6 5 4 3 2 1 0

R

W 0 0 0 0 0 0 0 IEC

Reset: 0 0 0 0 0 0 0 0

Figure 41-11. UART Auxiliary Control Registers (UACRn)
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41.3.10 UART Interrupt Status/Mask Registers (UISRn/UIMRn)

The UISRs provide status for all potential interrupt sources. UISRn contents are masked by UIMRn. If 
corresponding UISRn and UIMRn bits are set, internal interrupt output is asserted. If a UIMRn bit is 
cleared, state of the corresponding UISRn bit has no effect on the output.

The UISRn and UIMRn registers share the same space in memory. Reading this register provides the user 
with interrupt status, while writing controls the mask bits.

NOTE
True status is provided in the UISRn regardless of UIMRn settings. UISRn 
is cleared when the UART module is reset.

Table 41-10. UACRn Field Descriptions

Field Description

7–1 Reserved, must be cleared.

0
IEC

Input enable control. 
0 Setting the corresponding UIPCRn bit has no effect on UISRn[COS].
1 UISRn[COS] is set and an interrupt is generated when the UIPCRn[COS] is set by an external transition on the 

UnCTS input (if UIMRn[COS] = 1).

Address: 0xFC06_0014 (UISR0)
0xFC06_4014 (UISR1)
0xFC06_8014 (UISR2)
0xFC06_C014 (UISR3)
0xEC06_0014 (UISR4)

0xEC06_4014 (UISR5)
0xEC06_8014 (UISR6)
0xEC06_C014 (UISR7)
0xEC07_0014 (UISR8)
0xEC07_4014 (UISR9)

Access: User read/write

7 6 5 4 3 2 1 0

R
(UISRn)

COS 0 0 0 0 DB
FFULL/
RXRDY

TXRDY

W
(UIMRn)

COS 0 0 0 0 DB
FFULL/
RXRDY

TXRDY

Reset: 0 0 0 0 0 0 0 0

Figure 41-12. UART Interrupt Status/Mask Registers (UISRn/UIMRn)

Table 41-11. UISRn/UIMRn Field Descriptions

Field Description

7
COS

Change-of-state. 
0 UIPCRn[COS] is not selected.
1 Change-of-state occurred on UnCTS and was programmed in UACRn[IEC] to cause an interrupt.

6–3 Reserved, must be cleared.

2
DB

Delta break. 
0 No new break-change condition to report. Section 41.3.5, “UART Command Registers (UCRn),” describes the 

RESET BREAK-CHANGE INTERRUPT command.
1 The receiver detected the beginning or end of a received break.
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41.3.11 UART Baud Rate Generator Registers (UBG1n/UBG2n)

The UBG1n registers hold the MSB, and the UBG2n registers hold the LSB of the preload value. UBG1n 
and UBG2n concatenate to provide a divider to the internal bus clock for transmitter/receiver operation, 
as described in Section 41.4.1.2.1, “Internal Bus Clock Baud Rates.”

1
FFULL/
RXRDY

Status of FIFO or receiver, depending on UMR1[FFULL/RXRDY] bit. Duplicate of USRn[FIFO] and USRn[RXRDY]

0
TXRDY

Transmitter ready. This bit is the duplication of USRn[TXRDY]. 
0 The transmitter holding register was loaded by the CPU or the transmitter is disabled. Characters loaded into the 

transmitter holding register when TXRDY is cleared are not sent.
1 The transmitter holding register is empty and ready to be loaded with a character.

Address: 0xFC06_0018 (UBG10)
0xFC06_4018 (UBG11)
0xFC06_8018 (UBG12)
0xFC06_C018 (UBG13)
0xEC06_0018 (UBG14)

0xEC06_4018 (UBG15)
0xEC06_8018 (UBG16)
0xEC06_C018 (UBG17)
0xEC07_0018 (UBG18)
0xEC07_4018 (UBG19)

Access: User write-only

7 6 5 4 3 2 1 0

R

W Divider MSB

Reset: 0 0 0 0 0 0 0 0

Figure 41-13. UART Baud Rate Generator Registers (UBG1n)

Table 41-11. UISRn/UIMRn Field Descriptions

Field Description

UIMRn
[FFULL/RXRDY]

UISRn
[FFULL/RXRDY]

UMR1n[FFULL/RXRDY]

0 (RXRDY) 1 (FIFO)

0 0 Receiver not ready FIFO not full

1 0 Receiver not ready FIFO not full

0 1 Receiver is ready,
Do not interrupt

FIFO is full,
Do not interrupt

1 1 Receiver is ready, 
interrupt

FIFO is full, 
interrupt
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NOTE
The minimum value loaded on the concatenation of UBG1n with UBG2n is 
0x0002. The UBG2n reset value of 0x00 is invalid and must be written to 
before the UART transmitter or receiver are enabled. UBG1n and UBG2n 
are write-only and cannot be read by the CPU.

41.3.12 UART Input Port Register (UIPn)

The UIPn registers show the current state of the UnCTS input.

Address: 0xFC06_001C (UBG20)
0xFC06_401C (UBG21)
0xFC06_801C (UBG22)
0xFC06_C01C (UBG23)
0xEC06_001C (UBG24)

0xEC06_401C (UBG25)
0xEC06_801C (UBG26)
0xEC06_C01C (UBG27)
0xEC07_001C (UBG28)
0xEC07_401C (UBG29)

Access: User write-only

7 6 5 4 3 2 1 0

R

W Divider LSB

Reset: 0 0 0 0 0 0 0 0

Figure 41-14. UART Baud Rate Generator Registers (UBG2n)

Address: 0xFC06_0034 (UIP0)
0xFC06_4034 (UIP1)
0xFC06_8034 (UIP2)
0xFC06_C034 (UIP3)
0xEC06_0034 (UIP4)

0xEC06_4034 (UIP5)
0xEC06_8034 (UIP6)
0xEC06_C034 (UIP7)
0xEC07_0034 (UIP8)
0xEC07_4034 (UIP9)

Access: User read-only

7 6 5 4 3 2 1 0

R 1 1 1 1 1 1 1 CTS

W

Reset: 1 1 1 1 1 1 1 1

Figure 41-15. UART Input Port Registers (UIPn)

Table 41-12. UIPn Field Descriptions

Field Description

7–1 Reserved

0
CTS

Current state of clear-to-send. The UnCTS value is latched and reflects the state of the input pin when UIPn is read.
Note: This bit has the same function and value as UIPCRn[CTS].
0 The current state of the UnCTS input is logic 0.
1 The current state of the UnCTS input is logic 1. 
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41.3.13 UART Output Port Command Registers (UOP1n/UOP0n)

The UnRTS output can be asserted by writing a 1 to UOP1n[RTS] and negated by writing a 1 to 
UOP0n[RTS].

41.4 Functional Description
This section describes operation of the clock source generator, transmitter, and receiver.

41.4.1 Transmitter/Receiver Clock Source

The internal bus clock serves as the basic timing reference for the clock source generator logic, which 
consists of a clock generator and a programmable 16-bit divider dedicated to each UART. The 16-bit 
divider is used to produce standard UART baud rates.

41.4.1.1 Programmable Divider

As Figure 41-17 shows, the UARTn transmitter and receiver can use the following clock sources:

• An external clock signal on the DTnIN pin. When not divided, DTnIN provides a synchronous 
clock; when divided by 16, it is asynchronous.

• The internal bus clock supplies an asynchronous clock source divided by 32 and then divided by 
the 16-bit value programmed in UBG1n and UBG2n. See Section 41.3.11, “UART Baud Rate 
Generator Registers (UBG1n/UBG2n).”

Address: 0xFC06_0038 (UOP10)
0xFC06_003C (UOP00)
0xFC06_4038 (UOP11)
0xFC06_403C (UOP01)
0xFC06_8038 (UOP12)
0xFC06_803C (UOP02)
0xFC06_C038 (UOP13)
0xFC06_C03C (UOP03)
0xEC06_0038 (UOP14)
0xEC06_003C (UOP04)

0xEC06_4038 (UOP15)
0xEC06_403C (UOP05)
0xEC06_8038 (UOP16)
0xEC06_803C (UOP06)
0xEC06_C038 (UOP17)
0xEC06_C03C (UOP07)
0xEC07_0038 (UOP18)
0xEC07_003C (UOP08)
0xEC07_4038 (UOP19)
0xEC07_403C (UOP09)

Access: User write-only

7 6 5 4 3 2 1 0

R

W 0 0 0 0 0 0 0 RTS

Reset: 0 0 0 0 0 0 0 0

Figure 41-16. UART Output Port Command Registers (UOP1n/UOP0n)

Table 41-13. UOP1n/UOP0n Field Descriptions

Field Description

7–1 Reserved, must be cleared.

0
RTS

Output port output. Controls assertion (UOP1)/negation (UOP0) of UnRTS output.
0 Not affected.
1 Asserts UnRTS in UOP1. Negates UnRTS in UOP0.
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The choice of DTIN or internal bus clock is programmed in the UCSR.

Figure 41-17. Clocking Source Diagram

NOTE
If DTnIN is a clocking source for the timer or UART, that timer module 
cannot use DTnIN for timer input capture.

41.4.1.2 Calculating Baud Rates

The following sections describe how to calculate baud rates.

41.4.1.2.1 Internal Bus Clock Baud Rates

When the internal bus clock is the UART clocking source, it goes through a divide-by-32 prescaler and 
then passes through the 16-bit divider of the concatenated UBG1n and UBG2n registers. The baud-rate 
calculation is:

Eqn. 41-1

Using a 120-MHz internal bus clock and letting baud rate equal 9600, then

Eqn. 41-2

Therefore, UBG1n equals 0x01 and UBG2n equals 0x87.

41.4.1.2.2 External Clock

An external source clock (DTnIN) passes through a divide-by-1 or 16 prescaler. If fextc is the external clock 
frequency, baud rate can be described with this equation:

Eqn. 41-3

UART

On-Chip

TIN   1 

 16 

16-bit
Divider 32

TIN

Clocking sources programmed in UCSR

Timer Module

Internal

Tx

Rx

Rx Buffer

Tx Buffer

fsys/2

Bus Clock

UnRXD

UnTXD

DTnIN

DTnOUT

Baudrate
fsys 2

32 x divider 
-----------------------------------=

Divider 120MHz
32 x 9600 

------------------------------- 391 decimal  0x0187 hexadecimal = = =

Baudrate
fextc

(16 or 1)
---------------------=
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41.4.2 Transmitter and Receiver Operating Modes

Figure 41-18 is a functional block diagram of the transmitter and receiver showing the command and 
operating registers, which are described generally in the following sections. For detailed descriptions, refer 
to Section 41.3, “Memory Map/Register Definition.”

Figure 41-18. Transmitter and Receiver Functional Diagram

41.4.2.1 Transmitter

The transmitter is enabled through the UART command register (UCRn). When it is ready to accept a 
character, UART sets USRn[TXRDY]. The transmitter converts parallel data from the CPU to a serial bit 
stream on UnTXD. It automatically sends a start bit followed by the programmed number of data bits, an 
optional parity bit, and the programmed number of stop bits. The lsb is sent first. Data is shifted from the 
transmitter output on the falling edge of the clock source.

After the stop bits are sent, if no new character is in the transmitter holding register, the UnTXD output 
remains high (mark condition) and the transmitter empty bit (USRn[TXEMP]) is set. Transmission 
resumes and TXEMP is cleared when the CPU loads a new character into the UART transmit buffer 
(UTBn). If the transmitter receives a disable command, it continues until any character in the transmitter 
shift register is completely sent. 

If the transmitter is reset through a software command, operation stops immediately (see Section 41.3.5, 
“UART Command Registers (UCRn)”). The transmitter is reenabled through the UCRn to resume 
operation after a disable or software reset.
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If the clear-to-send operation is enabled, UnCTS must be asserted for the character to be transmitted. If 
UnCTS is negated in the middle of a transmission, the character in the shift register is sent and UnTXD 
remains in mark state until UnCTS is reasserted. If transmitter is forced to send a continuous low condition 
by issuing a SEND BREAK command, transmitter ignores the state of UnCTS.

If the transmitter is programmed to automatically negate UnRTS when a message transmission completes, 
UnRTS must be asserted manually before a message is sent. In applications in which the transmitter is 
disabled after transmission is complete and UnRTS is appropriately programmed, UnRTS is negated one 
bit time after the character in the shift register is completely transmitted. The transmitter must be manually 
reenabled by reasserting UnRTS before the next message is sent.

Figure 41-19 shows the functional timing information for the transmitter.

Figure 41-19. Transmitter Timing Diagram

41.4.2.2 Receiver

The receiver is enabled through its UCRn, as described in Section 41.3.5, “UART Command Registers 
(UCRn).”

When the receiver detects a high-to-low (mark-to-space) transition of the start bit on UnRXD, the state of 
UnRXD is sampled eight times on the edge of the bit time clock starting one-half clock after the transition 
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(asynchronous operation) or at the next rising edge of the bit time clock (synchronous operation). If 
UnRXD is sampled high, start bit is invalid and the search for the valid start bit begins again. 

If UnRXD remains low, a valid start bit is assumed. The receiver continues sampling the input at one-bit 
time intervals at the theoretical center of the bit until the proper number of data bits and parity, if any, is 
assembled and one stop bit is detected. Data on the UnRXD input is sampled on the rising edge of the 
programmed clock source. The lsb is received first. The data then transfers to a receiver holding register 
and USRn[RXRDY] is set. If the character is less than 8 bits, the most significant unused bits in the 
receiver holding register are cleared.

After the stop bit is detected, receiver immediately looks for the next start bit. However, if a non-zero 
character is received without a stop bit (framing error) and UnRXD remains low for one-half of the bit 
period after the stop bit is sampled, receiver operates as if a new start bit were detected. Parity error, 
framing error, overrun error, and received break conditions set the respective PE, FE, OE, and RB error 
and break flags in the USRn at the received character boundary. They are valid only if USRn[RXRDY] is 
set.

If a break condition is detected (UnRXD is low for the entire character including the stop bit), a character 
of all 0s loads into the receiver holding register and USRn[RB,RXRDY] are set. UnRXD must return to a 
high condition for at least one-half bit time before a search for the next start bit begins.

The receiver detects the beginning of a break in the middle of a character if the break persists through the 
next character time. The receiver places the damaged character in the Rx FIFO and sets the corresponding 
USRn error bits and USRn[RXRDY]. Then, if the break lasts until the next character time, the receiver 
places an all-zero character into the Rx FIFO and sets USRn[RB,RXRDY].

Figure 41-20 shows receiver functional timing.
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Figure 41-20. Receiver Timing Diagram

41.4.2.3 FIFO

The FIFO is used in the UART’s receive buffer logic. The FIFO consists of three receiver holding registers. 
The receive buffer consists of the FIFO and a receiver shift register connected to the UnRXD (see 
Figure 41-18). Data is assembled in the receiver shift register and loaded into the top empty receiver 
holding register position of the FIFO. Therefore, data flowing from the receiver to the CPU is 
quadruple-buffered.

In addition to the data byte, three status bits—parity error (PE), framing error (FE), and received break 
(RB)—are appended to each data character in the FIFO; overrun error (OE) is not appended. By 
programming the ERR bit in the UART’s mode register (UMR1n), status is provided in character or block 
modes.

USRn[RXRDY] is set when at least one character is available to be read by the CPU. A read of the receive 
buffer produces an output of data from the top of the FIFO. After the read cycle, the data at the top of the 
FIFO and its associated status bits are popped and the receiver shift register can add new data at the bottom 
of the FIFO. The FIFO-full status bit (FFULL) is set if all three positions are filled with data. The RXRDY 
or FFULL bit can be selected to cause an interrupt and TXRDY or RXRDY can be used to generate a DMA 
request.

The two error modes are selected by UMR1n[ERR]:

• In character mode (UMR1n[ERR] = 0), status is given in the USRn for the character at the top of 
the FIFO. 
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• In block mode, the USRn shows a logical OR of all characters reaching the top of the FIFO since 
the last RESET ERROR STATUS command. Status is updated as characters reach the top of the 
FIFO. Block mode offers a data-reception speed advantage where the software overhead of 
error-checking each character cannot be tolerated. However, errors are not detected until the check 
is performed at the end of an entire message—the faulting character is not identified.

In either mode, reading the USRn does not affect the FIFO. The FIFO is popped only when the receive 
buffer is read. The USRn should be read before reading the receive buffer. If all three receiver holding 
registers are full, a new character is held in the receiver shift register until space is available. However, if 
a second new character is received, the contents of the character in the receiver shift register is lost, the 
FIFOs are unaffected, and USRn[OE] is set when the receiver detects the start bit of the new overrunning 
character.

To support flow control, the receiver can be programmed to automatically negate and assert UnRTS, in 
which case the receiver automatically negates UnRTS when a valid start bit is detected and the FIFO is 
full. The receiver asserts UnRTS when a FIFO position becomes available; therefore, connecting UnRTS 
to the UnCTS input of the transmitting device can prevent overrun errors.

NOTE
The receiver continues reading characters in the FIFO if the receiver is 
disabled. If the receiver is reset, the FIFO, UnRTS control, all receiver status 
bits, interrupts, and DMA requests are reset. No more characters are 
received until the receiver is reenabled.

41.4.3 Looping Modes

The UART can be configured to operate in various looping modes. These modes are useful for local and 
remote system diagnostic functions. The modes are described in the following paragraphs and in 
Section 41.3, “Memory Map/Register Definition.”

The UART’s transmitter and receiver should be disabled when switching between modes. The selected 
mode is activated immediately upon mode selection, regardless of whether a character is being received 
or transmitted.

41.4.3.1 Automatic Echo Mode

In automatic echo mode, shown in Figure 41-21, the UART automatically resends received data bit by bit. 
The local CPU-to-receiver communication continues normally, but the CPU-to-transmitter link is 
disabled. In this mode, received data is clocked on the receiver clock and re-sent on UnTXD. The receiver 
must be enabled, but the transmitter need not be.

Figure 41-21. Automatic Echo

Disabled DisabledTx

Rx

CPU

UnRXD InputUnRXD Input

UnTXD Output
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Because the transmitter is inactive, USRn[TXEMP,TXRDY] is inactive and data is sent as it is received. 
Received parity is checked but not recalculated for transmission. Character framing is also checked, but 
stop bits are sent as they are received. A received break is echoed as received until the next valid start bit 
is detected.

41.4.3.2 Local Loopback Mode

Figure 41-22 shows how UnTXD and UnRXD are internally connected in local loopback mode. This 
mode is for testing the operation of a UART by sending data to the transmitter and checking data 
assembled by the receiver to ensure proper operations.

Figure 41-22. Local Loopback

Features of this local loopback mode are:

• Transmitter and CPU-to-receiver communications continue normally in this mode.

• UnRXD input data is ignored.

• UnTXD is held marking.

• The receiver is clocked by the transmitter clock. The transmitter must be enabled, but the receiver 
need not be.

41.4.3.3 Remote Loopback Mode

In remote loopback mode, shown in Figure 41-23, the UART automatically transmits received data bit by 
bit on the UnTXD output. The local CPU-to-transmitter link is disabled. This mode is useful in testing 
receiver and transmitter operation of a remote UART. For this mode, transmitter uses the receiver clock.

Because the receiver is not active, received data cannot be read by the CPU and all status conditions are 
inactive. Received parity is not checked and is not recalculated for transmission. Stop bits are sent as they 
are received. A received break is echoed as received until next valid start bit is detected.

Figure 41-23. Remote Loopback
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Although slave stations have their receivers disabled, they continuously monitor the master’s data stream. 
When the master sends an address character, the slave receiver notifies its respective CPU by setting 
USRn[RXRDY] and generating an interrupt (if programmed to do so). Each slave station CPU then 
compares the received address to its station address and enables its receiver if it wishes to receive the 
subsequent data characters or block of data from the master station. Unaddressed slave stations continue 
monitoring the data stream. Data fields in the data stream are separated by an address character. After a 
slave receives a block of data, its CPU disables the receiver and repeats the process. Functional timing 
information for multidrop mode is shown in Figure 41-24.

Figure 41-24. Multidrop Mode Timing Diagram

A character sent from the master station consists of a start bit, a programmed number of data bits, an 
address/data (A/D) bit flag, and a programmed number of stop bits. A/D equals 1 indicates an address 
character; A/D equals 0 indicates a data character. The polarity of A/D is selected through UMR1n[PT]. 
UMR1n should be programmed before enabling the transmitter and loading the corresponding data bits 
into the transmit buffer.

In multidrop mode, the receiver continuously monitors the received data stream, regardless of whether it 
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discarded if the received A/D bit is 0 (data tag). If the receiver is enabled, all received characters are 
transferred to the CPU through the receiver holding register during read operations.

In either case, data bits load into the data portion of the FIFO while the A/D bit loads into the status portion 
of the FIFO normally used for a parity error (USRn[PE]).

Framing error, overrun error, and break detection operate normally. The A/D bit takes the place of the 
parity bit; therefore, parity is neither calculated nor checked. Messages in this mode may continues 
containing error detection and correction information. If 8-bit characters are not required, one way to 
provide error detection is to use software to calculate parity and append it to the 5-, 6-, or 7-bit character.

41.4.5 Single-Wire Mode with Polarity Control

Single-wire mode is supported on this device by using registers in Chapter 15, “Pin-Multiplexing and 
Control.”

• URTS_POL and UCTS_POL registers — Control the polarity of the UnRTS and UnCTS outputs 
of UART0–2. This allows the UART interface to connect to serial transceivers (e.g. RS232, RS485, 
and RS422) that require active low enables for direction control.

• UTXD_WOM register — Enables single-wire mode for each of the nine UART modules. In 
single-wire mode the UnRXD signal is not required, and the UnTXD signal is used for transmit 
and receive for half duplex communication. This frees the UnRXD pin to be used as an alternate 
function or GPIO. The receive data path for each UART is internally connected to the UnTXD pin.

• URXD_WOM register — Controls whether the internal UnRXD connection to UnTXD pin is 
automatic (controlled by the RTS signal) or manual (bit controlled).

NOTE
Enabling single wire mode (UTXD_WOM) also enables wired-OR mode on 
the UnTXD pins, enabling them for peer-to-peer multidrop mode. The 
following figure depicts an example network in single-wire mode.
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Figure 41-25. Single-Wire Mode

41.4.6 Bus Operation

This section describes bus operation during read, write, and interrupt acknowledge cycles to the UART 
module.

41.4.6.1 Read Cycles

The UART module responds to reads with byte data. Reserved registers return zeros.

41.4.6.2 Write Cycles

The UART module accepts write data as bytes only. Write cycles to read-only or reserved registers 
complete normally without an error termination, but data is ignored.

41.5 Initialization/Application Information
The software flowchart, Figure 41-26, consists of:

• UART module initialization—These routines consist of SINIT and CHCHK (See Sheet 1 p. 41-31 
and Sheet 2 p. 41-32). Before SINIT is called at system initialization, the calling routine allocates 
2 words on the system FIFO. On return to the calling routine, SINIT passes UART status data on 
the FIFO. If SINIT finds no errors, the transmitter and receiver are enabled. SINIT calls CHCHK 
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for the following errors:
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— Parity error

— Incorrect character received

• I/O driver routine—This routine (See Sheet 4 p. 41-34 and Sheet 5 p. 41-35) consists of INCH, the 
terminal input character routine which gets a character from the receiver, and OUTCH, which 
sends a character to the transmitter. 

• Interrupt handling—This consists of SIRQ (See Sheet 4 p. 41-34), which is executed after the 
UART module generates an interrupt caused by a change-in-break (beginning of a break). SIRQ 
then clears the interrupt source, waits for the next change-in-break interrupt (end of break), clears 
the interrupt source again, then returns from exception processing to the system monitor.

41.5.1 Interrupt and DMA Request Initialization

41.5.1.1 Setting up the UART to Generate Core Interrupts

The list below provides steps to properly initialize the UART to generate an interrupt request to the 
processor’s interrupt controller. See Section 17.2.9.1, “Interrupt Sources,” for details on interrupt 
assignments for the UART modules.

1. Initialize the appropriate ICRx register in the interrupt controller.

2. Unmask appropriate bits in IMR in the interrupt controller.

3. Unmask appropriate bits in the core’s status register (SR) to enable interrupts.

4. If TXRDY or RXRDY generates interrupt requests, verify that the corresponding UART DMA 
channels are not enabled.

5. Initialize interrupts in the UART, see Table 41-14.

41.5.1.2 Setting up the UART to Request DMA Service

The UART is capable of generating two internal DMA request signals: transmit and receive.

The transmit DMA request signal is asserted when the TXRDY (transmitter ready) in the UART interrupt 
status register (UISRn[TXRDY]) is set. When the transmit DMA request signal is asserted, the DMA can 
initiate a data copy, reading the next character transmitted from memory and writing it into the UART 
transmit buffer (UTBn). This allows the DMA channel to stream data from memory to the UART for 
transmission without processor intervention. After the entire message has been moved into the UART, the 
DMA would typically generate an end-of-data-transfer interrupt request to the CPU. The resulting 

Table 41-14. UART Interrupts

Register Bit Interrupt

UMR1n 6 RxIRQ

UIMRn 7 Change of State (COS)

UIMRn 2 Delta Break

UIMRn 1 RxFIFO Full

UIMRn 0 TXRDY
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interrupt service routine (ISR) could query the UART programming model to determine the 
end-of-transmission status.

Similarly, the receive DMA request signal is asserted when the FIFO full or receive ready 
(FFULL/RXRDY) flag in the interrupt status register (UISRn[FFULL/RXRDY]) is set. When the receive 
DMA request signal is asserted, the DMA can initiate a data move, reading the appropriate characters from 
the UART receive buffer (URBn) and storing them in memory. This allows the DMA channel to stream 
data from the UART receive buffer into memory without processor intervention. After the entire message 
has been moved from the UART, the DMA would typically generate an end-of-data-transfer interrupt 
request to the CPU. The resulting interrupt service routine (ISR) should query the UART programming 
model to determine the end-of-transmission status. In typical applications, the receive DMA request 
should be configured to use RXRDY directly (and not FFULL) to remove any complications related to 
retrieving the final characters from the FIFO buffer.

The implementation described in this section allows independent DMA processing of transmit and receive 
data while continuing to support interrupt notification to the processor for CTS change-of-state and delta 
break error managing.

Table 41-15 shows the DMA requests.

41.5.2 UART Module Initialization Sequence

The following shows the UART module initialization sequence.

1. UCRn:

a) Reset the receiver and transmitter.

b) Reset the mode pointer (MISC[2–0] = 0b001).

2. UIMRn: Enable the desired interrupt sources.

3. UACRn: Initialize the input enable control (IEC bit).

4. UCSRn: Select the receiver and transmitter clock. Use timer as source if required.

5. UMR1n:

a) If preferred, program operation of receiver ready-to-send (RXRTS bit).

a) Select receiver-ready or FIFO-full notification (RXRDY/FFULL bit).

b) Select character or block error mode (ERR bit).

c) Select parity mode and type (PM and PT bits).

d) Select number of bits per character (B/Cx bits).

6. UMR2n:

a) Select the mode of operation (CM bits).

b) If preferred, program operation of transmitter ready-to-send (TXRTS).

Table 41-15. UART DMA Requests

Register Bit DMA Request

UISRn 1 Receive DMA request

UISRn 0 Transmit DMA request
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c) If preferred, program operation of clear-to-send (TXCTS bit).

d) Select stop-bit length (SB bits).

7. UCRn: Enable transmitter and/or receiver.

Figure 41-26. UART Mode Programming Flowchart (Sheet 1 of 5)
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Figure 41-26. UART Mode Programming Flowchart (Sheet 2 of 5)
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Figure 41-26. UART Mode Programming Flowchart (Sheet 3 of 5)
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Figure 41-26. UART Mode Programming Flowchart (Sheet 4 of 5)
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Figure 41-26. UART Mode Programming Flowchart (Sheet 5 of 5)
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Chapter 42  
I2C Interface

42.1 Introduction
This chapter describes the I2C module, clock synchronization, and I2C programming model registers. It 
also provides extensive programming examples.

NOTE
This device contains six I2C modules, I2C0–5. The designation ‘n’, with 
n = 0–5, is used throughout this chapter to refer to registers and signals 
associated with the six identical I2C modules.
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42.1.1 Block Diagram

Figure 42-1 is a I2C module block diagram, illustrating the interaction of the registers described in 
Section 42.2, “Memory Map/Register Definition”.

Figure 42-1. I2C Module Block Diagram

42.1.2 Overview

I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange, 
minimizing the interconnection between devices. This bus is suitable for applications that require 
occasional communication between many devices over a short distance. The flexible I2C bus allows 
additional devices to connect to the bus for expansion and system development.

The interface operates up to 100 Kbps with maximum bus loading and timing. The device is capable of 
operating at higher baud rates, up to a maximum of the internal bus clock divided by 20, with reduced bus 
loading. The maximum communication length and the number of devices connected are limited by a 
maximum bus capacitance of 400 pF.

The I2C system is a true multiple-master bus; it uses arbitration and collision detection to prevent data 
corruption in the event that multiple devices attempt to control the bus simultaneously. This  supports 
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complex applications with multiprocessor control and can be used for rapid testing and alignment of end 
products through external connections to an assembly-line computer.

NOTE
The I2C module is compatible with the Philips I2C bus protocol. For 
information on system configuration, protocol, and restrictions, see The I2C 
Bus Specification, Version 2.1.

NOTE
The GPIO module must be configured to enable the peripheral function of 
the appropriate pins (refer to Chapter 15, “Pin-Multiplexing and Control”) 
prior to configuring the I2C module.

42.1.3 Features

The I2C module has these key features:

• Compatibility with I2C bus standard version 2.1

• Multiple-master operation

• Software-programmable for one of 50 different serial clock frequencies

• Software-selectable acknowledge bit

• Interrupt-driven, byte-by-byte data transfer

• Arbitration-lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• START and STOP signal generation/detection

• Repeated START signal generation

• Acknowledge bit generation/detection

• Bus-busy detection
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42.2 Memory Map/Register Definition
The below table lists the configuration registers used in the I2C interfaces.

Table 42-1. I2C Module Memory Map

Address

Register Access Reset Value Section/Page
I2C0
I2C1

...
I2C5

0xFC05_8000
0xFC03_8000
0xEC01_0000
0xEC01_4000
0xEC01_8000
0xEC01_C000

I2C Address Register (I2ADRn) R/W 0x00 42.2.1/42-5

0xFC05_8004
0xFC03_8004
0xEC01_0004
0xEC01_4004
0xEC01_8004
0xEC01_C004

I2C Frequency Divider Register (I2FDRn) R/W 0x00 42.2.2/42-5

0xFC05_8008
0xFC03_8008
0xEC01_0008
0xEC01_4008
0xEC01_8008
0xEC01_C008

I2C Control Register (I2CRn) R/W 0x00 42.2.3/42-6

0xFC05_800C
0xFC03_800C
0xEC01_000C
0xEC01_400C
0xEC01_800C
0xEC01_C00C

I2C Status Register (I2SRn) R/W 0x81 42.2.4/42-8

0xFC05_8010
0xFC03_8010
0xEC01_0010
0xEC01_4010
0xEC01_8010
0xEC01_C010
0xEC02_0010
0xEC02_4010

I2C Data I/O Register (I2DRn) R/W 0x00 42.2.5/42-9
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42.2.1 I2C Address Register (I2ADRn)

I2ADRn holds the address the I2C responds to when addressed as a slave. It is not the address sent on the 
bus during the address transfer when the module is performing a master transfer.

42.2.2 I2C Frequency Divider Register (I2FDRn)

The I2FDRn, shown in Figure 42-3, provides a programmable prescaler to configure the I2C clock for 
bit-rate selection.

Address: 0xFC05_8000 (I2ADR0)
0xFC03_8000 (I2ADR1)
0xEC01_0000 (I2ADR2)

0xEC01_4000 (I2ADR3)
0xEC01_8000 (I2ADR4)
0xEC01_C000 (I2ADR5)

Access: User read/write

7 6 5 4 3 2 1 0

R
ADR

0

W

Reset: 0 0 0 0 0 0 0 0

Figure 42-2. I2C Address Register (I2ADRn)

Table 42-2. I2ADRn Field Descriptions

Field Description

7–1
ADR

Slave address. Contains the specific slave address to be used by the I2C module. Slave mode is the default I2C 
mode for an address match on the bus.

0 Reserved, must be cleared.

Address: 0xFC05_8004 (I2FDR0)
0xFC03_8004 (I2FDR1)
0xEC01_0004 (I2FDR2)

0xEC01_4004 (I2FDR3)
0xEC01_8004 (I2FDR4)
0xEC01_C004 (I2FDR5)

Access: User read/write

7 6 5 4 3 2 1 0

R 0 0
IC

W

Reset: 0 0 0 0 0 0 0 0

Figure 42-3. I2C Frequency Divider Register (I2FDRn)
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42.2.3 I2C Control Register (I2CRn)

I2CRn enables the I2C module and the I2C interrupt. It also contains bits that govern operation as a slave 
or a master.

Table 42-3. I2FDRn Field Descriptions

Field Description

7–6 Reserved, must be cleared.

5–0
IC

I2C clock rate. Prescales the clock for bit-rate selection. The serial bit clock frequency is equal to the internal bus 
clock divided by the divider shown below. Due to potentially slow I2Cn_SCL and I2Cn_SDA rise and fall times, bus 
signals are sampled at the prescaler frequency.

Address: 0xFC05_8008 (I2CR0)
0xFC03_8008 (I2CR1)
0xEC01_0008 (I2CR2)

0xEC01_4008 (I2CR3)
0xEC01_8008 (I2CR4)
0xEC01_C008 (I2CR5)

Access: User read/write

7 6 5 4 3 2 1 0

R
IEN IIEN MSTA MTX TXAK RSTA

0
DMAEN

W

Reset: 0 0 0 0 0 0 0 0

Figure 42-4. I2C Control Register (I2CRn)

IC Divider IC Divider IC Divider IC Divider

0x00 28 0x10 288 0x20 20 0x30 160

0x01 30 0x11 320 0x21 22 0x31 192

0x02 34 0x12 384 0x22 24 0x32 224

0x03 40 0x13 480 0x23 26 0x33 256

0x04 44 0x14 576 0x24 28 0x34 320

0x05 48 0x15 640 0x25 32 0x35 384

0x06 56 0x16 768 0x26 36 0x36 448

0x07 68 0x17 960 0x27 40 0x37 512

0x08 80 0x18 1152 0x28 48 0x38 640

0x09 88 0x19 1280 0x29 56 0x39 768

0x0A 104 0x1A 1536 0x2A 64 0x3A 896

0x0B 128 0x1B 1920 0x2B 72 0x3B 1024

0x0C 144 0x1C 2304 0x2C 80 0x3C 1280

0x0D 160 0x1D 2560 0x2D 96 0x3D 1536

0x0E 192 0x1E 3072 0x2E 112 0x3E 1792

0x0F 240 0x1F 3840 0x2F 128 0x3F 2048
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Table 42-4. I2CRn Field Descriptions

Field Description

7
IEN

I2C enable. Controls the software reset of the entire I2C module. If the module is enabled in the middle of a byte 
transfer, slave mode ignores the current bus transfer and starts operating when the next START condition is 
detected. Master mode is not aware that the bus is busy; initiating a start cycle may corrupt the current bus cycle, 
ultimately causing the current master or the I2C module to lose arbitration, after which bus operation returns to 
normal.
0 The I2C module is disabled, but registers can be accessed.
1 The I2C module is enabled. This bit must be set before any other I2CRn bits have any effect.

6
IIEN

I2C interrupt enable. If DMAEN is cleared, then this bit enables an interrupt request.
0 I2C module interrupts are disabled, but currently pending interrupt condition is not cleared.
1 If DMAEN is cleared, I2C module interrupts are enabled. An I2C interrupt occurs if I2SRn[IIF] is also set. If DMAEN 

is set, a DMA request is generated instead.
Note: To set the IIF flag in the I2CRn register, IIEN must also be set. For software polling, the appropriate I2C bit in 

the IMRLn/IMRHn register must be set. To disable software polling, the bit must be cleared.

5
MSTA

Master/slave mode select bit. If the master loses arbitration, MSTA is cleared without generating a STOP signal.
0 Slave mode. Changing MSTA from 1 to 0 generates a STOP and selects slave mode.
1 Master mode. Changing MSTA from 0 to 1 signals a START on the bus and selects master mode. 

4
MTX

Transmit/receive mode select bit. Selects the direction of master and slave transfers. 
0 Receive
1 Transmit. When the device is addressed as a slave, software must set MTX according to I2SRn[SRW]. In master 

mode, MTX must be set according to the type of transfer required. Therefore, when the MCU addresses a slave 
device, MTX is always 1. 

3
TXAK

Transmit acknowledge enable. Specifies the value driven onto I2Cn_SDA during acknowledge cycles for master and 
slave receivers. Writing TXAK applies only when the I2C bus is a receiver.
0 An acknowledge signal is sent to the bus at the ninth clock bit after receiving one byte of data.
1 No acknowledge signal response is sent (acknowledge bit = 1).

2
RSTA

Repeat start. Always read as 0. Attempting a repeat start without bus mastership causes loss of arbitration.
0 No repeat start
1 Generates a repeated START condition.

1 Reserved, must be cleared.

0
DMAEN

DMA request enable. Enables the I2C DMA request if I2CR[IIEN] is set. When a single-byte master-mode transfer 
completes a DMA request is sent to the DMA controller.
0 Disable DMA request. Interrupt requests are used instead, if IIEN is set.
1 If IIEN is set, enable DMA request



I2C Interface

NXP Semiconductors 42-8

42.2.4 I2C Status Register (I2SRn)

I2SRn contains bits that indicate transaction direction and status.

Address: 0xFC05_800C (I2SR0)
0xFC03_800C (I2SR1)
0xEC01_000C (I2SR2)

0xEC01_400C (I2SR3)
0xEC01_800C (I2SR4)
0xEC01_C00C (I2SR5)

Access: User read/write

7 6 5 4 3 2 1 0

R ICF IAAS IBB
IAL

0 SRW
IIF

RXAK

W

Reset: 1 0 0 0 0 0 0 1

Figure 42-5.  I2C Status Register (I2SRn)

Table 42-5. I2SRn Field Descriptions

Field Description

7
ICF

I2C Data transferring bit. While one byte of data is transferred, ICF is cleared. 
0 Transfer in progress
1 Transfer complete. Set by falling edge of ninth clock of a byte transfer.

6
IAAS

I2C addressed as a slave bit. The CPU is interrupted if I2CRn[IIEN] is set and I2CR[DMAEN] is cleared. Next, the 
CPU must check SRW and set its TX/RX mode accordingly. Writing to I2CRn clears this bit. 
0 Not addressed. 
1 Addressed as a slave. Set when its own address (IADR) matches the calling address.

5
IBB

I2C bus busy bit. Indicates the status of the bus. 
0 Bus is idle. If a STOP signal is detected, IBB is cleared.
1 Bus is busy. When START is detected, IBB is set.

4
IAL

I2C arbitration lost. Set by hardware in the following circumstances. (IAL must be cleared by software by writing zero 
to it.) 
 • I2Cn_SDA sampled low when the master drives high during an address or data-transmit cycle.
 • I2Cn_SDA sampled low when the master drives high during the acknowledge bit of a data-receive cycle.
 • A start cycle is attempted when the bus is busy.
 • A repeated start cycle is requested in slave mode.
 • A stop condition is detected when the master did not request it.

3 Reserved, must be cleared.

2
SRW

Slave read/write. When IAAS is set, SRW indicates the value of the R/W command bit of the calling address sent 
from the master. SRW is valid only when a complete transfer has occurred, no other transfers have been initiated, 
and the I2C module is a slave and has an address match. 
0 Slave receive, master writing to slave.
1 Slave transmit, master reading from slave.
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42.2.5 I2C Data I/O Register (I2DRn)

In master-receive mode, reading I2DRn allows a read to occur and for the next data byte to be received. In 
slave mode, the same function is available after the I2C has received its slave address.

42.3 Functional Description
The I2C module uses a serial data line (I2Cn_SDA) and a serial clock line (I2Cn_SCL) for data transfer. 
For I2C compliance, all devices connected to these two signals must have open drain or open collector 
outputs. The logic AND function is exercised on both lines with external pull-up resistors.

1
IIF

I2C interrupt. Must be cleared by software by writing a 0 in the interrupt routine.
0 No I2C interrupt pending
1 An interrupt is pending, which causes a processor interrupt request (if IIEN = 1 and DMAEN = 0). Set when one 

of the following occurs:
 • Complete one byte transfer (set at the falling edge of the ninth clock)
 • Reception of a calling address that matches its own specific address in slave-receive mode
 • Arbitration lost

0
RXAK

Received acknowledge. The value of I2Cn_SDA during the acknowledge bit of a bus cycle. 
0 An acknowledge signal was received after the completion of 8-bit data transmission on the bus
1 No acknowledge signal was detected at the ninth clock.

Address: 0xFC05_8010 (I2DR0)
0xFC03_8010 (I2DR1)
0xEC01_0010 (I2DR2)

0xEC01_4010(I2DR3)
0xEC01_8010 (I2DR4)
0xEC01_C010 (I2DR5)

Access: User read/write

7 6 5 4 3 2 1 0

R
DATA

W

Reset: 0 0 0 0 0 0 0 0

Figure 42-6. I2C Data I/O Register (I2DRn)

Table 42-6. I2DRn Field Description

Field Description

7–0
DATA

I2C data. When data is written to this register in master transmit mode, a data transfer is initiated. The most significant 
bit is sent first. In master receive mode, reading this register initiates the reception of the next byte of data. In slave 
mode, the same functions are available after an address match has occurred.
Note: In master transmit mode, the first byte of data written to I2DRn following assertion of I2CRn[MSTA] is used for 

the address transfer and should comprise the calling address (in position D7–D1) concatenated with the 
required R/W bit (in position D0). This bit (D0) is not automatically appended by the hardware, software must 
provide the appropriate R/W bit. 

