

Rev. 0.5

Peripheral Bus Control CPLD

Wireless Solutions Division

Eyal Liser Version 0.5 May 3, 2005

Revision Table

Notes	Author	Date	Version
Initial version. Applied appropriate changes to ZAS PBC document to fit Tortola ADS	Eyal Liser	March 25, 2005	Revision 0.0
Interrupt controller added to the document.	Eyal Liser	April 14, 2005	Revision 0.1
Interrupt description revised	Eyal Liser	April 18, 2005	Revision 0.2
Some power up defaults changed, formatting revised,	Eyal Liser	May 2, 2005	Revision 0.3
Revised interrupt section per OS teams requests	Eyal Liser	May 3, 2005	Revision 0.4
UART selects Default changed. Vibrator default value changed. PCMCIA_EN bit added on BCTRL4(5)	Eyal Liser	May 24, 2005	Revision 0.5

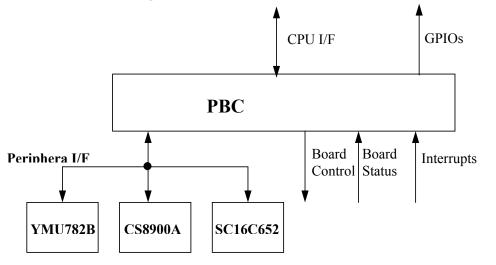
Rev. 0.5

Peripheral Bus Control

1.1 Introduction

The Tortola EVB main board requires some glue logic for peripheral bus address decoding, board control and status signals, board revision registers, and other miscellaneous functions. This glue logic is implemented with a Complex Programmable Logic Device (CPLD). This document describes the functionality and requirements for the Peripheral Bus Control CPLD (PBC).

1.2 Features


The key features provided by the PBC include:

- Provide a 16-bit slave interface to the CPU data bus
- Provide address decode and control for Ethernet controller
- Provide address decode and control for external UART controller
- Provide address decode for Audio Synthesizer.
- Provide control and status registers for various board functions.
- Provide control and muxing for interrupt sources from various sources.

Peripheral Bus Control

1.3 Block Diagram

1.4 CPU Interface

The Tortola CPU WEIM interface, referred in this document as the CPU Interface, has the capability to connect low to mid-range memories and peripherals with asynchronous and synchronous protocols. Several chip select signals are provided by the CPU, which can be configured for different memory types. The PBC uses the chip select signal CS4, with the following requirements:

- CS4 occupies a 32Mbyte window in the address space
- CS4 must be configured for 16-bit bus width, asynchronous transfers.
- CS4 assertion window must be at least 150nsec.
- Byte enables must be asserted at CS4 assertion time.
- Byte enables must be negated at least 1/2 clock before CS4 negation during write cycles.
- Multiplexed transfers and synchronous transfers are not supported.

Signal	DIR	Description
A[25:0]	In	Address bus (not all address lines are used)
D[15:0]	In/Out	Data bus
CS4_B	In	Chip select 4 used for peripheral access
BE0_B	In	Byte Enable 0, which corresponds with D[7:0]
BE1_B	In	Byte Enable 1, which corresponds with D[15:8]
OE_B	In	Output Enable
RW_B	In	Read/write signal
RSTIN_B	In	Reset signal
DMAREQ	Out	DMA Request to CPU

Table 1 CPU Signal Interface

1.5 Peripheral Interface

The peripheral interface provides address decode and control for the CS8900A Ethernet controller the SC16C652 dual UART (DUART) controller and the YMU782B Audio Synthesizer.

Table 2 Peripheral Interface

Signal	DIR	Description
PBA[2:0]	Out	Peripheral Bus Address
PBD[7:0]	InOut	Peripheral Bus Data, used for DUART, board version, switches
IOR_B	Out	IO Read is asserted during I/O read transfers and DMA transfers
IOW_B	Out	IO Write is asserted during I/O write transfers
MEMR_B	Out	Memory read to Ethernet controller is asserted during memory read transfers.
MEMW_B	Out	Memory write to Ethernet controller is asserted during memory write transfers.
AEN	Out	DMA Address enable, asserted during Ethernet controller DMA transfers
ENET_DMAREQ	In	DMA request from Ethernet controller
ENET_DMACK_B	Out	DMA acknowledge to Ethernet controller
ENET_CS_B	Out	Ethernet chip select
UA_CS_B	Out	UART A chip select
UB_CS_B	Out	UART B chip select
SYNTH_CS	Out	Synthesizer chip select

1.5.1 Peripheral Bus Cycles

The following peripheral bus cycles are implemented.

