
 HC(S)08/RS08 and
S12(X) Build Tools

Utilities Manual

 Revised: 12 August 2010

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of Freescale Semiconductor, Inc., Reg. U.S.
Pat. & Tm. Off. Flexis and Processor Expert are trademarks of Freescale Semiconductor, Inc. All other product or ser-
vice names are the property of their respective owners.

© 2006-2010 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, TX 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

 Introduction
CodeWarrior IDE Utilities . 23

SmartLinker. 23

Burner Utility . 23

Libmaker . 23

Decoder . 23

Maker: The Make Tool . 24

Starting a CodeWarrior Utility . 24

I SmartLinker
Purpose of a Linker . 25

Product Features . 25

Section Contents . 26

Starting the SmartLinker Utility . 26

1 SmartLinker User Interface 29
SmartLinker Main Window . 29

Window Title . 30

Content Area . 30

Main Window Toolbar. 31

Main Window Status Bar . 32

Main Window Menu Bar. 32

SmartLinker Configuration Window. 34

Option Settings Window . 41

Message Settings Window . 43

About Dialog Box . 45

Retrieving Information about an Error Message. 45
3HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
Specifying the Input File .45

Using the Command Line in the Toolbar to Link .45

Message/Error Feedback .46

2 SmartLinker Files 49
Input Files .49

Parameter File .49

Object File .49

Output Files .50

Absolute Files .50

S-Record Files .50

Map Files .50

Error Listing File .52

3 Linking Issues 55
Object Allocation .55

The SEGMENTS Block (ELF) .55

The SECTIONS Block (Freescale + ELF) .61

PLACEMENT Block. .64

Initializing Vector Table .68

VECTOR Command .68

Smart Linking (ELF). .69

Mandatory Linking of an Object .69

Mandatory Linking of all Objects Defined in Object File.70

Switching OFF Smart Linking for the Application .70

Smart Linking (Freescale + ELF) .71

Mandatory Linking from an Object. .71

 Mandatory Linking from all Objects Defined in a File 71

Binary Files Building an Application (ELF). .72

NAMES Block. .72

ENTRIES Block .72

Binary Files Building an Application (Freescale). .73

NAMES Block. .73

Allocating Variables in OVERLAYS .74

Overlapping Locals .75
4 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
Algorithm . 75

Name Mangling for Overlapping Locals . 77

Name Mangling in ELF Object File Format . 78

Defining a Function with Overlapping Parameters in Assembler. 79

DEPENDENCY TREE Section in Map File. 84

Optimizing the Overlap Size . 84

Recursion Checks . 85

Linker-Defined Objects. 86

Stack Consumption Computation . 89

STACK_CONSUMPTION Block. 89

Checksum Computation . 96

prm File-Controlled Checksum Computation . 97

Automatic Linker-Controlled Checksum Computation 97

Partial Fields . 99

Runtime Support . 99

Linking an Assembly Application . 100

prm File . 101

Warning Messages. 101

Smart Linking . 102

LINK_INFO (ELF) . 104

4 SmartLinker Parameter File 105
Parameter File Syntax . 105

Mandatory SmartLinker Commands. 107

The INCLUDE Directive . 108

5 ELF Sections 109
Segments and Sections . 109

Sections . 109

Predefined Sections . 110

Examples of Using Sections . 112

Example 1 . 112

Example 2 . 112
5HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
6 Segments 115
Segments and Sections .115

Segment .115

Predefined Segments .116

7 Program Startup 119
Startup Descriptor (ELF). .119

User-Defined Startup Structure (ELF) .123

User-Defined Startup Routines (ELF). .124

Startup Descriptor (Freescale). .124

User-Defined Startup Routines (Freescale). .126

Example of Startup Code in ANSI-C .126

8 The Map File 133
Map File Contents .133

9 ROM Libraries 135
Creating a ROM Library .135

ROM Libraries and Overlapping Locals .136

Using ROM Libraries .136

Suppressing Initialization .136

10 Initializing the Vector Table 143
Using the SmartLinker prm File .143

Using a Relocatable Section in the Assembly Source File145

Using an Absolute Section in the Assembly Source File147

II Burner Utility
Introduction .151

Product Highlights. .151

Starting the Burner Utility. .152
6 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
11 Interactive Burner GUI 155
Burner Default Configuration Window. 155

Burner Dialog Box . 156

Input/Output Tab . 156

Content Tab . 159

Command File Tab . 161

12 Batch Burner Language 163
Batch Burner User Interface . 163

Syntax of Burner Command Files . 164

Command File Comments. 165

Batch Burner with Makefile . 165

Command File Examples . 167

III Libmaker Utility
Introduction. 169

User Interface . 169

 Starting the Libmaker Utility . 170

13 Libmaker Interface 171
Startup Command Line Options . 171

Command Line Interface . 171

Libmaker Commands . 172

Managing Libraries . 172

Libmaker Graphic User Interface . 175

Libmaker Default Configuration Window. 175

Default Configuration Window Status Bar . 178

Configuration Window . 182

Libmaker Option Settings Window. 190

Libmaker Message Settings Window . 191

About Libmaker Dialog Box. 194
7HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
IV Decoder Utility
Introduction .195

Product Highlights. .195

User Interface .196

14 Input and Output Files 197
Input Files .197

Absolute Files .197

Object File .197

S-Record Files .198

Intel Hex Files .198

Output Files .198

15 Decoder Controls 201
List Menus. .201

File Menu. .202

Decoder Menu .203

View Menu. .203

Help Menu .204

Graphical User Interface .204

Decoder Main Window .205

Decoder Configuration Window .207

Decoder Option Settings .212

About Decoder Dialog Box .216

Specifying the Input File .216

Message and Error Feedback .217

Using Information from the Main Window. .217

Using a User-Defined Editor .217
8 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
V Maker Utility

16 Maker Controls 221
Graphical User Interface . 221

Maker Main Window. 221

Main Window Components. 222

Maker Main Window Menu Bar . 222

Maker Main Window Toolbar . 226

Maker Configuration Window. 227

Maker Option Settings Window . 232

Maker Message Settings Window . 233

About Dialog Box . 235

Specifying the Input File. 236

Message and Error Feedback . 236

Using Information from the Main Window. 237

Using a User-Defined Editor . 237

17 Using Maker 239
Making Modula–2 Applications . 239

Making C Applications . 239

Using Makefiles . 240

User-Defined Macros (Static Macros) . 242

Definition. 242

Reference. 242

Redefinition. 242

Macro Substitution . 242

Macros and Comments . 243

Concatenation . 244

Command-Line Macros. 244

Dynamic Macros. 245

Inference Rules . 246

Multiple Inference Rules. 248

Directives and Special Targets . 249

Built-In Commands . 250
9HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
Command Line .252

Implementation Restrictions .252

18 Building Libraries 253
Maker Directory Structure .253

Configuring WinEdit for the Maker .254

Configuring default.env for the Maker .255

Building Libraries with Defined Memory Model Options256

Building Libraries with Objects Added .256

Structured Makefiles for Libraries .258

VI Appendices

A Environment Variables 263
Current Directory .264

Tool-Specific Search Information .265

Compiler .265

Debugger .265

Libmaker .265

Maker. .266

SmartLinker .266

Global Initialization File (MCUTOOLS.INI - PC Only) 267

[Installation] Section .267

Path .267

Group .268

[Options] Section. .268

DefaultDir .268

[Tool] Section .269

SaveOnExit .269

SaveAppearance. .269

SaveEditor .270

SaveOptions .270

RecentProject0, RecentProject1, etc.. .270
10 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
TipFilePos . 271

ShowTipOfDay . 271

TipTimeStamp. 271

[Editor] Section . 272

Editor_Name . 272

Editor_Exe. 273

Editor_Opts . 273

Local Configuration File (usually project.ini) . 274

[Editor] Section . 276

Editor_Name . 276

Editor_Exe. 276

Editor_Opts . 277

[Tool] Section . 277

RecentCommandLineX, X=Integer . 277

CurrentCommandLine. 278

StatusbarEnabled. 278

ToolbarEnabled . 279

WindowPos . 279

WindowFont . 279

TipFilePos . 280

ShowTipOfDay . 280

Options . 281

EditorType . 281

EditorCommandLine. 282

EditorDDEClientName . 282

EditorDDETopicName . 282

EditorDDEServiceName . 283

Burner Dialog Entries in [BURNER] . 283

BurnerUndefByte . 283

BurnerSwapByte . 284

BurnerOrigin . 284

BurnerDestination . 284

BurnerLength . 285

BurnerFormat . 285

BurnerDataBus . 286
11HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
BurnerOutputType .286

BurnerDataBits .287

BurnerParity. .287

BurnerByteCommands .287

BurnerBaudRate .288

BurnerOutputFile. .288

BurnerHeaderFile .289

BurnerInputFile .289

Configuration File Example .290

Paths .291

Line Continuation .292

Environment Variable Details .293

ABSPATH: Absolute Path .293

COMP: Modula-2 Compiler .294

COPYRIGHT: Copyright Entry in Absolute File .295

DEFAULTDIR: Default Current Directory .295

ENVIRONMENT: Environment File Specification 296

ERRORFILE: Error File Name Specification .297

FLAGS: Options for Modula-2 Compiler .300

GENPATH: Define Paths to Search for Input Files300

INCLUDETIME: Creation Time in Object File .301

LINK: Linker for Modula-2. .302

LINKOPTIONS: Default SmartLinker Options .302

OBJPATH: Object File Path .303

RESETVECTOR: Reset Vector Location .304

SRECORD: S Record File Format .304

TEXTFAMILY: Text Font Family .305

TEXTKIND: Text Font Character Set .306

TEXTPATH: Text Path .307

TEXTSIZE: Text Font Size .307

TEXTSTYLE: Text Font Style .308

TMP: Temporary Directory .309

USERNAME: User Name in Object File .310
12 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
B Tool Options 311
Option Details . 312

Special Modifiers . 313

-A: Print Full Listing (Decoder) . 314

-A: Warning for Missing .DEF File (Maker) . 316

-Add: Additional Object/Library File . 316

-Alloc: Allocation Over Segment Boundaries (ELF) 317

-AsROMLib: Link as ROM Library . 319

-B: Generate S-Record file (SmartLinker) . 319

-C: Write Disassembly Listing with Source Code (Decoder) 320

-C: Ignore Case (Maker) . 321

-CAllocUnusedOverlap: Allocate Unreferenced Overlap Variables
(Freescale) . 322

-Ci: Link Case Insensitive . 322

-Cmd: Libmaker Commands. 323

-Cocc: Optimize Common Code (ELF) . 324

-CRam: Allocate Non-specified Constant Segments in RAM (ELF) 325

-D: Display Dialog Box (Burner) . 326

-D: Decode DWARF Sections (Decoder) . 326

-D: Define a Macro (Maker) . 328

-Disp: Display Mode (Maker) . 329

-Dist: Enable Distribution Optimization (ELF) (SmartLinker). 329

-DistFile: Specify Distribution File Name (ELF) (SmartLinker) 330

-DistInfo: Generate Distribution Information File (ELF) (SmartLinker) . . 330

-DistOpti: Choose Optimizing Method (ELF) (SmartLinker) 331

-DistSeg: Specify Distribution Segment Name (ELF) (SmartLinker) 332

-E: Define Application Entry Point (ELF) (SmartLinker) 332

-E: Decode ELF sections (Decoder) . 333

-E: Unknown Macros as Empty Strings (Maker) . 335

-Ed: Dump ELF Sections in LST File (Decoder) . 336

-Env: Set Environment Variable . 336

-F: Execute Command File (Burner). 337

-F: Object File Format (Decoder) . 338

-FA, -FE, -FH -F6: Object File Format (SmartLinker) 339
13HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
-H: Prints the List of All Available Options (Short Help)339

-I: Ignore Exit Codes (Maker) .341

-L: Add a Path to Search Path (ELF) (SmartLinker)341

-L: Produce Inline Assembly File (Decoder). .342

-L: List Modules (Maker) .343

-LibFile .343

-LibOptions .344

-Lic: Print License Information .344

-LicA: License Information About Every Feature in Directory 345

-LicBorrow: Borrow License Feature .345

-LicWait: Wait for Floating License from Floating License Server 346

-M: Generate Map File (SmartLinker) .347

-M: Produce Make File (Maker) .347

-Mar: Freescale Archive Commands (Libmaker) .348

-MkAll: Make Always (Maker). .349

-N: Display Notify Box .349

-NoBeep: No Beep in Case of an Error .351

-NoCapture: Do Not Redirect stdout of Called Processes (Maker).351

-NoEnv: Do Not Use Environment .352

-NoPath: Strip Path Info (Libmaker) .353

-NoSym: No Symbols in Disassembled Listing (Decoder).353

-Ns: Configure S-Records (Burner). .354

-O: Define Absolute File Name (SmartLinker) .355

-O: Defines Listing File Name (Decoder) .356

-O: Compile Only (Maker) .357

-OCopy: Optimize Copy Down (ELF) (SmartLinker).357

-Options .358

-OptionFile. .358

-P2LibFile .359

-Proc: Set Processor (Decoder) .359

-Prod: Specify Project File at Startup (PC) (No d, no m)360

-ReadLibFile .361

-S: Do Not Generate DWARF Information (ELF) (SmartLinker).361

-S: Silent Mode (Maker) .362

-SFixups: Creating Fixups (ELF) (SmartLinker) .362
14 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
-StartUpInfo . 363

-StatF: Specify Name of Statistic File (SmartLinker) 363

-T: Show Cycle Count for Each Instruction (Decoder). 364

-V: Prints Tool Version . 365

-View: Application Standard Occurrence (PC) . 365

-W: Display Window (Burner) . 366

-W1: No Information Messages . 367

-W2: No Information and Warning Messages. 367

-WErrFile: Create “err.log” Error File . 368

-Wmsg8x3: Cut File Names in Microsoft Format to 8.3 (PC) 369

-WmsgCE: RGB Color for Error Messages . 370

-WmsgCF: RGB Color for Fatal Messages. 370

-WmsgCI: RGB Color for Information Messages 371

-WmsgCU: RGB Color for User Messages . 372

-WmsgCW: RGB Color for Warning Messages . 372

-WmsgFb (-WmsgFbv, -WmsgFbm): Set Message File Format for Batch
Mode . 373

-WmsgFi: Set Message File Format for Interactive Mode 374

-WmsgFob: Message Format for Batch Mode . 376

-WmsgFoi: Message Format for Interactive Mode 378

-WmsgFonf: Message Format for no File Information 379

-WmsgFonp: Message Format for No Position Information. 380

-WmsgNe: Number of Error Messages. 382

-WmsgNi: Number of Information Messages. 383

-WmsgNu: Disable User Messages. 384

-WmsgNw: Number of Warning Messages. 384

-WmsgSd: Setting a Message to Disable . 385

-WmsgSe: Setting a Message to Error . 386

-WmsgSi: Setting a Message to Information . 387

-WmsgVrb: Verbose Mode (Maker) . 387

-WmsgSw: Setting a Message to Warning . 388

-WOutFile: Create Error Listing File . 389

-WStdout: Write to Standard Output. 390

-X: Write Disassembled Listing Only (Decoder) . 390

-Y: Write Disassembled Listing with Source And All Comments (Decoder) .
15HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
392

C Messages 393
Types of Generated Messages .393

Message Details. .393

Burner Message List .394

B1: Unknown Message Occurred .394

B2: Message Overflow, Skipping <kind> Messages395

B50: Input file ‘<file>’ not found .395

B51: Cannot Open Statistic Log File <file> .395

B52: Error in Command Line '<cmd>. .396

B64: Line Continuation Occurred in <FileName> 396

B65: Environment Macro Expansion Error '<description>' for
<variablename> .397

B66: Search Path <Name> Does Not Exist .397

B1000: Could Not Open '<FileType>' '<File>. .398

B1001: Error in Input File Format. .398

B1002: Selected Communication Port is Busy .398

B1003: Timeout or Failure for the Selected Communication399

B1004: Error in Macro ‘<macro>’ at Position <pos>: ‘<msg>’399

B1005: Error in Command Line at Position <pos>: ‘<msg>’.399

B1006: ‘<msg>’. .400

Libmaker Message List .400

LM1: Unknown Message Occurred. .400

LM2: Message Overflow, Skipping <kind> Messages400

LM50: Input File ‘<file>’ Not Found .401

LM51: Cannot Open Statistic Log File <file>. .401

LM52: Error in Command Line <cmd> .401

LM64: Line Continuation Occurred in <FileName>.402

LM65: Environment Macro Expansion Message '<description>' for
<variablename> .403

LM66: Search Path <Name> Does Not Exist .403

Decoder Message List .404

D1: Unknown Message Occurred .404

D2: Message Overflow, Skipping <kind> Messages.404
16 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
D50: Input File ‘<file>’ Not Found. 404

D51: Cannot Open Statistic Log File <file> . 405

D52: Error in Command Line <cmd>. 405

D64: Line Continuation Occurred in <FileName> 405

D65: Environment Macro Expansion Message '<description>' for
<variablename> . 406

D66: Search Path <Name> Does Not Exist . 407

D1000: Bad Hex Input File <Description>. 407

D1001: Because Current Processor is Unknown, No Disassembly is
Generated. Use -proc. . 407

Makefile Messages . 408

M1: Unknown Message Occurred. 408

M2: Message Overflow, Skipping <kind> Messages 408

M50: Input File ‘<file>’ Not Found . 409

M51: Cannot Open Statistic Log File <file>. 409

M64: Line Continuation Occurred in <FileName>. 409

M65: Environment Macro Expansion Error '<description>' for
<variablename> . 410

M66: Search Path <Name> Does Not Exist . 411

M5000: User Requested Stop . 411

M5001: Error in Command Line. 412

M5002: Can't Return to <makefile> at End of Include File 412

M5003: Illegal Dependency . 413

M5004: Illegal Macro Reference . 413

M5005: Macro Substitution Too Complex . 414

M5006: Macro Reference Not Closed . 414

M5007: Unknown Macro: <macroname>. 414

M5008: Macro Definition or Command Line Too Long 415

M5009: Illegal Include Directive . 415

M5010: Illegal Line. 415

M5011: Illegal Suffix for Inference Rule . 416

M5012: Include File Not Found: <includefile> . 416

M5013: Include File Too Long: <includefile> . 417

M5014: Circular Macro Substitution in <macroname> 417

M5015: Colon (:) Expected . 417
17HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
M5016: Filename After INCLUDE Expected. .418

M5017: Circular Include, File <includefile>. .418

M5018: Entry Doesn't Start at Column 0 .418

M5019: No Makefile Found .419

M5020: Fatal Error During Initialization .419

M5021: Nothing to Make: No Target Found .419

M5022: Don't Know How to Make <target>. .420

M5023: Circular Dependencies Between <target1> and <target2> 420

M5024: Illegal Option .421

M5027: Making Target <target> .421

M5028: Command Line Too Long: <commandline>422

M5029: Illegal Target Name: <targetname> .422

Exec Process Messages .422

M5100: Command Line Too Long for Exec .422

M5101: Two File Names Expected .423

M5102: Input File Not Found .423

M5103: Output File Not Opened. .423

M5104: Error While Copying .424

M5105: Renaming Failed .424

M5106: File Name Expected .425

M5107: File Does Not Exist .425

M5108: Called Application Detected an Error .425

M5109: Echo <commandline> .426

M5110: Called Application Caused a System Error426

M5111: Change Directory (cd) Failed. .426

M5112: Called Application: <error>. .427

M5113: Called Application: <warning> .427

M5114: Called Application: <information> .428

M5115: Called Application: <fatal> .428

M5116: Could Not Delete File .429

M5117: Path Was Not Found. .429

M5118: Could Not Create Process: <diagnostic> .430

M5119: Exec <commandline> .430

M5120: Running Version with Limited Number of Execution Calls. Number
of Allowed Execution Calls Exceeded. .430
18 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
M5121: The Files <file1> and <file2> Are Not Identical. 431

M5122: The Files <file1> and <file2> Are Identical 431

M5153: Processing Make Files Under Win32s Is Not Supported by the Maker
431

Modula-2 Maker Messages. 432

M5700: Environment Variable COMP Not Set. 432

M5701: Environment Variable LINK Not Set . 432

M5702: Neither Source Nor Symbol File Found: <source file>. 432

M5703: Circular Imports in Definition Modules . 433

M5704: Can't Recompile <source file> (No Source Found). 433

M5705: No Make File Generated (Top Module Not Found) 433

M5706: Couldn't Open the Listing File <list file> 434

M5708: Couldn't Open the Makefile. 434

M5761: Wrote Makefile <makefile> . 435

M5762: Wrote Listing File <listfile> . 435

M5763: Compilation Sequence. 435

D Tool Commands 437
SmartLinker Commands . 437

AUTO_LOAD: Load Imported Modules (Freescale, M2) 437

CHECKSUM: Checksum Computation (ELF) . 438

CHECKKEYS: Check Module Keys (Freescale, M2) 441

DATA: Specify the RAM Start (Freescale) . 442

DEPENDENCY: Dependency Control . 442

ENTRIES: List of Objects to Link with Application 447

HAS_BANKED_DATA: Application Has Banked Data (Freescale) 449

HEXFILE: Link Hex File with Application . 449

INIT: Specify Application Init Point. 450

LINK: Specify Name of Output File. 451

MAIN: Name of Application Root Function . 452

MAPFILE: Configure Map File Content . 453

NAMES: List Files Building the Application . 455

OVERLAP_GROUP: Application Uses Overlapping (ELF) 456

PLACEMENT: Place Sections into Segments . 458

PRESTART: Application Prestart Code (Freescale) 460
19HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
SECTIONS: Define Memory Map (Freescale) .461

SEGMENTS: Define Memory Map (ELF) .463

STACKSIZE: Define Stack Size .471

STACKTOP: Define Stack Pointer Initial Value .473

START: Specify the ROM Start (Freescale) .474

VECTOR: Initialize Vector Table .474

Batch Burner Commands .476

baudRate: Baudrate for Serial Communication. .477

busWidth: Data Bus Width .478

CLOSE: Close Open File or Communication Port478

dataBit: Number of Data Bits .479

destination: Destination Offset .480

DO: For Loop Statement List .480

ECHO: Echo String onto Output Window. .481

ELSE: Else Part of If Condition .482

END: For Loop End or If End .483

FOR: For Loop .484

format: Output Format. .485

header: Header File for PROM Burner .485

IF: If Condition .486

len: Length to be Copied .487

OPENCOM: Open Output Communication Port .488

OPENFILE: Open Output File .488

origin: EEPROM Start Address. .489

parity: Set Communication Parity .490

SENDBYTE: Transfer Bytes. .490

SENDWORD: Transfer Words .491

SLINELEN: SRecord Line Length .493

SRECORD: S-Record Type. .494

swapByte: Swap Bytes .495

THEN: Statementlist for If Condition .495

TO: For Loop End Condition. .496

undefByte: Fill Byte for Binary Files .497

PAUSE: Wait until Key Pressed. .498
20 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
E EBNF Notation 499
Introduction to EBNF . 499

EBNF Example . 499

EBNF Syntax. 500

Extensions . 500

Index 503
21HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Table of Contents
22 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Introduction

CodeWarrior IDE Utilities
The HC(S)08, RS08 and S12(X) Build Tools Utilities Manual describes the following five
CodeWarrior IDE utilities:

• SmartLinker

• Burner Utility

• Libmaker

• Decoder

• Maker: The Make Tool

SmartLinker
The CodeWarrior IDE SmartLinker utility merges the various object files of an
application into one absolute file (or .ABS file) that can be converted to an S-Record or an
Intel® Hex file, using the Burner program, or loaded into the target using the Downloader/
Debugger.

This utility is a “smart linker”, linking only those objects that are actually used by your
application. This linker is able to generate either Freescale or ELF absolute files.

Burner Utility
The CodeWarrior IDE burner utility converts an .ABS file into a file that can be handled
by an EPROM burner.

Libmaker
The CodeWarrior IDE Libmaker utility creates and maintains object file libraries.

Decoder
The CodeWarrior IDE ELF/Freescale Decoder utility disassembles object files, absolute
files and libraries in the Freescale object file format or ELF/DWARF format, along with
S-Record files.
23HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Starting a CodeWarrior Utility
Maker: The Make Tool
The CodeWarrior IDE Maker utility implements the UNIX make command with a
Graphical User Interface (GUI). In addition, you can use Maker to build Modula-2
applications as well as maintain C/C++ projects.

Starting a CodeWarrior Utility
You can start all of the utilities described in this book from executable files located in the
prog folder of your CodeWarrior IDE installation. The executable files are:

• maker.exe Maker: The Make Tool

• burner.exe The Burner Utility

• decoder.exe The Decoder

• libmaker.exe Libmaker

• linker.exe SmartLinker

A standard full installation of the HC(S)08/RS08 CodeWarrior IDE places the executable
files in this location:

C:\Program Files\Freescale\CodeWarrior for Microcontrollers V6.2\Prog

A standard full installation of the HC(S)12 CodeWarrior IDE places the executable files in
this location:

C:\Program Files\Freescale\CodeWarrior for S12(X) V5.x\Prog

To start any CodeWarrior Utility, click on the appropriate executable file (*.exe).
24 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

I

SmartLinker

This chapter describes the SmartLinker utility. The linker merges the various object files
of an application into one absolute file (or .ABS file). The file is called absolute file
because it contains absolute, not relocatable cod. You can convert this .ABS file to an S-
Record or an Intel Hex file using the Burner program or load the .ABS file into the target
using the Downloader/Debugger.

The Linker is a smart linker. It links only those objects that are actually used by your
application.

This linker is able to generate either Freescale or ELF absolute files. For compatibility
purposes, the Freescale input syntax is also supported when ELF absolute files are
generated.

Purpose of a Linker
Linking is the process of assigning memory to all global objects (functions, global data,
strings, and initialization data) needed for a given application and combining these objects
into a format suitable for downloading into a target system or an emulator.

The linker is a smart linker: it links only those objects that are actually used by the
application. Unused functions and variables won’t occupy any memory in the target
system. Other optimizations that reduce memory requirements include storing initialized
parts of global variables in compact forms, and reserving memory only once for equal
strings.

Product Features
The most important features supported by the SmartLinker are:

• Complete control over the placement of objects in memory: it is possible to allocate
different groups of functions or variables to different memory areas (Segmentation;
see the Segments and Sections chapters).

• Linking to objects already allocated in a previous link session (ROM libraries).
25HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Starting the SmartLinker Utility
NOTE The code for application startup is a separate file written in inline assembly and
can be easily adapted to your particular needs. In this manual, the startup file is
called startup. However, this is a generic file name that has to be replaced
by the real target startup file name. See the README.TXT file in the
appropriate subdirectory of the installation LIB directory for more details
about memory models and associated startup codes.

• Mixed-language linking: Modula-2, assembly, and C object files can be mixed, even
in the same application.

• Vector initialization.

Section Contents
This section consists of the following chapters:

• SmartLinker User Interface — Describes the features of the SmartLinker user
interface

• SmartLinker Files — Describes the input and output files used by the SmartLinker

• Linking Issues — Discusses linking features and issues

• SmartLinker Parameter File — Describes the requirements of the SmartLinker
parameter file

• ELF Sections — Describes the use of sections and segments for ELF and provides
examples using sections to control allocation of variables and functions

• Segments — Describes the use of sections and segments for Freescale

• Program Startup — Provides advanced material on using startup routines

• The Map File — Describes the contents of the map file produced by the link process

• ROM Libraries —Describes creating and using ROM libraries

• Initializing the Vector Table — Describes initializing the vector table

Starting the SmartLinker Utility
All utilities described in this book may be started from executable files located in the
prog folder of your IDE installation. The executable files are:

• maker.exe Maker: The Make Tool

• burner.exe The Burner Utility

• decoder.exe The Decoder

• libmaker.exe Libmaker
26 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Starting the SmartLinker Utility
• linker.exe SmartLinker

With a standard full installation of the HC(S)08/RS08 CodeWarrior IDE, the executable
files are located at:

C:\Program Files\Freescale\CodeWarrior for Microcontrollers V6.2\Prog

With a standard full installation of the HC(S)12 CodeWarrior IDE, the executable files are
located at:

C:\Program Files\Freescale\CodeWarrior for S12(X) V5.x\Prog

To start the SmartLinker Utility, click on linker.exe.
27HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Starting the SmartLinker Utility
28 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

1
SmartLinker User Interface

The SmartLinker runs under Win32. Start the linker from the CodeWarrior installation
prog folder.

SmartLinker Main Window
The SmartLinker Main window provides a window title, a menu bar, a toolbar, a content
area, and a status bar, as shown in Figure 1.1.

Figure 1.1 SmartLinker Main Window
29HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Window Title
The window title displays the project name. If currently no project is loaded, Default
Configuration appears in the title. A “*” after the configuration name indicates that some
values have changed. The “*” appears as soon as an option, the editor configuration or the
window appearance changes.

Content Area
The Content Area is used as a text container where logging information about the link
session is displayed. This logging information consists of:

• The name of the prm file which is being linked

• The whole name (including full path specification) of the files building the
application

• The list of the errors, warnings and information messages generated

When you drop a file name into the SmartLinker window content area, the corresponding
file loads as configuration if the file has the extension .ini. Otherwise, the file links with
the current option settings (see Specifying the Input File).

All text in the SmartLinker window content area can have context information. The
context information consists of two items:

• A file name including a position inside of a file

• A message number

File context information is available for all output lines where a file name is displayed.
There are two ways to open the file specified in the file context information in the editor
specified in the editor configuration:

• If a file context is available for a line, double click on a line containing file context
information.

• Click with the right mouse at a line and select “Open”.

If a file cannot be opened although a context menu entry is present, the editor
configuration information is not correct (see the section Editor Settings Tab).

Most messages appear with associated message numbers. There are three ways to open the
corresponding entry in the help file:

• Select one line of the message and press F1

• Press Shift-F1 and then click on the message text.

• Right click the message text and select Help on. This entry is only available if a
message number is available.
30 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
NOTE If the selected line or message text does not have a message number, using
either F1 or Shift-F1 displays the main help page.

NOTE The Help on option is available only when a message number is available.

Messages are colored according to their kind. Errors are red, Fatal Errors are dark red,
Warnings are blue, and Information Messages are green.

Main Window Toolbar
Figure 1.2 shows the SmartLinker main window toolbar buttons.

Figure 1.2 Toolbar Buttons

The three buttons on the left correspond to File menu entries. Use these buttons to open a
new configuration, load an existing configuration, and save the current configuration for
the linker.

Use the Help and Context Help buttons to open the Help file and the Context Help.
Pressing the context help button changes the cursor form and adds a question mark beside
the arrow. Clicking any item calls the help for that item. Use the Context Help to get
specific help on menus, toolbar buttons, or on the window area.

The command line history contains the list of the last commands executed. Once a
command line has been selected or entered in this combo box, click the Link button to
execute this command.

Use the Stop Linking button to abort the current link session. If no link session is running,
this button is disabled (gray).

Use the Option Settings button to open the Option Settings dialog.

Use the Message Settings button to open the Message Settings dialog.
31HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Use the Clear button to clear the SmartLinker window content area.

Activate the command line in the toolbar by using the F2 key.

Use the right mouse button to display a context menu.

Messages are colored according to their Message Class.

Main Window Status Bar
Figure 1.3 shows the SmartLinker main window status bar.

Figure 1.3 Main Window Status Bar

When pointing to a button in the toolbar or a menu entry, the message area displays the
function of the button or menu entry.

Main Window Menu Bar
The following menus are available in the menu bar:

File Menu
With the File menu, SmartLinker configuration files can be saved or loaded. A
SmartLinker configuration file contains the following information:

• SmartLinker option settings specified in the SmartLinker dialog boxes.

• Message settings which specify which messages to display and which to treat as
errors.

• List of the last command line executed and the current command line.

Table 1.1 Main Window Menus

File Menu Contains entries to manage SmartLinker configuration files.

SmartLinker Menu Contains entries to set SmartLinker options.

View Menu Contains entries to customize the SmartLinker window output.

Help A standard Windows Help menu.
32 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
• Window position, size and font.

• Tips of the Day settings, including the enable at startup setting and the current entry.

Configuration files are text files, which have the standard extension .ini. You can define
as many configuration files as required for your project, and switch between the different
configuration files using the File > Load Configuration and File > Save Configuration
menu entry or the corresponding toolbar buttons. Table 1.2 describes the menu items.

Table 1.2 File Menu Item Description

Menu Item Description

Link Opens a standard Open File box, displaying the list of all the .prm
files in the project directory. Select the input file using the features
from the standard Open File box. The selected file links as soon as
you close the Open File box by clicking OK.

New/Default
Configuration

Resets the SmartLinker option settings to the default values. The
SmartLinker options activate by default.

Load
Configuration

Opens a standard Open File box, displaying the list of all the .INI
files in the project directory. Select the configuration file using the
features from the standard Open File box. Loads the configuration
data stored in the selected file and uses it in a further link session.

Save
Configuration

Saves the current settings in the configuration file specified on the
title bar.

Save
Configuration as

Opens a standard Save As box, displaying the list of all the .INI
files in the project directory. Specify the name or location of the
configuration file using the features from the standard Save As box.
Saves the current settings in the specified file as soon as you close
the Save As box by clicking OK.

Configuration Opens the Configuration dialog box to specify the editor used for
error feedback, which parts to save with a configuration, and
environment variable settings.

1. project.ini
2.

Recent project list. Access this list to reopen a recently opened
project.

Exit Closes the SmartLinker.
33HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
SmartLinker Menu
The SmartLinker menu allows you to customize the SmartLinker. You can graphically set
or reset SmartLinker options or define the optimization level you want to reach. Table 1.3
describes the SmartLinker menu items.

View Menu
The View menu allows you to customize the linker window. You can specify whether to
display or hide the status bar and the toolbar. You can also define the font used in the
window or clear the window. Table 1.4 describes the View menu items.

SmartLinker Configuration Window
The SmartLinker Configuration Window has three tabs. The following sections discuss
each of the tabs.

Table 1.3 SmartLinker Menu Item Description

Menu Item Description

Options Allows you to define the options which must be activated when linking
an input file (see Option Settings Window).

Messages Opens a dialog box in which you can map the different error, warning or
information messages to another message class (see Message Settings
Window).

Stop Linking Stops the currently running linking process. This entry is only enabled
(black) when a link process currently takes place. Otherwise, it is gray.

Table 1.4 View Menu Item Description

Menu Item Description

Tool Bar Switches display from the toolbar in the SmartLinker window.

Status Bar Switches display from the status bar in the SmartLinker window.

Log Allows you to customize the output in the SmartLinker window content
area. The following entries are available when Log is selected:

Change
Font

Opens a standard font selection box. Applies the options selected in
the font dialog box to the SmartLinker window content area.

Clear Log Allows you to clear the SmartLinker window content area.
34 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Editor Settings Tab
The Configuration Window Editor Settings Tab, as shown in Figure 1.4, has option
buttons that let you select an editor type for SmartLinker, or for all Tools. Depending on
the type of editor selected, the Editor Settings tab content changes.

Global Editor Option
In the view below, the Global Editor option has been selected.

All tools and projects on one computer share the Global Editor. It is stored in the global
initialization file MCUTOOLS.INI in the [Editor] section of the file. Some Modifiers
(editor options) can be specified in the editor command line. Once these options are
stored, the behavior of the other tools that use the same entry changes the next time you
start the tool.

Figure 1.4 Editor Settings Tab - Global Editor

Local Editor Option
Figure 1.5 shows the Configuration Window Editor Settings tab with the Local Editor
option selected.

All tools using the same project file share the Local Editor. You can specify some
Modifiers in the editor command line
35HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Edit the Local Editor configuration with the linker. When these entries are stored, the
behavior of the other tools using the same entry also changes the next time you start the
tool.

Figure 1.5 Editor Settings Tab - Local Editor

Editor started with Command Line Option
Figure 1.6 shows the Configuration window Editor Settings tab with the Editor started
with Command Line option selected.
36 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Figure 1.6 Editor Settings Tab - Editor started with Command Line

Selecting this editor type associates a separate editor with the SmartLinker for error
feedback. The editor configured in the Shell is not used for error feedback.

