
D O C - 0 3 6 7 - 0 1 0 , R E V . C

M5213EVB
 Development Board for Freescale MCF5213 MCU

Hardware User Manual

rxzb30
ForwardLine

rxzb30
copywithline

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
permissions

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

1

CONTENTS

CAUTIONARY NOTES .. 3

TERMINOLOGY ... 3

FEATURES ... 4

GETTING STARTED.. 5

SOFTWARE DEVELOPMENT... 5
REFERENCE DOCUMENTATION ... 5
M5213EVB STARTUP .. 6

M5213EVB HARDWARE CONFIGURATION AND OPTIONS... 6

MEMORY ... 6
POWER SUPPLY ... 7

Power Jack ... 7
TB1 Power connection ... 7
ON_OFF Switch... 7
FUSE – F1.. 7
3.3V_EN Option ... 8
3.3V Indicator .. 8
VDD and VRx Enable Options ... 8
VX_EN Option.. 9

RESET... 9
RESET Switch... 9
RESET Indicator .. 9

ABORT SWITCH .. 9
SW1 AND SW2 SWITCHES ... 9
LED[4:1] USER INDICATORS.. 9

LED_EN option .. 10
SYSTEM CLOCK... 10

CLOCK Option Chart .. 10
UART0_TERMINAL AND UART1 PORTS... 10

UART0_EN and UART1_EN Options .. 11
UART2_CAN PORT .. 11

COM_SEL Option .. 11
UART2_EN option.. 12
CAN Operation... 12
CAN_EN option.. 13

JP1 – I2C PULL-UP ENABLE ... 13
MC13192 ZIGBEE™ TRANSCEIVER .. 13

ZIGBEE_EN Option... 13
TX Power.. 14

M5213EVB I/O PORTS ... 14

BDM_PORT.. 14
BDM_EN Option .. 14
JP2 Option.. 15
BDM Port Connector ... 15

MCU_PORT.. 16

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

2

TROUBLESHOOTING.. 17

DBUG MONITOR OPERATION... 18

DBUG COMMUNICATION: .. 18
DBUG SYSTEM INITIALIZATION ... 18

Interrupt Service Support ... 18
DBUG MEMORY MAP .. 18
DBUG COMMANDS .. 19

dBUG Command Table .. 19

APPENDIX 1: DBUG COMMAND SET ... 21

ASM - ASSEMBLER... 21
BC - BLOCK COMPARE... 21
BF - BLOCK FILL.. 22
BM - BLOCK MOVE ... 23
BR - BREAKPOINTS .. 23
BS - BLOCK SEARCH .. 24
DC - DATA CONVERSION ... 25
DI - DISASSEMBLE ... 25
DL - DOWNLOAD CONSOLE ... 26
DLDBUG – DOWNLOAD DBUG (UPDATE).. 26
FL – FLASH LOAD OR ERASE ... 27
GO – EXECUTE USER CODE .. 27
GT - EXECUTE TO ADDRESS .. 28
IRD - INTERNAL REGISTER DISPLAY.. 28
IRM - INTERNAL REGISTER MODIFY.. 28
HELP - HELP ... 29
LR - LOOP READ .. 29
LW - LOOP WRITE ... 29
MD - MEMORY DISPLAY.. 30
MM - MEMORY MODIFY.. 30
MMAP - MEMORY MAP DISPLAY.. 31
RD - REGISTER DISPLAY.. 31
RM - REGISTER MODIFY.. 32
RESET - RESET THE BOARD AND DBUG... 32
SET - SET CONFIGURATIONS.. 33
SHOW - SHOW CONFIGURATIONS ... 33
STEP - STEP OVER... 34
SYMBOL - SYMBOL NAME MANAGEMENT .. 34
TRACE - TRACE INTO ... 35
VERSION - DISPLAY DBUG VERSION.. 35
TRAP #15 FUNCTIONS... 36

OUT_CHAR ... 36
IN_CHAR ... 36
CHAR_PRESENT... 37
EXIT_TO_dBUG .. 37

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

3

Cautionary Notes
1) Electrostatic Discharge (ESD) prevention measures should be applied whenever handling

this product. ESD damage is not a warranty repair item.

2) Axiom Manufacturing reserves the right to make changes without further notice to any
products to improve reliability, function or design. Axiom Manufacturing does not assume
any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under patent rights or the rights of others.

3) EMC Information on the M5213EVB board:

a) This device complies with Part 15 of the FCC Rules. Operation is subject to the following
two conditions:
1) This device may not cause harmful interference, and
2) This device must accept any interference received, including interference that may

cause undesired operation.

TX FCC ID# TFY0605AXM0367

b) Changes or modifications to this unit not expressly approved by Axiom Manufacturing,
could void the user’s authority to operate this equipment.

c) This product as shipped from the factory with associated power supplies and cables, has
been tested and meets with requirements of CE IT Equipment CLASS B product.

d) This product is designed and intended for use as a development platform for hardware or
software in an educational / professional laboratory.

e) In a domestic environment this product may cause radio interference in which case the
user may be required to take adequate prevention measures.

f) RF Exposure – This device exceeds the FCC requirements for RF exposure when the
antenna used for this transmitter has a separation distance of at least 20cm from all
persons and must not be co-located or operating in conjunction with any other antenna or
transmitter.

Terminology
This development board applies option selection jumpers. Terminology for application of the
option jumpers is as follows:

Jumper on, in, or installed = jumper is a plastic shunt that fits across 2 pins and the
shunt is installed so that the 2 pins are connected with the shunt.

Jumper off, out, or idle = jumper or shunt is installed so that only 1 pin holds the shunt,
no 2 pins are connected, or jumper is removed. It is recommended that the jumpers be
placed idle by installing on 1 pin so they will not be lost.

Signal names in this document that are followed by an asterisk (*) denote an active-low signal.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

4

FEATURES
M5213EVB is a low cost development system for the Freescale MCF5213 ColdFire®
microcontroller. Application development is quick and easy with the included DB9 serial cable
and dBUG firmware monitor. The BDM port is compatible with standard ColdFire BDM / JTAG
interface cables and hosting software, allowing easy application debugging and development
with a variety of hardware and software tools.

Features:
♦ MCF5213 CPU, 100 pin LQFP

* 256K Byte Flash (on-chip)
* 32K Byte SRAM (on-chip)
* DMA Controller w/ four 32-bit Timers
* Interrupt Controller
* 8 Channel 12-bit A/D
* QSPI, IIC, and CAN Serial Ports
* 3 UART Serial Ports with DMA capability
* Edge / Interrupt Port
* 8 PWM timers
* 4 16-bit GPT Timers
* BDM / JTAG Port
* Internal 8MHz Oscillator
* 3.3V operation

♦ 8MHz reference crystal
♦ MCU port, 60 pin I/O port
♦ BDM / JTAG Port, 26-pin development port
♦ UART0 / Terminal Port w/ RS232 DB9-S Connector
♦ UART1 Port w/ RS232 DB9-S Connector
♦ UART2 / CAN port w/ RS232 and 1Mbaud CAN

transceiver
♦ RESET switch and indicator
♦ ABORT (IRQ7) switch
♦ 4 User Indicators (LEDs)
♦ 2 User Push Switches
♦ 2.4GHz Zigbee™ capable RF Transceiver
♦ Regulated +3.3V power supply w/ indicator
♦ Supplied with DB9 Serial Cable, Wall Adapter Power supply, and P
 BDM interface cable.