Table 3 Bus Cycles

Cycle	Transfer size	Description
IOREAD	Byte, Word	Used to read 8/16-bit data from peripheral registers with IOR_B signal.
IOWRITE	Byte, Word	Used to write 8/16-bit data to peripheral registers with IOW_B signal.
MEMREAD	Byte, Word	Used to read 8/16-bit data from peripheral memory using MEMR_B signal.
MEMWRITE	Byte, Word	Used to write 8/16-bit data to peripheral memory using MEMW_B signal.
DMAREAD	Word	Used during Ethernet DMA transfers to read 16-bit data from Ethernet controller memory buffer using ENET_DMACK_B signal.

1.5.2 DMA operation

The CS8900A supports DMA slave transfers for received data frames. The PBC supports these DMA transfers using a single DMAREQ signal to the processor and a special DMA address space in the memory map. The ENET_DMAREQ signal from the CS8900A is forwarded to the CPU I/F and used as a qualifier for DMA transfers. Qualified read transfer to the DMA address space will generate the ENET_DMACK_B signal to the CS8900A.

1.5.3 SC16C652C UART Decode

The PBC provides address decodes and data path control for the SC16C652C dual UART controller. Data is transferred through the PBC to and from the SC16C652C. The PBC hardware provides byte steering logic to transfer the correct byte to the SC16C652C during data transfers. The following points must be followed for accessing the SC16C652C

1.5.4 SCS8900A Ethernet Decode

The PBC provides address decode and control for the CS8900A Ethernet controller. Both 16-bit I/O mode and memory mode are supported. Memory mode operation allows direct access to the CS8900A internal registers and frame buffer. A single DMA request line is provided for DMA transfers from the CS8900A buffer to system memory for increased performance.

The following points must be followed for accessing the CS8900A:

• Provide a transition of the SBHE input after reset. This is done with a dummy byte read to an odd location, as for example a byte read to \$B400 0007.

• All reads and writes to the CS8900A must be 16-bits.

• For memory mode operation, the MEMORY BASE ADDRESS REGISTER (Offset \$002C) must be set to \$1000. Note that this is a 20 bit register, and the upper 4 bits must be 0.

1.5.5 YMU782B Audio Synthesizer Decode

The PBC provides address decode and data path control for the YMU782B Audio Synthesizer. Data is transferred through the PBC to and from the YMU782B. The PBC hardware provides byte steering logic to transfer the correct byte to the YMU782B during data transfers. The following points must be followed for accessing the YMU782B:

• All reads and writes to the YMU782B must be 8-bits.

1.6 UART Muxing

UARTC has one DTR line coming from the UART transceiver. This line is muxed to either UART1 or UART2 of the CPU. The muxing is made according to UARTC_SEL (BCTRL2.2).

1.7 Memory Map

Table 4 PBC Memory Map

Name	Description	Address
VERSION	Version register	B400_0000
BSTAT2	Board status register 2	B400_0002
	Board control register 1 set address	B400_0004
BCTRL1	Board control register 1 clear address	B400_0006
	Board control register 2 set address	B400_0008
BCTRL2	Board control register 2 clear address	B400_000A
	Board control register 3 set address	B400_000C
BCTRL3	Board control register 3 clear address	B400_000E
	Board control register 4 set address	B400_0010
BCTRL4	Board control register 4 clear address	B400_0012
BSTAT1	Board status register 1	B400_0014
INT STATUS	Interrupt status register address	B400_0016
INT CURRENT STATUS	Interrupt CURRENT STATUS register	B400_0018
INT MASK	Interrupt mask register set address	B400_001A
INT MASK	Interrupt mask register clear address	B400_001C
00100050	External UART port A	B401_0000
SC16C652	External UART port B	B401_0010
000000	Ethernet Controller I/O base address	B402_0000
CS8900A	Ethernet Controller Memory base address	B402_1000
	Ethernet Controller DMA base address	B402_2000
YMU782B	Audio synthesizer port	B403_0000
CODE_B	Code test debug enable	B407_0000

Peripheral Bus Control

1.8 Register descriptions

1.8.1 Version register

The version register contains three fields with the version of the PBC, CPU board, and BASE board. The PBC version is an 8-bit hardwired field that will be changed with design changes to the PBC. The CPU and BASE fields are implemented as two 4-bit fields and configured with external input signals connected to pull up and pull down resistors. The CPU and BASE fields are muxed on the Peripheral Data bus.