Note: I2CRn[MSTA] generates a start when a master does not already own the bus. I2CRn[RSTA] generates a start 
(restart) without the master first issuing a stop (i.e., the master already owns the bus). To start the read of data, 
a dummy read to this register starts the read process from the slave. The next read of the I2DRn register 
contains the actual data.

Table 42-5. I2SRn Field Descriptions (continued)

Field Description
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Out of reset, the I2C default state is as a slave receiver. Therefore, when not programmed to be a master or 
responding to a slave transmit address, the I2C module should return to the default slave receiver state. See 
Section 42.4.1, “Initialization Sequence,” for exceptions.

Normally, a standard communication is composed of four parts: START signal, slave address transmission, 
data transfer, and STOP signal. These are discussed in the following sections.

42.3.1 START Signal

When no other device is bus master (I2Cn_SCL and I2Cn_SDA lines are at logic high), a device can 
initiate communication by sending a START signal (see A in Figure 42-7). A START signal is defined as 
a high-to-low transition of I2Cn_SDA while I2Cn_SCL is high. This signal denotes the beginning of a data 
transfer (each data transfer can be several bytes long) and awakens all slaves.

Figure 42-7. I2C Standard Communication Protocol

42.3.2 Slave Address Transmission

The master sends the slave address in the first byte after the START signal (B). After the seven-bit calling 
address, it sends the R/W bit (C), which tells the slave data transfer direction (0 equals write transfer, 1 
equals read transfer).

Each slave must have a unique address. An I2C master must not transmit its own slave address; it cannot 
be master and slave at the same time. 

The slave whose address matches that sent by the master pulls I2Cn_SDA low at the ninth serial clock (D) 
to return an acknowledge bit.

42.3.3 Data Transfer

When successful slave addressing is achieved, data transfer can proceed (see E in Figure 42-7) on a 
byte-by-byte basis in the direction specified by the R/W bit sent by the calling master. 

Data can be changed only while I2Cn_SCL is low and must be held stable while I2Cn_SCL is high, as 
Figure 42-7 shows. I2Cn_SCL is pulsed once for each data bit, with the msb being sent first. The receiving 
device must acknowledge each byte by pulling I2Cn_SDA low at the ninth clock; therefore, a data byte 
transfer takes nine clock pulses. See Figure 42-8.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 89 9

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W XXX D7 D6 D5 D4 D3 D2 D1 D0

Calling Address
R/W ACK

Bit

Data Byte
No

ACK
Bit

STOP
Signal

lsbmsblsbmsb

START
Signal

A

B DC
E

F

Interrupt bit set
(Byte complete)

I2Cn_SCL

I2Cn_SDA

I2Cn_SCL held low 
while Interrupt is serviced
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Figure 42-8. Data Transfer

42.3.4 Acknowledge

The transmitter releases the I2Cn_SDA line high during the acknowledge clock pulse as shown in 
Figure 42-9. The receiver pulls down the I2Cn_SDA line during the acknowledge clock pulse so that it 
remains stable low during the high period of the clock pulse. 

If it does not acknowledge the master, the slave receiver must leave I2Cn_SDA high. The master can then 
generate a STOP signal to abort data transfer or generate a START signal (repeated start, shown in 
Figure 42-10 and discussed in Section 42.3.6, “Repeated START”) to start a new calling sequence. 

Figure 42-9. Acknowledgment by Receiver

If the master receiver does not acknowledge the slave transmitter after a byte transmission, it means 
end-of-data to the slave. The slave releases I2Cn_SDA for the master to generate a STOP or START signal 
(Figure 42-9).

42.3.5 STOP Signal

The master can terminate communication by generating a STOP signal to free the bus. A STOP signal is 
defined as a low-to-high transition of I2Cn_SDA while I2Cn_SCL is at logical high (see F in Figure 42-7). 
The master can generate a STOP even if the slave has generated an acknowledgment, at which point the 
slave must release the bus. The master may also generate a START signal following a calling address, 
without first generating a STOP signal. Refer to Section 42.3.6, “Repeated START.”
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42.3.6 Repeated START

A repeated START signal is a START signal generated without first generating a STOP signal to terminate 
the communication, as shown in Figure 42-10. The master uses a repeated START to communicate with 
another slave or with the same slave in a different mode (transmit/receive mode) without releasing the bus.

Figure 42-10. Repeated START

Various combinations of read/write formats are then possible:

• The first example in Figure 42-11 is the case of master-transmitter transmitting to slave-receiver. 
The transfer direction is not changed. 

• The second example in Figure 42-11 is the master reading the slave immediately after the first byte. 
At the moment of the first acknowledge, the master-transmitter becomes a master-receiver and the 
slave-receiver becomes slave-transmitter. 

• In the third example in Figure 42-11, START condition and slave address are repeated using the 
repeated START signal. This is to communicate with same slave in a different mode without 
releasing the bus. The master transmits data to the slave first, and then the master reads data from 
slave by reversing the R/W bit. 
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AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

9 9

XX

New Calling Address R/W No 
ACK 

Bit

STOP
Signal

Repeated
START
Signal

ACK
Bit

R/WCalling AddressSTART

msb lsb msb lsb

Signal
A

I2Cn_SCL

I2Cn_SDA



I2C Interface

42-13 NXP Semiconductors

Figure 42-11. Data Transfer, Combined Format 

42.3.7 Clock Synchronization and Arbitration

I2C is a true multi-master bus that allows more than one master connected to it. If two or more master 
devices simultaneously request control of the bus, a clock synchronization procedure determines the bus 
clock. Because wire-AND logic is performed on the I2Cn_SCL line, a high-to-low transition on the 
I2Cn_SCL line affects all the devices connected on the bus. The devices start counting their low period 
and after a device’s clock has gone low, it holds the I2Cn_SCL line low until the clock high state is reached. 
However, change of low to high in this device’s clock may not change the state of the I2Cn_SCL line if 
another device clock remains within its low period. Therefore, synchronized clock I2Cn_SCL is held low 
by the device with the longest low period. 

Devices with shorter low periods enter a high wait state during this time (see Figure 42-12). When all 
devices concerned have counted off their low period, the synchronized clock (I2Cn_SCL) line is released 
and pulled high. At this point, the device clocks and the I2Cn_SCL line are synchronized, and the devices 
start counting their high periods. The first device to complete its high period pulls the I2Cn_SCL line low 
again.
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Data

ST = Start
SP = Stop

A = Acknowledge (I2Cn_SDA low)
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Figure 42-12. Clock Synchronization

A data arbitration procedure determines the relative priority of the contending masters. A bus master loses 
arbitration if it transmits logic 1 while another master transmits logic 0. The losing masters immediately 
switch over to slave receive mode and stop driving I2Cn_SDA output (see Figure 42-13). In this case, 
transition from master to slave mode does not generate a STOP condition. Meanwhile, hardware sets 
I2SRn[IAL] to indicate loss of arbitration.

Figure 42-13. Arbitration Procedure

42.3.8 Handshaking and Clock Stretching

The clock synchronization mechanism can acts as a handshake in data transfers. Slave devices can hold 
I2Cn_SCL low after completing one byte transfer. In such a case, the clock mechanism halts the bus clock 
and forces the master clock into wait states until the slave releases I2Cn_SCL.

Slaves may also slow down the transfer bit rate. After the master has driven I2Cn_SCL low, the slave can 
drive I2Cn_SCL low for the required period and then release it. If the slave I2Cn_SCL low period is longer 
than the master I2Cn_SCL low period, the resulting I2Cn_SCL bus signal low period is stretched.

42.4 Initialization/Application Information
The following examples show programming for initialization, signaling START, post-transfer software 
response, signaling STOP, and generating a repeated START. 

Internal Counter Reset

Wait Start counting high period

I2Cn_SCL1

I2Cn_SCL2

I2Cn_SCL

Master 2 Loses Arbitration,
and becomes slave-receiver

I2Cn_SCL

I2Cn_SDA 
by Master1

I2Cn_SDA 
by Master2

I2Cn_SDA
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42.4.1 Initialization Sequence

Before the interface can transfer serial data, registers must be initialized:

1. Set I2FDRn[IC] to obtain I2Cn_SCL frequency from the system bus clock. See Section 42.2.2, 
“I2C Frequency Divider Register (I2FDRn).”

2. Update the I2ADRn to define its slave address.

3. Set I2CRn[IEN] to enable the I2C bus interface system.

4. Modify the I2CRn to select or deselect master/slave mode, transmit/receive mode, and 
interrupt/DMA-enable or not.

NOTE
If I2SRn[IBB] is set when the I2C bus module is enabled, execute the 
following pseudocode sequence before proceeding with normal 
initialization code. This issues a STOP command to the slave device, 
placing it in idle state as if it were power-cycled on. 

I2CRn = 0x0
I2CRn = 0xA0
dummy read of I2DRn
I2SRn = 0x0
I2CRn = 0x0

I2CRn = 0x80 ; re-enable

42.4.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting the master 
transmitter mode. On a multiple-master bus system, I2SRn[IBB] must be tested to determine whether the 
serial bus is free. If the bus is free (IBB is cleared), the START signal and the first byte (the slave address) 
can be sent. The data written to the data register comprises the address of the desired slave and the lsb 
indicates the transfer direction.

The free time between a STOP and the next START condition is built into the hardware that generates the 
START cycle. Depending on the relative frequencies of the system clock and the I2Cn_SCL period, the 
processor may need to wait until the I2C is busy after writing the calling address to the I2DRn before 
proceeding with the following instructions.

The following example signals START and transmits the first byte of data (slave address): 

1. Check I2SRn[IBB]. If it is set, wait until it is clear.

2. After cleared, set to transmit mode by setting I2CRn[MTX].

3. Set master mode by setting I2CRn[MSTA]. This generates a START condition.

4. Transmit the calling address via the I2DRn.

5. Check I2SRn[IBB]. If it is clear, wait until it is set and go to step #1.
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42.4.3 Post-Transfer Software Response

Sending or receiving a byte sets the I2SRn[ICF], which indicates one byte communication is finished. 
I2SRn[IIF] is also set. An interrupt is generated if the interrupt function is enabled during initialization by 
setting I2CRn[IIEN] and clearing I2CR[DMAEN]. Software must first clear I2SRn[IIF] in the interrupt 
routine. Reading from I2DRn in receive mode or writing to I2DRn in transmit mode can clear I2SRn[ICF].

Software can service the I2C I/O in the main program by monitoring the IIF bit if the interrupt function is 
disabled. Polling should monitor IIF rather than ICF, because that operation is different when arbitration 
is lost.

When an interrupt occurs at the end of the address cycle, the master is always in transmit mode; the address 
is sent. If master receive mode is required, I2CRn[MTX] should be toggled.

During slave-mode address cycles (I2SRn[IAAS] = 1), I2SRn[SRW] is read to determine the direction of 
the next transfer. MTX is programmed accordingly. For slave-mode data cycles (IAAS = 0), SRW is 
invalid. MTX should be read to determine the current transfer direction.

The following is an example of a software response by a master transmitter in the interrupt routine (see 
Figure 42-14).

1. Clear the I2CRn[IIF] flag.

2. Check if acknowledge has been received, I2SRn[RXAK].

3. If no ACK, end transmission. Else, transmit next byte of data via I2DRn.

42.4.4 Generation of STOP

A data transfer ends when the master signals a STOP, which can occur after all data is sent, as in the 
following example.

1. Check if acknowledge has been received, I2SRn[RXAK]. If no ACK, end transmission and go to 
step #5.

2. Get value from transmitting counter, TXCNT. If no more data, go to step #5.

3. Transmit next byte of data via I2DRn.

4. Decrement TXCNT and go to step #1

5. Generate a stop condition by clearing I2CRn[MSTA].

For a master receiver to terminate a data transfer, it must inform the slave transmitter by not 
acknowledging the last data byte. This is done by setting I2CRn[TXAK] before reading the next-to-last 
byte. Before the last byte is read, a STOP signal must be generated, as in the following example.

1. Decrement RXCNT.

2. If last byte (RXCNT = 0) go to step #4.

3. If next to last byte (RXCNT = 1), set I2CRn[TXAK] to disable ACK and go to step #5.

4. This is last byte, so clear I2CRn[MSTA] to generate a STOP signal.

5. Read data from I2DRn.

6. If there is more data to be read (RXCNT  0), go to step #1 if desired.
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42.4.5 Generation of Repeated START

If the master wants the bus after the data transfer, it can signal another START followed by another slave 
address without signaling a STOP, as in the following example.

1. Generate a repeated START by setting I2CRn[RSTA].

2. Transmit the calling address via I2DRn.

42.4.6 Slave Mode

In the slave interrupt service routine, software must poll the I2SRn[IAAS] bit to determine if the controller 
has received its slave address. If IAAS is set, software must set the transmit/receive mode select bit 
(I2CRn[MTX]) according to the I2SRn[SRW]. Writing to I2CRn clears IAAS automatically. The only 
time IAAS is read as set is from the interrupt at the end of the address cycle where an address match 
occurred; interrupts resulting from subsequent data transfers have IAAS cleared. A data transfer can now 
be initiated by writing information to I2DRn for slave transmits, or read from I2DRn in slave-receive 
mode. A dummy read of I2DRn in slave/receive mode releases I2Cn_SCL, allowing the master to send 
data.

In the slave transmitter routine, I2SRn[RXAK] must be tested before sending the next byte of data. Setting 
RXAK means an end-of-data signal from the master receiver, after which software must switch it from 
transmitter to receiver mode. Reading I2DRn releases I2Cn_SCL so the master can generate a STOP 
signal.

42.4.7 Arbitration Lost

If several devices try to engage the bus at the same time, one becomes master. Hardware immediately 
switches devices that lose arbitration to slave receive mode. Data output to I2Cn_SDA stops, but 
I2Cn_SCL continues generating until the end of the byte during which arbitration is lost. An interrupt 
occurs at the falling edge of the ninth clock of this transfer with I2SRn[IAL] set and 
I2CRn[MSTA] cleared.

If a non-master device tries to transmit or execute a START, hardware inhibits the transmission, clears 
MSTA without signaling a STOP, generates an interrupt to the CPU, and sets IAL to indicate a failed 
attempt to engage the bus. When considering these cases, slave service routine should first test IAL and 
software should clear it if it is set.
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Figure 42-14. Flow-Chart of Typical I2C Interrupt Routine
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Chapter 43  
Debug Module

43.1 Introduction
This chapter describes the revision D+ enhanced hardware debug module.

43.1.1 Block Diagram

The debug module is shown in Figure 43-1.

Figure 43-1. Processor/Debug Module Interface

43.1.2 Overview

Debug support is divided into three areas:

• Real-time trace support—The ability to determine the dynamic execution path through an 
application is fundamental for debugging. The ColdFire solution implements an 8-bit parallel 
output bus that reports processor execution status and data to an external emulator system. See 
Section 43.4.4, “Real-Time Trace Support”. This device also implements a trace buffer (PSTB) 
that records processor execution status and data, which can be subsequently accessed by the 
external emulator system to provide program and data trace information. See Section 43.4.4, 
“Real-Time Trace Support”.

• Background debug mode (BDM)—Provides low-level debugging in the ColdFire processor 
complex. In BDM, the processor complex is halted and a variety of commands can be sent to the 
processor to access memory, registers, and peripherals. The external emulator uses a three-pin, 
serial, full-duplex channel. See Section 43.4.1, “Background Debug Mode (BDM),” and 
Section 43.3, “Memory Map/Register Definition”.

• Real-time debug support—BDM requires the processor to be halted, which many real-time 
embedded applications cannot do. Debug interrupts let real-time systems execute a unique service 
routine that can quickly save the contents of key registers and variables and return the system to 
normal operation. External development systems can access saved data, because the hardware 
supports concurrent operation of the processor and BDM-initiated commands. In addition, the 
option allows interrupts to occur. See Section 43.4.2, “Real-Time Debug Support”.

ColdFire CPU Core

Debug Module

High-speed

Communication Port
DSCLK, DSI, DSO

Control
BKPT

local bus

Trace Port
PSTDDATA[7:0]
PSTCLK
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The first version 2 ColdFire core devices implemented the original debug architecture, now called revision 
A. Based on feedback from customers and third-party developers, enhancements have been added to 
succeeding generations of ColdFire cores. For revision A, CSR[HRL] is 0. See Section 43.3.2, 
“Configuration/Status Register (CSR)”.

Revision B (and B+) of the debug architecture offers more flexibility for configuring the hardware 
breakpoint trigger registers and removing the restrictions involving concurrent BDM processing while 
hardware breakpoint registers are active. Revision B+ adds three additional PC breakpoint registers. For 
revision B, CSR[HRL] is 1, and for revision B+, CSR[HRL] is 0x9.

Revision C of the debug architecture more than doubles the on-chip breakpoint registers and provides an 
ability to interrupt debug service routines. This revision also combines the PST and DDATA signals into 
PSTDDATA[7:0]. Because real-time trace information appears as a sequence of 4-bit values, there are no 
alignment restrictions. In other words, PST values and operands may appear on either nibble of 
PSTDDATA. For revision C, CSR[HRL] is 2.

The addition of the memory management unit (MMU) to the baseline architecture requires corresponding 
enhancements to the ColdFire debug functionality, resulting in revision D. For revision D, the revision 
level bit, CSR[HRL], is 3.

With software support, the MMU can provide a demand-paged, virtual address environment. To support 
debugging in this virtual environment, the debug enhancements are primarily related to the expansion of 
the virtual address to include the 8-bit address space identifier (ASID). Conceptually, the virtual address 
is expanded to a 40-bit value: the 8-bit ASID plus the 32-bit address.

The expansion of the virtual address affects two major debug functions:

• The ASID is optionally included in the specification of the hardware breakpoint registers. As an 
example, the four PC breakpoint registers are each expanded by 8 bits, so that a specific ASID 
value may be programmed as part of the breakpoint instruction address. Likewise, each operand 
address/data breakpoint register is expanded to include an ASID value. Finally, control registers 
define if and how the ASID is to be included in the breakpoint comparison trigger logic.

• The debug module implements the concept of ownership trace in which the ASID value may be 
optionally displayed as part of the real-time trace functionality. When enabled, real-time trace 
displays instruction addresses on every change-of-flow instruction that is not absolute or 
PC-relative. For Rev. D, this instruction address display optionally includes the contents of the 
ASID, thus providing the complete instruction virtual address on these instructions. 

• Additionally when a SYNC_PC serial BDM command is loaded from the external development 
system, the processor optionally displays the complete virtual instruction address, including the 
8-bit ASID value.

In addition to these ASID-related changes, the MMU control registers are accessible by using serial BDM 
commands. The same BDM access capabilities are also provided for the EMAC  programming model.

Finally, a serial BDM command is implemented (FORCE_TA) to assist debugging when a software error 
generates an incorrect memory address that hangs the external bus. The BDM command attempts to break 
this condition by forcing a bus termination.
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Revision D+ adds the ignore pending interrupt bit (CSR[IPI]) for debug revision D. (This bit is included 
in revision A, B, and B+). For revision D+, the revision level (CSR[HRL]) is 0xB.

To supplement the existing real-time PST/DDATA trace included as part of the classic ColdFire debug 
architecture, Revision D+PSTB implements an on-chip trace buffer that records processor execution status 
and instruction addresses. The external emulator system can access this buffer for program trace 
information. The PST trace buffer (PSTB) records compressed processor execution status and debug data 
in a 128-packet memory that is mapped into the debug register programming model so the trace 
information can be retrieved via the 3-pin serial BDM interface. The PSTB supports programmable 
start/stop recording conditions, as well as special continuous and PC-profiling modes of operation along 
with normal recording.

Support for the PSTB functionality adds two debug control registers (the extended configuration/status 
register (XCSR) and configuration/status register 2 (CSR2)), the read-only PSTB data values, and BDM 
commands to access these new registers. For Revision D+PSTB, CSR[HRL] is 0xF and CSR2[D1HRL] 
is 0xD.

The following table summarizes the various debug revisions.

43.2 Signal Descriptions
Table 43-2 describes debug module signals. All ColdFire debug signals are unidirectional and related to a 
rising edge of the processor core’s clock signal. The standard 26-pin debug connector is shown in 
Section 43.4.6, “NXP-Recommended BDM Pinout”.

Table 43-1. Debug Revision Summary

Revision CSR[HRL]
CSR2

[D1HRL]
Enhancements

A 0000 — Initial debug revision

B 0001 — BDM command execution does not affect hardware breakpoint logic
Added BDM address attribute register (BAAR)
BKPT configurable interrupt (CSR[BKD])
Level 1 and level 2 triggers on OR condition, in addition to AND
SYNC_PC command to display the processor’s current PC

B+ 1001 — 3 additional PC breakpoint registers PBR1–3

C 0010 — Combined PST and DDATA signals
Adds breakpoint registers
Supports normal interrupt request service during debug
Redefinition of the PST values for the RTS instruction

D 0011 — MMU enhancements to support ASID
FORCE_TA command

D+ 1011 — Added CSR[IPI] for revision  D

D+PSTB 1111 1101 Added PST buffer
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43.2.1 Processor Status/Debug Data (PSTDDATA[7:0])

Processor status data outputs indicate processor status and captured address and data values. They operate 
at half the processor’s frequency. Given that real-time trace information appears as a sequence of 4-bit data 
values, there are no alignment restrictions; that is, the processor status (PST) values and operands may 
appear on either nibble of PSTDDATA[7:0]. The upper nibble (PSTDDATA[7:4]) is the more significant 
and yields values first. 

The CSR register controls capturing of data values to be presented on PSTDDATA. Executing the 
WDDATA instruction captures data that is displayed on PSTDDATA too. These signals are updated each 
processor cycle and display two values at a time for two processor clock cycles. Table 43-3 shows the 
PSTDDATA output for the processor’s sequential execution of single-cycle instructions (A, B, C, D...). 
Cycle counts are shown relative to processor frequency. These outputs indicate the current processor 
pipeline status and are not related to the current bus transfer.

Table 43-2. Debug Module Signals

Signal Description

Development Serial 
Clock (DSCLK)

Internally synchronized input. (The logic level on DSCLK is validated if it has the same value on two 
consecutive rising bus clock edges.) Clocks the serial communication port to the debug module 
during packet transfers. Maximum frequency is 1/5 the processor status clock (PSTCLK). At the 
synchronized rising edge of DSCLK, the data input on DSI is sampled and DSO changes state.

Development Serial 
Input (DSI)

Internally synchronized input that provides data input for the serial communication port to the debug 
module after the DSCLK has been seen as high (logic 1). 

Development Serial 
Output (DSO)

Provides serial output communication for debug module responses. DSO is registered internally. The 
output is delayed from the validation of DSCLK high.

Breakpoint (BKPT) Input requests a manual breakpoint. Assertion of BKPT puts the processor into a halted state after 
the current instruction completes. Halt status is reflected on processor status/debug data signals 
(PSTDDATA[7:0]) as multiple cycles of 0xF. If CSR[BKD] is set (disabling normal BKPT functionality), 
asserting BKPT generates a debug interrupt exception in the processor.

Processor Status 
Clock (PSTCLK)

Half-speed version of the processor clock. Its rising edge appears in the center of the 
two-processor-cycle window of valid PSTDDATA output. PSTCLK indicates when the development 
system should sample PSTDDATA values.
The following figure shows PSTCLK timing with respect to PSTDDATA.

If real-time trace is not used, setting CSR[PCD] keeps PSTCLK and PSTDDATA outputs from 
toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing 
CSR[PCD], although the external development systems must resynchronize with the PSTDDATA 
output.
PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs during 
system reset exception processing. Table 43-35 describes PST values.

Processor 
Status/Debug Data 
(PSTDDATA[7:0])

These outputs, which change on the negative edge of PSTCLK, indicate processor status and 
captured address and data values and are discussed more thoroughly in Section 43.2.1, “Processor 
Status/Debug Data (PSTDDATA[7:0]).”

PSTCLK

PSTDDATA
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The signal timing for the example in Table 43-3 is shown in Figure 43-2.

Figure 43-2. PSTDDATA: Single-Cycle Instruction Timing 

Table 43-4 shows the case where a PSTDDATA module captures a memory operand on a simple load 
instruction: move.l <mem>,Rx.

Table 43-3. PSTDDATA: Sequential Execution of Single-Cycle Instructions

Cycles PSTDDATA[7:0]

 T+0, T+1 {PST for A, PST for B}

 T+2, T+3 {PST for C, PST for D}

 T+4, T+5 {PST for E, PST for F}

Table 43-4. PSTDDATA: Data Operand Captured

Cycle PSTDDATA[7:0]

T {PST for move.l, PST marker for captured operand) = {0x1, 0xB}

T+1 {0x1, 0xB}

T+2 {Operand[3:0], Operand[7:4]}

T+3 {Operand[3:0], Operand[7:4]}

T+4 {Operand[11:8], Operand[15:12]}

T+5 {Operand[11:8], Operand[15:12]}

T+6 {Operand[19:16], Operand[23:20]}

T+7 {Operand[19:16], Operand[23:20]}

T+8 {Operand[27:24], Operand[31:28]}

T+9 {Operand[27:24], Operand[31:28]}

T+10 (PST for next instruction)

T+11 (PST for next instruction,...)

PSTDDATA

PSTCLK

{A, B} {C, D} {E, F}

Processor Clock

 T+0  T+1  T+2  T+3  T+4  T+5  T+6
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NOTE
A PST marker and its data display are sent contiguously. Except for this 
transmission, the IDLE status (0x0) can appear anytime. Again, given that 
real-time trace information appears as a sequence of 4-bit values, there are 
no alignment restrictions. That is, PST values and operands may appear on 
either nibble of PSTDDATA.

43.3 Memory Map/Register Definition
In addition to the existing BDM commands that provide access to the processor’s registers and the memory 
subsystem, the debug module contain a number of registers to support the required functionality. These 
registers are also accessible from the processor’s supervisor programming model by executing the 
WDEBUG instruction (write only). Therefore, the breakpoint hardware in debug module can be read or 
written by the external development system using the debug serial interface or written by the operating 
system running on the processor core. Software guarantees that accesses to these resources are serialized 
and logically consistent. Hardware provides a locking mechanism in CSR to allow external development 
system to disable any attempted writes by the processor to the breakpoint registers (setting CSR[IPW]). 
BDM commands must not be issued if the ColdFire processor is using the WDEBUG instruction to access 
debug module registers, or the resulting behavior is undefined. The DSCLK must be quiescent during 
operation of the WDEBUG command.

These registers, shown in Table 43-5, are treated as 32-bit quantities, regardless of the number of 
implemented bits. These registers are also accessed through the BDM port by the commands, WDMREG 
and RDMREG, described in Section 43.4.1.5, “BDM Command Set”. These commands contain a 5-bit field, 
DRc, that specifies the register, as shown in Table 43-5.

Table 43-5. Debug Module Memory Map

DRc[4–0] Register Name
Width
(bits)

Access Reset Value
Section/

Page

0x00 Configuration/status register (CSR) 32 R/W
See Note

0x00F0_0000 43.3.2/43-9

0x01 Extended configuration/status register (XCSR) 32 R/W
See Note

0x0000_0000 43.3.3/43-12

0x02 Configuration/status register 2 (CSR2) 32 R/W
See Note

See section 43.3.4/43-14

0x05 BDM address attribute register (BAAR) 321 W 0x05 43.3.5/43-16

0x06 Address attribute trigger register (AATR) 32 W 0x0000_0005 43.3.6/43-17

0x07 Trigger definition register (TDR) 32 W 0x0000_0000 43.3.7/43-19

0x08 PC breakpoint register 0 (PBR0) 32 W Undefined 43.3.8/43-22

0x09 PC breakpoint mask register (PBMR) 32 W Undefined 43.3.8/43-22

0x0A PC breakpoint ASID control (PBAC) 32 W Undefined 43.3.9/43-23

0x0C Address breakpoint high register (ABHR) 32 W Undefined 43.3.10/43-24

0x0D Address breakpoint low register (ABLR) 32 W Undefined 43.3.10/43-24
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NOTE
Debug control registers can be written by the external development system 
or the CPU through the WDEBUG instruction. These control registers are 
write-only from the programming model and they can be written through the 
BDM port using the WDMREG command. In addition, the 
configuration/status registers (CSR, XCSR, and CSR2) can be read through 
the BDM port using the RDMREG command.

The ColdFire debug architecture supports a number of hardware breakpoint registers, that can be 
configured into single- or double-level triggers based on the PC or operand address ranges with an optional 
inclusion of specific data values. With the addition of the MMU capabilities, the breakpoint specifications 
must be expanded to optionally include the address space identifier (ASID) in these user-programmable 
virtual address triggers.

The core includes four PC breakpoint triggers and two sets of operand address breakpoint triggers, each 
with two independent address registers (to allow specification of a range) and a data breakpoint with 
masking capabilities. Core breakpoint triggers are accessible through the serial BDM interface or written 
through the supervisor programming model using the WDEBUG instruction.

0x0E Data breakpoint register (DBR) 32 W Undefined 43.3.11/43-25

0x0F Data breakpoint mask register (DBMR) 32 W Undefined 43.3.11/43-25

0x14 PC breakpoint ASID register (PBASID) 32 W Undefined 43.3.12/43-26

0x16 Address attribute trigger register 1 (AATR1) 32 W 0x0005 43.3.6/43-17

0x17 Extended trigger definition register (XTDR) 32 W 0x0000_0000 43.3.13/43-27

0x18 PC breakpoint register 1 (PBR1) 32 W See Section 43.3.8/43-22

0x1A PC breakpoint register 2 (PBR2) 32 W See Section 43.3.8/43-22

0x1B PC breakpoint register 3 (PBR3) 32 W See Section 43.3.8/43-22

0x1C Address high breakpoint register 1 (ABHR1) 32 W Undefined 43.3.10/43-24

0x1D Address low breakpoint register 1 (ABLR1) 32 W Undefined 43.3.10/43-24

0x1E Data breakpoint register 1 (DBR1) 32 W Undefined 43.3.11/43-25

0x1F Data breakpoint mask register 1 (DBMR1) 32 W Undefined 43.3.11/43-25

0x20 + n;
n = 0x0–0x17

Trace Buffer Longword n (TBLWn); n = 0–23 32 R 
(BDM)2

Undefined,
Unaffected

43.3.14/43-31

0x3F Most recently sampled PC (PCRS) 32 R 
(BDM)3

Undefined,
Unaffected

43.3.15/43-32

1 Each debug register is accessed as a 32-bit register; reserved fields are not used (don’t care).
2 The contents of the PST trace buffer is read-only from BDM (32 bits per access) using RDMREG commands.
3 The contents of the PCRS is read-only from BDM (32 bits per access) using RDMREG commands.

Table 43-5. Debug Module Memory Map (continued)

DRc[4–0] Register Name
Width
(bits)

Access Reset Value
Section/

Page
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Two ASID-related registers (PBAC and PBASID) are added for the PC breakpoint qualification, and two 
existing registers (AATR and AATR1) are expanded for the address breakpoint qualification. 

43.3.1 Shared Debug Resources

The debug module revision A implementation provides a common hardware structure for BDM and 
breakpoint functionality. Certain hardware structures are used for BDM and breakpoint purposes as shown 
in Table 43-6.

Therefore, loading a register to perform a specific function that shares hardware resources is destructive 
to the shared function. For example, if an operand address breakpoint is loaded into the debug module, a 
BDM command to access memory overwrites an address breakpoint in ABHR. If a data breakpoint is 
configured, a BDM write command overwrites the data breakpoint in DBR.

Revision B added hardware registers to eliminate these shared functions. The BAAR is used to specify bus 
attributes for BDM memory commands and has the same format as the LSB of the AATR. The registers 
containing the BDM memory address and the BDM data are not program visible.

43.3.2 Configuration/Status Register (CSR)

The CSR defines the debug configuration for the processor and memory subsystem and contains status 
information from the breakpoint logic. CSR is write-only from the programming model. It can be read 
from and written to through the BDM port. CSR is accessible in supervisor mode as debug control register 
0x00 using the WDEBUG instruction and through the BDM port using the RDMREG and WDMREG 
commands.

Table 43-6. Shared BDM/Breakpoint Hardware

Register BDM Function Breakpoint Function

AATR Bus attributes for all memory commands Attributes for address breakpoint

ABHR Address for all memory commands Address for address breakpoint

DBR Data for all BDM write commands Data for data breakpoint

DRc[4:0]: 0x00 (CSR) Access: Supervisor write-only
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BSTAT FOF TRG HALT BKPT HRL 0
BKD PCD IPW

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MAP TRC EMU DDC UHE BTB

0
NPL IPI SSM OTE

0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43-3. Configuration/Status Register (CSR)
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Table 43-7. CSR Field Descriptions

Field Description

31–28
BSTAT

Breakpoint Status. Provides read-only status (from the BDM port only) information concerning hardware 
breakpoints. Also output on PSTDDATA when it is not displaying PST or other processor data. BSTAT is cleared 
by a TDRor XTDR write or by a CSR read when a level-2 breakpoint is triggered or a level-1 breakpoint is 
triggered and the level-2 breakpoint is disabled.
0000 No breakpoints enabled
0001 Waiting for level-1 breakpoint
0010 Level-1 breakpoint triggered
0101 Waiting for level-2 breakpoint
0110 Level-2 breakpoint triggered
Else Reserved

27
FOF

Fault-on-fault. If FOF is set, a catastrophic halt occurred and forced entry into BDM. 

26
TRG

Hardware breakpoint trigger. If TRG is set, a hardware breakpoint halted the processor core and forced entry into 
BDM. Reset or the debug GO command clear TRG.

25
HALT

Processor halt. If HALT is set, the processor executed a HALT and forced entry into BDM. Reset or the debug GO 
command clear HALT.

24
BKPT

Breakpoint assert. If BKPT is set, BKPT was asserted, forcing the processor into BDM. Reset or the debug GO 
command clear BKPT.

23–20
HRL

Hardware revision level. Indicates, from the BDM port only, the level of debug module functionality. An emulator 
could use this information to identify the level of functionality supported.
0000 Revision A
0001 Revision B
0010 Revision C
0011 Revision D
1001 Revision B+
1011 Revision D+
1111 Revision D+PSTB (This is the value used for this device)

19 Reserved, must be cleared. 

18
BKD

Breakpoint disable. Disables the normal BKPT input signal functionality, and allows the assertion of this pin to 
generate a debug interrupt.
0 Normal operation
1 BKPT is edge-sensitive: a high-to-low edge on BKPT signals a debug interrupt to the ColdFire core. The 

processor makes this interrupt request pending until the next sample point occurs, when the exception is 
initiated. In the ColdFire architecture, the interrupt sample point occurs once per instruction. There is no 
support for nesting debug interrupts.

17
PCD

PSTCLK disable.
0 PSTCLK is fully operational
1 Disables the generation of the PSTCLK and PSTDDATA output signals, and forces these signals to remain 

quiescent

16
IPW

Inhibit processor writes. Setting IPW inhibits processor-initiated writes to the debug module’s programming model 
registers. Only commands from the external development system can modify IPW.

15
MAP

Force processor references in emulator mode.
0 All emulator-mode references are mapped into supervisor code and data spaces.
1 The processor maps all references while in emulator mode to a special address space, TT equals 10, 

TM equals 101 or 110. The internal SRAM and caches are disabled. 
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14
TRC

Force emulation mode on trace exception.
0 The processor enters supervisor mode
1 The processor enters emulator mode when a trace exception occurs

13
EMU

Force emulation mode.
0 Do not force emulator mode
1 The processor begins executing in emulator mode. See Section 43.4.2.2, “Emulator Mode”.

12–11
DDC

Debug data control. Controls operand data capture for PSTDDATA, which displays the number of bytes defined 
by the operand reference size before the actual data; byte displays 8 bits, word displays 16 bits, and long displays 
32 bits (one nibble at a time across multiple PSTCLK clock cycles). See Table 43-35.
00 No operand data is displayed.
01 Capture all write data.
10 Capture all read data.
11 Capture all read and write data.

10
UHE

User halt enable. Selects the CPU privilege level required to execute the HALT instruction.
0 HALT is a supervisor-only instruction.
1 HALT is a supervisor/user instruction.

9–8
BTB

Branch target bytes. Defines the number of bytes of branch target address PSTDDATA displays.
00 0 bytes
01 Lower 2 bytes of the target address
10 Lower 3 bytes of the target address
11 Entire 4-byte target address
See Section 43.4.4.2, “Begin Execution of Taken Branch (PST = 0x5)”.

7 Reserved, must be cleared.

6
NPL

Non-pipelined mode. Determines whether the core operates in pipelined mode or not.
0 Pipelined mode
1 Non-pipelined mode. The processor effectively executes one instruction at a time with no overlap. This adds 

at least 5 cycles to the execution time of each instruction. Superscalar instruction dispatch is disabled when 
operating in this mode. Given an average execution latency of 1.6 cycles/instruction, throughput in non-pipeline 
mode would be 6.6 cycles/instruction, approximately 25% or less of pipelined performance.

Regardless of the NPL state, a triggered PC breakpoint is always reported before the triggering instruction 
executes. In normal pipeline operation, occurrence of an address and/or data breakpoint trigger is imprecise. In 
non-pipeline mode, triggers are always reported before the next instruction begins execution and trigger reporting 
can be considered precise.
An address or data breakpoint should always occur before the next instruction begins execution. Therefore, the 
occurrence of the address/data breakpoints should be guaranteed.

5
IPI

Ignore pending interrupts.
0  Core services any pending interrupt requests that were signaled while in single-step mode.
1  Core ignores any pending interrupt requests signaled while in single-instruction-step mode.

4
SSM

Single-Step Mode. Setting SSM puts the processor in single-step mode.
0 Normal mode.
1 Single-step mode. The processor halts after execution of each instruction. While halted, any BDM command 

can be executed. On receipt of the GO command, the processor executes the next instruction and halts again. 
This process continues until SSM is cleared. 

3
OTE

Ownership-trace enable. Enables the display of the ASID on the PSTDDATA outputs upon entrance into user 
mode, a load of the ASID by a MOVEC instruction, or the execution of a BDM SYNC_PC command.
0 No ASID displayed
1 ASID displayed on PSTDDATA outputs

Table 43-7. CSR Field Descriptions (continued)

Field Description
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43.3.3 Extended Configuration/Status Register (XCSR)

The 32-bit XCSR is partitioned into two sections: the upper byte contains read-only status bits and the 
lower 24 bits contain fields related to generating automatic SYNC_PC commands. The SYNC_PC 
commands can periodically capture and display the current PC on the PST/DDATA output ports and/or in 
the PST trace buffer (if properly configured).

There are multiple ways to reference the XCSR. They are summarized in Table 43-8.

2 Reserved, must be cleared.

1
FDBG

Force the debug mode core output signal (to the on-chip peripherals). The debug mode output is logically defined 
as: 

Debug mode output = CSR[FDBG] | (CSR[DBGH] and Core is halted)
0 Debug mode output is not forced asserted.
1 Debug mode output core output signal is asserted.

0
DBGH

Disable debug signal assertion during core halt. The debug mode output (to the on-chip peripherals) is logically 
defined as: 

Debug mode output = CSR[FDBG] | (CSR[DBGH] and Core is halted)
0 Debug mode output is asserted when the core is halted.
1 Debug mode output is not asserted when the core is halted. 

Table 43-8. XCSR Reference Summary

Method Reference Details

RDMREG Reads XCSR[31–0] from the BDM interface.

WDMREG Writes XCSR[31–0] from the BDM interface.

WDEBUG instruction Writes XCSR[23–0] during the core’s execution of WDEBUG instruction. This instruction 
is a privileged supervisor-mode instruction.

DRc: 0x01 (XCSR) Access: Supervisor write-only
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CPU
HALT

CPU
STOP

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0
APCSC

APC
ENBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43-4. Extended Configuration/Status Register (XCSR)

Table 43-7. CSR Field Descriptions (continued)

Field Description
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Table 43-9. XCSR Field Descriptions

Field Description

31
CPUHALT

Indicates that the CPU is in the halt state. The CPU state may be running, stopped, or halted, which is determined 
by the CPUHALT and CPUSTOP bits as shown below.

30
CPUSTOP

Indicates that the CPU is in the stop state. The CPU state may be running, stopped, or halted, which is determined 
by the CPUHALT and CPUSTOP bits as shown in the CPUHALT bit description.

29–3 Reserved, must be cleared.

2–1
APCSC

Automatic PC synchronization control. Determines the periodic interval of PC address captures, if 
XCSR[APCENB] is set. When the selected interval is reached, a SYNC_PC command is sent to the ColdFire 
CPU. For more information on the SYNC_PC operation, see the APCENB description.

The chosen frequency depends on CSR2[APCDIV16] as shown in the equation and table below:

Eqn. 43-1

0
APCENB

Automatic PC synchronization enable. Enables the periodic output of the PC which can be used for PST/DDATA 
trace synchronization.
As described in XCSR[APCSC], when the enabled periodic timer expires, a SYNC_PC command is sent to the 
ColdFire CPU which generates a forced instruction fetch of the next instruction. The PST/DDATA module 
captures the target address as defined by CSR[9:8] . This produces a PST sequence of the PST marker indicating 
a 2-, 3-, or 4-byte address, followed by the captured instruction address and optionally, a marker and ASID.
0 Automatic PC synchronization disabled
1 Automatic PC synchronization enabled

XCSR
[CPUHALT]

XCSR
[CPUSTOP]

CPU State

0 0 Running

0 1 Stopped

1 0 Halted

PC address capture period 2
APCSC 1+ 

1024

16
APCDIV16

----------------------------------------------------------=

XCSR
[APCENB]

CSR2
[APCDIV16]

XCSR
[APCSC]

SYNC_PC Interval

1 0 00 2048 cycles

1 0 01 4096 cycles

1 0 10 8192 cycles

1 0 11 16384 cycles

1 1 00 128 cycles

1 1 01 256 cycles

1 1 10 512 cycles

1 1 11 1024 cycles
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43.3.4 Configuration/Status Register 2 (CSR2)

The 32-bit CSR2 is partitioned into two sections: the upper byte contains read-only status bits and the 
lower 24 bits contain fields related to configuring the PST trace buffer (PSTB).