Specifications:
Board Size 3.5” x 5.5”
Power Input: +5 - +25VDC, 9VDC typical
Current Consumption: 100ma typical @ 9VDC input

The M5213EVB is provided, operating the Freescale dBUG monitor
allows serial interface to a PC host for file loading and terminal comma
kit is plug in and play out of the box with a wall adapter power supply.
software development tools are available, but not required.

Freescale Semiconductor, Inc.
M5213EVB
&E

firmware. The monitor
nd line operations. The
Additional hardware and

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

5

GETTING STARTED
The M5213EVB single board computer is a fully assembled, fully functional development board
for the Freescale MCF5213 microcontroller. It is provided with a wall plug power supply, P&E
BDM interface cable, and a serial cable. Provided support software for this development board
is for Windows 95/98/NT/2000/XP operating systems.

Development board users should also be familiar with the hardware and software operation of
the target MCF5213 device. Refer to the microcontroller reference manual, MCF5213RM, for
details. The purpose of the development board is to assist the user in quickly developing an
application with a known working environment, to provide an evaluation platform, or as a
control module for an applied system. Users should be familiar with memory mapping,
memory types, and embedded software design for the quickest successful application
development.

Software Development
Application development maybe performed by applying the dBUG firmware monitor, or by
applying a compatible ColdFire BDM / JTAG cable with supporting host software. The monitor
provides an effective and low cost command line debug method.

Software development is best performed with a development tool connected to the BDM port.
This provides real-time access to all hardware, peripherals and memory on the board.
Development tool software also provides high-level (C/C++) source code debug environment.

The target development environment and procedure for best success is to place software to be
tested into RAM memory. Execute software to be tested under dBUG monitor or development
tool control. After the software is tested and operational in RAM, it can be ported and
programmed into Flash memory. However, note that programming a bootable application into
the internal Flash will overwrite the dBUG monitor. The monitor can be recovered by using a
BDM Flash programming tool along with the dBUG binaries provided on the MCF5213 website
(http://www.freescale.com/coldfire).

Reference Documentation
The following documents should be referenced when developing with the M5213EVB. These
documents are available on the MCF5213 and M5213EVB web pages
(http://www.freescale.com/coldfire).

M5213EVBUM – This user manual.
MCF5213RM – MCF5213 Device Reference Manual
CFPRM – ColdFire Programmers Reference Manual with instruction set
M5213EVB_SCH_C – M5213EVB board schematics

Freescale Semiconductor, Inc.

http://www.freescale.com/coldfire
http://www.freescale.com/coldfire

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

6

M5213EVB Startup
Follow these steps to connect and power on the board for the default dBUG monitor operation.

1) Carefully unpack the M5213EVB and observe ESD preventive measures while handling the
M5213EVB development board.

2) Configure a virtual terminal program (such as HyperTerminal or Tera Term) for a direct
connection to the PC COM port to be applied for serial communication with the M5213EVB.
Set the baud rate to 19.2K baud, 8 data bits, 1 stop bit, and no parity. Software XON /
XOFF flow control should be enabled for Flash memory support operations. Use the
AxIDE ‘√’ tool bar button to configure the COM port on the PC.

3) Connect the M5213EVB board UART0 / TERMINAL serial port connector to the host PC
COM port with the provided 9 pin serial cable.

4) Apply power to the development board by installing the wall plug power supply between a
wall outlet and the PWR Jack on the board. Set the ON / OFF switch to the ON position.
The board voltage indicators should turn on at this time.

5) Observe the terminal window display for the dBUG monitor prompt. The prompt should be
similar to the following:

External Reset

ColdFire MCF5213 on the M5213EVB
Firmware v4a.1b.1b (Built on May 13 2005 08:04:26)
Copyright 2005 Freescale Semiconductor, Inc.

Enter 'help' for help.

dBUG>

6) The board is ready to use now. See the dBUG monitor manual section for additional
monitor information. If BDM / JTAG development port interfaced tools are to be applied,
see the BDM PORT section of this manual for more details on installation.

M5213EVB Hardware Configuration and Options
The M5213EVB board provides a basic development or evaluation platform for the MCF5213
microcontroller. Following are descriptions of the main components and options provided on
the board.

MEMORY
The EVB memory is the internal MCF5213 device SRAM and Flash memory. The MCF5213
provides 32K bytes of SRAM and 256K bytes of Flash memory internally. The dBUG monitor
occupies the lower 80K bytes of the MCF5213 Flash memory and lower 8K bytes of the
SRAM. Refer to the dBUG memory map for default memory locations.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

7

POWER SUPPLY
Unregulated DC input power is applied by external connection to the Power Jack or TB1
terminal block. The ON _OFF switch controls the input supply. The EVB 3.3VDC regulator is
protected from reverse voltage by diode D7 and current limited by fuse F1.

Power Jack

The Power Jack provides the default power input to the board. The jack accepts a standard
2.0 ~ 2.1mm center barrel plug connector (positive voltage center) to provide the +VIN supply
of +5 to +25 VDC (+9VDC typical).

+Volts, 2mm center

TB1 Power connection

TB1 terminal block provides access to the +VIN and GND (power ground) supplies. The +VIN
supply should be limited to the range of +5 to +25 VDC (+9VDC typical).

ON_OFF Switch

The ON_OFF switch provides power On and Off control for the input power from the PWR
Jack or TB1. Switch ON position is towards the PWR jack and OFF position is towards the
TB1 connector.

FUSE – F1

Fuse F1 provides over current protection from PWR Jack or TB1 input to the EVB board. The
fuse will open if current over 500mA is sustained or reaches 1 Amp. To reset the fuse, turn the

TB1

 +VIN - GND

ON / OFF

OFF

ON

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

8

ON/OFF switch off or remove power for 10 minutes. Check for the cause of the over current
condition before applying power again.

3.3V_EN Option

Default enabled by circuit trace across the option jumper pin pads, this option allows disabling
the on board regulated 3.3VDC supply to the EVB board. Cut or idle this option to reduce
current consumption when an external 3.3VDC regulated input voltage is applied from the EVB
MCU PORT connector. See the VX_EN option also for more details on applying external
+3.3VDC on the MCU PORT.

To enable use of this option, cut the circuit trace between the mounting hole vias and install
1x2, 0.1”ctr, pin-header. A shunt must then be installed to enable this option.

3.3V Indicator

The 3.3V indicator will be ON if voltage is applied to EVB +3.3VDC main supply circuit. If EVB
is powered from the PWR jack or TB1 input, ON_OFF switch is ON, and +3.3V_EN is closed,
this indicator should be ON. If not, remove power or turn EVB Off and verify connections. If
the Fuse is suspect, see the F1 fuse section for reset procedure.

With the 3.3V_EN option open, the indicator will be ON if external 3.3VDC is applied via the
MCU Port. The VX_EN option jumper should also be installed.