Table 5 Version Register

NAME	VERSION															
BIT	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1												0		
FIELD				PE	BC				CPU BASI						SE	
OPER				F	٢					I	۲			I	٢	

1.9 Board status registers

1.9.1 Board Status Register 1

BSTAT1 contains several bits that represent the board status from different places on the board. These registers are read only.

Table 6 Board Status Register 1

NAME								BST	AT1							
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FIELD	RSV	RSV	RSV	ATLAS_ IN	PTT	FLIP_ SENSE2	FLIP_ SENSE1	SD2_ WP	SD1_ WP	PWR_ RDY	ATA_ DASP	ATA_ CBLID	ATA_ IOCS16	LIGHT_ SENSE	KP_ ON	NF_ DET
OPER	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
RESET	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-
IN/OUT	-	-	-	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN

Table 7 Board Status Register 1 Bit Definitions

Name	Description	Settings
NF_DET	Nand Flash Detect— indicates Nand Flash card insertion.	0 = Nand Flash card is inserted
Bit 0		1 = Nand Flash card is not inserted
KP_ON	Keypad On/Off— indicates if keypad is on/off	0 = Keypad is ON
Bit 1		1 = Keypad is OFF
LIGHT_SENSE	Light sense— This signal reflects the light sense output	0 = Light sense is 0
Bit 2	from the keypad	1 = Light sense is 1
ATA_IOCS16	ATA IOCS16 – This bit reflects the status of pin IOCS16 on	0 – IOCS16 state is 0
Bit 3	the ATA connector	1 – IOCS16 state is 1
ATA_CBLID	ATA CBLID – This bit reflects the status of pin CBLID on	0 – CBLID state is 0
Bit 4	the ATA connector	1 – CBLID state is 1
ATA_DASP	ATA DASP – This bit reflects the status of pin DASP on	0 – DASP state is 0
Bit 5	the ATA connector	1 – DASP state is 1
PWR_RDY	Power Ready— Power ready indication from Atlas board.	0 = Atlas power is not ready
Bit 6		1 = Atlas power is ready
SD1_WP	SD1 Write Protect — This bit reflects the Write Protect on	0 = SD1 card is Write Protected
Bit 7	SD1 card.	1 = SD1 card is not Write Protected
SD2_WP	SD2 Write Protect — This bit reflects the Write Protect on	0 = SD2 card is Write Protected

Name	Description	Settings
Bit 8	SD2 card.	1 = SD2 card is not Write Protected
FLIP_SENSE1	Flip Sense 1 – This bit reflects the status of pin	0 = Flip Sense 1 on keypad is 0.
Bit 9	Flip_Sense1 on the keypad connector	1 = Flip Sense 1 on keypad is 1.
FLIP_SENSE2	Flip Sense 2 – This bit reflects the status of pin	0 = Flip Sense 2 on keypad is 0.
Bit 10	Flip_Sense2 on the keypad connector	1 = Flip Sense 2 on keypad is 1.
РТТ	PTT button – This bit reflects the status of pin PTT on	0 = PTT signal on keypad is 0.
Bit 11	the keypad connector	1 = PTT signal on keypad is 1.
ATLAS_IN	ATLAS IN – This bit indicates if the power management board	0 = Atlas board is placed
Bit 12	(Atlas) is placed on the board.	1 = Atlas board is not placed
RSV	Reserved- For future use	Always reads 0
Bits 13:15		

Rev. 0.5

1.9.2 Board Status Register 2

BSTAT2 contains several bits that represent the board status from different places on the board. These registers are read only.