Enter the command that you want to use to start the editor. The format for the editor
command depends on the syntax required to start the editor. You can specify some
Modifiers in the editor command line to refer to a line number of the named file.

Example:

For Winedit 32-bit versions, use (with an adapted path to the winedit.exe file):

C:\WinEdit32\WinEdit.exe %f /#:%l

For write.exe, use (with an adapted path to the write.exe file, note that write does
not support line numbers):

C:\Winnt\System32\Write.exe %f
37HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Editor Communication with DDE Option
Figure 1.7 shows the Configuration window Editor Settings tab with the Editor
Communication with DDE option selected.

Figure 1.7 Editor Settings - Editor Communication with DDE

You must enter the Service and Topic Name as well as the Client Command to be used for
a DDE connection to the editor. All entries can have modifiers for file name and line
number as explained in the Modifiers section below.

Example:

For Microsoft Developer Studio use the following setting:

Service Name: "msdev"

Topic Name: "system"

ClientCommand: "[open(%f)]"

Modifiers

Include some modifiers in the configurations to tell the editor which file to open and at
which line.

• The %f modifier refers to the name of the file (including path) where the error was
detected.
38 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
• The %l modifier refers to the line number where the message was detected.

NOTE Only use the %l modifier with an editor which can be started with a line
number as a parameter. This is not the case for WinEdit version 3.1 or lower or
for Notepad. When you work with such an editor, you can start it with the file
name as a parameter and then select the menu entry Go to to jump to the line
where the message was detected. In that case, the editor command looks like:
C:\WINAPPS\WINEDIT\Winedit.EXE %f
Check your editor documentation to determine which command line to use to
start the editor.

Configuration Window Save Configuration Tab
Figure 1.8 shows the Save Configuration tab of the Configuration Window, which
contains all of the options for the Save operation.

Figure 1.8 Save Configuration Tab

In the Save Configuration tab, use the four checkboxes to choose which items to save to
a project file when you save the configuration.

• Options: This item relates to the option and message settings. Setting this checkbox
stores the current option and message settings in the project file when the
39HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
configuration is saved. By disabling this checkbox, changes to the option and
message settings are not saved and the previous settings remain valid.

• Editor Configuration: This item relates to the editor settings. Setting this checkbox
stores the current editor settings in the project file when the configuration is saved.
By disabling this checkbox, the previous settings remain valid.

• Appearance: This item relates to many parts such as the window position (only
loaded at startup time) and the command line content and history. Setting this
checkbox stores these settings in the project file when the current configuration is
saved. By disabling this checkbox, the previous settings remain valid.

• Environment Variables: This item relates to the environment variable settings on
the Environment tab. Setting this checkbox stores the specified settings in the project
file when the current configuration is saved. By disabling this checkbox, the previous
settings remain valid.

NOTE Disabling specific options, prevents some parts of a configuration file from
being written. For example, when the editor has been configured, the save
Editor mark can be removed. Then future save commands no longer modify the
options.

• Save on Exit: Setting this option makes the linker write the configuration on exit. No
dialog box appears to confirm this operation. If this option is not set, the linker does
not write the configuration at exit, even if options or other parts of the configuration
have changed. No confirmation appears in any case when closing the linker.

NOTE Most settings are stored only in the project configuration file. The only
exceptions are:
- The recently used configuration list.
- All settings in this dialog.

NOTE The linker configurations coexist in the same file as the project configuration
of the shell. When the shell configures an editor, the linker can read this
content out of the project file, if present. The project configuration file of the
shell is named project.ini. This file name is therefore suggested (but not
mandatory) for the linker.
40 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Configuration Window Environment Tab
The Environment tab of the Configuration window, shown in Figure 1.9, contains all of
the options for configuring environment variables.

Figure 1.9 Environment Tab

Define environment variables for the SmartLinker in the Environment tab. Click the Add
button to add new entries, the Change button to change an existing entry, and the Up and
Down button to change the order of the entries.

Option Settings Window
The five tabs of the Options Settings window, shown in Figure 1.10, allow you to set or
reset SmartLinker options.
41HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Figure 1.10 Option Settings Window

In addition to the Optimization tab, a tab is provided for each of the four option groups.
Table 1.5 describes these four tabs.

Set a SmartLinker option by checking its checkbox. To obtain a more detailed explanation
about a specific option, select the option and then press the key F1 or the help button. To
select an option, click once on the option text. The option text is then highlighted.

When the window is opened, no options are selected. Pressing the F1 key or the help
button shows the help for this window.

Table 1.5 Option Settings Group Description

Group Description

Output Lists options related to the output files generation (what kind of files to
generate).

Input Lists options related to the input files.

Messages Lists options controlling the generation of error messages.

Host Lists host-specific options.
42 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Message Settings Window
The Message Settings window, shown in Figure 1.11, allows you to map messages to a
different message class.

Depending on the message class, messages are shown in different colors in the main
output area.

Each message has its own leading character (‘L’ for SmartLinker message) followed by a
4- or 5-digit number. This number allows an easy search for the message in both the
manual and on-line help.

A tab is available for each error message class: Disabled, Information, Error, Warning and
Fatal. To move a message from one class to another, highlight the message in the list box
on the left side, then click the button on the right that corresponds to the new message
class.

Figure 1.11 Message Settings Window
43HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Table 1.6 describes the message classes available in the Message Settings dialog box.

Changing the Message Class
You can configure your own mapping of messages in the different classes using one of the
buttons located on the right side of the dialog box. Each button refers to a message class.
To change the class associated with a message, select the message in the list box and then
click the button associated with the class to which you want to move the message.

Example:

To define the warning message L1201: No stack defined as an error message:

• Click the Warning tab to display the list of all warning messages.

• Click on the string L1201: No stack defined in the list box to select the message.

• Click Error to define this message as an error message.

NOTE Messages cannot be moved from or to the fatal error class.

NOTE The Move to buttons are active only when all selected messages can be moved.
Selecting a message which cannot be moved to a specific group disables
(grays) the corresponding Move to button.

Table 1.6 Message Class Description

Message Class Description Color

Disabled Lists all disabled messages. SmartLinker does not
display these messages.

None

Information Lists all information messages. Information messages
inform about action taken by the SmartLinker.

Green

Warning Lists all warning messages. When such a message is
generated, linking of the input file continues and an
absolute file is generated.

Blue

Error Lists all error messages. When an error message is
generated, linking of the input file continues but no
absolute file is generated.

Red

Fatal Lists all fatal error messages. When a fatal message is
generated, linking of the input file stops immediately.
Fatal messages cannot be changed. They are only listed
to call context help.

Dark
Red
44 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
To validate the modifications you have made in the error message mapping, close the
Message Settings dialog box with the OK button. If you close it using the Cancel button,
the previous message mapping remains valid.

To reset messages to their default, select the messages and click the Default button. To
reset all messages to the default, click the Reset All button.

About Dialog Box
Open the About dialog box with the Help > About command.

The About box contains extensive information. The main linker version appears
separately on top of the dialog and the current directory and the versions of subparts of the
linker are shown.

In addition, the About box contains all information needed to create a permanent license.
Copy and paste the contents of the About box using standard Windows® commands.

Click OK to close the dialog box.

During a linking session, the versions of linker subparts cannot be requested. They are
displayed only when the linker currently is not processing.

Retrieving Information about an Error
Message
You can access information about each message displayed in the list box. Select the
message in the list box and then click Help or the F1 key. An information box opens,
which contains a more detailed description of the error message as well as a small example
of code producing it. If you select several messages, help for the first is shown. Pressing
the F1 key or the help button when no message is selected shows the help for this dialog.

Specifying the Input File
There are different ways to specify the input file to link. During linking of a source file,
the options are set according to the dialog box configuration settings and the options
specified on the command line.

Before starting to link a file, make sure you have associated a working directory with your
linker.

Using the Command Line in the Toolbar to
Link
This section provides information for using the command line in the toolbar to link files.
45HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Linking a New File
Enter a new file name and additional SmartLinker options in the command line. The
specified file links as soon as you select the Link button in the toolbar or press the enter
key.

Linking a Previously Linked File
Display previously executed commands using the arrow on the right side of the command
line. Select a command by clicking on it. It appears in the command line. The specified
file links as soon as you select the Link button in the toolbar.

Use the Entry File > Link
Select File > Link to display a standard file open file box with the list of all the prm files
in the project directory. Browse to get the name of the file you want to link. Select the
desired file. Click Open in the Open File box to link the selected file.

Use Drag and Drop
You can drag a file name from an external software (for example the File Manager/
Explorer) and drop it into the SmartLinker window. The dropped file links as soon as you
release the mouse button in the SmartLinker window. If a file being dragged is a *.ini
file, it is considered a configuration file and loads immediately but does not link.

NOTE To link a prm file with the extension *.ini use one of the other methods. Do
not use drag and drop.

Message/Error Feedback
After linking there are several ways to check where different errors or warnings have been
detected. By default, the format of the error message looks as follows:

>>in <FileName>, line <line number>, col <column number>, pos
<absolute position in file>
<Portion of code generating the problem>
<message class><message number>: <Message string>
46 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
Example

>> in "placemen\tstpla8.prm", line 23, col 0, pos 668
 fpm_data_sec INTO MY_RAM2;

END

^
ERROR L1110: MY_RAM2 appears twice in PLACEMENT block

See also SmartLinker options for different message formats.

Use SmartLinker Window Information
Once you link a file, the SmartLinker window content area displays the list of all the errors
or warnings detected.

Use your usual editor to open the source file and correct the errors.

Use a User-Defined Editor
You must first configure the editor for Error Feedback in the Configuration window
Editor Settings tab. Error feedback performance varies, depending on whether you can
start the editor with a line number.

Line Number Specified on Command Line
You can start an editor like WinEdit, V95 or higher, or Codewright with a line number in
the command line. When these editors are configured correctly, you can activate them
automatically by double clicking on an error message. The configured editor starts, the file
where the error occurred opens automatically, and places the cursor on the line where the
error was detected.

Line Number Cannot Be Specified on Command Line
An editor like WinEdit V31 or lower, Notepad, or Wordpad cannot be started with a line
number in the command line. When these editors are configured correctly, you can
activate them automatically by double clicking on an error message. The configured editor
starts and the file where the error occurs opens automatically. To scroll to the position
where the error was detected:

1. Activate the assembler again.

2. Click the line on which the message was generated. This highlights the line on the
screen.

3. Copy the line in the clipboard by pressing CTRL + C.
47HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker User Interface
SmartLinker Main Window
4. Activate the editor again.

5. Select Search > Find: the standard Find dialog box opens.

6. Copy the content of the clipboard in the Edit box by pressing CTRL + V.

7. Click Forward to jump to the position where the error was detected.
48 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

2
SmartLinker Files

This chapter describes the input and output files used by the SmartLinker.

• Input Files

• Output Files

Input Files
This section describes the input files used by the SmartLinker.

Parameter File
The linker takes any file as input; it does not require the file name to have a special
extension. However, we suggest that all your parameter file names have extension .prm.
The SmartLinker searches for the parameter file first in the project directory and then in
the directories enumerated in GENPATH (see GENPATH: Define Paths to Search for Input
Files). The parameter file must be a strict ASCII text file.

Object File
The link parameter file entry NAMES specifies the list of files to be linked. Specify
additional object files with the -Add option (see -Add: Additional Object/Library File).

The linker looks for the object files first in the project directory, then in the directories
enumerated in OBJPATH (see OBJPATH: Object File Path) and finally in the directories
enumerated in GENPATH (see GENPATH: Define Paths to Search for Input Files). The
binary files must be valid Freescale, ELF\DWARF 1.1 or 2.0 objects, absolute, or library
files.
49HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker Files
Output Files
Output Files
This section describes the output files used by the SmartLinker.

Absolute Files
After a successful linking session, the SmartLinker generates an absolute file containing
the target code as well as some debugging information. The SmartLinker writes this file to
the directory given in the environment variable ABSPATH (see ABSPATH: Absolute
Path). If ABSPATH contains more than one path, SmartLinker writes the absolute file in
the first directory given; if ABSPATH is not set at all, SmartLinker writes the absolute file
in the directory in which the parameter file was found. Absolute files always get the
extension .abs.

S-Record Files
After a successful linking session, and if the -B option is present (see -B: Generate S-
Record file (SmartLinker)), the SmartLinker generates an S-Record file, which can be
burnt into an EPROM. This file contains information stored in all the READ_ONLY
sections in the application. The extension for the generated S-Record file depends on the
setting from the SRECORD variable (see SRECORD: S Record File Format).

• If SRECORD = S1, the S Record file gets the extension .s1.

• If SRECORD = S2, the S Record file gets the extension .s2.

• If SRECORD = S3, the S Record file gets the extension .s3.

• If SRECORD is not set, the S Record file gets the extension .sx.

The SmartLinker writes this file to the directory given in the ABSPATH environment
variable (see ABSPATH: Absolute Path). If ABSPATH contains more than one path, the
SmartLinker writes the S-record file in the first directory given; if ABSPATH is not set at
all, the SmartLinker writes the S-record file in the directory in which the parameter file
was found.

Map Files
After a successful linking session, the SmartLinker generates a map file containing
information about the link process. The SmartLinker writes this file to the directory given
in the TEXTPATH environment variable (see TEXTPATH: Text Path). If TEXTPATH
contains more than one path, SmartLinker writes the map file in the first directory given; if
TEXTPATH is not set at all, SmartLinker writes the map file in the directory in which the
parameter file was found. Map files always get the extension .map.
50 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker Files
Output Files
Dependency Information
The linker provides useful dependency information in the generated map file. The
dependency information shows which objects are used by other objects (functions,
variables, etc.).

The dependency information in the linker map file is based on fixups/relocations. That is
if an object references another object by a relocation, the linker adds this object to the
dependency list.

Examples

int hrs;
void tim(void) {
 hrs = 0;
}

In tim in the above example, the compiler has generated a fixup/relocation to the object
hrs, so the linker knows that tim uses hrs. For the next example, tim references tim
itself, because in tim there is a fixup to tim as well:

void tim(void) {
 tim();
}

Now the compiler might perform a common code optimization, in which the compiler
collects common code into a function to reduce the code size.

NOTE You can switch off this compiler common code optimization.

Example:

void tim(void) {
 if (hrs == 3) hrs = 0;
 ...
 if (hrs == 3) hrs = 0;
}

The compiler may optimize this to:

int tim(void) {
 bsr tim:Label:
 ...
 tim_Label:
 if (hrs == 3) hrs = 0;
51HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker Files
Output Files
 return;
}

Here the compiler generates a local branch inside tim to a local subroutine. This produces
a relocation/fixup into tim, that is, for the linker, tim references itself.

Error Listing File
If the SmartLinker detects any errors, it creates an error listing file instead of an absolute
file. The SmartLinker generates this file into the directory in which the source file was
found (see ERRORFILE: Error File Name Specification).

If the Linker window is open, it displays the full path of all binary files read. In case of
error, the position and file name where the error occurs appears in the linker window.

If you started the SmartLinker from WinEdit (with %f given on the command line) or
Codewright (with %b%e given on the command line), SmartLinker does not generate this
error file. Instead it writes the error messages in a special format into a file called EDOUT,
using the Microsoft format by default. Use WinEdit’s Next Error or Codewright’s Find
Next Error command to see both error positions and the error messages.

Interactive Mode (SmartLinker Window Open)
If ERRORFILE is set, the SmartLinker creates a message file named as specified in this
environment variable. If ERRORFILE is not set, the SmartLinker generates a default file
named ERR.TXT in the current directory.

Batch Mode (SmartLinker Window Not Open)
If ERRORFILE is set, the SmartLinker creates a message file named as specified in this
environment variable. If ERRORFILE is not set, the SmartLinker generates a default file
named EDOUT in the current directory.
52 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker Files
Output Files
Figure 2.1 Error File Creation

SmartLinker

ERRORFILE

ERR.TXT.abs

.prm

.map

“.o”

.sx

1. current dir
2. OBJPATH
3. GENPATH

1. current dir
2. GENPATH

1. ABSPATH
2. Source file path

1. TEXTPATH
2. Source file path

“.lib”
“.abs”

EDOUT

or
53HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker Files
Output Files
54 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

3
Linking Issues

Object Allocation
This chapter describes whole object allocation using The SEGMENTS Block (ELF) or
Segments and PLACEMENT Block.

The SEGMENTS Block (ELF)
The SEGMENTS Block is optional. It increases the readability of the linker input file and
allows you to assign meaningful names to contiguous memory areas on the target board.
Memory within such an area shares common attributes:

• Segment Qualifier

• Segment Alignment

• Segment Fill Pattern

 You can define two types of segments:

• Physical Segments

• Virtual Segments

Physical Segments
Physical segments are closely related to hardware memory areas.

For example, there may be one READ_ONLY segment for each bank of the target board
ROM area and another segment covering the whole target board RAM area.

For a simple memory model, you can define a segment for the RAM area and another
segment for the ROM area.

Listing 3.1 Physical Segments Example

 LINK test.abs
 NAMES test.o startup.o END
 SEGMENTS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
55HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END

 STACKSIZE 0x50

For banked memory model you can define a segment for the RAM area, another for the
non-banked ROM area and one for each target processor bank.

Listing 3.2 Physical Segments Example 2

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 NON_BANKED_AREA = READ_ONLY 0x0C000 TO 0x0FFFF;
 BANK0_AREA = READ_ONLY 0x08000 TO 0x0BFFF;
 BANK1_AREA = READ_ONLY 0x18000 TO 0x1BFFF;
 BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;
 END

 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 _PRESTART, STARTUP,
 ROM_VAR,
 NON_BANKED, COPY INTO NON_BANKED_AREA;
 DEFAULT_ROM INTO BANK0_AREA, BANK1_AREA,
 BANK2_AREA;
 END

 STACKSIZE 0x50

Virtual Segments
You can split a physical segment into several virtual segments, allowing a better
structuring of object allocation and allowing you to use some processor-specific
properties.

For an HC12 small memory model, you can define a segment for the direct page area,
another one for the rest of the RAM area, and another one for the ROM area.
56 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
Listing 3.3 Virtual Segment Example

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END

 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END

 STACKSIZE 0x50

Segment Qualifier
Different qualifiers are available for segments. Table 3.1 describes the available qualifiers:

Table 3.1 Qualifiers and Descriptions

Qualifier Description

READ_ONLY Qualifies a segment that allow only read access. Initializes objects
within the segment at application loading time.

READ_WRITE Qualifies a segment that allows both read and write accesses.
Initializes objects within such a segment at application startup.

NO_INIT Qualifies a segment that allows both read and write accesses.
Objects within such a segment remain unchanged during application
startup. This qualifier may be used for segments referring to a battery-
backed RAM. Sections placed in a NO_INIT segment should not
contain any initialized variables (variable defined as int c = 8).

PAGED Qualifies a segment that allows both read and write accesses.
Objects within such a segment remain unchanged during application
startup. Additionally, objects located in two PAGED segments may
overlap. This qualifier is used for memory areas that require some
user-defined page-switching mechanism. Sections placed in a
PAGED segment should not contain any initialized variables (variable
defined as int c = 8).
57HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
NOTE For debugging purposes you may want to load code into RAM areas. Because
this code should be loaded at load time, qualify such areas as READ_ONLY.
For the linker, READ_ONLY means that such objects are initialized at
program load time. The linker does not know (and does not care) if at runtime
the target code writes to a READ_ONLY area.

NOTE Anything located in a READ_WRITE segment is initialized at application
startup time. Locate the application code which does this initialization and any
initialization data (init, zero out, copy down) in a READ_ONLY section. Do
not locate the application code and the initialization data in a READ_WRITE
section.
The program loader can, at program loading time, write the content of
READ_ONLY sections into a RAM area.

NOTE If an application does not use any startup code to initialize READ_WRITE
sections, then no such sections should be present in the prm file. Instead use
NO_INIT sections.

Segment Alignment
The default alignment rule depends on the processor and memory model used. The HC12
processors do not require any alignment for code or data objects. You can define your own
alignment rule for a segment. The alignment rule defined for a segment block overrides
the default alignment rules associated with the processor and memory model.

The alignment rule has the following format (see Table 3.2 for format information):

[defaultAlignment] {“[“ObjSizeRange”:”alignment”]”}
58 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
Listing 3.4 Segment Alignment Example

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF
 ALIGN 2 [< 2: 1];
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF
 ALIGN [1:1] [2..3:2] [>=4:4];
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END

 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END

 STACKSIZE 0x50

Table 3.2 Segment Alignment Format

Format Type Definition

defaultAlignment Alignment value for all objects which do not match the conditions of
any range defined afterward.

ObjSizeRange Defines a certain condition. The condition follows the form:

size: Applies to objects whose size is equal to size.

< size: Applies to objects whose size is less than size.

> size: Applies to objects whose size is greater than size.

<= size: Applies to objects whose size is less than or equal to
size.

>= size: Applies to objects whose size is greater than or
equal to size

From size1 to size2: Applies to objects whose size is greater
than or equal to size1 and less than or equal to size2.

alignment Defines the alignment value for objects matching the condition
defined in the current alignment block (enclosed in square bracket).
59HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
 The example above:

• Aligns objects in the DIRECT_RAM segment whose size is 1 byte on byte
boundaries; aligns all other objects on 2-byte boundaries.

• Aligns objects in the RAM_AREA segment whose size is 1 byte on byte boundaries;
aligns objects whose size is equal to 2 or 3 bytes on 2-byte boundaries; aligns all
other objects on 4-byte boundaries.

• Default alignment rules apply in the ROM_AREA segment.

Segment Fill Pattern
The default fill pattern for code and data segment is the null character. You can choose to
define your own fill pattern for a segment. The fill pattern definition in the segment block
overrides the default fill pattern. Note that the fill pattern is used to fill up a segment to the
segment end boundary.

Listing 3.5 Segment Fill Pattern Example

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF
 FILL 0xAA;
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF
 FILL 0x22;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END

 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END

 STACKSIZE 0x50

 The example above:

• Initializes alignment bytes between objects in DIRECT_RAM segment with 0xAA.

• Initializes alignment bytes between objects in RAM_AREA segment with 0x22.

• Initializes alignment bytes between objects in ROM_AREA segment with 0x00.
60 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
The SECTIONS Block (Freescale + ELF)
The segments block is optional but increases the readability of the linker input file. It
allows you to assign meaningful names to contiguous memory areas on the target board.
Memory within such an area share the Segment Qualifier attribute:

Two types of segments can be defined:

• Physical Segments

• Virtual Segments

Physical Segments
Physical segments are closely related to hardware memory areas. For example, there may
be one READ_ONLY segment for each bank of the target board ROM area and another one
covering the whole target board RAM area.

For a simple memory model you can define a segment for the RAM area and another one
for the ROM area.

Listing 3.6 Physical Segments Example

 LINK test.abs
 NAMES test.o startup.o END

 SECTIONS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;

 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END

 STACKSIZE 0x50

For banked memory model you can define a segment for the RAM area, another for the
non-banked ROM area and one for each target processor bank.

 LINK test.abs
 NAMES test.o startup.o END

 SECTIONS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 NON_BANKED_AREA = READ_ONLY 0x0C000 TO 0x0FFFF;
 BANK0_AREA = READ_ONLY 0x08000 TO 0x0BFFF;
 BANK1_AREA = READ_ONLY 0x18000 TO 0x1BFFF;
61HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
 BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;

 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 _PRESTART, STARTUP,
 ROM_VAR,
 NON_BANKED, COPY INTO NON_BANKED_AREA;
 DEFAULT_ROM INTO BANK0_AREA, BANK1_AREA,
 BANK2_AREA;

 END
 STACKSIZE 0x50

Virtual Segments
A physical segment may be split into several virtual segments, allowing better structuring
of object allocation and also allowing the user to take advantage of some processor-
specific properties.

For an HC12 small memory model, you can define a segment for the direct page area,
another for the rest of the RAM area and another for the ROM area.

Listing 3.7 Virtual Segment Example

 LINK test.abs
 NAMES test.o startup.o END

 SECTIONS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;

 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END

 STACKSIZE 0x50
62 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
Segment Qualifier
Table 3.1 describes the available segment qualifiers.

NOTE For debugging purposes, you may want to load code into RAM areas. Because
this code is loaded at load time, qualify such areas as READ_ONLY.
For the linker, READ_ONLY means that such objects are initialized at program
load time. The linker does not know (and does not care) if at runtime the target
code writes to a READ_ONLY area.

NOTE Anything located in a READ_WRITE segment is initialized at application
startup time. Locate the application code which does this initialization and any
initialization data (init, zero out, copy down) in a READ_ONLY section. Do not
locate the application code and the initialization data in a READ_WRITE
section.

Table 3.3 Qualifiers and Descriptions

Qualifier Meaning

READ_ONLY Qualifies a segment that allows only read accesses. Initializes objects
within such a segment at application loading time.

CODE
(ELF only)

Qualifies a code segment in a Harvard architecture in the ELF object
file format. For cores with Von Neumann Architecture (combined code
and data address space), or for the Freescale object file format, use
READ_ONLY instead.

READ_WRITE Qualifies a segment that allows read and write accesses. Initializes
objects within such a segment at application startup.

NO_INIT Qualifies a segment that allows read and write accesses. Objects
within such a segment remain unchanged during application startup.
This qualifier may be used for segments referring to a battery-backed
RAM. Sections placed in a NO_INIT segment should not contain any
initialized variables (variable defined as int c = 8).

PAGED Qualifies a segment that allows read and write accesses. Objects
within such a segment remain unchanged during application startup.
Additionally, objects located in two PAGED segments may overlap.
This qualifier is used for memory areas, where some user-defined
page-switching mechanism is required. Sections placed in a PAGED
segment should not contain any initialized variables (variable defined
as int c = 8).
63HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
The program loader can, at program loading time, write the content of
READ_ONLY sections into a RAM area.

NOTE If an application does not use any startup code to initialize READ_WRITE
sections, then no such sections should be present in the prm file. Instead use
NO_INIT sections.

PLACEMENT Block
The placement block allows the user to physically place each section from the application
in a specific memory area (segment). The sections specified in a PLACEMENT block
may be linker-predefined sections or user sections specified in one of the source file
building the application.

 Organize data into sections:

• Increases application structuring

• Groups common-purpose data together

• Takes advantage of target processor-specific addressing mode

Specifying a List of Sections
When you specify several sections on a PLACEMENT statement, the linker allocates the
sections in the order you specify.

Listing 3.8 Sequence Enumeration Example

 LINK test.abs
 NAMES test.o startup.o END

 SECTIONS
 RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
 STK_AREA = READ_WRITE 0x00300 TO 0x003FF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;

 PLACEMENT
 DEFAULT_RAM, dataSec1,
 dataSec2 INTO RAM_AREA;
 DEFAULT_ROM, myCode INTO ROM_AREA;
 SSTACK INTO STK_AREA;
 END

 In this example:
64 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
• Inside the RAM_AREA segment, the linker allocates the objects defined in the
.data section first, then the objects defined in dataSec1 section, then objects
defined in dataSec2 section.

• Inside the ROM_AREA segment, the linker allocates objects defined in .text
section first, then the objects defined in section myCode.

NOTE Since the linker is case sensitive, the name of the section names specified in the
PLACEMENT block must be valid predefined or user-defined section names.
For the linker, DataSec1 and dataSec1 are two different sections.

Specifying a List of Segments
When you specify several segments in a PLACEMENT statement, the segments are used
in the order they are listed. The linker performs allocation in the first segment in the list
until this segment is full. Then allocation continues on the next segment in the list, and so
on, until all objects are allocated.

Listing 3.9 Sequence Enumeration - Further Example

LINK test.abs
 NAMES test.o startup.o END

 SECTIONS
 RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
 STK_AREA = READ_WRITE 0x00300 TO 0x003FF;
 NON_BANKED_AREA = READ_ONLY 0x0C000 TO 0x0FFFF;
 BANK0_AREA = READ_ONLY 0x08000 TO 0x0BFFF;
 BANK1_AREA = READ_ONLY 0x18000 TO 0x1BFFF;
 BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;

 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 SSTACK INTO STK_AREA;
 _PRESTART, STARTUP,
 ROM_VAR,
 NON_BANKED, COPY INTO NON_BANKED_AREA;
 DEFAULT_ROM INTO BANK0_AREA, BANK1_AREA,
 BANK2_AREA;

 END

This example allocates functions implemented in the .text section first, into segment
BANK0_AREA. When there is not enough memory available in this segment, allocation
continues in segment BANK1_AREA, then in BANK2_AREA.
65HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
NOTE As the linker is case sensitive, the name of the segments specified in the
PLACEMENT block must be valid segment names defined in the SEGMENTS
block. For the linker, Ram_Area and RAM_AREA are two different segments.

Allocating User-Defined Sections (ELF)
All sections do not need to be enumerated in the placement block. Segment allocation of
sections which do not appear in the PLACEMENT Block depends on the section type.

• Sections containing data are allocated next to the .data section.

• Sections containing code, constant variables or string constants are allocated next to
the section .text.

Allocation in the segment where .data is placed occurs as follows:

• Allocates objects from .data section

• Allocates objects from section .bss (if .bss is not specified in the PLACEMENT
block).

• Allocates objects from the first user-defined data section not specified in the
PLACEMENT block.

• Allocates objects from the next user-defined data section not specified in the
PLACEMENT block. (This continues until all user-defined data sections are
allocated.)

• If the section .stack is not specified in the PLACEMENT block and is defined
with a STACKSIZE command, the stack is allocated then.

Figure 3.1 User-Defined Sections (.stack)

Allocation in the segment where .text is placed occurs as follows:

• Allocates objects from .init section (if .init is unspecified in the
PLACEMENT block).

• Allocates objects from .startData section (if .startData is unspecified in the
PLACEMENT block).

• Allocates objects from .text section.

• Allocates objects from .rodata section (if .rodata is unspecified in the
PLACEMENT block).

• Allocates objects from .rodata1 section (if .rodata1 is unspecified in the
PLACEMENT block).

.data .bss .stackUser Data n...User Data 1
66 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Object Allocation
• Allocates objects from the first user-defined code section which is unspecified in the
PLACEMENT block.

• Allocates objects from the next user defined code section, which is unspecified in the
PLACEMENT block. (This continues until all user defined code sections are
allocated.)

• Allocates objects from .copy section (if .copy is unspecified in the
PLACEMENT block).

Figure 3.2 User Defined Sections (.txt)

Allocating User-Defined Sections (Freescale)
All sections do not need to be enumerated in the placement block. The segments where
sections, which do not appear in the PLACEMENT block, are allocated depends on the
type and attributes of the section. The Linker allocates these segments as follows:

• Sections containing code next to the DEFAULT_ROM section.

• Sections containing constants only next to the DEFAULT_ROM section. Change
this behavior using the -CRam option (see -CRam: Allocate Non-specified Constant
Segments in RAM (ELF)).

• Sections containing string constants next to the DEFAULT_ROM section.

• Sections containing data next to the section DEFAULT_RAM.

Allocation in the segment where DEFAULT_RAM is placed occurs as follows:

• Allocates objects from DEFAULT_RAM section

• If the -CRam option is specified, allocates objects from ROM_VAR section, unless
ROM_VAR is mentioned in the PLACEMENT block.

• Allocates objects from user-defined data sections, which are not specified in the
PLACEMENT block. If -CRam option is specified, allocates constant sections
together with non-constant data sections.

• If the SSTACK section is not specified in the PLACEMENT block and is defined
with a STACKSIZE command, allocates the stack then.

Figure 3.3 User Defined Sections (DEFAULT_RAM)

Allocation in the segment where DEFAULT_ROM is placed occurs as follows:

.init .startData .text .rodata .rodata1 User Code1 ... User Code n .copy

DEFAULT_RAM User Data 1 ... User Data n SSTACK
67HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Initializing Vector Table
• Allocates objects from _PRESTART section (if _PRESTART is not specified in the
PLACEMENT block).

• Allocates objects from STARTUP section (if STARTUP is not specified in the
PLACEMENT block).

• Allocates objects from ROM_VAR section (if ROM_VAR is not specified in the
PLACEMENT block). If -CRam option is specified, allocates ROM_VAR in the
RAM.

• Allocates objects from SSTRING (string constants) section (if SSTRING is not
specified in the PLACEMENT block).

• Allocates objects from DEFAULT_ROM section

• Allocates objects from all user-defined code sections and constant data sections,
which are not specified in the PLACEMENT block.

• Allocates objects from COPY section (if .copy is not specified in the
PLACEMENT block).

Figure 3.4 User Defined Sections (DEFAULT_ROM)

Initializing Vector Table
Use the VECTOR command to perform vector table initialization.

VECTOR Command
This command is specially defined to initialize the vector table.

Use the syntax VECTOR <Number>. In this case, the linker allocates the vector
depending on the target CPU. The vector number zero is usually the reset vector, but
depends on the target. The Linker knows the default start location of the vector table for
each target supported.

You can use the syntax VECTOR ADDRESS as well. The size of the entries in the vector
table depend on the target processor.

Table 3.4 describes the VECTOR command syntax.

_PRESTART STARTUP ROM_VAR SSTRING DEFAULT_ROM User Code 1 ... User Code n COPY
68 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Smart Linking (ELF)
The last syntax may be very useful when working with a common interrupt service
routine.

Smart Linking (ELF)
Because of smart linking, only the objects referenced are linked with the application. The
application entry points are:

• The application init function

• The main function

• The function specified in a VECTOR command

Smart linking automatically links all previously enumerated entry points and the objects
they referenced with the application.

You can specify additional entry points using the ENTRIES command (see ENTRIES:
List of Objects to Link with Application) in the prm file.

Mandatory Linking of an Object
You can choose to link some non-referenced objects in this application. This may be
useful for ensuring that a software version number is linked with the application and
stored in the final product EPROM.

This may also be useful for ensuring that a vector table which has been defined as a
constant table of function pointers, is linked with the application.

Table 3.4 VECTOR Command Syntax and Descriptions

Command Description

VECTOR ADDRESS 0xFFFE
0x1000

Indicates that the value 0x1000 must be stored at
address 0xFFFE

VECTOR ADDRESS 0xFFFE
FName

Indicates that the address of the function FName
must be stored at address 0xFFFE.

VECTOR ADDRESS 0xFFFE
FName OFFSET 2

Indicates that the address of the function FName
incremented by 2 must be stored at address
0xFFFE
69HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Smart Linking (ELF)
Listing 3.10 Mandatory Linking of an Object Example

 ENTRIES
 myVar1 myVar2 myProc1 myProc2
 END

This example specifies the variables myVar1 and myVar2 as well as the function
myProc1 and myProc2 as additional entry points in the application.

NOTE As the linker is case sensitive, the name of the objects specified in the
ENTRIES block must be objects defined somewhere in the application. For the
linker, MyVar1 and myVar1 are two different objects.

Mandatory Linking of all Objects Defined
in Object File
You can choose to link all objects defined in a specified object file in your application.

Listing 3.11 Mandatory Linking from All Objects Example

 ENTRIES
 myFile1.o:* myFile2.o:*
 END

This example specifies all the objects (functions, variables, constant variables or string
constants) defined in file myFile1.o and myFile2.o as additional entry points in the
application.

Switching OFF Smart Linking for the
Application
You can choose to switch OFF smart linking. All objects are linked in the application.

Listing 3.12 Switching Off SmartLinking Example

 ENTRIES
 *
 END

This example switches OFF smart linking for the whole application. That means that all
objects defined in one of the binary files building the application are linked with the
application.
70 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Smart Linking (Freescale + ELF)
Smart Linking (Freescale + ELF)
Because of smart linking, only the objects referenced are linked with the application. The
application entry points are:

• The application init function

• The main function

• The function specified in a VECTOR command.

The SmartLinker automatically links all previously enumerated entry points and the
objects they referenced with the application.

You can specify additional entry points using the ENTRIES command (see ENTRIES:
List of Objects to Link with Application) in the prm file.

Mandatory Linking from an Object
You can choose to link some non-referenced objects in your application. This may be
useful for ensuring that a software version number is linked with the application and
stored in the final product EPROM.