VDD and VRx Enable Options

The EVB board provides many options to isolate power supplies to the different MCF5213
modules and core. All VDD and VRx options are installed by default. Do not operate the EVB
without the proper power supplied to all of the MCF5213 power supply pins. The following
table provides the VDD and VRx option information:

VDD and VRx Option Table
Option Name Supply Connection MCU Port Connection
VDD_EN +3.3V to MCF5213 VDD pins
VDD_PLL +3.3V to MCF5213 VDDPLL pin
VSTDBY +3.3V to MCF5213 VSTDBY pin, also MCU Port

connection
Pin 60

VDDA +3.3V to MCF5213 VDDA analog supply pin,
also MCU Port connection.

Pin 55

VRH VDDA supply to MCF5213 VRH analog
reference pin, also MCU Port

Pin 57

VRL VSSA (ground) to MCF5213 VRL analog
reference pin

VRL Pin 58, VSSA pin
56

VX_EN MCU Port pin 1 connection to +3.3V supply,
input or output. For input, see +3.3V_EN option
also.

Pin 1

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

9

VX_EN Option

The VX_EN option is provided to support external 3.3V input from the MCU PORT pin 1 in
conjunction with Freescale educational accessories. The VX_EN option installed provides
external 3.3V input (or output if wanted) on MCU Port pin1.

See the 3.3V_EN Option section above to disable the on-board regulator.

RESET
External reset is provided by the RESET switch, LV1 low voltage detector, or user applied
connection to the RSTI* signal on the MCU PORT pin 6. If the main 3.3V supply is below
operating level, the LV1 voltage detector will cause the MCF5213 to stay in the RESET
condition. Both the RESET switch and LV1 provide a 150ms delay after release for the system
to stabilize.

Application of RESET will cause the dBUG monitor or user application to initialize the
MCF5213. The previous operating state of the MCF5213 will be lost.

RESET Switch

RESET switch provides for manual application of the MCF5213 RSTI* signal. Reset switch
operation is provided a 150ms delay after release by LV1.

RESET Indicator

RESET indicator will be ON for the duration of a valid RSTO* signal. This operation indicates
the MCF5213 is in the Reset state.

ABORT Switch

The ABORT switch provides for manual application of the IRQ7 interrupt signal. This
operation will allow the dBUG monitor to stop execution of a user program and maintain the
CPU operating state for user examination.

SW1 and SW2 Switches

User switches 1 and 2 are available for application as needed. Both switches provide an
active low signal when pressed. SW1 applies the MCF5213 IRQ4 signal and SW2 applies the
MCF5213 IRQ5 signal.

LED[4:1] User Indicators
Four user indicators are provided for application on the MCF5213 DTIN[3:0] signals
(configurable as GPIO). Indicators are buffered so they do not load the MCF5213 I/O port.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

10

Indicator Table
INDICATOR COLOR OPERATION DEFAULT

CONDITION
LED1 Green MCF5213 DTIN0 status, high = ON ON
LED2 Green MCF5213 DTIN1 status, high = ON ON
LED3 Green MCF5213 DTIN2 status, high = ON ON
LED4 Green MCF5213 DTIN3 status, high = ON ON

LED_EN option

The user LED indicators LED[4:1] must be enabled by the LED_EN option installed.

SYSTEM CLOCK

The EVB provides a 8MHz crystal oscillator reference input in Pierce Mode configuration. The
MCF5213 also provides an internal 8MHz relaxation oscillator. The SMA connector position
and socket X1 position are for factory testing purposes only and should not be applied.

NOTE: Applying alternate clock inputs without express consent from Axiom Manufacturing
may void the user’s authority to operate this equipment.

CLOCK Option Chart

Clock Type Clock Mode CLK_SEL Option Setting
Source PLL CLK0 CLK1 1 2 3 4 5 6

Y1 (8MHz) ON Out / Idle Out / Idle In In Out NC NC NC
Y1 (8MHz) OFF Out / Idle In In In Out NC NC NC
INT OSC ON In Out / Idle Out Out In NC NC NC
INT OSC OFF In In Out Out In NC NC NC

Notes:
1) INT OSC is the internal MCF5213 8MHz relaxation oscillator.
2) CLK_SEL option has 2 option jumpers provided. For INT OSC selection idle one

jumper on one pin so it will not be lost.
3) CLK_SEL option positions 3-6 are for factory use only.

UART0_TERMINAL and UART1 Ports

The UART0_TERMINAL port provides the primary interface to the dBUG monitor with a default
baud rate of 19.2K baud, 8 data bits, 1 stop bit, and no parity. Both the UART0 and UART1
ports apply a standard 9-pin serial connector with RS232 type interface to the MCF5213
UART0 or UART1 serial ports. Both ports apply a UARTx_EN option jumper block to enable
the MCF5213 UART signals to operate the RS232 ports. A straight through DB9 Male /
Female type serial cable can be applied to connect the ports to a standard PC COM port.
Following is the DB9S connection reference.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

11

UART0_TERMINAL and UART1 Ports
1 1 X

TXD 2 6 6
RXD 3 7 7 CTS

4 4 8 8 RTS
GND 5 9 9

DB9 socket connector with RS232 signal levels.

1,4,6 connected for status null to host

UART0_EN and UART1_EN Options

OPTION
Name

UART0_EN
MCF5213 signal

applied

UART1_EN
MCF5213 signal

applied
TX UTXD0 output UTXD1 output
RX URXD0 input URXD1 input

RTS URTS0* output URTS1* output
CTS UCTS0* input UCTS1* input

UART2_CAN Port

The UART2_CAN port provides the UART2 RS232 serial port or the CAN network port.
Selection of the port interface type is provided by the COM_SEL option jumper block.
Additional options provide MCF5213 signal connection to the selected interface transceiver for
the port. The UART2_EN option block enables the MCF5213 UART2 signals for RS232
operation and the CAN_EN option block enables the MCF5213 CAN signals for CAN network
operation. The CAN port also has a network termination option, CAN_TERM and biasing
components RCAN1 and RCAN2 (not populated).

A straight through DB9 Male / Female type serial cable can be applied to connect the UART2
port in RS232 COM mode to a standard PC COM port. CAN mode connection will require the
cabling to be compatible to the network applied. Following is the DB9S connection reference:

UART2_CAN Port

CAN RS232 DB9 RS232 CAN
4, 6 tie 4, 6 tie 1 CAN Signal

CAN_LO TXD 2 6 1, 4 tie 1, 4 tie
GND RXD 3 7 7 CTS CAN_HI

1, 6 tie 1, 6 tie 4 8 8 RTS Do not connect
GND GND 5 9 X

DB9 socket connector.

1,4,6 connected for RS232
status null to host

COM_SEL Option

Selects UART2_CAN Port connector type of interface between UART2 RS232 operation and
CAN operation. All 3 positions should be set for the same selection, UART or CAN.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

12

Position UART option DB9 Connection CAN Option
1 CTS Pin 7 CAN_HI
2 RXD Pin 3 GND
3 TXD Pin 2 CAN_LO

UART2_EN option

UART2_EN applies the MCF5213 UART2 signals to the UART2 RS232 level transceiver for
operation on the UART2_CAN connector.

OPTION
Name

UART2_EN MCF5213 signal applied

TX UTXD2 output
RX URXD2 input

RTS URTS2* output
CTS UCTS2* input

CAN Operation

The MCF5213 FlexCAN signals CANRX and CANTX are the secondary operation of the
MCF5213 I2C serial port signals SDA and SCL. User must enable the CAN signal operation
on the MCF5213 I/O port during the FlexCAN initialization. The FlexCAN transmit and receive
signals are connected to the CAN transceiver with the CAN_EN option block. To apply I2C
function on these signals the CAN_EN options must be open or idle.