Table 8 Board Status Register

NAME							BSTAT	2								
BIT	15	14	13	12	11	10	10 9 8		7	6	5	4	3	2	1	0
FIELD	RSV	DMA_REQ		DSW												
OPER	R	R	R	R	R	R	R	R	R							

Table 9 Board Status Register 1 Bit Definitions

Name	Description	Settings
DSW	Debug switch—This 8-bit field contains the value of the	0 (each bit) = switch is closed
Bits 7:0	debug DIP switch.	1(each bit) = switch is open
DMA_REQ	DMA Request – this bit reflects the DMA request to CPU from the	0 = DMA Request is low
Bit 8	Ethernet controller	1 = DMA Request is high
RSV	Reserved—These bits are reserved for future use.	Always read as 0
Bits 9:15		

Peripheral Bus Control

1.9.3 Board Control Register 1

BCTRL1 contains several fields to control various board functions. This register is implemented as a set register and a clear register. To set a bit, the set address is used, writing a 1 to the desired bit. To clear a bit, the clear address is used, writing a 1 to the desired bit.

NAME							BCTRL1														
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
FIELD	LCDON	BEND		CCTL2			CCTL1		LED1_ B	LED0_ B	IRDA_ EN_B	UCE_ EN_B	UB_ EN_B	UA_ EN_B	XUART_ RST	ENET_ RST					
OPER	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
RESET	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0					
IN/OUT	OUT/OD	-	OUT/OD	OUT/OD	OUT/OD	OUT/OD	OUT/OD	OUT/OD	OUT	OUT	OUT/OD	OUT/OD	OUT/OD	OUT/OD	OUT	OUT					

Table 10 Board Control Register 1

Table 11 Board Control Register 1 Bit Definitions

Name	Description	Settings
ENET_RST	Ethernet Reset—Reset the Ethernet controller. This bit	0 = Ethernet controller reset signal negated.
Bit 0	must be set for the desired duration of the reset signal, then	1 = Ethernet controller reset signal asserted.
	cleared to remove the reset signal.	
XUART_RST	External UART Reset—Reset external UART controller.	0 = UART controller reset signal negated.
Bit 1	This bit must be set for the desired duration of the reset	1 = UART controller reset signal asserted.
	signal, then cleared to remove the reset signal.	
UA_EN_B	UART A Enable—Enable UART A transceiver.	0 = UART A transceiver enabled.
Bit 2		1 = UART A transceiver disabled
UB_EN_B	UART B Enable—Enable UART B transceiver	0 = UART B transceiver enabled.
Bit 3		1 = UART B transceiver disabled
UCE_EN_B	UART C Enable—Enable UART C transceiver.	0 = UART C transceiver enabled.
Bit 4		1 = UART C transceiver disabled
IRDA_EN_B	IRDA Enable—Used to enable the IRDA transmitter.	0 = IRDA transmitter enabled
Bit 5		1 = IRDA transmitter disabled
LED0_B	LED 0 on—Used to turn LED 0 on. This is used as	0 = LED 0 is off
Bit 6	a general purpose status indicator.	1 = LED 0 is on.

Name	Description	Settings
LED1_B Bit 7	LED 1 on —Used to turn LED 1 on. This is used as a general purpose status indicator.	0 = LED 1 is off. 1 = LED 1 is on.
CCTL1[2:0] Bits 8-10	CSI1 Control —CSI1 control provides a three bit field for control of user defined functions on the CSI connector	xxx = User defined function.
CCTL2[2:0] Bits 11-13	CSI2 Control —CSI2 control provides a three bit field for control of user defined functions on the CSI connector	xxx = User defined function.
BEND	Internal register used as endian indicator	
LCDON	LCD ON—Used to turn the QVGA dumb LCD display on.	0 = LCD is off
Bit 15		1 = LCD on

1.9.4 Board Control Register 2

BCTRL2 contains several bits to control various board functions. This register is implemented as a set register and a clear register. To set a bit, the set address is used, writing a 1 to the desired bit. To clear a bit, the clear address is used, writing a 1 to the desired bit.

Table 12 Board Control Register 2

NAME								BCT	'RL2							
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FIELD	VCC_ EN	VPP_ EN	CT_CS	LCDIO _EN	LCD_ RST2	LCD_ RST1	LCD_ RST0	IRDA_ MOD	ATA_ SEL	ATA_ EN	CSI_ EN	UMOD ENC	UMOD ENA	USELC	USELB	USELA
OPER	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
RESET	0	0	1	1	1	1	1	0	0	1	1	1	1	1	0	1
IN/OUT	OUT	OUT	OUT	OUT/OD	OUT/OD	OUT/OD	OUT/OD	OUT	OUT	OUT	OUT	OUT	OUT	OUT/OD	OUT/OD	OUT/OD

Table 13 Board Control Register 2 Bit Definitions

Name	Description	Settings
USELA	UART A SELECT—Select UART A source on the CPU.	0 = the source is UART1 signals.
Bit 0		1 = the source is UART5 signals
USELB	UART B SELECT—Select UART B source on the CPU.	0 = the source is UART3 signals.
Bit 1		1 = the source is UART4 signals
USELC	UART C SELECT—Select UART C source on the CPU.	0 = the source is UART2 signals.