This may also be useful for ensuring that a vector table, which has been defined as a
constant table of function pointers, is linked with the application.

Listing 3.13 Mandatory Linking from an Object Example

 ENTRIES
 myVar1 myVar2 myProc1 myProc2
 END

The example above specifies the variables myVar1 and myVar2 as well as the function
myProc1 and myProc2 as additional entry points in the application

NOTE As the linker is case sensitive, the name of the objects specified in the
ENTRIES block must be objects defined somewhere in the application. For the
linker, MyVar1 and myVar1 are two different objects.

 Mandatory Linking from all Objects
Defined in a File
You can choose to link all objects defined in a specified object file in your application. For
that purpose, you need only to specify a ‘+’ after the name of the module in the NAMES
block.
71HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Binary Files Building an Application (ELF)
Listing 3.14 Mandatory Linking from All Objects Example:

 NAMES
 myFile1.o+ myFile2.o+ start.o ansi.lib
 END

This example specifies all the objects (functions, variables, constant variables or string
constants) defined in file myFile1.o and myFile2.o as additional entry points in the
application.

Binary Files Building an Application (ELF)
You can specify the names of the binary files building an application in the NAMES block
or in the ENTRIES block. Usually a NAMES block is sufficient.

NAMES Block
Usually you list all the binary files building the application in the NAMES block. You
may specify additional binary files by the option -Add: Additional Object/Library File. If
you specify all binary files by the command line option -add, then you must specify an
empty NAMES block (just NAMES END).

Listing 3.15 Names Block Example

 NAMES
 myFile1.o myFile2.o
 END

In this example, the binary files myFile1.o and myFile2.o build the application.

ENTRIES Block
If you specify a file name in the ENTRIES block, the linker considers the corresponding
file as part of the application, even if it does not appear in the NAMES block. The file
specified in the ENTRIES block may also be present in the NAMES block. Names from
absolute, ROM library, or library files are not allowed in the ENTRIES block.

Listing 3.16 Entries Block Example

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
72 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Binary Files Building an Application (Freescale)
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 STK_AREA = READ_WRITE 0x00200 TO 0x002FF;
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END

 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 SSTACK INTO STK_AREA;
 END

 ENTRIES
 test1.o:* test.o:*
 END

In this example, the file test.o, test1.o and startup.o build the application. All
objects defined in the module test1.o and test.o will be linked with the application.

Binary Files Building an Application
(Freescale)

You may specify the names of the binary files building an application in the NAMES
block or in the ENTRIES block. Usually a NAMES block is sufficient.

NAMES Block
Usually you list all the binary files building the application in the NAMES block. You
may specify additional binary files using the -Add option (see -Add: Additional Object/
Library File). If you specify all binary files using the command line option -Add, then
you must specify an empty NAMES block (just NAMES END).

Listing 3.17 Names Block Example

 NAMES
 myFile1.o myFile2.o
 END

In this example, the binary files myFile1.o and myFile2.o build the application.
73HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Allocating Variables in OVERLAYS
Allocating Variables in OVERLAYS
When your application consists of two distinct parts (or execution units) which are never
activated at the same time, you can ask the linker to overlap the global variables of both
parts. To do this in your application source files, you must:

• Define the global variable from the different parts in separate data segments. Do not
use the same segment for both execution units.

• Initialize the global variables in both execution units using assignments in the
application source code. Do not define global variables with the initializer.

In the prm file, you can then define two distinct memory areas with attribute PAGED.
Memory areas with PAGED attributes are not initialized during startup. For this reason
they cannot contain any variable defined with the initializer. The linker will not perform
any overlap check on PAGED memory areas.

The example shown in Listing 3.18 illustrates this.

In your source code support you have two execution units: APPL_1 and APPL_2.

• All global variables from APPL_1 are defined in segment APPL1_DATA_SEG

• All global variables from APPL_2 are defined in segment DEFAULT_RAM and
APPL2_DATA_SEG

The prm file looks as follows:

Listing 3.18 .prm File Example

LINK test.abs

NAMES test.o appl1.o appl2.o startup.o END

SECTIONS
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
 MY_RAM_1 = PAGED 0xA00 TO 0xAff;
 MY_RAM_2 = PAGED 0xA00 TO 0xAff;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;

PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM,
 APPL2_DATA_SEG INTO MY_RAM_2;
 APPL1_DATA_SEG INTO MY_RAM_1;
 SSTACK INTO MY_STK; /* Stack cannot be allocated in a
PAGED memory area. */
END
74 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
Overlapping Locals
This section is only for targets which handle allocated local variables like global variables
at fixed addresses.

Some small targets do not have a stack for local variables, so the compiler uses pseudo-
static objects for local variables. In contrast to other targets which allocate such variables
on the stack, the linker must allocate these variables. On the stack, multiple local variables
are automatically allocated at the same address at different times. The linker implements a
similar overlapping scheme to save memory for local variables.

Listing 3.19 Overlapping Locals Example

void f(void) { long fa;; }
void g(void) { long ga;; }
void main(void) { long lm; f(); g(); }

In this example, the functions f and g are never active at the same time, therefore the local
variables fa and ga can be allocated at the same address.

NOTE When local variables are allocated at fixed addresses, the resulting code is not
reentrant. Each function must be called only once. Take special care with
interrupt functions: they must not call any function which might be active at the
interrupt time. To be on the safe side, interrupt functions usually use a different
set of functions than non-interrupt functions.

NOTE To the linker, parameter and spill objects are the same as local variables. All
these objects are allocated together.

The linker analyzes the call graph of one root function at a time and allocates all local
variables used by all dependent functions at this time. Variables depending on different
root functions are allocated non-overlapping except in the case of an OVERLAP_GROUP
(ELF).

Algorithm
The algorithm for the overlap allocation is quite simple:

1. If current object depends on other objects, first allocate the dependents.

2. Calculate the maximum address used by any dependent object. If none exist, use the
base reserved for the current root.

3. Allocate all locals starting at the maximum.
75HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
This algorithm is called for all roots. The base of the root is first calculated as the
maximum used so far.

Listing 3.20 Algorithm Example

void g(long g_par) { }
void h(long l_par) { }
void main(void) {
 char ch;
 g(1);
 h(2);
}
void interrupt 1 inter(void) {
 long inter_loc;
}

The function main is a root because it is the application main function and inter is a
root because it is called by an interrupt.

...
SECTIONS
...
 OVERLAP_RAM = NO_INIT 0x0060 TO 0x0068;
...
PLACEMENT
...
 _OVERLAP INTO OVERLAP_RAM;
...
END

NOTE In the ELF object file format the name _OVERLAP is a synonym for the
.overlap segment.

main starts the algorithm. As h and g depend on main, their parameters g_par and
l_par are allocated starting at address 0x60 in the _OVERLAP segment. Next the local
ch is allocated at 0x64 because all lower addresses are already used by dependents. After

Table 3.5 Algorithm Object File Format

0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68

g_par ch inter_loc

l_par
76 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
main finishes, the base for the second root is calculated as 0x65, where inter_loc is
also allocated.

The following items are considered as root points for the overlapping allocation in the
ELF object file format:

• Objects specified in a DEPENDENCY ROOT block

• Objects specified in a OVERLAP_GROUP block

• Application main function (specified with prm file entry MAIN) and application
entry point (specified with prm file entry INIT)

• Objects specified in a ENTRIES block

• Absolute objects

• Interrupt vectors

• All objects in non-SmartLinked object files

NOTE The main function (main) and the application entry point (_Startup) are
implicitly defined as one OVERLAP_GROUP. In the startup code delivered
with the compiler, this saves about 8 bytes because the locals of Init, Copy,
and main overlap. When _Startup itself changes, it needs locals which
must be active over the call to main. Define the _Startup function as a
single entry in an OVERLAP_GROUP:
OVERLAP_GROUP _Startup END

The overlap _OVERLAP section (in ELF, this is also named .overlap) must be
allocated in a NO_INIT area. The _OVERLAP section cannot be split into several areas.

Name Mangling for Overlapping Locals
When parameters are passed on the stack, the linker performs caller and callee argument
matching by their stack position. For overlapped locals (which include parameters not
passed in registers as well), the linker does the matching using the parameter name.

Consider the following example:

void callee(long i);
void caller(void) {
 callee(1);
}
void callee(long k) {
}

The name i of the callee declaration does not match the name used in the definition.
Actually, the declaration might not specify a name at all. Since the link between the caller
77HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
and callee argument uses the name, both must use the same name. Because of this, the
compiler generates an artificial name for the callee’s parameter: _calleep0. The
compiler builds this name starting with an underscore (_), appending the function name,
appending a p and finally the argument number.

NOTE In ELF, there is a second name mangling needed to encode the name of the
defining function into its name (see Name Mangling in ELF Object File
Format).

Compiler users do not need to know about the name mangling at all. The compiler does it
for them automatically.

However, to write functions with overlapping locals in assembler, you must do the name
mangling yourself. This is especially important if you are calling C functions from
assembler code or assembler functions from C code.

Name Mangling in ELF Object File Format
The ELF Object File Format has no predefined way to specify the function to which an
actual parameter belongs, so the compiler does some special name mangling. This adds
the function name into the link time name.

In ELF, the name is built the following way:

• If the object is a function parameter, use a p followed by the argument number,
instead of the object name given in the source file.

• Add the prefix __OVL_

• If the function name contains a underscore (_), add the number of characters of the
function name followed by a underscore (_). Add nothing if the function name does
not contain an underscore.

• Add the function name.

• Add an underscore (_).

• If the object name contains a underscore (_), add the number of characters of the
object, followed by one underscore (_). Add nothing if the object name does not
contain an underscore.

• Add the object name.

Example (ELF):

 void f(long p) {
 char a;
 char b_c;
 }
78 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
This generates the following mangled names:

 p: "__OVL_f_p0" (HIWARE format: "_fp0")
 a: "__OVL_f_a" (HIWARE format: "a")
b_c: "__OVL_f_3_b_c" (HIWARE format: "b_c")

Defining a Function with Overlapping
Parameters in Assembler
This section covers advanced topics which are important only if you plan to write
assembler functions using a C calling convention with overlapping parameters.

For example, to define the callee function:

void callee(long k) {
 k= 0;
}

In assembler, we must first define the parameter with its mangled name. The parameter
must be in the _OVERLAP section:

_OVERLAP: SECTION
callee_p1: DS 4

NOTE The _OVERLAP section is often allocated in a short segment. If so, use
_OVERLAP: SECTION SHORT to specify this.

Next, define the function itself.

callee_code: SECTION
callee:
 CLEAR callee_p1,4
 RETURN

To avoid processor-specific examples, we assume that there is an assembler macro
CLEAR which writes as many zero bytes as its second argument to the address specified
by its first argument. The second macro RETURN generates a return instruction for the
processor used. The implementation of these two macros are processor specific and not
contained in this linker manual.
79HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
Finally, export the callee and its argument:

 XDEF callee
 XDEF callee_p1

The whole example in one block:

;Processor specific macro definition, please adapt to your target
CLEAR: MACRO
 ...
 ENDM

RETURN: MACRO
 ...
 ENDM

_OVERLAP: SECTION
callee_p1: DS 4

callee_code: SECTION

callee:
 CLEAR callee_p1,4
 RETURN
; export function and parameter
 XDEF callee
 XDEF callee_p1

Additional Points to Consider
In the ELF format, the name of the p1 parameter must be _OVL_callee_p1 instead of
callee_p1.

Example for ELF:

_OVERLAP: SECTION
_OVL_callee_p1: DS 4

callee_code: SECTION
callee:
 CLEAR _OVL_callee_p1,4
 RETURN
; export function and parameter
 XDEF callee
 XDEF _OVL_callee_p1
80 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
Put every function defined in assembler in a separate section, as a linker section
containing code corresponds to a compiler function.

Example of two functions in one segment:

 XDEF callee0
 XDEF callee1
_OVERLAP: SECTION
loc0: DS 4
loc1: DS 4

code_seg: SECTION
callee0:
 CLEAR loc0,4
 RETURN
callee1: ; ERROR function should be in separate segment
 CLEAR loc1,4
 RETURN

Because callee0 and callee1 are in the same segment, the linker treats them as if
they were two entry points of the same function. This prevents loc0 and loc1 from
overlapping and generating additional dependencies.

To correct the problem, put the two functions into separate segments:

 XDEF callee0
 XDEF callee1
_OVERLAP: SECTION
loc0: DS 4
loc1: DS 4

code_seg0: SECTION
callee0:
 CLEAR loc0,4
 RETURN
code_seg1: SECTION
callee1:
 CLEAR loc1,4
 RETURN

Exporting the function exports the corresponding parameter objects. Locals are usually
not exported.

Example of an invalid non-exported parameter definition:

 XDEF callee
_OVERLAP: SECTION
callee_p1: DS 4
81HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
callee_code: SECTION

callee:
 CLEAR callee_p1,4
 RETURN

Because callee_p1 is not exported, an external caller or callee will not use the correct
parameter. (Actually, the application will not be able to link because of the unresolved
external callee_p1).

To correct this, export callee_p1 as well:

 XDEF callee
 XDEF callee_p1
_OVERLAP: SECTION
callee_p1: DS 4

callee_code: SECTION

callee:
 CLEAR callee_p1,4
 RETURN

Only use function parameters which are actually called. Do not use local variables of other
functions. The assembler does not prevent the usage of locals, which is not possible in C.
Such additional usages are not taken into account for the allocation and may not work as
expected. As a rule, only access objects defined in the _OVERLAP section from one
SECTION, unless the object is a parameter. Parameters can be safely accessed from all
sections containing calls to the callee and from the section defining the callee.

Example of an invalid use of a local variable:

_OVERLAP: SECTION
loc: DS 4

callee0_code: SECTION
callee0:
 CLEAR loc,4 ; error:usage of local var loc from two functs
 RETURN

callee1_code: SECTION
callee1:
 CLEAR loc,4 ; error: usage of local var loc from two
functs
 RETURN
82 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
Instead, use two different locals for two different functions:

_OVERLAP: SECTION
loc0: DS 4; local var of function callee0
loc1: DS 4; local var of function callee1

callee0_code: SECTION
callee0:
 CLEAR loc0,4 ; OK, only callee 0 uses loc0
 RETURN

callee1_code: SECTION
callee1:
 CLEAR loc1,4 ; OK, only callee 0 uses loc1
 RETURN

In Freescale format, functions defined in assembly must access all parameters and locals
allocated in the _OVERLAP segment. There must be no unused parameters in the
_OVERLAP segment, otherwise, the linker allocates the unused parameter in the overlap
area of one of the callers. This object can then overlap with the local variables of other
callers. In the ELF format, the binding to the defining function is done by name mangling,
so this restriction does not exist.

The following example does not work in the Freescale format because callee_p1 is not
accessed.

_OVERLAP: SECTION
callee_p1: DS 4; error: parameter MUST be accessed

callee_code: SECTION
callee:
 RETURN

To correct this, use the parameter even if it is not needed:

_OVERLAP: SECTION
callee_p1: DS 4; OK parameter is accessed

callee_code: SECTION
callee:
 CLEAR callee_p1,1
 RETURN
83HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
DEPENDENCY TREE Section in Map File
The DEPENDENCY TREE section in the map file provides useful information about the
overlapped allocation.

Listing 3.21 DEPENDENCY TREE Example

volatile int intPending; /* interrupt being handled? */

void interrupt 1 inter(void) {
 int oldIntPending=intPending;
 intPending=TRUE;
 while (0 == read((void*)0x1234)) {}
 intPending=oldIntPending;
}

unsigned char read(void* adr) {
 return *(volatile char*)adr;
}

This code generates the following tree:

_Vector_1 : 0x808..0x80B
|
+* inter : 0x808..0x80B
 | +* oldIntPending : 0x80A..0x80B
 |
 +* read : 0x808..0x809
 +* _readp0 : 0x808..0x809

Vector_1 is for the interrupt vector 1 specified in the C source.

The parameter name adr is encoded to _readp0, because in C, parameter names may
have different names in different declarations, or even no name as in the example.

Vector_1, inter and read all depend on the adr parameter of read, which is
allocated at 0x808 to 0x809 (inclusive). This area is included for all these objects. Only
Vector_1 and inter depend on oldIntPending, so the area 0x80A to 0x80B is
only contained in these functions.

Optimizing the Overlap Size
The area of memory used by one function is the area of this function plus the maximum of
the areas of all used functions. The branches with the maximum area are marked with an
asterisk (*).
84 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Overlapping Locals
When a local variable is added to a function with an asterisk, the whole overlap area grows
by the variable size. More useful, when you remove a variable of a function marked with
an asterisk, then the size of the overlap may decrease, unless there are several functions
with an asterisk on the same level. When a marked function is using some variables of its
own, then splitting this function into several parts may also reduce the overlap area.

Recursion Checks
Assume that, for the previous example, a second interrupt function exists:

Listing 3.22 Recursion Checks Example

void interrupt 2 inter2(void) {
 int oldIntPending=intPending;
 intPending=TRUE;
 while (0 == read((void*)0x1235)) {}
 intPending=oldIntPending;
}

Now, this produces two dependency trees in the map file:

 _Vector_2 : 0x808..0x80B
 |
 +* inter2 : 0x808..0x80B
 | +* oldIntPending : 0x80A..0x80B
 |
 +* read : 0x808..0x809
 +* _readp0 : 0x808..0x809

 _Vector_1 : 0x80C..0x80D
 |
 +* inter : 0x80C..0x80D
 | +* oldIntPending : 0x80C..0x80D
 |
 +* read : 0x808..0x809 (see above) (object allocated
in area of another root)

The subtree of the read function prints only once. The second time, (see above)
prints instead of the whole subtree. The second remark (object allocated in
area of another root) is more serious. Both interrupt functions use the same
read function. If one interrupt handler can interrupt the other handler, then the parameter
of the read functions may be overwritten and the first handler can fail. If both interrupts
are exclusive, which is common for small processors using overlapped variables, then add
this information to the prm file to allow an optimal allocation.
85HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Linker-Defined Objects
Listing 3.23 Example prm file

DEPENDENCY
 ROOT inter inter2 END
END

The warning disappears and the same tree contains both inter and inter2:

 DEPENDECY ROOT
 |
 +* inter2 : 0x808..0x80B
 | | +* oldIntPending : 0x80A..0x80B
 | |
 | +* read : 0x808..0x809
 | +* _readp0 : 0x808..0x809
 |
 +* inter : 0x808..0x80B
 | +* oldIntPending : 0x80A..0x80B
 |
 +* read : 0x808..0x809 (see above)

Because oldIntPending of both handlers now overlap, this example saves 2 bytes

NOTE The linker still handles Vector_1 and Vector_2 as additional roots.
Because they are allocated using the DEPENDENCY ROOT, they have no
influence on the generated code. Although the DEPENDENCY TREE section
in the map file still lists their trees, these trees can be safely ignored.

Linker-Defined Objects
The linker supports defining special objects to get the address and size of sections at link
time. Objects to be defined by the linker must have as a special prefix one of the strings
below and must not be defined by the application at all.

NOTE Because the linker defines C variables automatically when their size is known,
the usual variables declaration fails for this feature. For an extern int
__SEG_START_SSTACK;, the linker allocates the size of an int, and does
not define the object as address of the stack. Use the following syntax so that
the compiler/linker has no size for the object:
extern int __SEG_START_SSTACK[];

Usual applications of this feature are the initialization of the stack pointer and retrieving
the last address of an application to compute a code checksum at runtime.
86 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Linker-Defined Objects
The object name is built by using a special prefix and then the name of the symbol.

The following tree prefixes are supported:

• __SEG_START_ : start address of the segment

• __SEG_END_ : end address of the segment

• __SEG_SIZE_ : size of the segment

NOTE The __SEG_END_ end address is the address of the first byte behind the
named segment.

The linker assumes the remaining text after the prefix to be the segment name. If the linker
does not find such a segment, it issues a warning and takes 0 as the address of this object.

NOTE There is no warning issued for predefined segments like SSTACK or
OVERLAP, even if these segments are empty and not explicitly allocated. The
warning is only issued for user-defined segments.

Because identifiers in C must not contain a period in their name, the Freescale format
aliases can be used for the special ELF names. Few of them are SSTACK instead of
.stack, DEFAULT_RAM instead of .data, DEFAULT_ROM instead of .text, COPY
instead of .copy, ROM_VAR instead of .rodata, STRINGS instead of .rodata1,
STARTUP instead of.startData, PRESTART instead of .init , _OVERLAP instead
of .overlap, _OVERLAP2 instead of .overlap2. Also, __DOT__ can be prefixed for
objects whose names start with period character.

For example, __SEG_START___DOT__common can be used to get start address of
.common section.

Listing 3.24 C Source Code

#define __SEG_START_REF(a) __SEG_START_ ## a
#define __SEG_END_REF(a) __SEG_END_ ## a
#define __SEG_SIZE_REF(a) __SEG_SIZE_ ## a
#define __SEG_START_DEF(a) extern char __SEG_START_REF(a) []
#define __SEG_END_DEF(a) extern char __SEG_END_REF(a) []
#define __SEG_SIZE_DEF(a) extern char __SEG_SIZE_REF(a) []

/* To use this feature, first define the symbols to be used: */
 __SEG_START_DEF(SSTACK); // start of stack
 __SEG_END_DEF(SSTACK); // end of stack
 __SEG_SIZE_DEF(SSTACK); // size of stack
/* Then use the new symbols with the _REF macros: */
int error;
void main(void) {
 char* stackBottom= (char*)__SEG_START_REF(SSTACK);
87HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Linker-Defined Objects
 char* stackTop = (char*)__SEG_END_REF(SSTACK);
 int stackSize= (int)__SEG_SIZE_REF(SSTACK);
 error=0;
 if (stackBottom+stackSize != stackTop) { // top is bottom + size
 error=1;
 }
 for (;;); /* wait here */
}

Listing 3.25 .prm File

LINK example.abs
 NAMES example.o END
SECTIONS
 MY_RAM = READ_WRITE 0x0800 TO 0x0FFF;
 MY_ROM = READ_ONLY 0x8000 TO 0xEFFF;
 MY_STACK = NO_INIT 0x400 TO 0x4ff;
END
PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STACK;
END
INIT main

Listing 3.26 Linker-Defined Symbols

__SEG_START_SSTACK 0x400
__SEG_END_SSTACK 0x500
__SEG_SIZE_SSTACK 0x100

NOTE To use the same source code with other linkers or old linkers, define the
symbols in a separate module for them.

NOTE In C, you must use the address as value, and not any value stored in the
variable. So in the previous example,
“(int)__SEG_SIZE_REF(SSTACK)” was used to get the size of the stack
segment and not a C expression like “__SEG_SIZE_REF(SSTACK)[0]”.
88 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Stack Consumption Computation
Stack Consumption Computation
The stack consumption computation is a feature of the linker that helps compute the
theoretical maximal amount of stack space an application requires at runtime. This
estimation can be done for the whole application or for user-specified call sub-trees. The
result of the estimation is printed out in the map file along with the corresponding call tree
paths. This feature is controlled by the -StackConsumption (Listing 3.27)
command line option. However, the specific information needed for this feature is issued
by the compiler and encoded in the object file.

NOTE Older versions of the compiler may not issue the information. Also, this feature
is currently only supported for HC(S)08 derivatives.

STACK_CONSUMPTION Block
When using -StackConsumption (Listing 3.27) the linker automatically computes
the stack consumption estimation for the application's entry point. This includes, typically
the _Startup function and the user-provided vector table entries (refer to the VECTOR
command in Listing 3.28). Since it is not possible to determine at link-time control-flow
dependencies between usual functions and interrupt handlers the linker will compute and
print the stack consumption for each vector table entry separately.

The linker also supports advanced features to increase the precision of the estimation.
These include:

• Adding edges to the call graph; the FUNCTION_PAIR directive (Refer Table 3.6).

• Specifying user-defined stack consumption for a function; the CONSUMPTION
directive (Refer Table 3.6).

• Specifying a custom call sub-tree; the ROOT directive (Refer Table 3.6).

• Specifying that a specific interrupt can be raised during the execution of a function;
the INTERRUPT_FUNCTION directive (Refer Table 3.6).

• Specifying the maximum recursion factor for a function; the RECURSION_FACTOR
directive (Refer Table 3.6).

Following is the syntax of the STACK_CONSUMPTION block.

Listing 3.27 STACK_CONSUMPTION Block Syntax

STACK_CONSUMPTION
 ROOT <name1> : <filename>
 [Optional] RECURSION_FACTOR <name>:<filename> <factor>;
 [Optional] INTERRUPT_FUNCTION <name>:<filename>
<ISR_name>:<filename> <stackSize>;
89HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Stack Consumption Computation
END
 [Optional]
 ROOT <name2> : <filename>
 [Optional]RECURSION_FACTOR (<name>)+<factor>;
 END
 [Optional] CONSUMPTION <function_name>:<filename> <number>;
 [Optional] FUNCTION_PAIR <caller>:<filename> <callee>:<filename>
<stackSize>;
END

NOTE <filename> is only required when the referred symbol has local binding.
For example, a C static function. A single function (for example, plus +) or a
chain of functions that induce a loop in the call graph.

Table 3.6 describes the STACK_CONSUMPTION block directives.

Table 3.6 STACK_CONSUMPTION Block Directives

Descriptive Description

ROOT <name1> : <filename>
- <name>

Specifies the name of the function for which
the total stack effect is to be computed.
Object File name <filename> in which
ROOT can also be defined. This directive is
not mandatory. The application entry point is
used as root if none is explicitly provided.
Also, it is possible to specify multiple roots.

RECURSION_FACTOR
(<name>:<filename>)+
<factor>; - <factor>

Specifies the recursive factor of the specified
function that is the maximum number of
recursive calls a function makes for one
execution of its caller.

is an integer value used to

The functions that cause indirect recursivity
can also be specified. This should exclude
the last caller - callee pair causing recursion
(Refer Section Example 2a). The scope of
this directive is restricted to the ROOT in
which it is defined.
90 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Stack Consumption Computation
Limitations
Functions written in assembly language are not taken into account when computing the
stack consumption. However, the stack usage information can be specified using the
CONSUMPTION PRM directive.

NOTE The assembly language here does not refer to inline assembly code, but to code
written in assembly files, processed by the assembler tool.

INTERRUPT_FUNCTION
<name>:<filename>
<ISR_name>:<filename> <stackSize>;

Specifies that the interrupt handled
ISR_name can be raised during execution of
the function name. The amount of stack
consumed by the function name up to the
point where the interrupt occurs must be
specified by the stackSize parameter (use
the stack consumption of the name function
if not sure).

CONSUMPTION
<function_name>:<filename>
<number>;

Specifies the stack size of function; is an
integer value.This directive should be written
after specifying all ROOT entries. The stack
size mentioned with this directive for a
function applies to whole application and
overrides the value internally computed by
the linker.

FUNCTION_PAIR <caller>:<filename>
<callee>:<filename> <stackSize>;

Alters the linker-computed call graph by
adding an edge between caller and callee.
The cost of this edge will be stackSize. This
parameter should contain the amount of
stack consumed by caller up to the point
where callee is called. An use case for this
directive would be an application that
contains function pointers being passed as
arguments. The directive should be at the
end after specifying all ROOT entries. The
information given by this directive applies to
whole application.

Table 3.6 STACK_CONSUMPTION Block Directives (continued)

Descriptive Description
91HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Stack Consumption Computation
Example to Generate Stack Information

Compilation
Consider C source: ./Sources/main.c.

static int count = 0;
void call(void) { /* Recursive function */
 if (count == 10) {
 return;
 }
 count++;
 call();
}
void main(void) {
 call();
}

Table 3.7 lists the stack usage information generated by compiler in main.obj file.

Link Process
1. Linker Option to be enabled: -StackConsumption

2. Stack Consumption directives included in PRM:

STACK_CONSUMPTION
ROOT main

Table 3.7 Stack Usage Information

Caller Callee StackSize

main aa 6

Main - 4

Aa Bb 4

Aa - 2

Bb Cc 4

bb - 2

Cc Aa 6

Cc - 4
92 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Stack Consumption Computation
RECURSION_FACTOR aa:./Sources/main.obj bb:./Sources/main.obj cc:./
Sources/main.obj 10;
END
END
..
VECTOR 0 _Startup

3. Link the application.

4. Partial map file output:

STACK CONSUMPTION COMPUTATION
1)
main = 146

Maximum Stack Usage is calculated for following path:

main
|
+-aa
 |
 +-bb
 |
 +-cc
2)
_Startup = 14

Maximum Stack Usage is calculated for following path:

_Startup
|
+-main
 |
 +-aa
 |
 +-bb
 |
 +-cc

The RECURSION_FACTOR directive specified in PRM is applicable only to ROOT entry
main and not the default entry _Startup that is specified in VECTOR PRM directive.
93HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Stack Consumption Computation
Example to Specify Stack COnsumption PRM
Directives

Recursive Functions — Test Case 1

void A() { /* This is a recursive function */
..
A();
}
Void main() {
A();
}

PRM Directive to be specified:

STACK_CONSUMPTION
ROOT main
RECURSION_FACTOR A 10; /* Correct */
RECURSION_FACTOR A A 10; /* Incorrect */
END
END

Recursive Functions — Test Case 2

void A() {
..
B();
}

Void B() {
..
A();
}

Void main() {
..
A();
}

PRM Directive to be specified:

STACK_CONSUMPTION
ROOT main
RECURSION_FACTOR A B 10; /* Correct */
94 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Stack Consumption Computation
RECURSION_FACTOR A B A 10; /* Incorrect */
END
END

Function Pointer Passed as Argument to Function —
Test Case

double next_Div(double d) {
 return d/1.8;
}

Bool Comp_TrueLarger1(double a, double b) {
 return a+1.0 > b + 1.0;
}

void Test5_Do(double d0, double d1, Bool (*comp)(double a, double b),
double (*next)(double)) {
 while (d1 != 0) {
 if (comp(d0, d1)) {
..
 d0 = next(d0);
..
}

Void main() {
Test5_Do(1.0, 1.1, Comp_TrueLarger1, next_Div);
}

PRM Directive specification:

STACK_CONSUMPTION
ROOT main
END
FUNCTION_PAIR Test5_Do Comp_TrueLarger 12;
FUNCTION_PAIR Test5_Do next_Div 22;
END

Usage of CONSUMPTION Directive — Test Case

Void main() {
 Asm_func(); /* Call to an assembly function defined in test.asm*/
}

95HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Checksum Computation
Stack usage of main to Asm_func is given by compiler in object file but assembler does
not provide stack usage of Asm_func routine.CONSUMPTION directive can be added
to specify the stack usage of Asm_func.

PRM Directive specification:

STACK_CONSUMPTION
ROOT _Startup
END
CONSUMPTION Asm_func 100;
END

Checksum Computation
The linker invokes the computation of a checksum in two ways:

• prm file-controlled checksum computation:

The prm file specifies which kind of checksum to compute over which area and
where to store the resulting checksum. This method gives full flexibility, but also
requires more user-configuration effort. With this method the linker only computes
the actual checksum value; the application code must ensure that the areas specified
in the prm file match the areas computed at runtime.

• Automatic linker-controlled checksum computation:

With this method, the linker generates a data structure containing all information to
compute the checksum. The linker lists all ROM areas, computes the checksum and
stores it, together with area and type information, in a data structure which can then
be used at runtime to verify the code.

Table 3.8 Comparison of Checksum Computation Methods

Attribute prm File Controlled Automatic Linker Controlled

Complexity Needs some configuration
prm file needs adaptations

Easy to use
Call _Checksum_Check

Robustness Values used in prm file and
source code must match.
All areas to be checked
must be listed in prm and
source code.

Good.
Nothing (or few things) to
configure

Control Everything in full user
control.

Poor. Can be controlled only when
segment must be checked.
96 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Checksum Computation
prm File-Controlled Checksum
Computation
Special commands in the prm file can instruct the linker to compute the checksum over
some explicitly specified areas. All necessary information for this is specified in the prm
file (see Listing 3.28).

Listing 3.28 Example prm file

CHECKSUM
 CHECKSUM_ENTRY
 METHOD_CRC_CCITT
 OF READ_ONLY 0xE020 TO 0xEEFF
 OF READ_ONLY 0xEF00 TO 0xFEFF
 INTO READ_ONLY 0xE010 SIZE 2
 UNDEFINED 0xff
 END
END

See the CHECKSUM: Checksum Computation (ELF) linker command description for the
exact syntax to used in the prm file and also for more examples.

Automatic Linker-Controlled Checksum
Computation
The linker tracks all the memory areas used by an application, therefore this method uses
this knowledge to generate a data structure, which then can be used at runtime to validate
the complete code. The linker provides this information in the same way it provides copy
down and zero out information.

The linker automatically generates the checksum data structure if the startup data structure
has two have additional fields:

extern struct _tagStartup {

Target Memory
Usage

Good. Only uses necessary
memory.

Needs more memory because of
control data structure.

Execution
Time

Depends on method.
Checks all areas as code
size is unknown.

Depends on method. Checks only
needed areas.

Table 3.8 Comparison of Checksum Computation Methods (continued)

Attribute prm File Controlled Automatic Linker Controlled
97HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Checksum Computation
....
 struct __Checksum* checkSum;
 int nofCheckSums;
....

The header file checksum.h defines the structure __Checksum:

struct __Checksum {
 void* start;
 unsigned int len;
#if _CHECKSUM_CRC_CCITT
 _CheckSum2ByteType checkSumCRC_CCITT;
#endif
#if _CHECKSUM_CRC_16
 _CheckSum2ByteType checkSumCRC16;
#endif
#if _CHECKSUM_CRC_32
 _CheckSum4ByteType checkSumCRC32;
#endif
#if _CHECKSUM_ADD_BYTE
 _CheckSum1ByteType checkSumByteAdd;
#endif
#if _CHECKSUM_XOR_BYTE
 _CheckSum1ByteType checkSumByteXor;
#endif
};

The linker allocates __checksum structure in a .checksum section, placed after all the
other code or constant sections. As the .checksum section itself must not be checked, it
must be the last section in a SECTION list.

The linker issues checksum information for all used segments in the prm file. However,
if some segments are filled with a FILL command, then this fill area is not included.

The linker derives checksum types to be computed by using the field names of the
__Checksum structure. Usually only one alternative is present, but the linker can
compute checksum in any combination of checksum methods.

Automatic Structure Detection
The linker reads the debug information of the module containing _tagStartup to
detect which checksums to generate and how to build the structure. This ensures that the
structure used by the compiler always matches the structure the linker generates.

The linker knows the structure field names and the name __Checksum of the checksum
structure. These names cannot be changed. Adapt the structure field types to your needs.
98 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Checksum Computation
.checksum Section
The .checksum section must be the last section in a placement. It may be after the
.copy section. If it is not mentioned in the prm file, the linker automatically allocates
space for the .checksum section when needed.

The checksum areas do not cover .checksum itself.

Partial Fields
The __Checksum structure can also contain checkSumWordAdd,
checkSumLongAdd, checkSumWordXor and checkSumLongXor fields to
compute checksums with larger element sizes. However, as the FILL areas are not
considered, the len field might not be a multiple of the element size. When this happens,
assume the missing bytes are equal to zero. Because this is not handled in the provided
example code, automatic generated word, long size add, or XOR checksums are not
officially supported.

Runtime Support
The checksum.h file contains functions, prototypes, and utilities to compute the various
checksums. The corresponding source file is checksum.c. Look at checksum.c to
find out how to compute the various checksums. The automatic generated checksum
feature does not need any customer code.

To verify that the checksums are valid, perform the simple call:

_Checksum_Check(_startupData.checkSum,
_startupData.nofCheckSums);

Listing 3.29 shows a sample function call with required variable definitions needed in the
customer code with the respective linker PRM. Use this as an example to verify that the
prm file generated the checksums.