The CAN port provides the physical interface layer for the MCF5213 FlexCAN Controller Area
Network version 2.0B peripheral. The FlexCAN transmit and receive signals are connected to
a 3.3V CAN transceiver capable of 1M baud communication (SN65HVD230) with the CAN_EN
option block. Transceiver differential CAN network signals (CAN_HI and CAN_LO) are
provided to the COM_SEL option block for connection by the UART2_CAN port connector.

The CAN transceiver has CAN signal drive control via the RS test pad on the development
board. The RS signal is provided a 1K Ohm pull-down resistor for the maximum signal rate
setting. User may refer to the SN65HVD230 data sheet and apply additional transmit signal
control at the RS test pad.

Bias options RCAN1 and RCAN2 (SMT 0805 size, not populated) provide idle bias
connections for the CAN network if required by the user.

CAN_TERM

Installs a 62 ohm termination between the CAN_HI and CAN LO signals. Each end of a CAN
network must be terminated for proper operation.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

13

CAN_EN option

Enable MCF5213 CAN signals to the CAN transceiver with this option.

Position MCF5213
Signal

TX CANTX
RX CANRX

JP1 – I2C Pull-up Enable
This option jumper block provides the necessary 4.7K ohm pull-ups to +3.3V for the
MCF51213 I2C serial port signals. MCF5213 I2C primary serial port signals SDA and SCL
are multiplexed with the FlexCAN CANRX and CANTX signals, or secondary with the
QSPICS0 and QSPI_SCK signals. The JP1 jumper block provides for a pull-up for either set
of signals.

JP1
JP1

Position
MCF5213 Signal with Pull-up Applied

1 QSPI_SCK / I2C_SCL (I2C Secondary)
2 QSPI_CS0 / I2C_SDA (I2C Secondary)
3 CANTX / I2C_SCL (I2C Primary)
4 CANRX / I2C_SDA (I2C Primary)

MC13192 ZIGBEE™ TRANSCEIVER
MC13192 peripheral is operated by the M5213EVB SMAC software package, M5213TestApp.
The example software and documentation maybe downloaded from Freescale at
www.freescale.com/zigbee. The M5213TestApp is configured to provide power output at 0dB.

ZIGBEE_EN Option

This option jumper enables the interface signals between the MCF5213 microcontroller and
the MC13192 ZIGBEE capable transceiver. Following is the connection signal chart.

MCF5213 Signal MC13192 Signal
QSPI_DIN (Input) MISO
QSPI_DOUT (Output) MOSI
QSPI_SCLK (Output) SCLK
QSPI_CS2* (Output) CE*
Port_PQS4 (Output) RESET*
IRQ1* (Input) IRQ*
Port_PUB2
(Output)

RXTXEN

Port_PUB3
(Output)

ATTN*

IRQ2* (Input) GPIO1 / IDLE
IRQ3* (Input) GPIO2 / V_CRC

Freescale Semiconductor, Inc.

http://www.freescale.com/

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

14

TX Power

The SMAC software package provided sets output transmit power to nominal (0dB). Further,
the source code is clearly annotated to caution the user against increasing output power levels
above nominal (0dB).

Increasing output transmit power levels will cause the board to radiate excessively in violation
of FCC requirements. The user may decrease output power as needed or required by the
end-user application.

CAUTION: The user must not increase the power output above nominal (0dB)
for any reason, or at any time. Increasing power output will violate FCC approval
for board operation.

Z_CLKOUT TP

This test pad provides access to the MC13192 Clock output signal.

M5213EVB I/O Ports

BDM_PORT

The BDM PORT provides a standard ColdFire BDM / JTAG development port. The BDM_EN
option provides for the development port mode selection between BDM or JTAG. Option JP2
provides for a special JTAG mode port configuration that is applied to defeat the MCF5213
flash security (if enabled) for bulk erasing.

Development Cable Installation

BDM_EN Option

The BDM_EN option will select the development port mode at Reset.

Position Development Port
Mode

IN BDM Mode (Default)
OUT JTAG Mode

BDM Port
To Host PC

M5213EVB board Pin 1

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

15

JP2 Option

JP2 provides BDM port signal configuration option for BDM or Special JTAG mode. Special
JTAG mode is applied for tools to defeat the MCF5213 flash security.

Position BDM Port
Configuration

1-2 BDM Mode (Default)
2-3 Special JTAG

BDM Port Connector

1 2 BKPT*
GND 3 4 DSCLK
GND 5 6 TCLK (From CT1 option)

 RSTI* 7 8 DSI
+3.3V 9 10 DSO
GND 11 12 PST3

PST2 13 14 PST1
PST0 15 16 DDATA3

DDATA2 17 18 DDATA1
DDATA0 19 20 GND

21 22
GND 23 24 TCLK and CLKOUT Test Pad

+3.3V 25 26 TA* Test Pad

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

16

MCU_PORT
The MCU PORT provides user access to the MCF5213 I/O ports.

VX 1 2 IRQ1*
GND / VSS 3 4 RST0*

UTXD1 5 6 RSTI*
URXD1 7 8 IRQ2*
URTS1 9 10 AN0
UCTS1 11 12 AN1
PWM1 13 14 AN2
PWM3 15 16 AN3

QSPI_DOUT 17 18 AN4
QSPI_DIN 19 20 AN5

QSPI_SCK 21 22 AN6
QSPI_CS0 23 24 AN7
QSPI_CS1 25 26 CANTX
QSPI_CS2 27 28 CANRX
QSPI_CS3 29 30 PWM5

IRQ3* 31 32 PWM7
IRQ4* 33 34 DTIN0
IRQ5* 35 36 DTIN1
IRQ6* 37 38 DTIN2
IRQ7* 39 40 DTIN3

UTXD0 41 42 URTS0*
URXD0 43 44 UCTS0*
UTXD2 45 46 URTS2*
URXD2 47 48 UCTS2*

GPT0 49 50 GPT1
GPT2 51 52 GPT3

RCON* 53 54 GND
VDDA 55 56 VSSA

VRH 57 58 VRL
+3.3V 59 60 VSTDBY

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

17

TROUBLESHOOTING
The M5213EVB is fully tested and operational before shipping. If it fails to function properly,
inspect the board for obvious physical damage first. Verify the communications setup as
described under GETTING STARTED.

The most common problems are improperly configured options or communications
parameters.

1. Verify default option settings and RESET the board.

2. Make sure that the RSTI* line is not being held low or the RESET indicator is not on
constantly.

3. Verify that your COM communications port is working by substituting a known good serial
device or by doing a loop back diagnostic. if you applied a different baud rate with the
dBUG SET command, make sure the terminal software is set correctly.

4. Verify the power source, +3.3V, indicator is ON? You should measure a minimum of 9
volts between the GND and +V test pad and GND test pad near the power jack with the
standard power supply provided.

5. If no power indications or voltage is found, verify the wall plug connections to AC outlet
and the PWR jack power connector.

6. Disconnect all external connections to the board except for COM1 to the PC and the wall
plug and check operation again.