There are multiple ways to reference CSR2. They are summarized in Table 43-10.

Table 43-10. CSR2 Reference Summary

Method Reference Details

RDMREG Reads CSR2[31–0] from the BDM interface.

WDMREG Writes CSR2[23–0] from the BDM interface.

WDEBUG Instruction Writes CSR2[23–0] during the core’s execution of WDEBUG instruction. This instruction is 
a privileged supervisor-mode instruction.

DRc: 0x02 (CSR2) Access: Supervisor read-only
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PSTBP 0 0 0 0 0 0 0 PSTBH PSTBST 0 D1HRL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PSTBWA 0 APC
DIV16

0
PSTBRM PSTBSS

W PSTBR

Reset Unaffected and Undefined 0 0 0 0 0 0 0 0

Figure 43-5. Configuration/Status Register 2 (CSR2)

Table 43-11. CSR2 Field Descriptions

Field Description

31
PSTBP

PST buffer stop. Signals if a PST buffer stop condition has been reached.
0 A PST trace buffer stop condition has not been reached
1 A PST trace buffer stop condition has been reached

30–24 Reserved, must be cleared.

23
PSTBH

PST trace buffer halt. Indicates if the processor is halted due to the PST trace buffer being full when recording in 
a continuous mode.
0 PST trace buffer not full
1 CPU halted due to PST trace buffer being full in continuous mode

22–21
PSTBST

PST trace buffer state. Indicates the current state of the PST trace buffer recording.
00 PSTB disabled
01 PSTB enabled and waiting for the start condition
10 PSTB enabled, recording and waiting for the stop condition
11 PSTB enabled, completed recording after the stop condition was reached

20 Reserved, must be cleared.
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19–16
D1HRL

Debug hardware revision level. Indicates the auxiliary hardware revision level of the debug module implemented 
in the ColdFire core.
For this device, this field is 0xD, indicating a 128-entry trace buffer.

15–8
PSTBWA

PST trace buffer write address. Indicates the current write address of the PST trace buffer. The most significant 
bit of this field is sticky; if set, it remains set until a PST/DDATA reset event occurs. As the ColdFire core inserts 
PST and DDATA packets into the trace buffer, this field is incremented. The value of the write address defines the 
next location in the PST trace buffer to be loaded. In other words, the contents of PSTB[PSTBWA-1] is the last 
valid entry in the trace buffer.
The msb of this field can be used to determine if the entire PST trace buffer has been loaded with valid data.

The PSTBWA is unaffected when a buffer stop condition has been reached, the buffer is disabled, or a system 
reset occurs. This allows the contents of the PST trace buffer to be retrieved after these events to assist in debug.

7
PSTBR

PST trace buffer reset. Generates a reset of the PST trace buffer logic, which clears PSTBWA and PSTBST. The 
same resources are reset when a disabled trace buffer becomes enabled and upon the receipt of a BDM GO 
command when operating in continuous trace mode. These reset events also clear any accumulation of PSTs. 
This bit always reads as a zero.
0 Do not force a PST trace buffer reset
1 Force a PST trace buffer reset

6
APCDIV16

Automatic PC synchronization divide cycle counts by 16. This bit divides the cycle counts for automatic SYNC_PC 
command insertion by 16. See the APCSC and APCENB field descriptions.

5 Reserved, must be cleared.

Table 43-11. CSR2 Field Descriptions (continued)

Field Description

PSTBWA[7]
PSTB Valid Data Locations

(Oldest to Newest)

0 0, 1, ... PSTBWA-1

1  PSTBWA, PSTBWA+1,..., 0, 1, PSTBWA-1 
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43.3.5 BDM Address Attribute Register (BAAR)

The BAAR register defines the address space for memory-referencing BDM commands. BAAR[R, SZ] 
are loaded directly from the BDM command, while the low-order 5 bits can be programmed from the 
external development system. To maintain compatibility with revision A, BAAR is loaded any time the 
AATR is written. The BAAR is initialized to a value of 0x05, setting supervisor data as the default address 
space.

4–3
PSTBRM

PST trace buffer recording mode. Defines the trace buffer recording mode. The start and stop recording 
conditions are defined by the PSTBSS field.
00 Normal recording mode
01 Continuous, normal recording
10 PC profile recording
11 Continuous PC profile recording

2–0
PSTBSS

PST trace buffer start/stop definition. Specifies the start and stop conditions for PST trace buffer recording. In 
certain cases, the start and stop conditions are defined by the breakpoint registers. The remaining breakpoint 
registers are available for trigger configurations.

DRc[4:0]: 0x05 (BAAR) Access: Supervisor write-only
BDM write-only

7 6 5 4 3 2 1 0

R

W R SZ TT TM

Reset: 0 0 0 0 0 1 0 1

Figure 43-6. BDM Address Attribute Register (BAAR)

Table 43-11. CSR2 Field Descriptions (continued)

Field Description

PSTBSS Start Condition Stop Condition

000 Trace buffer disabled, no recording

001 Unconditional recording

010
ABxR{& DBR/DBMR}

PBR0/PBMR

011 PBR1

100
PBR0/PBMR

ABxR{& DBR/DBMR}

101 PBR1

110
PBR1

ABxR{& DBR/DBMR}

111 PBR0/PBMR
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43.3.6 Address Attribute Trigger Registers (AATR, AATR1)

The AATR and AATR1 define address attributes and a mask to be matched in the trigger. The register value 
is compared with address attribute signals from the processor’s local high-speed bus, as defined by the 
setting of the trigger definition register (TDR) for AATR and the extended trigger definition register 
(XTDR) for AATR1. AATRn is accessible in supervisor mode as debug control register 0x06 using the 
WDEBUG instruction and through the BDM port using the WDMREG command.

This register is expanded to include an optional ASID specification and a control bit that enables the use 
of the ASID field.

Table 43-12. BAAR Field Descriptions

Field Description

7
R

Read/Write.
0 Write
1 Read

6–5
SZ

Size.
00 Longword
01 Byte
10 Word
11 Reserved

4–3
TT

Transfer Type. See the TT definition in the AATR description, Section 43.3.6, “Address Attribute Trigger Registers 
(AATR, AATR1)”.

2–0
TM

Transfer Modifier. See the TM definition in the AATR description, Section 43.3.6, “Address Attribute Trigger 
Registers (AATR, AATR1)”.

DRc[4:0]: 0x06 (AATR)
0x16 (AATR1)

Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W
0 0 0 0 0 0 0

ASID
CTRL

AATRASID

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W RM SZM TTM TMM R SZ TT TM

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Figure 43-7. Address Attribute Trigger Registers (AATR, AATR1)
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Table 43-13. AATRn Field Descriptions

Field Description

31–25 Reserved, must be cleared.

24
ASIDCTRL

ABLR/ABHR/AATR address breakpoint ASID enable. Corresponds to the ASID control enable for the address 
breakpoint defined in ABLR, ABHR, and AATR.
0 Disable ASID qualifier (reset default)
1 Enable ASID qualifier

23–16
AATRASID

ABLR/ABHR/AATR ASID. Corresponds to the ASID to be included in the address breakpoint specified by 
ABLR, ABHR, and AATR.

15
RM

Read/write Mask. Setting RM masks R in address comparisons.

14–13
SZM

Size Mask. Setting an SZM bit masks the corresponding SZ bit in address comparisons.

12–11
TTM

Transfer Type Mask. Setting a TTM bit masks the corresponding TT bit in address comparisons.

10–8
TMM

Transfer Modifier Mask. Setting a TMM bit masks the corresponding TM bit in address comparisons.

7
R

Read/Write. R is compared with the R/W signal of the processor’s local bus.

6–5
SZ

Size. Compared to the processor’s local bus size signals.
00 Longword
01 Byte
10 Word
11 Reserved
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43.3.7 Trigger Definition Register (TDR)

The TDR configures the operation of the hardware breakpoint logic corresponding with the 
ABHR/ABLR/AATR, PBR/PBR1/PBR2/PBR3/PBMR, and DBR/DBMR registers within the debug 
module. TDR controls the actions taken under the defined conditions with the XTDR and its associated 
debug registers. Breakpoint logic may be configured as one- or two-level triggers. TDR[31–16] or 
XTDR[31–16] bits define second-level triggers, and bits 15–0 define first-level triggers.

NOTE
The debug module has no hardware interlocks to prevent spurious 
breakpoint triggers while the breakpoint registers are being loaded. Disable 
TDR and XTDR (by clearing TDR[29,13] and XTDR[29,13]) before 
defining triggers.

A write to TDR clears the CSR trigger status bits, CSR[BSTAT]. TDR is accessible in supervisor mode as 
debug control register 0x07 using the WDEBUG instruction and through the BDM port using the 
WDMREG command.

4–3
TT

Transfer Type. Compared with the local bus transfer type signals. 
00 Normal processor access
01 Reserved
10 Emulator mode access
11 Reserved
These bits also define the TT encoding for BDM memory commands. In this case, the 01 encoding indicates 
an external or DMA access (for backward compatibility). These bits affect the TM bits.

2–0
TM

Transfer Modifier. Compared with the local bus transfer modifier signals, which give supplemental information 
for each transfer type. These bits also define the TM encoding for BDM memory commands (for backward 
compatibility).

Table 43-13. AATRn Field Descriptions (continued)

Field Description

TM
TT=00

 (normal mode)
TT=10

 (emulator mode)

000 Data and instruction
cache line push

Reserved

001 User data access Reserved

010 User code access Reserved

011 Instruction cache invalidate Reserved

100 Data cache push/
Instruction cache invalidate

Reserved

101 Supervisor data access Emulator mode access

110 Supervisor code access Emulator code access

111 INTOUCH instruction access Reserved
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DRc[4:0]: 0x07 (TDR) Access: Supervisor write-only
BDM write-only

Second Level Trigger

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W TRC L2EBL L2ED L2DI L2EA L2EPC L2PCI

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

First Level Trigger

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W 0 0 L1EBL L1ED L1DI L1EA L1EPC L1PCI

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43-8. Trigger Definition Register (TDR)

Table 43-14. TDR Field Descriptions

Field Description

31–30
TRC

Trigger Response Control. Determines how the processor responds to a completed trigger condition. The trigger 
response is always displayed on PSTDDATA.
00 Display on PSTDDATA only
01 Processor halt
10 Debug interrupt
11 Reserved

29
L2EBL

Enable Level 2 Breakpoint. Global enable for the breakpoint trigger.
0 Disables all level 2 breakpoints
1 Enables all level 2 breakpoint triggers

28–22
L2ED

Enable Level 2 Data Breakpoint. Setting an L2ED bit enables the corresponding data breakpoint condition based on 
the size and placement on the processor’s local data bus. Clearing all ED bits disables data breakpoints. 

21
L2DI

Level 2 Data Breakpoint Invert. Inverts the logical sense of all the data breakpoint comparators. This can develop a 
trigger based on the occurrence of a data value other than the DBR contents.
0 No inversion
1 Invert data breakpoint comparators.

TDR Bit Description

28 Data longword. Entire processor’s local data bus. 

27 Lower data word. 

26 Upper data word.

25 Lower lower data byte. Low-order byte of the low-order word.

24 Lower middle data byte. High-order byte of the low-order word.

23 Upper middle data byte. Low-order byte of the high-order word.

22 Upper upper data byte. High-order byte of the high-order word.
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20–18
L2EA

Enable Level 2 Address Breakpoint. Setting an L2EA bit enables the corresponding address breakpoint. Clearing all 
three bits disables the breakpoint.

17
L2EPC

Enable Level 2 PC Breakpoint.
0 Disable PC breakpoint
1 Enable PC breakpoint where the trigger is defined by the logical summation of:

(PBR0 and  PBMR) | PBR1 | PBR2 | PBR3 Eqn. 43-2

16
L2PCI

Level 2 PC Breakpoint Invert. 
0 The PC breakpoint is defined within the region defined by PBRn and PBMR.
1 The PC breakpoint is defined outside the region defined by PBRn and PBMR.

15–14 Reserved, must be cleared.

13
L1EBL

Enable Level 1 Breakpoint. Global enable for the breakpoint trigger. 
0 Disables all level 1 breakpoints
1 Enables all level 1 breakpoint triggers

12–6
L1ED

Enable Level 1 Data Breakpoint. Setting an L1ED bit enables the corresponding data breakpoint condition based on 
the size and placement on the processor’s local data bus. Clearing all L1ED bits disables data breakpoints. 

5
L1DI

Level 1 Data Breakpoint Invert. Inverts the logical sense of all the data breakpoint comparators. This can develop a 
trigger based on the occurrence of a data value other than the DBR contents.
0 No inversion
1 Invert data breakpoint comparators.

Table 43-14. TDR Field Descriptions (continued)

Field Description

TDR Bit Description

20 Address breakpoint inverted. Breakpoint is based outside the 
range between ABLR and ABHR. 

19 Address breakpoint range. The breakpoint is based on the 
inclusive range defined by ABLR and ABHR.

18 Address breakpoint low. The breakpoint is based on the 
address in the ABLR.

TDR Bit Description

12 Data longword. Entire processor’s local data bus. 

11 Lower data word. 

10 Upper data word.

9 Lower lower data byte. Low-order byte of the low-order word.

8 Lower middle data byte. High-order byte of the low-order word.

7 Upper middle data byte. Low-order byte of the high-order word.

6 Upper upper data byte. High-order byte of the high-order word.
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43.3.8 Program Counter Breakpoint/Mask Registers (PBR0–3, PBMR)

The PBRn registers define an instruction address for use as part of the trigger. These registers’ contents 
are compared with the processor’s program counter register when the appropriate valid bit is set (for 
PBR1–3) and TDR or XTDR are configured appropriately. PBR0 bits are masked by setting corresponding 
PBMR bits (PBMR has no effect on PBR1–3). Results are compared with the processor’s program counter 
register, as defined in TDR or XTDR. Breakpoint registers, PBR1–3, have no masking associated with 
them. The contents of the breakpoint registers are compared with the processor’s program counter register 
when TDR is configured appropriately.

The PC breakpoint registers are accessible in supervisor mode using the WDEBUG instruction and 
through the BDM port using the WDMREG command using values shown in Section 43.4.1.5, “BDM 
Command Set”.

4–2
L1EA

Enable Level 1 Address Breakpoint. Setting an L1EA bit enables the corresponding address breakpoint. Clearing all 
three bits disables the address breakpoint.

1
L1EPC

Enable Level 1 PC breakpoint.
0 Disable PC breakpoint
1 Enable PC breakpoint

0
L1PCI

Level 1 PC Breakpoint Invert. 
0 The PC breakpoint is defined within the region defined by PBRn and PBMR.
1 The PC breakpoint is defined outside the region defined by PBRn and PBMR.

DRc[4:0]: 0x08 (PBR0) Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Address

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 43-9. PC Breakpoint Register (PBR0)

Table 43-14. TDR Field Descriptions (continued)

Field Description

TDR Bit Description

4 Enable address breakpoint inverted. Breakpoint is based 
outside the range between ABLR and ABHR. 

3 Enable address breakpoint range. The breakpoint is based on 
the inclusive range defined by ABLR and ABHR.

2 Enable address breakpoint low. The breakpoint is based on the 
address in the ABLR.
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Figure 43-11 shows PBMR. PBMR is accessible in supervisor mode using the WDEBUG instruction and 
via the BDM port using the WDMREG command. PBMR only masks PBR0.

43.3.9 PC Breakpoint ASID Control Register (PBAC)

The PBAC register configures the breakpoint qualification for each PC breakpoint register (PBRn). Four 
bits are dedicated for each breakpoint register and specify how the ASID is used in PC breakpoint 
qualification.

Table 43-15. PBR0 Field Descriptions

Field Description

31–0
Address

PC Breakpoint Address. The address to be compared with the PC as a breakpoint trigger. 
Note: PBR0[0] should always be loaded with a 0.

DRc[4:0]: 0x18 (PBR1)
0x1A (PBR2)
0x1B (PBR3)

Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Address V

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 0 0 0

Figure 43-10. PC Breakpoint Register n (PBRn)

Table 43-16. PBRn Field Descriptions

Field Description

31–1
Address

PC Breakpoint Address. The 31-bit address to be compared with the PC as a breakpoint trigger. 

0
V

Valid Bit. This bit must be set for the PC breakpoint to occur at the address specified in the Address field.
0 PBR is disabled.
1 PBR is enabled.

DRc[4:0]: 0x09 (PBMR) Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Mask

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 43-11. PC Breakpoint Mask Register (PBMR)

Table 43-17. PBMR Field Descriptions

Field Description

31–0
Mask

PC Breakpoint Mask.
0 The corresponding PBR0 bit is compared to the appropriate PC bit.
1 The corresponding PBR0 bit is ignored.
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The four-bit field correspond directly to the PBRn registers and are functionally identical. They enable or 
disable ASID, supervisor mode, and user mode breakpoint qualification. Reset clears these fields, 
disabling qualifications, and defaulting to the revision C debug module functionality.

43.3.10 Address Breakpoint Registers (ABLR/ABLR1, ABHR/ABHR1)

The ABLR, ABLR1, ABHR and ABHR1 define regions in the processor’s data address space that can act 
as part of the trigger. These register values are compared with the address for each transfer on the 
processor’s high-speed local bus. The trigger definition register (TDR) identifies the trigger as one of three 
cases:

• Identically the value in ABLR

• Inside the range bound by ABLR and ABHR inclusive

• Outside that same range

XTDR determines the same for ABLR1 and ABHR1.

DRc[4:0]: 0x0A (PBAC) Access: Supervisor read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PBR3AC PBR2AC PBR1AC PBR0AC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43-12. PC Breakpoint ASID Control Register (PBAC)

Table 43-18. PBAC Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15–12
PBR3AC

11–8
PBR2AC

7–4
PBR1AC

3–0
PBR0AC

PBRn ASID control. Corresponds to the ASID control associated with PBRn. Determines whether the ASID is 
included in the PC breakpoint comparison and whether the operating mode (supervisor or user) is included in the 
comparison logic.

PBRnAC[3]
Not Used

PBRnAC[2]
ASID

Included

PBRnAC[1]
Mode

Qualification

PBRnAC[0]
User or

Supervisor
Description

x 0 0 x No ASID nor mode qualification

x 0 1 0 No ASID qualification; user mode qualification 
enabled

x 0 1 1 No ASID qualification; supervisor mode 
qualification enabled

x 1 0 x ASID qualification enabled; no mode qualification

x 1 1 0 ASID and user mode qualification enabled

x 1 1 1 ASID and supervisor mode qualification enabled



Debug Module

43-25 NXP Semiconductors

ABLR, ABLR1, ABHR and ABHR1 are accessible in supervisor mode using the WDEBUG instruction 
and via the BDM port using the WDMREG command.

43.3.11 Data Breakpoint and Mask Registers (DBR/DBR1, DBMR/DBMR1)

The data breakpoint registers (DBR/DBR1), specify data patterns used as part of the trigger into debug 
mode. DBRn bits are masked by setting corresponding DBMR bits, as defined in TDR.

DBR, DBR1, DBMR, and DBMR1 are accessible in supervisor mode using the WDEBUG instruction and 
through the BDM port using the WDMREG command.

DRc[4:0]: 0x0C (ABHR)
0x0D (ABLR)
0x1C (ABHR1)
0x1D (ABLR1)

Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Address

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 43-13. Address Breakpoint Registers (ABLR, ABHR, ABLR1, ABHR1)

Table 43-19. ABLR and ABLR1 Field Description

Field Description

31–0
Address

Low Address. Holds the 32-bit address marking the lower bound of the address breakpoint range. Breakpoints for 
specific single addresses are programmed into ABLR or ABLR1.

Table 43-20. ABHR and ABHR1 Field Description

Field Description

31–0
Address

High Address. Holds the 32-bit address marking the upper bound of the address breakpoint range.

DRc[4:0]: 0x0E (DBR)
0x1E (DBR1)

Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Data

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 43-14. Data Breakpoint Registers (DBR, DBR1)

Table 43-21. DBR, DBR1 Field Descriptions

Field Description

31–0
Data

Data Breakpoint Value. Contains the value to be compared with the data value from the processor’s local bus as a 
breakpoint trigger.
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The DBRs support aligned and misaligned references. Table 43-23 shows relationships between processor 
address, access size, and location within the 32-bit data bus.

43.3.12 PC Breakpoint ASID Register (PBASID)

Each PC breakpoint register (PBR0–3) specifies an instruction address that can be used to trigger a 
breakpoint. To support debugging in a virtual environment, an ASID can optionally be associated with the 
instruction address in the PC breakpoint registers. The optional specification of an ASID value is made 
using PBASID and its exact inclusion within the breakpoint specification defined by the PBAC.

PBASID contains one 8-bit ASID values for each PC breakpoint register, as described in Table 43-24, 
which allows each PC breakpoint register to be associated with a unique virtual address and process.

DRc[4:0]: 0x0F (DBMR)
0x1F (DBMR1)

Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Mask

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 43-15. Data Breakpoint Mask Registers (DBMR, DBMR1)

Table 43-22. DBMR, DBMR1 Field Descriptions

Field Description

31–0
Mask

Data Breakpoint Mask. The 32-bit mask for the data breakpoint trigger. Clearing a DBMR bit allows the 
corresponding DBR bit to be compared to the appropriate bit of the processor’s local data bus. Setting a DBMR bit 
causes that bit to be ignored.

Table 43-23. Address, Access Size, and Operand Data Location

Address[1:0] Access Size Operand Location

00 Byte D[31:24]

01 Byte D[23:16]

10 Byte D[15:8]

11 Byte D[7:0]

0x Word D[31:16]

1x Word D[15:0]

xx Longword D[31:0]
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43.3.13 Extended Trigger Definition Register (XTDR)

The XTDR configures the operation of the hardware breakpoint logic that corresponds with the 
ABHR1/ABLR1/AATR1, DBR1/DBMR1 registers within the debug module. In conjunction with the 
TDR and its associated debug registers, XTDR controls the actions taken under the defined conditions. 
Breakpoint logic may be configured as a one- or two-level triggers. TDR[31–16] or XTDR[31–16] bits 
define second-level triggers, and bits 15–0 define first-level triggers.

NOTE
The debug module has no hardware interlocks; so to prevent spurious 
breakpoint triggers while the breakpoint registers are being loaded, disable 
TDR and XTDR (by clearing TDR[29,13] and XTDR[29,13]) before 
defining triggers.

A write to XTDR clears the CSR trigger status bits, CSR[BSTAT]. XTDR is accessible in supervisor mode 
using the WDEBUG instruction and through the BDM port using the WDMREG command.

Section 43.3.13.1, “Resulting Set of Possible Trigger Combinations,” describes how to handle multiple 
breakpoint conditions.

DRc[4:0]: 0x14 (PBASID) Access: Supervisor read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PBA3SID PBA2SID PBA1SID PBA0SID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43-16. PC Breakpoint ASID Register (PBASID)

Table 43-24. PBASID Field Descriptions

Field Description

31–24
PBR3ASID

Corresponds to the ASID associated with PBR3.

23–16
PBR2ASID

Corresponds to the ASID associated with PBR2.

15–8
PBR1ASID

Corresponds to the ASID associated with PBR1.

7–0
PBR0ASID

Corresponds to the ASID associated with PBR0.
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DRc[4:0]: 0x17 (XTDR) Access: Supervisor write-only
BDM write-only

Second Level Trigger

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W 0 0 L2EBL L2ED L2DI L2EA 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

First Level Trigger

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W 0 0 L1EBL L1ED L1DI L1EA 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43-17. Extended Trigger Definition Register (XTDR)

Table 43-25. XTDR Field Descriptions

Field Description

31–30 Reserved, must be cleared.

29
L2EBL

Enable level 2 breakpoint. Global enable for the breakpoint trigger.
0 Disables all level 2 breakpoints
1 Enables all level 2 breakpoint triggers

28–22
L2ED

Enable level 2 data breakpoint. Setting an L2ED bit enables the corresponding data breakpoint condition based on 
the size and placement on the processor’s local data bus. Clearing all ED bits disables data breakpoints. 

21
L2DI

Level 2 data breakpoint invert. Inverts the logical sense of all the data breakpoint comparators. This can develop a 
trigger based on the occurrence of a data value other than the DBR contents.
0 No inversion
1 Invert data breakpoint comparators.

TDR Bit Description

28 Data longword. Entire processor’s local data bus. 

27 Lower data word. 

26 Upper data word.

25 Lower lower data byte. Low-order byte of the low-order word.

24 Lower middle data byte. High-order byte of the low-order word.

23 Upper middle data byte. Low-order byte of the high-order word.

22 Upper upper data byte. High-order byte of the high-order word.
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20–18
L2EA

Enable level 2 address breakpoint. Setting an L2EA bit enables the corresponding address breakpoint. Clearing all 
three bits disables the breakpoint.

17–14 Reserved, must be cleared.

13
L1EBL

Enable level 1 breakpoint. Global enable for the breakpoint trigger. 
0 Disables all level 1 breakpoints
1 Enables all level 1 breakpoint triggers

12–6
L1ED

Enable level 1 data breakpoint. Setting an L1ED bit enables the corresponding data breakpoint condition based on 
the size and placement on the processor’s local data bus. Clearing all L1ED bits disables data breakpoints.

5
L1DI

Level 1 data breakpoint invert. Inverts the logical sense of all the data breakpoint comparators. This can develop a 
trigger based on the occurrence of a data value other than the DBR contents.
0 No inversion
1 Invert data breakpoint comparators.

Table 43-25. XTDR Field Descriptions (continued)

Field Description

TDR Bit Description

20 Address breakpoint inverted. Breakpoint is based outside the 
range between ABLR1 and ABHR1.

19 Address breakpoint range. The breakpoint is based on the 
inclusive range defined by ABLR1 and ABHR1.

18 Address breakpoint low. The breakpoint is based on the 
address in the ABLR1.

TDR Bit Description

12 Data longword. Entire processor’s local data bus.

11 Lower data word.

10 Upper data word.

9 Lower lower data byte. Low-order byte of the low-order word.

8 Lower middle data byte. High-order byte of the low-order word.

7 Upper middle data byte. Low-order byte of the high-order word.

6 Upper upper data byte. High-order byte of the high-order word.
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43.3.13.1 Resulting Set of Possible Trigger Combinations

The resulting set of possible breakpoint trigger combinations consist of the following options where || 
denotes logical OR, && denotes logical AND, and {} denotes an optional additional trigger term:

One-level triggers of the form:
if (PC_breakpoint)
if (PC_breakpoint || Address_breakpoint{&&  Data_breakpoint})
if (PC_breakpoint || Address_breakpoint{&&  Data_breakpoint} 

|| Address1_breakpoint {&&  Data1_breakpoint})

if (Address_breakpoint {&&  Data_breakpoint})
if ((Address_breakpoint {&&  Data_breakpoint})

|| (Address1_breakpoint{&&  Data1_breakpoint}))

if (Address1_breakpoint {&&  Data1_breakpoint})

Two-level triggers of the form:
if (PC_breakpoint)

then if  (Address_breakpoint{&&  Data_breakpoint})

if (PC_breakpoint)
then if  (Address_breakpoint{&&  Data_breakpoint}

||  Address1_breakpoint{&&  Data1_breakpoint})

if (PC_breakpoint)
then if (Address1_breakpoint{&&  Data1_breakpoint})

if (Address_breakpoint {&&  Data_breakpoint})
then if (Address1_breakpoint{&&  Data1_breakpoint})

if (Address1_breakpoint {&&  Data1_breakpoint})
then if (Address_breakpoint{&&  Data_breakpoint})

if (Address_breakpoint {&&  Data_breakpoint})

4–2
L1EA

Enable level 1 address breakpoint. Setting an L1EA bit enables the corresponding address breakpoint. Clearing all 
three bits disables the address breakpoint.

1–0 Reserved, must be cleared.

Table 43-25. XTDR Field Descriptions (continued)

Field Description

TDR Bit Description

4 Enable address breakpoint inverted. Breakpoint is based 
outside the range between ABLR1 and ABHR1.

3 Enable address breakpoint range. The breakpoint is based on 
the inclusive range defined by ABLR1 and ABHR1.

2 Enable address breakpoint low. The breakpoint is based on the 
address in the ABLR1.
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then if (PC_breakpoint)

if (Address1_breakpoint {&&  Data1_breakpoint})
then if (PC_breakpoint)

if (Address_breakpoint {&&  Data_breakpoint})
then if (PC_breakpoint

|| Address1_breakpoint{&&  Data1_breakpoint})

if (Address1_breakpoint {&&  Data1_breakpoint})
then if (PC_breakpoint|| Address_breakpoint{&&  Data_breakpoint})

In this example, PC_breakpoint is the logical summation of the PBR0/PBMR, PBR1, PBR2, and PBR3 
breakpoint registers; Address_breakpoint is a function of ABHR, ABLR, and AATR; Data_breakpoint is 
a function of DBR and DBMR; Address1_breakpoint is a function of ABHR1, ABLR1, and AATR1; and 
Data1_breakpoint is a function of DBR1 and DBMR1. In all cases, the data breakpoints can be included 
with an address breakpoint to further qualify a trigger event as an option.

43.3.14 PST Trace Buffer Longwords (TBLW0–23)

The contents of the PST trace buffer are mapped into the debug register programming model at 
consecutive addresses beginning at 0x20. Use the RDMREG BDM command to read 32 bits of captured 
PST/DDATA values from the trace buffer at the specified address. The PST trace buffer contains 128 
six-bit entries, packed consecutively into 24 longword locations (TBLW0–23). See Figure 43-18 for an 
illustration of how the trace buffer entries (TB0–127) are packed.

The write pointer for the trace buffer is available as CSR2[PSTBWA]. Using this pointer, it is possible to 
determine the oldest-to-newest entries in the trace buffer.

Figure 43-18. PST Trace Buffer Entries and Locations

CRN TBLWn 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x20 TBLW0 TB #00 TB #01 TB #02 TB #03 TB #04 05[5:4]

0x21 TBLW1 TB #05[3:0] TB #06 TB #07 TB #08 TB #09 TB #10[5:2]

0x22 TBLW2 10[1:0] TB #11 TB #12 TB #13 TB #14 TB #15

0x23 TBLW3 TB #16 TB #17 TB #18 TB #19 TB #20 21[5:4]

0x24 TBLW4 TB #21[3:0] TB #22 TB #23 TB #24 TB #25 TB #26[5:2]

0x25 TBLW5 26[1:0] TB #27 TB #28 TB #29 TB #30 TB #31

... ... ...

0x35 TBLW21 TB #112 TB #113 TB #114 TB #115 TB #116 117[5:4]

0x36 TBLW22 TB #117[3:0] TB #118 TB #119 TB #120 TB #121 TB #122[5:2]

0x37 TBLW23 122[1:0] TB #123 TB #124 TB #125 TB #126 TB #127
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Each 6-bit entry includes a 1- or 2-bit prefix so the type of the entry can easily be determined when 
post-processing the PSTB.

Figure 43-19. PST/DDATA Trace Buffer Entry Format

43.3.15 Most Recently Sampled PC (PCRS)

In PC profiling recording mode, a BDM read at address 0x3F (PCRS) returns the most recently sampled 
PC. Each time the PC is sampled and loaded into the PSTB, the full 32-bit PC is also loaded into PCRS. 
You can use the RDMREG BDM command (see Section 43.4.1.5.15, “Read Debug Module Register 
(rdmreg)”) at any time including in halt mode. This provides real-time PC profiling that is minimally 
intrusive to the system.

43.4 Functional Description

43.4.1 Background Debug Mode (BDM)

The ColdFire family implements a low-level system debugger in the microprocessor in a dedicated 
hardware module. Communication with the development system is managed through a dedicated, 
high-speed serial command interface. Although some BDM operations, such as CPU register accesses, 
require the CPU to be halted, other BDM commands, such as memory accesses, can be executed while the 
processor is running.

5 4 3 2 1 0

PSTB[PST] 0 PST[4:0]

Data
PSTB[DDATA]

1 R/W Data[3:0]

Address
PSTB[DDATA]

1 0 Address[3:0]1

1 Depending on which nibble is displayed (as determined by CSR[9:8]), address[3:0] sequentially 
displays four bits of the real CPU address [16:1], [24:1], or [{0,31:1}].

Reset: — — — — — —

DRc[4:0]: 0x3F (PCRS) Access: BDM read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PCRS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43-20. Most Recently Sampled PC (PCRS)

Table 43-26. PCRS Field Descriptions

Field Description

31–0
PCRS

Most recently sampled PC. Available only through the RDMREG command.
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BDM is useful because:

• In-circuit emulation is not needed, so physical and electrical characteristics of the system are not 
affected.

• BDM is always available for debugging the system and provides a communication link for 
upgrading firmware in existing systems.

• Provides high-speed cache downloading (500 Kbytes/sec), especially useful for flash 
programming

• Provides absolute control of the processor, and thus the system. This  allows quick hardware 
debugging with the same tool set used for firmware development.

43.4.1.1 CPU Halt

Although most BDM operations can occur in parallel with CPU operations, unrestricted BDM operation 
requires the CPU to be halted. The sources that can cause the CPU to halt are listed below in order of 
priority:

1. A catastrophic fault-on-fault condition automatically halts the processor.

2. A hardware breakpoint trigger can generate a pending halt condition similar to the assertion of 
BKPT. This type of halt is always first marked as pending in the processor, which samples for 
pending halt and interrupt conditions once per instruction. When a pending condition is asserted, 
the processor halts execution at the next sample point. See Section 43.4.2.1, “Theory of 
Operation”. 

3. The execution of a HALT instruction immediately suspends execution. Attempting to execute 
HALT in user mode while CSR[UHE] is cleared generates a privilege violation exception. If 
CSR[UHE] is set, HALT can be executed in user mode. After HALT executes, the processor can 
be restarted by serial shifting a GO command into the debug module. Execution continues at the 
instruction after HALT.

4. The assertion of the BKPT input is treated as a pseudo-interrupt; asserting BKPT creates a pending 
halt postponed until the processor core samples for halts/interrupts. The processor samples for 
these conditions once during the execution of each instruction; if a pending halt is detected, the 
processor suspends execution and enters the halted state.

The are two special cases involving the assertion of BKPT:

• After the system reset signal is negated, the processor waits for 16 processor clock cycles before 
beginning reset exception processing. If the BKPT input is asserted within eight cycles after 
RESET is negated, the processor enters the halt state, signaling halt status (0xF) on the 
PSTDDATA outputs. While the processor is in this state, all resources accessible through the debug 
module can be referenced. This is the only chance to force the processor into emulation mode 
through CSR[EMU]. 

• After system initialization, the processor’s response to the GO command depends on the set of 
BDM commands performed while it is halted for a breakpoint. Specifically, if the PC register was 
loaded, the GO command causes the processor to exit halted state and pass control to the instruction 
address in the PC, bypassing normal reset exception processing. If the PC was not loaded, the GO 
command causes the processor to exit halted state and continue reset exception processing.
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• The ColdFire architecture also manages a special case of BKPT asserted while the processor is 
stopped by execution of the STOP instruction. For this case, the processor exits the stopped mode 
and enters the halted state, at which point all BDM commands may be exercised. When restarted, 
the processor continues by executing the next sequential instruction, which follows the STOP 
opcode.

The CSR[27–24] bits indicate the halt source, showing the highest priority source for multiple halt 
conditions. Debug module revisions A and B clear CSR[27–24] upon a read of the CSR, but revision C 
and D (in V4) do not. The debug GO command clears CSR[26–24].

HALT can be recognized by counting 0xFF occurrences on PSTDDATA. The count is necessary to 
determine between a possible data output value of 0xFF and the HALT condition. Because data always 
follows a marker (0x8, 0x9, 0xA, or 0xB), PSTDDATA can display no more than four data 0xFFs. Two 
such scenarios exist: 

• A B marker occurs on the left nibble of PSTDDATA with the data of 0xFF following:

PSTDDATA[7:0]

0xBF
0xFF
0xFF
0xFF
0xFX (X indicates that the next PST value is guaranteed to not be 0xF)

• A B marker occurs on the right nibble of PSTDDATA with the data of 0xFF following:

PSTDDATA[7:0]

0xYB
0xFF
0xFF
0xFF
0xFF
0xXY (X indicates that the PST value is guaranteed to not be 0xF, and Y indicates a PSTDDATA 
value that doesn’t affect the 0xFF count).

Thus, a count of nine or more sequential 0xF PSTDDATA nibbles or five or more sequential 0xFF 
PSTDDATA bytes signifies the HALT condition.

43.4.1.2 BDM Serial Interface

When the CPU is halted and PSTDDATA reflects the halt status, the development system can send 
unrestricted commands to the debug module. The debug module implements a synchronous serial protocol 
using two inputs (DSCLK and DSI) and one output (DSO), where DSO is specified as a delay relative to 
the rising edge of the processor clock. See Table 43-2. The development system serves as the serial 
communication channel master and must generate DSCLK.

The serial channel operates at a frequency from DC to 1/5 of the PSTCLK frequency. The channel uses 
full-duplex mode, where data is sent and received simultaneously by master and slave devices. The 
transmission consists of 17-bit packets composed of a status/control bit and a 16-bit data word. As shown 
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in Figure 43-21, all state transitions are enabled on a rising edge of the PSTCLK clock when DSCLK is 
high; DSI is sampled and DSO is driven.

Figure 43-21. Maximum BDM Serial Interface Timing

DSCLK and DSI are synchronized inputs. DSCLK acts as a pseudo clock enable and is sampled, along 
with DSI, on the rising edge of PSTCLK. DSO is delayed from the DSCLK-enabled PSTCLK rising edge 
(registered after a BDM state machine state change). All events in the debug module’s serial state machine 
are based on the PSTCLK rising edge. DSCLK must also be sampled low (on a positive edge of PSTCLK) 
between each bit exchange. The msb is sent first. Because DSO changes state based on an internally 
recognized rising edge of DSCLK, DSO cannot be used to indicate the start of a serial transfer. The 
development system must count clock cycles in a given transfer. C0–C4 are described as:

• C0: Set the state of the DSI bit

• C1: First synchronization cycle for DSI (DSCLK is high)

• C2: Second synchronization cycle for DSI (DSCLK is high)

• C3: BDM state machine changes state depending upon DSI and whether the entire input data 
transfer has been transmitted

• C4: DSO changes to next value

NOTE
A not-ready response can be ignored except during a memory-referencing 
cycle. Otherwise, the debug module can accept a new serial transfer after 32 
processor clock periods.

43.4.1.3 Receive Packet Format

The basic receive packet consists of 16 data bits and 1 status bit
.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Data

Figure 43-22. Receive BDM Packet

PSTCLK

DSCLK

Next State
BDM State

Machine

DSO

DSI

Current State

Current Next

Past Current

C0 C1 C2 C3 C4
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43.4.1.3.1 Transmit Packet Format

The basic transmit packet consists of 16 data bits and 1 reserved bit.
 

43.4.1.3.2 BDM Command Format

All ColdFire family BDM commands include a 16-bit operation word followed by an optional set of one 
or more extension words.

Table 43-27. Receive BDM Packet Field Description

Field Description

16
S

Status. Indicates the status of CPU-generated messages listed below. The not-ready response can be ignored 
unless a memory-referencing cycle is in progress. Otherwise, the debug module can accept a new serial transfer 
after 32 processor clock periods.

15–0
Data

Data. Contains the message to be sent from the debug module to the development system. The response message 
is always a single word, with the data field encoded as shown above.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— Data

Figure 43-23. Transmit BDM Packet

Table 43-28. Transmit BDM Packet Field Description

Field Description

16 Reserved, must be cleared.

15–0
Data

Data bits 15–0. Contains the data to be sent from the development system to the debug module.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operation 0 R/W Op Size 0 0 A/D Register

Extension Word(s)

Figure 43-24. BDM Command Format

S Data Message

0 xxxx Valid data transfer

0 FFFF Status OK

1 0000 Not ready with response; come again

1 0001 Error-Terminated bus cycle; data invalid

1 FFFF Illegal Command
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43.4.1.3.3 Extension Words as Required

Some commands require extension words for addresses and/or immediate data. Addresses require two 
extension words because only absolute long addressing is permitted. Longword accesses are forcibly 
longword-aligned and word accesses are forcibly word-aligned. Immediate data can be 1 or 2 words long. 
Byte and word data each requires a single extension word, while longword data requires two extension 
words. 

Operands and addresses are transferred most-significant word first. In the following descriptions of the 
BDM command set, the optional set of extension words is defined as address, data, or operand data.

43.4.1.4 Command Sequence Diagrams

The command sequence diagram in Figure 43-25 shows serial bus traffic for commands. Each bubble 
represents a 17-bit bus transfer. The top half of each bubble indicates the data the development system 
sends to the debug module; the bottom half indicates the debug module’s response to the previous 
development system commands. Command and result transactions overlap to minimize latency.

Table 43-29. BDM Field Descriptions

Field Description

15–10
Operation

Specifies the command. These values are listed in Table 43-30.

9 Reserved, must be cleared.

8
R/W

Direction of operand transfer. 
0 Data is written to the CPU or to memory from the development system.
1 The transfer is from the CPU to the development system. 

7–6
Op Size

Operand Data Size for Sized Operations. Addresses are expressed as 32-bit absolute values. A command 
performing a byte-sized memory read leaves the upper 8 bits of the response data undefined. Referenced data is 
returned in the lower 8 bits of the response.

5–4 Reserved, must be cleared.