Name	Description	Settings							
Bit 2		1 = the source is UART1 signals							
UMODENA	UART A MODEM Enable—Enables UART A MODEM	0 = UART C MODEM signals enabled							
Bit 3	signals.	1 = UART C MODEM signals disabled							
UMODENC	UART C MODEM Enable—Enables UART C MODEM	0 = UART C MODEM signals enabled							
Bit 4	signals	1 = UART C MODEM signals disabled							
CSI_EN	CSI Enable—Used to enable the CSI Interface.	0 = CSI enabled							
Bit 5		1 = CSI disabled							
ATA_EN	ATA_Enable—Enables ATA interface.	0 = ATA enabled							
Bit 6		1 = ATA disabled							
ATA_SEL	ATA Select— Selects the signals of the cpu that will	0 = group A is connected to ATA interface							
Bit 7	connect to the ATA interface.	1 = group B is connected to ATA interface							
IRDA_MOD	IRDA Mode —this bit selects the bandwidth of the IRDA	A transition from high to low while IRDA_TXD is low – SIR/MIR bandwidth							
Bit 8	Transceiver.	A transition from high to low while IRDA_TXD is high – FIR bandwidth							
LCDRST0	LCD 0 Reset —This bit resets the smart parallel LCD #1	0 = smart parallel LCD #1 reset signal negated 1 = smart parallel LCD #1 reset signal							
Bit 9		asserted							
LCDRST1 Bit 10	LCD 1 Reset —This bit resets the smart parallel LCD #2	0 = smart parallel LCD #2 reset signal negated 1 = smart parallel LCD #2 reset signal asserted							
LCDRST2	LCD 2 Reset —This bit resets the smart serial LCD	0 = smart serial LCD reset signal negated							
Bit 11		1 = smart serial LCD reset signal asserted							
LCDIO_EN	LCD GPIO Enable – Enables GPIO1 and GPIO2	0= connection with GPIO1 and GPIO2 is enabled							
Bit 12	interface with the LCD connectors for general purpose use.	1= connection with GPIO1 and GPIO2 is disabled							
RSV	Reserved- For future use	Always reads 0							
Bit 13									
VPPEN	VPP Enable – enables VPP power towards the PCMCIA.	0= PCMCIA VPP power is off							
Bit 14		1= PCMCIA VPP power is VCC power (3.3V)							
VCCEN	VCC Enable - enables VCC power towards the PCMCIA.	0= PCMCIA VCC power is off							
Bit 15		1= PCMCIA VCC power is 3.3V							

OPER

RESET

IN/OUT

R/W

1

OUT

R/W

0

OUT/OD OUT/OD

R/W

0

R/W

1

OUT

R/W

0

OUT

R/W

0

OUT

1.9.5 Board Control Register 3

BCTRL3 contains several bits to control various board functions. This register is implemented as a set register and a clear register. To set a bit, the set address is used, writing a 1 to the desired bit. To clear a bit, the clear address is used, writing a 1 to the desired bit.

NAME								BCT	TRL3						
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
FIELD	SPI3_ RESET	VESIM _EN	VSIM_ EN	SYNTH_ RST	CARD2_ SEL	CARD1_ SEL	FSH_ VBUS_ EN	OTG_ VBUS_ EN	OTG_ HS_EN	FSH_ MOD	HSH_ EN	HSH_ SEL	FSH_ EN	FSH_ SEL	1