7. If applying a BDM or JTAG cable on the BDM Port, make sure the BDM_EN option is
properly set.

8. Ensure that the BKPT* line is not being asserted by an active BDM interface cable applied
to the BDM connector.

9. Contact support@axman.com by email for further assistance. Provide board name and
describe problem.

Freescale Semiconductor, Inc.

mailto:support@axman.com

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

18

 dBUG MONITOR OPERATION
dBUG is a firmware resident development environment operated by the ColdFire processor as
a primary control program. The monitor provides serial communication for loading and
controlling the execution of software under test. User should note that the monitor occupies
the first or lower address 80K bytes of the internal Flash memory. The monitor operates the
MCF5213 with Y1 as the default clock and an internal frequency of 80Mhz.

dBUG Communication:
Primary user interface to the dBUG monitor is by command lines that are entered into the
serial port. These commands are defined in the following table “dBUG Commands”. For serial
communications, dBUG requires eight data bits, no parity, and one stop bit, 8N1 with
XON/XOFF soft flow control. The default baud rate is 19200; however, this rate can be
changed by the user with a “set” command. The command line prompt is “dBUG> “. Any
dBUG command may be entered from this prompt. dBUG does not allow command lines to
exceed 80 characters. Wherever possible, dBUG displays data in 80 columns or less. dBUG
echoes each character as it is typed, eliminating the need for any “local echo” on the terminal
side. In general, dBUG is not case sensitive. Commands may be entered in either upper or
lower case, depending upon the user’s equipment and preference. Only symbol names
require that the exact case be used.

dBUG System Initialization
The act of powering up the board will initialize the system. The processor is reset and dBUG is
invoked. dBUG performs the following configurations of internal resources during the
initialization:

Internal memories are mapped as described in the dBUG memory map section below.

The MCF5213 PLL is initialized to multiply the default 8MHz input reference up to 80 MHz.

All volatile code sections and the interrupt vector table are copied from ROM to RAM.

Control is given to the user via the command prompt.

Interrupt Service Support

The Vector Base Register, VBR, is programmed to point to the RAM copy of the vector table at
the base of the internal SRAM. To take over an exception vector, the user places the address
of the exception handler in the appropriate vector in the vector table.

 dBUG Memory Map
The following table shows the dBUG memory map. This information is also provided via the
‘mmap’ dBUG command.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

19

0x00000000

0x00013FFF

Internal 256KByte Flash Memory

dBUG protected code

80KBytes

0x00014000

0x0003FFFF

Internal 256KByte Flash Memory

User space

176KBytes

0x20000000

0x20001FFF

Internal 32KByte SRAM Memory

Vector Table and dBUG protected data

8KBytes

0x20002000

0x20007FFF

Internal 32KByte SRAM Memory

User space

24KBytes

Note: Applying BDM / JTAG development port tools does not require following the dBUG
memory map.

dBUG Commands
After the system initialization, the dBUG waits for a command-line input from the user terminal.
When a proper command is entered, the operation continues in one of the two basic modes. If
the command causes execution of the user program, the dBUG firmware may or may not be
re-entered, at the discretion of the user’s program. For the alternate case, the command will
be executed under control of the dBUG firmware, and after command completion, the system
returns to command entry mode.

dBUG Command Table
MNEMONIC SYNTAX DESCRIPTION
ASM asm <<addr> <assembly>> Assemble
BC bc addr1 addr2 length Block Compare
BF bf <width> begin end data <inc> Block Fill
BM bm begin end dest Block Move
BR br addr <-r> <-c count> <-t trigger> Breakpoint
BS bs <width> begin end data Block Search
DC dc value Data Convert
DI di <addr> Disassemble
DL dl <offset> Download Serial
DLDBUG dldbug Download dBUG Update
FL fl <command> dest <src> size Flash write or erase
GO go <addr> Execute
GT gt addr Execute To
HELP help <command> Help
IRD ird <module.register> Internal Internal Register Display

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

20

IRM irm module.register data Internal Register Modify
LR lr <width> addr Loop Read
LW lw <width> addr data Loop Write
MD md <width> <begin> <end> Memory Display
MM mm <width> addr <data> Memory Modify
MMAP mmap Memory Map Display
RD rd <reg> Register Display (core)
RM rm reg data Register Modify (core)
RESET reset Reset
SD sd Stack Display (contents)
SET set <option value> Set Configurations
SHOW show <option> Show Configurations
STEP step Step (Over)
SYM symbol <symb> <-a symb value> <-r symb>

<-C| l |s>
Symbol Management

TRACE trace <num> Trace (Into)
VER version Show dBUG Version

During command execution, additional user input may be required depending on the command
function. For commands that accept an optional <width> to modify the memory access size,
the valid values are:

• B = 8-bit (byte) access • W = 16-bit (word) access • L = 32-bit (long) access

When no <width> option is provided, the default width is “W”, 16-bit.

The core ColdFire register set is maintained by dBUG. These are listed below:

• A0 - A7
• D0 - D7
• PC
• SR

All control registers on ColdFire are not readable by the supervisor-programming model, and
thus not accessible via dBUG. User code may change these registers, but caution must be
exercised as changes may render dBUG inoperable. A reference to “SP” (stack pointer)
actually refers to general purpose address register seven, “A7.”

The commands DI, GO, MD, STEP, and TRACE are used repeatedly when debugging. dBUG
recognizes this and allows for repeated execution of these commands with minimal typing.
After a command is entered, simply press <RETURN> or <ENTER> to invoke the command
again. The command is executed as if no command line parameters were provided.

User programs are provided access to various dBUG routines by the “Trap 15 Functions".
These functions are discussed at the end of this chapter.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

21

Appendix 1: dBUG Command Set
Note that arguments used in the command examples (such as addresses) are chosen
arbitrarily and will not be valid on all ColdFire EVBs.

ASM - Assembler
Usage: ASM <<addr> <assembly>>

The ASM command is a primitive assembler. The <assembly> is assembled and the resulting
code placed at <addr>. This command has an interactive and non-interactive mode of
operation.

The value for address <addr> may be an absolute address specified as a hexadecimal value,
or a symbol name. The value for stmt must be valid assembler mnemonics for the CPU.

For the interactive mode, the user enters the command and the optional <addr>. If the
address is not specified, then the last address is used. The memory contents at the address
are disassembled, and the user prompted for the new assembly. If valid, the new assembly is
placed into memory, and the address incremented accordingly. If the assembly is not valid,
then memory is not modified, and an error message produced. In either case, memory is
disassembled and the process repeats.

The user may press the <Enter> or <Return> key to accept the current memory contents and
skip to the next instruction, or enter a period (“.”) to quit the interactive mode.

In the non-interactive mode, the user specifies the address and the assembly statement on the
command line. The statement is the assembled, and if valid, placed into memory, otherwise
an error message is produced.

Examples:

To place a NOP instruction at address 0x2000_2000, the command is:

asm 20002000 nop

To interactively assembly memory at address 0x2000_20000, the command is:

asm 20002000

BC - Block Compare
Usage: BC addr1 addr2 length

The BC command compares two contiguous blocks of memory on a byte by byte basis. The
first block starts at address addr1 and the second starts at address addr2, both of length
bytes.