3
A/D

Address/Data. Determines whether the register field specifies a data or address register.
0 Data register.
1 Address register.

2–0
Register

Contains the register number in commands that operate on processor registers. See Table 43-31.

Operand Size Bit Values

00 Byte 8 bits

01 Word 16 bits

10 Longword 32 bits

11 Reserved —
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Figure 43-25. Command Sequence Diagram

The sequence is as follows:

• In cycle 1, the development system command is issued (READ in this example). The debug module 
responds with the low-order results of the previous command or a command complete status of the 
previous command, if no results are required.

• In cycle 2, the development system supplies the high-order 16 address bits. The debug module 
returns a not-ready response unless the received command is decoded as unimplemented, which is 
indicated by the illegal command encoding. If this occurs, the development system should 
retransmit the command.

NOTE
A not-ready response can be ignored except during a memory-referencing 
cycle. Otherwise, the debug module can accept a new serial transfer after 32 
processor clock periods.

• In cycle 3, the development system supplies the low-order 16 address bits. The debug module 
always returns a not-ready response. 

• At the completion of cycle 3, the debug module initiates a memory read operation. Any serial 
transfers that begin during a memory access return a not-ready response.

• Results are returned in the two serial transfer cycles after the memory access completes. For any 
command performing a byte-sized memory read operation, the upper 8 bits of the response data are 
undefined and the referenced data is returned in the lower 8 bits. The next command’s opcode is 
sent to the debug module during the final transfer. If a bus error terminates a memory or register 
access, error status (S = 1, DATA = 0x0001) returns instead of result data.

XXX
’NOT READY’

READ (LONG)
???

MS ADDR
’NOT READY’

LS ADDR
’NOT READY’

NEXT CMD
’NOT READY’

NEXT CMD
’NOT READY’

NEXT CMD
LS RESULT

Commands transmitted to the debug module

Command code transmitted during this cycle

High-order 16 bits of memory address

Low-order 16 bits of memory address

Non-serial-related 

Next 
Command 

Code

Sequence taken if operation
has not completed

activity

READ 
MEMORY
LOCATION

XXX
BERR

XXX
MS RESULT

XXX
’ILLEGAL’

Responses from the debug module

Results from previous command

Sequence taken if illegal command
is received by debug module

Data used from this transfer

Sequence taken if bus error
occurs on memory access

High- and low-order 16 bits of result
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43.4.1.5 BDM Command Set

Table 43-30 summarizes the BDM command set. Subsequent sections contain detailed descriptions of 
each command. Issuing a BDM command when the processor is accessing debug module registers using 
the WDEBUG instruction causes undefined behavior. See Table 43-31 for register address encodings.

Table 43-30. BDM Command Summary

Command Mnemonic Description
CPU

State1

1 General command effect and/or requirements on CPU operation:
- Halted: The CPU must be halted to perform this command.
- Steal: Command generates bus cycles that can be interleaved with bus accesses.
- Parallel: Command is executed in parallel with CPU activity. 

Section/Page
Command

(Hex)

Read A/D 
register

RAREG/
RDREG

Read the selected address or data register and 
return the results through the serial interface.

Halted 43.4.1.5.1/43-40 0x218 {A/D, 
Reg[2:0]}

Write A/D 
register

WAREG/
WDREG

Write the data operand to the specified address or 
data register.

Halted 43.4.1.5.2/43-40 0x208 {A/D, 
Reg[2:0]}

Read 
memory 
location

READ Read the data at the memory location specified by 
the longword address.

Steal 43.4.1.5.3/43-41 0x1900—byte
0x1940—word
0x1980—lword

Write 
memory 
location

WRITE Write the operand data to the memory location 
specified by the longword address. 

Steal 43.4.1.5.4/43-42 0x1800—byte
0x1840—word
0x1880—lword

Dump 
memory 

block

DUMP Used with READ to dump large blocks of memory. An 
initial READ executes to set up the starting address 
of the block and to retrieve the first result. A DUMP 
command retrieves subsequent operands.

Steal 43.4.1.5.5/43-44 0x1D00—byte
0x1D40—word
0x1D80—lword

Fill memory 
block

FILL Used with WRITE to fill large blocks of memory. An 
initial WRITE executes to set up the starting address 
of the block and to supply the first operand. A FILL 
command writes subsequent operands.

Steal 43.4.1.5.6/43-46 0x1C00—byte
0x1C40—word
0x1C80—lword

Resume 
execution

GO The pipeline is flushed and refilled before resuming 
instruction execution at the current PC.

Halted 43.4.1.5.7/43-47 0x0C00

No operation NOP Perform no operation; may be used as a null 
command.

Parallel 43.4.1.5.8/43-48 0x0000

Output the 
current PC

SYNC_PC Capture the current PC and display it on the 
PSTDDATA outputs.

Parallel 43.4.1.5.9/43-48 0x0001

Read control 
register

RCREG Read the system control register. Halted 43.4.1.5.11/43-50 0x2980

Write control 
register

WCREG Write the operand data to the system control 
register.

Halted 43.4.1.5.14/43-53 0x2880

Read debug 
module 
register

RDMREG Read the debug module register. Parallel 43.4.1.5.15/43-54 0x2D {0x42 
DRc[4:0]}

Write debug 
module 
register

WDMREG Write the operand data to the debug module 
register.

Parallel 43.4.1.5.16/43-55 0x2C {0x42 
DRc[4:0]}
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NXP reserves unassigned command opcodes. All unused command formats within any revision level 
perform a NOP and return the illegal command response.

The following sections describe the commands summarized in Table 43-30.

NOTE
The BDM status bit (S) is 0 for normally completed commands. S is set for 
illegal commands, not-ready responses, and transfers with bus-errors. 
Section 43.4.1.2, “BDM Serial Interface,” describes the receive packet 
format.

43.4.1.5.1 Read A/D Register (RAREG/RDREG)

Read the selected address or data register and return the 32-bit result. A bus error response is returned if 
the CPU core is not halted.

Command/Result Formats:

Command Sequence:

Figure 43-27. RAREG/RDREG Command Sequence

Operand Data: None

Result Data: The contents of the selected register are returned as a longword value, 
most-significant word first.

43.4.1.5.2 Write A/D Register (WAREG/WDREG)

The operand longword data is written to the specified address or data register. A write alters all 32 register 
bits. A bus error response is returned if the CPU core is not halted.

Command Format:

2 0x4 is a three-bit field.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Command 0x2 0x1 0x8 A/D Register

Result D[31:16]

D[15:0]

Figure 43-26. RAREG/RDREG Command Format

RAREG/RDREG
???

NEXT CMD
LS RESULT

NEXT CMD
’NOT READY’

XXX
BERR

XXX
MS RESULT
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Command Sequence:

Figure 43-29. WAREG/WDREG Command Sequence

Operand Data: Longword data is written into the specified address or data register. The data is 
supplied most-significant word first.

Result Data: Command complete status is indicated by returning 0xFFFF (with S cleared) 
when the register write is complete.

43.4.1.5.3 Read Memory Location (READ)

Read data at the longword address. Address space is defined by BAAR[TT,TM]. Hardware forces 
low-order address bits to 0s for word and longword accesses to ensure that word addresses are 
word-aligned and longword addresses are longword-aligned.

Command/Result Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 0x0 0x8 A/D Register

D[31:16]

D[15:0]

Figure 43-28. WAREG/WDREG Command Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte  
Command

0x1 0x9 0x0 0x0

A[31:16]

A[15:0]

 Result X X X X X X X X D[7:0]

Word Command 0x1 0x9 0x4 0x0

A[31:16]

A[15:0]

Result D[15:0]

Longword Command 0x1 0x9 0x8 0x0

A[31:16]

A[15:0]

Result D[31:16]

D[15:0]

Figure 43-30. READ Command/Result Formats

WAREG/WDREG
???

LS DATA
’NOT READY’

NEXT CMD
’NOT READY’

XXX
BERR

MS DATA
’NOT READY’

NEXT CMD
’CMD COMPLETE’
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Command Sequence:

Figure 43-31. READ Command Sequence

Operand Data: The only operand is the longword address of the requested location.

Result Data: Word results return 16 bits of data; longword results return 32. Bytes are returned 
in the LSB of a word result; the upper byte is undefined. 0x0001 (S = 1) is returned 
if a bus error occurs.

43.4.1.5.4 Write Memory Location (WRITE)

Write data to the memory location specified by the longword address. BAAR[TT,TM] defines address 
space. Hardware forces low-order address bits to 0s for word and longword accesses to ensure that word 
addresses are word-aligned and longword addresses are longword-aligned.

XXX
’NOT READY’

READ (LONG)
???

MS ADDR
’NOT READY’

LS ADDR
’NOT READY’

NEXT CMD
’NOT READY’

NEXT CMD
LS RESULT

READ 
MEMORY
LOCATION

XXX
BERR

XXX
MS RESULT

XXX
’NOT READY’

READ (B/W)
???

MS ADDR
’NOT READY’

LS ADDR
’NOT READY’

NEXT CMD
’NOT READY’

READ 
MEMORY

LOCATION

XXX
BERR

NEXT CMD
RESULT
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Command Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 0x1 0x8 0x0 0x0

A[31:16]

A[15:0]

X X X X X X X X D[7:0]

Word 0x1 0x8 0x4 0x0

A[31:16]

A[15:0]

D[15:0]

Longword 0x1 0x8 0x8 0x0

A[31:16]

A[15:0]

D[31:16]

D[15:0]

Figure 43-32. WRITE Command Format
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Command Sequence:

Figure 43-33. WRITE Command Sequence

Operand Data: This two-operand instruction requires a longword absolute address that specifies 
a location the data operand is written. Byte data is sent as a 16-bit word, justified 
in the LSB; 16- and 32-bit operands are sent as 16 and 32 bits, respectively.

Result Data: Command complete status is indicated by returning 0xFFFF (with S cleared) 
when the register write is complete. A value of 0x0001 (with S set) is returned if 
a bus error occurs.

43.4.1.5.5 Dump Memory Block (DUMP)

DUMP is used with the READ command to access large blocks of memory. An initial READ is executed to 
set up the starting address of the block and to retrieve the first result. If an initial READ is not executed 
before the first DUMP, an illegal command response is returned. The DUMP command retrieves subsequent 
operands. The initial address increments by the operand size (1, 2, or 4) and saves in a temporary register. 
Subsequent DUMP commands use this address, perform the memory read, increment it by the current 
operand size, and store the updated address in the temporary register.

XXX
’NOT READY’

WRITE (LONG)
???

MS ADDR
’NOT READY’

LS ADDR
’NOT READY’

WRITE 
MEMORY

LOCATION

NEXT CMD
’CMD COMPLETE’

MS DATA
’NOT READY’

NEXT CMD
’NOT READY’

XXX
BERR

XXX
’NOT READY’

WRITE (B/W)
???

MS ADDR
’NOT READY’

LS ADDR
’NOT READY’

WRITE 
MEMORY
LOCATION

NEXT CMD
’CMD COMPLETE’

DATA
’NOT READY’

NEXT CMD
’NOT READY’

XXX
BERR

LS DATA
’NOT READY’
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NOTE
DUMP does not check for a valid address; it is a valid command only when 
preceded by NOP, READ, or another DUMP command. Otherwise, an illegal 
command response is returned. NOP can be used for intercommand padding 
without corrupting the address pointer. 

The size field is examined each time a DUMP command is processed, allowing the operand size to be 
dynamically altered.

Command/Result Formats:
 

Command Sequence:

Figure 43-35. DUMP Command Sequence

Operand Data: None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte Command 0x1 0xD 0x0 0x0

Result X X X X X X X X D[7:0]

Word Command 0x1 0xD 0x4 0x0

Result D[15:0]

Longword Command 0x1 0xD 0x8 0x0

Result D[31:16]

D[15:0]

Figure 43-34.  DUMP Command/Result Formats

XXX
’NOT READY’

DUMP (B/W)
???

XXX
’ILLEGAL’

NEXT CMD
’NOT READY’

NEXT CMD
’NOT READY’

READ 
MEMORY
LOCATION

XXX
BERR

NEXT CMD
RESULT

XXX
’NOT READY’

DUMP (LONG)
???

XXX
’ILLEGAL’

NEXT CMD
’NOT READY’

NEXT CMD
’NOT READY’

READ 
MEMORY
LOCATION

XXX
BERR

NEXT CMD
MS RESULT

NEXT CMD
LS RESULT
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Result Data: Requested data is returned as a word or longword. Byte data is returned in the 
least-significant byte of a word result. Word results return 16 bits of significant 
data; longword results return 32 bits. A value of 0x0001 (with S set) is returned if 
a bus error occurs.

43.4.1.5.6 Fill Memory Block (FILL)

A FILL command is used with the WRITE command to access large blocks of memory. An initial WRITE is 
executed to set up the starting address of the block and to supply the first operand. The FILL command 
writes subsequent operands. The initial address increments by the operand size (1, 2, or 4) and saves in a 
temporary register after the memory write. Subsequent FILL commands use this address, perform the write, 
increment it by the current operand size, and store the updated address in the temporary register.

If an initial WRITE is not executed preceding the first FILL command, the illegal command response is 
returned.

NOTE
The FILL command does not check for a valid address: FILL is a valid 
command only when preceded by another FILL, a NOP, or a WRITE command. 
Otherwise, an illegal command response is returned. The NOP command can 
be used for intercommand padding without corrupting the address pointer. 

The size field is examined each time a FILL command is processed, allowing the operand size to be altered 
dynamically.

Command Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 0x1 0xC 0x0 0x0

X X X X X X X X D[7:0]

Word 0x1 0xC 0x4 0x0

D[15:0]

Longword 0x1 0xC 0x8 0x0

D[31:16]

D[15:0]

Figure 43-36.  FILL Command Format
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Command Sequence:

Figure 43-37. FILL Command Sequence

Operand Data: A single operand is data to be written to the memory location. Byte data is sent as 
a 16-bit word, justified in the least-significant byte; 16- and 32-bit operands are 
sent as 16 and 32 bits, respectively.

Result Data: Command complete status (0xFFFF) is returned when the register write is 
complete. A value of 0x0001 (with S set) is returned if a bus error occurs.

43.4.1.5.7 Resume Execution (GO)

The pipeline is flushed and refilled before normal instruction execution resumes. Prefetching begins at the 
current address in the PC and at the current privilege level. If any register (such as the PC or SR) is altered 
by a BDM command while the processor is halted, the updated value is used when prefetching resumes. 
If a GO command issues and the CPU is not halted, the command is ignored.

 

Command Sequence:

Figure 43-39. GO Command Sequence

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 0xC 0x0 0x0

Figure 43-38. GO Command Format

XXX
’NOT READY’

FILL (B/W)
???

DATA
’NOT READY’

NEXT CMD
’NOT READY’

WRITE 
MEMORY

LOCATION

XXX
BERR

NEXT CMD
’CMD COMPLETE’XXX

’ILLEGAL’
NEXT CMD

’NOT READY’

XXX
’NOT READY’

FILL (LONG)
???

MS DATA
’NOT READY’

LS DATA
’NOT READY’

WRITE 
MEMORY

LOCATION

XXX
BERR

NEXT CMD
’CMD COMPLETE’XXX

’ILLEGAL’
NEXT CMD

’NOT READY’

NEXT CMD
’NOT READY’

GO
???

NEXT CMD
’CMD COMPLETE’
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Operand Data: None

Result Data: The command-complete response (0xFFFF) is returned during the next shift 
operation. 

43.4.1.5.8 No Operation (NOP)

NOP performs no operation and may be used as a null command where required.

Command Formats:

Command Sequence:

Figure 43-41. NOP Command Sequence

Operand Data: None

Result Data: The command-complete response, 0xFFFF (with S cleared), is returned during the 
next shift operation.

43.4.1.5.9 Synchronize PC to the PSTDDATA Lines (SYNC_PC)

The SYNC_PC command captures the current PC and displays it on the PSTDDATA outputs. After the 
debug module receives the command, it sends a signal to the ColdFire processor that the current PC must 
be displayed. The processor then forces an instruction fetch at the next PC with the address being captured 
in the DDATA logic under control of the CSR[BTB] bits. The specific sequence of PSTDDATA values is 
defined below:

1. Debug signals a SYNC_PC command is pending.

2. CPU completes the current instruction.

3. CPU forces an instruction fetch to the next PC, generates a PST equaling 0x5 value indicating a 
taken branch and signals the capture of DDATA.

4. The instruction address corresponding to the PC is captured.

5. The PST marker (0x9–0xB) is generated and displayed as defined by the CSR[BTB] bit followed 
by the captured PC address.

If the option to display ASID is enabled (CSR[OTE] = 1), the 8-bit ASID follows the address. That is, the 
PSTDDATA sequence is {0x5, Marker, Instruction Address, 0x8, ASID}, where the 0x8 is the marker for 
the ASID.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 0x0 0x0 0x0

Figure 43-40. NOP Command Format

NOP
???

NEXT CMD
’CMD COMPLETE’
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The SYNC_PC command can be used to dynamically access the PC for performance monitoring. The 
execution of this command is considerably less obtrusive to the real-time operation of an application than 
a HALT-CPU/READ-PC/RESUME command sequence.

Command Formats:

Command Sequence:

Figure 43-43. SYNC_PC Command Sequence

Operand Data: None

Result Data: Command complete status (0xFFFF) is returned when the register write is 
complete. 

43.4.1.5.10 Force Transfer Acknowledge (FORCE_TA)

Debug revision D logic implements the new FORCE_TA serial BDM command to resolve a hung bus 
condition. In some system designs, references to certain unmapped memory addresses may cause the 
external bus to hang with no transfer acknowledge generated by any bus responders. The FORCE_TA forces 
generation of a transfer acknowledge signal.

There are two scenarios of interest: one caused by a processor access and the other caused by a BDM 
access. The following sequences identify the operations needed to break the hung bus condition: 

• Bus hang caused by processor or external or internal alternate master:

— Assert the breakpoint input to force a processor core halt.

— If the bus hang was caused by a processor access, send in FORCE_TA commands until the 
processor is halted, as signaled by PST = 0xF. Due to pipeline and store buffer depths, many 
memory accesses may be queued up behind the access causing the bus hang. Repeated 
FORCE_TA commands eventually allow processing of all these pending accesses. As soon as the 
processor is halted, the system reaches a quiescent, controllable state.

— If the hang was caused by another master, such as a DMA channel, the processor can halt 
immediately. In this case as well, multiple assertions of the FORCE_TA command may be 
required to terminate the alternate master’s errant access.

• Bus hang caused by BDM access:

— It is assumed the processor is already halted at the time of the errant BDM access. To resolve 
the hung bus, it is necessary to process four or more FORCE_TA commands, because the BDM 
command may have initiated a cache line access that fetches 4 longwords, each needing a 
unique transfer acknowledge.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 0x0 0x0 0x1

Figure 43-42. SYNC_PC Command Format

SYNC_PC

???

NEXT CMD

CMD COMPLETE
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Formats:

Command Sequence:

Figure 43-45. FORCE_TA Command Sequence

Operand Data: None

Result Data: The command complete response, 0xFFFF (with the status bit cleared), is returned 
during the next shift operation. This response indicates the FORCE_TA command 
was processed correctly and does not necessarily reflect the status of any internal 
bus.

43.4.1.5.11 Read Control Register (RCREG)

Read the selected control register and return the 32-bit result. Accesses to the processor/memory control 
registers are always 32 bits wide, regardless of register width. The second and third words of the command 
form a 32-bit address, which the debug module uses to generate a special bus cycle to access the specified 
control register. The 12-bit Rc field is the same the processor’s MOVEC instruction uses.

Command/Result Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 0x0 0x0 0x2

Figure 43-44. FORCE_TA Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Command 0x2 0x9 0x8 0x0

0x0 0x0 0x0 0x0

0x0 Rc

Result D[31:16]

D[15:0]

Figure 43-46. RCREG Command/Result Formats

FORCE_TA

???

NEXT CMD

“CMD COMPLETE”
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Command Sequence:

Figure 43-47. RCREG Command Sequence

Operand Data: The only operand is the 32-bit Rc control register select field.

Result Data: Control register contents are returned as a longword, most-significant word first. 
The implemented portion of registers smaller than 32 bits is guaranteed correct; 
other bits are undefined.

Rc encoding: See Table 43-31.

Table 43-31. Control Register Map

Rc Register Definition

0x002 Cache Control Register (CACR)

0x003 Address Space Identifier (ASID)

0x004 Access Control Register (ACR0)

0x005 Access Control Register (ACR1)

0x006 Access Control Register (ACR2)

0x007 Access Control Register (ACR3)

0x008 MMU Base Address Register (MMUBAR)

0x009 RGPIO Base Address Register (RGPIOBAR)1

0x(0,1)80 – 0x(0,1)87 Data Registers 0–7 (0 = load, 1 = store)

0x(0,1)88 – 0x(0,1)8F Address Registers 0–7 (0 = load, 1 = store) 
(A7 is user stack pointer)

0x800 Other Stack Pointer (OTHER_A7)

0x801 Vector Base Register (VBR)

0x804 MAC Status Register (MACSR)

0x805 MAC Mask Register (MASK)

0x806 MAC Accumulator 0 (ACC0)

0x807 MAC Accumulator 0,1 Extension Bytes (ACCEXT01)

0x808 MAC Accumulator 2,3 Extension Bytes (ACCEXT23)

0x809 MAC Accumulator 1 (ACC1)

0x80A MAC Accumulator 2 (ACC2)

XXX
’NOT READY’

RCREG
???

MS ADDR
’NOT READY’

MS ADDR
’NOT READY’

NEXT CMD
’NOT READY’

READ 
CONTROL
REGISTER

XXX
BERR

NEXT CMD
MS RESULT

NEXT CMD
LS RESULT
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43.4.1.5.12 BDM Accesses of the Stack Pointer Registers (A7: SSP and USP)

The ColdFire core supports two unique stack pointer (A7) registers: the supervisor stack pointer (SSP) and 
the user stack pointer (USP). The hardware implementation of these two programmable-visible 32-bit 
registers does not uniquely identify one as the SSP and the other as the USP. Rather, the hardware uses one 
32-bit register as the currently-active A7; the other is named the OTHER_A7. Therefore, the contents of 
the two hardware registers is a function of the operating mode of the processor:
if SR[S] = 1

then A7 = Supervisor Stack Pointer
OTHER_A7 = User Stack Pointer

else A7 = User Stack Pointer
OTHER_A7 = Supervisor Stack Pointer

The BDM programming model supports reads and writes to A7 and OTHER_A7 directly. It is the 
responsibility of the external development system to determine the mapping of A7 and OTHER_A7 to the 
two program-visible definitions (supervisor and user stack pointers), based on the SR[S] bit.

43.4.1.5.13 BDM Accesses of the EMAC Registers

The presence of rounding logic in the output datapath of the EMAC requires special care for 
BDM-initiated reads and writes of its programming model. In particular, any result rounding modes must 
be disabled during the read/write process so the exact bit-wise EMAC register contents are accessed.

For example, a BDM read of an accumulator (ACCx) must be preceded by two commands accessing the 
MAC status register, as shown in the following sequence: 
BdmReadACCx (

rcreg macsr; // read current macsr contents and  save
wcreg #0,macsr; // disable all rounding modes 
rcreg ACCx; // read the desired accumulator 
wcreg #saved_data,macsr;// restore the original macsr

)

Likewise, to write an accumulator register, the following BDM sequence is needed:
BdmWriteACCx (

rcreg macsr; // read current macsr contents and  save
wcreg #0,macsr; // disable all rounding modes
wcreg #data,ACCx; // write the desired accumulator
wcreg #saved_data,macsr;// restore the original macsr

)

0x80B MAC Accumulator 3 (ACC3)

0x80E Status Register (SR)

0x80F Program Register (PC)

0xC05 RAM Base Address Register (RAMBAR)

1 If an RGPIO module is available on this device.

Table 43-31. Control Register Map (continued)

Rc Register Definition
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Additionally, writes to the accumulator extension registers must be performed after the corresponding 
accumulators are updated because a write to any accumulator alters the corresponding extension register 
contents.

For more information on saving and restoring the complete EMAC programming model, see 
Section 5.3.1.2, “Saving and Restoring the EMAC Programming Model.”

43.4.1.5.14 Write Control Register (WCREG)

The operand (longword) data is written to the specified control register. The write alters all 32 register bits. 
See the RCREG instruction description for the Rc encoding and for additional notes on writes to the A7 
stack pointers and the EMAC programming model.

Command/Result Formats:

Command Sequence:

Figure 43-49. WCREG Command Sequence

Operand Data: This instruction requires two longword operands. The first selects the register to 
the operand data writes to; the second contains the data.

Result Data: Successful write operations return 0xFFFF. Bus errors on the write cycle are 
indicated by the setting of bit 16 in the status message and by a data pattern of 
0x0001.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Command 0x2 0x8 0x8 0x0

0x0 0x0 0x0 0x0

0x0 Rc

Result D[31:16]

D[15:0]

Figure 43-48. WCREG Command/Result Formats

XXX
’NOT READY’

WCREG
???

MS ADDR
’NOT READY’

MS ADDR
’NOT READY’

WRITE 
CONTROL
REGISTER

NEXT CMD
’CMD COMPLETE’

MS DATA
’NOT READY’

NEXT CMD
’NOT READY’

XXX
BERR

LS DATA
’NOT READY’
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43.4.1.5.15 Read Debug Module Register (RDMREG)

Read the selected debug module register and return the 32-bit result. The only valid register selection for 
the RDMREG command is CSR (DRc=0x00), XCSR (DRc=0x01), CSR2 (DRc=0x02), the trace buffer 
contents (which are TBLW0–23 (DRc=0x20–0x37)), and PCRS (the most recently sampled PC when 
operating in the PC profile recording mode).

To configure PC profiling recording mode set the following:

• CSR2[PSTBRM] = 0x2

• XCSR[APCENB] = 1

• CSR[BTB] = non-zero

• XCSR[APCSC] = periodic interval of PC address captures of choice.

In this mode, a read at address 0x3F (PCRS) returns the most recently sampled PC. Each time the PC is 
sampled and loaded into the PSTB, the full 32-bit PC is also loaded into PCRS. You can use the RDMREG 
BDM command at any time including in halt mode. This provides real-time PC profiling that is minimally 
intrusive to the system.

Command/Result Formats:

Table 43-32 shows the definition of DRc encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Command 0x2 0xD 1 0 DRc

Result D[31:16]

D[15:0]

Figure 43-50.  RDMREG Command/Result Formats

Table 43-32. Definition of DRc Encoding—Read

DRc[5:0] Debug Register Definition Mnemonic

0x00 Configuration/Status CSR

0x01 Extended configuration/status register XCSR

0x02 Configuration/status register 2 CSR2

0x20–0x37 PSTB trace buffer longwords TBLW0–23

0x3F Most recently sampled PC PCRS
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Command Sequence:

Figure 43-51. RDMREG Command Sequence

Operand Data: None

Result Data: The contents of the selected debug register are returned as a longword value. The 
data is returned most-significant word first.

43.4.1.5.16 Write Debug Module Register (WDMREG)

The operand (longword) data is written to the specified debug module register. All 32 bits of the register 
are altered by the write. DSCLK must be inactive while the debug module register writes from the CPU 
accesses are performed using the WDEBUG instruction.

Command Format:

Table 43-5 shows the definition of the DRc write encoding.

Command Sequence:

Figure 43-53. WDMREG Command Sequence

Operand Data: Longword data is written into the specified debug register. The data is supplied 
most-significant word first.

Result Data: Command complete status (0xFFFF) is returned when register write is complete.

Figure 43-52. WDMREG BDM Command Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 0xC 1 0 DRc

D[31:16]

D[15:0]

RDMREG
???

XXX
MS RESULT

NEXT CMD
LS RESULT

XXX
’ILLEGAL’

NEXT CMD
’NOT READY’

WDMREG
???

MS DATA
’NOT READY’

LS DATA
’NOT READY’

XXX
’ILLEGAL’

NEXT CMD
’NOT READY’

NEXT CMD
’CMD COMPLETE’
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43.4.2 Real-Time Debug Support

The ColdFire family provides support debugging real-time applications. For these types of embedded 
systems, the processor must continue to operate during debug. The foundation of this area of debug support 
is that while the processor cannot be halted to allow debugging, the system can generally tolerate the small 
intrusions of the BDM inserting instructions into the pipeline with minimal effect on real-time operation.

The debug module provides four types of breakpoints: PC with mask, PC without mask, operand address 
range, and data with mask. These breakpoints can be configured into one- or two-level triggers with the 
exact trigger response also programmable. The debug module programming model can be written from the 
external development system using the debug serial interface or from the processor’s supervisor 
programming model using the WDEBUG instruction. Only CSR is readable using the external 
development system.

43.4.2.1 Theory of Operation

Breakpoint hardware can be configured through TDR[TCR] to respond to triggers by displaying 
PSTDDATA, initiating a processor halt, or generating a debug interrupt. As shown in Table 43-33, when 
a breakpoint is triggered, an indication (CSR[BSTAT]) is provided on the PSTDDATA output port of the 
DDATA information when it is not displaying captured processor status, operands, or branch addresses. 
See Section 43.4.4.3, “Processor Stopped or Breakpoint State Change (PST = 0xE).”

The breakpoint status is also posted in the CSR. CSR[BSTAT] is cleared by a CSR read when a level-2 
breakpoint is triggered or a level-1 breakpoint is triggered and a level-2 breakpoint is not enabled. Status 
is also cleared by writing to either TDR or XTDR to disable trigger options.

BDM instructions use the appropriate registers to load and configure breakpoints. As the system operates, 
a breakpoint trigger generates the response defined in TDR.

PC breakpoints are treated in a precise manner—exception recognition and processing are initiated before 
the excepting instruction executes. All other breakpoint events are recognized on the processor’s local bus, 
but are made pending to the processor and sampled like other interrupt conditions. As a result, these 
interrupts are imprecise.

In systems that tolerate the processor being halted, a BDM-entry can be used. With TDR[TRC] equals 01, 
a breakpoint trigger causes the core to halt (PST = 0xF).

Table 43-33. PSTDDATA Nibble/CSR[BSTAT] Breakpoint Response

PSTDDATA 
Nibble1 CSR[BSTAT]1

1 Encodings not shown are reserved for future use.

Breakpoint Status

0000 0000 No breakpoints enabled

0010 0001 Waiting for level-1 breakpoint

0100 0010 Level-1 breakpoint triggered

1010 0101 Waiting for level-2 breakpoint

1100 0110 Level-2 breakpoint triggered
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If the processor core cannot be halted, the debug interrupt can be used. With this configuration, 
TDR[TRC] equals 10, breakpoint trigger becomes a debug interrupt to the processor, which is treated 
higher than the nonmaskable level-7 interrupt request. As with all interrupts, it is made pending until the 
processor reaches a sample point, which occurs once per instruction. Again, the hardware forces the PC 
breakpoint to occur before the targeted instruction executes and is precise. This is possible because the PC 
breakpoint is enabled when interrupt sampling occurs. For address and data breakpoints, reporting is 
considered imprecise, because several instructions may execute after the triggering address or data is 
detected.

As soon as the debug interrupt is recognized, the processor aborts execution and initiates exception 
processing. This event is signaled externally by the assertion of a unique PST value (PST = 0xD) for 
multiple cycles. The core enters emulator mode when exception processing begins. After the standard 
8-byte exception stack is created, the processor fetches a unique exception vector from the vector table. 
Table 43-34 describes the two unique entries that distinguish PC breakpoints from other trigger events.

Refer to the ColdFire Programmer’s Reference Manual. for more information.

In the case of a two-level trigger, the last breakpoint event determines the exception vector; however, if 
the second-level trigger is PC || Address {&& Data} (as shown in the last condition in the code example 
in Section 43.3.13.1, “Resulting Set of Possible Trigger Combinations”), the vector taken is determined 
by the first condition that occurs after the first-level trigger: vector 13 if PC occurs first or vector 12 if 
Address {&& Data} occurs first. If both occur simultaneously, the non-PC-breakpoint debug interrupt is 
taken (vector number 12).

Execution continues at the instruction address in the vector corresponding to the debug interrupt. The 
debug interrupt handler can use supervisor instructions to save the necessary context, such as the state of 
all program-visible registers into a reserved memory area. 

During a debug interrupt service routine, all normal interrupt requests are evaluated and sampled once per 
instruction. If any exception occurs, the processor responds as follows:

1. It saves a copy of the current value of the emulator mode state bit and then exits emulator mode by 
clearing the actual state.

2. The fault status field (FS) in the next exception stack frame is set to 0010 to indicate the processor 
was in emulator mode when the interrupt occurred. See Section 3.3.3.1, “Exception Stack Frame 
Definition.”

3. It passes control to the appropriate exception handler.

4. It executes an RTE instruction when the exception handler finishes. During the processing of the 
RTE, FS is reloaded from the system stack. If this bit field is set to 0010, the processor sets the 
emulator mode state and resumes execution of the original debug interrupt service routine. This is 
signaled externally by the generation of the PST value that originally identified the debug interrupt 
exception, that is, PST = 0xD.

Table 43-34. Exception Vector Assignments

Vector Number Vector Offset (Hex) Stacked Program Counter Assignment

12 0x030 Next Non-PC-breakpoint debug interrupt

13 0x034 Next PC-breakpoint debug interrupt
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Fault status encodings are listed in Table 3-7. The implementation of this debug interrupt handling fully 
supports the servicing of a number of normal interrupt requests during a debug interrupt service routine.

The emulator mode state bit is essentially changed to be a program-visible value, stored into memory 
during exception stack frame creation, and loaded from memory by the RTE instruction.

When debug interrupt operations complete, the RTE instruction executes and the processor exits emulator 
mode. After the debug interrupt handler completes execution, the external development system can use 
BDM commands to read the reserved memory locations.

In revisions B/B+ and C, the hardware inhibits generation of another debug interrupt during the first 
instruction after the RTE exits emulator mode. This behavior is consistent with the logic involving trace 
mode where the first instruction executes before another trace exception is generated. Thus, all hardware 
breakpoints are disabled until the first instruction after the RTE completes execution, regardless of the 
programmed trigger response.

43.4.2.2 Emulator Mode

Emulator mode facilitates non-intrusive emulator functionality. This mode can be entered in three different 
ways:

• Setting CSR[EMU] forces the processor into emulator mode. EMU is examined only if RSTI is 
negated and the processor begins reset exception processing. It can be set while the processor is 
halted before reset exception processing begins. See Section 43.4.1.1, “CPU Halt”.

• A debug interrupt always puts the processor in emulation mode when debug interrupt exception 
processing begins.

• Setting CSR[TRC] forces the processor into emulation mode when trace exception processing 
begins.

While operating in emulation mode, the processor exhibits the following properties:

• Unmasked interrupt requests are serviced. The resulting interrupt exception stack frame has FS set 
appropriately (0010) to indicate the interrupt occurred while in emulator mode.

• If CSR[MAP] is set, all caching of memory and the SRAM module are disabled. All memory 
accesses are forced into a specially mapped address space signaled by TT equals 0x2, 
TM equals 0x5, or 0x6. This includes stack frame writes and vector fetch for the exception that 
forced entry into this mode.

The RTE instruction exits emulation mode. The processor status output port provides a unique encoding 
for emulator mode entry (0xD) and exit (0x7).

43.4.3 Concurrent BDM and Processor Operation

The debug module supports concurrent operation of the processor and most BDM commands. BDM 
commands may be executed while the processor is running, except these following operations that access 
processor/memory registers:

• Read/write address and data registers

• Read/write control registers
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For BDM commands that access memory, the debug module requests the processor’s local bus. The 
processor responds by stalling the instruction fetch pipeline and waiting for current bus activity to 
complete before freeing the local bus for the debug module to perform its access. After the debug module 
bus cycle, the processor reclaims the bus.

NOTE
Breakpoint registers must be carefully configured in a development system 
if the processor is executing. The debug module contains no hardware 
interlocks, so TDR and XTDR should be disabled while breakpoint registers 
are loaded, after which TDR and XTDR can be written to define the exact 
trigger. This prevents spurious breakpoint triggers.

Because there are no hardware interlocks in the debug unit, no BDM operations are allowed while the CPU 
is writing the debug’s registers (DSCLK must be inactive).

43.4.4 Real-Time Trace Support

Real-time trace, which defines the dynamic execution path and is also known as instruction trace, is a 
fundamental debug function. The ColdFire solution is to include a parallel output port providing encoded 
processor status and data to an external development system. This 8-bit port is partitioned into two 
consecutive 4-bit nibbles. Each nibble can either transmit information concerning the processor’s 
execution status (PST) or debug data (DDATA). A PST marker and its data display are sent contiguously 
— the IDLE status (0x0) can appear anytime. As stated before, PST values and operands may appear on 
either nibble of PSTDDATA. The processor status may not be related to the current bus transfer, due to the 
decoupling FIFOs.

External development systems can use PSTDDATA outputs with an external image of the program to 
completely track the dynamic execution path. This tracking is complicated by any change in flow, where 
branch target address calculation is based on the contents of a program-visible register (variant 
addressing). PSTDDATA outputs can display the target address of such instructions in sequential nibble 
increments across multiple processor clock cycles, as described in Section 43.4.4.2, “Begin Execution of 
Taken Branch (PST = 0x5)”. Four 32-bit storage elements form a FIFO buffer connecting the processor’s 
high-speed local bus to the external development system through PSTDDATA[7:0]. The buffer captures 
branch target addresses and certain data values for eventual display on the PSTDDATA port, two nibbles 
at a time starting with the least significant bit (lsb).

Execution speed is affected only when three storage elements contain valid data to be dumped to the 
PSTDDATA port. This occurs only when two values are captured simultaneously in a read-modify-write 
operation. The core stalls until two FIFO entries are available.

Table 43-35 shows the encoding of these signals.
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Table 43-35. Processor Status Encoding

PST[3:0] Definition

0x0 Continue execution. Many instructions execute in one processor cycle. If an instruction requires more clock 
cycles, subsequent clock cycles are indicated by driving PSTDDATA outputs with this encoding. 

0x1 Begin execution of one instruction. For most instructions, this encoding signals the first processor clock 
cycle of an instruction’s execution. Certain change-of-flow opcodes, plus the PULSE and WDDATA 
instructions, generate different encodings.

0x2 Begin execution of two instructions. For superscalar instruction dispatches, this encoding signals the first 
clock cycle of the simultaneous instructions’ execution. 

0x3 Entry into user-mode. Signaled after execution of the instruction that caused the ColdFire processor to enter 
user mode. If the display of the ASID is enabled (CSR[OTE] = 1), the following occurs:
The 8-bit ASID follows the instruction address; that is, the PSTDDATA sequence is {0x3, 0x5, marker, 
instruction address, 0x8, ASID}, where 0x8 is the ASID data marker. 
When the current ASID is loaded by the privileged MOVEC instruction, the ASID is displayed on 
PSTDDATA. The resulting PSTDDATA sequence for the MOVEC instruction is then {0x1, 0x8, ASID}, where 
the 0x8 is the data marker for the ASID.

0x4 Begin execution of PULSE and WDDATA instructions. PULSE defines logic analyzer triggers for debug 
and/or performance analysis. WDDATA lets the core write any operand (byte, word, or longword) directly to 
the PSTDDATA port, independent of debug module configuration. When WDDATA is executed, a value of 
0x4 is signaled, followed by the appropriate marker, and then the data transfer on the PSTDDATA port. 
Transfer length depends on the WDDATA operand size.

0x5 Begin execution of taken branch or SYNC_PC command issued. For some opcodes, a branch target 
address may be displayed on PSTDDATA depending on the CSR settings. CSR also controls the number 
of address bytes displayed, indicated by the PST marker value preceding the PSTDDATA nibble that begins 
the data output. See Section 43.4.4.2, “Begin Execution of Taken Branch (PST = 0x5)”. Also indicates that 
the SYNC_PC command has been issued.

0x6 Begin execution of instruction plus a taken branch. The processor completes execution of a taken 
conditional branch instruction and simultaneously starts executing the target instruction. This is achieved 
through branch folding.

0x7 Begin execution of return from exception (RTE) instruction.

0x8–
0xB

Indicates the number of bytes to be displayed on the PSTDDATA port on subsequent clock cycles. The value 
is driven onto the PSTDDATA port one cycle before the data is displayed.
0x8 Begin 1-byte transfer on PSTDDATA.
0x9 Begin 2-byte transfer on PSTDDATA.
0xA Begin 3-byte transfer on PSTDDATA.
0xB Begin 4-byte transfer on PSTDDATA.

0xC Normal exception processing. Exceptions that enter emulation mode (debug interrupt or optionally trace) 
generate a different encoding, as described below. Because the 0xC encoding defines a multiple-cycle 
mode, PSTDDATA outputs are driven with 0xC until exception processing completes.

0xD Emulator mode exception processing. Displayed during emulation mode (debug interrupt or optionally 
trace). Because this encoding defines a multiple-cycle mode, PSTDDATA outputs are driven with 0xD until 
exception processing completes.

0xE A breakpoint state change causes this encoding to assert for one cycle only followed by the trigger status 
value. If the processor stops waiting for an interrupt, the encoding is asserted for multiple cycles. See 
Section 43.4.4.3, “Processor Stopped or Breakpoint State Change (PST = 0xE).”

0xFF Processor is halted. Because this encoding defines a multiple-cycle mode, the PSTDDATA outputs display 
0xF until the processor is restarted or reset. See Section 43.4.1.1, “CPU Halt”.
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43.4.4.1 PST Trace Buffer

This device also implements an on-chip PST trace buffer (PSTB) that records compressed processor 
execution status and debug data in a 128-packet (6-bit each) memory. This memory is mapped into the 
debug register programming model, so the trace information can be retrieved via the 3-pin serial BDM 
interface (see the RDMREG command described in Section 43.4.1.5.15, “Read Debug Module Register 
(rdmreg)). It supports programmable start/stop recording conditions, as well as special continuous and 
PC-profiling modes of operation along with normal recording.