Listing 3.29 Checksum entry in linker PRM file

…
CHECKSUM
 CHECKSUM_ENTRY
 METHOD_CRC8
 OF READ_ONLY 0xF00C TO 0xF02B
 OF READ_ONLY 0xFE8000 TO 0xFE800F
 INTO READ_ONLY 0xF300 SIZE 1
 UNDEFINED 0xFF
 END
END
…

99HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Linking an Assembly Application
Listing 3.30 Customer code

const struct __ChecksumArea areas[] = {
 {(const void * __far)(0x7FF00C), 0x20} ,
 {(const void * __far)(0x7F8000), 0x10}
};

#define N_MEM_AREAS 2 /* Total number of memory areas present in const
struct __ChecksumArea areas[] */
#define DEFAULT_CRC8_POLY 0x9B
#define DEFAULT_CRC8_INIT 0xFF
#define CHECKSUM_STORAGE_CRC8 (*(unsigned char*)0x7FF300)

void main() {
...
 if (_Checksum_CheckAreasCRC8(areas , N_MEM_AREAS, DEFAULT_CRC8_POLY
,DEFAULT_CRC8_INIT) == CHECKSUM_STORAGE_CRC8) {
 result = TRUE;
 }
...
}

Checksum.c file has routines prefixed with _Checksum_CheckAreas as utilities to
compute a single checksum over multiple memory areas.

The following code adds the new data structure __ChecksumArea to checksum.h
with respect to the calculation of single checksum for multiple memory areas.

Listing 3.31 Code Adding __ChecksumArea to checksum.h

struct __ChecksumArea {
 _CHECKSUM_ConstMemBytePtr start;
 unsigned int len;
};

Linking an Assembly Application
Use the prm file or the SmartLinker to link an Assembly application, when warnings can
be ignored.
100 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Linking an Assembly Application
prm File
When an application consists of assembly files only, you can simplify the linker prm file.
The simplified prm file requires:

• No startup structure.

• No stack initialization, because the source file directly initializes the stack.

• No main function.

• An entry point in the application.

Listing 3.32 prm File Example

LINK test.abs
NAMES test.o test2.o END
SECTIONS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
END
INIT Start ; Application entry point
VECTOR ADDRESS 0xFFFE Start ; Initialize Reset Vector

This example:

• Allocates all data sections defined in the assembly input files in the RAM_AREA
segment.

• Allocates all code and constant sections defined in the assembly-input files in the
ROM_AREA segment.

• Defines the MyStart function as the application entry point and also specifies it as
a reset vector. MyStart must be XDEFed in the assembly source file.

Warning Messages
An assembly application does not need any startup structure or root function.

You can ignore the following two warnings:

WARNING: _startupData not found

WARNING: Function main not found
101HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Linking an Assembly Application
Smart Linking
When you link an assembly application, the linker performs smart linking on section level
instead of object level. That links whole sections containing referenced objects with the
application. An example of SmartLinking follows:

Listing 3.33 Assembly Source File

 XDEF entry
 dataSec1: SECTION
 data1: DS.W 1
 dataSec2: SECTION
 data2: DS.W 2
 codeSec: SECTION
 entry:
 NOP
 NOP
 LDX #data1
 LDD #5645
 STD 0, X
 loop: BRA loop

Listing 3.34 SmartLinker prm File

 LINK test.abs
 NAMES test.o END

 SECTIONS
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 INIT entry
 VECTOR ADDRESS 0xFFE entry

This example:

• Defines the function entry as application entry point and also specifies it as a reset
vector.

• Links the data section dataSec1 defined in the assembly input file with the
application because data1 is referenced in entry. Allocates dataSec1 in the
RAM_AREA segment at address 0x300.
102 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Linking an Assembly Application
• Links the code section codeSec defined in the assembly-input file with the
application because entry is the application entry point. Allocates codeSec in the
ROM_AREA segment at address 0x8000.

• Does NOT link the data section dataSec2 defined in the assembly input file with
the application, because the data2 symbol is never referenced.

You can switch smart linking OFF for your application. In that case all of the assembly
code and all objects link with the application.

For the previous example, the following prm file switches smart linking OFF:

Listing 3.35 ELF Format prm File

 LINK test.abs
 NAMES test.o END

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 INIT entry
 VECTOR ADDRESS 0xFFE entry
 ENTRIES * END

Listing 3.36 Freescale Format prm File

 LINK test.abs
 NAMES test.o+ END

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 INIT entry
 VECTOR ADDRESS 0xFFFE entry

These examples:

• Define the entry function as application entry point and specify it as a reset vector.
103HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Linking Issues
Linking an Assembly Application
• Allocate the dataSec1 data section defined in the assembly input file in the
RAM_AREA segment at address 0x300.

• Allocate the dataSec2 data section defined in the assembly input file next to the
dataSec1 section at address 0x302.

• Allocate the codeSec code section defined in the assembly-input file in the
ROM_AREA segment at address 0x8000.

LINK_INFO (ELF)
Some compilers support writing additional information into the ELF file. This information
consists of a topic name and specific content.

#pragma LINK_INFO BUILD_NUMBER “12345”
#pragma LINK_INFO BUILD_KIND “DEBUG”

The compiler then stores this information into the ELF object file. The linker checks if
different object files contain the same topic name with different content. If so, the linker
issues a warning.

Finally, the linker issues all LINK_INFOs into the generated output ELF file.

Use this feature to warn you about linking incompatible object files together. Also the
debugger can use this feature to pass information from header files used by the compiler
into the generated application.

The linker currently has no internal knowledge about specific topic names.
104 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

4
SmartLinker Parameter File

The SmartLinker’s parameter file is an ASCII text file. For each application you have to
write such a file. It contains linker commands specifying how the linking is to be done.
This section describes the parameter file in detail, giving examples you may use as
templates for your own parameter files. You might also want to look at the parameter files
for the examples included in your installation.

Parameter File Syntax
The following is the EBNF syntax of the parameter file:

ParameterFile={Command}
Command= LINK NameOfABSFile [AS ROM_LIB]
| NAMES ObjFile {ObjFile} END
| SEGMENTS {SegmentDef} END
| PLACEMENT {Placement} END
| (STACKTOP | STACKSIZE) exp
| MAPFILE MapSecSpecList
| ENTRIES EntrySpec {EntrySpec} END
| VECTOR (InitByAddr | InitByNumber)
| INIT FuncName
| MAIN FuncName
| HAS_BANKED_DATA
| OVERLAP_GROUP {FuncName} END
| DEPENDENCY {Dependency} END
| CHECKSUM {ChecksumEntry} END
where:
NameOfABSFile= FileName
ObjFile= FileName [”-”]
ObjName= Ident
QualIden = FileName “:” Ident
FuncName= ObjName | QualIdent
MapSecSpecList= MapSecSpec “,” {MapSecSpec}
EntrySpec= [FileName“:”] (* | ObjName)
MapSecSpec= ALL | NONE | TARGET | FILE | STARTUP | SEC_ALLOC |
SORTED_OBJECT_LIST | OBJ_ALLOC | OBJ_DEP | OBJ_UNUSED | COPYDOWN |
OVERLAP_TREE | STATSTIC
Dependency= ROOT {ObjName} END
| ObjName USES {ObjName} END
| ObjName ADDUSE {ObjName} END
105HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker Parameter File
Parameter File Syntax
| ObjName DELUSE {ObjName} END
SegmentDef= SegmentName “=“ SegmentSpec “;”.
SegmentName= Ident.
SegmentSpec= StorageDevice Relocation Range [Alignment] [FILL
CharacterList] [OptimizeConstants].
ChecksumEntry= CHECKSUM_ENTRY
ChecksumMethod
[INIT Number]
[POLY Number]
OF MemoryArea
INTO MemoryArea
[UNDEFINED Number]
END
ChecksumMethod= METHOD_CRC_CCITT | METHOD_CRC8 | METHOD_CRC16 |
METHOD_CRC32 | METHOD_ADD [SIZE <Size>] | METHOD_XOR.
MemoryArea= StorageDevice Range StorageDevice= READ_ONLY | CODE |
READ_WRITE | PAGED | NO_INIT.
Range= exp (TO | SIZE) exp
Relocation= RELOCATE_TO Address
Alignment= ALIGN [exp] {“[“ObjSizeRange“:” exp”]”}
ObjSizeRange= Number | Number TO Number | CompareOp Number
CompareOp= (“<“ | “<=“ | “>“ | “>=“)
CharacterList= HexByte {HexByte}
OptimizeConstants= {(DO_NOT_OVERLAP_CONSTS | DO_OVERLAP_CONSTS) {CODE
| DATA}}
Placement= SectionList (INTO | DISTRIBUTE_INTO) SegmentList “;”
SectionList= SectionName {“,” SectionName}
SectionName= Ident
SegmentList= Segment {“,” Segment}
Segment= SegmentName | SegmentSpec
InitByAddr= ADDRESS Address Vector
InitByNumber= VectorNumber Vector
Address= Number
VectorNumber= Number
Vector= (FuncName [OFFSET exp] | exp) [“,” exp]
Ident= <any C style identifier>
FileName= <any file name>
exp= Number
Number= DecimalNumber | HexNumber | OctalNumber
HexNumber= 0xHexDigit{HexDigit}.
DecimalNumber= DecimalDigit{DecimalDigit}
HexByte= HexDigit HexDigit
HexDigit= “0” | “1”| “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”| “A”
| “B” | “C” | “D” | “E” | “F” | “a” | “b” | “c” | “d” | “e” | “f”
DecimalDigit= “0” | “1”| “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”
|

106 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker Parameter File
Mandatory SmartLinker Commands
Comments can appear anywhere in a parameter file, except where file names are expected.
You can use either C style comments or Modula-2 style comments.

To keep your sources portable, do not include paths in file names. Otherwise, if you copy
the sources to some other directory, the linker might not find all files needed. The linker
uses the paths in the environment variables GENPATH, OBJPATH, TEXTPATH and
ABSPATH to decide where to look for files and where to write the output files.

The order of the commands in the parameter file does not matter. However, make sure that
you specify the SEGMENTS block before the PLACEMENT block.

There are a some sections named .data, .text, .stack, .copy, .rodata1,
.rodata, .startData, and .init. Information about these sections can be found in
the chapter on predefined sections.

Mandatory SmartLinker Commands
A linker parameter file must contain at least the entries for LINK (or using option -O),
NAMES, and PLACEMENT. All other commands are optional. The following example
shows the minimal parameter file:

LINK mini.abs /* Name of resulting ABS file */
NAMES
 mini.o startup.o /* Files to link */
END
STACKSIZE 0x20 /* in bytes */
PLACEMENT
 DEFAULT_ROM INTO READ_ONLY 0xA00 TO 0xBFF;
 DEFAULT_RAM INTO READ_WRITE 0x800 TO 0x8FF;
END

If the CodeWarrior software calls the linker, then the LINK command is not necessary.
The CodeWarrior Plug-In passes the -O option with the destination file name directly to
the linker. You can see this if you enable Display generated command lines in message
window in the Linker preference panel in CodeWarrior IDE.

The first placement statement reserves the address range from 0xA00 to 0xBFF for
allocation of read only objects (hence the qualifier READ_ONLY).

DEFAULT_ROM INTO READ_ONLY 0xA00 TO 0xBFF;

The .text subsumes all linked functions, all constant variables, all string constants and
all initialization parts of variables, and copies them to RAM at startup.

The second placement statement reserves the address range from 0x800 to 0x8FF for
allocation of variables.

DEFAULT_RAM INTO READ_WRITE 0x800 TO 0x8FF;
107HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

SmartLinker Parameter File
The INCLUDE Directive
The INCLUDE Directive
A special INCLUDE directive allows you to split a prm file into several text files, if
needed, to separate a target-specific part of a prm file from a common part.

The syntax of the include directive is:

IncludeDir= “INCLUDE” FileName.

Because the INCLUDE directive may be everywhere in the prm file, it is not contained in
the main EBNF.

Listing 4.1 Include Directive Example

LINK mini.abs /* Name of resulting ABS file */
NAMES
 startup.o /* startup object file */
 INCLUDE objlist.txt
END
STACKSIZE 0x20 /* in bytes */
PLACEMENT
 DEFAULT_ROM INTO READ_ONLY 0xA00 TO 0xBFF;
 DEFAULT_RAM INTO READ_WRITE 0x800 TO 0x8FF;
END
with objlist.txt:
 mini0.o /* user object file(s) */
 mini1.o
108 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

5
ELF Sections

Using sections allows you complete control over object allocation in memory. A section is
a named group of global objects (variables or functions) associated with a certain memory
area that may be non-contiguous. The objects belonging to a section are allocated in its
associated memory range. This chapter describes the use of sections in detail.

There are many different ways to use sections, the most important being:

• Distributing two or more groups of functions and other read-only objects to different
ROMs.

• Allocating single functions or variables to a fixed absolute address (for example, to
access processor ports using high-level language variables).

• Allocating variables into memory locations where special addressing modes may be
used.

Segments and Sections
A Section is a named group of global objects declared in the source file, that is, functions
and global variables.

A Segment is a memory range, not necessarily contiguous.

In the linker’s parameter file, each section is associated with a segment so the linker
knows where to allocate the objects belonging to a section.

Sections
A section definition always consists of two parts: the definition of the objects belonging to
it, and the memory area(s) associated with it, called segments. The object definition is
done in the application source files using pragmas or directives (see the Compiler or
Assembler manual). The segment definition is done in the parameter file using the
SEGMENTS and PLACEMENT commands.
109HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ELF Sections
Sections
Predefined Sections
You can group predefined sections into sections according to the runtime routines:

• Sections for things other than variables and functions: .rodata1, .copy,
.stack.

• Sections for grouping large sets of objects: .data, .text

• A section for placing objects initialized by the linker: .startData.

• A section to allocate read-only variables: .rodata

NOTE The .data and .text sections provide default sections for object allocation.

The following paragraphs describe each of these predefined sections.

.rodata1
This predefined section contains all string literals. For example, This is a string is
allocated in section .rodata1. If you associate this section with a segment qualified as
READ_WRITE, the strings are copied from ROM to RAM at startup.

.rodata
The .rodata section contains any constant variable (declared as const in a C module
or as DC in an assembler module) which is not allocated in a user-defined section.
Usually, the .rodata section is associated with a READ_ONLY segment.

If this section is not mentioned in the PLACEMENT block in the parameter file, these
variables are allocated next to the .text section.

.copy
Initialization data belongs to the .copy section. If a source file contains the declaration:

int a[] = {1, 2, 3};

the hex string 000100020003 (6 bytes), which is copied to a location in RAM at
program startup, belongs to the .copy segment.

If you allocate the .rodata1 section to a READ_WRITE segment, all strings also belong
to the .copy section. Any objects in this section are copied at startup from ROM to
RAM.
110 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ELF Sections
Sections
.stack
The runtime stack has its own segment named .stack. Always allocate .stack to a
READ_WRITE segment.

.data
This predefined section is the default section for all objects normally allocated to RAM. It
is used for variables not belonging to any section or to a section not assigned a segment in
the PLACEMENT block in the linker’s parameter file. If any of the .bss or .stack
sections are not associated with a segment, these sections are included in the .data
memory area in the following order:

Figure 5.1 Memory Inclusion Order for .data

.text
This is the default section for all functions. If a function is not assigned to a certain section
in the source code or if its section is not associated with a segment in the parameter file, it
is automatically added to the .text section. If any of the .rodata, .rodata1,
.startData or .init sections are not associated with a segment, these sections are
included in the .text memory area.

.startData
The startup description data initialized by the linker and used by the startup routine is
allocated to segment .startData. This section must be allocated to a READ_ONLY
segment.

.init
The application entry point is stored in the .init section. This section also must be
associated with a READ_ONLY segment.
111HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ELF Sections
Examples of Using Sections
.overlap
Compilers using pseudo-static variables for locals allocate these variables in .overlap.
Variables of functions not depending on each other may be allocated at the same place.
This section must be associated with a NO_INIT segment.

NOTE The .data and .text sections must always be associated with a segment.

Examples of Using Sections
Examples 1 and 2 illustrate the use of sections to precisely control allocation of variables
and functions.

Example 1
This example distributes code into two different ROMs:

LINK first.ABS
NAMES first.o strings.o startup.o END
STACKSIZE 0x200
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 DEFAULT_ROM INTO ROM1, ROM2;
 DEFAULT_RAM INTO READ_WRITE 0x1000 TO 0x1FFF;
END

Example 2
This example allocates code into battery-buffered RAM:

/* Extract from source file "bufram.c" */
#pragma DATA_SEG Buffered_RAM
 int done;
 int status[100];
#pragma DATA_SEG DEFAULT
/* End of extract from "bufram.c" */
112 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ELF Sections
Examples of Using Sections
The following shows the associated SmartLinker parameter file:

LINK bufram.ABS
NAMES
 bufram.o startup.o
END
STACKSIZE 0x200
SECTIONS
 BatteryRAM = NO_INIT 0x1000 TO 0x13FF;
 MyRAM = READ_WRITE 0x5000 TO 0x5FFF;
PLACEMENT
 DEFAULT_ROM INTO READ_ONLY 0x2000 TO 0x2800;
 DEFAULT_RAM INTO MyRAM;
 Buffered_RAM INTO BatteryRAM;
END
113HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ELF Sections
Examples of Using Sections
114 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

6
Segments

Using segments allows you complete control over object allocation in memory. A segment
is a named group of global objects (variables or functions) associated with a certain
memory area that may be non-contiguous. The objects belonging to a segment are
allocated in its associated memory range. This chapter describes the use of segmentation
in detail.

There are many different ways to make use of the segment concept, the most important
being:

• Distributing two or more groups of functions and other read-only objects to different
ROMs.

• Allocating single functions or variables to a fixed absolute address (for example, to
access processor ports using high-level language variables).

• Allocating variables in memory locations where special addressing modes may be
used.

Segments and Sections
A Segment is a named group of global objects declared in the source file, i.e. functions and
global variables.

A Section is a memory range, not necessarily contiguous.

In the linker’s parameter file, each segment is associated with a section so the linker
knows where to allocate the objects belonging to a segment.

Segment
A segment definition always consists of two parts: the definition of the objects belonging
to it, and the memory area(s) associated with it, called sections. The object definition is
done in the source files of the application using pragmas or directives (see the Compiler or
Assembler manual). The section definition is done in the parameter file using the
SECTIONS and PLACEMENT commands (see Parameter File Syntax).
115HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Segments
Segment
Predefined Segments
Predefined segment can be grouped into segments according to the runtime routines:

• Segments for things other than variables and functions: STRINGS, COPY, SSTACK

• Segments for grouping large sets of objects: DEFAULT_RAM, DEFAULT_ROM

• A segment for placing objects initialized by the linker: STARTUP

• A segment to allocate read-only variables: ROM_VAR

NOTE The segments DEFAULT_RAM and DEFAULT_ROM provide default segments
for allocating objects.

The following paragraphs describe each of these predefined segments.

STRINGS
This predefined segment contains all string literals (e.g. This is a string).
Associate this segment with a segment qualified as READ_WRITE to copy the strings
from ROM to RAM at startup.

ROM_VAR
The ROM_VAR segment contains any constant variable (declared as const in a C module
or as DC in an assembler module) which is not allocated in a user-defined segment.
Usually, the ROM_VAR segment is associated with READ_ONLY section.

If this segment is not mentioned in the PLACEMENT block in the parameter file, the linker
allocates these variables next to the DEFAULT_ROM segment.

FUNCS
The FUNCS segment contains any function code not allocated in a user-defined segment.
Usually, the FUNCS segment is associated with READ_ONLY section.

COPY
Initialization data belongs to the COPY segment. If a source file contains the declaration:

int a[] = {1, 2, 3};

the hex string 000100020003 (6 bytes), which is copied to a location in RAM at
program startup, belongs to segment COPY.
116 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Segments
Segment
If the STRINGS segment is allocated to a READ_WRITE section, all strings also belong to
the COPY segment. The linker copies any objects in this segment from ROM to RAM at
startup.

SSTACK
The runtime stack has its own segment named SSTACK. Always allocate SSTACK to a
READ_WRITE section.

DEFAULT_RAM
This is the default segment for all objects normally allocated to RAM. Use
DEFAULT_RAM for variables not belonging to any segment or for variables belonging to a
segment not assigned a section in the PLACEMENT block in the linker’s parameter file. If
you do not associate the SSTACK segment with a section, it is appended to the
DEFAULT_RAM memory area.

DEFAULT_ROM
This is the default segment for all functions. If a function is not assigned to a certain
segment in the source code or if its segment is not associated with a section in the
parameter file, it is automatically added to DEFAULT_ROM segment. If any of the
_PRESTART, STARTUP, or COPY segments is not associated with a section, the linker
includes these segments in the DEFAULT_ROM memory area in the following order:

Figure 6.1 DEFAULT_ROM Segment Memory Order

STARTUP
The startup description data initialized by the linker and used by the startup routine is
allocated to the STARTUP segment. This segment must be allocated to a READ_ONLY
section.

_PRESTART
The application entry point is stored in the segment _PRESTART. This segment must also
be associated with a READ_ONLY section.

_PRESTART STARTUP COPYDEFAULT_ROM
117HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Segments
Segment
_OVERLAP
This segment contains pseudo-static local variables, which are for non-reentrant functions.

The linker analyzes the call graph (that is, it keeps track of which function calls which
other functions) and chooses distinct memory areas in the _OVERLAP segment if it
detects a call dependency between two functions. If it doesn’t detect such a dependency, it
may overlap the memory areas used for local variables of two separate functions.

There are cases in which the linker cannot determine whether a function calls another
function, especially in the presence of function pointers. If the linker detects a conflict
between two functions, it issues an error message.

In the ELF object file format, the name .overlap is a synonym for _OVERLAP.

NOTE The DEFAULT_RAM and DEFAULT_ROM segments must always be associated
with a section.

VIRTUAL_TABLE_SEGMENT
The compiler generates virtual function tables if virtual functions are used. Because
classes often are declared in header files, each implementation file including such header
files with classes containing virtual member functions, may generate virtual function
tables. These tables are constant by default and may be allocated in ROM.

To simplify this, the compiler places all virtual tables into a special segment named
VIRTUAL_TABLE_SEGMENT. You can use this in the linker parameter file to allocate
the virtual tables into ROM:

DEFAULT_ROM, ROM_VAR, VIRTUAL_TABLE_SEGMENT INTO MY_ROM

Additionally, the linker uses this segment name to avoid duplicate definitions of virtual
function tables in your linked application.
118 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

7
Program Startup

This section deals with advanced material. First-time users may skip this section; standard
startup modules taking care of common cases are delivered with the programs and
examples. It suffices to include the startup module in the files to link in the parameter file.
For more information about the names of the startup modules and the different variants see
the file readme.txt in the LIB directory subfolders.

NOTE The code shown in this chapter is example code. To understand what the
startup modules for your environment do, be sure to look at the files in the
installation.

Prior to calling the application’s root function (main), one must:

• initialize the processor’s registers,

• zero out memory, and

• copy initialization data from ROM to RAM.

Depending on the processor and the application’s needs, different startup routines may be
necessary.

There are standard startup routines for every processor and memory model. They are easy
to adapt to your particular needs because all these startup routines are based on a startup
descriptor containing all information needed. Different startup routines differ only in the
way they make use of that information.

Startup Descriptor (ELF)
The startup descriptor of the linker is declared in code similar to that shown below. Note
that depending on architecture or memory model your startup descriptor may be different.

typedef struct{
 unsigned char *_FAR beg;int size;
} _Range;

typedef struct _Copy {
 int size; unsigned char * far dest;
} _Copy;

typedef void (*_PFunc)(void);
119HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
Startup Descriptor (ELF)
typedef struct_LibInit {
 _PFunc *startup; /* address of startup desc */
} _LibInit;

typedef struct _Cpp {
 _PFunc initFunc; /* address of init function */
} _Cpp;

extern struct _tagStartup {
 unsigned char flags;
 _PFunc main;
 unsigned short stackOffset;
 unsigned short nofZeroOuts;
 _Range *pZeroOut;
 _Copy *toCopyDownBeg;
 unsigned short nofLibInits;
 _LibInit *libInits;
 unsigned short nofInitBodies;
 _Cpp *initBodies;
 unsigned short nofFiniBodies;
 _Cpp *finiBodies;
} _startupData;

The linker expects, somewhere in your application, a declaration of the variable
_startupData, that is:

struct _tagStartup _startupData;

The linker initializes the fields of this struct and allocates _startupData in ROM in
.startData section. If there is no declaration of this variable, the linker does not
create a startup descriptor. In this case, there is no .copy section, and the stack is not
initialized. Furthermore, global C++ constructor and ROM libraries are not initialized.

Table 7.1 shows the semantics for these fields.
120 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
Startup Descriptor (ELF)
Table 7.1 ELF Startup Descriptor Field Semantics

Field Name Description

flags Contains some flags which can be used to detect special
conditions at startup. Currently uses two bits. Linking the
application as a ROM library sets bit 0 equal to 1. Bit 1 is set when
no stack specification is made.
Startup code tests Bit 1 (with mask 2) to determine whether to
initialize the stack pointer.

main Function pointer set to application’s root function. In a C program,
this usually is function main unless a MAIN entry exists in the
parameter file, specifying some other function as root. In a ROM
library, main is zero. Standard startup code jumps to this address
once initialization is over.

stackOffset Valid only if (flags & 2) == 0. Contains the initial value of the
stack pointer.

nofZeroOuts Number of READ_WRITE segments to fill with zero bytes at startup.
Not required if you do not have any RAM memory area, which
requires initializing at startup. When not present in the startup
structure, pZeroOut must not be present either.

pZeroOut Pointer to a vector with elements of type _Range. It has exactly
nofZeroOuts elements, each describing a memory area to be
cleared. Not required if you do not have any RAM memory area,
which requires initializing at startup. When not present in the
startup structure, nofZeroOuts must not be present either.

toCopyDownBeg Contains the address of the first item which must be copied from
ROM to RAM at runtime. All data to be copied is stored in a
contiguous piece of ROM memory and has the following format:

CopyData = {Size[t] TargetAddr {Byte}
Size

Alignment} 0x0[t].

Alignment= 0x0[0..7].
Size is a binary number whose most significant byte is stored first.
Not required if you do not have any RAM memory area, which
requires initializing at startup. Alignment is used to align the next
size and TargetAddr field. Number of alignment bytes depends
on processor’s capability to access unaligned data. For small
processors, there is usually no alignment. Size t of Size[t] and

0x0[t] depends on target processor and memory model.
121HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
Startup Descriptor (ELF)
nofLibInits Number of ROM libraries linked with the application that must be
initialized at startup. Not required if you do not link any ROM library
with your application. When not present in startup structure,
libInits must not be present.

libInits Vector of pointers to the _startupData records of all ROM
libraries in the application. Contains exactly nofLibInits
elements. These addresses are needed to initialize the ROM
libraries. Not required if you do not link any ROM library with your
application. When not present in the startup structure,
nofLibInits must not be present.

nofInitBodies Number of C++ global constructors which must be executed prior
to invoking application root function. Not required if application
does not contain a C++ module. When not present in startup
structure, initBodies must not be present.

initBodies Pointer to a vector of function pointers containing addresses of the
global C++ constructors in the application, sorted in calling order.
Contains exactly nofInitBodies elements. If application does
not contain any C++ modules, the vector is empty. Not required if
application does not contain any C++ module. When not present in
the startup structure, nofInitBodies must not be present either.

nofFiniBodies Number of C++ global destructors which must be executed after
the invocation of application root function. Not required if
application does not contain a C++ module. When not present in
startup structure, finiBodies must not be present either. If
application root function does not return, nofFiniBodies and
finiBodies can both be omitted.

finiBodies Pointer to a vector of function pointers containing addresses of
global C++ destructors in the application, sorted in calling order.
Contains exactly nofFiniBodies elements. If an application
does not contain any C++ modules, the vector is empty. Not
required if application does not contain a C++ module. When not
present in startup structure, nofFiniBodies must not be present
either. If application root function does not return,
nofFiniBodies and finiBodies can both be omitted.

Table 7.1 ELF Startup Descriptor Field Semantics (continued)

Field Name Description
122 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Structure (ELF)
User-Defined Startup Structure (ELF)
You can define your own startup structure. That means you can remove the fields, which
are not required for your application, or move the fields inside of the structure. If you
change the startup structure, it is your responsibility to adapt the startup function to match
the modification.

Example

If you have no RAM area to initialize at startup, no ROM libraries and no C++ modules in
the application, you can define the startup structure as follows:

 extern struct _tagStartup {
 unsigned short flags;
 _PFunc main;
 unsigned short stackOffset;
 } _startupData;

Adapt the startup code in the following way:

 extern void near _Startup(void) {
 /* purpose: 1) initialize the stack
 2) call main;
 parameters: NONE */
 do { /* forever: initialize the program; call the root-procedure */
 INIT_SP_FROM_STARTUP_DESC();
 /* Here user defined code could be inserted,
 the stack can be used
 */
 /* call main() */
 (*_startupData.main)();
 } while(1); /* end loop forever */
 }

NOTE Do not change the name of the fields in the startup structure. You are free to
remove fields inside of the structure, but respect the names of the different
fields or the SmartLinker may not initialize the structure correctly.
123HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Routines (ELF)
User-Defined Startup Routines (ELF)
There are two ways to replace the standard startup routine with one of your own:

• You can provide a startup module containing a function named _Startup and link
it with the application in place of the startup module delivered.

• You can implement a function with a name other than _Startup and define it as
the entry point for your application using the command INIT:

INIT function_name

In this case, function function_name is the startup routine.

Startup Descriptor (Freescale)
The Freescale startup descriptor of the linker is declared as below.

NOTE Descriptor declaration may vary depending on architecture or memory model.

typedef struct{
 unsigned char *beg; int size;
} _Range;

typedef void (*_PFunc)(void);

extern struct _tagStartup{
 unsigned flags;
 _PFunc main;
 unsigned dataPage;
 long stackOffset;
 int nofZeroOuts;
 _Range *pZeroOut;
 long toCopyDownBeg;
 _PFunc *mInits;
 struct _tagStartup *libInits;
} _startupData;

The linker expects, somewhere in your application, a declaration of the variable
_startupData, that is:

struct _tagStartup _startupData;

The linker initializes the fields of this struct and allocates the struct in ROM in
STARTUP segment. If you do not declare this variable, the linker does not create a startup
124 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
Startup Descriptor (Freescale)
descriptor. In this case, there is no COPY segment, and the stack is not initialized.
Furthermore, global C++ constructor and ROM libraries are not initialized.

Table 7.2 shows the semantics for these fields.

Table 7.2 Freescale Startup Descriptor Field Semantics

Field Name Description

flags Contains some flags, which may be used to detect special
conditions at startup. Currently uses two bits. Linking the
application as a ROM library sets bit 0 equal to 1. Bit 1 is set when
no stack specification is made.
Startup code tests flags to determine whether to initialize the
stack pointer.

main Function pointer set to the application’s root function. In a C
program, usually function main unless a MAIN entry exists in the
parameter file specifying some other function as being root. In a
ROM library, main is zeroed out. Standard startup code jumps to
this address once initialization completes.

dataPage Used only for processors having paged memory and memory
models supporting only one page. In this case, dataPage gives
the page.

stackOffset Valid only if flags == 0. Contains initial stack pointer value.

nofZeroOuts Number of READ_WRITE segments to fill with zero bytes at
startup.

pZeroOut Pointer to a vector with elements of type _Range. It has exactly
nofZeroOuts elements, each describing a memory area to be
cleared.

toCopyDownBeg Contains the address of the first item which must be copied from
ROM to RAM at runtime. All data to be copied is stored in a
contiguous piece of ROM memory and has the following format:

CopyData = {Size[2] TargetAddr {Byte}
Size} 0x0[2]

Size is a binary number whose most significant byte is stored first.

libInits Pointer to array of pointers to _startupData records of all ROM
libraries in the application. These addresses are needed to
initialize the ROM libraries. To specify end of the array, the last
array element contains the value 0x0000ffff.

mInits Pointer to array of function pointers containing addresses of the
global C++ constructors in the application, sorted in calling order.
Array is terminated by a single zero entry.
125HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Routines (Freescale)
User-Defined Startup Routines (Freescale)
There are two ways to replace the standard startup routine with one of your own:

• You can provide a startup module containing a function named _Startup and link
it with the application in place of the startup module delivered.

• You can implement a function with a name other than _Startup and define it as
the entry point for your application using the command INIT:

INIT function_name

In this case, function function_name is the startup routine.

Example of Startup Code in ANSI-C
Normally the startup code delivered with the compiler is provided in HLI for code
efficiency reasons. But there is also an ANSI-C version available in the library directory
(startup.c and startup.h). You can use this code for your own modifications or to
get familiar with the startup concept.

The code shown here is an example and may be different depending on the actual
implementation. See the files in your installation directory.