R/W

1

Table 14 Board Control Register 3

R/W

1

OUT/OD OUT/OD OUT/OD

R/W

1

R/W

0

OUT

R/W

1

OUT

R/W

0

OUT

R/W

1

OUT

R/W

0

OUT

Table 15 Board Control Register 3 Bit Definitions

Name	Description	Settings
OTG_FS_SEL	USB OTG Full Speed Select—Select The source of the USB	0 = the source is the ATLAS board.
Bit 0	OTG Full speed interface.	1 = the source is the CPU.
OTG_FS_EN	USB OTG Full Speed Enable — Enables the USB OTG Full	0 = OTG Full Speed Interface enabled
Bit 1	speed interface on the CPU.	1 = OTG Full Speed Interface disabled
FSH_SEL	USB Full Speed Host Select— Select The source of the USB	0 = Group A on the CPU
Bit 2	Full speed Host interface.	1 = Group B on the CPU
FSH_EN	USB Full Speed Host Enable— Enables the USB Full speed	0 = Full Speed Host Interface enabled
Bit 3	Host interface.	1 = Full Speed Host Interface disabled
HSH_SEL	USB High Speed Host Select— Select The source of the USB	0 = Group A on the CPU
Bit 4	High speed Host interface.	1 = Group B on the CPU
HSH_EN	USB High Speed Host Enable— Enables the USB High speed	0 = High Speed Host Interface enabled
Bit 5	Host interface.	1 = High Speed Host Interface disabled
FSH_MODE	USB Full Speed Host Mode— Selects Single ended/	0 = Single ended mode
Bit 6	differential mode on USB Host Full Speed interface.	1 = Differential mode
OTG_HS_EN	USB OTG High Speed Enable — Enables the USB OTG	0 = OTG High Speed Interface enabled
Bit 7	High speed interface on the CPU.	1 = OTG High Speed Interface disabled
OTG_VBUS_EN	USB OTG VBUS Enable — Enables VBUS regulator on	0 = OTG VBUS regulator is enabled

0

OTG_

R/W

1

OUT

Ē

F S S E

1

OTG

FS_EN

R/W

1

OUT

Name	Description	Settings
Bit 8	USB OTG interface PHY.	1 = OTG VBUS regulator is disabled
FSH_VBUS_EN	USB Full Speed Host VBUS Enable — Enables VBUS	0 = Full Speed Host VBUS regulator is enabled
Bit 9	regulator on USB Full speed Host interface PHY.	1 = Full Speed Host VBUS regulator is disabled
CARD1_SEL	Card1 Select Mux select pin for SD1 / MS1 lines	0 = lines are dedicated to SD1 interface
Bit 10		1 = lines are dedicated to MS1 interface
CARD2_SEL	Card2 Select— Mux select pin for PCMCIA & SD2 / MS2 lines	0 = lines are dedicated to PCMCIA &SD2 interface
Bit 11		1 = lines are dedicated to MS2 interface
SYNTH_RST	Audio Synthesizer Reset – Reset signal towards Audio	0= Reset audio Synthesizer
Bit 12	Synthesizer	l=Normal operation
VSIM_EN	VSIM Enable— Enables VSIM regulator on the ATLAS	0 = VSIM regulator is disabled
Bit 13	board.	1 = VSIM regulator is enabled
VESIM_EN	VESIM Enable— Enables VESIM regulator on the ATLAS	0 = VESIM regulator is disabled
Bit 14	board.	1 = VESIM regulator is enabled
SPI3_RESET	CSPI3 Connector Reset — Reset signal towards CSPI3	0 = CSPI3 is reset
Bit 15	connector	1 = Normal operation

1.9.6 Board Control Register 4

BCTRL4 contains several bits to control various board functions. This register is implemented as a set register and a clear register. To set a bit, the set address is used, writing a 1 to the desired bit. To clear a bit, the clear address is used, writing a 1 to the desired bit.

NAME		BCTRL4														
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FIELD	RSV	RSV	RSV	RSV	RSV	RSV	RSV	RSV	RSV	RSV	CLR_ POE	PCMCIA_ EN	VIB_ EN	USER_ OFF	REGEN_ SEL	CSI_ MSB_EN
OPER	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
RESET	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1
IN/OUT	-	-	-	-	-	-	-	-	-	-	OUT	OUT	OUT/OD	OUT/OD	OUT/OD	OUT/OD