The feature sets of the classic PST/DDATA and PSTB implementations are compared in Table 43-36.

Since there are one (or more) PST entry per instruction, the PSTB would fill rapidly without data 
compression. Therefore, a compression algorithm is added with this feature.

Consider the following example to illustrate the PST compression algorithm. Most sequential instructions 
generate a single PST = 1 value. Without compression, the execution of ten sequential instructions 
generates a stream of ten PST = 1 values. With PST compression, the reporting of any PST = 1 value is 
delayed so that consecutive PST = 1 values can be accumulated. When a PST  1 value is reported, the 
maximum accumulation count is reached, or a debug data value is captured, a single accumulated PST 
value is generated. Returning to the example with compression enabled, the execution of ten sequential 
instructions generates a single PST value indicating ten sequential instructions have been executed.

This technique has proven to be effective at significantly reducing the average PST entries per instruction 
and PST entries per machine cycle. The application of this compression technique makes the application 
of a useful PST trace buffer for the ColdFire core realizable.

Table 43-36. ColdFire Trace Support Comparison

Feature Classic PST/DDATA PST Trace Buffer

Basic capability Program trace with optional partial data 
trace

Program trace

Processor status 4-bit encoded status, 1 or more values per 
instruction

5-bit encoded compressed status, 1 or 
more values per instruction

Debug data Multiple 4-bit data nibbles, instruction 
addresses, or system bus data

Multiple 4-bit data nibbles, instruction 
addresses only

WDDATA.{b,w,l} instruction Yes, provides hardware printf capability 
allowing a direct write to the port

Yes, provides hardware printf 
capability allowing a direct write to the 
trace buffer

Output method Continuously output from core in real time; 
can be disabled if CSR[17] = 1

Written into trace buffer, retrieved via 
BDM read commands; programmable 
start and stop recording conditions

Trace length limitations No restrictions; can be infinitely long Storage of up to 128 6-bit PST/DDATA 
packets
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Table 43-37. PST Buffer Processor Status Encodings

PSTB[4:0] Definition

0x00 Continue execution. Many instructions execute in one processor cycle. If an instruction requires more 
processor clock cycles, subsequent clock cycles are indicated by driving PST with this encoding. 
Note: This encoding is never stored in the PSTB.

0x01 Begin execution of one instruction. For most instructions, this encoding signals the first processor clock 
cycle of an instruction’s execution. Certain change-of-flow opcodes, plus the PULSE and WDDATA 
instructions, generate different encodings.

0x02 Begin execution of two instructions. For superscalar instruction dispatches, this encoding signals the 
first clock cycle of the simultaneous instructions’ execution.

0x03 Entry into user-mode. Signaled after execution of the instruction that caused the ColdFire processor to 
enter user mode.

0x04 Begin execution of PULSE and WDDATA instructions. PULSE defines triggers or markers for debug 
and/or performance analysis. WDDATA lets the core write any operand (byte, word, or longword) 
directly as DDATA packets, independent of debug module configuration. When WDDATA is executed, 
a value of 0x04 is stored in the PSTB, followed by the appropriate marker, and then the data transfer 
as DDATA packets. The number of captured data bytes depends on the WDDATA operand size.

0x05 Begin execution of taken branch or SYNC_PC BDM command. For some opcodes, a branch target 
address may be stored in the PSTB depending on the CSR settings. CSR also controls the number of 
address bytes stored, indicated by the PST marker value preceding the DDATA packets that begin the 
data output. This encoding also indicates that the SYNC_PC command has been processed.

0x06 Reserved

0x07 Begin execution of return from exception (RTE) instruction.

0x08–0x0B Indicates the number of data bytes to be stored in the PSTB. This marker is the PST stored immediately 
before the DDATA packets. Only data associated with the WDDATA instruction is captured.
0x08 Precedes 1-byte DDATA packets
0x09 Precedes 2-byte DDATA packets
0x0A Reserved
0x0B Precedes 4-byte DDATA packets

0x0C–0x0F Indicates the number of address bytes to be stored in the PSTB on subsequent processor clock cycles. 
This marker value is stored in the PSTB immediately before the address packet is stored. The capturing 
of branch target addresses is controlled by CSR[BTB].
0x0C Precedes 2-byte ASID packet
0x0D Precedes 2-byte packet (Stored address is shifted right 1: ADDR[16:1])
0x0E Precedes 3-byte packet (Stored address is shifted right 1: ADDR[23:1])
0x0F Precedes 4-byte packet (Stored address is shifted right 1: ADDR[31:1])

0x10–0x11 Reserved

0x12 Completed execution of 2 sequential instructions

0x13 Completed execution of 3 sequential instructions

0x14 Completed execution of 4 sequential instructions

0x15 Completed execution of 5 sequential instructions

0x16 Completed execution of 6 sequential instructions

0x17 Completed execution of 7 sequential instructions

0x18 Completed execution of 8 sequential instructions

0x19 Completed execution of 9 sequential instructions



Debug Module

43-63 NXP Semiconductors

43.4.4.2 Begin Execution of Taken Branch (PST = 0x5)

PST is 0x5 when a taken branch is executed. For some opcodes, a branch target address may be displayed 
on PSTDDATA or loaded into the PST trace buffer depending on the CSR settings. CSR also controls the 
number of address bytes displayed/loaded, which is indicated by the PST marker value immediately 
preceding the PSTDDATA nibble that begins the data output/PSTB address entries.

The address is displayed on PSTDDATA or loaded into PSTB in least-to-most significant nibble order. The 
address is not shifted for the PSTDDATA ports — in other words, [15:0], [23:0], or [31:0] is displayed. 
For PSTB storage, the address is shifted right by one bit — in other words, [16:1], [24:1], or {0,[31:1]} is 
stored.

Multiple byte DDATA values are displayed in least-to-most-significant order. The processor captures only 
those target addresses associated with taken branches that use a variant addressing mode (RTE and RTS 
instructions, JMP and JSR instructions using address register indirect or indexed addressing modes, and 
all exception vectors).

The simplest example of a branch instruction using a variant address is the compiled code for a C language 
case statement. Typically, the evaluation of this statement uses the variable of an expression as an index 
into a table of offsets, where each offset points to a unique case within the structure. For such 
change-of-flow operations, the ColdFire processor uses the debug pins/PST buffer to output/load the 
following sequence of information on two successive processor clock cycles:

1. Use PSTDDATA (0x5) or load a PST=0x05 packet to identify that a taken branch is executed.

0x1A Completed execution of 10 sequential instructions

0x1B This value signals there has been a change in the breakpoint trigger state machine. It appears as a 
single PST packet marker for each state change and is immediately followed by a DDATA packet 
signaling the new breakpoint trigger state encoding.
The DDATA breakpoint trigger state packet is defined as (0x20 + 2  CSR[BSTAT]):
0x20 No breakpoints enabled
0x22 Waiting for a level-1 breakpoint
0x24 Level-1 breakpoint triggered
0x2A Waiting for a level-2 breakpoint
0x2C Level-2 breakpoint triggered

0x1C Exception processing. This value signals the processor has encountered an exception condition. 
Although this is a multi-cycle mode, there are only two PST = 0x1C packets recorded before the mode 
value is suppressed.

0x1D Emulator mode exception processing. This value signals the processor has encountered a debug 
interrupt or a properly-configured trace exception. Although this is a multi-cycle mode, there are only 
two PST = 0x1D packets recorded before the mode value is suppressed.

0x1E Processor is stopped. This value signals the processor has executed a STOP instruction. Although this 
is a multi-cycle mode because the ColdFire processor remains stopped until an interrupt or reset 
occurs, there are only two PST = 0x1E packets recorded before the mode value is suppressed.

0x1F Processor is halted. This value signals the processor has been halted. Although this is a multi-cycle 
mode because the ColdFire processor remains halted until a BDM go command is received or reset 
occurs, there are only two PST = 0x1F packets recorded before the mode value is suppressed.

Table 43-37. PST Buffer Processor Status Encodings (continued)

PSTB[4:0] Definition
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2. Signal the target address to be displayed sequentially on the PSTDDATA pins. Encodings 0x9–0xB 
identify the number of bytes displayed.
Using the PSTB, optionally load the marker for the target address capture. PST packet encodings 
0x0D, 0x0E, or 0x0F identify the number of bytes loaded into the PSTB. The capturing of the target 
instruction address is configured in CSR[BTB].

3. The new target address is optionally available on subsequent cycles using the PSTDDATA port or 
loaded in the PSTB. The number of bytes of displayed on this port/loaded into the PSTB is 
configurable (2, 3, or 4 bytes, where the PSTDDATA encoding is 0x9, 0xA, and 0xB, respectively 
or where the PST marker packets are 0x0D, 0x0D, and 0x0F, respectively).

Another example of a variant branch instruction would be a JMP (A0) instruction. Figure 43-54 shows the 
PSTDDATA outputs that indicate a JMP (A0) execution, assuming the CSR was programmed to display 
the lower 2 bytes of an address.

Figure 43-54. Example JMP Instruction Output on PSTDDATA

PSTDDATA is driven two nibbles at a time with a 0x59; 0x5 indicates a taken branch and the marker value 
0x9 indicates a 2-byte address. Therefore, the subsequent 4 nibbles display the lower two bytes of address 
register A0 in least-to-most-significant nibble order. The PSTDDATA output after the JMP instruction 
continues with the next instruction.

Using the PST buffer, this example is slightly modified so that the CSR is programmed to display the lower 
three bytes of the target instruction address. Table 43-38 shows the consecutive PSTB entries that indicate 
a JMP (A0) execution.

E

The PST of 0x05 indicates a taken branch and the marker value 0x0E indicates a 3-byte address. The 
subsequent entries display the lower three bytes of address register A0, right-shifted by 1, in 
least-to-most-significant nibble order. The next PSTB entry, after the JMP instruction completes, depends 
on the target instruction.

Table 43-38. Example JMP Instruction Captured in PSTB

PSTB Value Packet Type Description

0x05 PST Taken branch

0x0E PST (marker) 3-byte address marker

{10, Address[4:1])
{10, Address[8:5])

{10, Address[12:9])
{10, Address[16:13])
{10, Address[20:17])
{10, Address[24:21])

DDATA
DDATA
DDATA
DDATA
DDATA
DDATA

Target address >> 1

PSTDDATA

PSTCLK

0x59 A0[3–0,7–4] A0[11–8,15–12]

Processor Clock
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43.4.4.3 Processor Stopped or Breakpoint State Change (PST = 0xE)

The 0xE encoding is generated either as a one- or multiple-cycle issue as follows:

• When the core is stopped by a STOP instruction, this encoding appears in multiple-cycle format. 
The ColdFire processor remains stopped until an interrupt occurs; thus, PSTDDATA outputs 
display 0xE until stopped mode is exited. PSTB only stores two consecutive packets of 0x1E.

• When a breakpoint status change is to be output on PSTDDATA, 0xE is displayed for one cycle, 
followed immediately with the 4-bit value of the current trigger status, where the trigger status is 
left justified rather than in the CSR[BSTAT] description. Section 43.3.2, “Configuration/Status 
Register (CSR),” shows that status is right justified. That is, the displayed trigger status on 
PSTDDATA after a single 0xE is as follows:

— 0x0 = no breakpoints enabled

— 0x2 = waiting for level-1 breakpoint

— 0x4 = level-1 breakpoint triggered

— 0xA = waiting for level-2 breakpoint 

— 0xC = level-2 breakpoint triggered 

Thus, 0xE can indicate multiple events, based on the next value, as Table 43-39 shows.

43.4.4.4 Processor Halted (PST = 0xF)

PST is 0xF when the processor is halted (see Section 43.4.1.1, “CPU Halt”). Because this encoding defines 
a multiple-cycle mode, the PSTDDATA outputs display 0xF until the processor is restarted or reset. 
Therefore, PSTDDATA[7:0] continuously are 0xFF. PSTB only stores two consecutive packets of 0x1F.

NOTE
HALT can be distinguished from a data output 0xFF by counting 0xFF 
occurrences on PSTDDATA. Because data always follows a marker (0x8, 
0x9, 0xA, or 0xB), the longest occurrence in PSTDDATA of 0xFF in a data 
output is four. 

Two scenarios exist for data 0xFFFF_FFFF:

• The B marker occurs on the most-significant nibble of PSTDDATA with the data of 0xFF 
following:

Table 43-39. 0xE Status Posting

PSTDDATA Stream Includes Result

{0xE, 0x2} Breakpoint state changed to waiting for level-1 trigger

{0xE, 0x4} Breakpoint state changed to level-1 breakpoint triggered

{0xE, 0xA} Breakpoint state changed to waiting for level-2 trigger

{0xE, 0xC} Breakpoint state changed to level-2 breakpoint triggered

{0xE, 0xE} Stopped mode.
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PSTDDATA[7:0]
0xBF
0xFF
0xFF
0xFF
0xFX (X indicates that the next PST value is guaranteed to not be 0xF.)

• The B marker occurs on the least-significant nibble of PSTDDATA with the data of 0xFF 
following:

PSTDDATA[7:0]
0xYB
0xFF
0xFF
0xFF
0xFF
0xXY (X indicates the PST value is guaranteed not to be 0xF, and Y signifies a PSTDDATA 
value that doesn’t affect the 0xFF count.)

NOTE
As the result of the above, a count of nine or more sequential 0xF 
PSTDDATA nibbles, or five or more sequential 0xFF PSTDDATA bytes 
indicates the HALT condition.

43.4.4.5 PST Buffer Example

In this section is an example detailing the behavior of the PSTB functionality. Consider the following 
interrupt service routine that counts the interrupt, negates the IRQ, performs a software IACK, and then 
exits. This example is presented because it exercises a considerable set of the PSTB capabilities.

 _isr:
01074: 46fc 2700        mov.w   &0x2700,%sr        # disable interrupts
01078: 2f08             mov.l   %a0,-(%sp)         # save a0
0107a: 2f00             mov.l   %d0,-(%sp)         # save d0
0107c: 302f 0008        mov.w   (8,%sp),%d0        # load format/vector word
01080: e488             lsr.l   &2,%d0             # align vector number
01082: 0280 0000 00ff   andi.l  &0xff,%d0          # isolate vector number
01088: 207c 0080 1400   mov.l   &int_count,%a0     # base of interrupt counters
                      
                      _isr_entry1:
0108e: 52b0 0c00        addq.l  &1,(0,%a0,%d0.l*4) # count the interrupt
01092: 11c0 a021        mov.b   %d0,IGCR0+1.w      # negate the irq
01096: 1038 a020        mov.b   IGCR0.w,%d0        # force the write to complete
0109a: 4e71             nop                        # synchronize the pipelines
0109c: 71b8 ffe0        mvz.b   SWIACK.w,%d0       # software iack: pending irq?
010a0: 0c80 0000 0041   cmpi.l  %d0,&0x41          # level 7 or none pending?
010a6: 6f08             ble.b   _isr_exit          # yes, then exit
010a8: 52b9 0080 145c   addq.l  &1,swiack_count    # increment the swiack count
010ae: 60de             bra.b   _isr_entry1        # continue at entry1
                      
                      _isr_exit:
010b0: 201f             mov.l   (%sp)+,%d0         # restore d0
010b2: 205f             mov.l   (%sp)+,%a0         # restore a0
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010b4: 4e73             rte                        # exit

This ISR executes mostly as straight-line code: there is a single conditional branch @ PC = 0x10A6, which 
is taken in this example. The following description includes the PST and DDATA packets generated as this 
code snippet executes. In this example, the CSR setting enables the display of 2-byte branch addresses. 
The sequence begins with an interrupt exception:
interrupt exception occurs @ pc = 5432 while in user mode
                                                   # pst   = 1c, 1c, 05, 0d
                                                   # ddata = 2a, 23, 28, 20
                                                   #         trg_addr = 083a << 1
                                                   #         trg_addr = 1074
                      _isr:
01074: 46fc 2700        mov.w   &0x2700,%sr        # pst   = 01
01078: 2f08             mov.l   %a0,-(%sp)         # pst   = 01
0107a: 2f00             mov.l   %d0,-(%sp)         # pst   = 01
0107c: 302f 0008        mov.w   (8,%sp),%d0        # pst   = 01
01080: e488             lsr.l   &2,%d0             # pst   = 01
01082: 0280 0000 00ff   andi.l  &0xff,%d0          # pst   = 01
01088: 207c 0080 1400   mov.l   &int_count,%a0     # pst   = 01
0108e: 52b0 0c00        addq.l  &1,(0,%a0,%d0.l*4) # pst   = 01
01092: 11c0 a021        mov.b   %d0,IGCR0+1.w      # pst   = 01
01096: 1038 a020        mov.b   IGCR0.w,%d0        # pst   = 01
0109a: 4e71             nop                        # pst   = 01
0109c: 71b8 ffe0        mvz.b   SWIACK.w,%d0       # pst   = 01
010a0: 0c80 0000 0041   cmpi.l  %d0,&0x41          # pst   = 01
010a6: 6f08             ble.b   _isr_exit          # pst   = 05 (taken branch)
010b0: 201f             mov.l   (%sp)+,%d0         # pst   = 01
010b2: 205f             mov.l   (%sp)+,%a0         # pst   = 01
010b4: 4e73             rte                        # pst   = 07, 03, 05, 0d
                                                   # ddata = 29, 21, 2a, 22
                                                   # trg_addr = 2a19 << 1
                                                   # trg_addr = 5432

As the PSTs are compressed, the resulting stream of 6-bit hexadecimal entries is loaded into consecutive 
locations in the PST trace buffer:
PSTB[*]= 1c, 1c, 05, 0d, // interrupt exception

2a, 23, 28, 20, // branch target addr = 1074
1a, // 10 sequential insts
13, // 3 sequential insts
05, // taken_branch
12, // 2 sequential insts
07, 03, 05, 0d, // rte, entry into user mode
29, 21, 2a, 22 // branch target addr = 5432 (2a19 << 1)

43.4.4.6 Code Profiling using PC Sync Hardware Feature

To enable code profiling, the following debug registers must be set:

1. CSR[BTB] = 0x1, 0x2, or 0x3 to enable 2-, 3-, or 4-byte instruction address captures

2. XCSR[APCENB, APCSC] and CSR2[APCDIV16] define the PC sampling frequency. This can 
range from once every 128 processor cycles to once every 16384 cycles.

3. CSR2[PSTBRM] = 0x2 or 0x3 to enable normal or continuous PC profile recording
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4. Once configured with the start/stop recording conditions defined, the PSTB only records the 
periodically-sampled instruction addresses with each value containing packets of the form 
{0x0E, 6  (0x20 + PCs >> 1)}, where PCs is the sampled program counter value configured to 
capture three bytes (six nibbles) of address. If the ownership trace option in the CSR is enabled 
(CSR[OTE] = 1), a marker and the address space identifier (ASID) are also captured. The complete 
entry for this configuration is {0x0E, 6  (0x20 + PCs >> 1), 0x0C, 2  (0x20 + ASID)}.

5. To retrieve the most recently sampled PC, use the RDMREG BDM command described in 
Section 43.4.1.5.15, “Read Debug Module Register (rdmreg)”.

43.4.5 Processor Status, Debug Data Definition

This section specifies the ColdFire processor and debug module’s generation of the processor status/debug 
data (PSTDDATA) output on an instruction basis. In general, the PSTDDATA output for an instruction is 
defined as follows:

PSTDDATA = 0x1, {[0x89B], operand}

where the {...} definition is optional operand information defined by the setting of the CSR.

The CSR provides capabilities to display operands based on reference type (read, write, or both). A PST 
value {0x8, 0x9, or 0xB} identifies the size and presence of valid data to follow on the PSTDDATA output 
{1, 2, or 4 bytes}. Additionally, for certain change-of-flow branch instructions, CSR[BTB] provides the 
capability to display the target instruction address on the PSTDDATA output {2, 3, or 4 bytes} using a PST 
value of {0x9, 0xA, or 0xB}. Addresses use the markers x0D, x0E, or 0xF to store 2, 3, or 4 bytes of 
address packets with address shifted right by 1 bit.

43.4.5.1 User Instruction Set

Table 43-40 shows the PSTDDATA specification for user-mode instructions. Rn represents any {Dn, An} 
register. In this definition, the y suffix generally denotes the source, and x denotes the destination operand. 
For a given instruction, the optional operand data is displayed only for those effective addresses 
referencing memory.

Table 43-40. PSTDDATA Specification for User-Mode Instructions

Instruction Operand Syntax PSTDDATA Nibble

add.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

add.l Dy,<ea>x PSTDDATA = 0x1, {0xB, source}, {0xB, destination}

adda.l <ea>y,Ax PSTDDATA = 0x1, {0xB, source operand}

addi.l #<data>,Dx PSTDDATA = 0x1

addq.l #<data>,<ea>x PSTDDATA = 0x1, {0xB, source}, {0xB, destination}

addx.l Dy,Dx PSTDDATA = 0x1

and.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

and.l Dy,<ea>x PSTDDATA = 0x1, {0xB, source}, {0xB, destination}

andi.l #<data>,Dx PSTDDATA = 0x1
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asl.l {Dy,#<data>},Dx PSTDDATA = 0x1

asr.l {Dy,#<data>},Dx PSTDDATA = 0x1

bcc.{b,w} if taken, then PSTDDATA = 0x5, else PSTDDATA = 0x1

bchg.{b,l} #<data>,<ea>x PSTDDATA = 0x1, {0x8, source}, {0x8, destination}

bchg.{b,l} Dy,<ea>x PSTDDATA = 0x1, {0x8, source}, {0x8, destination}

bclr.{b,l} #<data>,<ea>x PSTDDATA = 0x1, {0x8, source}, {0x8, destination}

bclr.{b,l} Dy,<ea>x PSTDDATA = 0x1, {0x8, source}, {0x8, destination}

bitrev.l Dx PSTDDATA = 0x1

bra.{b,w} PSTDDATA = 0x5

bset.{b,l} #<data>,<ea>x PSTDDATA = 0x1, {0x8, source}, {0x8, destination}

bset.{b,l} Dy,<ea>x PSTDDATA = 0x1, {0x8, source}, {0x8, destination}

bsr.{b,w} PSTDDATA = 0x5, {0xB, destination operand}

btst.{b,l} #<data>,<ea>x PSTDDATA = 0x1, {0x8, source operand}

btst.{b,l} Dy,<ea>x PSTDDATA = 0x1, {0x8, source operand}

byterev.l Dx PSTDDATA = 0x1

clr.b <ea>x PSTDDATA = 0x1, {0x8, destination operand}

clr.l <ea>x PSTDDATA = 0x1, {0xB, destination operand}

clr.w <ea>x PSTDDATA = 0x1, {0x9, destination operand}

cmp.b <ea>y,Dx PSTDDATA = 0x1, {0x8, source operand}

cmp.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

cmp.w <ea>y,Dx PSTDDATA = 0x1, {0x9, source operand}

cmpa.l <ea>y,Ax PSTDDATA = 0x1, {0xB, source operand}

cmpa.w <ea>y,Ax PSTDDATA = 0x1, {0x9, source operand}

cmpi.b #<data>,Dx PSTDDATA = 0x1

cmpi.l #<data>,Dx PSTDDATA = 0x1

cmpi.w #<data>,Dx PSTDDATA = 0x1

divs.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

divs.w <ea>y,Dx PSTDDATA = 0x1, {0x9, source operand}

divu.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

divu.w <ea>y,Dx PSTDDATA = 0x1, {0x9, source operand}

eor.l Dy,<ea>x PSTDDATA = 0x1, {0xB, source}, {0xB, destination}

eori.l #<data>,Dx PSTDDATA = 0x1

ext.l Dx PSTDDATA = 0x1

Table 43-40. PSTDDATA Specification for User-Mode Instructions (continued)

Instruction Operand Syntax PSTDDATA Nibble
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ext.w Dx PSTDDATA = 0x1

extb.l Dx PSTDDATA = 0x1

illegal PSTDDATA = 0x11

jmp <ea>y PSTDDATA = 0x5, {[0x9AB], target address}2

jsr <ea>y PSTDDATA = 0x5, {[0x9AB], target address},{0xB, destination operand}2

lea.l <ea>y,Ax PSTDDATA = 0x1

link.w Ay,#<displacement> PSTDDATA = 0x1, {0xB, destination operand}

lsl.l {Dy,#<data>},Dx PSTDDATA = 0x1

lsr.l {Dy,#<data>},Dx PSTDDATA = 0x1

mov3q.l #<data>,<ea>x PSTDDATA = 0x1, {0xB,destination operand}

move.b <ea>y,<ea>x PSTDDATA = 0x1, {0x8, source}, {0x8, destination}

move.l <ea>y,<ea>x PSTDDATA = 0x1, {0xB, source}, {0xB, destination}

move.w <ea>y,<ea>x PSTDDATA = 0x1, {0x9, source}, {0x9, destination}

move.w CCR,Dx PSTDDATA = 0x1

move.w {Dy,#<data>},CCR PSTDDATA = 0x1

movea.l <ea>y,Ax PSTDDATA = 0x1, {0xB, source}

movea.w <ea>y,Ax PSTDDATA = 0x1, {0x9, source}

movem.l #list,<ea>x PSTDDATA = 0x1, {0xB, destination},... 3

movem.l <ea>y,#list PSTDDATA = 0x1, {0xB, source},... 3

moveq.l #<data>,Dx PSTDDATA = 0x1

muls.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

muls.w <ea>y,Dx PSTDDATA = 0x1, {0x9, source operand}

mulu.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

mulu.w <ea>y,Dx PSTDDATA = 0x1, {0x9, source operand}

mvs.b <ea>y,Dx PSTDDATA = 0x1, {0x8, source operand}

mvs.w <ea>y,Dx PSTDDATA = 0x1, {0x9, source operand}

mvz.b <ea>y,Dx PSTDDATA = 0x1, {0x8, source operand}

mvz.w <ea>y,Dx PSTDDATA = 0x1, {0x9, source operand}

neg.l Dx PSTDDATA = 0x1

negx.l Dx PSTDDATA = 0x1

nop PSTDDATA = 0x1

not.l Dx PSTDDATA = 0x1

or.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

Table 43-40. PSTDDATA Specification for User-Mode Instructions (continued)

Instruction Operand Syntax PSTDDATA Nibble
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or.l Dy,<ea>x PSTDDATA = 0x1, {0xB, source}, {0xB, destination}

ori.l #<data>,Dx PSTDDATA = 0x1

pea.l <ea>y PSTDDATA = 0x1, {0xB, destination operand}

pulse PSTDDATA = 0x4

rems.l <ea>y,Dw:Dx PSTDDATA = 0x1, {0xB, source operand}

remu.l <ea>y,Dw:Dx PSTDDATA = 0x1, {0xB, source operand}

sats.l Dx PSTDDATA = 0x1

scc.b Dx PSTDDATA = 0x1

sub.l <ea>y,Dx PSTDDATA = 0x1, {0xB, source operand}

sub.l Dy,<ea>x PSTDDATA = 0x1, {0xB, source}, {0xB, destination}

suba.l <ea>y,Ax PSTDDATA = 0x1, {0xB, source operand}

subi.l #<data>,Dx PSTDDATA = 0x1

subq.l #<data>,<ea>x PSTDDATA = 0x1, {0xB, source}, {0xB, destination}

subx.l Dy,Dx PSTDDATA = 0x1

swap.w Dx PSTDDATA = 0x1

tas.b <ea>x PSTDDATA = 0x1, {0x8, source}, {0x8, destination}

tpf PST = 0x1

tpf.l #<data> PST = 0x1

tpf.w #<data> PST = 0x1

trap #<data> PSTDDATA = 0x11

tst.b <ea>x PSTDDATA = 0x1, {0x8, source operand}

tst.l <ea>y PSTDDATA = 0x1, {0xB, source operand}

tst.w <ea>y PSTDDATA = 0x1, {0x9, source operand}

unlk Ax PSTDDATA = 0x1, {0xB, destination operand}

wddata.b <ea>y PSTDDATA = 0x4, {0x8, source operand}

wddata.l <ea>y PSTDDATA = 0x4, {0xB, source operand}

wddata.w <ea>y PSTDDATA = 0x4, {0x9, source operand}

Table 43-40. PSTDDATA Specification for User-Mode Instructions (continued)

Instruction Operand Syntax PSTDDATA Nibble
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Table 43-41 shows the PSTDDATA specification for multiply-accumulate instructions.

1 During normal exception processing, the PSTDDATA output is driven to a 0xCC indicating the exception processing 
state. The exception stack write operands, as well as the vector read and target address of the exception handler may 
also be displayed.
Exception Processing:

PSTDDATA = 0xCC, 
{0xB,destination}, // stack frame
{0xB,destination}, // stack frame
{0xB,source}, // vector read
PSTDDATA = 0x5,{[0x9AB],target} // handler PC

The PSTDDATA specification for the reset exception is shown below:
Exception Processing:

PSTDDATA = 0xCC, 
PSTDDATA = 0x5,{[0x9AB],target} // handler PC

The initial references at address 0 and 4 are never captured nor displayed because these accesses are treated as 
instruction fetches.
For all types of exception processing, the PSTDDATA = 0xCC value is driven at all times, unless the PSTDDATA output 
is needed for one of the optional marker values or for the taken branch indicator (0x5).

2 For JMP and JSR instructions, the optional target instruction address is displayed only for those effective address fields 
defining variant addressing modes. This includes the following <ea>x values: (An), (d16,An), (d8,An,Xi), (d8,PC,Xi).

3 For move multiple instructions (MOVEM), the processor automatically generates line-sized transfers if the operand 
address reaches a 0-modulo-16 boundary and there are four or more registers to be transferred. For these line-sized 
transfers, the operand data is never captured nor displayed, regardless of the CSR value. 
The automatic line-sized burst transfers are provided to maximize performance during these sequential memory access 
operations.

Table 43-41. PSTDDATA Values for User-Mode Multiply-Accumulate Instructions

Instruction Operand Syntax PSTDDATA Nibble

mac.l Ry,Rx,ACCx PSTDDATA = 0x1

mac.l Ry,Rx,<ea>y,Rw,ACCx PSTDDATA = 0x1, {0xB, source operand}

mac.w Ry,Rx,ACCx PSTDDATA = 0x1

mac.w Ry,Rx,ea,Rw,ACCx PSTDDATA = 0x1, {0xB, source operand}

move.l {Ry,#<data>},ACCx PSTDDATA = 0x1

move.l {Ry,#<data>},MACSR PSTDDATA = 0x1

move.l {Ry,#<data>},MASK PSTDDATA = 0x1

move.l {Ry,#<data>},ACCext01 PSTDDATA = 0x1

move.l {Ry,#<data>},ACCext23 PSTDDATA = 0x1

move.l ACCext01,Rx PSTDDATA = 0x1

move.l ACCext23,Rx PSTDDATA = 0x1

move.l ACCy,ACCx PSTDDATA = 0x1

move.l ACCy,Rx PSTDDATA = 0x1

move.l MACSR,CCR PSTDDATA = 0x1

move.l MACSR,Rx PSTDDATA = 0x1
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43.4.5.2 Supervisor Instruction Set

The supervisor instruction set has complete access to the user mode instructions plus the opcodes shown 
below. The PSTDDATA specification for these opcodes is shown in Table 43-42.

The move-to-SR and RTE instructions include an optional PSTDDATA = 0x3 value, indicating an entry 
into user mode. Additionally, if the execution of a RTE instruction returns the processor to emulator mode, 
a multiple-cycle status of 0xD is signaled.

Similar to the exception processing mode, the stopped state (PSTDDATA nibble = 0xE) and the halted 
state (PSTDDATA = 0xFF) display this status throughout the entire time the ColdFire processor is in the 
given mode.

move.l MASK,Rx PSTDDATA = 0x1

msac.l Ry,Rx,ACCx PSTDDATA = 0x1

msac.l Ry,Rx,<ea>y,Rw,ACCx PSTDDATA = 0x1, {0xB, source operand}

msac.w Ry,Rx,ACCx PSTDDATA = 0x1

msac.w Ry,Rx,<ea>y,Rw,ACCx PSTDDATA = 0x1, {0xB, source operand}

Table 43-42. PSTDDATA Specification for Supervisor-Mode Instructions

Instruction Operand Syntax PSTDDATA Nibble

cpushl dc,(Ax)
ic,(Ax)
bc,(Ax)

PSTDDATA = 0x1

halt PSTDDATA = 0x1, 
PSTDDATA = 0xF

intouch (Ay) PSTDDATA = 0x1

move.l Ay,USP PSTDDATA = 0x1

move.l USP,Ax PSTDDATA = 0x1

move.w SR,Dx PSTDDATA = 0x1

move.w {Dy,#<data>},SR PSTDDATA = 0x1, {0x3}

movec.l Ry,Rc PSTDDATA = 0x1, {8, ASID}

rte PSTDDATA = 0x7, {0xB, source operand}, {0x3}, { 0xB, source operand}, {DD},
PSTDDATA = 0x5, {[0x9AB], target address}

stop #<data> PSTDDATA = 0x1, 
PSTDDATA = 0xE

wdebug.l <ea>y PSTDDATA = 0x1, {0xB, source, 0xB, source}

Table 43-41. PSTDDATA Values for User-Mode Multiply-Accumulate Instructions (continued)

Instruction Operand Syntax PSTDDATA Nibble
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43.4.6 NXP-Recommended BDM Pinout

The ColdFire BDM connector is a 26-pin Berg connector arranged 2 x 13 as shown below.

Figure 43-55. Recommended BDM Connector
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Chapter 44  
IEEE 1149.1 Test Access Port (JTAG)

44.1 Introduction
The Joint Test Action Group (JTAG) is a dedicated user-accessible test logic compliant with the 
IEEE 1149.1 standard for boundary-scan testability, which helps with system diagnostic and 
manufacturing testing.

This architecture provides access to all data and chip control pins from the board-edge connector through 
the standard four-pin test access port (TAP) and the JTAG reset pin, TRST.

44.1.1 Block Diagram

Figure 44-1 shows the block diagram of the JTAG module.

Figure 44-1. JTAG Block Diagram
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44.1.2 Features

The basic features of the JTAG module are the following:

• Performs boundary-scan operations to test circuit board electrical continuity

• Bypasses instruction to reduce the shift register path to a single cell

• Sets chip output pins to safety states while executing the bypass instruction

• Samples the system pins during operation and transparently shifts out the result

• Selects between JTAG TAP controller and Background Debug Module (BDM) using a dedicated 
JTAG_EN pin

44.1.3 Modes of Operation

The JTAG_EN pin can select between the following modes of operation:

• JTAG mode (JTAG_EN = 1)

• Background debug mode (BDM)—for more information, refer to Section 43.4.1, “Background 
Debug Mode (BDM)”; (JTAG_EN = 0).

44.2 External Signal Description
The JTAG module has five input and one output external signals, as described in Table 44-1.

44.2.1 JTAG Enable (JTAG_EN)

The JTAG_EN pin selects between the debug module and JTAG. If JTAG_EN is low, the debug module is 
selected; if it is high, the JTAG is selected. Table 44-2 summarizes the pin function selected depending on 
JTAG_EN logic state.

Table 44-1. Signal Properties

Name Direction Function Reset State Pull up

JTAG_EN Input JTAG/BDM selector input — —

TCLK Input JTAG Test clock input — Active

TMS/BKPT Input JTAG Test mode select / BDM Breakpoint — Active

TDI/DSI Input JTAG Test data input / BDM Development serial input — Active

TRST/DSCLK Input JTAG Test reset input / BDM Development serial clock — Active

TDO/DSO Output JTAG Test data output / BDM Development serial output Hi-Z / 0 —
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When one module is selected, the inputs into the other module are disabled or forced to a known logic 
level, as shown in Table 44-3, to disable the corresponding module.

NOTE
The JTAG_EN does not support dynamic switching between JTAG and 
BDM modes. 

44.2.2 Test Clock Input (TCLK)

The TCLK pin is a dedicated JTAG clock input to synchronize the test logic. Pulses on TCLK shift data 
and instructions into the TDI pin on the rising edge and out of the TDO pin on the falling edge. TCLK is 
independent of the processor clock. The TCLK pin has an internal pull-up resistor, and holding TCLK high 
or low for an indefinite period does not cause JTAG test logic to lose state information.

44.2.3 Test Mode Select/Breakpoint (TMS/BKPT)

The TMS pin is the test mode select input that sequences the TAP state machine. TMS is sampled on the 
rising edge of TCLK. The TMS pin has an internal pull-up resistor.

The BKPT pin is used to request an external breakpoint. Assertion of BKPT puts the processor into a halted 
state after the current instruction completes. 

44.2.4 Test Data Input/Development Serial Input (TDI/DSI)

The TDI pin receives serial test and data, which is sampled on the rising edge of TCLK. Register values 
are shifted in least significant bit (lsb) first. The TDI pin has an internal pull-up resistor.

The DSI pin provides data input for the debug module serial communication port.

Table 44-2. Pin Function Selected

JTAG_EN = 0 JTAG_EN = 1 Pin Name

Module selected BDM JTAG —

Pin Function —
BKPT
DSI
DSO

DSCLK

TCLK
TMS
TDI
TDO
TRST

TCLK
BKPT
DSI
DSO

DSCLK

Table 44-3. Signal State to the Disable Module

JTAG_EN = 0 JTAG_EN = 1

Disabling JTAG TRST = 0
TMS = 1

—

Disabling BDM — Disable DSCLK
DSI = 0

BKPT = 1
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44.2.5 Test Reset/Development Serial Clock (TRST/DSCLK)

The TRST pin is an active low asynchronous reset input with an internal pull-up resistor that forces the 
TAP controller to the test-logic-reset state.

The DSCLK pin clocks the serial communication port to the debug module. Maximum frequency is 1/5 
the processor clock speed. At the rising edge of DSCLK, data input on DSI is sampled and DSO changes 
state.

44.2.6 Test Data Output/Development Serial Output (TDO/DSO)

The TDO pin is the lsb-first data output. Data is clocked out of TDO on the falling edge of TCLK. TDO 
is tri-stateable and actively driven in the shift-IR and shift-DR controller states.

The DSO pin provides serial output data in BDM mode. 

44.3 Memory Map/Register Definition
The JTAG module registers are not memory mapped and are only accessible through the TDO/DSO pin.

44.3.1 Instruction Shift Register (IR)

The JTAG module uses a 5-bit shift register with no parity. The IR transfers its value to a parallel hold 
register and applies an instruction on the falling edge of TCLK when the TAP state machine is in the 
update-IR state. To load an instruction into the shift portion of the IR, place the serial data on the TDI pin 
before each rising edge of TCLK. The msb of the IR is the bit closest to the TDI pin, and the lsb is the bit 
closest to the TDO pin. See Section 44.4.3, “JTAG Instructions” for a list of possible instruction codes.

TAP state: Update-IR Access: User read/write

4 3 2 1 0

R 1 0 1 0 1

W Instruction Code

Reset 0 0 0 0 1

Figure 44-2. 5-Bit Instruction Register (IR)
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44.3.2 IDCODE Register

The IDCODE is a read-only register; its value is chip dependent. For more information, see 
Section 44.4.3.1, “IDCODE Instruction”.

44.3.3 Bypass Register

The bypass register is a single-bit shift register path from TDI to TDO when the BYPASS, CLAMP, or 
HIGHZ instructions are selected. After entry into the capture-DR state, the single-bit shift register is set to 
a logic 0. Therefore, the first bit shifted out after selecting the bypass register is always a logic 0.

44.3.4 TEST_CTRL Register

The TEST_CTRL register is a 1-bit shift register path from TDI to TDO when the 
ENABLE_TEST_CTRL instruction is selected. The TEST_CTRL transfers its value to a parallel hold 
register on the rising edge of TCLK when the TAP state machine is in the update-DR state. The DSE bit 
selects the drive strength used in JTAG mode.

IR[4:0]: 0_0001 (IDCODE) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PRN DC PIN JEDEC ID

W

Reset See note1 See note2 See note1 0 0 0 0 0 0 0 1 1 1 0 1
1 The reset values for PRN and PIN are device-dependent.
2 Varies, depending on design center location.

Figure 44-3. IDCODE Register

Table 44-4. IDCODE Field Descriptions

Field Description

31–28
PRN

Part revision number. Indicate the revision number of the device.

27–22
DC

NXP design center number.

21–12
PIN

Part identification number. Indicate the device number.

0x09F MCF54410
0x0A0 MCF54415
0x0A1 MCF54416
0x0A2 MCF54417
0x0A3 MCF54418

11–1
JEDEC

Joint Electron Device Engineering Council ID bits. Indicate the reduced JEDEC ID for NXP (0x0E).

0
ID

IDCODE register ID. This bit is set to 1 to identify the register as the IDCODE register and not the bypass register 
according to the IEEE standard 1149.1.
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44.3.5 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST or 
SAMPLE/PRELOAD instruction is selected. It captures input pin data, forces fixed values on output pins, 
and selects a logic value and direction for bidirectional pins or high impedance for tri-stated pins.

The boundary scan register contains bits for bonded-out and non bonded-out signals, excluding JTAG 
signals, analog signals, power supplies, compliance enable pins, device configuration pins, and clock 
signals. See Table 44-5 for JTAG boundary scan register values.

44.4 Functional Description

44.4.1 JTAG Module

The JTAG module consists of a TAP controller state machine, which is responsible for generating all 
control signals that execute the JTAG instructions and read/write data registers.

44.4.2 TAP Controller

The TAP controller is a state machine that changes state based on the sequence of logical values on the 
TMS pin. Figure 44-5 shows the machine’s states. The value shown next to each state is the value of the 
TMS signal sampled on the rising edge of the TCLK signal.

Asserting the TRST signal asynchronously resets the TAP controller to the test-logic-reset state. As 
Figure 44-5 shows, holding TMS at logic 1 while clocking TCLK through at least five rising edges also 
causes the state machine to enter the test-logic-reset state, whatever the initial state.