Listing 7.1 Header File startup.h:

/***
 FILE : startup.h
 PURPOSE : data structures for startup
 LANGUAGE: ANSI-C
**/
#ifndef STARTUP_H
#define STARTUP_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdtypes.h>
#include <hidef.h>
/*
 the following data structures contain the data needed to
 initialize the processor and memory
*/

typedef struct{
 unsigned char *beg;
 int size; /* [beg..beg+size] */
} _Range;
126 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Routines (Freescale)
typedef struct _Copy{
 int size;
 unsigned char * dest;
} _Copy;

typedef struct _Cpp {
 _PFunc initFunc; /* address of init function */
} _Cpp;

typedef void (*_PFunc)(void);
typedef struct _LibInit{
 struct _tagStartup *startup; /* address of startup desc */
} _LibInit;
#define STARTUP_FLAGS_NONE 0
#define STARTUP_FLAGS_ROM_LIB (1<<0) /* ROM library */
#define STARTUP_FLAGS_NOT_INIT_SP (1<<1) /* init stack */
#ifdef __ELF_OBJECT_FILE_FORMAT__
/* ELF/DWARF object file format */
/* attention: the linker scans for these structs */
/* to obtain the available fields and their sizes. */
/* So do not change the names in this file. */

extern struct _tagStartup {
 unsigned char flags; /* STARTUP_FLAGS_xxx */
 _PFunc main; /* first user fct */
 unsigned short stackOffset; /* initial stack pointer */
 unsigned short nofZeroOuts; /* number of zero outs */
 _Range *pZeroOut; /* vector of zero outs */
 _Copy *toCopyDownBeg; /* copy down start */
 unsigned short nofLibInits; /* number of ROM Libs */
 _LibInit *libInits; /* vector of ROM Libs */
 unsigned short nofInitBodies; /* number of C++ inits */
 _Cpp *initBodies; /* C+ init funcs */
 unsigned short nofFiniBodies; /* number of C++ dtors */
 _Cpp *finiBodies; /* C+ dtors funcs */
} _startupData;

#else /* HIWARE format */

extern struct _tagStartup {
 unsigned flags; /* STARTUP_FLAGS_xxx */
 _PFunc main; /* starting point of user code */
 unsigned dataPage; /* page where data begins */
 long stackOffset; /* initial stack pointer */
 int nofZeroOuts; /* number of zero out ranges */
 _Range *pZeroOut; /* ptr to zero out descriptor */
 long toCopyDownBeg;/* address of copydown descr */
 _PFunc *mInits; /* ptr to C++ init fcts */
127HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Routines (Freescale)
 _LibInit *libInits; /* ptr to ROM Lib descriptors */
} _startupData;

#endif

extern void _Startup(void); /* execution begins here */
/*---*/
#ifdef __cplusplus
 }
#endif
#endif /* STARTUP_H */

Listing 7.2 Implementation File startup.c:

/***
 FILE : startup.c
 PURPOSE : standard startup code
 LANGUAGE : ANSI-C / HLI
 ***/
#include <hidef.h>
#include <startup.h>
/***/
struct _tagStartup _startupData; /* startup info */
/*---*/
static void ZeroOut(struct _tagStartup *_startupData) {
/* purpose: zero out RAM-areas where data is allocated.*/
 int i, j;
 unsigned char *dst;
 _Range *r;
 r = _startupData->pZeroOut;
 for (i=0; i<_startupData->nofZeroOuts; i++) {
 dst = r->beg;
 j = r->size;
 do {
 dst = '\0'; / zero out */
 dst++;
 j--;
 } while(j>0);
 r++;
 }
}
/*--*/
static void CopyDown(struct _tagStartup *_startupData) {
/* purpose: zero out RAM-areas where data is allocated.
 this initializes global variables with their values,
 e.g. 'int i = 5;' then 'i' is here initialized with '5' */
 int i;
128 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Routines (Freescale)
 unsigned char *dst;
 int *p;
 /* _startupData.toCopyDownBeg ---> */
 /* {nof(16) dstAddr(16) {bytes(8)}^nof} Zero(16) */
 p = (int*)_startupData->toCopyDownBeg;
 while (*p != 0) {
 i = *p; /* nof */
 p++;
 dst = (unsigned char*)*p; /* dstAddr */
 p++;
 do {
 /* p points now into 'bytes' */
 *dst = *((unsigned char*)p); /* copy byte-wise */
 dst++;
 ((char*)p)++;
 i--;
 } while (i>0);
 }
}
/*---*/
static void CallConstructors(struct _tagStartup *_startupData) {
/* purpose: C++ requires that the global constructors have
 to be called before main.
 This function is only called for C++ */
#ifdef __ELF_OBJECT_FILE_FORMAT__
 short i;
 _Cpp *fktPtr;

 fktPtr = _startupData->initBodies;
 for (i=_startupData->nofInitBodies; i>0; i--) {
 fktPtr->initFunc(); /* call constructors */
 fktPtr++;
 }
#else
 _PFunc *fktPtr;
 fktPtr = _startupData->mInits;
 if (fktPtr != NULL) {
 while(*fktPtr != NULL) {
 (**fktPtr)(); /* call constructors */
 fktPtr++;
 }
 }
#endif
}
/*---*/
static void ProcessStartupDesc(struct _tagStartup *);
/*--*/
static void InitRomLibraries(struct _tagStartup *_sData) {
129HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Routines (Freescale)
 /* purpose: ROM libraries have their own startup functions
 which have to be called. This is only necessary if ROM
 Libraries are used! */

#ifdef __ELF_OBJECT_FILE_FORMAT__
 short i;
 _LibInit *p;

 p = _sData->libInits;
 for (i=_sData->nofLibInits; i>0; i--) {
 ProcessStartupDesc(p->startup);
 p++;
 }
#else
 _LibInit *p;
 p = _sData->libInits;
 if (p != NULL) {
 do {
 ProcessStartupDesc(p->startup);
 } while ((long)p->startup != 0x0000FFFF);
 }
#endif
}
/*--*/
static void ProcessStartupDesc(struct _tagStartup *_sData) {
 ZeroOut(_sData);
 CopyDown(_sData);
#ifdef __cplusplus
 CallConstructors(_sData);
#endif
 if (_sData->flags&STARTUP_FLAGS_ROM_LIB) {
 InitRomLibraries(_sData);
 }
}
/*---*/
#pragma NO_EXIT
#ifdef __cplusplus
 extern "C"
#endif
void _Startup (void) {
 for (;;) {
 asm {
 /* put your target specific initialization */
 /* (e.g. CHIP SELECTS) here */
 }
 if (!(_startupData.flags&STARTUP_FLAGS_NOT_INIT_SP)) {
 /* initialize the stack pointer */
 INIT_SP_FROM_STARTUP_DESC(); /* defined in hidef.h */
130 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Routines (Freescale)
 }
 ProcessStartupDesc(&_startupData);
 (*_startupData.main)(); /* call main function */
 } /* end loop forever */
}
/*---*/
131HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Program Startup
User-Defined Startup Routines (Freescale)
132 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

8
The Map File

When linking completes successfully, the linker writes a protocol of the link process to a
list file called a map file. The name of the map file is the same as that of the .ABS file, but
with extension .map. The linker writes the map file to the directory given by the
TEXTPATH environment variable (see TEXTPATH: Text Path).

Map File Contents
Table 8.1 describes the sections contained in the map file.

Table 8.1 Map File Contents

Section Name Description

TARGET Names the target processor and memory model.

FILE Lists names of all files from which objects were used or referenced
during link process. In most cases, these are the same names listed
in linker parameter file between keywords NAMES and END. If a file
refers to ROM library or program, lists all object files used by ROM
library or program with indentation.

STARTUP Lists prestart code and values used to initialize startup descriptor
_startupData. Startup descriptor is listed member by member
with the initialization data at the right side of the member name.

SEGMENT
ALLOCATION

Lists segments in which at least one object was allocated. At right
side of the segment name there is a pair of numbers, which give the
address range in which the objects belonging to the segment were
allocated.

OBJECT
ALLOCATION

Contains names of all allocated objects and their addresses.
Objects are grouped by module. ROM library addresses are
followed by an @ sign. In this case the absolute file contains no
code for the object (if it is a function), but the object’s address was
used for linking. A string object address followed by a dash “–”
indicates that the string is a suffix of some other string. For example,
if strings abc and bc are present in the same program, the string bc
is not allocated and its address is the address of abc +1.
133HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

The Map File
Map File Contents
NOTE If linking fails because there are objects which were not found in any object
file, no map file is written.

OBJECT
DEPENDENCY

Lists every function and variable that uses other global objects and
the names of these global objects.

DEPENDENCY
TREE

Shows, in a tree format, all detected dependencies between
functions. Also displays overlapping Locals displayed at their
defining function.

UNUSED
OBJECTS

Lists all objects found in object files that were not linked.

COPYDOWN Lists all blocks that are copied from ROM to RAM at program
startup.

STATISTICS Delivers statistical information, like the number of bytes of code in
the application.

Table 8.1 Map File Contents (continued)

Section Name Description
134 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

9
ROM Libraries

The SmartLinker supports linking to objects to which addresses were assigned in previous
link sessions. Packages of already linked objects are called ROM libraries. Creation of a
ROM library only slightly differs from the linkage of a normal program. ROM libraries
can then be used in subsequent link sessions by including them into the list of files
between NAMES and END.

Examples for the use of ROM libraries are:

• If you use a set of related functions in different projects.

It may be convenient to burn thoroughly tested library functions into ROM. We call
such a set of objects (functions, variables and strings) at fixed addresses a ROM
library.

• If you have a set of modules known to be error free and unchanging.

To shorten the time needed for downloading, one can build a ROM library with
modules known to be error free and that do not change. Such a ROM library must be
downloaded only once, before beginning the tests of the other application modules.

• If the system allows you to download one program while another program is present
in the target processor.

The most prominent example is the monitor program. The linker facility described
here enables an application program to use monitor functions.

Creating a ROM Library
To create a ROM library, the keywords AS ROM_LIB must follow the LINK command in
the linker parameter file. With the ENTRIES command, the linker includes only the given
objects (functions and variables) in the ROM library. Without an ENTRIES command, the
linker writes all exported objects to the ROM library. In both cases the ROM library also
contains all global objects used by those functions and variables.

Since a program cannot consist of a ROM library alone, a ROM library must not contain a
function main or a MAIN or INIT command, and the commands STACKSIZE and
STACKTOP are ignored.

Besides all the application modules which form a ROM library, you must also define the
variable _startupData in the ROM library. The library includes a module containing
only a definition of this variable.
135HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ROM Libraries
Using ROM Libraries
ROM Libraries and Overlapping Locals
To allocate overlapping variables, all dependencies between functions must be known at
link time. For ROM libraries, the linker is unaware of the dependencies between the
objects in the ROM library. Therefore local variables of functions inside of the ROM
library cannot overlap locals of the other modules. Instead, the ROM library must use a
separate area for the .overlap/_OVERLAP segment which is not used in the main
application.

Using ROM Libraries
This section describes various activities involved when using ROM libraries.

Suppressing Initialization
To link to a ROM library, add the name of the ROM library to the list of files in the
NAMES section (see NAMES: List Files Building the Application) of the linker parameter
file. Add a dash (–) immediately after the ROM library name (no blank between the last
character of the file name and the dash) to prevent the startup routine from initializing the
ROM library.

You can include an unlimited number of ROM libraries in the list of files to link, as long
as no two ROM libraries use the same object file. If two ROM libraries contain identical
objects (coming from the same object file) and both are linked in the same application, the
linker reports an error, because allocating the same object more than once is not allowed.

Example Application
In this example, we want to build and use a ROM library named romlib.lib. In this
example the ROM library contains only one object file with one function and one global
variable.

Listing 9.1 Header File Example

/* rl.h */
#ifndef __RL_H__
#define __RL_H__

char RL_Count(void);
 /* returns the actual counter and increments it */

#endif
136 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ROM Libraries
Using ROM Libraries
Below is the implementation. Note that somewhere in the ROM library we must define an
object named _startupData for the linker. We will use this startup descriptor to
initialize the ROM library.

Listing 9.2 Startup Descriptor Example

/* rom library (RL_) rl.c */
#include "rl.h"
#include <startup.h>

struct _tagStartup _startupData; /* for linker */

static char RL_counter; /* initialized to zero by startup */

char RL_Count(void) {
 /* returns the actual counter and increments it */
 return RL_counter++;
}

After compiling rl.c we can now link it and build a ROM library using the following
linker parameter file. The main difference between a normal application linker parameter
file and a parameter file for ROM libraries is the AS ROM_LIB keyword in the LINK
command.

Listing 9.3 Linker Parameter File Example

/* rl.prm */
LINK romLib.lib AS ROM_LIB

NAMES rl.o END

SECTIONS
 MY_RAM = READ_WRITE 0x4000 TO 0x43FF;
 MY_ROM = READ_ONLY 0x1000 TO 0x3FFF;

PLACEMENT
 DEFAULT_ROM, ROM_VAR, STRINGS INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
END

In this example, RAM starts at 0x4000 and ROM starts at 0x1000. By default the linker
generates startup descriptors for ROM libraries too. The startup descriptors are used to
zero out global variables or to initialize global variables with initialization values.
Additionally, C++ constructors and destructors may be called. This process is called
Module Initialization.
137HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ROM Libraries
Using ROM Libraries
To switch off Module Initialization for a single object file in the above linker parameter
file, add a dash (–) at the end of each object file. For the above example this is:

NAMES rl.o- END

After building the ROM library, the linker generates a map file. Listing 9.4 shows an
extract of this file. The linker also generates a startup descriptor at (in this case) address
0x1000 to initialize the ROM library.

Listing 9.4 Map File Example

**
STARTUP SECTION
--

Entry point: none
_startupData is allocated at 1000 and uses 44 Bytes

extern struct _tagStartup{
 unsigned flags 3
 _PFunc main 103C ()
 unsigned dataPage 0
 long stackOffset 4202
 int nofZeroOuts 1
 _Range pZeroOut -> 4000 2
 long toCopyDownBeg 102C
 _PFunc mInits -> NONE
 void * libInits -> NONE
} _startupData;

**
SEGMENT-ALLOCATION SECTION
--

Segmentname Size Type From To Name

FUNCS 14 R 102E 1041 MY_ROM
COPY 2 R 102C 102D MY_ROM
STARTUP 2C R 1000 102B MY_ROM
DEFAULT_RAM 2 R/W 4000 4001 MY_RAM

**
OBJECT-ALLOCATION SECTION
--

Type: Name: Address: Size:
138 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ROM Libraries
Using ROM Libraries
MODULE: -- rl.o --
- PROCEDURES:
 RL_Count 102E 14

- VARIABLES:
 _startupData 1000 2C
 RL_counter 4000 2

Now we want to use the ROM library from our application, as in Listing 9.5.

Listing 9.5 Simple Application Example

/* main application using ROM library: main.c */
#include "rl.h"

int cnt;

void main(void) {
 int i;

 for (i=0; i<100; i++) {
 cnt = RL_Count();
 }
}

After compiling main.c we can link it with our ROM library, as in Listing 9.6.

Listing 9.6 Linking Example

LINK main.abs

NAMES main.o romlib.lib startup.o ansi.lib END

SECTIONS
 MY_RAM = READ_WRITE 0x5000 TO 0x53FF;
 MY_ROM = READ_ONLY 0x6000 TO 0x6FFF;

PLACEMENT
 DEFAULT_ROM, ROM_VAR, STRINGS INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
END

STACKSIZE 0x200
139HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ROM Libraries
Using ROM Libraries
Depending on your CPU configuration and memory model you may need to use a startup
object file other than startup.o and a library other than ansi.lib. Additionally you
must choose the right startup object file. For efficiency reasons most of the startup files
implemented in HLI are optimized for a specific target. To save ROM usage, they do not
support ROM libraries in the startup code. As long as no Module Initialization is needed,
this is not a problem. To use the Module Initialization feature (as in our example), we use
the ANSI-C implementation in the library directory (startup.c). Because this startup
file may not be delivered in every target configuration, you must compile the
startup.c startup file as well.

After linking to main.abs, you get a map file. Listing 9.7 shows an extract of this file.

Listing 9.7 Map File after Linking Example

**
STARTUP SECTION
--
Entry point: 0x6000
Linker generated code (at 0x6000) before calling __Startup:
MOVE #0x2700, SR
JMP 0x61A0
_startupData is allocated at 600A and uses 48 Bytes

extern struct _tagStartup{
 unsigned flags 0
 _PFunc main 603C (_main)
 unsigned dataPage 0
 long stackOffset 5202
 int nofZeroOuts 1
 _Range pZeroOut -> 5000 2
 long toCopyDownBeg 603A
 _PFunc mInits -> NONE
 void * libInits -> 1000
} _startupData;

**
SEGMENT-ALLOCATION SECTION
--
Segmentname Size Type From To Name

FUNCS 184 R 603C 61BF MY_ROM
COPY 2 R 603A 603B MY_ROM
STARTUP 30 R 600A 6039 MY_ROM
_PRESTART A R 6000 6009 MY_ROM
SSTACK 200 R/W 5002 5201 MY_RAM
DEFAULT_RAM 2 R/W 5000 5001 MY_RAM
**
OBJECT-ALLOCATION SECTION
140 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ROM Libraries
Using ROM Libraries
--
Type: Name: Address: Size:
VECTOR
 value: 0 0 4
 &_Startup 4 4

MODULE: -- main.o --
- PROCEDURES:
 main 603C 26

- VARIABLES:
 cnt 5000 2

MODULE: -- X:\FREESCALE\DEMO\M68KC\rl.o --
- PROCEDURES:
 RL_Count 102E 14 @

- VARIABLES:
 __startupData 1000 2C @
 RL_counter 4000 2 @

MODULE: -- startup.o --
- PROCEDURES:
 ZeroOut 6062 50
 CopyDown 60B2 54
 ProcessStartupDesc 6142 3E
 HandleRomLibraries 6106 3C
 Start 6180 20
 _Startup 61A0 20

- VARIABLES:
 _startupData 600A 30

The linker marks objects linked from the ROM library (RL_Count, RL_counter) with
an @ in the OBJECT-ALLOCATION-SECTION. The linker in this case generates a
startup descriptor at address 0x600A which points, with field libInits, to the startup
descriptor in our ROM library at address 0x1000.

NOTE The main.abs file does NOT include the code/data of the ROM library, thus
they are NOT downloaded during downloading of main.abs, and must be
downloaded separately (e.g., with an EEPROM).
141HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

ROM Libraries
Using ROM Libraries
142 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

10
Initializing the Vector Table

You can initialize the vector table in the assembly source file or in the linker parameter
(prm) file. We recommend initializing it in the prm file.

Using the SmartLinker prm File
Initializing the vector table from the prm file allows you to initialize single entries in the
table. You can decide if you want to initialize all the entries in the vector table or not.

You must implement the labels or functions to insert into the vector table in the assembly
source file. All these labels must be published, otherwise they cannot be addressed in the
linker prm file.

Example:

XDEF IRQFunc, XIRQFunc, SWIFunc, OpCodeFunc, ResetFunc

DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments another element of the table.

CodeSec: SECTION
; Implementation of the interrupt functions.

IRQFunc:
 LDAB #0
 BRA int

XIRQFunc:
 LDAB #2
 BRA int

SWIFunc:
 LDAB #4
 BRA int

OpCodeFunc:
 LDAB #6
 BRA int

ResetFunc:
143HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Initializing the Vector Table
Using the SmartLinker prm File
 LDAB #8
 BRA entry

int:
 LDX #Data ; Load address of symbol Data in X
 ABX ; X <- address of the appropriate element in the table
 INC 0, X ; The table element is incremented
 RTI

entry:
 LDS #$AFE
loop: BRA loop

NOTE The functions IRQFunc, XIRQFunc, SWIFunc, OpCodeFunc,
ResetFunc are published. This is required because they are referenced in the
linker prm file.

NOTE As the HC12 processor automatically pushes all registers onto the stack on
occurrence of an interrupt, the interrupt functions do not need to save and
restore the registers being used.

NOTE You must terminate all interrupt functions with an RTI instruction.

Initialize the vector table using the VECTOR ADDRESS linker command.

Example:

 LINK test.abs
 NAMES
 test.o
 END

 SECTIONS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0B00 TO 0x0CFF;

 PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 END

 INIT ResetFunc
 VECTOR ADDRESS 0xFFF2 IRQFunc
 VECTOR ADDRESS 0xFFF4 XIRQFunc
144 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Initializing the Vector Table
Using a Relocatable Section in the Assembly Source File
 VECTOR ADDRESS 0xFFF6 SWIFunc
 VECTOR ADDRESS 0xFFF8 OpCodeFunc
 VECTOR ADDRESS 0xFFFE ResetFunc

NOTE The statement INIT ResetFunc defines the application entry point. Usually,
this entry point is initialized with the same address as the reset vector.

NOTE The statement VECTOR ADDRESS 0xFFF2 IRQFunc tells the linker to
write the address of function IRQFunc at address 0xFFF2.

Using a Relocatable Section in the
Assembly Source File

Initializing the vector table in the assembly source file requires initializing all the entries
in the table. Unused interrupts must be associated with a standard handler.

You must implement the labels or functions to insert into the vector table in the assembly
source file. You can define the vector table in an assembly source file in an additional
section containing constant variables.

Example:

 XDEF ResetFunc
 DataSec: SECTION
 Data: DS.W 5 ; Each interrupt increments an element of the table.
 CodeSec: SECTION
 ; Implementation of the interrupt functions.
 IRQFunc:
 LDAB #0
 BRA int
 XIRQFunc:
 LDAB #2
 BRA int
 SWIFunc:
 LDAB #4
 BRA int
 OpCodeFunc:
 LDAB #6
 BRA int
 ResetFunc:
 LDAB #8
 BRA entry
145HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Initializing the Vector Table
Using a Relocatable Section in the Assembly Source File
 DummyFunc:
 RTI
 int:
 LDX #Data
 ABX
 INC 0, X
 RTI
 entry:
 LDS #$AFE
 loop: BRA loop

 VectorTable:SECTION
 ; Definition of the vector table.
 IRQInt: DC.W IRQFunc
 XIRQInt: DC.W XIRQFunc
 SWIInt: DC.W SWIFunc
 OpCodeInt: DC.W OpCodeFunc
 COPResetInt: DC.W DummyFunc; No function attached to COP Reset.
 ClMonResInt: DC.W DummyFunc; No function attached to Clock
 ; MonitorReset.
 ResetInt : DC.W ResetFunc

NOTE Each constant in the section VectorTable is defined as a word (2-byte
constant), because the entries in the HC12 vector table are 16 bits wide.

NOTE The previous example initializes the constant IRQInt with the address of the
label IRQFunc.

NOTE The previous example initializes the constant XIRQInt with the address of the
label XIRQFunc.

NOTE All the labels specified as initialization values must be defined, published
(using XDEF) or imported (using XREF) before the vector table section. No
forward reference is allowed in DC directive.

Now place the section at the expected address, using the linker parameter file.

Example:

 LINK test.abs
 NAMES test.o+ END

 SECTIONS
146 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Initializing the Vector Table
Using an Absolute Section in the Assembly Source File
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0A00 TO 0x0BFF;
 /* Define the memory range for the vector table */
 Vector = READ_ONLY 0xFFF2 TO 0xFFFF;
 PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 /* Place the section ‘VectorTable’ at the appropriated address. */
 VectorTable INTO Vector;
 END

 INIT ResetFunc

NOTE The statement Vector = READ_ONLY 0xFFF2 TO 0xFFFF defines the
memory range for the vector table.

NOTE The statement VectorTable INTO Vector tells the linker to load the
vector table into the read-only memory area Vector. This allocates the
constant IRQInt at address 0xFFF2, the constant XIRQInt at address
0xFFF4, and so on, and allocates the constant ResetInt at address 0xFFFE.

NOTE The statement NAMES test.o+ END switches smart linking OFF in the
module test.o. If this statement is missing in the prm file, the vector table
never links with the application, because it is never referenced. The
SmartLinker only links the referenced objects in the absolute file.

Using an Absolute Section in the Assembly
Source File

Initializing the vector table in the assembly source file requires initializing all the entries
in the table. Unused interrupts must be associated with a standard handler.

You must implement the labels or functions to insert into the vector table in the assembly
source file. You can define the vector table in an assembly source file in an additional
section containing constant variables.

Example:

 XDEF ResetFunc
 DataSec: SECTION
 Data: DS.W 5 ; Each interrupt increments an element of the table.
147HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Initializing the Vector Table
Using an Absolute Section in the Assembly Source File
 CodeSec: SECTION
 ; Implementation of the interrupt functions.
 IRQFunc:
 LDAB #0
 BRA int
 XIRQFunc:
 LDAB #2
 BRA int
 SWIFunc:
 LDAB #4
 BRA int
 OpCodeFunc:
 LDAB #6
 BRA int
 ResetFunc:
 LDAB #8
 BRA entry
 DummyFunc:
 RTI
 int:
 LDX #Data
 ABX
 INC 0, X
 RTI
 entry:
 LDS #$AFE
 loop: BRA loop

 ORG $FFF2
 ; Definition of the vector table in an absolute section
 ; starting at address
 ; $FFF2.
 IRQInt: DC.W IRQFunc
 XIRQInt: DC.W XIRQFunc
 SWIInt: DC.W SWIFunc
 OpCodeInt: DC.W OpCodeFunc
 COPResetInt: DC.W DummyFunc; No function attached to COP Reset.
 ClMonResInt: DC.W DummyFunc; No function attached to Clock
 ; MonitorReset.
 ResetInt : DC.W ResetFunc

NOTE Each constant in the section VectorTable is defined as a word (2-byte
constant), because the entries in the HC12 vector table are 16 bits wide.
148 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Initializing the Vector Table
Using an Absolute Section in the Assembly Source File
NOTE In the previous example initializes the constant IRQInt with the address of
the label IRQFunc.

NOTE In the previous example initializes the constant XIRQInt with the address of
the label XIRQFunc.

NOTE All the labels specified as initialization value must be defined, published (using
XDEF) or imported (using XREF) before the vector table section. No forward
reference is allowed in DC directive.

NOTE The statement ORG $FFF2 specifies that the next section must start at address
$FFF2.

Example:

 LINK test.abs
 NAMES
 test.o+
 END

 SEGMENTS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0A00 TO 0x0BFF;
 PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 END

 INIT ResetFunc

NOTE The statement NAMES test.o+ END switches smart linking OFF in the
module test.o. If this statement is missing in the prm file, the vector table
never links with the application, because it is never referenced. The
SmartLinker links only the referenced objects in the absolute file.
149HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Initializing the Vector Table
Using an Absolute Section in the Assembly Source File
150 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

II

Burner Utility

Introduction
The CodeWarrior IDE burner utility converts an .ABS file into a file that can be handled
by an EPROM burner. The Burner is available as either:

• An interactive burner with a graphical user interface (GUI).

• A batch burner that accepts commands either from a command line or in a command
file. It can then be invoked by the Make Utility.

This section consists of the following chapters:

• Interactive Burner GUI: Description of GUI

• Batch Burner Language: Description of Batch Burner Language (BBL)

Product Highlights
The burner utility:

• Has a powerful user interface

• Has available on-line help

• Offers flexible message management

• Has 32-bit application

• Can generate S-Record, Binary, or Intel Hex files

• Can split the application into different EEPROMS (1-, 2- or 4-byte bus width)

• Has an interactive (GUI) and batch language interface (Batch Burner)

• Uses a powerful Batch Burner Language with various commands, including:

– baudRate, busWidth, CLOSE, dataBit, destination, DO, ECHO, ELSE, END,
fillByte, FOR, format, header, IF, len, OPENCOM, OPENFILE, origin, parity,
151HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Starting the Burner Utility
PAUSE, range, SENDBYTE, SENDWORD, SLINELEN, SRECORD,
swapByte, THEN, TO, and undefByte.

• Supports Freescale and ELF/DWARF Object File Format, S-Records and Intel Hex
Files as input

• Supports a serial programmer attached to a serial port with various configuration
settings

Starting the Burner Utility
You can start all of the utilities described in this book from executable files located in the
Prog folder of your IDE installation. The executable files are:

• linker.exe The SmartLinker

• maker.exe Maker: The Make Tool

• burner.exe The Burner Utility

• decoder.exe The Decoder

• libmaker.exe Libmaker

With a standard full installation of the HC(S)08/RS08 CodeWarrior IDE, you can find the
executable files in:

C:\Program Files\Freescale\CodeWarrior for Microcontrollers V6.2\Prog

With a standard full installation of the S12 CodeWarrior IDE, you can find the executable
files in:

C:\Program Files\Freescale\CodeWarrior for S12(X) V5.x\Prog

To start the Burner Utility, click on burner.exe. The Burner Default Configuration
window appears (Figure 10.1).
152 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Starting the Burner Utility
Figure 10.1 Burner Default Configuration Window

Alternatively, from within the IDE Project Target Settings window, select the Burner for
HC08 option from among the listed settings panels. Click on the Burner command button
in the Burner for HC08 panel. The Burner window of the Interactive Burner GUI appears
(Figure 10.2).

Figure 10.2 IDE Project Target Settings Panel Burner for HC08 Window
153HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Starting the Burner Utility
154 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

11
Interactive Burner GUI

You can use the interactive burner graphic user interface (GUI) to burn your EEPROM
instead of writing a batch burner language file. Within the GUI you can set all parameters
and receive the output needed for a batch burner language file. You can then use the
commands displayed on the Burner Dialog Box Command File tab in a make file.

Burner Default Configuration Window
When you start the Burner, the Burner Default Configuration window opens.

Figure 11.1 Burner Default Configuration Window

To open the burner dialog box, click the Burner Dialog icon in the toolbar or select the
Burner Dialog option from the Burner list menu.

You can also access the burner dialog box with the following command line option:

burner.exe -D

 Burner Dialog Icon
155HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Interactive Burner GUI
Burner Dialog Box
Burner Dialog Box
The Burner dialog box consists of three tabs:

• Input/Output Tab

• Content Tab

• Command File Tab

The Burner uses the last burn session values as initial values for the Burner dialog box
tabs. The Burner writes the values to the project.ini file in the [BURNER] section.

Input/Output Tab
In the Input/Output tab, specify which file you want the burner to use for input and where
to write the output. Click the Execute button to start the operation.

Output from the burn process usually goes to a PROM burner connected to the serial port.
You can also redirect output to a file written in either Intel Hex format, as Freescale
S-Records or as plain binary.

Figure 11.2 Burner Dialog Box Input/Output Tab
156 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Interactive Burner GUI
Burner Dialog Box
Input Group
Specify the input file in the Input File text field. The browse button on the right side is
used to browse for a file. The following file types are supported:

• Absolute files produced by linker. The absolute file format may be either Freescale
or ELF/DWARF

• S-Record File

• Intel Hex File

The corresponding Batch Burner command is SENDBYTE: Transfer Bytes or
SENDWORD: Transfer Words.

To specify the input file, you can use the %ABS_FILE% macro to pass ABS_FILE using
an environment variable. See Environment Variable Details.

For example:

-ENV” ABS_FILE=file_name”

Output Group
The burner writes output to a serial port (Com1, Com2, Com3 or Com4) or a file.

File
Select the File option button to write output to a file. In the corresponding text box, enter
the output file name or browse for an existing file.

The corresponding Batch Burner command is OPENFILE: Open Output File.

If you use the macro %ABS_FILE% for the input file, you can add an extension to
automatically generate the output file.

Example:

%ABS_FILE%.s19

Com1, Com2, Com3, Com4
To write the output to a serial port, select an available port and define the communication
settings.

The corresponding Batch Burner command is OPENCOM: Open Output Communication
Port.

Com Settings Group
Writing output to a serial port (Com1, Com2, Com3 or Com4) specifies Baud Rate, Parity,
Data bits and Header File in the list boxes and text box of the Com Settings group.
157HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Interactive Burner GUI
Burner Dialog Box
Execute Group
The Execute group selects a data width and writes data.

1. From the list menu select the byte or word to write:

• 1st Byte (msb)

• 2nd Byte

• 3rd Byte

• 4th Byte

• 1st Word

• 2nd Word

2. Click the Execute command button to write the data.

Depending on the data width chosen, you may have to send the result to more than one
output file.

Example: Format is S Record and data bus is 2 Bytes

This generates two output files. Data for the first Byte (msb) is sent to a file named
fibo_1.s19 and data for the second byte is sent to fibo_2.s19.

3. Select 1st Byte (msb)

If your data bus is 2 bytes wide, the code is split into two parts:

• Selecting 1st Byte (msb) and clicking Execute transfers the even part of the data
(corresponding to D8 to D15).

Table 11.1 Serial Port Specifications

Name Available Options Corresponding Batch
Burner Command

Baud
Rate

Supported Baud Rates: 300, 600, 1200,
2400, 4800, 9600, 19200 and 38400

baudRate: Baudrate for
Serial Communication

Parity Set communication parity to none, even or
odd.

parity: Set Communication
Parity

Data Bits Set number of data bits transferred to 7 or 8
bits.

dataBit: Number of Data
Bits

Header
File

Use to specify an initialization file for the
PROM burner. File is sent to PROM burner
byte by byte (binary), without modification,
before anything else.

header: Header File for
PROM Burner
158 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Interactive Burner GUI
Burner Dialog Box
• Selecting 2nd Byte transfers the odd part, which corresponds to LSB or D0 to D7.

If the data bus is 4 bytes wide:

• 1st Byte (msb) transfers D24 to D31

• 4th Byte sends the LSB (D0 to D7).

If using 16-bit EPROMs, select one of the Word formats. If necessary, you can
exchange the high and low byte. Check Swap Bytes in the Content tab of the Burner
dialog box.

4. Click Execute to transfer the code bytes, if you select a data bus width of 1 byte.

The corresponding Batch Burner commands are SENDBYTE: Transfer Bytes and
SENDWORD: Transfer Words.

Content Tab
Use the Content tab in the Burner dialog box to specify the data format and range to be
written.

Figure 11.3 Burner Dialog Box Content Tab
159HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Interactive Burner GUI
Burner Dialog Box
Range to Copy Group
Example: If your application is linked at address $3000 to $4000 and the EPROM is at
address $2000 (Origin) and Length is $2000, the code will start at address $1000 relative
to the EPROM. If the EPROM is at address $3000 (Origin) and Length is $1000, it is filled
from the start.

Table 11.2 Content Tab Group Details

Group
Name

Use Available
Options

Corresponding
Batch Burner
Command

Format Use to select an output
format

S Records
Intel Hex
Files
Binary Files

format: Output Format

SRecord
Configuration

Use to select type of
SRecord and bytes per
line to be written
OR
Use to configure the
number of bytes per
SRecord line. Useful
when using tools with
restricted capacity.

automatic,
S1
S2
S3

SRECORD: S-Record
Type

SLINELEN: SRecord Line
Length

Data Bus Use to select a Data
Bus width

1, 2 or 4 bytes busWidth: Data Bus
Width

Swap Bytes
Checkbox

Use to enable swapping
bytes. Available if data
bus is 2 or 4 bytes

swapByte: Swap Bytes

Undef Byte
Textbox

For a binary output file,
normally all undefined
bytes in output are
written as 0xFF. If
desired, another pattern
can be specified.

undefByte: Fill Byte for
Binary Files

Range to
Copy

Use to specify the range
to copy. Text box
explains result.

origin (start),
length,
offset

See Range to Copy
Group for more
information.
160 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Interactive Burner GUI
Burner Dialog Box
Command File Tab
The Command File tab of the Burner dialog box displays a summary of your settings as
Batch Burner commands. You can select and copy the commands for use in make files or
Batch Burner Language (.bbl) files.

Figure 11.4 Burner Dialog Box Command File Tab

Table 11.3 Range to Copy Group Details

Textbox Use Corresponding Batch
Burner Command

Origin
Textbox

Set to EEPROM start address in system. origin: EEPROM Start
Address

Length Enter range of program code to be copied. len: Length to be Copied

Destination
Offset

Enter additional offset to add to resulting S
Record or Intel Hex File. Example: if you
set Origin to 0x3000 and Destination Offset
to 0x1000, then written address is 0x4000.

destination: Destination
Offset
161HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Interactive Burner GUI
Burner Dialog Box
If you use the selection displayed on the Command File tab in a make file, you must either
place everything on a single line or use the line continuation character (\) as shown.

burn:
$(BURN) \

OPENFILE "fibo.s19" \
format = freescale \
origin = 0xE000 \
len = 0x2000 \
busWidth = 1
162 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

12
Batch Burner Language

This chapter describes the Batch Burner Language (BBL).

Batch Burner User Interface
Starting the Burner utility displays the window shown in Figure 12.1.

Figure 12.1 Burner Default Configuration Window

To use the Batch Burner, type in your batch burner commands on the command line,
specify a file using the -F option on the command line, or use a startup option:

-Ffibo.bbl

or

OPENFILE "fibo.s19" origin=0xE000 len=0x2000 SENDBYTE 1
"fibo.abs"

You can also specify options and burner commands with the burner program:

burner.exe -Ffibo.bbl
163HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Batch Burner Language
Syntax of Burner Command Files
You can use the Burner directly from a make file:

burn:

$(BURN) \

OPENFILE "fibo.s19" \

format = freescale \

origin = 0xE000 \

len = 0x2000 \

busWidth = 1

SENDBYTE 1 "fibo.abs"

Syntax of Burner Command Files
The following example shows the syntax of burner commands.

Listing 12.1 Example of Burner Command File Syntax

StatementList = Statement {Separator Statement}.
Statement = [IfSat | ForStat | Open | Send | Close | Pause

| Echo | Format | SFormat | Origin | Len
| BusWidth | Parity | SwapByte | Header
| BaudRate | DataBit | UndefByte
| Destination | AssignExpr | SLineLen].

IfStat = "IF" RelExpr "THEN" StatementList
["ELSE" StatementList] "END".

Assign = (“=” | “:=”).
ForStat = "FOR" Ident Assign SimpleExpr "TO" SimpleExpr

 "DO" StatementList "END".
Open = ("OPENFILE" String) | ("OPENCOM" SimpleExpr).
Send = ("SENDBYTE" | "SENDWORD") SimpleExpr String.
Close = "CLOSE".
Pause = "PAUSE" [String].
Echo = "ECHO" [String].
Format = “format” Assign (“freescale” | “intel” | “binary”).
SFormat = “SRECORD” Assign (“Sx” | “S1” | “S2” | “S3”).
Origin = “origin” Assign SimpleExpr.
Len = “len” Assign SimpleExpr.
BusWidth = “busWidth” Assign (“1” | “2” | “4”).
Parity = “parity” Assign (“none” | “even” | “odd”).
SwapByte = “swapByte” Assign (“yes” | “no”).
Header = “header” Assign string.
BaudRate = “baudRate” Assign (“300” | “600” | “1200”

| “2400” | “4800” | “9600”
164 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Batch Burner Language
Batch Burner with Makefile
| “19200” | “38400”).
DataBit = “dataBit” Assign (“7” | “8”).
UndefByte = “undefByte” Assign SimpleExpr.
Destination = “destination” Assign SimpleExpr.
SLineLen = “SLINELEN” Assign SimpleExpr.
AssignExpr = Ident Assign SimpleExpr.
RelExpr = SimpleExpr {RelOp SimpleExpr}.
RelOp = "=" | "==" | "#" | "<>" | "!=" | "<"

| "<=" | ">" | ">=".
SimpleExpr = ["+" | "-"] Term {AddOp Term}.
AddOp = "+" | "-".
Term = Number | String | Ident.
Number = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | {Number}
Ident = "i".
String = '"' {char} '"'.