If the blocks are not identical, the address of the first mismatch is displayed. The value for
addresses addr1 and addr2 may be an absolute address specified as a hexadecimal value or

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

22

a symbol name. The value for length may be a symbol name or a number converted
according to the user defined radix (hexadecimal by default).

Example:

To verify that the data starting at 0x20000 and ending at 0x3_0000 is identical to the data
starting at 0x8_0000, the command is:

bc 20000 80000 10000

BF - Block Fill
Usage: BF<width> begin end data <inc>

The BF command fills a contiguous block of memory starting at address begin, stopping at
address end, with the value data. <Width> modifies the size of the data that is written. If no
<width> is specified, the default of word sized data is used.

The value for addresses begin and end may be an absolute address specified as a
hexadecimal value, or a symbol name. The value for data may be a symbol name, or a
number converted according to the user-defined radix, normally hexadecimal.

The optional value <inc> can be used to increment (or decrement) the data value during the
fill.

This command first aligns the starting address for the data access size, and then increments
the address accordingly during the operation. Thus, for the duration of the operation, this
command performs properly-aligned memory accesses.

Examples:

To fill a memory block starting at 0x2_0000 and ending at 0x4_0000 with the value 0x1234, the
command is:

bf 20000 40000 1234

To fill a block of memory starting at 0x20000 and ending at 0x4_0000 with a byte value of
0xAB, the command is:

bf.b 20000 40000 AB

To zero out the BSS section of the target code (defined by the symbols bss_start and
bss_end), the command is:

bf bss_start bss_end 0

To fill a block of memory starting at 0x2_0000 and ending at 0x4_0000 with data that
increments by 2 for each <width>, the command is:

bf 20000 40000 0 2

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

23

BM - Block Move
Usage: BM begin end dest

The BM command moves a block of memory starting at address begin and stopping at
address end to the new address dest. The BM command copies memory as a series of bytes,
and does not alter the original block.

The values for addresses begin, end, and dest may be absolute addresses specified as
hexadecimal values, or symbol names. If the destination address overlaps the block defined
by begin and end, an error message is produced and the command exits.

Examples:

To copy a block of memory starting at 0x4_0000 and ending at 0x7_0000 to the location
0x200000, the command is:

bm 40000 70000 200000

To copy the target code’s data section (defined by the symbols data_start and data_end) to
0x200000, the command is:

bm data_start data_end 200000

NOTE: Refer to “upuser” command for copying code/data into Flash memory.

BR - Breakpoints
Usage: BR addr <-r> <-c count> <-t trigger>

The BR command inserts or removes breakpoints at address addr. The value for addr may be
an absolute address specified as a hexadecimal value, or a symbol name. Count and trigger
are numbers converted according to the user-defined radix, normally hexadecimal.

If no argument is provided to the BR command, a listing of all defined breakpoints is displayed.

The -r option to the BR command removes a breakpoint defined at address addr. If no
address is specified in conjunction with the -r option, then all breakpoints are removed.

Each time a breakpoint is encountered during the execution of target code, its count value is
incremented by one. By default, the initial count value for a breakpoint is zero, but the -c
option allows setting the initial count for the breakpoint.

Each time a breakpoint is encountered during the execution of target code, the count value is
compared against the trigger value. If the count value is equal to or greater than the trigger
value, a breakpoint is encountered and control returned to dBUG. By default, the initial trigger
value for a breakpoint is one, but the -t option allows setting the initial trigger for the
breakpoint.

If no address is specified in conjunction with the -c or -t options, then all breakpoints are
initialized to the values specified by the -c or -t option.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

24

Examples:

To set a breakpoint at the C function main() (symbol _main; see “symbol” command), the
command is:

br _main

When the target code is executed and the processor reaches main(), control will be returned to
dBUG.

To set a breakpoint at the C function bench() and set its trigger value to 3, the command is:

br _bench -t 3

When the target code is executed, the processor must attempt to execute the function bench()
a third time before returning control back to dBUG.

To remove all breakpoints, the command is:

br -r

BS - Block Search
Usage: BS<width> begin end data

The BS command searches a contiguous block of memory starting at address begin, stopping
at address end, for the value data. <Width> modifies the size of the data that is compared
during the search. If no <width> is specified, the default of word sized data is used.

The values for addresses begin and end may be absolute addresses specified as hexadecimal
values, or symbol names. The value for data may be a symbol name or a number converted
according to the user-defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments
the address accordingly during the operation. Thus, for the duration of the operation, this
command performs properly-aligned memory accesses.

Examples:

To search for the 32-bit value 0x1234_5678 in the memory block starting at 0x4_0000 and
ending at 0x7_0000:

bs.l 40000 70000 12345678

This reads the 32-bit word located at 0x0004_0000 and compares it against the 32-bit value
0x1234_5678. If no match is found, then the address is incremented to 0x0004_0004 and the
next 32-bit value is read and compared.

To search for the 16-bit value 0x1234 in the memory block starting at 0x0004_0000 and
ending at 0x0007_0000:

bs 40000 70000 1234

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

25

This reads the 16-bit word located at 0x4_0000 and compares it against the 16-bit value
0x0000_1234. If no match is found, then the address is incremented to 0x0004_0002 and the
next 16-bit value is read and compared.

DC - Data Conversion
Usage: DC data

The DC command displays the hexadecimal or decimal value data in hexadecimal, binary, and
decimal notation.

The value for data may be a symbol name or an absolute value. If an absolute value passed
into the DC command is prefixed by ‘0x’, then data is interpreted as a hexadecimal value.
Otherwise data is interpreted as a decimal value.

All values are treated as 32-bit quantities.

Examples:

To display the decimal and binary equivalent of 0x1234, the command is:

dc 0x1234

To display the hexadecimal and binary equivalent of 1234, the command is:

dc 1234

DI - Disassemble
Usage: DI <addr>

The DI command disassembles target code pointed to by addr. The value for addr may be an
absolute address specified as a hexadecimal value, or a symbol name.

Wherever possible, the disassembler will use information from the symbol table to produce a
more meaningful disassembly. This is especially useful for branch target addresses and
subroutine calls.

The DI command attempts to track the address of the last disassembled opcode. If no
address is provided to the DI command, then the DI command uses the address of the last
opcode that was disassembled.

The DI command is repeatable.

Examples:

To disassemble code that starts at 0x0004_0000, the command is:

di 40000

To disassemble code of the C function main(), the command is:

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

26

di _main

DL - Download Console
Usage: DL <offset>

The DL command performs an S-record download of data obtained from the console or serial
port. The value for offset is converted according to the user-defined radix, normally
hexadecimal.

If offset is provided, then the destination address of each S-record is adjusted by offset.

The DL command checks the destination download address for validity. If the destination is an
address outside the defined user space, then an error message is displayed and downloading
aborted.

If the destination address is in the user flash memory space, the flash will be programmed but
not erased. See the FL command for flash erasing.

If the S-record file contains the entry point address, then the program counter is set to reflect
this address.

Examples:

To download an S-record file through the serial port, the command is:

dl

To download an S-record file through the serial port, and add an offset to the destination
address of 0x40000, the command is:

dl 0x40000

After the DL command is invoked, the user should select file transfer or upload and send the
S-record file form the host. The host serial terminal software should apply XON/XOFF flow
control to the transfer if the target memory is Flash space to allow flash programming time
delays. Alternate method is to download with an offset into SDRAM memory space and then
apply the FL command to program the flash memory space.