IR[4:0]: 0_0110 Access: User
read-only

0

R DSE

W

Reset 0

Figure 44-4. 1-Bit TEST_CTRL Register
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Figure 44-5. TAP Controller State Machine Flow

44.4.3 JTAG Instructions

Table 44-5 describes public and private instructions.

Table 44-5. JTAG Instructions

Instruction IR[4:0] Instruction Summary

IDCODE 00001 Selects IDCODE register for shift

SAMPLE/PRELOAD 00010 Selects boundary scan register for shifting, sampling, and preloading without 
disturbing functional operation

SAMPLE 00011 Selects boundary scan register for shifting and sampling without disturbing 
functional operation

RUN-TEST/IDLE

TEST-LOGIC-RESET

1

1

SELECT DR-SCAN

CAPTURE-DR

EXIT1-DR

PAUSE-DR

UPDATE-DR

SELECT IR-SCAN

SHIFT-DR

EXIT2-DR

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

EXIT2-IR

UPDATE-IR

0

0

1

1

0

0

0

1

1

1 0

0

0

1

1

0

0

1

1

0

1

0

1

1 0

1

1
0

0

1

0
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44.4.3.1 IDCODE Instruction

The IDCODE instruction selects the 32-bit IDCODE register for connection as a shift path between the 
TDI and TDO pin. This instruction allows interrogation of the MCU to determine its version number and 
other part identification data. The shift register lsb is forced to logic 1 on the rising edge of TCLK 
following entry into the capture-DR state. Therefore, the first bit to be shifted out after selecting the 
IDCODE register is always a logic 1. The remaining 31 bits are also forced to fixed values on the rising 
edge of TCLK following entry into the capture-DR state.

IDCODE is the default instruction placed into the instruction register when the TAP resets. Thus, after a 
TAP reset, the IDCODE register is selected automatically.

44.4.3.2 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction has two functions: 

• SAMPLE - See Section 44.4.3.3, “SAMPLE Instruction,” for description of this function.

• PRELOAD - initialize the boundary scan register update cells before selecting EXTEST or 
CLAMP. This is achieved by ignoring the data shifting out on the TDO pin and shifting in 
initialization data. The update-DR state and the falling edge of TCLK can then transfer this data to 
the update cells. The data is applied to the external output pins by the EXTEST or CLAMP 
instruction.

44.4.3.3 SAMPLE Instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at the MCU input 
pins and before the boundary scan cell at the output pins. This sampling occurs on the rising edge of TCLK 
in the capture-DR state when the IR contains the 0x2 opcode. The sampled data is accessible by shifting 
it through the boundary scan register to the TDO output by using the shift-DR state. The data capture and 
the shift operation are transparent to system operation. 

EXTEST 00100 Selects boundary scan register while applying preloaded values to output 
pins and asserting functional reset

ENABLE_TEST_CTRL 00110 Selects TEST_CTRL register

HIGHZ 01001 Selects bypass register while tri-stating all output pins and asserting 
functional reset

CLAMP 01100 Selects bypass while applying fixed values to output pins and asserting 
functional reset

BYPASS 11111 Selects bypass register for data operations

Reserved all others1 Decoded to select bypass register

1 NXP reserves the right to change the decoding of the unused opcodes in the future.

Table 44-5. JTAG Instructions (continued)

Instruction IR[4:0] Instruction Summary
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NOTE
External synchronization is required to achieve meaningful results because 
there is no internal synchronization between TCLK and the system clock.

44.4.3.4 EXTEST Instruction

The external test (EXTEST) instruction selects the boundary scan register. It forces all output pins and 
bidirectional pins configured as outputs to the values preloaded with the SAMPLE/PRELOAD instruction 
and held in the boundary scan update registers. EXTEST can also configure the direction of bidirectional 
pins and establish high-impedance states on some pins. EXTEST asserts internal reset for the MCU system 
logic to force a predictable internal state while performing external boundary scan operations.

44.4.3.5 ENABLE_TEST_CTRL Instruction

The ENABLE_TEST_CTRL instruction selects a 1-bit shift register (TEST_CTRL) for connection as a 
shift path between the TDI and TDO pin. When the user transitions the TAP controller to the UPDATE_DR 
state, the register transfers its value to a parallel hold register.

44.4.3.6 HIGHZ Instruction

The HIGHZ instruction eliminates the need to backdrive the output pins during circuit-board testing. 
HIGHZ turns off all output drivers, including the 2-state drivers, and selects the bypass register. HIGHZ 
also asserts internal reset for the MCU system logic to force a predictable internal state.

44.4.3.7 CLAMP Instruction

The CLAMP instruction selects the 1-bit bypass register and asserts internal reset while simultaneously 
forcing all output pins and bidirectional pins configured as outputs to the fixed values that are preloaded 
and held in the boundary scan update register. CLAMP enhances test efficiency by reducing the overall 
shift path to a single bit (the bypass register) while conducting an EXTEST type of instruction through the 
boundary scan register.

44.4.3.8 BYPASS Instruction

The BYPASS instruction selects the bypass register, creating a single-bit shift register path from the TDI 
pin to the TDO pin. BYPASS enhances test efficiency by reducing the overall shift path when a device 
other than the ColdFire processor is the device under test on a board design with multiple chips on the 
overall boundary scan chain. The shift register lsb is forced to logic 0 on the rising edge of TCLK after 
entry into the capture-DR state. Therefore, the first bit shifted out after selecting the bypass register is 
always logic 0. This differentiates parts that support an IDCODE register from parts that support only the 
bypass register.
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44.5 Initialization/Application Information

44.5.1 Restrictions

The test logic is a static logic design, and TCLK can be stopped in a high or low state without loss of data. 
However, the system clock is not synchronized to TCLK internally. Any mixed operation using the test 
logic and system functional logic requires external synchronization.

Using the EXTEST instruction requires a circuit-board test environment that avoids device-destructive 
configurations in which MCU output drivers are enabled into actively driven networks.

Low-power stop mode considerations:

• The TAP controller must be in the test-logic-reset state to enter or remain in the low-power stop 
mode. Leaving the test-logic-reset state negates the ability to achieve low-power, but does not 
otherwise affect device functionality.

• The TCLK input is not blocked in low-power stop mode. To consume minimal power, the TCLK 
input should be externally connected to EVDD.

• The TMS, TDI, and TRST pins include on-chip pull-up resistors. For minimal power consumption 
in low-power stop mode, these three pins should be connected to EVDD or left unconnected.

44.5.2 Nonscan Chain Operation

Keeping the TAP controller in the test-logic-reset state ensures that the scan chain test logic is transparent 
to the system logic. It is recommended that TMS, TDI, TCLK, and TRST be pulled up. TRST could be 
connected to ground. However, because there is a pull-up on TRST, some amount of current results. The 
internal power-on reset input initializes the TAP controller to the test-logic-reset state on power-up without 
asserting TRST.
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Chapter 45  
Revision History
This appendix lists major changes between versions of the MCF5441x Reference Manual. For 
convenience, the corrections are grouped by revision.

45.1 Changes Between Rev. 4 and Rev. 5
Table 45-1. Rev. 4 to Rev. 5 Changes

Chapter Description

General 
changes 

throughout the 
document

 • Replaced “Freescale” with “NXP”

Chapter 2
Signal 

Descriptions

 • In the note before Table 2-2:
— Replaced SIM1 with SIM0
— Added (SDHC_DAT[3:0]) to the second bullet

— Added “FB_CS4 and FB_C55 are removed”
— Added “PST[3:0] and DDATA[3:0] are removed”

 • In Table 2-2: 
— Added footnote 5 to signals FB_OE/NFC_RE, FB_R/W/NFC_WE, and FB_TBST/NFC_RE
— RTC_EXTAL pin location for 256 MAPBGA changed to C16

— RTC_XTAL pin location for 256 MAPBGA changed to B16
— Moved footnote 19 from “Synchronous serial interface 0” to “Smart card interface 0”
— Replaced SIM1 with SIM0 in footnote 19

— Added footnote to FB_AD[15:10], FB_AD[9:8], and FB_AD[7:0] stating “FB_AD[11:8] must be 
pulled-up by external logic to prevent entering test mode.”

 • Added a row for FB_AD[11:8] in Table 2-29

Chapter 8  • In Figure 8-3 and Figure 8-4, updated note from “If internal configuration...” to “If default configuration...”

Chapter 9
Power 

Management

 • Updated Table 9-5 PPMHR0[CDn] Assignments

Chapter 10
Chip 

Configuration 
Module (CCM)

 • Updated the note in Section 10.2.2, "FB_AD[7:0] (Reset Configuration Override)" and Section 10.4.1.2, 
"Reset Configuration (BOOTMOD[1:0] = 01)"

 • Added a row for FB_AD[11:8] in Table 10-1, Table 10-16, and Table 10-17

Chapter 11
Serial Boot 

Facility (SBF)

 • Added the text “This is a 64 KB SRAM device” to note in Section 11.4.2, "Reset Configuration and Optional 
Boot Load"

Chapter 13
System Control 
Module (SCM)

 • Table 13-2, RO field description, replaced “warm or cold boot” with “power on reset”
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Chapter 14
Crossbar 

Switch 

 • Added the text “The DDR SDRAM controller has two different slave ports. All CPU and eDMA accesses to the 
DDR controller use port S0,while the other masters (USB/ENET/eSDHC/NFC) always use port S2” in 
Section 14.1, "Overview"

 • Added modules “(eDMA controller, CPU)” for slave S0 and “(USB, ENET, eSDHC, NFC)” for S2 in Table 14-1

Chapter 15
Pin-Multiplexing 

and Control

 • In the note before Table 15-2:
— Replaced SIM1 with SIM0
— Added (SDHC_DAT[3:0]) to the second bullet

— Added “FB_CS4 and FB_C55 are removed”
— Added “PST[3:0] and DDATA[3:0] are removed”

 • In Table 15-2: 
— Added footnote 5 to signals FB_OE/NFC_RE, FB_R/W/NFC_WE, and FB_TBST/NFC_RE
— Moved footnote 19 from “Synchronous serial interface 0” to “Smart card interface 0”

— Under “Real time clock”, 256 MAPBGA, updated RTC_EXTAL to B16 and RTC_XTAL to C16
— Replaced SIM1 with SIM0 in footnote 19
— Added footnote that states “These pins are time-division multiplexed between the FlexBus and 

NFC. An arbitration mechanism determines which module drives these pins at any point in time.”
— Added footnote to FB_AD[15:10], FB_AD[9:8], and FB_AD[7:0] stating “FB_AD[11:8] must be 

pulled-up by external logic to prevent entering test mode.”

Chapter 17
Interrupt 

Controller 
Modules (INTC)

 • Updated Section 17.1, "Introduction" to reflect three INTC modules
 • Added INTC2 to Table 17-1
 • Added Interrupt Controller 3 and associated registers to Table 17-2
 • Added addresses related to INTC2 in register diagrams
 • Replaced “2” with “3” in note in Section 17.2.4, "Interrupt Configuration Register (ICONFIG)", Section 17.2.7, 

"Current Level Mask Register (CLMASK)", and Section 17.2.8, "Saved Level Mask Register (SLMASK)"
 • Added ICR2n to Section 17.2.9, "Interrupt Control Register (ICR0n, ICR1n, ICR2n (n = 00, 01, 02, ..., 63))" 

and Section 17.3.1, "Interrupt Controller Theory of Operation"
 • Added INTC2 in Section 17.2.9.1, "Interrupt Sources" and Section 17.3.2, "Prioritization Between Interrupt 

Controllers"
 • Added INTC2 vector number in Section 17.3.1.3, "Interrupt Vector Determination"

Chapter 18
Edge Port 

Module 
(EPORT)

 • Updated block diagram and removed “...or a general-purpose input/output (I/O) pin” in Section 18.1, 
"Introduction"

 • Removed extra content from Section 18.3, "Signal Descriptions"
 • Removed EPDDR, EPDR, and EPPDR registers from Section 18.4, "Memory Map/Register Definition"
 • Updated EPPAn field description in Table 18-3

Table 45-1. Rev. 4 to Rev. 5 Changes (continued)

Chapter Description
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Chapter 19
Enhanced 

Direct Memory 
Access

 • Updated Section 19.1.2, "Features" to show 64-channel 
 • Updated Section 19.4, "Memory Map/Register Definition" to 64-channel in registers
 • Updated Section 19.4.3, "eDMA Enable Request Registers (EDMA_ERQH, EDMA_ERQL)", Section 19.4.4, 

"eDMA Enable Error Interrupt Registers (EDMA_EEIH, EDMA_EEIL)", Section 19.4.13, "eDMA Interrupt 
Request Registers (EDMA_INTH, EDMA_INTL)", Section 19.4.14, "eDMA Error Registers (EDMA_ERRH, 
EDMA_ERRL)", Section 19.4.15, "eDMA Hardware Request Status Registers (EDMA_HRSH, EDMA_HRSL)" 
to display 64 channels.

 • Replaced table “TCDn Memory Structure” with Figure 19-24.
 • Updated register description in Section 19.4.15, "eDMA Hardware Request Status Registers (EDMA_HRSH, 

EDMA_HRSL)".
 • The following updates made to Table 19-2:

— eDMA Enable Request Low Register, address 0xFC04_400C, width 32, Reset value 0x0000_0000
— eDMA Enable Error Interrupt Low Register, address 0xFC04_4014, width 32, Reset value 

0x0000_0000
— eDMA Interrupt Request Low Register, address 0xFC04_4024, Reset value 0x0000_0000
— eDMA Error Low Register, address 0xFC04_402C, Reset value 0x0000_0000

Chapter 21
DDR SDRAM 

Memory 
Controller 
(DDRMC)

 • Replaced CSMASK with CSMAP in Section 21.4.13, "DDR Control Register 12 (DDR_CR12)"
 • In Section 21.4.66, "DDR I/O Pad Control Register (DDR_PADCR)", changed SPARE_DLY0 to 

SPARE_DLY_CTRL and added description as follows:

Sets the delay chains in the spare logic. This field is used to control the delay chain #0.
00  No buffer, only mux delay
01  4 buffers
10  7 buffers
11  10 buffers
Note: Read access can fail if SPARE_DLY_CTRL=00. Use SPARE_DLY_CTRL=01 instead

Chapter 22
Nand Flash 
Controller 

 • Marked CS and RB bits as Reserved, must be set in Section 22.3.4, "Row Address Register (NFC_RAR)"

Chapter 24
Universal Serial 
Bus Interface – 

On-The-Go 
Module

 • Added SLI field at bit 8 of Figure 24-18
 • In Table 24-20, PCI field description, added SLI to the sentence “...the notification mechanisms are URI and 

SLI bits respectively.”
 • In Table 24-21, SLE field description, added SLI to the empty brackets
 • In Table 24-50, added SLI to the empty parentheses

Chapter 26
Cryptographic 
Acceleration 
Unit (CAU)

 • Added SHA-256 to Section 26.1.2, "Overview" and Section 26.1.3, "Features"
 • In Section 26.2.3, "CAU General Purpose Registers (CAn)", added codes CA6, CA7, and CA8
 • Added SHS2 row to Table 26-5
 • Added SHA-256 codes to Table 26-10

Chapter 33
FlexCAN

 • References to CANMCR register changed to CANMCRn throughout the chapter
 • Updated the CAN MPU pins in section Section 33.2, "External Signal Description"
 • In Table 33-1:

— Included addresses for FlexCAN0 and FlexCAN1

— Updated representation of addresses
— Appended “n” to register names

 • Updated addresses in register diagrams
 • In Section 33.3.9, "Message Buffer Structure", updated base addresses mentioned in the first sentence

Table 45-1. Rev. 4 to Rev. 5 Changes (continued)

Chapter Description
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Chapter 35
Synchronous 

Serial Interface 
(SSI)

 • References to SSI changed to SSIn throughout the chapter
 • In Section 35.1, "Introduction", added the sentence “This device contains two identical SSI modules.”
 • Updated addresses in Table 35-4 and for register diagrams
 • Changed the access of SSI Interrupt Status Register (SSI_ISR) in Table 35-4 from “R” to “R/W”.
 • Added registers “SSIn AC97 Channel Status Register (SSIn_ACCSR)”, SSIn AC97 Channel Enable Register 

(SSIn_ACCEN)”, and “SSIn AC97 Channel Disable Register (SSIn_ACCDIS)”
 • In section Section 35.3.7, "SSI Control Register (SSIn_CR)", changed bit numbers 10 and 11 from Reserved 

to TCD and RCD respectively
 • Updated the note in Section 35.3.8, "SSI Interrupt Status Register (SSIn_ISR)"
 • In Table 35-8, ROE1 description, second table, column “ROE1 is cleared when any of the following occur”, 

updated first bullet to “Writing a 1 to ROE1”
 • In Table 35-8, TUE1 description, second table, column “TUE1 is cleared when any of the following occur”, 

updated first bullet to “Writing a 1 to TUE1”
 • In Section 35.3.8, "SSI Interrupt Status Register (SSIn_ISR)" and Section 35.3.9, "SSI Interrupt Enable 

Register (SSIn_IER)", changed bit numbers 23 and 24 from Reserved to TFRC and RFRC respectively
 • Updated the last sentence in Section 35.4.1.2.2, "Network Mode Receive"
 • Added Section 35.4.7, "Internal Frame and Clock Shutdown"

Chapter 37
Robust Real 
Time Clock

 • In Table 37-11, split the description of bits 15-13 in two rows:
— [14:9] Reserved, must be cleared
— 15 Reserved, must be set

Chapter 39
DMA Timers 

(DTIM0-DTIM3)

 • In Section 39.1.1, "Overview", added “The Ethernet assembly’s IEEE 1588 timebase (which is asynchronous 
to the internal bus clock) can optionally drive the timers.”

 • In Section 39.1.2, "Features", added “Configuration bit to enable use of the 1588 timebase and count value.”
 • In Section 39.2, "Memory Map/Register Definition", added note “Due to the additional IEEE 1588 timebase 

logic, if DTXMRn[EN1588] is set, reads and writes to the timer registers may take multiple bus cycles.”
 • In Table 39-2:

— PS, FRR, and CLK field descriptions, added “Unused when DTXMRn[EN1588] is set.”
— OM field description, added “if DTXMRn[EN1588] is cleared or one 1588 timebase clock cycle if 

DTXMRn[EN1588] is set”
— RST field description, added “...or 1588 timer logic...”

 • In Table 39-3:
— HALTED and MODE16 field descriptions, added “Unused when DTXMRn[EN1588] is set.”

— Added descriptions for EN1588 and EPD fields
 • In Table 39-4, updated the REF field description
 • Updated registers descriptions in Section 39.2.4, "DMA Timer Reference Registers (DTRRn)" and 

Section 39.2.6, "DMA Timer Counters (DTCNn)"
 • Section 39.2.5, "DMA Timer Capture Registers (DTCRn)", added “or 1588 timebase count” to the first 

sentence
 • In Table 39-7, updated CNT field description
 • In Section 39.3.1, "Prescaler", added “If DTXMRn[EN1588] is set, the prescaler is not used.”
 • Updated description in Section 39.3.3, "Reference Compare"
 • Added sections Section 39.3.5, "Programmable Delay Mode" and Section 39.3.6, "IEEE 1588 Support"

Table 45-1. Rev. 4 to Rev. 5 Changes (continued)
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Chapter 40
DMA Serial 
Peripheral 

Interface (DSPI)

 • DSPI signal representation updated to DSPIx throughout the chapter
 • In Section 40.1, "Introduction", added text “This device contains four identical DSPI modules. However, the 

number of chip selects they contain may vary.”
 • In Section 40.1.3, "Features", removed “Deglitching support for up to seven peripheral chip selects with 

external demultiplexer”
 • In Table 40-1, removed row “DSPI_PCS5/PCSS”
 • Removed sections “Peripheral Chip Select 5/Peripheral Chip Select Strobe (DSPI_PCS5/PCSS)” and 

“Peripheral Chip Select Strobe Enable (PCSS)”
 • Updated addresses in Table 40-3 and in the register diagrams
 • In Section 40.3.1, "DSPI Module Configuration Register (DSPI_MCR)", PCSISn description, changed 

representation from “DSPI1—DSPI1_PCS[2,0]” to “DSPI1—DSPI1_PCS[2:0]”
 • In Section 40.3.1, "DSPI Module Configuration Register (DSPI_MCR)", PCSISn description, second note, 

changed “DSPI_PCS0/SS” to “DSPI0_PCS0/SS”
 • In Section 40.3.6, "DSPI Push Transmit FIFO Register (DSPIx_PUSHR)", PCSn description, changed 

representation from “DSPI1—DSPI1_PCS[2,0]” to “DSPI1—DSPI1_PCS[2:0]”

Chapter 41
UART Modules

 • Updated the following sections to reflect 10 UART modules in this device:
— Section 41.1, "Introduction"

— Section 41.1.1, "Overview"
— Section 41.1.2, "Features"

 • Added Table 41-2
 • Updated addresses in Table 41-3 and also the corresponding register sections

Chapter 42
I2C Interface

 • Removed the following sections:
— Table 42-1. Chapter Usage & Book File Location
— Table 42-6. I2C Tap and Prescale Values
— Code from sections Section 42.4.2, "Generation of START", Section 42.4.3, "Post-Transfer 
Software Response", Section 42.4.4, "Generation of STOP", and Section 42.4.5, "Generation of 
Repeated START"
— Revision history table

 • Updated the note in Section 42.1, "Introduction" to reflect that the device contains six I2C modules
 • Updated the note in Section 42.1.2, "Overview" to remove the extra hyperlinks
 • Updated register addresses in Section 42.2, "Memory Map/Register Definition"
 • Updated Figure 42-5 to remove the top row of the register diagram
 • In Section 42.3.8, "Handshaking and Clock Stretching", removed “(9 bits)” from the first sentence

Chapter 44
IEEE 1149.1 
Test Access 
Port (JTAG)

 • Added a link to Table 44-5 in Section 44.3.5, "Boundary Scan Register" 

Table 45-1. Rev. 4 to Rev. 5 Changes (continued)

Chapter Description



Document Number: MCF54418RM
Rev.5, 05/2018

Information in this document is provided solely to enable system and software 

implementers to use NXP products. There are no express or implied copyright licenses 

granted hereunder to design or fabricate any integrated circuits based on the 

information in this document. NXP reserves the right to make changes without further 

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its 

products for any particular purpose, nor does NXP assume any liability arising out of the 

application or use of any product or circuit, and specifically disclaims any and all liability, 

including without limitation consequential or incidental damages. “Typical” parameters 

that may be provided in NXP data sheets and/or specifications can and do vary in 

different applications, and actual performance may vary over time. All operating 

parameters, including “typicals” must be validated for each customer application by 

customer's technical experts. NXP does not convey any license under its patent 

rights nor the rights of others. NXP sells products pursuant to standard terms and 

conditions of sale, which can be found at the following address: 

nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, 

Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product 

or service names are the property of their respective owners. Arm, the Arm powered 

logo, and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the 

EU and/or elsewhere. All rights reserved.

© 2018 NXP B.V.

How to Reach Us:

Home Page: 
nxp.com 

Web Support: 
nxp.com/support

 

http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com
http://www.nxp.com/support

	MCF5441x Reference Manual
	Chapter 1 Overview
	1.1 Introduction
	1.2 MCF5441x Family Comparison
	1.3 Block Diagram
	1.4 Operating Parameters
	1.5 Packages
	1.6 Chip Level Features
	1.7 Module-by-Module Feature List
	1.7.1 Version 4 ColdFire Variable-Length RISC Processor
	1.7.2 On-chip Memories
	1.7.3 Phase Locked Loop (PLL) and Crystal Oscillator
	1.7.4 Power Management
	1.7.5 Chip Configuration Module (CCM)
	1.7.6 Reset Controller
	1.7.7 System Control Module
	1.7.8 Crossbar Switch
	1.7.9 Universal Serial Bus (USB) Host Controller
	1.7.10 Universal Serial Bus (USB) 2.0 On-The-Go (OTG) Controller
	1.7.11 DDR SDRAM Controller
	1.7.12 FlexBus (External Interface)
	1.7.13 Ethernet Assembly
	1.7.14 Cryptography Acceleration Unit (CAU)
	1.7.15 Random Number Generator
	1.7.16 Secure Digital Host Controller (SDHC)
	1.7.17 Subscriber Identity Module (SIM)
	1.7.18 Synchronous Serial Interfaces (SSI)
	1.7.19 FlexCAN Modules
	1.7.20 Analog-Digital Converters (ADC)
	1.7.21 Digital-Analog Converters (DAC)
	1.7.22 NAND Flash Controller
	1.7.23 1-Wire Interface
	1.7.24 Robust Real Time Clock
	1.7.25 Programmable Interrupt Timers (PIT)
	1.7.26 DMA Timers
	1.7.27 DMA Serial Peripheral Interfaces (DSPI)
	1.7.28 Motor Control Pulse Width Modulation (mcPWM) Module
	1.7.29 Universal Asynchronous Receiver Transmitters (UARTs)
	1.7.30 I2C Modules
	1.7.31 Interrupt Controllers
	1.7.32 Edge Port Module
	1.7.33 DMA Controller
	1.7.34 Rapid GPIO Interface
	1.7.35 General Purpose I/O Interface
	1.7.36 System Debug Support
	1.7.37 JTAG Support

	1.8 Memory Map Overview
	1.8.1 Internal Peripheral Space

	1.9 Documentation

	Chapter 2 Signal Descriptions
	2.1 Introduction
	2.2 Signal Properties Summary
	2.3 Signal Primary Functions
	2.3.1 Reset Signals
	2.3.2 PLL and Clock Signals
	2.3.3 Mode Selection
	2.3.4 Enhanced Secure Digital Host Controller
	2.3.5 SmartCard Interface Ports
	2.3.6 FlexBus Signals
	2.3.7 SDRAM Controller Signals
	2.3.8 Serial Boot Facility Signals
	2.3.9 External Interrupt Signals
	2.3.10 DMA Signals
	2.3.11 Ethernet Controllers (MACNET0–1) Signals
	2.3.12 NAND Flash Controller Signals
	2.3.13 Analog-to-Digital Converter Signals
	2.3.14 Digital-to-Analog Converter Signals
	2.3.15 Rapid GPIO Signals
	2.3.16 1-Wire Signals
	2.3.17 PWM I/O Signals
	2.3.18 FlexCAN Signals
	2.3.19 I2C I/O Signals
	2.3.20 DMA Serial Peripheral Interface (DSPI) Signals
	2.3.21 Synchronous Serial Interface (SSI) Signals
	2.3.22 Universal Serial Bus (USB) Signals
	2.3.23 UART Module Signals
	2.3.24 DMA Timer Signals
	2.3.25 Debug Support Signals
	2.3.26 Test Signals
	2.3.27 Power and Ground Pins

	2.4 External Boot Mode

	Chapter 3 ColdFire Core
	3.1 Introduction
	3.1.1 Overview
	3.1.1.1 Change-of-Flow Acceleration
	3.1.1.2 Operand Execution Pipeline (OEP)


	3.2 Memory Map/Register Description
	3.2.1 Data Registers (D0–D7)
	3.2.2 Address Registers (A0–A6)
	3.2.3 Supervisor/User Stack Pointers (A7 and OTHER_A7)
	3.2.4 Condition Code Register (CCR)
	3.2.5 Program Counter (PC)
	3.2.6 Cache Programming Model
	3.2.7 MMU Programming Model
	3.2.8 Vector Base Register (VBR)
	3.2.9 Status Register (SR)
	3.2.10 Memory Base Address Register (RAMBAR)

	3.3 Functional Description
	3.3.1 Version 4 ColdFire Microarchitecture
	3.3.2 Instruction Set Architecture (ISA_C)
	3.3.3 Exception Processing Overview
	3.3.3.1 Exception Stack Frame Definition

	3.3.4 Processor Exceptions
	3.3.4.1 Access Error Exception
	3.3.4.2 Address Error Exception
	3.3.4.3 Illegal Instruction Exception
	3.3.4.4 Divide-By-Zero
	3.3.4.5 Privilege Violation
	3.3.4.6 Trace Exception
	3.3.4.7 Unimplemented Line-A Opcode
	3.3.4.8 Unimplemented Line-F Opcode
	3.3.4.9 Debug Interrupts
	3.3.4.10 RTE and Format Error Exception
	3.3.4.11 TRAP Instruction Exception
	3.3.4.12 Unsupported Instruction Exception
	3.3.4.13 Interrupt Exception
	3.3.4.14 Fault-on-Fault Halt
	3.3.4.15 Reset Exception
	3.3.4.16 Precise Faults

	3.3.5 Instruction Execution Timing
	3.3.5.1 Timing Assumptions
	3.3.5.2 MOVE Instruction Execution Times
	3.3.5.3 Standard One Operand Instruction Execution Times
	3.3.5.4 Standard Two Operand Instruction Execution Times
	3.3.5.5 Miscellaneous Instruction Execution Times
	3.3.5.6 EMAC Instruction Execution Times
	3.3.5.7 Branch Instruction Execution Times



	Chapter 4 Memory Management Unit (MMU)
	4.1 Introduction
	4.1.1 Block Diagram
	4.1.2 Features

	4.2 Memory Map/Register Definition
	4.2.1 Address Space ID (ASID)
	4.2.2 MMU Base Address Register (MMUBAR)
	4.2.3 MMU Control Register (MMUCR)
	4.2.4 MMU Operation Register (MMUOR)
	4.2.5 MMU Status Register (MMUSR)
	4.2.6 MMU Fault, Test, or TLB Address Register (MMUAR)
	4.2.7 MMU Read/Write Tag Entry Registers (MMUTR)
	4.2.8 MMU Read/Write Data Entry Register (MMUDR)

	4.3 Functional Description
	4.3.1 Virtual Memory Management Architecture
	4.3.1.1 MMU Architecture Features
	4.3.1.2 MMU Architecture Implementation
	4.3.1.2.1 Precise Faults
	4.3.1.2.2 MMU Access
	4.3.1.2.3 Virtual Mode
	4.3.1.2.4 Virtual Memory References
	4.3.1.2.5 Instruction and Data Cache Addresses
	4.3.1.2.6 Supervisor/User Stack Pointers
	4.3.1.2.7 Access Error Stack Frame
	4.3.1.2.8 Expanded Control Register Space
	4.3.1.2.9 Changes to ACRs and CACR
	4.3.1.2.10 ACR Address Improvements
	4.3.1.2.11 Supervisor Protection


	4.3.2 Debugging in a Virtual Environment
	4.3.3 Virtual Memory Architecture Processor Support
	4.3.3.1 Precise Faults
	4.3.3.2 Supervisor/User Stack Pointers
	4.3.3.3 Access Error Stack Frame Additions

	4.3.4 Effective Address Attribute Determination
	4.3.5 MMU Functionality
	4.3.6 MMU TLB
	4.3.7 MMU Operation
	4.3.8 MMU Implementation
	4.3.8.1 TLB Address Fields
	4.3.8.2 TLB Replacement Algorithm
	4.3.8.3 TLB Locked Entries

	4.3.9 MMU Instructions


	Chapter 5 Enhanced Multiply-Accumulate Unit (EMAC)
	5.1 Introduction
	5.1.1 Overview
	5.1.1.1 Introduction to the MAC


	5.2 Memory Map/Register Definition
	5.2.1 MAC Status Register (MACSR)
	5.2.2 Mask Register (MASK)
	5.2.3 Accumulator Registers (ACC0–3)
	5.2.4 Accumulator Extension Registers (ACCext01, ACCext23)

	5.3 Functional Description
	5.3.1 Fractional Operation Mode
	5.3.1.1 Rounding
	5.3.1.2 Saving and Restoring the EMAC Programming Model
	5.3.1.3 MULS/MULU
	5.3.1.4 Scale Factor in MAC or MSAC Instructions

	5.3.2 EMAC Instruction Set Summary
	5.3.3 EMAC Instruction Execution Times
	5.3.4 Data Representation
	5.3.5 MAC Opcodes


	Chapter 6 Cache
	6.1 Introduction
	6.1.1 Block Diagram
	6.1.2 Overview

	6.2 Cache Organization
	6.2.1 Cache Line States: Invalid, Valid-Unmodified, and Valid-Modified
	6.2.2 The Cache at Start-Up

	6.3 Memory Map/Register Definition
	6.3.1 Cache Control Register (CACR)
	6.3.2 Access Control Registers (ACRn)

	6.4 Functional Description
	6.4.1 Caching Modes
	6.4.1.1 Cacheable Accesses
	6.4.1.1.1 Write-Through Mode (Data Cache Only)
	6.4.1.1.2 Copyback Mode (Data Cache Only)

	6.4.1.2 Cache-Inhibited Accesses

	6.4.2 Cache Protocol
	6.4.2.1 Read Miss
	6.4.2.2 Write Miss (Data Cache Only)
	6.4.2.3 Read Hit
	6.4.2.4 Write Hit (Data Cache Only)

	6.4.3 Cache Coherency (Data Cache Only)
	6.4.4 Memory Accesses for Cache Maintenance
	6.4.4.1 Cache Filling
	6.4.4.2 Cache Pushes
	6.4.4.2.1 Push and Store Buffers
	6.4.4.2.2 Push and Store Buffer Bus Operation


	6.4.5 Cache Locking
	6.4.6 Cache Management
	6.4.7 Cache Operation Summary
	6.4.7.1 Instruction Cache State Transitions
	6.4.7.2 Data Cache-State Transitions

	6.4.8 CPUSHL Enhancements

	6.5 Initialization/Application Information

	Chapter 7 Static RAM (SRAM)
	7.1 Introduction
	7.1.1 Overview
	7.1.2 Features

	7.2 Memory Map/Register Description
	7.2.1 SRAM Base Address Register (RAMBAR)

	7.3 Initialization/Application Information
	7.3.1 SRAM Initialization Code
	7.3.2 Power Management


	Chapter 8 Clock Module
	8.1 Introduction
	8.1.1 Block Diagram
	8.1.2 Features
	8.1.3 Modes of Operation
	8.1.3.1 Normal PLL Mode with Crystal Reference
	8.1.3.2 Normal PLL Mode with External Reference
	8.1.3.3 Input Clock (Limp) Mode
	8.1.3.4 Low-power Mode Operation


	8.2 Memory Map/Register Definition
	8.2.1 PLL Control Register (PLL_CR)
	8.2.2 PLL Divider Register (PLL_DR)
	8.2.3 PLL Status Register (PLL_SR)

	8.3 Functional Description
	8.3.1 PLL Frequency Multiplication Factor Select
	8.3.2 PLL Frequency Synthesis
	8.3.3 Lock Conditions
	8.3.4 Loss-of-Lock Detection
	8.3.4.1 Loss-of-Lock Reset Request
	8.3.4.2 Loss-of-Lock Interrupt Request

	8.3.5 Loss-of-Clock Detection
	8.3.5.1 Loss-of-Clock Reset Request
	8.3.5.2 Loss-of-Clock Interrupt Request

	8.3.6 System Clock Modes
	8.3.7 Clock Operation During Reset
	8.3.7.1 Power-On Reset (POR)
	8.3.7.2 External Reset



	Chapter 9 Power Management
	9.1 Introduction
	9.1.1 Features

	9.2 Memory Map/Register Definition
	9.2.1 Wake-up Control Register (WCR)
	9.2.2 Peripheral Power Management Set Registers (PPMSR0, PPMSR1)
	9.2.3 Peripheral Power Management Clear Register (PPMCR0, PPMCR1)
	9.2.4 Peripheral Power Management Registers (PPMHR{1,0}, PPMLR{1,0})
	9.2.5 Low-Power Control Register (LPCR)

	9.3 Functional Description
	9.3.1 Peripheral Shut Down
	9.3.2 Limp mode
	9.3.3 Low-Power Modes
	9.3.3.1 Run Mode
	9.3.3.2 Wait Mode
	9.3.3.3 Doze Mode
	9.3.3.4 Stop Mode

	9.3.4 Peripheral Behavior in Low-Power Modes
	9.3.4.1 ColdFire Core
	9.3.4.2 Internal SRAM
	9.3.4.3 Clock Module
	9.3.4.4 Chip Configuration Module
	9.3.4.5 Reset Controller
	9.3.4.6 System Control Module (SCM)
	9.3.4.7 Crossbar Switch
	9.3.4.8 GPIO Ports
	9.3.4.9 Interrupt Controllers (INTC0–2)
	9.3.4.10 Edge Port
	9.3.4.11 eDMA Controller
	9.3.4.12 FlexBus Module
	9.3.4.13 Ethernet Assembly
	9.3.4.14 ADC
	9.3.4.15 DAC
	9.3.4.16 NAND Flash Controller (NFC)
	9.3.4.17 1-Wire Interface
	9.3.4.18 mcPWM
	9.3.4.19 FlexCAN
	9.3.4.20 Robust Real Time Clock
	9.3.4.21 Rapid GPIO
	9.3.4.22 Serial Boot Facility
	9.3.4.23 DDR SDRAM Controller (DDRMC)
	9.3.4.24 eSDHC
	9.3.4.25 Cryptography Acceleration Unit (CAU)
	9.3.4.26 Random Number Generator (RNG)
	9.3.4.27 Subscriber Interface Module (SIM)
	9.3.4.28 USB On-the-Go Module
	9.3.4.29 USB Host Module
	9.3.4.30 Programmable Interrupt Timers (PIT0–3)
	9.3.4.31 DMA Timers (DTIM0–3)
	9.3.4.32 DMA Serial Peripheral Interface (DSPI)
	9.3.4.33 UART Modules
	9.3.4.34 I2C Modules
	9.3.4.35 BDM
	9.3.4.36 JTAG

	9.3.5 Summary of Peripheral State During Low-power Modes


	Chapter 10 Chip Configuration Module (CCM)
	10.1 Introduction
	10.1.1 Block Diagram
	10.1.2 Features
	10.1.3 Modes of Operation

	10.2 External Signal Descriptions
	10.2.1 BOOTMOD[1:0]
	10.2.2 FB_AD[7:0] (Reset Configuration Override)

	10.3 Memory Map/Register Definition
	10.3.1 Chip Configuration Register (CCR)
	10.3.2 Reset Configuration Register (RCON)
	10.3.3 Chip Identification Register (CIR)
	10.3.4 Miscellaneous Control Register (MISCCR)
	10.3.5 Clock-Divider Register High (CDRH)
	10.3.6 Clock-Divider Register Low (CDRL)
	10.3.7 USB On-the-Go Controller Status Register (UOCSR)
	10.3.8 USB Host Controller Status Register (UHCSR)
	10.3.9 Miscellaneous Control Register 3 (MISCCR3)
	10.3.10 Miscellaneous Control Register 2 (MISCCR2)
	10.3.11 ADC Trigger Select Register (ADCTSR)
	10.3.12 DAC Trigger Select Register (DACTSR)
	10.3.13 FlexBus/NAND Flash Arbiter Control Register (FNACR)

	10.4 Functional Description
	10.4.1 Reset Configuration
	10.4.1.1 Reset Configuration (BOOTMOD[1:0] = 00)
	10.4.1.2 Reset Configuration (BOOTMOD[1:0] = 01)
	10.4.1.3 Reset Configuration (BOOTMOD[1:0] = 1x)

	10.4.2 Boot Configuration
	10.4.3 Low Power Configuration


	Chapter 11 Serial Boot Facility (SBF)
	11.1 Introduction
	11.1.1 Overview
	11.1.2 Features

	11.2 External Signal Description
	11.3 Memory Map/Register Definition
	11.3.1 Serial Boot Facility Status Register (SBFSR)
	11.3.2 Serial Boot Facility Control Register (SBFCR)

	11.4 Functional Description
	11.4.1 Serial Initialization and Shift Clock Frequency Adjustment
	11.4.2 Reset Configuration and Optional Boot Load
	11.4.3 Execution Transfer

	11.5 Initialization Information
	11.5.1 SPI Memory Initialization
	11.5.2 FAST_READ Feature Initialization


	Chapter 12 Reset Controller Module
	12.1 Introduction
	12.1.1 Block Diagram
	12.1.2 Features

	12.2 External Signal Description
	12.2.1 RESET
	12.2.2 RSTOUT

	12.3 Memory Map/Register Definition
	12.3.1 Reset Control Register (RCR)
	12.3.2 Reset Status Register (RSR)

	12.4 Functional Description
	12.4.1 Reset Sources
	12.4.2 Reset Control Flow
	12.4.2.1 Non-SBF Reset Sequence
	12.4.2.2 SBF Reset Sequence



	Chapter 13 System Control Module (SCM)
	13.1 Introduction
	13.1.1 Overview
	13.1.2 Features

	13.2 Memory Map/Register Definition
	13.2.1 Core Watchdog Control Register (CWCR)
	13.2.2 Core Watchdog Service Register (CWSR)
	13.2.3 SCM Interrupt Status Register (SCMISR)
	13.2.4 Burst Configuration Register (BCR)
	13.2.5 Core Fault Address Register (CFADR)
	13.2.6 Core Fault Interrupt Enable Register (CFIER)
	13.2.7 Core Fault Location Register (CFLOC)
	13.2.8 Core Fault Attributes Register (CFATR)
	13.2.9 Core Fault Data Register (CFDTR)

	13.3 Functional Description
	13.3.1 Core Watchdog Timer
	13.3.1.1 Watchdog Timer Clock Source

	13.3.2 Core Data Fault Recovery Registers


	Chapter 14 Crossbar Switch (XBS)
	14.1 Overview
	14.2 Features
	14.3 Modes of Operation
	14.4 Memory Map / Register Definition
	14.4.1 XBS Priority Registers (XBS_PRSn)
	14.4.2 XBS Control Registers (XBS_CRSn)