Table 16 Board Control Register 4

Table 17 Board Control Register 4 Bit Definitions

Name	Description	Settings
CSI_MSB_EN	CSI MSB Enable - Enables bits CSI_Data[3:0] from	$0 = CSI_Data[3:0]$ enabled
Bit 0	CSI interface.	$1 = CSI_Data[3:0]$ disabled
REGEN_SEL Bit 1	Regulator Enable Select — This bit selects predefined programming for Atlas regulators.	0 = REGEN_SEL is active 1 = REGEN_SEL is not active
USER_OFF	User Off Indication — This signal is sent to the Atlas	0 = normal operation
Bit 2	board to confirm user off mode after a power fail.	1 = user off confirmation
VIB_EN	Vibrator Enable — Enables the Vibrator regulator on the	0 = Vibrator regulator is disabled
Bit 3	Atlas board.	1 = Vibrator regulator is enabled
PCMCIA_EN	PCMCIA Enable — Enables the PCMCIA buffer	0 = PCMCIA buffer enabled
Bit 4		1 = PCMCIA buffer disabled
CLR_POE	PCMCIA Output Enable Clear — Clears the PCMCIA Output	0 = PCMCIA OE
Bit 5	enable	1 = PCMCIA buffer disabled
USB_HS_PHY_EN	USB High Speed PHY Enable — Enables the PHY of the	0 = USB High Speed PHY enabled
Bit 6	USB High Speed	1 = USB High Speed PHY disabled
RSV	Reserved- For future use	Always reads 0

Bits 7:15

1.10Interrupts

The Tortola ADS has several interrupt sources that the CPU must handle. The number of interrupt sources is larger than the number of GPIO pin available on the CPU. Therefore all interrupt sources are routed through the CPLD where some of them are grouped. An Interrupt Mask Register can disable each interrupt source.

1.10.1 Interrupt Status/Clear Register

The Interrupt Status Register reflects the status of each interrupt source on the ADS. There are two interrupt types, level and edge triggered. Edge triggered interrupts generate an interrupt whenever the source signal changes from high to low, or low to high. The user may reset these by writing a one (high) to the associated bit. Writing a zero (low) will leave the status bit unaffected. Level interrupts are generated when the chosen active level (high or low) is detected. These require a software service routine to reset the interrupt signal back to the inactive state at the source. Writing to level sensitive interrupt status of all level sensitive interrupts will be inactive.

The register may be read at any time.

Table 18 Interrupt Status/Clear Register

NAME		Interrupt Status Register														
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FIELD	RES	CE_ INT2	CE_ INT1	SYNTH_ IRQ	XUART_ INTB	XUART_ INTA	OTG_ FS_ INT	ENET_ INT	RES	RES	RES	RES	FSH_ OVR	OTG_ FS_ OVR	PB_ IRQ	LOW_ BAT
OPER	-	R	R	R	R	R	R	R	-	-	-	-	R/W1C	R/W1C	R/W1C	R/W1C
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 19 Interrupt Status/Clear Register Bit Definitions

Name	Description	Settings
LOW_BAT	Low Battery— Low Battery signal from Atlas has changed state.	0 – No interrupt pending
Bit 0		1- Interrupt active, write a one to clear

Name	Description	Settings					
PB_IRQ	Push Button IRQ — Push button switch circuit output has changed state.	0 – No interrupt pending					
Bit 1		1- Interrupt active, write a one to clear					
OTG_FS_OVR	USB OTG Full Speed Over Current — The USB OTG Full	0 – No interrupt pending					
Bit 2	Speed Over Current bit has changed state.	1- Interrupt active, write a one to clear					
FSH_OVR	USB Full Speed Host Over Current — The USB Full Speed	0 - No interrupt pending					
Bit 3	Host interface. Overcurrent bit has changed state.	1- Interrupt active, write a one to clear					
RES							
Bits 4,5,6,7, & 15	Reserved for future use	N/A					
ENET_INT	Ethernet Interrupt - interrupt signal from Ethernet	0= no interrupt from Ethernet controller					
Bit 8	controller	1= Interrupt received from Ethernet controller					
OTG_FS_INT	USB Host Full Speed Interrupt — This bit is the interrupt	0= no interrupt from USB Host full speed interface.					
Bit 9	indication from USB Host full speed interface.	1= Interrupt received from USB Host full speed interface.					
XUART_INTA	External UART A interrupt – interrupt signal from External	0= no interrupt from External UART A					
Bit 10	UART A.	1= Interrupt received from External UART A					
XUART_INTB	External UART B interrupt – interrupt signal from External	0= no interrupt from External UART B					
Bit 11	UART B.	1= Interrupt received from External UART B					
SYNTH_IRQ	Audio Synthesizer IRQ – interrupt signal from Audio	0= no interrupt from Audio Synthesizer					
Bit 12	Synthesizer	1= Interrupt received from Audio Synthesizer					
CE_INT1	Communication Engine Interrupt 1—	0 = No interrupt from CE_INT1					
Bit 13		1 = Interrupt received from CE_INT1					
CE_INT2	Communication Engine Interrupt 2—	0 = No interrupt from CE_INT2					
Bit 14		1 = Interrupt received from CE_INT2					

1.10.2 Interrupt Signal Current State Status Register

This register represents the current state of each edge triggered interrupt source. This register is a read only register.