NOTE The identifier used in a FOR statement must be called i.

Command File Comments
Command files accept both ANSI-C style or Modula-2 style comments.

/* This is a C like comment */

(* This is a Modula-2 like comment *)

Specify assignments using ANSI-C or Modula-2 syntax:

 dataBit := 2 (* Modula-2 like *)

 dataBit = 2 /* C like */

Specify constant format using either ANSI-C or Modula-2 syntax:

 origin = 0x1000 /* C like */

 origin := 1000H (* Modula-2 like *)

Batch Burner with Makefile
In a makefile, you can use the burner in two different ways. The first way is to specify a
command file:

BURNER.EXE -f "<CmdFile>"

The second way is to directly specify commands on the command line:

BURNER.EXE SENDBYTE 1 "InFile.abs"
165HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Batch Burner Language
Batch Burner with Makefile
If the commands are long, you can use line continuation characters in your make file as
below:

burn:

$(BURN) \

OPENFILE "fibo.s19" \

format = freescale \

origin = 0xE000 \

len = 0x2000 \

busWidth = 1

If you use the second method, you can include parameter initialization in the
DEFAULT.ENV file located in the working directory. This reduces the length of the
command line parameters, which are limited to 65535 bytes. Variables that can be
specified using environment variables are listed below:

header=

format=freescale

busWidth=1

origin=0

len=0x10000

parity=none

undefByte=0xff

baudRate=9600

dataBit=8

swapByte=no

The example above shows the default values but any legal value can be assigned (see
Batch Burner Commands). For further details, see the example in the following section.
166 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Batch Burner Language
Batch Burner with Makefile
Command File Examples
The following examples show how to write a command file. Listing 12.2 shows a
command file for conditional and repetitive statements.

If the symbol # appears in a string it is replaced by the value of i.

Listing 12.2 Sample Command File for Conditional and Repetitive Statements

ECHO
ECHO " I can count... and I can take decisions"
FOR i = 0 TO 8 DO

IF i == 7 THEN
ECHO "This is the number seven"

ELSE
ECHO "#"

END
IF i == 3 THEN

ECHO "This was the number three"
END

END

Listing 12.3 shows a command file for redirecting the output to a file. To redirect output,
use the command OPENFILE.

Listing 12.3 Command File for Redirecting Output

ECHO
ECHO "Programming 2 EPROMs with 3 files"
ECHO "the first byte of the word goes into the first EPROM"
ECHO "the second byte of the word goes into the second EPROM"
PAUSE "Hit any key to continue"

format = freescale
busWidth = 2
origin = 0
len = 0x3000

FOR i = 1 TO 2 DO
PAUSE "Insert EPROM n# and press <return>"
OPENFILE "prom#.bin"

origin = 0X
SENDBYTE i "demo1.abs"
origin = origin + 0x500
SENDBYTE i "demo2.abs"
origin = origin + 0x500
SENDBYTE i "demo3.abs"

CLOSE
END
167HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Batch Burner Language
Batch Burner with Makefile
Listing 12.4 shows a command file for redirecting the output to a serial port. Use the
OPENCOM command to redirect the output to a serial port.

Listing 12.4 Command File for Redirecting Output to Serial Port

ECHO
ECHO "I can also program 16-bit EPROMs with header"
PAUSE "Hit any key to continue"
header = "init.prm"
format = intel
busWidth = 2
origin = 0x0
len = 0x1000
OPENCOM 1 /* here com1, com2, com3 or com4 could be used*/
SENDWORD 1 "fbin1.map"
CLOSE

Listing 12.5 shows a command file for calling the burner from a makefile. After compiling
and linking the application, the burner prepares the generated code to be burned into two
EPROMs, one containing the odd bytes (fibo_odd.s1) and the other the even bytes
(fibo_eve.s1).

Listing 12.5 Command File for Calling Burner from makefile

makeall:
$(COMP) $(FLAGS) fibo.c
$(LINK) fibo.prm
burner.exe OPENFILE "fibo_odd.s1" \

busWidth=2 SENDBYTE 1 "fibo.abs"
burner.exe OPENFILE "fibo_eve.s1" \
busWidth=2 SENDBYTE 2 "fibo.abs"

NOTE For all parameters not specified in the parameter list, the burner uses default
values or the values specified by environment variables.
168 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

III

Libmaker Utility

Introduction
This section describes the Libmaker, a utility program for creating and maintaining object
file libraries. Using libraries can speed up linking since fewer files are involved, and also
helps in structuring large applications.

Libraries may be given in the linker parameter file instead of object files.

This section consists of the following chapters:

• Libmaker Interface: Description of the GUI.

User Interface
Libmaker provides:

• Graphical User Interface (GUI)

• Command-Line User Interface

• Online Help

• Flexible Message Management

• 32-bit Application

• Builds libraries with Freescale or ELF/DWARF object files

• Error Feedback

• Easy integration with other tools (e.g. CodeWarrior IDE, CodeWright, MS Visual
Studio, WinEdit)
169HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Starting the Libmaker Utility
 Starting the Libmaker Utility
You can start tools (compiler/linker/assembler/decoder/) using:

• Windows Explorer

• Icon on the desktop

• Icon in a program group

• Batch/command files

• Other tools (Editor, Visual Studio)

You can start all of the utilities described in this book from executable files located in the
Prog folder of your IDE installation. The executable files are:

• linker.exe The SmartLinker

• maker.exe Maker: The Make Tool

• burner.exe The Burner Utility

• decoder.exe The Decoder

• libmaker.exe Libmaker

With a standard full installation of the HC(S)08/RS08 CodeWarrior IDE you can find the
executable files at this location:

C:\Program Files\Freescale\CodeWarrior for Microcontrollers V6.2\Prog

With a standard full installation of the HC(S)12 CodeWarrior IDE you can find the
executable files at this location:

C:\Program Files\Freescale\CodeWarrior for HC(S)12 V4.7\Prog

To start the Libmaker Utility, click on libmaker.exe. The Libmaker Default
Configuration window appears.

Interactive Mode
If you start the libmaker with no input (no options or input files), then the graphical user
interface is active (interactive mode). This is usually the case if you start the tool using
Explorer or an icon.
170 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

13
Libmaker Interface

Startup Command Line Options
There are special options for tools which can only be specified at tool startup (while
launching the tool), e.g. they cannot be specified interactively:

Use -Prod (see -Prod: Specify Project File at Startup (PC) (No d, no m)) to specify the
current project directory or file, for example:

libmaker.exe -Prod=C:\Program Files\Freescale\CodeWarrior
for S12(X) V5.x\demo\myproject.pjt

There are other options used to launch the tool and open its dialog boxes. Those dialogs
are available in the compiler/assembler/burner/maker/linker/decoder/libmaker:

• -ShowOptionDialog: This startup option opens the tool option dialog.

• -ShowMessageDialog: This startup option opens the tool message dialog.

• -ShowConfigurationDialog: This opens the File > Configuration dialog.

• -ShowBurnerDialog: Opens burner dialog (burner only)

• -ShowSmartSliderDialog: Opens smart slider dialog (compiler only)

• -ShowAboutDialog: Opens the tool about box.

These options open dialogs in which you can specify tool settings. When you click the OK
button in the dialog, Libmaker stores the settings in the current project settings file.
Example:

C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\prog\libmaker.exe -ShowOptionDialog
-Prod=c:\demos\myproject.pjt

Command Line Interface
Libmaker provides both a command line interface and an interactive interface. If you do
not specify any arguments on the command line, a window appears.
171HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Command Line Interface
Libmaker Commands
When you start Libmaker, it opens a window and prompts for arguments. The arguments
may be given on a command line in the format shown in Listing 13.1.

Listing 13.1 Libmaker Argument Format

LibCommand = Creation
| AppendFiles
| RemoveFiles
| List
| "@" FileName.

Creation = FileName AddList "=" LibName.
AddList = {"+" FileName}.
AppendFile = LibName AddList "=" LibName.
RemoveFiles = LibName SubList ["=" LibName].
SubList = "-" FileName {"-" FileName}.
List = LibName "?" FileName.

Libmaker uses the environment variable OBJPATH when looking for object or library files,
or writing the library file. It uses the environment variable TEXTPATH when looking for a
command file or writing the listing file.

Managing Libraries
All the commands below are supposed to be in a libmaker command file (text file with the
commands in it, line by line). Alternatively you can pack the commands into the -Cmd
option (see -Cmd: Libmaker Commands) and pass it to the libmaker directly (e.g. from a
make file). For example:

a.o + b.o = c.lib

This can be written as an option to the libmaker as:

libmaker.exe -Cmd(a.o + b.o = c.lib)

As it is difficult to create a command line with the ‘+’ operator in a make utility, the
libmaker supports the alternative syntax without the ‘+’ operator:

 -Cmd(a.o + b.o = c.lib)

This can also be written as:

 -Cmd(a.o b.o = c.lib)

Building a Library
Building a library collects all the given object files and/or libraries into one new library,
given after the equal sign:
172 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Command Line Interface
file1.o + file2.o + mylib.LIB = ourlib

NOTE To create a library, there must be at least two files to the left of the equal sign.

Adding Files to a Library
Adding files to an existing library works the same as building a library:

ourlib.LIB + file3.o = ourlib

Removing a File from a Library
You can also remove one or more files from a library:

ourlib.LIB - file1.o = ourlib

This removes the object file file1.o from the library.

Creating a New Library
You can create a new library:

ourlib - file1.o = hislib

In this case, the original library ourlib is not overwritten.

Extracting a File from a Library
Use the following code line to extract a file from a library.

LibName * ObjName

The code line above extracts the object file named ObjName from the library. No path is
given with the argument ObjName. The libmaker writes the object file to the same
directory as the library, and does not remove the file from the library. An existing object
file with the same name as an extracted object file is overwritten without warning.

Example:

mylib.lib * myobj.obj

This writes the object file myobj.obj into the same directory as mylib.lib.

Listing the Contents of a Library
Libmaker also generates an alphabetically sorted list of all exported objects in the library.
Enter the name of the library:

ourlib.LIB
173HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Command Line Interface
The list file has the same name as the library, but with extension .LST. To specify a
different name, enter:

ourlib.LIB ? mylist.TXT

Command Files
Libmaker also supports command files. A command file is a text file containing
commands for the libmaker. To use a command file, enter:

@mycmds.CMD

The libmaker reads the file and interprets the commands line by line.

Batch Mode
If you start the tool with arguments (options and/or input files), then the tool starts in batch
mode. For example, you can specify the following line:

C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\PROG\libmaker.exe @mycommands.txt

In batch mode, the tool does not open a window. It is displayed in the taskbar while the
input is processed and terminates afterwards.

Because it is possible to start 32-bit applications from the command line, you can simply
type the commands you want to execute:

C:\>C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\PROG\libmaker.exe -cmd(a.o b.o = c.lib)

You can redirect the message output (stdout) of a tool using the normal redirection
operators, (e.g. ‘>’ to write the message output to a file):

C:\> C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\PROG\libmaker.exe -h > myoutput.txt

Notice that the command line process immediately returns after starting the tool process. It
does not wait until the process finishes. To start a process and wait for termination (e.g. for
synchronization) use the start command under Windows or the /wait option (see
Windows help: ‘help start’ for more information):

C:\> start /wait C:\Program Files\Freescale\CodeWarrior for
S12(X) V5.x\PROG\libmaker.exe -cmd(a.o b.o = c.lib)

Using start /wait you can write batch files to process your files.

To redirect the libmaker output to stderr/stdout on your DOS shell, use the piper
utility:
174 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
C:\> C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\PROG\piper.exe C:\Program Files\Freescale\CodeWarrior
for S12(X) V5.x\PROG\libmaker.exe -h

This directs all the messages to the DOS shell.

Libmaker Graphic User Interface
The Libmaker Default Configuration window appears when you do not specify a file name
while starting the application. This window contains a menu bar, toolbar, content area, and
status bar.

Figure 13.1 Libmaker Default Configuration WIndow

Libmaker Default Configuration Window
The Libmaker Default Configuration window title displays the application name and
project name. If no project is loaded, Default Configuration appears. An asterisk (*) after
the configuration name indicates that some values have changed.

NOTE Not only option changes, but editor configuration and appearance changes
cause the “*” to appear.
175HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Window Content Area
The content area is a text container that displays logging information about the process
session. This information consists of:

• The name of file being processed

• The name (including full path) of files processed (main C file and all files included)

• A list of error, warning and information messages generated

• The size of code generated during the process session

When you drop a file into the application window content area, the corresponding file
loads as a configuration file if the file has the extension .ini. If not, the file is processed
with the current option settings.

Text in the application window content area displays the following information:

• The file name, including a position inside of file

• A message number

File information is available for text file output. Information is available for all source and
include files and messages. If file information is available, double-clicking on the text or
message opens the file in an editor; as specified in the editor configuration. Also, you can
open a context menu with the right mouse button. The menu contains an Open entry if file
information is available. If a file cannot be opened although a context menu entry is
present, see the Configuration Window Editor Settings Tab section.

The message number is available for any message output. There are three ways to open the
corresponding entry in the help file:

• Select one line of the message and press F1. If the selected line does not have a
message number, F1 displays the main help.

• Press Shift-F1 and then click on the message text. If the text clicked does not have a
message number, this displays the main help.

• Right-click on the message and select “Help on”. This entry is only available if a
message number is available.

Figure 13.2 Libmaker Help Menu
176 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Window Toolbar
Figure 13.3 shows the Libmaker Default Configuration window toolbar.

Figure 13.3 Default Configuration Window Toolbar

The three icons on the left correspond with File menu entries. The next button opens the
Online Help dialog. After pressing the Context Help icon (or the shortcut Shift F1), the
mouse cursor changes its form and has a question mark beside the arrow. Help is called for
the next item clicked. You can click on menus, toolbar buttons and on the window area to
get specific help.

The command line history contains a list of commands executed. Once you have selected
or entered a command in history, clicking Process executes the command. You may use
the keyboard shortcut key F2 to jump to the command line. Additionally, there is a context
menu associated with the command line (see Figure 13.4).

The Stop icon allows you to stop the current process session.

The next four icons open option settings, the smart slider, the type setting, and message
setting dialog box.

The last icon clears the content area.

option settings

context help

online help

save the current configuration

load a configuration

new configuration

command line

stop process

messages

clear log
177HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Figure 13.4 Command Line Context Menu

Default Configuration Window Status Bar
Point to a menu entry or icon in the toolbar to display a brief explanation of the button or
menu entry in the message area.

Figure 13.5 Window Status Bar

Default Configuration Window Menu Bar

File, Libmaker, View and Help options are available from the menu bar.

Figure 13.6 Window Menu Bar

Table 13.1 describes the functions available in the menu bar:

message area current time
178 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Default Configuration Window File Menu
Use the File menu to save or load configuration files.

Figure 13.7 File Menu

 A configuration file contains the following information:

• Application option settings specified in the application dialog boxes

• Message settings that specify which messages to display and treat as errors

• List of last command line executed and current command line

• Window position

• Tip of the Day settings

Configuration files are text files with an extension of .ini. The user can define as many
configuration files as required for the project, and can switch between the different
configuration files using the File > Load Configuration and File > Save Configuration
menu entry, or the corresponding toolbar buttons.

Table 13.1 Menu Bar Functions

Menu entry Description

File Contains entries to manage application configuration files.

Libmaker Contains entries to set application options.

View Contains entries to customize the application window output.

Help A standard Windows Help menu.
179HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Default Configuration Libmaker Menu
The Libmaker menu allows you to customize the application. You can set or reset
application options or define the optimization level you want to reach.

Figure 13.8 Libmaker Default Configuration Libmaker Menu

Table 13.2 File Menu Options

Menu Entry Description

Build Library Opens a standard Open File dialog box. Processes selected file as
soon as Open File box is closed with OK.

New/Default
Configuration

Resets application option settings to default value. See Startup
Command Line Options.

Load
Configuration

Opens a standard Open File dialog box. Loads configuration data
stored in selected file and uses it in subsequent sessions.

Save
Configuration

Saves the current settings.

Save
Configuration as

Opens a standard Save As dialog box. Saves current settings in a
configuration file with the specified name.

Configuration Opens Configuration dialog box to specify editor used for error
feedback and which parts to save with a configuration.

1..... project.ini
2.....

Recent project list. This list can be accessed to open a recently
opened project.

Exit Closes the application.
180 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Default Configuration Window View Menu
The View menu allows you to customize the application window. You can specify
whether to display or hide the status or toolbar. You can also define the font used in the
window or clear the window.

Figure 13.9 Libmaker Default Configuration View Menu

Table 13.3 Libmaker Menu Functions

Menu Entry Description

Options Allows you to customize the application. You can set/reset options.

Messages Opens a dialog box in which you can map error, warning or
information messages to different message classes (see Libmaker
Message Settings Window).

Stop Stops the current processing session.

Table 13.4 View Menu Functions

Menu entry Description

Tool Bar Hide or show toolbar in application window

Status Bar Hide or show status bar in application window

Log Allows you to customize output in application window content area

Change Font Opens a standard font selection box; options selected in font dialog box
are applied to application window content area

Clear Log Clears application window content area
181HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Default Configuration Window Help Menu
The Help menu allows you to enable or disable the Tip of the Day dialog, display the help
file, and an About box.

Figure 13.10 Libmaker Default Configuration Help Menu

Configuration Window
The three tabs of the Configuration Window let you specify the Editor Settings, Save the
Configuration, and specify the Environment.

Configuration Window Editor Settings Tab
In the Editor Settings tab, select the type of editor to use. Depending on the editor type
selected, the tab content changes.

Editor Settings Tab - Global Editor Option
Figure 13.11 shows the Editor Settings tab contents when you choose the Global Editor
option.

Table 13.5 Help Menu Functions

Menu entry Description

Tip of the Day Enable or disable Tip of the Day during startup.

Help Topics Standard Help topics.

About Displays an About box with version and license information.
182 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Figure 13.11 Editor Settings Tab - Global Editor Option

All tools and projects on one computer share the global editor. Editor information is stored
in the global initialization file MCUTOOLS.INI in the [Editor] section. You can
specify some Modifiers on the editor command line.
183HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Editor Settings Tab - Local Editor Option
Figure 13.12 shows the Editor Settings Tab contents when the Local Editor option is
chosen:

Figure 13.12 Editor Settings Tab - Local Editor Option

All tools using the same project file share the local editor. You can specify some
Modifiers on the editor command line.

You can edit the Global and Local Editor configuration. However, when these entries are
stored, the behavior of other tools using the same entries also changes when you start the
tools again.
184 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Editor Settings Tab - Editor Started with Command Line
Option
Figure 13.13 shows the Editor Settings Tab contents when the Editor started with
Command Line option is chosen:

Figure 13.13 Editor Settings Tab - Editor started with Command Line

Selecting this editor type associates a separate editor with the application to obtain error
feedback.

Enter the command to use to start the editor.

You can start the editor with modifiers. Some Modifiers can be specified on the editor
command line that refer to a file name and a line number (see Modifiers).

Examples: (also refer to notes below)

• For IDF use (with path to idf.exe file)

C:\prog\idf.exe %f -g%l,%c

• For Premia CodeWright V6.0 (with path to cw32.exe file)

C:\Premia\cw32.exe %f -g%l

• For Winedit 32-bit version use (with path to winedit.exe file)
185HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
C:\WinEdit32\WinEdit.exe %f /#:%l

Editor Settings Tab - Editor Communication with DDE
Option
Figure 13.14 shows the Editor Settings Tab contents when the Editor Communication with
DDE option is chosen:

Figure 13.14 Editor Settings Tab - Editor Communication with DDE

Enter the service, topic and client name to be used for a DDE connection to the editor.
Entries for Topic and Client Command can have modifiers for file name, line number and
column number as explained below.

Examples:

• For Microsoft Developer Studio use the following setting:

Service Name : msdev

Topic Name : system

ClientCommand : [open(%f)]

• UltraEdit is a powerful shareware editor. It is available from www.idmcomp.com
or www.ultraedit.com, email idm@idmcomp.com. The latest version of
UltraEdit can also be found on the CD-ROM in the addons directory.

For UltraEdit use the following setting:

Service Name : UEDIT32

Topic Name : system

ClientCommand : [open("%f/%l/%c")]

NOTE The DDE application (Microsoft Developer Studio, UltraEdit) must be started
or else the DDE communication will fail.

Modifiers
The configurations can contain modifiers that tell the editor which file to open and at
which line.

• The %f modifier refers to the name of the file (including path) where the message
has been detected.

• The %l modifier refers to the line number where the message has been detected.

• The %c modifier refers to the column number where the message has been detected.
186 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
NOTE The %l modifier can only be used with an editor that can be started with a line
number as a parameter. This is not the case for WinEdit version 3.1 or lower, or
Notepad. With these editors, you can start with the file name as a parameter
and then select the menu entry Go to to jump to the line where the message has
been detected. In this case, the editor command looks like:
C:\WINAPPS\WINEDIT\Winedit.EXE %f
Check your editor manual to define the command line used to start the editor.

Configuration Window - Save Configuration Tab
The Save Configuration tab of the configuration dialog contains options for the save
operation.

Figure 13.15 Configuration Window - Save Configuration Tab

Use the Save Configuration tab to store selected items in a project file. This tab has the
following items:
187HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
• Options: If checked, saves the current option and message settings. Clearing this
option retains the last saved contents.

• Editor Configuration: If checked, saves the current editor settings. Clearing this
option retains the last saved contents.

• Appearance: If checked, saves the window position, size, and font used. Also saves
the command line content and history in the project file.

NOTE After you have saved the options you want, disable the options that you do not
want saved to the Local Configuration File (usually project.ini) in subsequent
configuration settings. Clear the Save on Exit option to retain settings saved
during a previous configuration.

• Environment Variables: If checked, saves environment variables in the project file.

• Save on Exit: If checked, the application writes the configuration settings on exit
without confirmation. If not checked, the application does not save configuration
changes.

NOTE Almost all settings are stored in the Local Configuration File (usually
project.ini). The only exceptions are:
- The recently used configuration list.
- All settings in this tab.

NOTE Application configuration information can coexist in the same file as the
project configuration for the IDE. When you configure an editor with the shell,
the application can read this information from the project file, if present. The
project configuration file is named project.ini.

Configuration Window - Environment Tab
Use the Environment tab of the Configuration window to configure the environment.
188 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Figure 13.16 Configuration Window - Environment Tab

The content of the dialog is read from the project file in the section [Environment

Variables]. The following variables are available:

• General Path: GENPATH

• Object Path: OBJPATH

• Text Path: TEXTPATH

• Absolute Path: ABSPATH

• Header File Path: LIBPATH

• Various Environment Variables: other variables not covered by the above list.

The following command buttons are available:

• Add: Adds a new line/entry

• Change: changes a line/entry

• Delete: deletes a line/entry

• Up: Moves a line/entry up
189HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
• Down: Moves a line/entry down

NOTE Variables are written to the project file only if you press the Save button, select
File > Save Configuration, or select CTRL-S.

Libmaker Option Settings Window
The Libmaker Option Settings window allows you to set/reset application options.

Figure 13.17 Libmaker Options Settings Window - Messages Tab

The lower display area shows available command line options. Available options are

arranged in different groups. The content of the list box depends on the selected tab, such
as Messages (not all groups may be available).
190 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Checking the checkbox sets an option. To obtain more detailed information for a specific
option, select the option and press the F1 key or help button. To select an option, click the
option text. If no option is selected, press F1 or help button to display help for the dialog
box.

NOTE For options that require additional parameters, an edit box or additional
window appears. For example, the option ‘Write statistic output to file’, in the
Output tab.

Libmaker Message Settings Window
This window allows you to map messages to different message classes. A tab is available
for each message group: Disabled, Information, Warning, Error and Fatal.

Each message has a one character identifier (e.g. C for Compiler messages, A for
Assembler messages, L for Linker messages, M for Maker messages, LM for Libmaker
messages) followed by a 4- or 5-digit number. See Libmaker Message List for detailed
information about specific messages.

Table 13.6 Option Settings Functions

Group Description

Optimization Lists optimization options

Output Lists output file options

Input Lists input file options

Language Lists programming language options (ANSI C, C++)

Target Lists target processor options

Host Lists host options

Code Generation Lists code generation options (memory models, float format)

Messages Lists options that control generation of error messages

Various Lists options not related to the above
191HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Figure 13.18 Libmaker Message Settings Window

In this window, some command buttons may be disabled. For example, if a message

cannot be mapped as an Information message, the “Move to” group ‘Information’
command button is disabled when this message is highlighted.

Table 13.7 Message Classes

Message group Description

Disabled Lists all disabled messages that will not be displayed by the
application.

Information Lists all information messages.

Warning Lists all warning messages. Input file processing continues if a
warning occurs.

Error Lists all error messages. Input file processing continues if an error
occurs.

Fatal Lists all fatal error messages. If a fatal message occurs,
processing stops immediately. Fatal messages cannot be
changed.
192 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Changing the Class Associated with a Message
Configure your own message mapping by using the buttons located on the right side of the
dialog box. Each button refers to a message class. To change the class associated with a
message, select the message in the list box and then click the button associated with
another class.

NOTE The Move to buttons are only active for messages that can be moved.

For example, to change a warning message to an error message:

1. Click the Warning tab to display the list of all warning messages.

2. Click on the message you want to change.

3. Click Error to define this message as an error message.

NOTE Messages cannot be moved to or from the fatal error class.

To validate the new error message mapping, click OK to close the Message Settings
dialog box. If you click Cancel, changes are ignored and the previous message mappings
remain valid.

Table 13.8 Command Button Functions

Command Button Description

Move to: Disabled Disables selected messages

Move to: Information Selected messages become information messages.

Move to: Warning Selected messages become warning messages.

Move to: Error Selected messages become error messages.

Move to: Default Selected messages revert back to their default mapping.

Reset All Resets all messages to their default.

Ok Exits and accepts changes.

Cancel Exits without accepting changes.

Help Displays online help.
193HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Libmaker Interface
Libmaker Graphic User Interface
Retrieving Information About an Error Message
You can access information about each message displayed in the list box. Select the
message in the list box and click Help or the F1 key. An information box appears, which
contains a detailed description of the error message and an example of code that produces
the message. If several messages are selected, help for the first message is shown. If no
message is selected, pressing the F1 key or help button displays help for this dialog box.

About Libmaker Dialog Box
Select Help > About to display the About box. The about box contains the current
directory and version information for application modules. The main version is displayed
at the top of the dialog.

The Extended Information button displays license information about all software
components in the same directory as the executable. Click OK to close this dialog.

NOTE During processing, you cannot request other versions of the application
modules. They are only displayed when the application is not processing
information.
194 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

IV

Decoder Utility

Introduction
This section describes the CodeWarrior IDE ELF/Freescale Decoder utility, which
disassembles object files, absolute files and libraries in the Freescale object file format or
ELF/DWARF format and S-Record files. Various output formats are available.

The chapters in this section are:

• Input and Output Files: Describes Decoder input and output files

• Decoder Controls: List menus and the Graphical User Interface (GUI)

Product Highlights
The decoder utility has:

• Graphical User Interface (GUI)

• On-line Help

• Message Management

• 32-bit Functionality

• Decodes Freescale object file format

• Decodes ELF/DWARF 1.1 and 2.0 object file format

• Decodes S-Record files
195HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

User Interface
User Interface
The decoder provides a command line interface and an interactive interface (GUI). If no
arguments are given on the command line, a window opens that prompts for arguments.

The Decoder accepts object or absolute files, libraries, and S-Record files as input to
generate the listing file. The name of the source files are encoded in the object or absolute
file or library. For S-Record files, the processor must be specified with the -Env option
(see -Env: Set Environment Variable).

The generated listing file has the same name as the input file but with extension .LST. It
contains source and assembly statements. The corresponding C/C++ source statements
can be displayed within the generated assembly instructions.
196 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

14
Input and Output Files

This chapter describes Decoder input and output files.

• Input Files

• Output Files

Input Files
Input files include the following file types:

• Absolute files

• Object files

• S-Record files

• Intel Hex files

Absolute Files
The decoder takes any file as input, and does not require the file name to have a special
extension. However, we suggest that all your absolute file names have extension .ABS.
The decoder searches for absolute files first in the project directory and then in the
directories listed in GENPATH. The absolute file must be a valid ELF/DWARF V1.1, ELF/
DWARF V2.0 or Freescale absolute file.

NOTE Freescale absolute files do not contain source information, so no source
information is decoded.

Object File
The decoder takes any file as input, and does not require the file name to have a special
extension. However, we suggest that all your relocatable file names have extension .o.
The decoder searches for object files first in the project directory and then in the
directories listed in GENPATH. The object file must be a valid ELF/DWARF V1.1, ELF/
DWARF V2.0, or Freescale relocatable file.
197HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Input and Output Files
Output Files
S-Record Files
For S-Record files, you must specify the processor with the -Proc option (see -Proc: Set
Processor (Decoder)). Otherwise the structure of the S-Record file prints, but the code is
not disassembled.

Intel Hex Files
For Intel Hex files you must specify the processor with the -Proc option (see -Proc: Set
Processor (Decoder)). Otherwise the structure of the Hex file prints, but the code is not
disassembled.

Output Files
After a successful decoding session, the Decoder generates a listing file containing the
disassembled instructions generated by each source statement. The Decoder writes this
file to the directory given in the environment variable TEXTPATH. If that variable
contains more than one path, the Decoder writes the listing file in the first directory given.
If this variable is not set, the Decoder writes the listing file in the directory containing the
binary input file. Listing files always get the extension .LST.

In a standard listing file, the code depends on the target. A sample listing is as follows:

DISASSEMBLY OF: '.text' FROM 331 TO 416 SIZE
85 (0X55)
Source file: 'Y:\DEMO\WAVE12C\fibo.c'
 8: unsigned int Fibonacci(unsigned int n)
Fibonacci:
00000867 1B98 LEAS -8,SP
00000869 3B PSHD
 13: fib1 = 0;
0000086A C7 CLRB
0000086B 87 CLRA
0000086C 6C88 STD 8,SP
 14: fib2 = 1;
0000086E 52 INCB
0000086F 6C84 STD 4,SP
 15: fibo = n;
00000871 EE80 LDX 0,SP
00000873 6E86 STX 6,SP
 16: i = 2;
00000875 58 ASLB
00000876 6C82 STD 2,SP
 17: while (i <= n) {
00000878 2011 BRA *+19 ;abs = 088B
198 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Input and Output Files
Output Files
 18: fibo = fib1 + fib2;
0000087A EC88 LDD 8,SP
0000087C E384 ADDD 4,SP
0000087E 6C86 STD 6,SP
 19: fib1 = fib2;
00000880 EE84 LDX 4,SP
00000882 6E88 STX 8,SP
 20: fib2 = fibo;
00000884 6C84 STD 4,SP
 21: i++;
00000886 EE82 LDX 2,SP
00000888 08 INX
00000889 6E82 STX 2,SP
 17: while (i <= n) {
0000088B EC82 LDD 2,SP
0000088D AC80 CPD 0,SP
0000088F 23E9 BLS *-21 ;abs = 087A
 23: return(fibo);
00000891 EC86 LDD 6,SP
 24: }
00000893 1B8A LEAS 10,SP
00000895 3D RTS
199HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Input and Output Files
Output Files
200 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

15
Decoder Controls

This chapter describes Decoder controls; list menus and the Graphical User Interface
(GUI).

This chapter is comprised of the following sections:

• List Menus

• Graphical User Interface

• Specifying the Input File

• Message and Error Feedback

List Menus
The Decoder list menus are on the menu bar of the Decoder main window. The following
table lists and describes the main window’s top-level list menus.

Table 15.1 Decoder Main Window List Menus

Menu Name Contains

File Options for managing configuration files

Decoder Commands for setting options

View Options for customizing window output

Help Standard Windows Help menu
201HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
List Menus
File Menu
With the File list menu (Figure 15.1), you can save or load configuration files.
Configuration files contain:

• Configuration dialog option settings.

• Message settings that specify which messages to display and which to treat as errors.

• List of last commands executed and current command line

• Window position

• Tip of the Day settings, including whether the Tip of the Day is enabled at startup
and current entry

Figure 15.1 File Menu

The following table lists and describes the File menu selections:

Table 15.2 File Menu Selections

Menu Selection Description

Decode Opens a standard Open File dialog. Processes selected
file as soon as the Open File box is closed using OK.

New/Default
Configuration

Resets option settings to default value. Default options are
specified in Tool Options.

Load Configuration Opens the standard Open File dialog. Loads configuration
data stored in selected file and uses it in session.

Save Configuration Saves current settings.

Save Configuration as Opens a standard Save As dialog. Saves current settings
in a configuration file with the specified name.

Configuration Opens Configuration dialog to specify the editor to use for
error feedback and which parts to save with a configuration.
202 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
List Menus
Decoder Menu
With the Decoder list menu (Figure 15.2), you can customize the Decoder, graphically set
or reset options, and access message settings.

Figure 15.2 Decoder Menu

The following table lists and describes the Decoder menu selections.

View Menu
With the View Menu (Figure 15.3), you can customize the main window. You can choose
whether to display or hide the status bar and the toolbar, choose the font used in the
window, and clear the window.

Figure 15.3 View Menu

The following table lists and describes the View menu selections.

1..... project.ini
2.....

Recent project list. Access to reopen a recently opened
project.

Exit Closes the Decoder.

Table 15.3 Decoder Menu Selections

Menu entry Description

Options Displays the Option Settings dialog box, where you can define options
for processing an input file.

Messages Opens the Message Settings dialog box, where you can map error,
warning or information messages to another message class.

Table 15.2 File Menu Selections (continued)

Menu Selection Description
203HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Help Menu
From the Help menu (Figure 15.4), you can customize the Tip of the Day dialog and
display help, Decoder version information, and license information.

Figure 15.4 Help Menu

The following table lists and describes the Help menu selections.

Graphical User Interface
This section describes important aspects of the Decoder graphical user interface (GUI).
Windows and dialogs covered here are:

• Decoder Main Window

• Configuration Dialog

Table 15.4 View Menu Selections

Menu Entry Description

Tool Bar Displays toolbar in the main window.

Status Bar Displays status bar in the main window.

Log Lets you customize the output in the main window content area.

Change Font Opens a standard font-selection dialog. Your selections appear in the
main window content area.

Clear Log Lets you clear the main window content area.

Table 15.5 Help Menu Selections

Menu entry Description

Tip of the Day Switches on or off the Tip of the Day display during startup.

Help Topics Displays standard Help.

About Displays an About box with version and license information.
204 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Decoder Main Window
The Decoder main window appears if you do not specify a file name on the command line.
If you start a tool using the Decoder, the Decoder main window does not appear.

Figure 15.5 Decoder Main Window

Main Window Components
The following sections describe the Decoder main window components.

Window Title
The window title displays the tool name and project name. If no project is loaded, Default
Configuration displays in the title area. An asterisk after the configuration name indicates
you have an unsaved change.

Toolbar
Figure 15.6 indicates main window toolbar buttons.
205HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Figure 15.6 Decoder Main Window Toolbar Buttons

The following table lists the Decoder main window toolbar buttons and describes their
functions:

Table 15.6 Main Window Toolbar Buttons

Button Name Function

New Configuration Same as the File > New Configuration menu selection

Load a Configuration Same as the File > Load Configuration menu selection

Save the Current
Configuration

Same as the File > Save Configuration menu selection

Online Help Displays Decoder online help

Context Help Changes cursor to question mark. When you hover the cursor
over a Decoder screen area and click the left mouse button,
context-sensitive help appears for the area you selected.

Command Line Displays a context menu associated with the command line.

Decode Starts execution of a desired command.

Stop Session Stops the current session

Option settings Displays the Option Settings dialog

Message settings Displays the Message Settings dialog

Clear log Clears main window content
206 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Status Bar
The status bar (Figure 15.7) has two dynamic areas:

• Messages

• Time

When you point to a button in the toolbar or a menu entry, the message area displays the
function of the button or menu entry.

The time field shows the start time of the current session (if one is active) or current
system time.