	14.5 Functional Description
	14.5.1 Arbitration
	14.5.1.1 Fixed-Priority Operation
	14.5.1.2 Round-Robin Priority Operation
	14.5.1.3 Priority Assignment


	14.6 Initialization/Application Information

	Chapter 15 Pin-Multiplexing and Control
	15.1 Introduction
	15.1.1 Overview
	15.1.2 Features

	15.2 External Signal Description
	15.3 Memory Map/Register Definition
	15.3.1 Port Output Data Registers (PODR_x)
	15.3.2 Port Data Direction Registers (PDDR_x)
	15.3.3 Port Pin Data/Set Data Registers (PPDSDR_x)
	15.3.4 Port Clear Output Data Registers (PCLRR_x)
	15.3.5 Pull Control Registers (PCR_x)
	15.3.6 Pin Assignment Registers (PAR_x)
	15.3.6.1 FlexBus Control Pin Assignment Register (PAR_FBCTL)
	15.3.6.2 Byte Enables Pin Assignment Register (PAR_BE)
	15.3.6.3 Chip Selects Pin Assignment Register (PAR_CS)
	15.3.6.4 CAN1 and I2C0 Pin Assignment Registers (PAR_CANI2C)
	15.3.6.5 Edge Port 0 Pin Assignment Registers (PAR_IRQ0H & PAR_IRQ0L)
	15.3.6.6 DSPI0 and One-Wire Pin Assignment Registers (PAR_DSPIOWH & PAR_DSPIOWL)
	15.3.6.7 Timer Pin Assignment Registers (PAR_TIMER)
	15.3.6.8 UARTn Pin Assignment Registers (PAR_UARTn)
	15.3.6.9 eSDHC Pin Assignment Registers (PAR_SDHCH & PAR_SDHCL)
	15.3.6.10 SIM Port 0 Pin Assignment Registers (PAR_SIMP0H & PAR_SIMP0L)
	15.3.6.11 SSI0 Pin Assignment Registers (PAR_SSI0H & PAR_SSI0L)
	15.3.6.12 Debug Pin Assignment Registers (PAR_DEBUGH1, PAR_DEBUGH0 & PAR_DEBUGL)
	15.3.6.13 FEC Pin Assignment Registers (PAR_FEC)

	15.3.7 SDRAM Mode Select Control Registers (MSCR_SDRAMC)
	15.3.8 Slew Rate Control Registers (SRCR_x)
	15.3.9 UART RTS and CTS Polarity Control Register (URTS_POL & UCTS_POL)
	15.3.10 UART Transmitter & Receiver Wired-Or Mode Control Registers (UTXD_WOM & URXD_WOM)

	15.4 Hysteresis Control Registers (HCR0–1)
	15.5 Functional Description
	15.5.1 Overview
	15.5.2 Port Digital I/O Timing

	15.6 Initialization/Application Information

	Chapter 16 Rapid GPIO (RGPIO)
	16.1 Introduction
	16.1.1 Overview
	16.1.2 Features
	16.1.3 Modes of Operation

	16.2 External Signal Description
	16.2.1 Overview
	16.2.2 Detailed Signal Descriptions

	16.3 Memory Map/Register Definition
	16.3.1 RGPIO Base Address Register (RGPIOBAR)
	16.3.2 RGPIO Data Direction (RGPIO_DIR)
	16.3.3 RGPIO Data (RGPIO_DATA)
	16.3.4 RGPIO Pin Enable (RGPIO_ENB)
	16.3.5 RGPIO Clear Data (RGPIO_CLR)
	16.3.6 RGPIO Set Data (RGPIO_SET)
	16.3.7 RGPIO Toggle Data (RGPIO_TOG)

	16.4 Functional Description
	16.5 Initialization Information
	16.6 Application Information
	16.6.1 Application 1: Simple Square-Wave Generation
	16.6.2 Application 2: 16-bit Message Transmission using SPI Protocol


	Chapter 17 Interrupt Controller Modules (INTC)
	17.1 Introduction
	17.1.1 68 K/ColdFire Interrupt Architecture Overview

	17.2 Memory Map/Register Definition
	17.2.1 Interrupt Pending Registers (IPRHn, IPRLn)
	17.2.2 Interrupt Mask Register (IMRHn, IMRLn)
	17.2.3 Interrupt Force Registers (INTFRCHn, INTFRCLn)
	17.2.4 Interrupt Configuration Register (ICONFIG)
	17.2.5 Set Interrupt Mask Register (SIMRn)
	17.2.6 Clear Interrupt Mask Register (CIMRn)
	17.2.7 Current Level Mask Register (CLMASK)
	17.2.8 Saved Level Mask Register (SLMASK)
	17.2.9 Interrupt Control Register (ICR0n, ICR1n, ICR2n (n = 00, 01, 02, ..., 63))
	17.2.9.1 Interrupt Sources

	17.2.10 Software and Level 1–7 IACK Registers (SWIACKn, L1IACKn–L7IACKn)

	17.3 Functional Description
	17.3.1 Interrupt Controller Theory of Operation
	17.3.1.1 Interrupt Recognition
	17.3.1.2 Interrupt Prioritization
	17.3.1.3 Interrupt Vector Determination

	17.3.2 Prioritization Between Interrupt Controllers
	17.3.3 Low-Power Wake-up Operation

	17.4 Initialization/Application Information
	17.4.1 Interrupt Service Routines


	Chapter 18 Edge Port Module (EPORT)
	18.1 Introduction
	18.2 Low-Power Mode Operation
	18.3 Signal Descriptions
	18.4 Memory Map/Register Definition
	18.4.1 EPORT Pin Assignment Register (EPPAR)
	18.4.2 Edge Port Interrupt Enable Register (EPIER)
	18.4.3 Edge Port Flag Register (EPFR)


	Chapter 19 Enhanced Direct Memory Access (eDMA)
	19.1 Overview
	19.1.1 Block Diagram
	19.1.2 Features

	19.2 Modes of Operation
	19.2.1 Normal Mode
	19.2.2 Debug Mode

	19.3 External Signal Description
	19.3.1 External Signal Timing

	19.4 Memory Map/Register Definition
	19.4.1 eDMA Control Register (EDMA_CR)
	19.4.2 eDMA Error Status Register (EDMA_ES)
	19.4.3 eDMA Enable Request Registers (EDMA_ERQH, EDMA_ERQL)
	19.4.4 eDMA Enable Error Interrupt Registers (EDMA_EEIH, EDMA_EEIL)
	19.4.5 eDMA Set Enable Request Register (EDMA_SERQ)
	19.4.6 eDMA Clear Enable Request Register (EDMA_CERQ)
	19.4.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEI)
	19.4.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEI)
	19.4.9 eDMA Clear Interrupt Request Register (EDMA_CINT)
	19.4.10 eDMA Clear Error Register (EDMA_CERR)
	19.4.11 eDMA Set START Bit Register (EDMA_SSRT)
	19.4.12 eDMA Clear DONE Status Bit Register (EDMA_CDNE)
	19.4.13 eDMA Interrupt Request Registers (EDMA_INTH, EDMA_INTL)
	19.4.14 eDMA Error Registers (EDMA_ERRH, EDMA_ERRL)
	19.4.15 eDMA Hardware Request Status Registers (EDMA_HRSH, EDMA_HRSL)
	19.4.16 eDMA Channel n Priority Registers (DCHPRIn)
	19.4.17 Transfer Control Descriptors (TCDn)

	19.5 Functional Description
	19.5.1 eDMA Microarchitecture
	19.5.2 eDMA Basic Data Flow

	19.6 Initialization/Application Information
	19.6.1 eDMA Initialization
	19.6.2 DMA Programming Errors
	19.6.3 DMA Arbitration Mode Considerations
	19.6.3.1 Fixed Group Arbitration, Fixed Channel Arbitration
	19.6.3.2 Round Robin Group Arbitration, Fixed Channel Arbitration
	19.6.3.3 Round Robin Group Arbitration, Round Robin Channel Arbitration
	19.6.3.4 Fixed Group Arbitration, Round Robin Channel Arbitration

	19.6.4 DMA Transfer
	19.6.4.1 Single Request
	19.6.4.2 Multiple Requests
	19.6.4.3 Modulo Feature

	19.6.5 eDMA TCDn Status Monitoring
	19.6.5.1 Minor Loop Complete
	19.6.5.2 Active Channel TCDn Reads
	19.6.5.3 Preemption Status

	19.6.6 Channel Linking
	19.6.7 Dynamic Programming
	19.6.7.1 Dynamic Channel Linking and Dynamic Scatter/Gather



	Chapter 20 FlexBus
	20.1 Introduction
	20.1.1 Overview
	20.1.2 Features
	20.1.3 Modes of Operation

	20.2 External Signals
	20.2.1 Address and Data Buses (FB_ADn)
	20.2.2 Chip Selects (FB_CS[5:0])
	20.2.3 Byte Enables/Byte Write Enables (FB_BE/BWE[3:0])
	20.2.4 Output Enable (FB_OE)
	20.2.5 Read/Write (FB_R/W)
	20.2.6 Address Latch Enable (FB_ALE)
	20.2.7 Transfer Size (FB_TSIZ[1:0])
	20.2.8 Transfer Burst (FB_TBST)
	20.2.9 Transfer Acknowledge (FB_TA)

	20.3 Memory Map/Register Definition
	20.3.1 Chip-Select Address Registers (CSAR0 – CSAR5)
	20.3.2 Chip-Select Mask Registers (CSMR0 – CSMR5)
	20.3.3 Chip-Select Control Registers (CSCR0 – CSCR5)

	20.4 Functional Description
	20.4.1 Chip-Select Operation
	20.4.1.1 General Chip-Select Operation
	20.4.1.2 8-, 16-, and 32-Bit Port Sizing
	20.4.1.3 Global Chip-Select Operation

	20.4.2 Data Transfer Operation
	20.4.3 Data Byte Alignment and Physical Connections
	20.4.4 Address/Data Bus Multiplexing
	20.4.5 Bus Cycle Execution
	20.4.5.1 Data Transfer Cycle States

	20.4.6 FlexBus Timing Examples
	20.4.6.1 Basic Read Bus Cycle
	20.4.6.2 Basic Write Bus Cycle
	20.4.6.3 Bus Cycle Sizing
	20.4.6.4 Timing Variations
	20.4.6.4.1 Wait States
	20.4.6.4.2 Address Setup and Hold


	20.4.7 Burst Cycles
	20.4.8 Misaligned Operands
	20.4.9 Extended Transfer Start
	20.4.10 Bus Errors


	Chapter 21 DDR SDRAM Memory Controller (DDRMC)
	21.1 Overview
	21.1.1 Block Diagram
	21.1.2 Features

	21.2 Modes of Operation
	21.2.1 DDR2
	21.2.2 Low Power Modes
	21.2.2.1 Memory Power-Down
	21.2.2.2 Memory Power-Down with Memory Clock Gating
	21.2.2.3 Memory Self-Refresh
	21.2.2.4 Memory Self-Refresh with Memory Clock Gating
	21.2.2.5 Memory Self-Refresh with Memory and Controller Clock Gating


	21.3 Signal Description
	21.3.1 Detailed Signal Descriptions

	21.4 Memory Map/Register Definition
	21.4.1 DDR Control Register 0 (DDR_CR00)
	21.4.2 DDR Control Register 1 (DDR_CR01)
	21.4.3 DDR Control Register 2 (DDR_CR02)
	21.4.4 DDR Control Register 3 (DDR_CR03)
	21.4.5 DDR Control Register 4 (DDR_CR04)
	21.4.6 DDR Control Register 5 (DDR_CR05)
	21.4.7 DDR Control Register 6 (DDR_CR06)
	21.4.8 DDR Control Register 7 (DDR_CR07)
	21.4.9 DDR Control Register 8 (DDR_CR08)
	21.4.10 DDR Control Register 9 (DDR_CR09)
	21.4.11 DDR Control Register 10 (DDR_CR10)
	21.4.12 DDR Control Register 11 (DDR_CR11)
	21.4.13 DDR Control Register 12 (DDR_CR12)
	21.4.14 DDR Control Register 13 (DDR_CR13)
	21.4.15 DDR Control Register 14 (DDR_CR14)
	21.4.16 DDR Control Register 15 (DDR_CR15)
	21.4.17 DDR Control Register 16 (DDR_CR16)
	21.4.18 DDR Control Register 17 (DDR_CR17)
	21.4.19 DDR Control Register 18 (DDR_CR18)
	21.4.20 DDR Control Register 19 (DDR_CR19)
	21.4.21 DDR Control Register 20 (DDR_CR20)
	21.4.22 DDR Control Register 21 (DDR_CR21)
	21.4.23 DDR Control Register 22 (DDR_CR22)
	21.4.24 DDR Control Register 23 (DDR_CR23)
	21.4.25 DDR Control Register 24 (DDR_CR24)
	21.4.26 DDR Control Register 25 (DDR_CR25)
	21.4.27 DDR Control Register 26 (DDR_CR26)
	21.4.28 DDR Control Register 27 (DDR_CR27)
	21.4.29 DDR Control Register 28 (DDR_CR28)
	21.4.30 DDR Control Register 29 (DDR_CR29)
	21.4.31 DDR Control Register 30 (DDR_CR30)
	21.4.32 DDR Control Register 31 (DDR_CR31)
	21.4.33 DDR Control Register 32 (DDR_CR32)
	21.4.34 DDR Control Register 33 (DDR_CR33)
	21.4.35 DDR Control Register 34 (DDR_CR34)
	21.4.36 DDR Control Register 35 (DDR_CR35)
	21.4.37 DDR Control Register 36 (DDR_CR36)
	21.4.38 DDR Control Register 37 (DDR_CR37)
	21.4.39 DDR Control Register 38 (DDR_CR38)
	21.4.40 DDR Control Register 39 (DDR_CR39)
	21.4.41 DDR Control Register 40 (DDR_CR40)
	21.4.42 DDR Control Register 41 (DDR_CR41)
	21.4.43 DDR Control Register 42 (DDR_CR42)
	21.4.44 DDR Control Register 43 (DDR_CR43)
	21.4.45 DDR Control Register 44 (DDR_CR44)
	21.4.46 DDR Control Register 45 (DDR_CR45)
	21.4.47 DDR Control Register 46 (DDR_CR46)
	21.4.48 DDR Control Register 47 (DDR_CR47)
	21.4.49 DDR Control Register 48 (DDR_CR48)
	21.4.50 DDR Control Register 49 (DDR_CR49)
	21.4.51 DDR Control Register 50 (DDR_CR50)
	21.4.52 DDR Control Register 51 (DDR_CR51)
	21.4.53 DDR Control Register 52 (DDR_CR52)
	21.4.54 DDR Control Register 53 (DDR_CR53)
	21.4.55 DDR Control Register 54 (DDR_CR54)
	21.4.56 DDR Control Register 55 (DDR_CR55)
	21.4.57 DDR Control Register 56 (DDR_CR56)
	21.4.58 DDR Control Register 57 (DDR_CR57)
	21.4.59 DDR Control Register 58 (DDR_CR58)
	21.4.60 DDR Control Register 59 (DDR_CR59)
	21.4.61 DDR Control Register 60 (DDR_CR60)
	21.4.62 DDR Control Register 61 (DDR_CR61)
	21.4.63 DDR Control Register 62 (DDR_CR62)
	21.4.64 DDR Control Register 63 (DDR_CR63)
	21.4.65 RCR Control Register (DDR_RCR)
	21.4.66 DDR I/O Pad Control Register (DDR_PADCR)

	21.5 Functional Description
	21.5.1 High-Level Memory Controller Blocks
	21.5.1.1 DDR2 Memory Controller Core
	21.5.1.2 DFI-Compliant PHY

	21.5.2 Address Mapping
	21.5.2.1 DDR SDRAM Address Mapping Options
	21.5.2.2 Maximum Address Space
	21.5.2.3 Memory Mapping to Address Space

	21.5.3 Write Data Queue
	21.5.4 DRAM Command Processing
	21.5.5 Latency
	21.5.6 Core Command Queue with Placement Logic
	21.5.6.1 Rules of the Placement Algorithm
	21.5.6.1.1 Address Collision/Data Coherency Violation
	21.5.6.1.2 Source ID Collision
	21.5.6.1.3 Write Buffer Collision
	21.5.6.1.4 Priority
	21.5.6.1.5 Bank Splitting
	21.5.6.1.6 Read/Write Grouping


	21.5.7 Command Execution Order After Placement
	21.5.7.1 High-Priority Command Swapping
	21.5.7.2 Command Aging

	21.5.8 Low Power Modes
	21.5.8.1 Automatic Entry
	21.5.8.2 Manual On-Demand Entry
	21.5.8.3 Register Programming

	21.5.9 Out-of-Range Address Checking

	21.6 Initialization/Application Information

	Chapter 22 NAND Flash Controller (NFC)
	22.1 Introduction
	22.1.1 Block Diagram
	22.1.2 Features

	22.2 External Signal Description
	22.3 Memory Map/Register Definition
	22.3.1 Flash Command 1 Register (NFC_CMD1)
	22.3.2 Flash Command 2 Register (NFC_CMD2)
	22.3.3 Column Address Register (NFC_CAR)
	22.3.4 Row Address Register (NFC_RAR)
	22.3.5 Flash Command Repeat (NFC_RPT)
	22.3.6 Row Address Increment (NFC_RAI)
	22.3.7 Flash Status 1 Register (NFC_SR1)
	22.3.8 Flash Status 2 Register (NFC_SR2)
	22.3.9 DMA1 Address Register (NFC_DMA1)
	22.3.10 DMA2 Address Register (NFC_DMA2)
	22.3.11 DMA Configuration Register (NFC_DMACFG)
	22.3.12 Cache Swap Register (NFC_SWAP)
	22.3.13 Sector Size Register (NFC_SECSZ)
	22.3.14 Flash Configuration Register (NFC_CFG)
	22.3.15 Interrupt Status Register (NFC_ISR)

	22.4 Functional Description
	22.4.1 NFC Buffer Memory Space
	22.4.2 Error Corrector Status
	22.4.3 NFC Basic Commands
	22.4.3.1 Page Read
	22.4.3.2 Page Program
	22.4.3.3 Block Erase
	22.4.3.4 Read ID
	22.4.3.5 Reset

	22.4.4 NAND Flash Boot
	22.4.5 Fast Flash Configuration for EDO
	22.4.6 Organization of the Data in the NAND Flash
	22.4.7 Flash Command Code Description
	22.4.8 Interrupts


	Chapter 23 Universal Serial Bus Interface – Host Module
	23.1 Introduction
	23.1.1 Block Diagram
	23.1.2 Overview
	23.1.3 Features
	23.1.4 Modes of Operation
	23.1.4.1 Low-Power Modes


	23.2 External Signal Description
	23.2.1 USB Host Control and Status Signals

	23.3 Memory Map/Register Definitions
	23.4 Functional Description

	Chapter 24 Universal Serial Bus Interface – On-The-Go Module
	24.1 Introduction
	24.1.1 Overview
	24.1.2 Block Diagram
	24.1.3 Features
	24.1.4 Modes of Operation
	24.1.4.1 Low-Power Modes


	24.2 External Signal Description
	24.2.1 USB OTG Control and Status Signals

	24.3 Memory Map/Register Definition
	24.3.1 Module Identification Registers
	24.3.1.1 Identification (ID) Register
	24.3.1.2 General Hardware Parameters Register (HWGENERAL)
	24.3.1.3 Host Hardware Parameters Register (HWHOST)
	24.3.1.4 Device Hardware Parameters Register (HWDEVICE)
	24.3.1.5 Transmit Buffer Hardware Parameters Register (HWTXBUF)
	24.3.1.6 Receive Buffer Hardware Parameters Register (HWRXBUF)

	24.3.2 Device/Host Timer Registers
	24.3.2.1 General Purpose Timer n Load Registers (GPTIMERnLD)
	24.3.2.2 General Purpose Timer n Control Registers (GPTIMERnCTL)

	24.3.3 Capability Registers
	24.3.3.1 Host Controller Interface Version Register (HCIVERSION)
	24.3.3.2 Capability Registers Length Register (CAPLENGTH)
	24.3.3.3 Host Controller Structural Parameters Register (HCSPARAMS)
	24.3.3.4 Host Controller Capability Parameters Register (HCCPARAMS)
	24.3.3.5 Device Controller Interface Version (DCIVERSION)
	24.3.3.6 Device Controller Capability Parameters (DCCPARAMS)

	24.3.4 Operational Registers
	24.3.4.1 USB Command Register (USBCMD)
	24.3.4.2 USB Status Register (USBSTS)
	24.3.4.3 USB Interrupt Enable Register (USBINTR)
	24.3.4.4 Frame Index Register (FRINDEX)
	24.3.4.5 Periodic Frame List Base Address Register (PERIODICLISTBASE)
	24.3.4.6 Device Address Register (DEVICEADDR)
	24.3.4.7 Current Asynchronous List Address Register (ASYNCLISTADDR)
	24.3.4.8 Endpoint List Address Register (EPLISTADDR)
	24.3.4.9 Host TT Asynchronous Buffer Control (TTCTRL)
	24.3.4.10 Master Interface Data Burst Size Register (BURSTSIZE)
	24.3.4.11 Transmit FIFO Tuning Control Register (TXFILLTUNING)
	24.3.4.12 ULPI Register Access (ULPI_VIEWPORT)
	24.3.4.13 Configure Flag Register (CONFIGFLAG)
	24.3.4.14 Port Status and Control Registers (PORTSCn)
	24.3.4.15 On-the-Go Status and Control Register (OTGSC)
	24.3.4.16 USB Mode Register (USBMODE)
	24.3.4.17 Endpoint Setup Status Register (EPSETUPSR)
	24.3.4.18 Endpoint Initialization Register (EPPRIME)
	24.3.4.19 Endpoint Flush Register (EPFLUSH)
	24.3.4.20 Endpoint Status Register (EPSR)
	24.3.4.21 Endpoint Complete Register (EPCOMPLETE)
	24.3.4.22 Endpoint Control Register 0 (EPCR0)
	24.3.4.23 Endpoint Control Register n (EPCRn)


	24.4 Functional Description
	24.4.1 System Interface
	24.4.2 DMA Engine
	24.4.3 FIFO RAM Controller
	24.4.4 Physical Layer (PHY) Interface
	24.4.4.1 USB On-Chip Transceiver Required External Components


	24.5 Initialization/Application Information
	24.5.1 Host Operation
	24.5.1.1 Host Controller Initialization

	24.5.2 Device Data Structures
	24.5.2.1 Endpoint Queue Head
	24.5.2.1.1 Endpoint Capabilities/Characteristics (Offset = 0x0)
	24.5.2.1.2 Current dTD Pointer (Offset = 0x4)
	24.5.2.1.3 Transfer Overlay (Offset = 0x8–0x20)
	24.5.2.1.4 Setup Buffer (Offset = 0x28–0x2C)

	24.5.2.2 Endpoint Transfer Descriptor (dTD)
	24.5.2.2.1 Next dTD Pointer (Offset = 0x0)
	24.5.2.2.2 dTD Token (Offset = 0x4)
	24.5.2.2.3 dTD Buffer Page Pointer List (Offset = 0x8–0x18)


	24.5.3 Device Operation
	24.5.3.1 Device Controller Initialization
	24.5.3.2 Port State and Control
	24.5.3.2.1 Bus Reset
	24.5.3.2.2 Suspend/Resume
	Suspend Operational Model
	Resume


	24.5.3.3 Managing Endpoints
	24.5.3.3.1 Endpoint Initialization
	24.5.3.3.2 Stalling
	24.5.3.3.3 Data Toggle
	Data Toggle Reset
	Data Toggle Inhibit


	24.5.3.4 Packet Transfers
	24.5.3.4.1 Priming Transmit Endpoints
	24.5.3.4.2 Priming Receive Endpoints
	24.5.3.4.3 Interrupt/Bulk Endpoint Operation
	24.5.3.4.4 Control Endpoint Operation
	Setup Phase
	Data Phase
	Status Phase
	Control Endpoint Bus Response Matrix

	24.5.3.4.5 Isochronous Endpoint Operation
	Isochronous Pipe Synchronization
	Isochronous Endpoint Bus Response Matrix


	24.5.3.5 Managing Queue Heads
	24.5.3.5.1 Queue Head Initialization
	24.5.3.5.2 Setup Transfers Operation

	24.5.3.6 Managing Transfers with Transfer Descriptors
	24.5.3.6.1 Software Link Pointers
	24.5.3.6.2 Building a Transfer Descriptor
	24.5.3.6.3 Executing a Transfer Descriptor
	24.5.3.6.4 Transfer Completion
	24.5.3.6.5 Flushing/De-priming an Endpoint
	24.5.3.6.6 Device Error Matrix


	24.5.4 Servicing Interrupts
	24.5.4.1 High Frequency Interrupts
	24.5.4.1.1 Low Frequency Interrupts
	24.5.4.1.2 Error Interrupts


	24.5.5 Deviations from the EHCI Specifications
	24.5.5.1 Embedded Transaction Translator Function
	24.5.5.1.1 Capability Registers
	24.5.5.1.2 Operational Registers
	24.5.5.1.3 Discovery
	24.5.5.1.4 Data Structures
	24.5.5.1.5 Operational Model
	Microframe Pipeline
	Split State Machines
	Asynchronous Transaction Scheduling and Buffer Management
	Periodic Transaction Scheduling and Buffer Management


	24.5.5.2 Device Operation
	24.5.5.3 Non-Zero Fields in the Register File
	24.5.5.4 SOF Interrupt
	24.5.5.5 Embedded Design
	24.5.5.5.1 Frame Adjust Register

	24.5.5.6 Miscellaneous Variations from EHCI
	24.5.5.6.1 Programmable Physical Interface Behavior
	24.5.5.6.2 Discovery
	Port Reset
	Port Speed Detection





	Chapter 25 Enhanced Secure Digital Host Controller (eSDHC)
	25.1 Overview
	25.1.1 Block Diagram
	25.1.2 Features
	25.1.3 Data Transfer Modes

	25.2 External Signal Description
	25.3 Memory Map/Register Definition
	25.3.1 DMA System Address Register (DSADDR)
	25.3.2 Block Attributes Register (BLKATTR)
	25.3.3 Command Argument Register (CMDARG)
	25.3.4 Transfer Type Register (XFERTYP)
	25.3.5 Command Response 0–3 (CMDRSP0–3)
	25.3.6 Buffer Data Port Register (DATPORT)
	25.3.7 Present State Register (PRSSTAT)
	25.3.8 Protocol Control Register (PROCTL)
	25.3.9 System Control Register (SYSCTL)
	25.3.10 Interrupt Status Register (IRQSTAT)
	25.3.11 Interrupt Status Enable Register (IRQSTATEN)
	25.3.12 Interrupt Signal Enable Register (IRQSIGEN)
	25.3.13 Auto CMD12 Error Status Register (AUTOC12ERR)
	25.3.14 Host Controller Capabilities (HOSTCAPBLT)
	25.3.15 Watermark Level Register (WML)
	25.3.16 Force Event Register (FEVT)
	25.3.17 ADMA Error Status Register
	25.3.18 ADMA System Address Register
	25.3.19 Vendor Specific Register
	25.3.20 Host Controller Version Register (HOSTVER)

	25.4 Functional Description
	25.4.1 Data Buffer
	25.4.1.1 Write Operation Sequence
	25.4.1.2 Read Operation Sequence
	25.4.1.3 Data Buffer Size
	25.4.1.4 Dividing Large Data Transfer
	25.4.1.5 External DMA Request

	25.4.2 DMA Crossbar Switch Interface
	25.4.2.1 Internal DMA Request
	25.4.2.2 DMA Burst Length
	25.4.2.3 ADMA Engine
	25.4.2.3.1 ADMA Concept and Descriptor Format
	25.4.2.3.2 ADMA Interrupts
	25.4.2.3.3 ADMA Errors

	25.4.2.4 Crossbar Switch Master Interface

	25.4.3 SD Protocol Unit
	25.4.3.1 SD Transceiver
	25.4.3.2 SD Clock & Monitor
	25.4.3.3 Command Agent
	25.4.3.4 Data Agent

	25.4.4 Clock & Reset Manager
	25.4.5 Clock Generator
	25.4.6 SDIO Card Interrupt
	25.4.6.1 Interrupts in 1-bit Mode
	25.4.6.2 Interrupt in 4-bit Mode
	25.4.6.3 Card Interrupt Handling

	25.4.7 Card Insertion and Removal Detection
	25.4.8 Power Management and Wake-Up Events
	25.4.8.1 Setting Wake Up Events


	25.5 Initialization/Application Information
	25.5.1 Command Send and Response Receive Basic Operation
	25.5.2 Card Identification Mode
	25.5.2.1 Card Detect
	25.5.2.2 Reset
	25.5.2.3 Voltage Validation
	25.5.2.4 Card Registry

	25.5.3 Card Access
	25.5.3.1 Block Write
	25.5.3.1.1 Normal Write
	25.5.3.1.2 Write with Pause

	25.5.3.2 Block Read
	25.5.3.2.1 Normal Read
	25.5.3.2.2 Read with Pause

	25.5.3.3 ADMA Usage
	25.5.3.4 Transfer Error
	25.5.3.4.1 CRC Error
	25.5.3.4.2 Internal DMA Error
	25.5.3.4.3 ADMA Error
	25.5.3.4.4 Auto CMD12 Error

	25.5.3.5 Card Interrupt

	25.5.4 Switch Function
	25.5.4.1 Query, Enable and Disable SDIO High Speed Mode
	25.5.4.2 Query, Enable and Disable SD High Speed Mode
	25.5.4.3 Query, Enable and Disable MMC High Speed Mode
	25.5.4.4 Set MMC Bus Width
	25.5.4.5 ADMA1 Operation
	25.5.4.6 ADMA2 Operation

	25.5.5 Commands for MMC/SD/SDIO
	25.5.6 Software Restrictions
	25.5.6.1 Initialization Active
	25.5.6.2 Software Polling Procedure
	25.5.6.3 Suspend Operation
	25.5.6.4 Data Length Setting
	25.5.6.5 DMA Address Setting
	25.5.6.6 Data Port Access
	25.5.6.7 Change Clock Frequency



	Chapter 26 Cryptographic Acceleration Unit (CAU)
	26.1 Introduction
	26.1.1 Block Diagram
	26.1.2 Overview
	26.1.3 Features

	26.2 Memory Map/Register Definition
	26.2.1 CAU Status Register (CASR)
	26.2.2 CAU Accumulator (CAA)
	26.2.3 CAU General Purpose Registers (CAn)

	26.3 Functional Description
	26.3.1 Programming Model
	26.3.2 Coprocessor Instructions
	26.3.3 CAU Commands
	26.3.3.1 Coprocessor No Operation (cnop)
	26.3.3.2 Load Register (ldr)
	26.3.3.3 Store Register (str)
	26.3.3.4 Add to Register (adr)
	26.3.3.5 Reverse and Add to Register (radr)
	26.3.3.6 Add Register to Accumulator (adra)
	26.3.3.7 Exclusive Or (xor)
	26.3.3.8 Rotate Left (rotl)
	26.3.3.9 Move Register to Accumulator (mvra)
	26.3.3.10 Move Accumulator to Register (mvar)
	26.3.3.11 AES Substitution (aess)
	26.3.3.12 AES Inverse Substitution (aesis)
	26.3.3.13 AES Column Operation (aesc)
	26.3.3.14 AES Inverse Column Operation (aesic)
	26.3.3.15 AES Shift Rows (aesr)
	26.3.3.16 AES Inverse Shift Rows (aesir)
	26.3.3.17 DES Round (desr)
	26.3.3.18 DES Key Setup (desk)
	26.3.3.19 Hash Function (hash)
	26.3.3.20 Secure Hash Shift (shs)
	26.3.3.21 Message Digest Shift (mds)
	26.3.3.22 Secure Hash Shift 2 (shs2)
	26.3.3.23 Illegal Command (ill)


	26.4 Application/Initialization Information
	26.4.1 Code Example
	26.4.2 Assembler Equate Values


	Chapter 27 Random Number Generator (RNG)
	27.1 Introduction
	27.1.1 Block Diagram
	27.1.2 Overview
	27.1.3 Features

	27.2 Modes of Operation
	27.2.1 Self Test Mode
	27.2.2 Seed Generation Mode
	27.2.3 Random Number Generation Mode

	27.3 Memory Map/Register Definition
	27.3.1 RNG Version ID Register (RNGVER)
	27.3.2 RNG Command Register (RNGCMD)
	27.3.3 RNG Control Register (RNGCR)
	27.3.4 RNG Status Register (RNGSR)
	27.3.5 RNG Error Status Register (RNGESR)
	27.3.6 RNG Output FIFO (RNGOUT)
	27.3.7 RNG Entropy Register (RNGER)

	27.4 Functional Description
	27.4.1 Pseudorandom Number Generator (PRNG)
	27.4.2 True Random Number Generator (TRNG)
	27.4.3 RNG Interrupts

	27.5 Initialization/Application Information
	27.5.1 Manual Seeding
	27.5.2 Automatic Seeding


	Chapter 28 Subscriber Identification Module (SIM)
	28.1 Introduction
	28.1.1 Block Diagram
	28.1.2 Features
	28.1.3 Modes of Operation

	28.2 External Signal Description
	28.3 Memory Map/Register Definition
	28.3.1 SIM Port Control Registers (SIM_PCRn)
	28.3.2 SIM Port 1 Setup Register (SIM_SETUP)
	28.3.3 SIM Port Detect Registers (SIM_DETECTn)
	28.3.4 SIM Port Transmit Buffer Registers (SIM_TBUFn)
	28.3.5 SIM Port Receive Buffer Registers (SIM_RBUFn)
	28.3.6 SIM Control Register (SIM_CR)
	28.3.7 SIM Clock Prescaler Register (SIM_PRE)
	28.3.8 SIM Receive Threshold Register (SIM_RTHR)
	28.3.9 SIM Enable Register (SIM_EN)
	28.3.10 SIM Transmit Status Register (SIM_TSR)
	28.3.11 SIM Receive Status Register (SIM_RSR)
	28.3.12 SIM Interrupt Mask Register (SIM_IMR)
	28.3.13 SIM Data Format Register (SIM_FORMAT)
	28.3.14 SIM Transmit Threshold Register (SIM_TTHR)
	28.3.15 SIM Transmit Guard Control Register (SIM_TGCR)
	28.3.16 SIM Open Drain Configuration Control Register (SIM_ODCR)
	28.3.17 SIM Reset Control Register (SIM_RCR)
	28.3.18 SIM Character Wait Time Register (SIM_CWTR)
	28.3.19 SIM General Purpose Counter Register (SIM_GPCNT)
	28.3.20 SIM Divisor Register (SIM_DIV)
	28.3.21 SIM Block Wait Time Low Register (SIM_BWTL)
	28.3.22 SIM Block Guard Time Register (SIM_BGT)
	28.3.23 SIM Block Wait Time High Register (SIM_BWTH)
	28.3.24 SIM Transmit FIFO Status Register (SIM_TFSR)
	28.3.25 SIM Receive FIFO Counter Register (SIM_RFCR)
	28.3.26 SIM Receive FIFO Write Pointer Register (SIM_RFWP)
	28.3.27 SIM Receive FIFO Read Pointer Register (SIM_RFRP)

	28.4 Functional Description
	28.4.1 SIM Clock Generator
	28.4.1.1 Baud Clock Generation
	28.4.1.2 Transmitter Clock Generation
	28.4.1.3 Receiver Clock Generation
	28.4.1.4 Port Control Clock Generation
	28.4.1.5 Low Power Mode Clock Control

	28.4.2 SIM Transmitter
	28.4.2.1 Transmit State Machine
	28.4.2.2 Transmit Shift Register
	28.4.2.3 Transmit FIFO
	28.4.2.4 Transmit Guard Time Generator
	28.4.2.5 Transmit NACK Generator
	28.4.2.6 Transmit Data Convention Logic

	28.4.3 SIM Receiver
	28.4.3.1 Receive State Machine
	28.4.3.2 Data Sampling/Voting
	28.4.3.3 Start Bit Detection
	28.4.3.4 Parity Error Detection
	28.4.3.5 Framing Error Detection
	28.4.3.6 NACK Detection
	28.4.3.7 Initial Character Detection
	28.4.3.8 Receive FIFO
	28.4.3.9 Overrun Detection
	28.4.3.10 Character Wait Time Counter

	28.4.4 SIM Port Control
	28.4.4.1 SIM Card Interface
	28.4.4.2 SIM Card Presence Detect
	28.4.4.3 SIM Card Automatic Power Down

	28.4.5 SIM General Purpose Counter
	28.4.6 SIM LRC Block
	28.4.7 SIM CRC Block
	28.4.8 Module Interrupts

	28.5 Initialization/Application Information
	28.5.1 Configuring SIM for Operation
	28.5.1.1 Configuring SIM Receive
	28.5.1.2 Configuring SIM Transmitter
	28.5.1.3 Configuring SIM General Purpose Counter
	28.5.1.4 Configuring SIM to Measure WWT (Work Wait Time) for Type=0 Smart Cards
	28.5.1.5 Configuring SIM to measure CWT, BWT, BGT for Type=1 Smart Cards
	28.5.1.6 Configuring SIM Linear Redundancy Check (LRC) Block
	28.5.1.7 Configuring SIM Cyclic Redundancy Check (CRC) Block

	28.5.2 Using SIM Receiver
	28.5.2.1 Receive Parity Errors and Parity NACK Generation
	28.5.2.2 Receive Frame Errors
	28.5.2.3 Receive Overrun Errors and Overrun NACK Generation
	28.5.2.4 Initial Character Mode and Resulting Receive Data Formats
	28.5.2.5 Initial Character Mode Programming Notes
	28.5.2.6 Automatic Receiver Mode
	28.5.2.7 Using the SIM Receiver with T=1 SIM Cards

	28.5.3 Using SIM Transmitter
	28.5.3.1 Transmit Data Formats
	28.5.3.2 Transmit NACK
	28.5.3.3 Transmit Guard Time
	28.5.3.4 Using the SIM Transmitter with T=1 SIM Cards

	28.5.4 Suggested Programming Model
	28.5.4.1 Detecting Answer To Reset (ATR)
	28.5.4.2 Programming Considerations for Geldkarte Cards
	28.5.4.3 Programming Considerations for T=0 SIM Cards
	28.5.4.4 Programming Considerations for T=1 SIM Cards



	Chapter 29 Analog Digital Converter (ADC)
	29.1 Introduction
	29.1.1 Features

	29.2 Block Diagram
	29.3 External Signal Description
	29.4 Memory Map/Register Definition
	29.4.1 ADC Control Register 1 (ADC_CR1)
	29.4.2 ADC Control Register 2 (ADC_CR2)
	29.4.3 ADC Zero Crossing Control Register (ADC_ZCCR)
	29.4.4 Channel List n Registers (ADC_LST1–2)
	29.4.5 Sample Disable Register (ADC_ SDIS)
	29.4.6 Status Register (ADC_SR)
	29.4.7 Limit Status (ADC_LSR) Register
	29.4.8 Zero Crossing Status Register (ADC_ZCSR)
	29.4.9 ADC Result Registers (ADC_RSLT0–7)
	29.4.10 Low and High Limit Registers (ADC_LLMT0–7 & ADCHLMT0–7)
	29.4.11 Offset Registers (ADC_OFS0–7)
	29.4.12 Power Control Register (ADC_PWR)
	29.4.13 Calibration Register (ADC_CAL)
	29.4.14 Power Control Register 2 (ADC_PWR2)
	29.4.15 Conversion Divisor Register (ADC_DIV)
	29.4.16 Auto-Standby Divisor Register (ADC_ASDIV)

	29.5 Functional Description
	29.5.1 Scan Modes
	29.5.2 Input Mux Function
	29.5.3 ADC Sample Conversion Modes of Operation
	29.5.3.1 Normal Mode Operation
	29.5.3.1.1 Single-Ended Samples
	29.5.3.1.2 Differential Samples


	29.5.4 ADC Data Processing
	29.5.5 Sequential vs. Parallel Sampling
	29.5.6 Scan Sequencing
	29.5.7 Power Management
	29.5.7.1 Manual Power Down of Unused Converters
	29.5.7.2 Normal Power Mode
	29.5.7.3 Auto Standby Mode
	29.5.7.4 Auto Power Down Mode
	29.5.7.5 Standby Mode
	29.5.7.6 Power Down Mode

	29.5.8 Power Management Details
	29.5.8.1 Stop Mode Operation

	29.5.9 Clock Operation
	29.5.10 Voltage Reference Pins VREFH & VREFLO
	29.5.11 Supply Pins VDDA and VSSA
	29.5.12 Interrupt Operation


	Chapter 30 Digital-to-Analog Converter (DAC)
	30.1 Introduction
	30.1.1 Features
	30.1.2 Block Diagram

	30.2 External Signal Descriptions
	30.3 Memory Map/Register Definition
	30.3.1 DAC Control Register (DACn_CR)
	30.3.2 Buffered Data Register (DACn_DATA)
	30.3.3 Step Size Register (DACn_STEP)
	30.3.4 Minimum Value Register (DACn_MIN)
	30.3.5 Maximum Value Register (DACn_MAX)
	30.3.6 Status Register (DACn_SR)
	30.3.7 Filter Count Register (DACn_FILTCNT)

	30.4 Functional Description
	30.4.1 Normal Mode
	30.4.2 Automatic Mode
	30.4.3 Sources of Waveform Distortion
	30.4.3.1 Switching Glitches
	30.4.3.2 Slew Effects
	30.4.3.3 Clipping Effects (Auto Mode Only)


	30.5 Initialization/Application Information

	Chapter 31 10/100Mbps Ethernet MAC-NET Core
	31.1 Introduction
	31.1.1 Overview
	31.1.2 Features
	31.1.2.1 Ethernet MAC Features
	31.1.2.2 IP Protocol Performance Optimization Features
	31.1.2.3 IEEE 1588 Functions