DLDBUG – Download dBUG (update)
Usage: dldbug

The dldbug command is used to update the dBUG image in Flash memory. When updates to
the M5213EVB dBUG are available, the update S-record may be downloaded into the Flash
from the console or serial port similar to the DL command. The user is prompted for
verification before performing the operation (note case sensitivity here). XON/XOFF serial flow
control must be applied when loading the new S-record. Use this command with extreme
caution, as any error can render dBUG useless!

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

27

FL – Flash Load or Erase
Usage: FL <command> dest <src> <size>

The FL command is used to erase and write the MCF5213 internal flash, and display flash
device information. Erase or write operations must be performed in even page sizes. The
write command will erase all of the associated flash pages prior to writing. If the write
destination address or byte count range does not provide an even page boundary, dBUG will
prompt the user to continue.

The MCF5213 internal flash destination address must be long word (4 byte) aligned and the
byte count must be in longword (4 byte) multiples.

To download S-record files directly into the flash, please see the DL command.

Examples:

To view the flash device sector information, the command is:

fl

To erase 0x10000 (64K) bytes of internal flash starting at 0xF0000000, the command is:

fl e F0000000 10000

To copy 0x4000 (16K) bytes of data from SRAM (0x20000000) to flash at 0x00020000, the
command is:

fl w 00020000 20000000 4000

GO – Execute user code
Usage: GO <addr>

The GO command executes target code starting at address addr. The value for addr may be
an absolute address specified as a hexadecimal value, or a symbol name.

If no argument is provided, the GO command begins executing instructions at the current
program counter.

When the GO command is executed, all user-defined breakpoints are inserted into the target
code, and the context is switched to the target program. Control is only regained when the
target code encounters a breakpoint, illegal instruction, or other exception that causes control
to be handed back to dBUG.

The GO command is repeatable.

Examples:

To execute code at the current program counter, the command is:

go

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

28

To execute code at the C function main(), the command is:

go _main

To execute code at the address 0x00040000, the command is:

go 40000

GT - Execute To Address
Usage: GT addr

The GT command inserts a temporary software breakpoint at addr and then executes target
code starting at the current program counter. The value for addr may be an absolute address
specified as a hexadecimal value, or a symbol name.

When the GT command is executed, all breakpoints are inserted into the target code, and the
context is switched to the target program. Control is only regained when the target code
encounters a breakpoint, illegal instruction, or an exception which causes control to be handed
back to dBUG.

Examples:

To execute code up to the C function bench(), the command is:

gt _bench

To execute code up to the address 0x00080004, the command is:

gt 80004

IRD - Internal Register Display
Usage: IRD <module.register>

This command displays the internal registers of the different modules inside the MCF5213. In
the command line, module refers to the module name where the register is located and
register refers to the specific register to display.

The registers are organized according to the module to which they belong. Refer to the
MCF5213 user’s manual for information on these modules and the registers they contain.

Example:

ird uart0.umr1

ird uart0

IRM - Internal Register Modify
Usage: IRM module.register data

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

29

This command modifies the contents of the internal registers of different modules inside the
MCF5213. In the command line, module refers to the module name where the register is
located and register refers to the specific register to modify. The data parameter specifies the
new value to be written into the register.

The registers are organized according to the module to which they belong. Refer to the
MCF5213 user’s manual for information on these modules and the registers they contain.

HELP - Help
Usage: HELP <command>

The HELP command displays a brief syntax of the commands available within dBUG. In
addition, the address of where user code may start is given. If command is provided, then a
brief listing of the syntax of the specified command is displayed.

Examples:

To obtain a listing of all the commands available within dBUG, the command is:

help

To obtain help on the breakpoint command, the command is:

help br

LR - Loop Read
Usage: LR <width> addr

The LR command continually reads the data at addr until a key is pressed. The optional
<width> specifies the size of the data to be read. If no <width> is specified, the command
defaults to reading word sized data.

Example:

To continually read the word data from address 0xFFF2_0000, the command is:

lr FFF20000

LW - Loop Write
Usage: LW <width> addr data

The LW command continually writes data to addr. The optional width specifies the size of the
access to memory. The default access size is a word.

Examples:

To continually write the data 0x1234_5678 to address 0x0002_0000, the command is:

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

30

lw.l 20000 12345678

Note that the following command writes 0x78 into memory:

lw.b 20000 78

MD - Memory Display
Usage: MD <width> <begin> <end>

The MD command displays a contiguous block of memory starting at address begin and
stopping at address end. The values for addresses begin and end may be absolute addresses
specified as hexadecimal values, or symbol names. Width modifies the size of the data that is
displayed. If no <width> is specified, the default of word sized data is used.

Memory display starts at the address begin. If no beginning address is provided, the MD
command uses the last address that was displayed. If no ending address is provided, then MD
will display memory up to an address that is 128 beyond the starting address.

This command first aligns the starting address for the data access size, and then increments
the address accordingly during the operation. Thus, for the duration of the operation, this
command performs properly-aligned memory accesses.

Examples:

To display memory at address 0x0040_0000, the command is:

md 400000

To display memory in the data section (defined by the symbols data_start and data_end), the
command is:

md data_start

To display a range of bytes from 0x00040000 to 0x0005_0000, the command is:

md.b 40000 50000

To display a range of 32-bit values starting at 0x0004_0000 and ending at 0x0005_0000:

md 40000 50000

MM - Memory Modify
Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for addr may be an
absolute address specified as a hexadecimal value, or a symbol name. Width specifies the
size of the data that is modified. If no <width> is specified, the default of word sized data is
used. The value for data may be a symbol name, or a number converted according to the
user-defined radix, normally hexadecimal.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

31

If a value for data is provided, then the MM command immediately sets the contents of addr to
data.

If no value for data is provided, then the MM command enters into a loop. The loop obtains a
value for data, sets the contents of the current address to data, increments the address
according to the data size, and repeats. The loop terminates when an invalid entry for the data
value is entered, for instance a period ‘.’.

This command first aligns the starting address for the data access size, and then increments
the address accordingly during the operation. Thus, for the duration of the operation, this
command performs properly-aligned memory accesses.

Examples:

To set the byte at location 0x0001_0000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x0001_0000, the command is:

mm 10000

MMAP - Memory Map Display
Usage: mmap

This command displays the memory map information for the evaluation board. The
information displayed includes the type of memory, the start and end address of the memory,
and the port size of the memory. The display also includes information on how the Chip-
selects are used on the board.

Here is an example of the output from this command:
 Type Start End

 --

 SRAM 0x20000000 0x20007FFF

 IPSBAR 0x40000000 0x7FFFFFFF

 Flash 0x00000000 0x0003FFFF

 Protected Start End

 --

 dBUG Code 0x00000000 0x00011FFF

 dBUG Data 0x20000000 0x20001FFF

RD - Register Display
Usage: RD <reg>

The RD command displays the register set of the target. If no argument for reg is provided,
then all registers are displayed. Otherwise, the value for reg is displayed.

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

32

dBUG preserves the registers by storing a copy of the register set in a buffer. The RD
command displays register values from the register buffer.