Figure 15.7 Main Window Status Bar

Decoder Configuration Window
When you choose File > Configuration from the Decoder list menus, the Configuration
Window appears. The Configuration Window has three tabs:

• Editor Settings

• Save Configuration

• Environment

Editor Settings Tab
Figure 15.8 shows the Configuration Window with the Editor Settings tab selected.
207HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Figure 15.8 Decoder Configuration Window - Editor Settings Tab

The following table lists and describes the Editor Settings tab controls.

Table 15.7 Editor Settings Tab Controls

Control Function

Global Editor Shared among all tools and projects on one computer and stored
in the MCUTOOLS.INI global initialization file.

Local Editor Shared among all tools using the same project file

Editor started with
Command Line

Enable command-line editor. For Winedit 32-bit version use the
winedit.exe file C:\WinEdit32\WinEdit.exe%f /#:%l

Editor started with
DDE

Enter service, topic and client name to be used for a DDE
connection to editor. All entries can have modifiers for file name
and line number.

CodeWarrior (with
COM)

If selected, the CodeWarrior software registered in the Windows
Registry launches.

Editor Name Type a name for the desired editor in the text-entry field
208 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Save Configuration Tab
Figure 15.9 shows the Configuration Window with the Save Configuration tab selected.

Figure 15.9 Decoder Configuration Window - Save Configuration Tab

Editor Executable Specify editor’s path and executable name. Use browse button
(...) to locate the executable.

Editor Arguments Type in command-line arguments for the editor in text-entry field.
Use %f for filename, %l for line number, and %c for column
number.

Table 15.7 Editor Settings Tab Controls (continued)

Control Function
209HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Table 15.8 lists and describes the Save Configuration tab controls.

NOTE Settings are stored in the configuration file. Exceptions are recently used
configuration list and settings in this dialog. Configurations can coexist in the
same file as the shell project configuration. When the shell configures an
editor, the Decoder can read the content from the project file. The shell project
configuration filename is project.ini.

Environment Tab
Figure 15.10 shows the Configuration Window with the Environment tab selected.

Table 15.8 Save Configuration Tab Controls

Control Function

Options When checked, saves current option and message settings when a
configuration is written. When cleared, last saved content remains
valid.

Editor
Configuration

When checked, saves current editor settings when a configuration is
written. When cleared, the last saved content remains valid.

Appearance When checked, window position, command line content, and history
settings are retained when a configuration is written.

Environment
Variables

When checked, writes the environment variable settings in the
Environment Tab to the configuration.

Save on Exit When checked, Decoder writes configuration on exit. No confirmation
message appears. When cleared, Decoder does not save
configuration on exit, even if options or another part of configuration
has changed. No confirmation message appears when closing
Decoder.
210 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Figure 15.10 Decoder Configuration Window - Environment Tab

Use the Environment tab to configure the environment. The content of the tab is read from
the project file in the [Environment Variables] section. You can choose from the
following environment variables:

• General Path: GENPATH

• Object Path: OBJPATH

• Text Path: TEXTPATH

• Absolute Path: ABSPATH

• Header File Path: LIBPATH

• Various Environment Variables: other variables not covered in this list
211HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Table 15.9 lists and describes the Environment tab controls.

Decoder Option Settings
The Options Settings window appears when you select Decoder > Options from the
menus. Click on the text in the list box to select an option. For help, select an option and
press F1. The command-line option in the lower part of the dialog corresponds with your
selection in the list box.

NOTE When options requiring additional parameters are selected, a dialog box or
window may appear.

Table 15.9 Environment Tab Buttons

Button Function

Add Adds a new line/entry

Change Changes a new line/entry

Delete Deletes a new line/entry

Up Moves a line/entry up

Down Moves a line/entry down
212 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Figure 15.11 Decoder Options Settings Window

Table 15.10 describes the tabs in the Decoder Option Settings Window.

Table 15.10 Option Settings Window Tabs

Tab Description

Output Command-line execution and print output settings

Input Macro settings

Host Lists options related to the host operating system

Messages Message-handler settings - format, kind, and number of printed
messages
213HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Message Settings Window
The Message Settings window (Figure 15.12) appears when you select Decoder >
Messages from the list menus. This window lets you map messages to different message
classes.

Each message has its own ID (a character followed by a 4- or 5-digit number). This
number allows you to search for the message in the manual and online help. For more
information about specific messages, see Decoder Message List.

Figure 15.12 Message Settings Window

Table 15.11 describes the tabs in the Message Settings window.

Table 15.11 Message Settings Window Tabs

Message Group Description

Disabled Lists disabled messages. Messages displayed in the list box are
not written to the output stream.

Information Lists information messages. Information messages inform you of
actions taken.

Warning Lists warning messages. When a warning message is generated,
processing of the input file continues.
214 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Graphical User Interface
Changing a Message Class
You can map messages to different classes using one of the buttons on the right side of the
dialog. Each button refers to a message class. To change the class associated with a
message, select the message in the list box and then click the button corresponding with
the desired message class.

Example:
To define message D51 could not open statistic log file (warning
message) as an error message:

1. Click the Warning tab

A list of warning messages displays in the list box.

2. Click the string D51 could not open statistic log file in the list box.

3. Click the Error button to define the message as an error message.

NOTE You cannot move messages to or from the fatal error class.

NOTE The move to buttons are active only when you select messages that can be
moved. When you select a message only valid Move to buttons remain active.

To validate the changes made in the error message mapping, click OK to close the
Message Settings window. If you click the Cancel button, the previous message mapping
remains valid.

Retrieving Information about an Error Message
You can access information about each message in the list box. Select the message in the
list box, then click Help. An information box opens which contains a more detailed
description of the error message as well as a small example of code that could produce the

Error Lists error messages. When an error message is generated,
processing of the input file stops.

Fatal Lists fatal error messages. These messages report system
consistency errors. Fatal error messages cannot be ignored or
moved.

Table 15.11 Message Settings Window Tabs (continued)

Message Group Description
215HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Specifying the Input File
error. If you select several messages, help for the first message displays. If you select no
message, pressing F1 shows help for the dialog.

About Decoder Dialog Box
The About Decoder dialog box appears when you select Help > About from the menus.
This dialog box shows the current directory and the versions of Decoder components, with
the version displayed at the top of the dialog box. Click OK to close the dialog box.

Specifying the Input File
The following list explains the different ways to specify the decode file to be processed.
During processing, the software sets options according to configurations specified in
Decoder windows.

NOTE Before starting the decoding process of a file, use your editor to specify a
working directory.

• Use the Command Line in the Toolbar to Decode

You can use the command line to process files. The command line lets you enter a
new file name and additional Decoder options.

• Processing a File Already Run

You can display the previously executed command using the arrow at the right of the
command line. Select a command by clicking it, which puts it on the command line.
The software processes the file you choose after you click the Decode button in the
toolbar or press the Enter key.

• File > Decode

When you select File > Decode, a standard open file dialog box displays. Browse to
the file you want to process. The software processes the file you choose after you
click the Decode button in the toolbar or press the Enter key.

• Drag and Drop

You can drag a file from other programs (such as the File Manager or Explorer) and
drop it into the Decoder main window. The software processes the dropped file after
you release the mouse button.

If the dragged file has a .ini extension, it is loaded and treated as a configuration
file, not as a file to be decoded.
216 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Message and Error Feedback
Message and Error Feedback
After making, there are several ways to check for different errors or warnings. The format
of an error message looks like this:

<msgType> <msgCode>: <Message>

Examples:

Could not open the file 'Fibo.abs'

FATAL D50: Input file 'Fibo.abs' not found

*** command line: 'Fibo.abs' ***

Decoder: *** Error occurred while processing! ***

The second example shows that messages from called applications are also displayed, but
only if an error occurs. They are extracted from the error file if the called application
reports an error.

Using Information from the Main Window
Once a file has been processed, the Decoder window content area displays the list of
detected errors or warnings. Use the editor of your choice to open the source file and
correct the errors.

Using a User-Defined Editor
You must first configure the editor you want to use for message or error feedback in the
Configuration dialog. Once a file has been processed, you can double-click on an error
message. Your selected editor opens automatically and points to the line containing the
error.
217HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder Controls
Message and Error Feedback
218 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

V

Maker Utility

This section describes the IDE Maker Utility. Maker implements the UNIX make
command with a Graphical User Interface (GUI). In addition, you can use Maker to build
Modula-2 applications as well as maintain C/C++ projects. Maker has:

• Online Help

• Flexible Message Management

• 32-bit functionality

This section consists of the following chapters:

• Maker Controls: Describes Maker controls, menus and the Graphical User Interface.

• Using Maker: Describes using Maker to build Modula-2 applications and to maintain
C/C++ projects.

• Building Libraries: Describes how to use the Maker utility to adapt or build your own
libraries.

Starting the Maker Utility

All of the utilities described in this book may be started from executable files located in
the Prog folder of your IDE installation. The executable files are:

• maker.exe Maker: The Make Tool

• burner.exe The Burner Utility

• decoder.exe The Decoder

• libmaker.exe Libmaker

• linker.exe The SmartLinker Utility

With a standard full installation of the HC(S)08/RS08 CodeWarrior IDE, the executable
files are located here:

C:\Program Files\Freescale\CodeWarrior for Microcontrollers V6.2\Prog
219HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

With a standard full installation of the HC(S)12 CodeWarrior IDE, the executable files are
located at:

C:\Program Files\Freescale\CodeWarrior for S12(X) V5.x\Prog

To start the Maker Utility, you can click on maker.exe.
220 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

16
Maker Controls

This chapter describes Maker controls, such as menus and the Graphical User Interface
(GUI), and contains the following sections:

• Graphical User Interface

• Specifying the Input File

• Message and Error Feedback

Graphical User Interface
This section describes important aspects of Maker’s Graphical User Interface (GUI). This
section covers these windows and dialogs:

• Maker Main Window

• Configuration Dialog

Maker Main Window
The Maker main window appears if you do not specify a file name on the command line.
If you start a tool using Maker, the Maker main window does not appear.
221HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Figure 16.1 Maker Main Window

Main Window Components
The Maker main window has these components:

• Window title

• Menu bar

• Toolbar

• Content area

• Status bar

Window Title
The window title displays the tool name and the project name. If Maker has no loaded
project, Default Configuration appears in the title area. An asterisk after the configuration
name indicates that you have unsaved changes.

Maker Main Window Menu Bar
Maker menus are on the menu bar of the main window. Table 16.1 describes Maker’s top-
level menus.
222 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
File Menu
Use the File Menu to save or load configuration files. Configuration files contain:

• Configuration dialog option settings.

• Message settings that specify which messages to display and which to treat as errors.

• A list of the last command line executed and the current command line.

• The window position.

• Tips of the Day settings, including the startup settings and the current entry.

Figure 16.2 File Menu

Table 16.2 describes File menu selections.

Table 16.1 Maker List Menus

Menu Name Contains

File Selections for managing configuration files

Maker Selections for setting options

View Selections for customizing window output

Help Standard Windows Help menu

Table 16.2 File Menu Selections

Menu Selection Description

Make Opens a standard Open File dialog. Maker processes
selected file after you click OK to close the Open File dialog.

New/Default
Configuration

Resets the option settings to default values. Tool Options
specifies the default activated options.
223HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Maker Menu
With the Maker menu you can customize Maker, graphically set or reset options, and
access message settings.

Figure 16.3 Maker Menu

Table 16.3 describes Maker menu selections.

Load Configuration Opens the standard Open File dialog. Future sessions load
and use the configuration data stored in the selected file.

Save Configuration Saves the current settings.

Save Configuration as Opens a standard Save As dialog. Maker saves the current
settings in a configuration file with the specified name.

Configuration Opens Configuration dialog to specify the editor to use for
error feedback and the parts to save with a configuration.

1..... project.ini
2.....

Recent project list. Access this list to open a recently used
project again.

Exit Closes the Maker.

Table 16.3 Maker Menu Selections

Menu entry Description

Options Displays the Options Settings dialog in which you can define options
for processing an input file.

Messages Opens the Message Settings dialog in which you can map error,
warning, or information messages to different message classes.

Stop Making Stops the current Make process. Maker grays out this selection when
no active Make process exists.

Table 16.2 File Menu Selections (continued)

Menu Selection Description
224 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
View Menu
With the View menu you can customize the main window. You can choose the font used
in the window, specify whether Maker displays or hides the status bar and the toolbar, and
clear the window.

Figure 16.4 View Menu

Table 16.4 describes View menu selections.

Help Menu
From the Help menu you can customize the Tip of the Day dialog. Use this menu to
display Windows help as well as Maker version and license information.

Figure 16.5 Help Menu

Table 16.5 describes Help menu selections.

Table 16.4 View Menu Selections

Menu entry Description

Tool Bar Toggles display of the toolbar in the main window.

Status Bar Toggles display of the status bar in the main window.

Log Lets you customize the output in the main window content area.

Change Font Opens a standard font-selection dialog. Your selections appear in the
main window content area.

Clear Log Clears the main window content area.
225HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Maker Main Window Toolbar
The Maker Main window toolbar icons are shown in Figure 16.6.

Figure 16.6 Maker Main Window Toolbar Icons

The following table lists the Maker main window toolbar buttons and describes their
functions.

Table 16.5 Help Menu Selections

Menu entry Description

Tip of the Day Toggles display of a Tip of the Day during startup.

Help Topics Displays standard Help.

About Displays an About box with version and license information.

Table 16.6 Main Window Toolbar Icon

Icon Name Function

New Configuration Mimics the File > New Configuration menu selection.

Load a Configuration Mimics the File > Load Configuration menu selection.

Save the Current
Configuration

Mimics the File > Save Configuration menu selection.

Online Help Displays Maker online help.

Context Help Changes the cursor to a question mark. When you hover your
cursor over a Maker screen area and click the left mouse button,
context-sensitive help appears for the area you selected.

Command Line Displays a context menu associated with the command line.

Make Starts the execution of a desired command.
226 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Maker Main Window Status Bar
The Maker Main window status bar has two dynamic areas:

• Messages

• Time

When you point to an icon on the toolbar or to a menu entry, the message area displays the
function of the button or menu entry.

The time field shows the start time of the current session (if an active session exists) or the
current system time.

Figure 16.7 Main Window Status Bar

Maker Configuration Window
When you choose File > Configuration from the Maker Main window list menus, the
Configuration window appears. The Configuration window has three tabs:

• Editor Settings

• Save Configuration

• Environment

Stop Session Stops the current session.

Option settings Displays the Option Settings dialog.

Message settings Displays the Message Settings dialog.

Clear log Clears the main window content.

Table 16.6 Main Window Toolbar Icon (continued)

Icon Name Function
227HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Configuration Window Editor Settings Tab
Figure 16.8 shows the Configuration window with the Editor Settings tab selected.

Figure 16.8 Configuration Window - Editor Settings Tab

Table 16.7 describes Editor Settings tab controls.

Table 16.7 Editor Settings Tab Controls

Control Function

Global Editor Shared among all tools and projects on one computer. The
MCUTOOLS.INI global initialization file stores the global editor.

Local Editor Shared among all tools using the same project file.

Editor started with
Command Line

Enable command-line editor starting. For Winedit 32-bit version use
the winedit.exe file C:\WinEdit32\WinEdit.exe%f /#:%l

Editor started with
DDE

Enter service, topic, and client name to use for DDE connection to
editor. All entries can have modifiers for file name and line number.

CodeWarrior
(with COM)

If selected, the CodeWarrior IDE version registered in the Windows
Registry launches.

Editor Name Enter name of desired editor in this text-entry field.
228 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
NOTE Changing the Editor Selection option button settings in this window changes
the entries in the text entry fields at the bottom of the window.

Configuration Window Save Configuration Tab
Figure 16.9 shows the Configuration dialog with the Save Configuration tab selected.

Figure 16.9 Configuration Dialog - Save Configuration Tab

Editor Executable Specify editor’s path and executable name. Use browse button (...)
to locate executable file.

Editor Arguments Enter command-line arguments for editor in this text-entry field.
Use %f for filename, %l for line number, and %c for column
number.

Table 16.7 Editor Settings Tab Controls (continued)

Control Function
229HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Table 16.8 describes the Save Configuration tab controls.

NOTE Maker stores settings in the configuration file, with the exception of the
recently used configuration list and the settings in this dialog. Configurations
can coexist in the same file as the shell project configuration. When the shell
configures an editor, Maker can read the content from the project file. The shell
project configuration filename is project.ini.

Configuration Window Environment Tab
Use the Configuration window with the Environment tab selected to configure the
environment.

Table 16.8 Save Configuration Tab Controls

Control Function

Options When checked, Maker saves current option and message settings to
configuration file. When cleared, last saved content remains valid.

Editor
Configuration

When checked, Maker saves current editor setting to configuration
file. When cleared, last saved content remains valid.

Appearance When checked, Maker saves window position, command-line content,
and history settings to configuration file. When cleared, last saved
content remains valid.

Environment
Variables

When checked, Maker saves environment variable settings in
Environment Tab to the configuration file. When cleared, last saved
content remains valid.

Save on Exit When checked, Maker saves the configuration file on exit. No
confirmation message appears. When cleared, Maker does not save
configuration file on exit, even if you change options or another part of
the configuration file. No confirmation message appears when closing
Maker.
230 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Figure 16.10 Configuration Dialog - Environment Tab

Maker reads the content of the dialog from the [Environment Variables] section
of the actual project file. You can choose from these environment variables:

• General Path: GENPATH

• Object Path: OBJPATH

• Text Path: TEXTPATH

• Absolute Path: ABSPATH

• Header File Path: LIBPATH

• Various Environment Variables: other variables not covered in this list

Table 16.9 describes the Configuration window Environment tab controls.

Table 16.9 Environment Tab Buttons

Button Function

Add Adds a new line/entry

Change Changes a new line/entry

Delete Deletes a new line/entry
231HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Tip of the Day Window
When you start the tool, a Tip of the Day window displays a randomly chosen user tip.

The Next Tip button lets you read the next hint. If you don’t want the Tip of the Day
window to open after the program starts, uncheck the Show Tips on StartUp box. Click
Close to close the Tip of the Day window.

NOTE The local project file stores user configurations.

Maker Option Settings Window
The Option Settings window appears when you select Maker > Options from the menus.
Click once on the text in the list box to select an option. For help, select an option and
press F1. The command-line option in the lower part of the dialog corresponds to your
selection in the list box. For more information on Maker options, see Tool Options.

NOTE When you select options requiring additional parameters, a dialog box or
subwindow may appear.

Up Moves a line/entry up

Down Moves a line/entry down

Table 16.9 Environment Tab Buttons (continued)

Button Function
232 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Figure 16.11 Option Settings Window

Table 16.10 describes the tabs in the Option Settings dialog.

Maker Message Settings Window
The Message Settings window appears when you select Maker > Messages from the list
menus. This window lets you map messages to different message classes.

Table 16.10 Option Settings Dialog Tabs

Tab Description

Output Command-line execution and print-output settings.

Input Macro settings.

Host Lists options related to the host operating system.

Messages Message-handler settings, such as format, kind, and number of printed
messages.

Modula-2 Modula-2 make-specific options (not relevant for C users).
233HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Each message has its own ID (a character followed by a 4- or 5-digit number). This
number allows for message look-up both in the manual and in the online help. For
information about specific messages, see Makefile Messages.

Figure 16.12 Message Settings Window

Table 16.11 describes the tabs in the Message Settings window.

Table 16.11 Message Settings Window Tabs

Message
Group

Description

Disabled Lists disabled messages. Maker does not write the messages displayed
in the list box to the output stream.

Information Lists information messages. Information messages inform you of
actions taken.

Warning Lists warning messages. When Maker generates a warning message, it
continues processing the input file.

Error Lists error messages. When Maker generates an error message, it
stops processing the input file.

Fatal Lists fatal error messages. These messages report system consistency
errors. You cannot ignore or move fatal error messages.
234 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Graphical User Interface
Changing a Message Class
You can map messages to different classes using one of the buttons at the right of the
dialog. Each button refers to a message class. To change the class associated with a
message, select the message in the list box and then click the button corresponding with
the desired message class.

Example:
To define message M5116 could not delete file (a warning message) as an
error message, follow these steps:

1. Click the Warning tab

A list of warning messages appears in the list box.

2. Click the string M5116 could not delete file in the list box.

3. Click the Error button to define the message as an error message.

NOTE You cannot move messages from or to the fatal error class. Maker only enables
the move to buttons when you select movable messages. If you try to move a
message to an impermissible group, Maker grays out the impermissible move
to button.

To save the modification you performed in the error message mapping, click OK to close
the Message Settings dialog. If you click Cancel to close the dialog, the previous message
mapping remains valid.

Retrieving Information about an Error Message
You can access information about each message in the list box. Select the message in the
list box, then click Help. An information box opens, which contains a detailed description
of the error message as well as a small example of code producing it. If you select several
messages, help for the first message appears. If you select no message, pressing F1 shows
the help for the dialog.

About Dialog Box
The About dialog box appears when you select Help > About from the list menus. This
dialog shows the current directory and the Maker component versions. The Maker version
appears separately at the top of the dialog. Click OK to close the dialog.

NOTE During a Maker process, Maker component versions do not appear. Maker
must be idle in order for versions to appear.
235HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Specifying the Input File
Specifying the Input File
You can use several different ways to tell the make file to process. During processing, the
software sets options according to the configurations that you specified in Maker dialogs.

Before starting to process a make file, specify a working directory using your editor.

• Use the Toolbar Command Line to Make

Use the command line to process files. The command line lets you enter a new file
name and additional Maker options.

• Processing a File Already Run

You can display the previously executed command using the arrow at the right of the
command line. Select a command by clicking it, which puts it on the command line.
The software processes the file you choose after you click the Make button in the
toolbar or after you press the Enter key.

• File > Make

When you select File > Make from the list menus, a standard Open File dialog
appears. Navigate and select the file you want to process. The software processes the
file you choose after you click the Make button in the toolbar or press the Enter key.

• Drag and Drop

You can drag a file from other software (such as the File Manager or Explorer) and
drop it into the Maker main window. The software processes the dropped file after
you release the mouse button.

If the dragged file has the .ini extension, Maker loads and treats it as a
configuration file, not as a makefile. To process a makefile with an .ini extension,
use another method to run it.

Message and Error Feedback
After making, there are several ways to check where Maker detected different errors or
warnings. The format of an error message looks like this:

<msgType> <msgCode>: <Message>

Examples:
ERROR M5102: input file not found

ERROR M5112: called application: “ERROR C1011: Undeclared
enumeration tag”
236 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Message and Error Feedback
The second example shows that Maker also displays messages from called applications,
but only if an error occurs. Maker extracts the messages from the error file if the called
application reports an error.

Using Information from the Main Window
After Maker processes a file, the Maker window content area displays a list of detected
errors or warnings. Use the editor of your choice to open the source file and correct the
errors.

Using a User-Defined Editor
You must first configure the editor you want to use for message or error feedback in the
Configuration dialog. After Maker processes a file, you need only double-click an error
message to open your selected editor automatically and point to the line containing the
error.
237HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Maker Controls
Message and Error Feedback
238 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

17
Using Maker

With Maker you can build Modula-2 applications as well as maintain C/C++ projects.
Maker syntax is a subset of the UNIX Make command.

This chapter covers the following subjects:

• Making Modula–2 Applications

• Making C Applications

• User-Defined Macros (Static Macros)

• Directives and Special Targets

Making Modula–2 Applications
To make a Modula-2 application, enter the name of the main module at the input prompt
(or the command line). First, Maker collects dependencies given by the IMPORT clauses
in the source files of both implementation and definition modules. Second, Maker
recompiles files modified since the last compilation. Third, Maker tries to link the
application.

The Make utility needs three environment variables:

LINK: Linker for Modula-2 — Defines the linker program

COMP: Modula-2 Compiler — Defines the compiler

FLAGS: Options for Modula-2 Compiler — Defines the compiler options for the compiler
given in COMP

These variables are necessary only when you use the Maker to build a Modula-2
application, not for makefile processing (although you can use them as macros, as
described later in this chapter).

Making C Applications
Since in C you cannot always deduce dependencies between files by looking at the source
files, automatic make (as with Modula-2 applications) is not possible. However, if you
describe these dependencies in a file, Make can process this makefile and build, or rebuild,
a C application.
239HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Making C Applications
Using Makefiles
This section gives a short introduction to writing and using makefiles. If you already know
UNIX–style make utilities, you probably already know most of what follows. If you have
been working until now with Microsoft Make, we strongly recommend that you read this
section.

Syntax of Makefiles
Makefile syntax is as follows:

MakeFile = {Entry | Directive}.

Entry = {Macro | Update | Rule}.

Macro = Name {"="|"+="|"=+"} Line NL.

Update = Name ":" [Name {[","] Name}] NL {Command}.

Command = WhiteSpace {WhiteSpace} Line NL.

Rule = "." Suffix ["." Suffix] ":" NL {Command}.

Directive = INCLUDE Name NL.

WhiteSpace = " "|"\t".

NL = "\n".

Line = {<any char except un-escaped linebreaks>}.

Name = <any valid file name>.

Suffix = Letter [Letter] [Letter].

Letter = any letter from "A" to "Z" or from "a" to "z">.

Case Sensitivity
By default, Maker is case-sensitive. However, if you set the –C option, Maker treats
uppercase and lowercase letters the same.

Line Breaks
Processing a makefile is a line-oriented job because you use a linebreak to terminate most
constructs, such as macro definitions or dependency lists. If you want Make to ignore a
linebreak, place a backslash (“\”) immediately before the linebreak. Make then reads the
combination of backslash and linebreak as one single blank. You cannot use a line
continuation to enlarge comment lines.
240 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Making C Applications
Comments
Comments in a makefile start with the number sign (#) and end with the next linebreak.

Dependencies
Makefile update entries determine dependencies between files. Such an update entry has
the form:

target file: {dependency file} {command line}

This entry tells HI-CROSS Make that the target file depends on all the dependency files.
If any of the dependency files changed since the last target-file make, or if the target file
does not exist, Make executes the command lines in order of appearance. If dependencies
do not exist, Make always executes the command lines. If command lines do not exist, the
target needs re-making, and rules are inapplicable, Make issues an error message. See the
following sections for more information on rules.

Commands
You must begin each command on a new line and prefix that command by at least one
blank or tab. Maker does not claim the tab as in UNIX make. The following list describes
additional characteristics:

• Maker strips leading and trailing blanks and tabs from the command line.

• If the command line terminates with an exit code not equal to zero, Maker displays
an error message and stops makefile processing, unless the line starts with a dash (–).
Maker removes the dash before executing the command.

• An asterisk (*) at the start of the command line prevents Maker from capturing the
output of the called tool. Sixteen-bit applications such as command.com need the
asterisk to function properly.

Processing
Make processes updated entries recursively, which means that if a dependency file
appears as a target in some other update entry, Make processes that other update entry
first. If a dependency file does not exist and rules are inapplicable, Make issues an error
message. See the following sections for more information on rules.

Normally, makefile processing starts with the update entry for the target given on the
command line or at the input prompt. If you do not specify a target, processing starts at the
first update entry in the makefile.

If there are two update entries for the same target file, Make appends the dependencies and
commands of the second update entry to those of the first update entry.

Make issues an error message if it finds circular dependencies.
241HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
User-Defined Macros (Static Macros)
Macros
Macros associate a name with some arbitrary text. You can substitute this name for each
occurrence of the arbitrary text in the makefile. There are two different forms of macros:
user-defined static macros and predefined dynamic macros.

User-Defined Macros (Static Macros)
This section describes the macro definition form.

Definition
A macro definition has the form:

macro_name = text up to the next un-escaped linebreak

After you define a macro, you can use a macro reference to include the text at any place in
a makefile.

Reference
A macro reference has the form:

$(macro_name)

Make replaces the reference with the text, including the “$(” and the “)”. If the text itself
contains more macro references, Make expands those, as well.

Redefinition
You can redefine macros, in which case the text in the new definition overwrites the text
in the old definition. Maker issues an error message if it detects a circular macro definition
like this:

ThisMacro = $(ThatMacro)

ThatMacro = Not $(ThisMacro)

Macro Substitution
During macro expansion, use the following syntax to have Maker replace strings:

$(macroname:find=replace)

In this example, Maker replaces every occurrence of find with replace.
242 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
User-Defined Macros (Static Macros)
Use this kind of macro expansion to derive filenames, as in the following example:

SRCNAMES= a.c b.c
OBJNAMES = $(SRCNAMES:.c=.o)

As a result of this example, OBJNAMES contains a.o b.o.

NOTE Maker does not allow spaces in the search string, the replace string, the whole
macro definition, or before or after the “:” or the “=”

Macros and Comments
If a comment follows a macro on the same line, as in the following example, the text that
replaces any reference of these macros ends just before the # character:

MyMacro = another #And that’s a comment
OurMacro = This is \
$(MyMacro) example #That’s a comment, too!
MyMacro = a third #Redefinition of a macro
HisMacro = This is \
 $(MyMacro) example

Maker replaces the macro references as follows (without double quotes):

$(MyMacro) = "a third"
$(OurMacro) = "This is a third example"
$(HisMacro) = "This is a third example"

You can use macro references in update entries, inference rules, macro definitions, and
macro references. See the following sections for more information on rules. The macro-
reference possibility allows constructs such as:

This = Macro
MyMacro = This is a circular macro reference!
$(My$(This))

This example first evaluates to “$(MyMacro)” and then to “This is a circular macro
reference!”.
243HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
User-Defined Macros (Static Macros)
Concatenation
Besides the macro definition operator “=”, Make knows two additional operators: “+=”
and “=+”. The first operator appends the text on the right to the macro on the left. The
second operator assigns to the macro the value given by appending the macro's previous
value to the text given on the right:

MyMacro = File
MyMacro += .TXT

#Now the macro has the value "File.TXT"
MyMacro =+ D:\

#Now it has the value "D:\File.TXT"

The following macro is a case handled differently by different make utilities:

MyMacro = D:\SomeDir\

In HI-CROSS Make it has the value D:\SomeDir\. Other make implementations
expand it as D:\SomeDir and take the last backslash as part of an escaped linebreak.

Command-Line Macros
There are two kinds of user-defined macros: Command-line macros and makefile macros.
Makefile macros are the macro definitions that appear in the make file. Command-line
macros are macros on the command line with option -d. Command-line macros have a
higher priority than macros defined in the makefile or in an included file. Therefore, if you
define a macro on command line, Maker ignores further definition of a macro with the
same name in the makefile.

A special command-line macro is TARGET, which defines the name of the top target to
make. The TARGET macro provides compatibility with previous Maker versions. Specify
a top target by adding its name after the makefile name. Defining an explicit top target
with the TARGET macro works only on the command line. The TARGET macro in the
makefile does not define a new top target. Do this explicitly by specifying a new target at
the top, which has the top target to make as dependency.
244 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Dynamic Macros
Dynamic Macros
In addition to user-defined macros, which are always static, HI-CROSS Make recognizes
the following dynamic macros, which evaluate differently in different contexts:

$* base name (without suffix and period) of the target file.
$@ complete target file name.
$< complete list of dependency files.
$? list of dependency files that are younger than the target
$$ evaluates to a single dollar sign.

Except for the first and last macro, these dynamic macros may only appear within
command lines. Maker replaces them at the very end of macro substitution, just as it
executes the command:

MyMacro = $<
OurMacro = file.c $(MyMacro)
THAT.EXE : $*.C $(OurMacro)

$(COMP) $(MyMacro)
$(LINK) $*.PRM

The first line evaluates to:

THAT.EXE : THAT.C file.c $<

This line is circular, since Maker now replaces $< with THAT.C file.c $< and so on.
For this reason, the dynamic macros $< and $? may only appear on a command line (after
Maker completes all macro substitution). If we define OurMacro as:

OurMacro = file.c io.c

Once Maker completes all macro substitution, we get:

THAT.EXE : THAT.C file.c io.c

Example of $<:

target.o: target.c a.c b.c

$(COMP) $<

replaced with:

target.o: target.c a.c b.c

$(COMP) target.c a.c b.c

Example of $?:

target.o: target.c a.c b.c

$(COMP) $?
245HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Dynamic Macros
If a.c and b.c are newer than target.o, then the result is:

target.o: target.c a.c b.c

$(COMP) a.c b.c

NOTE HI-CROSS Make also defines macros for all currently set environment
variables. You can redefine these macros like any other macro.

Inference Rules
Inference rules specify default rules for certain common cases. Inference rules have the
form:

.depSuffix.targetSuffix:

{Commands}

or:

.depSuffix:

{Commands}

These rules tell HI-CROSS Make how to make a file with suffix targetSuffix if it
cannot find an update entry for the file: look for a file with the same name as the target but
with suffix depSuffix. Assume the target depends on that file, make the usual checks,
and if Maker must remake the target, execute the commands. If commands do not exist
and the target needs remaking, Maker issues an error.

The second form of an inference rule with only one suffix works exactly as the first one.
Maker assumes an empty target suffix.

For example, object files usually depend on a source file of the same name, but with a
different suffix, and Make calls a compiler to create those object files. Assume that object
files have the extension .o and source files have the extension .c. For example:

.c.o:

$(COMP) $*.c

If Make now finds a dependency file with extension .o (for example, THIS.o) but no
update entry having this file as target, it applies the above rule. The result is exactly the
same as if your makefile contained the dependency:

THIS.o: THIS.c

$(COMP) $*.c

Rules also play a different role: if there is an update entry without command lines,
HI-CROSS Make searches for a rule that might apply and executes the commands
specified in that rule. For example, with your makefile containing the above rule, the
update entry:
246 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Dynamic Macros
THAT.o: FILE.h DATA.h

This is equivalent to:

THAT.o: FILE.h DATA.h THAT.c

$(COMP) $*.c

If you define two different inference rules for the same target suffix, only the last one is
active.

If HI-CROSS Make finds a dependency file that does not appear as a target in some other
update entry, it tries to find an inference rule to apply. If Make cannot find an inference
rule, and the file exists, Make assumes that the file is up to date. If the file does not exist,
Maker needs to remake it. Since Maker lacks a rule or an update entry for the file, it issues
an error message.

Here is a more complex example:

demo make file for assembly project

OBJECTS = a_1.o a_2.o a_3.o
ASM = c:\freescale\prog\assembler.exe
LINK = c:\freescale\prog\linker.exe
all: myasm.abs

echo "all done"
myasm.abs: $(OBJECTS) myasm.prm
a_1.o: a_1.inc
a_2.o: a_1.inc a_2.inc

.prm.abs:
$(LINK) $*.prm
.asm.o :
$(ASM) $*.asm
247HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Dynamic Macros
Multiple Inference Rules
You can specify more than one inference rule for each dependency suffix. Use this
technique when you have source files written in different programming languages with
different file suffixes. For example, assume you have sources written in assembly
language, in ANSI-C and C++. The object files produced by the assembler and compiler
have all the same suffixes. They are linked together to one program or library. You can
represent this relationship by one target having all the object files as a dependency list:

makeAll: asm_obj1.o asm_obj2.o asm_obj3.o c_obj1.o cobj2.o
cpp_obj1.o

These rules build the object files:

.asm.o:
$(ASSEMBLE) $*.asm $(ASMOPTIONS)

.c.o:
$(COMPILE) $*.c $(COPTIONS)

.cpp.o:
$(COMPILE) $*.cpp $(CPPOPTIONS)

Maker selects the first applicable rule.

NOTE The Maker resolution algorithm is logically incomplete. You can chain rules
together in some cases, but doing so may lead to conflicts with the handling of
multiple inference rules. For example, if you use template frames with the
suffix .tpl compiled by a program that produces C files from TPL files,
Maker may have problems resolving multiple rules in the further compilation
steps. To work around these problems, construct and use a test makefile that
contains the main resolution features in order to investigate Maker’s build
behavior. If the test makefile works, the full makefile also works.
248 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Directives and Special Targets
Directives and Special Targets
HI-CROSS Make lets you include one makefile into another by using an include
directive of the form:

INCLUDE filename

This directive textually replaces the include directive with the given file’s contents (from
another makefile). If Make cannot locate, open, or read the file, it issues an error message.