Table 20 Interrupt Signal Current State Status Register

NAME		Interrupt Current State Status Register														
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FIELD	RES	RES	RES	RES	RES	RES	RES	RES	RES	RES	RES	RES	FSH_ OVR	OTG_ FS_ OVR	PB_ IRQ	LOW_B AT

Table 21 Interrupt Current Status Register Bit Definitions

Name	Description	Settings
LOW_BAT	Low Battery— Low Battery Indicator signal from Atlas	0 - Low Battery indication
Bit 4	Board.	1- Normal operation
PB_IRQ	Push Button IRQ — Push button switch circuit.	0 – Push button is pressed
Bit 5		1- Push button is not pressed
OTG_FS_OVR	USB OTG Full Speed Over Current — USB OTG Full	0 – Over Current indication
Bit 6	Speed Over Current indication.	1- No Over Current indication
FSH_OVR	USB Full Speed Host Over Current — The USB Full Speed	0 – Over Current indication
Bit 7	Host interface. Over current indication.	1- No Over Current indication

Peripheral Bus Control

1.10.3 Interrupt Mask Register

The Interrupt Mask Register enables/disables the corresponding interrupt source. A high (one) will enable the associated interrupt source. A low (zero) will mask (disable) the associated interrupt source. Even if the interrupt is masked the associated status register bit will still indicate whether or not an interrupt is pending from each source. However a masked interrupt will not cause an interrupt signal to be generated to the GPIO pin it is associated with. Modifying the Mask Register to enable an interrupt that is pending will immediately cause an interrupt to be generated.

This register is implemented as a set register and a clear register. To set a bit, the set address is used, writing a 1 to the desired bit. To clear a bit, the clear address is used, writing a 1 to the desired bit.

NAME		Interrupt Mask Register														
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MASKED INTERRUPT FEILD	RES	CE_ INT2	CE_ INT1	SYNTH_ IRQ	XUART_ INTB	XUART ĪNTA	OTG_ FS_ INT	ENET_ INT	RES	RES	RES	RES	FSH_ OVR	OTG_ FS_ OVR	PB_ IRQ	LOW_ BAT
OPER	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1.10.3 GPIO Interrupt Grouping and Non Registered Interrupts

Some interrupt signals are not associated with any CPLD register but are instead directly routed (inside the CPLD) to a GPIO pin. The SD and Memory Stick detect functions are logically ORed together since only one or the other should be implemented at any given time.

The interrupt are grouped in the following way:

GPIO	Interrupt sources
GPIO1_1	SD1_DET + MS1_DET
GPIO1_2	SD2_DET + MS2_DET
GPIO1_3	PRI_INT (ATLAS)
GPIO1_4	XUART_INTA, XUART_INTB, ENET_INT, LOW_BAT, PB_IRQ, OTG_FS_OVR, OTG_FS_INT, FSH_OVR, SYNTH_IRQ, CE_INT1, CE_INT2

Table 23 GPIO Interrupt Bit Descriptions

Name	Description	Settings
GPIO1_1	SD1 OR MS1 memory card detect status	0 – No Card is inserted
		1- A card has been detected
GPIO1_2	SD2 OR MS2 memory card detect status	0 – No Card is inserted
		1- A card has been detected
GPIO1_3	Atlas' Primary Interrupt output status bit	0 – No interrupt pending
		1- Interrupt active
GPIO1_4	Registered Interrupt Status bit	0 – No interrupt pending
		1- Interrupt active

Peripheral Bus Control

1.14 References

[1] ZAS peripheral Bus Control CPLD, November 30, 2004, Version 2.0, Freescale Semiconductor.

[2] CS8900A ISA Ethernet Controller Data Sheet, April 2001, Cirrus Logic.

[3] SC16C652 Dual UART Controller, June 20, 2003, Rev 04, Philips Semiconductors.

[4] ISA System Architecture, October 1993, Mindshare, In