Examples:

To display only the program counter:

rd pc

To display all the registers and their values, the command is:

rd

Here is an example of the output from this command:

PC: 00000000 SR: 2000 [t.Sm.000...xnzvc]

An: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 01000000

Dn: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

RM - Register Modify
Usage: RM reg data

The RM command modifies the contents of the register reg to data. The value for reg is the
name of the register, and the value for data may be a symbol name, or it is converted
according to the user-defined radix, normally hexadecimal.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RM
command updates the copy of the register in the buffer. The actual value will not be written to
the register until target code is executed.

Example:

To change program counter to contain the value 0x2000_8000, the command is:

rm pc 20008000

RESET - Reset the Board and dBUG
Usage: RESET

The RESET command resets the board and dBUG to their initial power-on states.

The RESET command executes the same sequence of code that occurs at power-on. If the
RESET command fails to reset the board properly, cycle the power or press the RESET
button.

Examples:

To reset the board and clear the dBUG data structures, the command is:

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

33

reset

SET - Set Configurations
Usage: SET <option value>

The SET command allows the setting of user-configurable options within dBUG. With no
arguments, SET displays the options and values available. The SHOW command displays the
settings in the appropriate format. Note that some configuration items will not take effect until
a Reset has occurred. The standard set of options is listed below.

baud - This is the baud rate for the first serial port on the board. All communications
between dBUG and the user occur using 19200 bps, eight data bits, no parity, and
one stop bit, 8N1, with no flow control.

base - This is the default radix for use in converting a number from its ASCII text
representation to the internal quantity used by dBUG. The default is hexadecimal
(base 16), and other choices are binary (base 2), octal (base 8), and decimal (base
10).

Examples:

To set the baud rate of the board to be 38400, the command is:

set baud 38400

NOTE: See the SHOW command for a display containing the correct formatting of these
options.

SHOW - Show Configurations
Usage: SHOW <option>

The SHOW command displays the settings of the user-configurable options within dBUG.
When no option is provided, SHOW displays all options and values.

Examples:

To display the current baud rate of the board, the command is:

show baud

To display all options and settings, the command is:

show

Here is an example of the output from a show command:

dBUG> show
 base: 16
 baud: 19200

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

34

STEP - Step Over
Usage: STEP

The STEP command can be used to “step over” a subroutine call, rather than tracing every
instruction in the subroutine. The ST command sets a temporary software breakpoint one
instruction beyond the current program counter and then executes the target code.

The STEP command can be used to “step over” BSR and JSR instructions.

The STEP command will work for other instructions as well, but note that if the STEP
command is used with an instruction that will not return, i.e. BRA, then the temporary
breakpoint may never be encountered and dBUG may never regain control.

Examples:

To pass over a subroutine call, the command is:

step

SYMBOL - Symbol Name Management
Usage: SYMBOL <symb> <-a symb value> <-r symb> <-c|l|s>

The SYMBOL command adds or removes symbol names from the symbol table. If only a
symbol name is provided to the SYMBOL command, then the symbol table is searched for a
match on the symbol name and its information displayed.

-a option adds a symbol name and its value into the symbol table.

-r option removes a symbol name from the table.

-c option clears the entire symbol table.

-l option lists the contents of the symbol table.

-s option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any symbol table
lookups, either by the SYMBOL command or by the assembler/disassembler, will only use the
first 31 characters. Symbol names are case-sensitive.

Symbols can also be added to the symbol table via in-line assembly labels and Ethernet
downloads of ELF formatted files.

Examples:

To define the symbol “main” to have the value 0x0004_0000, the command is:

symbol -a main 40000

To remove the symbol “junk” from the table, the command is:

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

35

symbol -r junk

To see how full the symbol table is, the command is:

symbol -s

To display the symbol table, the command is:

symbol –l

TRACE - Trace Into
Usage: TRACE <num>

The TRACE command allows single-instruction execution. If num is provided, then num
instructions are executed before control is handed back to dBUG. The value for num is a
decimal number.

The TRACE command sets bits in the processors’ supervisor registers to achieve single-
instruction execution, and the target code executed. Control returns to dBUG after a single-
instruction execution of the target code.

This command is repeatable.

Examples:

To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20

VERSION - Display dBUG Version
Usage: VERSION

The VERSION command displays the version information for dBUG. The dBUG version, build
number and build date are all given.

The version number is separated by a decimal, for example, “v 2b.1c.1a”.

The version date is the day and time at which the entire dBUG monitor was compiled and built.

Examples:

To display the version of the dBUG monitor, the command is:

ver

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

36

TRAP #15 Functions
An additional utility within the dBUG firmware is a function called the TRAP 15 handler. This
function can be called by the user program to utilize various routines within the dBUG, perform
a special task, and to return control to the dBUG. This section describes the TRAP 15 handler
and how it is used.

There are four TRAP #15 functions. These are: OUT_CHAR, IN_CHAR, CHAR_PRESENT,
and EXIT_TO_dBUG.

OUT_CHAR

This function (function code 0x0013) sends a character, which is in lower 8 bits of D1, to
terminal. Assembly example:
/* assume d1 contains the character */

move.l #$0013,d0 Selects the function

TRAP #15 The character in d1 is sent to terminal

C example:
void board_out_char (int ch)

{

/* If your C compiler produces a LINK/UNLK pair for this routine,

 * then use the following code which takes this into account

 */

#if l

/* LINK a6,#0 -- produced by C compiler */

asm (“ move.l 8(a6),d1”); /* put ‘ch’into d1 */

asm (“ move.l #0x0013,d0”); /* select the function */

asm (“ trap #15”); /* make the call */

/* UNLK a6 -- produced by C compiler */

#else

asm (“ move.l 4(sp),d1”); /* put ‘ch’into d1 */

asm (“ move.l #0x0013,d0”); /* select the function */

asm (“ trap #15”); /* make the call */

#endif

}

IN_CHAR

This function (function code 0x0010) returns an input character (from terminal) to the caller.
The returned character is in D1.

Assembly example:
move.l #$0010,d0 Select the function

trap #15 Make the call, the input character is in d1.

C example:

Freescale Semiconductor, Inc.

M 5 2 1 3 E V B U S E R M A N U A L 0 8 / 0 8 / 0 5

37

int board_in_char (void)

{

asm (“ move.l #0x0010,d0”); /* select the function */

asm (“ trap #15”); /* make the call */

asm (“ move.l d1,d0”); /* put the character in d0 */

}

CHAR_PRESENT

This function (function code 0x0014) checks if an input character is present to receive. A value
of zero is returned in D0 when no character is present. A non-zero value in D0 means a
character is present.

Assembly example:
move.l #$0014,d0 Select the function

trap #15 Make the call, d0 contains the result

C example:
int board_char_present (void)

{

asm (“ move.l #0x0014,d0”); /* select the function */

asm (“ trap #15”); /* make the call */

}

EXIT_TO_dBUG

This function (function code 0x0000) transfers the control back to the dBUG, by terminating the
user code. The register contents are preserved.

Assembly example:
move.l #$0000,d0 Select the function

trap #15 Make the call, exit to dBUG.

C example:
void board_exit_to_dbug (void)

{

asm (“ move.l #0x0000,d0”); /* select the function */

asm (“ trap #15”); /* exit and transfer to dBUG */

}

Freescale Semiconductor, Inc.