	31.1.3 Block Diagram

	31.2 External Signal Description
	31.3 Memory Map/Register Definition
	31.3.1 Interrupt Event Register (ENETn_EIR)
	31.3.2 Interrupt Mask Register (ENETn_EIMR)
	31.3.3 Receive Descriptor Active Registers (ENETn_RDAR)
	31.3.4 Transmit Descriptor Active Registers (ENETn_TDAR)
	31.3.5 Ethernet Control Register (ENETn_ECR)
	31.3.6 MII Management Frame Register (ENETn_MMFR)
	31.3.7 MII Speed Control Register (ENETn_MSCR)
	31.3.8 MIB Control Register (ENETn_MIBC)
	31.3.9 Receive Control Register (ENETn_RCR)
	31.3.10 Transmit Control Register (ENETn_TCR)
	31.3.11 Physical Address Lower Register (ENETn_PALR)
	31.3.12 Physical Address Upper Register (ENETn_PAUR)
	31.3.13 Opcode/Pause Duration Register (ENETn_OPD)
	31.3.14 Descriptor Individual Upper Address Register (ENETn_IAUR)
	31.3.15 Descriptor Individual Lower Address Register (ENETn_IALR)
	31.3.16 Descriptor Group Upper Address Register (ENETn_GAUR)
	31.3.17 Descriptor Group Lower Address Register (ENETn_GALR)
	31.3.18 Transmit FIFO Watermark Register (ENETn_TFWR)
	31.3.19 Receive Descriptor Ring Start Register (ENETn_RDSR)
	31.3.20 Transmit Buffer Descriptor Ring Start Register (ENETn_TDSR)
	31.3.21 Maximum Receive Buffer Size Register (ENETn_MRBR)
	31.3.22 Receive FIFO Section Full Threshold (ENETn_RSFL)
	31.3.23 Receive FIFO Section Empty Threshold (ENETn_RSEM)
	31.3.24 Receive FIFO Almost Empty Threshold (ENETn_RAEM)
	31.3.25 Receive FIFO Almost Full Threshold (ENETn_RAFL)
	31.3.26 Transmit FIFO Section Empty Threshold (ENETn_TSEM)
	31.3.27 Transmit FIFO Almost Empty Threshold (ENETn_TAEM)
	31.3.28 Transmit FIFO Almost Full Threshold (ENETn_TAFL)
	31.3.29 Transmit Inter-Packet Gap (ENETn_TIPG)
	31.3.30 Frame Truncation Length (ENETn_FTRL)
	31.3.31 Transmit Accelerator Function Configuration (ENETn_TACC)
	31.3.32 Receive Accelerator Function Configuration (ENETn_RACC)
	31.3.33 Timer Control Register (ENETn_ATCR)
	31.3.34 Timer Value Register (ENETn_ATVR)
	31.3.35 Timer Offset Register (ENETn_ATOFF)
	31.3.36 Timer Period Register (ENETn_ATPER)
	31.3.37 Timer Correction Register (ENETn_ATCOR)
	31.3.38 Time-Stamping Clock Period Register (ENETn_ATINC)
	31.3.39 Timestamp of Last Transmitted Frame (ENETn_ATSTMP)
	31.3.40 Supplemental MAC Address Lower Registers (ENETn_SMACLx)
	31.3.41 Supplemental MAC Address Upper Registers (ENETn_SMACUx)

	31.4 Functional Description
	31.4.1 Ethernet MAC Frame Formats
	31.4.1.1 Pause Frames
	31.4.1.2 Magic Packets

	31.4.2 IP and Higher Layers Frame Format
	31.4.2.1 Ethernet Types
	31.4.2.2 IPv4 Datagram Format
	31.4.2.3 IPv6 Datagram Format
	31.4.2.4 Internet Control Message Protocol (ICMP) Datagram Format
	31.4.2.5 User Datagram Protocol (UDP) Datagram Format
	31.4.2.6 TCP Datagram Format

	31.4.3 IEEE 1588 Message Formats
	31.4.3.1 Transport Encapsulation
	31.4.3.1.1 UDP/IP
	31.4.3.1.2 Native Ethernet (PTPv2)

	31.4.3.2 PTP Header
	31.4.3.2.1 PTPv1 Header
	31.4.3.2.2 PTPv2 Header


	31.4.4 MAC Receive
	31.4.4.1 Collision Detection in Half Duplex Mode
	31.4.4.2 Preamble Processing
	31.4.4.3 MAC Address Check
	31.4.4.3.1 Unicast Address Check
	31.4.4.3.2 Multicast and Unicast Address Resolution
	31.4.4.3.3 Broadcast Address Reject
	31.4.4.3.4 Miss-Bit Implementation

	31.4.4.4 Frame Length/Type Verification: Payload Length Check
	31.4.4.5 Frame Length/Type Verification: Frame Length Check
	31.4.4.6 VLAN Frames Processing
	31.4.4.7 Pause Frame Termination
	31.4.4.8 CRC Check
	31.4.4.9 Frame Padding Removal

	31.4.5 MAC Transmit
	31.4.5.1 Frame Payload Padding
	31.4.5.2 MAC Address Insertion
	31.4.5.3 CRC-32 generation
	31.4.5.4 Inter-Packet Gap
	31.4.5.5 Collision Detection and Handling—Half Duplex Operation Only

	31.4.6 Full Duplex Flow Control Operation
	31.4.6.1 Remote Device Congestion
	31.4.6.2 Local Device/FIFO Congestion

	31.4.7 Magic Packet Detection
	31.4.7.1 Sleep Mode
	31.4.7.2 Magic Packet Detection
	31.4.7.3 Wake-up

	31.4.8 IP Accelerator Functions
	31.4.8.1 Checksum Calculation
	31.4.8.2 Additional Padding Processing
	31.4.8.3 32-bit Ethernet Payload Alignment
	31.4.8.3.1 Receive Processing
	31.4.8.3.2 Transmit Processing

	31.4.8.4 Received Frame Discard
	31.4.8.5 IPv4 Fragments
	31.4.8.6 IPv6 Support
	31.4.8.6.1 Receive Processing
	31.4.8.6.2 Transmit Processing


	31.4.9 Resets and Stop Controls
	31.4.9.1 Hardware Reset
	31.4.9.2 Soft Reset
	31.4.9.3 Hardware Freeze
	31.4.9.4 Graceful Stop
	31.4.9.4.1 Graceful Transmit Stop (GTS)
	31.4.9.4.2 Graceful Receive Stop (GRS)
	31.4.9.4.3 Graceful Stop Interrupt (GRA)


	31.4.10 IEEE 1588 Functions
	31.4.10.1 Adjustable Timer Module
	31.4.10.1.1 Adjustable Timer Implementation

	31.4.10.2 Timer Synchronization for Multi-Port Implementations
	31.4.10.3 Transmit Timestamping
	31.4.10.4 Receive Timestamping
	31.4.10.5 Time Synchronization

	31.4.11 FIFO Thresholds
	31.4.11.1 Receive FIFO
	31.4.11.2 Transmit FIFO

	31.4.12 Loopback Options
	31.4.13 Legacy Buffer Descriptors
	31.4.13.1 Legacy Receive Buffer Descriptor
	31.4.13.2 Legacy Transmit Buffer Descriptor

	31.4.14 Enhanced Buffer Descriptors
	31.4.14.1 Enhanced Receive Buffer Descriptor
	31.4.14.2 Enhanced Transmit Buffer Descriptor

	31.4.15 Client FIFO Application Interface
	31.4.15.1 Data Structure Description
	31.4.15.2 Data Structure Examples
	31.4.15.3 Frame Status

	31.4.16 FIFO Protection
	31.4.16.1 Transmit FIFO Underflow
	31.4.16.2 Transmit FIFO Overflow
	31.4.16.3 Receive FIFO Overflow

	31.4.17 PHY Management Interface
	31.4.17.1 MDIO Frame Format
	31.4.17.2 MDIO Clock Generation
	31.4.17.3 MDIO Operation

	31.4.18 MII Interface
	31.4.18.1 MII Interface — Transmit
	31.4.18.1.1 Transmit with Collision — Half Duplex

	31.4.18.2 MII Interface — Receive



	Chapter 32 Ethernet Switch
	32.1 Introduction
	32.1.1 Block Diagram
	32.1.2 Features

	32.2 Modes of Operation
	32.2.1 Passthrough Mode
	32.2.2 Switch Mode
	32.2.2.1 Port 0 Input Buffer
	32.2.2.2 Port 0 Input Backpressure/Congestion Indication


	32.3 Memory Map/Register Definition
	32.3.1 Revision Register (ESW_REV)
	32.3.2 Scratch Register (ESW_SCR)
	32.3.3 Port Enable Register (ESW_PER)
	32.3.4 VLAN Verify (ESW_VLANV)
	32.3.5 Default Broadcast Resolution (ESW_DBCR)
	32.3.6 Default Multicast Resolution (ESW_DMCR)
	32.3.7 Blocking and Learning Enable (ESW_BKLR)
	32.3.8 Bridge Management Port Configuration (ESW_BMPC)
	32.3.9 Mode Configuration Register (ESW_MODE)
	32.3.10 VLAN Input Manipulation Select (ESW_VIMSEL)
	32.3.11 VLAN Output Manipulation Select (ESW_VOMSEL)
	32.3.12 VLAN input manipulation enable (ESW_VIMEN)
	32.3.13 VLAN Tag ID (ESW_VID)
	32.3.14 Mirror control register (ESW_MCR)
	32.3.15 Egress Port Definitions (ESW_EGMAP)
	32.3.16 Ingress Port Definitions (ESW_INGMAP)
	32.3.17 Ingress and Egress MAC Address Registers
	32.3.18 Mirror Count Value (ESW_MCVAL)
	32.3.19 Memory Manager Status Register (ESW_MMSR)
	32.3.20 Low Memory Threshold (ESW_LMT)
	32.3.21 Lowest Number of Free Cells (ESW_LFC)
	32.3.22 Port Congestion Status (ESW_PCSR)
	32.3.23 Input/Output Interface Status Register (ESW_IOSR)
	32.3.24 Queue Weights (ESW_QWT)
	32.3.25 Port 0 Backpressure Congestion Threshold (ESW_P0BCT)
	32.3.26 Port 0 Forced Forwarding Enable (ESW_FFEN)
	32.3.27 Port Snooping Registers (ESW_PSNP1–8)
	32.3.28 IP snooping registers (ESW_IPSNP1–8)
	32.3.29 Port 0–2 VLAN Priority Resolution Map (ESW_PnVRES)
	32.3.30 IPv4/v6 Priority Resolution Table (ESW_IPRES)
	32.3.31 Port n Priority Resolution Configuration (ESW_PnRES)
	32.3.32 Port n VLAN ID (ESW_PnID)
	32.3.33 VLAN Domain Resolution 0–31 (ESW_VRES0–31)
	32.3.34 Statistics Registers
	32.3.35 Port Statistics Registers
	32.3.36 Interrupt Status Register (ESW_ISR)
	32.3.37 Interrupt Mask Register (ESW_IMR)
	32.3.38 Receive Descriptor Ring Pointer (ESW_RDSR)
	32.3.39 Transmit Descriptor Ring Pointer (ESW_TDSR)
	32.3.40 Maximum receive buffer size (ESW_MRBR)
	32.3.41 Receive Descriptor Active Register (ESW_RDAR)
	32.3.42 Transmit Descriptor Active Register (ESW_TDAR)
	32.3.43 Learning Record Registers (ESW_LREC0 and ESW_LREC1)
	32.3.44 Learning Data Status Register (ESW_LSR)
	32.3.45 Look-up Memory Table

	32.4 Functional Description
	32.4.1 VLAN Input Processing Function
	32.4.1.1 Terms and Definitions
	32.4.1.2 Configuration Information
	32.4.1.3 Modes of Operation
	32.4.1.3.1 Frame Processing
	32.4.1.3.2 Mode 1 — Single Tagging with Passthrough
	32.4.1.3.3 Mode 2 — Single Tagging with Replace
	32.4.1.3.4 Mode 3 — Double Tagging with Passthrough
	32.4.1.3.5 Mode 4 — Double Tagging with Replace


	32.4.2 IP Snooping
	32.4.3 TCP/UDP Port Number Snooping
	32.4.4 VLAN Output Processing Function
	32.4.4.1 Configuration Information
	32.4.4.1.1 Mode 0 — Disabled
	32.4.4.1.2 Mode 1 — Strip Mode
	32.4.4.1.3 Mode 2 — Tag Through Mode
	32.4.4.1.4 Mode 3 — Transparent Mode


	32.4.5 Frame Classification and Priority Resolution
	32.4.5.1 VLAN Priority Look-Up
	32.4.5.2 IPv4 and IPv6 Priority Look Up
	32.4.5.2.1 Classification Table Programming Model

	32.4.5.3 Priority Resolution
	32.4.5.4 Bridge Control Protocol Identification

	32.4.6 Input Port Selection
	32.4.7 Layer 2 Look-Up Engine
	32.4.7.1 Hash Code
	32.4.7.2 Address Memory

	32.4.8 Layer 2 Lookup Tasks Overview
	32.4.8.1 MAC Address Lookup
	32.4.8.2 Forced Forwarding
	32.4.8.3 Learning
	32.4.8.3.1 Learning Interface

	32.4.8.4 Migration
	32.4.8.5 Aging

	32.4.9 Frame-Forwarding Tasks
	32.4.9.1 VLAN Domain Verification
	32.4.9.2 Broadcast/Multicast/VLAN Domain Resolution
	32.4.9.2.1 VLAN Resolution Table
	32.4.9.2.2 VLAN Switching / Resolution Mechanism

	32.4.9.3 Port Mirroring
	32.4.9.4 Protocol Snooping
	32.4.9.5 Bridge Protocol Frame Resolution
	32.4.9.5.1 Input Port Blocking
	32.4.9.5.2 Input Port Learning Disable
	32.4.9.5.3 Management Port Forwarding
	32.4.9.5.4 Management Frame Forwarding

	32.4.9.6 Congestion Resolution
	32.4.9.6.1 Unique Destination (one input to one output)
	32.4.9.6.2 Multiple Destinations (Flooding)

	32.4.9.7 Switching

	32.4.10 Output Frame Queuing
	32.4.10.1 Cell and Queue Concept
	32.4.10.2 Write Control Module
	32.4.10.3 Cell Factory Module
	32.4.10.4 Output Queue Manager
	32.4.10.4.1 Weighted Fair Queuing Scheduling Algorithm

	32.4.10.5 Congestion Management

	32.4.11 Reset and Stop Functions
	32.4.11.1 Stop Controls
	32.4.11.2 Port Disable
	32.4.11.3 Port 0 Input Protection
	32.4.11.4 Port 1/2 Input Protection
	32.4.11.5 DMA Bus Error



	Chapter 33 FlexCAN
	33.1 Introduction
	33.1.1 Block Diagram
	33.1.1.1 The CAN System

	33.1.2 Features
	33.1.3 Modes of Operation
	33.1.3.1 Normal Mode
	33.1.3.2 Freeze Mode
	33.1.3.3 Module Disabled Mode
	33.1.3.4 Loop-back Mode
	33.1.3.5 Listen-only Mode


	33.2 External Signal Description
	33.3 Memory Map/Register Definition
	33.3.1 FlexCAN Configuration Register (CANMCRn)
	33.3.2 FlexCAN Control Register (CANCTRLn)
	33.3.3 FlexCAN Free Running Timer Register (TIMERn)
	33.3.4 Rx Mask Registers (RXGMASKn, RX14MASKn, RX15MASKn)
	33.3.5 FlexCAN Error Counter Register (ERRCNTn)
	33.3.6 FlexCAN Error and Status Register (ERRSTATn)
	33.3.7 Interrupt Mask Register (IMASKn)
	33.3.8 Interrupt Flag Register (IFLAGn)
	33.3.9 Message Buffer Structure
	33.3.10 Rx FIFO Structure
	33.3.11 Rx Individual Masking Registers (RXIMR0–15)
	33.3.12 Functional Overview
	33.3.13 Transmit Process
	33.3.14 Arbitration Process
	33.3.15 Receive Process
	33.3.15.1 Self-Received Frames

	33.3.16 Matching Process
	33.3.17 Message Buffer Managing
	33.3.17.1 Transmission Abort Mechanism
	33.3.17.2 Message Buffer Deactivation
	33.3.17.3 Locking and Releasing Message Buffers

	33.3.18 Rx FIFO
	33.3.19 CAN Protocol Related Frames
	33.3.19.1 Remote Frames
	33.3.19.2 Overload Frames

	33.3.20 Time Stamp
	33.3.21 Protocol Timing
	33.3.22 Arbitration and Matching Timing

	33.4 Initialization/Application Information
	33.4.1 Interrupts
	33.4.2 Mask Misalignment for Rx FIFO
	33.4.2.1 Work Around



	Chapter 34 Motor Control Pulse-Width Modulator (mcPWM)
	34.1 Introduction
	34.1.1 Overview
	34.1.2 Block Diagram
	34.1.3 Features
	34.1.4 Modes of Operation

	34.2 External Signal Descriptions
	34.3 Memory Map/Register Description
	34.3.1 Counter Register (PWM_SMnCNT)
	34.3.2 Initial Count Register (PWM_SMnINIT)
	34.3.3 Control Register 2 (PWM_SMnCR2)
	34.3.4 Control Register 1 (PWM_SMnCR1)
	34.3.5 Value Registers (PWM_SMnVAL0–5)
	34.3.6 Output Control Register (PWM_SMnOCR)
	34.3.7 Status Register (PWM_SMnSR)
	34.3.8 Interrupt Enable Register (PWM_SMnIER)
	34.3.9 DMA Enable Register (PWM_SMnDMAEN)
	34.3.10 Output Trigger Control Register (PWM_SMnOTCR)
	34.3.11 Fault Disable Mapping Register (PWM_SMnDISMAP)
	34.3.12 Deadtime Count Registers (PWM_SMnDTCNTm)
	34.3.13 Capture Control Registers (PWM_SMnCCRx)
	34.3.14 Capture Compare Registers (PWM_SMnCCMPx)
	34.3.15 Capture Value Registers (PWM_SMnCVALm)
	34.3.16 Capture Value Cycle Registers (PWM_SMnCCYCm)
	34.3.17 Output Enable Register (PWM_OUTEN)
	34.3.18 Mask Register (PWM_MASK)
	34.3.19 Software-Controlled Output Register (PWM_SWCOUT)
	34.3.20 Deadtime Source Select Register (PWM_DTSS)
	34.3.21 Master Control Register (PWM_MCR)
	34.3.22 Fault Control Register (PWM_FCR)
	34.3.23 Fault Status Register (PWM_FSR)
	34.3.24 Fault Filter Register (PWM_FFILT)
	34.3.24.1 Input Filter Considerations


	34.4 Functional Description
	34.4.1 Center-Aligned PWMs
	34.4.2 Edge-Aligned PWMs
	34.4.3 Phase-Shifted PWMs
	34.4.4 Double-Switching PWMs
	34.4.5 ADC Triggering
	34.4.6 Enhanced Capture Capabilities (E-Capture)
	34.4.7 Synchronous Switching of Multiple Outputs
	34.4.8 Functional Details
	34.4.8.1 PWM Clocking
	34.4.8.2 Register Reload Logic
	34.4.8.3 Counter Synchronization
	34.4.8.3.1 Using the Local Sync for Counter Initialization
	34.4.8.3.2 Using the Master Sync for Counter Initialization
	34.4.8.3.3 Using the Master Reload for Counter Initialization
	34.4.8.3.4 Using PWM_SYNC for Counter Initialization
	34.4.8.3.5 Using FORCE_OUT for Counter Initialization

	34.4.8.4 Generation Hardware
	34.4.8.5 Output Compare Capabilities
	34.4.8.6 Force Out Logic
	34.4.8.7 Independent or Complementary Channel Operation
	34.4.8.8 Deadtime Insertion Logic
	34.4.8.8.1 Top/Bottom Correction
	34.4.8.8.2 Manual Correction

	34.4.8.9 Output Logic
	34.4.8.10 Enhanced Capture (E-Capture)
	34.4.8.11 Fault Protection
	34.4.8.11.1 Fault Pin Filter
	34.4.8.11.2 Automatic Fault Clearing
	34.4.8.11.3 Manual Fault Clearing
	34.4.8.11.4 Fault Testing


	34.4.9 PWM Generator Loading
	34.4.9.1 Load Enable
	34.4.9.2 Load Frequency
	34.4.9.3 Reload Flag
	34.4.9.4 Reload Errors


	34.5 Initialization/Application Information
	34.5.1 Interrupt Requests
	34.5.2 DMA Requests


	Chapter 35 Synchronous Serial Interface (SSI)
	35.1 Introduction
	35.1.1 Overview
	35.1.2 Features
	35.1.3 Modes of Operation

	35.2 External Signal Description
	35.2.1 SSI_CLKIN — SSI Clock Input
	35.2.2 SSIn_BCLK — Serial Bit Clock
	35.2.3 SSIn_MCLK — Serial Master Clock
	35.2.4 SSIn_FS — Serial Frame Sync
	35.2.5 SSIn_RXD — Serial Receive Data
	35.2.6 SSIn_TXD — Serial Transmit Data

	35.3 Memory Map/Register Definition
	35.3.1 SSI Transmit Data Registers 0 and 1 (SSIn_TX0/1)
	35.3.2 SSI Transmit FIFO 0 and 1 Registers
	35.3.3 SSI Transmit Shift Register (TXSR)
	35.3.4 SSI Receive Data Registers 0 and 1 (SSIn_RX0/1)
	35.3.5 SSI Receive FIFO 0 and 1 Registers
	35.3.6 SSI Receive Shift Register (RXSR)
	35.3.7 SSI Control Register (SSIn_CR)
	35.3.8 SSI Interrupt Status Register (SSIn_ISR)
	35.3.9 SSI Interrupt Enable Register (SSIn_IER)
	35.3.10 SSI Transmit Configuration Register (SSIn_TCR)
	35.3.11 SSI Receive Configuration Register (SSIn_RCR)
	35.3.12 SSI Clock Control Register (SSIn_CCR)
	35.3.13 SSI FIFO Control/Status Register (SSIn_FCSR)
	35.3.14 SSI AC97 Control Register (SSIn_ACR)
	35.3.15 SSI AC97 Command Address Register (SSIn_ACADD)
	35.3.16 SSI AC97 Command Data Register (SSIn_ACDAT)
	35.3.17 SSI AC97 Tag Register (SSIn_ATAG)
	35.3.18 SSI Transmit Time Slot Mask Register (SSIn_TMASK)
	35.3.19 SSI Receive Time Slot Mask Register (SSIn_RMASK)
	35.3.20 SSI AC97 Channel Status Register (SSI_ACCSR)
	n
	35.3.21 SSI AC97 Channel Enable Register (SSI_ACCEN)
	n
	35.3.22 SSI AC97 Channel Disable Register (SSI_ACCDIS)
	n

	35.4 Functional Description
	35.4.1 Detailed Operating Mode Descriptions
	35.4.1.1 Normal Mode
	35.4.1.1.1 Normal Mode Transmit
	35.4.1.1.2 Normal Mode Receive

	35.4.1.2 Network Mode
	35.4.1.2.1 Network Mode Transmit
	35.4.1.2.2 Network Mode Receive

	35.4.1.3 Gated Clock Mode
	35.4.1.4 I2S Mode
	35.4.1.4.1 I2S Master Mode
	35.4.1.4.2 I2S Slave Mode

	35.4.1.5 AC97 Mode
	35.4.1.5.1 AC97 Fixed Mode (SSIn_ACR[FV]=0)
	35.4.1.5.2 AC97 Variable Mode (SSIn_ACR[FV]=1)


	35.4.2 SSI Clocking
	35.4.2.1 SSI Clock and Frame Sync Generation
	35.4.2.2 DIV2, PSR and PM Bit Description

	35.4.3 External Frame and Clock Operation
	35.4.4 Supported Data Alignment Formats
	35.4.5 Receive Interrupt Enable Bit Description
	35.4.6 Transmit Interrupt Enable Bit Description
	35.4.7 Internal Frame and Clock Shutdown

	35.5 Initialization/Application Information

	Chapter 36 1-Wire Module
	36.1 Overview
	36.1.1 Block Diagram
	36.1.2 Features
	36.1.3 Modes of Operation

	36.2 External Signals
	36.3 Memory Map/Register Definition
	36.3.1 Control Register (OW_CR)
	36.3.2 Time Divider Register (OW_DIV)
	36.3.3 Reset Register (OW_RST)
	36.3.4 Command Register (OW_CMD)
	36.3.5 Transmit/Receive Register (OW_TXRX)
	36.3.6 Interrupt Register (OW_ISR)
	36.3.7 Interrupt Enable Register (OW_IER)

	36.4 Functional Description
	36.4.1 Normal Operating Modes
	36.4.1.1 Reset/Presence-Detect Pulse
	36.4.1.2 Bit Transfers
	36.4.1.2.1 Write-0 Sequence
	36.4.1.2.2 Write-1 / Read Sequence

	36.4.1.3 Byte Transfers
	36.4.1.4 Search ROM Accelerator Mode

	36.4.2 Low Power Mode
	36.4.3 Clocks
	36.4.3.1 Hardware Reset
	36.4.3.2 Software Reset

	36.4.4 Interrupts


	Chapter 37 Robust Real Time Clock
	37.1 Introduction
	37.2 Overview
	37.2.1 Block Diagram
	37.2.2 Features

	37.3 External Signal Description
	37.4 Memory Map/Register Definition
	37.4.1 RTC Year & Month Counter Register (RTC_YEARMON)
	37.4.2 RTC Day & Day-of-Week Counters Register (RTC_DAYS)
	37.4.3 RTC Hour and Minute Counter Register (RTC_HOURMIN)
	37.4.4 RTC Second Counter Register (RTC_SECONDS)
	37.4.5 RTC Year & Month Alarm Register (RTC_ALM_YRMON)
	37.4.6 RTC Days Alarm Register (RTC_ALM_DAYS)
	37.4.7 RTC Hours and Minutes Alarm Register (RTC_ALM_HM)
	37.4.8 RTC Seconds Alarm Register (RTC_ALM_SEC)
	37.4.9 RTC Control Register (RTC_CR)
	37.4.10 RTC Status Register (RTC_SR)
	37.4.11 RTC Interrupt Status Register (RTC_ISR)
	37.4.12 RTC Interrupt Enable Register (RTC_IER)
	37.4.13 RTC Countdown Timer Register (RTC_COUNT_DN)
	37.4.14 RTC Configuration Data Register (RTC_CFG_DATA)
	37.4.15 RTC Daylight Saving Time Hour Register (RTC_DST_HOUR)
	37.4.16 RTC Daylight Saving Time Month Register (RTC_DST_MON)
	37.4.17 RTC Daylight Saving Time Day Register (RTC_DST_DAY)
	37.4.18 RTC Compensation Register (RTC_COMPEN)
	37.4.19 RTC Up-Counter High Register (RTC_UP_CNTRH)
	37.4.20 RTC Up-Counter Low Register (RTC_UP_CNTRL)

	37.5 Functional Description
	37.5.1 Basic Data Flow
	37.5.1.1 Configuration
	37.5.1.2 Normal Operation
	37.5.1.3 Standby Operation
	37.5.1.4 Calibration


	37.6 Initialization/Application Information
	37.6.1 Compensation
	37.6.1.1 Compensation Flow
	37.6.1.2 Compensation Logic Hardware:
	37.6.1.3 Recommendation for Optimal Compensation

	37.6.2 Write Protection
	37.6.2.1 Write Protection Flow



	Chapter 38 Programmable Interrupt Timers (PIT0–PIT3)
	38.1 Introduction
	38.1.1 Overview
	38.1.2 Block Diagram
	38.1.3 Low-Power Mode Operation

	38.2 Memory Map/Register Definition
	38.2.1 PIT Control and Status Register (PCSRn)
	38.2.2 PIT Modulus Register (PMRn)
	38.2.3 PIT Count Register (PCNTRn)

	38.3 Functional Description
	38.3.1 Set-and-Forget Timer Operation
	38.3.2 Free-Running Timer Operation
	38.3.3 Timeout Specifications
	38.3.4 Interrupt Operation


	Chapter 39 DMA Timers (DTIM0–DTIM3)
	39.1 Introduction
	39.1.1 Overview
	39.1.2 Features

	39.2 Memory Map/Register Definition
	39.2.1 DMA Timer Mode Registers (DTMRn)
	39.2.2 DMA Timer Extended Mode Registers (DTXMRn)
	39.2.3 DMA Timer Event Registers (DTERn)
	39.2.4 DMA Timer Reference Registers (DTRRn)
	39.2.5 DMA Timer Capture Registers (DTCRn)
	39.2.6 DMA Timer Counters (DTCNn)

	39.3 Functional Description
	39.3.1 Prescaler
	39.3.2 Capture Mode
	39.3.3 Reference Compare
	39.3.4 Output Mode
	39.3.5 Programmable Delay Mode
	39.3.6 IEEE 1588 Support

	39.4 Initialization/Application Information
	39.4.1 Code Example
	39.4.2 Calculating Time-Out Values


	Chapter 40 DMA Serial Peripheral Interface (DSPI)
	40.1 Introduction
	40.1.1 Block Diagram
	40.1.2 Overview
	40.1.3 Features
	40.1.4 Modes of Operation
	40.1.4.1 Master Mode
	40.1.4.2 Slave Mode
	40.1.4.3 Module Disable Mode
	40.1.4.4 Debug Mode


	40.2 External Signal Description
	40.2.1 Signal Overview
	40.2.2 Peripheral Chip Select/Slave Select (DSPIx_PCS0/SS)
	40.2.3 Peripheral Chip Selects 1–3 (DSPIx_PCS[1:3])
	40.2.4 Serial Input (DSPIx_SIN)
	40.2.5 Serial Output (DSPIx_SOUT)
	40.2.6 Serial Clock (DSPIx_SCK)

	40.3 Memory Map/Register Definition
	40.3.1 DSPI Module Configuration Register (DSPI_MCR)
	40.3.2 DSPI Transfer Count Register (DSPIx_TCR)
	40.3.3 DSPI Clock and Transfer Attributes Registers 0–7 (DSPIx_CTARn)
	40.3.4 DSPI Status Register (DSPIx_SR)
	40.3.5 DSPI DMA/Interrupt Request Select and Enable Register (DSPIx_RSER)
	40.3.6 DSPI Push Transmit FIFO Register (DSPIx_PUSHR)
	40.3.7 DSPI Pop Receive FIFO Register (DSPIx_POPR)
	40.3.8 DSPI Transmit FIFO Registers 0–15 (DSPIx_TXFRn)
	40.3.9 DSPI Receive FIFO Registers 0–15 (DSPIx_RXFRn)

	40.4 Functional Description
	40.4.1 Start and Stop of DSPI Transfers
	40.4.2 Serial Peripheral Interface (SPI) Configuration
	40.4.2.1 Master Mode
	40.4.2.2 Slave Mode
	40.4.2.3 FIFO Disable Operation
	40.4.2.4 TX FIFO Buffering Mechanism
	40.4.2.4.1 Filling the TX FIFO
	40.4.2.4.2 Draining the TX FIFO

	40.4.2.5 RX FIFO Buffering Mechanism
	40.4.2.5.1 Filling the RX FIFO
	40.4.2.5.2 Draining the RX FIFO


	40.4.3 DSPI Baud Rate and Clock Delay Generation
	40.4.3.1 Baud Rate Generator
	40.4.3.2 PCS to SCK Delay (tCSC)
	40.4.3.3 After SCK Delay (tASC)
	40.4.3.4 Delay after Transfer (tDT)

	40.4.4 Transfer Formats
	40.4.4.1 Classic SPI Transfer Format (CPHA = 0)
	40.4.4.2 Classic SPI Transfer Format (CPHA = 1)
	40.4.4.3 Modified SPI Transfer Format (MTFE = 1, CPHA = 0)
	40.4.4.4 Modified SPI Transfer Format (MTFE = 1, CPHA = 1)
	40.4.4.5 Continuous Selection Format
	40.4.4.6 Clock Polarity Switching between DSPI Transfers

	40.4.5 Continuous Serial Communications Clock
	40.4.6 Interrupts/DMA Requests
	40.4.6.1 End of Queue Interrupt Request (EOQF)
	40.4.6.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)
	40.4.6.3 Transfer Complete Interrupt Request (TCF)
	40.4.6.4 Transmit FIFO Underflow Interrupt Request (TFUF)
	40.4.6.5 Receive FIFO Drain Interrupt or DMA Request (RFDF)
	40.4.6.6 Receive FIFO Overflow Interrupt Request (RFOF)
	40.4.6.7 FIFO Overrun Request (TFUF) or (RFOF)

	40.4.7 Power Saving Features
	40.4.7.1 Module Disable Mode
	40.4.7.2 Slave Interface Signal Gating


	40.5 Initialization/Application Information
	40.5.1 How to Change Queues
	40.5.2 Switching Master and Slave Mode
	40.5.3 Baud Rate Settings
	40.5.4 Delay Settings
	40.5.5 Calculation of FIFO Pointer Addresses
	40.5.5.1 Address Calculation for the First-in and Last-in Entries in the TX FIFO
	40.5.5.2 Address Calculation for the First-in and Last-in Entries in the RX FIFO



	Chapter 41 UART Modules
	41.1 Introduction
	41.1.1 Overview
	41.1.2 Features

	41.2 External Signal Description
	41.3 Memory Map/Register Definition
	41.3.1 UART Mode Registers 1 (UMR1n)
	41.3.2 UART Mode Register 2 (UMR2n)
	41.3.3 UART Status Registers (USRn)
	41.3.4 UART Clock Select Registers (UCSRn)
	41.3.5 UART Command Registers (UCRn)
	41.3.6 UART Receive Buffers (URBn)
	41.3.7 UART Transmit Buffers (UTBn)
	41.3.8 UART Input Port Change Registers (UIPCRn)
	41.3.9 UART Auxiliary Control Register (UACRn)
	41.3.10 UART Interrupt Status/Mask Registers (UISRn/UIMRn)
	41.3.11 UART Baud Rate Generator Registers (UBG1n/UBG2n)
	41.3.12 UART Input Port Register (UIPn)
	41.3.13 UART Output Port Command Registers (UOP1n/UOP0n)

	41.4 Functional Description
	41.4.1 Transmitter/Receiver Clock Source
	41.4.1.1 Programmable Divider
	41.4.1.2 Calculating Baud Rates
	41.4.1.2.1 Internal Bus Clock Baud Rates
	41.4.1.2.2 External Clock


	41.4.2 Transmitter and Receiver Operating Modes
	41.4.2.1 Transmitter
	41.4.2.2 Receiver
	41.4.2.3 FIFO

	41.4.3 Looping Modes
	41.4.3.1 Automatic Echo Mode
	41.4.3.2 Local Loopback Mode
	41.4.3.3 Remote Loopback Mode

	41.4.4 Multidrop Mode
	41.4.5 Single-Wire Mode with Polarity Control
	41.4.6 Bus Operation
	41.4.6.1 Read Cycles
	41.4.6.2 Write Cycles


	41.5 Initialization/Application Information
	41.5.1 Interrupt and DMA Request Initialization
	41.5.1.1 Setting up the UART to Generate Core Interrupts
	41.5.1.2 Setting up the UART to Request DMA Service

	41.5.2 UART Module Initialization Sequence


	Chapter 42 I2C Interface
	42.1 Introduction
	42.1.1 Block Diagram
	42.1.2 Overview
	42.1.3 Features

	42.2 Memory Map/Register Definition
	42.2.1 I2C Address Register (I2ADRn)
	42.2.2 I2C Frequency Divider Register (I2FDRn)
	42.2.3 I2C Control Register (I2CRn)
	42.2.4 I2C Status Register (I2SRn)
	42.2.5 I2C Data I/O Register (I2DRn)

	42.3 Functional Description
	42.3.1 START Signal
	42.3.2 Slave Address Transmission
	42.3.3 Data Transfer
	42.3.4 Acknowledge
	42.3.5 STOP Signal
	42.3.6 Repeated START
	42.3.7 Clock Synchronization and Arbitration
	42.3.8 Handshaking and Clock Stretching

	42.4 Initialization/Application Information
	42.4.1 Initialization Sequence
	42.4.2 Generation of START
	42.4.3 Post-Transfer Software Response
	42.4.4 Generation of STOP
	42.4.5 Generation of Repeated START
	42.4.6 Slave Mode
	42.4.7 Arbitration Lost


	Chapter 43 Debug Module
	43.1 Introduction
	43.1.1 Block Diagram
	43.1.2 Overview

	43.2 Signal Descriptions
	43.2.1 Processor Status/Debug Data (PSTDDATA[7:0])

	43.3 Memory Map/Register Definition
	43.3.1 Shared Debug Resources
	43.3.2 Configuration/Status Register (CSR)
	43.3.3 Extended Configuration/Status Register (XCSR)
	43.3.4 Configuration/Status Register 2 (CSR2)
	43.3.5 BDM Address Attribute Register (BAAR)
	43.3.6 Address Attribute Trigger Registers (AATR, AATR1)
	43.3.7 Trigger Definition Register (TDR)
	43.3.8 Program Counter Breakpoint/Mask Registers (PBR0–3, PBMR)
	43.3.9 PC Breakpoint ASID Control Register (PBAC)
	43.3.10 Address Breakpoint Registers (ABLR/ABLR1, ABHR/ABHR1)
	43.3.11 Data Breakpoint and Mask Registers (DBR/DBR1, DBMR/DBMR1)
	43.3.12 PC Breakpoint ASID Register (PBASID)
	43.3.13 Extended Trigger Definition Register (XTDR)
	43.3.13.1 Resulting Set of Possible Trigger Combinations

	43.3.14 PST Trace Buffer Longwords (TBLW0–23)
	43.3.15 Most Recently Sampled PC (PCRS)

	43.4 Functional Description
	43.4.1 Background Debug Mode (BDM)
	43.4.1.1 CPU Halt
	43.4.1.2 BDM Serial Interface
	43.4.1.3 Receive Packet Format
	43.4.1.3.1 Transmit Packet Format
	43.4.1.3.2 BDM Command Format
	43.4.1.3.3 Extension Words as Required

	43.4.1.4 Command Sequence Diagrams
	43.4.1.5 BDM Command Set
	43.4.1.5.1 Read A/D Register (rareg/rdreg)
	43.4.1.5.2 Write A/D Register (wareg/wdreg)
	43.4.1.5.3 Read Memory Location (read)
	43.4.1.5.4 Write Memory Location (write)
	43.4.1.5.5 Dump Memory Block (dump)
	43.4.1.5.6 Fill Memory Block (fill)
	43.4.1.5.7 Resume Execution (go)
	43.4.1.5.8 No Operation (nop)
	43.4.1.5.9 Synchronize PC to the PSTDDATA Lines (sync_pc)
	43.4.1.5.10 Force Transfer Acknowledge (force_ta)
	43.4.1.5.11 Read Control Register (rcreg)
	43.4.1.5.12 BDM Accesses of the Stack Pointer Registers (A7: SSP and USP)
	43.4.1.5.13 BDM Accesses of the EMAC Registers
	43.4.1.5.14 Write Control Register (wcreg)
	43.4.1.5.15 Read Debug Module Register (rdmreg)
	43.4.1.5.16 Write Debug Module Register (wdmreg)


	43.4.2 Real-Time Debug Support
	43.4.2.1 Theory of Operation
	43.4.2.2 Emulator Mode

	43.4.3 Concurrent BDM and Processor Operation
	43.4.4 Real-Time Trace Support
	43.4.4.1 PST Trace Buffer
	43.4.4.2 Begin Execution of Taken Branch (PST = 0x5)
	43.4.4.3 Processor Stopped or Breakpoint State Change (PST = 0xE)
	43.4.4.4 Processor Halted (PST = 0xF)
	43.4.4.5 PST Buffer Example
	43.4.4.6 Code Profiling using PC Sync Hardware Feature

	43.4.5 Processor Status, Debug Data Definition
	43.4.5.1 User Instruction Set
	43.4.5.2 Supervisor Instruction Set

	43.4.6 NXP-Recommended BDM Pinout


	Chapter 44 IEEE 1149.1 Test Access Port (JTAG)
	44.1 Introduction
	44.1.1 Block Diagram
	44.1.2 Features
	44.1.3 Modes of Operation

	44.2 External Signal Description
	44.2.1 JTAG Enable (JTAG_EN)
	44.2.2 Test Clock Input (TCLK)
	44.2.3 Test Mode Select/Breakpoint (TMS/BKPT)
	44.2.4 Test Data Input/Development Serial Input (TDI/DSI)
	44.2.5 Test Reset/Development Serial Clock (TRST/DSCLK)
	44.2.6 Test Data Output/Development Serial Output (TDO/DSO)

	44.3 Memory Map/Register Definition
	44.3.1 Instruction Shift Register (IR)
	44.3.2 IDCODE Register
	44.3.3 Bypass Register
	44.3.4 TEST_CTRL Register
	44.3.5 Boundary Scan Register

	44.4 Functional Description
	44.4.1 JTAG Module
	44.4.2 TAP Controller
	44.4.3 JTAG Instructions
	44.4.3.1 IDCODE Instruction
	44.4.3.2 SAMPLE/PRELOAD Instruction
	44.4.3.3 SAMPLE Instruction
	44.4.3.4 EXTEST Instruction
	44.4.3.5 ENABLE_TEST_CTRL Instruction
	44.4.3.6 HIGHZ Instruction
	44.4.3.7 CLAMP Instruction
	44.4.3.8 BYPASS Instruction


	44.5 Initialization/Application Information
	44.5.1 Restrictions
	44.5.2 Nonscan Chain Operation


	Chapter 45 Revision History
	45.1 Changes Between Rev. 4 and Rev. 5