Make always includes the default makefile DEFAULT.MAK at the very beginning. The
environment variable GENPATH specifies the directory that contains the makefile.

NOTE Because the DEFAULT.MAK is included automatically, you have to be careful
when using this name. An incorrectly used DEFAULT.MAK causes failures in
all other makefiles for which it is in the search path. We recommend sharing
common definitions by explicit makefile includes instead of using the
implicitly included DEFAULT.MAK.

Make issues an error message for circular includes.

HI-CROSS Make also allows definition of two special targets without dependencies:

BEFORE:

{Commands}

and

AFTER:

{Commands}

Make executes these commands just before and just after processing the top target given
on the command line.
249HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Directives and Special Targets
Built-In Commands
You can start DOS programs from the HI-CROSS Make Utility on the command line.
You can directly execute external DOS commands; to execute built-in commands call
COMMAND.COM with option /c, like this:

*COMMAND.COM /c dir C:\freescale > C:\DIR.TXT

NOTE The asterisk (*) prevents Maker from capturing the output of
command.com. The output capture facility is inconsistent when handling
16-bit executables like command.com. In WinNT environments, use the
native 32-bit shell cmd.exe instead of command.com.

The HI-CROSS Make Utility also has a few simple built-in commands. These commands
include:

copy file1 file2

This command creates a copy of file1 with the name file2. No wildcards are allowed.
If you need wildcards, use the DOS built-in copy command.

del file1 file2... fileN

This command deletes the files passed as arguments. Again, no wildcards are allowed.
Maker follows the file path from the current directory, if you do not specify an absolute
path. Maker does not consult the environment settings to find the files to delete.

cd directory

This command changes the current directory. The scope of the cd command is the
command list of a target from which Maker called it.

NOTE Avoid using this command unless absolutely necessary. The command may
lead to inconsistency with relative-path definitions in the environment.

echo text

This command is actually a no-op. If Maker displays the commands, it displays the text,
too. You can view the echo text command as a way of defining a comment that Maker
shows, while hiding normal comments starting with #.

puts outputfile text

This command writes text, the rest of the command line, to the file specified with
outputfile (the first identifier of the command line). The write mode is appending. If
the file does not exist, Maker creates it (mode a+).

Example:
puts myOutput.txt This is a text\n
250 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Directives and Special Targets
This example writes the text This is a text with a line break at the end to the file
myOutput.txt.

Example:

GENMAKE= bb.mak
TARGET = b
MAKE= c:\freescale\prog\maker.exe
COMP= c:\freescale\prog\compiler.exe
STAR=*
DEPENDENDS = $(TARGET).c $(TARGET).h
create$(GENMAKE):

-del $(GENMAKE)
puts $(GENMAKE) \nCOMP=$(COMP)
puts $(GENMAKE) \nMAKE=$(MAKE)
puts $(GENMAKE) \n$(TARGET).o : $(DEPENDENDS)
puts $(GENMAKE) \n $$(COMP) $(TARGET).c
$(MAKE) $(GENMAKE) $(TARGET).o

This example generates and runs bb.mak:

COMP=c:\freescale\prog\compiler.exe
MAKE=c:\freescale\prog\maker.exe
b.o : b.c b.h
 c:\freescale\prog\compiler.exe b.c

fc file1 file2

This example compares two files, specified by name as file1 and file2, byte by byte
and remembers the result for the next ? command. The result is TRUE if the files are
identical and FALSE if they are not identical.

fctext file1 file2

This example compares two text files byte by byte, ignoring blanks for compare, and
remembers the result for the next ? command. The result is TRUE if the files are identical
and FALSE if they are not identical.

?

Syntax: ? <commandIfYes> ‘:’ <commandIfNo>

The result of the last compare operation executes either <commandIfYes>, if the
compared files were identical, or <commandIfNo> if the compared files were not
identical.
251HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Using Maker
Directives and Special Targets
Example:

fctext upxcall.c upxcall.old
? puts log.txt files are equal : puts log.txt files are not equal

or:

fctext upxcall.c upxcall.old
? puts log.txt files are equal \
: puts log.txt files are not equal
rehash

This example reloads the HI-CROSS environment from the default.env file.
Thereafter all commands, all macro expansions, and all file searches execute in the new
environment.

ren file1 file2

This example renames file1 to file2. No wildcards are allowed.

Command Line
The Maker command line consists of three parts:

• Maker Options

Maker treats all entries starting with a dash (-) as options. To specify the top target,
use the target name on the command line after the makefile name.

• Makefile name

Maker treats the first command line argument, which does not start with a dash, as a
makefile name.

• Targets

Maker treats all remaining arguments without a leading dash as targets to build. If
you do not specify targets, the first rule is build.

When you start Maker without command-line arguments, a window opens in which you
can manually enter commands.

Implementation Restrictions
Make has only one implementation restriction: the string resulting from a macro
substitution cannot contain more than 4095 characters.
252 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

18
Building Libraries

This chapter explains using the Maker utility to adapt or build your own libraries. Listings
in this chapter have the <target> identifier instead of a specific CPU name. <target>
stands for your own target name.

The following targets are covered in this chapter:

• Maker Directory Structure

• Configuring WinEdit for the Maker

• Configuring default.env for the Maker

• Building Libraries with Defined Memory Model Options

• Building Libraries with Objects Added

• Structured Makefiles for Libraries

Maker Directory Structure
The make files distributed for building the libraries expect the directory structure
recommended in the Tools installation. The following items are installed in the
C:\Program Files\Freescale\CodeWarrior for S12(X) V5.x
directory.

• FREESCALE program folder. Normal installation places the .EXE files for each tool
in this folder:

C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\prog

• Your working directory for building libraries, makefiles, project files, and
configuration files installed here:

C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\lib\<target>

• Binary tool path, defined as a relative path from your working directory in the
environment variable OBJPATH. Object files and libraries build here:

C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\lib\<target>\lib
253HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Building Libraries
Configuring WinEdit for the Maker
• The lib directory contains the library in the preferred object-file format. For targets
supporting different object-file formats, other formats reside in these directories
(which exist only if the format supports libraries and is not the default):

FREESCALE: C:\Program Files\Freescale\CodeWarrior for
S12(X) V5.x\lib\<target>\lib.hix

ELF/DWARF 1.1: C:\Program Files\Freescale\CodeWarrior
for S12(X) V5.x\lib\<target>\lib.e11

ELF/DWARF 2.0: C:\Program Files\Freescale\CodeWarrior
for S12(X) V5.x\lib\<target>\lib.e20

• Source paths of the Compiler or Assembler used, defined as a relative path from your
working directory in the environment variable GENPATH:

C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\lib\<target>\src

• Include path of the Compiler or Assembler used, defined as a relative path from your
working directory in the environment variable LIBPATH:

C:\Program Files\Freescale\CodeWarrior for S12(X)
V5.x\lib\<target>\include

Configuring WinEdit for the Maker
Configure WinEdit as follows:

1. Open the Dialog Project > Configure in WinEdit.

This dialog appears only when you open a source file.

2. Load a prepared configuration file with Open or edit the tool definition and save the
configuration file.

3. For the Maker configuration (and also the other tools used directly from WinEdit) you
must enter the full path to the application in the corresponding text box.

4. Enter the path to your make files in the working directory field.

Figure 18.1 shows a sample configuration in the Project Management dialog box.
254 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Building Libraries
Configuring default.env for the Maker
Figure 18.1 Project Management Dialog Box

Configuring default.env for the Maker
This section contains a sample default.env (see ENVIRONMENT: Environment File
Specification) with Maker settings. For building libraries, you need COMP for the
compiler, MAKE for the make tool, and LIBM for the library. Additionally, you must
specify path environment variables such as OBJPATH and GENPATH. The makefiles
introduced in this section also reference these paths.

OBJPATH=.\lib

GENPATH=.\src

LIBPATH=.\include

MAKE=..\..\prog\maker.exe

COMP=..\..\prog\c<target>.exe

LIBM=..\..\prog\libmaker.exe
255HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Building Libraries
Building Libraries with Defined Memory Model Options
Building Libraries with Defined Memory
Model Options

Modify memory-model options of a library to build or to extend the built libraries with a
new one as follows:

1. Open the file mkall.mak.

This file is the main makefile for building libraries. For every library, you specify a
command line under the top target makeall. An example is:

$(MAKE) mklib.mak -D(MM=$(FLAGS) -Ms) \

-D(LIBDIR=$(LIBDIR))\

-D(LIBNAME=testlib)\

-D(INCLIBS=ansilib.lib cpplib.lib)

2. With the command line macro MM, specify the options for your library (memory model
option and others).

To change the memory model from small to banked, replace -Ms in the macro
definition with -Mb.

NOTE The macro definition introduced here is in -D: Define a Macro (Maker). You
can specify more than one option switch inside the braces, as in this example:
-D(MM=$(FLAGS) -Ms -Cf)

3. Specify the library directory in LIBDIR.

This step is necessary only when you use the default directory \lib, as with
processors supporting ELF and Freescale object-file format.

4. In LIBNAME, name the library to build without an extension. For example, use
testlib if the name of the library to build is testlib.lib.

5. Call Maker with mkall.mak.

The library built with this example includes the ANSI library and the C++ library.

Building Libraries with Objects Added
Add your own objects to a library or build a new one as follows:

1. Copy the ansilib.mak makefile to a makefile with the name of the library you
want to build. For example, use mylib.mak if the name of the library you want to
build is mylib.lib.

2. Put this makefile in the same directory as the other makefiles.
256 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Building Libraries
Building Libraries with Objects Added
NOTE The name of the sublibrary of a built library must be the same as the underlying
makefile, with the .lib extension instead of .mak.

3. Remove all object files listed in the macro OBJECTS in mylib.mak.

If you now list the new makefile mylib.mak, you get:

OBJECTS =

makeLib: createLib $(OBJECTS)

echo --- Sublibrary ansilib created

createLib:

$(CC) string.c assert.c

$(LIBM) string.o + assert.o = $(OBJPATH)\$(LIBNAME).lib

del $(OBJPATH)\string.o

del $(OBJPATH)\assert.o

.c.o:

$(CC) $*.c

$(LIBM) $(OBJPATH)\$(LIBNAME).lib+$*.o =

$(OBJPATH)\$(LIBNAME).lib

del $(OBJPATH)\$*.o

4. List your object files with the .o extension in the OBJECTS macro.

Place your library source files in the folder specified in GENPATH (see GENPATH:
Define Paths to Search for Input Files).

5. Open the mkall.mak file.

mkall.mak is the main makefile for building libraries. For every library, you specify
a command line under the top target makeall:.

An example is:

$(MAKE) mklib.mak -D(MM=$(FLAGS) -Ms) \

-D(LIBNAME=testlib)\

-D(STARTANSIOBJ=start<target>s)\

-D(STARTCPPOBJ=strt<target>sp)\

-D(INCLIBS=mylib.lib)

6. In the passed INCLIBS command-line macro, specify the sublibrary names.

In the example above, Maker builds only the sublibrary mylib.lib with
mylib.mak. In this example, we list only one sublibrary. You can add additional
sublibraries to the list, separated by spaces.
257HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Building Libraries
Structured Makefiles for Libraries
7. In LIBNAME, specify the name of the built library without the extension.

The other macros passed specify the startup files to build. Maker does not insert the
startup files into the library but instead builds them separately.

NOTE The name of the library to build, specified in LIBNAME, must be different from
the name of the sublibrary included, such as mylib in the example. If not,
Maker deletes the built library just after building it. (Maker deletes the
sublibrary after adding it to the built library.)

8. Call Maker with mkall.mak

Your library builds among the others.

Structured Makefiles for Libraries
Building a library works on three makefile levels, as shown in Figure 18.2.

Figure 18.2 Building a Library

This layering compares to the modular concept of procedural programming languages. An
upper makefile calls Maker with the makefile and the arguments passed over command-
line macros. The top layer makefile mkall.mak, for example, calls the makefile
mklib.mak to build one library and passes the memory model, the name of the library to
build, the name of the participant sublibraries, and the startup files build.

A sample makefile, mkall.mak, looks like this:

Top Make File

Build Library Make File

mklib.mak

mkall.mak

Customized Library MakefileCustomized Library Makefile

example: ansilib.mak example: cpplib.mak
258 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Building Libraries
Structured Makefiles for Libraries
FLAGS = ## insert here the global options for all libraries
makeall:

-dosprmpt.pif /c del lib*.*
echo --- Making all libraries:
$(MAKE) mklib.mak -D(MM=$(FLAGS) -Ms) -D(LIBNAME=ansis) \

-D(STARTANSIOBJ=start<target>s) \
-D(STARTCPPOBJ=strt<target>sp) \
-D(INCLIBS=ansilib.lib cpplib.lib)

$(MAKE) mklib.mak -D(MM=$(FLAGS) -Ms -Cf) \
-D(LIBNAME=ansisf) \
-D(STARTANSIOBJ=start<target>s) \
-D(STARTCPPOBJ=strt<target>sp) \
-D(INCLIBS=ansilib.lib cpplib.lib)

$(MAKE) mklib.mak -D(MM=$(FLAGS) -Mb) -D(LIBNAME=ansib) \
-D(STARTANSIOBJ=start<target>b) \
-D(STARTCPPOBJ=strt<target>bp) \
-D(INCLIBS=ansilib.lib cpplib.lib)

$(MAKE) mklib.mak -D(MM=$(FLAGS) -Mb -Cf)
-D(LIBNAME=ansibf) \
-D(STARTANSIOBJ=start<target>b) \
-D(STARTCPPOBJ=strt<target>bp) \
-D(INCLIBS=ansilib.lib cpplib.lib)

echo "--- libraries done

The first command for the top target makeall deletes all libraries and object files
previously built.

One Maker call with $(MAKE) evaluates Maker over the environment variable MAKE in
default.env, which corresponds to building one library.

• The first Maker call of mklib.mak, for example, builds an ANSI library for the
small memory model (with option -Ms passed over the command-line macro MM).

• mklib.mak expects these command-line macros:

– MM = options for the memory model,

– LIBNAME = name of the produced library

– STARTUP = name of the ANSI-C Startup file

– STARTCPP = name of the C++ Startup file

– INCLIBS = in library of included sub libraries

In the example, we pass the library names cpplib.lib and ansilib.lib in the
INCLIBS command-line macro. The mklib.mak makefile appears below:
259HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Building Libraries
Structured Makefiles for Libraries
NOTE Do not modify mklib.mak. Instead, use mkall.mak to specify the
compiler options, the sublibrary list, and your own sublibraries, such as
ansilib.mak, cpplib.mak, and the example, mylib.mak.

CC = $(COMP) $(MM)
makeall: startup createLib $(INCLIBS)

echo "--- all done! ---"
startup: start<target>.c

echo "--- making startup
$(CC) $(GENPATH)\start<target>.c
copy $(OBJPATH)\start<target>.o

$(OBJPATH)\$(STARTANSIOBJ).o
$(CC) -C++ $(GENPATH)\start<target>.c
copy $(OBJPATH)\start<target>.o

$(OBJPATH)\$(STARTCPPOBJ).o
del $(OBJPATH)\start<target>.o
echo "--- startup done

createLib:
echo "--- creating library
$(LIBM) $(OBJPATH)\$(STARTANSIOBJ).o =

$(OBJPATH)\$(LIBNAME).lib
$(LIBM) $(OBJPATH)\$(LIBNAME).lib -

$(OBJPATH)\$(STARTANSIOBJ).o =\
$(OBJPATH)\$(LIBNAME).lib

$(LIBM) $(OBJPATH)\$(LIBNAME).lib ?
$(OBJPATH)\$(LIBNAME).lst

echo "--- library done
.mak.lib:
echo "--- making and add $* library
$(MAKE) $*.mak -D(CC=$(CC)) -D(LIBNAME=$*)
$(LIBM) $(OBJPATH)\$(LIBNAME).lib + $(OBJPATH)\$*.lib =\

$(OBJPATH)\$(LIBNAME).lib
del $(OBJPATH)\$*.lib
del $(OBJPATH)\$*.lst

The makefile uses build rules. For each library built, the makefile mylib.mak must
reside in the working directory. The makefile collects a group of object files. Maker calls
the makefile, passing these command-line arguments as parameters:

• CC = compiler with option list

• LIBNAME = name of the produced library

These settings depend on settings already passed from mkall.mak. The sublibraries
built with the delivered makefiles are ansilib.mak and cpplib.mak.
260 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

VI

Appendices

This section contains topics common to all of the build tools, and contains the following
chapters:

• Environment Variables

• Tool Options

• Messages

• Tool Commands

• EBNF Notation

Items and topics specific to individual tools are marked within the text.
261HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

262 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

A
Environment Variables

This chapter describes the environment variables used by the tools described in this
manual. Differences between tools are noted in the text. Other tools, such as the
Assembler and the Compiler, use some of the same environment variables. Refer to the
respective tool manuals for more information.

You can set parameters in the environment using environment variables. The syntax is
always the same:

VARIABLENAME=Definition

NOTE No blanks are allowed in the definition of an environment variable.

Example:

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/lib;/
home/me/my_project

These parameters may be defined in several ways:

• Using system environment variables supported by your operating system.

• Putting the definitions in a file called DEFAULT.ENV (.hidefaults for UNIX)
in the project directory.

NOTE The maximum length of environment variable entries in the DEFAULT.ENV or
.hidefaults is 65535 characters (1024 characters for the Decoder and
Maker).

• Putting the definitions in a file given by the value of the system environment variable
ENVIRONMENT: Environment File Specification.

NOTE The project directory shown above can be set using the DEFAULT system
environment variable DEFAULTDIR: Default Current Directory.

When looking for an environment variable, all programs first search the system
environment, then the DEFAULT.ENV (.hidefaults for UNIX) file, and finally the
global environment file given by ENVIRONMENT: Environment File Specification. If no
definition can be found, the tool assumes a default value.
263HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Current Directory
NOTE You can also change the environment using the -Env option. Do not leave
spaces at the end of environment variables.

Current Directory
The most important environment variable for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (for example,
for the DEFAULT.ENV /.hidefaults).

Normally, the operating system or a program that launches another program (for example,
WinEdit) determines the current directory of a tool. For the UNIX operating system, the
directory in which an executable is started is also the current directory from which the
binary file starts. For Microsoft® Windows®-based operating systems, the current
directory definition is more complicated:

• If you launch the tool using a File Manager/Explorer, the current directory is the
location of the executable launched.

• If you launch the tool using a desktop icon, the current directory is the working
directory specified and associated with the icon.

• If you launch the tool by dragging a file onto the desktop icon, the desktop is the
current directory.

• If you launch the tool from another tool with its own working directory specification
(e.g., an editor as WinEdit), the current directory is the one specified by the
launching tool (e.g., working directory definition in WinEdit).

• Changing the current project file also changes the current directory if the new project
file is in a different directory. Browsing for a prm file does not change the current
directory.

To overwrite this behavior, you can use the environment variable DEFAULTDIR: Default
Current Directory.

To view the current directory, as well as other information, use the -v option or the About
box.
264 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Tool-Specific Search Information
Tool-Specific Search Information
This section details environment information unique to each tool. For further information
about the Compiler, Assembler, and Debugger refer to the appropriate manual.

Compiler
• Symbol Files

– The compiler looks for symbol files in the current directory, then in the
directories given by the environment variable SYMPATH and finally in directories
given in GENPATH.

– New symbol files are written in the directory containing the source, unless the
environment variable SYMPATH is set. If set, the compiler puts the symbol file in
the first directory in the path list.

• Object Files

– The compiler normally puts object files in the first directory specified in the
environment variable OBJPATH. If that variable is not set, the compiler writes the
object file into the directory containing the source file.

• Compiler Variables: COMPOPTIONS

– If you set this variable, the compiler appends its contents to the command line
each time a file is compiled. You can use this variable to globally specify certain
options, so you don’t have to specify them at each compilation.

Debugger
• Object Files

– The debugger looks for object files in the current directory, then in directories
specified in the environment variable OBJPATH and finally in GENPATH.

• Absolute Files

– The debugger looks for absolute files in the current directory, then in directories
specified in ABSPATH and finally in GENPATH.

Libmaker
• Source Files, Linker Parameter File

– The Libmaker searches for Source Files and the Linker Parameter File
first in the current directory, then in the other directories defined by the
environment variable GENPATH.
265HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Tool-Specific Search Information
• Header Files

– If you include a header file in double quotes, the Libmaker searches the current
directory first, then the directories given in GENPATH and finally those given in
LIBPATH.

– If you include a header file using angle brackets, Libmaker does not search the
directories in GENPATH, but searches only the current directory and those
specified in LIBPATH.

Maker
• Maker Utility Variables

– The maker utility can access any environment variable with the following syntax:
$(Name) (e.g. $(COMP)). For makefiles given in your installation, the following
environment variables are used.

COMP: contains name of Compiler

LINK: contains name of Linker

FLAGS: contains command line options for the compiler specified by COMP.

• Makefiles and Include files

– Maker searches for makefiles and include files first in the current directory and
then in the GENPATH: Define Paths to Search for Input Files directory.

– Maker calls the tools that produce the output files of a make run (except error
reports). Refer to the corresponding manuals for the tools you use.

SmartLinker
• Object Files

– The linker looks for object files in the current directory, then in directories
specified in the environment variable OBJPATH and finally in GENPATH.

• Map Files

– If linking succeeds, the linker writes a protocol of the link process to a list file
called map file. The name of the map file is the same as that of the ABS file, but
with extension MAP. The linker writes the map file to the directory specified by
the environment variable TEXTPATH.

• Absolute Files

– The linker creates absolute files in the first directory specified in ABSPATH. If
that variable is not set, the linker generates the absolute file in the directory
containing the parameter file.
266 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Global Initialization File (MCUTOOLS.INI - PC Only)
Global Initialization File (MCUTOOLS.INI -
PC Only)

All tools may store some global data into the MCUTOOLS.INI file. The tool first searches
for this file in the directory of the tool itself (path of the executable). If there is no
MCUTOOLS.INI file in this directory, the tool looks for an MCUTOOLS.INI file located
in the Microsoft Windows installation directory (for example, C:\WINDOWS).

Example:

C:\WINDOWS\MCUTOOLS.INI

D:\INSTALL\PROG\MCUTOOLS.INI

If you start the tool in the D:\INSTALL\PROG directory, the tool uses the current file
located in the same directory as the tool (D:\INSTALL\PROG\MCUTOOLS.INI).

However, if you start the tool outside the D:\INSTALL\PROG directory, the tool uses
the current file in the Windows directory (C:\WINDOWS\MCUTOOLS.INI).

[Installation] Section

Path

Arguments

Last installation path

Description

When you install a tool, the installation script stores the installation destination directory
in this variable.

Example

Path=c:\install
267HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Global Initialization File (MCUTOOLS.INI - PC Only)
Group

Arguments

Last installation program group.

Description

When you install a tool, the installation script stores the created program group in this
variable.

Example

Group=ANSI-C Compiler

[Options] Section

DefaultDir

Arguments

Default Directory to use.

Description

Specifies the current directory for all tools on a global level (see also environment variable
DEFAULTDIR: Default Current Directory).

Example

DefaultDir=c:\install\project
268 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Global Initialization File (MCUTOOLS.INI - PC Only)
[Tool] Section
Variables listed in this section in the global configuration file appear in separate sections
by tool name, i.e., [LINKER] Section, [BURNER] Section.

SaveOnExit

Arguments

1/0

Description

1: Stores the configuration when the tool closes

0: Discards the configuration

The tool does not ask to store a configuration in either case.

SaveAppearance

Arguments

1/0

Description

1: Stores the visible topics when writing a project file

0: Discards visible topics

The command line, its history, the windows position and other topics belong to this entry.
269HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Global Initialization File (MCUTOOLS.INI - PC Only)
SaveEditor

Arguments

1/0

Description

1: Stores the visible topics when writing a project file

0: Discards the visible topics

The editor settings contain all information of the editor configuration dialog.

SaveOptions

Arguments

1/0

Description

1: Saves the options when writing a project file

0: Discards the options

The options also contain the message settings.

RecentProject0, RecentProject1, etc.

Arguments:

Names of the last and prior project files

Description

Loading or saving a project updates this list. The file menu shows its current content.
270 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Global Initialization File (MCUTOOLS.INI - PC Only)
Example

SaveOnExit=1
SaveAppearance=1
SaveEditor=1
SaveOptions=1
RecentProject0=C:\myprj\project.ini
RecentProject1=C:\otherprj\project.ini

TipFilePos

Arguments

Any integer

Description

Index number of the tip of the day shown; used to display different tip every time.

ShowTipOfDay

Arguments

0/1

Description

Specifies whether to show the Tip of the Day dialog at startup.

1: Shows Tip of the Day at startup

0: Shows Tip of the Day only when opened from the help menu.

TipTimeStamp

Arguments

Date
271HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Global Initialization File (MCUTOOLS.INI - PC Only)
Description

Used to record the time that new tips became available. When the date specified here does
not match the date of the tips, the first tip is displayed.

Example

[LINKER]

TipFilePos=357

TipTimeStamp=Jan 25 2000 12:37:41

ShowTipOfDay=0

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=0

RecentProject0=C:\myprj\project.ini

RecentProject1=C:\otherprj\project.ini

[Editor] Section

Editor_Name

Arguments

The name of the global editor

Description

Specifies the name displayed in the global editor. This entry has a descriptive effect only.
Its content does not apply to starting the editor.

NOTE Maker cannot modify this entry.
272 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Global Initialization File (MCUTOOLS.INI - PC Only)
Editor_Exe

Arguments

The name of the executable file of the global editor

Description

Specifies the file name (including its path) which is called for showing a text file when the
global editor setting is active. In the editor configuration dialog, the global editor selection
is active only when this entry is present and not empty.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration tab.

NOTE Maker cannot modify this entry.

Editor_Opts

Arguments

The options to use the global editor

Description

Specifies options for the global editor. If this entry is missing or empty, %f is used. The
command line to launch the editor is built by taking the Editor_Exe content, appending
a space, then appending this entry.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration tab.
273HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
Example

[Editor]

editor_name=WinEdit

editor_exe=C:\Winedit\WinEdit.exe

editor_opts=%f

NOTE Maker cannot modify this entry.

MCUTOOLS.INI Example

Listing A.1 shows a typical layout of the MCUTOOLS.INI file.

Listing A.1 Sample MCUTOOLS.INI file

[Installation]
Path=c:\Freescale
Group=ANSI-C Compiler

[Editor]
editor_name=WinEdit
editor_exe=C:\Winedit\WinEdit.exe
editor_opts=%f

[Options]
DefaultDir=c:\myprj

[Linker]
SaveOnExit=1
SaveAppearance=1
SaveEditor=1
SaveOptions=1
RecentProject0=c:\myprj\project.ini
RecentProject1=c:\otherprj\project.ini

Local Configuration File (usually project.ini)
The tools read DEFAULT.ENV and do not change its content in any way. The
configuration file stores all the configuration properties. Different applications use the
same configuration file. The configuration file format is the same format as Windows®
*.ini files.

The tools can use any file name for the project configuration file, and store their own
entries with the same section name as in the global mcutools.ini file. The application
274 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
backend is encoded into the section name so that different application backends can use
the same file without overlapping. Different versions of the same tools use the same
entries. This is important mainly when options available in only one version are stored in
the configuration file. In such situations, you must maintain two files for the different tool
versions. If no incompatible options are enabled when the file is last saved, you can use
the same file for both versions.

The current directory is always the directory where the configuration file is located. If you
load a configuration file in a different directory, then the current directory also changes.
Changing the current directory reloads the DEFAULT.ENV file.

The shell uses the configuration file with the name project.ini in the current
directory only, therefore it is recommended that you use this name with the tools as well.
The tools can use the editor configuration written and maintained by the shell only when
the shell uses the same file. Apart from this distinction, the tools can use any file name for
the project file.

Loading or storing a configuration file reloads the options in the environment variables
LINKOPTIONS (see LINKOPTIONS: Default SmartLinker Options) and
COMPOPTIONS, and adds the options to the project options. This behavior is important
to note when different DEFAULT.ENV files exist in different directories and contain
incompatible LINKOPTIONS options. When you load a project using the first
DEFAULT.ENV, you add its LINKOPTIONS and COMPOPTIONS to the configuration
file. If you store this configuration in a different directory which contains a
DEFAULT.ENV file with incompatible options, the tools add the options and reports the
inconsistency. A message appears to report that the DEFAULT.ENV options were not
added. If this occurs, you can either remove the option from the configuration file using
the advanced option dialog, or you can remove the option from the DEFAULT.ENV with
the shell or a text editor, depending upon which options you want to use in the future.

At startup there are two ways to load a configuration:

• Use the -Prod command line option

• Use the project.ini file in the current directory

If you use the -Prod option, then the directory containing the project file is the current
directory. If you specify a directory using the -Prod option, you load the
project.ini file from the specified directory.
275HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
[Editor] Section

Editor_Name

Arguments

The name of the local editor

Description

Specifies the name displayed in the local editor. This entry has a descriptive effect only.
Its content does not apply to starting the editor.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration Tab. This entry has the same format as the global editor
configuration in the mcutools.ini file.

NOTE Maker cannot modify this entry.

Editor_Exe

Arguments

The name of the executable file of the local editor

Description

Specifies the file name which is called for showing a text file when the local editor setting
is active. In the editor configuration dialog, the local editor selection is active only when
this entry is present and not empty.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration Tab. This entry has the same format as the global editor
configuration in the mcutools.ini file.

NOTE Maker cannot modify this entry.
276 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
Editor_Opts

Arguments

The options to use the local editor

Description

Specifies the options to use for the local editor. If this entry is absent or empty, the tools
use %f. The tools construct the command line to launch the editor by taking the
Editor_Exe content, appending a space, then adding the Editor_Opts entry.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration Tab. This entry has the same format as the global editor
configuration in the mcutools.ini file.

NOTE Maker cannot modify this entry.

Example

[Editor]

editor_name=WinEdit

editor_exe=C:\Winedit\WinEdit.exe

editor_opts=%f

[Tool] Section
The local configuration file stores the following variables in separate sections for each tool
and labeled accordingly, i.e., [LINKER], [BURNER].

RecentCommandLineX, X=Integer

Arguments

String with a command line history entry. For example: fibo.prm, fibo.bbl
277HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
Description

This list of entries contains the content of command line history.

Saved

Only with Appearance set in the File > Configuration > Save Configuration Tab.

CurrentCommandLine

Arguments

String with the command line. For example: fibo.prm -w1, fibo.bbl -w1

Description

The currently visible command line content.

Saved

Only with Appearance set in the File > Configuration > Save Configuration Tab.

StatusbarEnabled

Arguments

1/0

Description

This entry is considered only at startup. Later load operations do not use it.

1: Enables the status bar

0: Hides the status bar

Saved

Only with Appearance set in the File > Configuration > Save Configuration Tab.
278 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
ToolbarEnabled

Arguments

1/0

Description

The tool considers this entry only at startup. Later load operations do not use it.

1: Enables the toolbar

0: Hides the toolbar

Saved

Only with Appearance set in the File > Configuration > Save Configuration Tab.

WindowPos

Arguments

10 integers, e.g., 0,1,-1,-1,-1,-1,390,107,1103,643

Description

The tool considers this entry only at startup. Later load operations do not use it.

NOTE Changes of this entry do not show the * in the title.

These numbers contain the position and the state of the window (maximized, minimized)
and other flags.

Saved

Only with Appearance set in the File > Configuration > Save Configuration Tab.

WindowFont

Arguments

Size: == 0 -> generic size, < 0 -> font character height, > 0 font cell height,
279HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
Weight: 400 = normal, 700 = bold (valid values are 0–1000),

Italic: 0 == no, 1 == yes,

Font name: max 32 characters.

Description

Font attributes.

Saved

Only with Appearance set in the File > Configuration > Save Configuration Tab.

Example

WindowFont=-16,500,0,Courier

TipFilePos

Arguments

Any integer, e.g. 236

Description

Actual position of tip of the day file.

Saved

Always when saving a configuration file.

ShowTipOfDay

Arguments

0/1

Description

Display Tip of the Day dialog at startup.

1: Shows the Tip of the Day dialog

0: Hides the Tip of the Day dialog (can be displayed from the help menu)
280 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
Saved

Always when saving a configuration file.

Options

Arguments

W2

Description

The currently active option string. Because this entry contains the messages, the entry can
be very long.

Saved

Only with Options set in the File > Configuration > Save Configuration Tab.

EditorType

Arguments

0/1/2/3

Description

This entry specifies the active editor configuration.

0: Global editor configuration (in the file mcutools.ini)

1: Local editor configuration (the one in this file)

2: Command line editor configuration: entry EditorCommandLine

3: DDE editor configuration: entries beginning with EditorDDE.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration Tab.
281HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
EditorCommandLine

Arguments

Command line. For WinEdit: C:\Winapps\WinEdit.exe %f /#:%l

Description

Command line content to open a file.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration Tab.

EditorDDEClientName

Arguments

Client command. For example, [open(%f)]

Description

Name of the client for DDE editor configuration.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration Tab.

EditorDDETopicName

Arguments

Topic name. For example, system

Description

Name of the topic for DDE editor configuration.
282 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration Tab.

EditorDDEServiceName

Arguments

Service name. For example, system

Description

Name of the service for DDE editor configuration.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration Tab.

Burner Dialog Entries in [BURNER]
The following entries are specific to the Burner, and appear only in the [BURNER]
section of the project.ini file.

BurnerUndefByte

Arguments

Integral value of undefined bytes. Default is 0xff.

Description

Value of the Undef Byte entry on the Content page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.
283HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
BurnerSwapByte

Arguments

0: Do not swap

1: Swap

Description

Value of the Swap Bytes check box on the Content page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerOrigin

Arguments

Integral value (0,1,2)

Description

Value of the Origin field on the Content page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerDestination

Arguments

Integral value (0,1,2)

Description

Value of the Destination Offset field on the Content page in the Burner dialog.
284 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerLength

Arguments

Integral value (0,1,2)

Description

Value of the Length field on the Content page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerFormat

Arguments

0: Freescale S record format

1: Intel Hex file format

2: Binary file format

Description

Format type specified on the Content page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.
285HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
BurnerDataBus

Arguments

0: “1 Byte”

1: “2 Bytes”

2: “4 Bytes”

Not the size in bytes.

Description

Setting in the Data Bus field on the Content page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerOutputType

Arguments

0: Com1

1: Com2

2: Com3

3: Com4

4: File

Description

Setting in the Output field on the Input/Output page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.
286 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
BurnerDataBits

Arguments

0: 7 Bits

1: 8 Bits

Description

Setting in the Data Bits field on the Input/Output page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerParity

Arguments

0: None

1: Odd

2: Even

Description

Setting in the Parity field on the Input/Output page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerByteCommands

Arguments

0: 1st Byte (msb)

1: 2nd Byte
287HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
2: 3rd Byte

3: 4th Byte

4: 1st Word

5: 2nd Word

Description

Setting in the command box on the Input/Output page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerBaudRate

Arguments

300, 600, 1200, 2400, 4800, 9600, 19200, 38400

Description

Setting in the Baud Rate box on the Input/Output page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerOutputFile

Arguments

File Name, e.g., file.s19

Description

Content of the Name box on the Input/Output page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.
288 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
BurnerHeaderFile

Arguments

File Name, e.g., headerfile

Description

Content of the Header File box on the Input/Output page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.

BurnerInputFile

Arguments

File Name, e.g., file.abs

Description

Content of the Input File box on the Input/Output page in the Burner dialog.

Saved

Only with Appearance set in the File > Configuration > Save Configuration
dialog.
289HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Local Configuration File (usually project.ini)
Configuration File Example
Listing A.2 shows a typical layout of the configuration file (usually project.ini).

Listing A.2 Example Configuration File

[Editor]
Editor_Name=WinEdit
Editor_Exe=C:\WinEdit\WinEdit.exe %f /#:%l
Editor_Opts=%f

[Linker]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
Options=-w1
EditorType=3
RecentCommandLine0=fibo.prm -w2
RecentCommandLine1=fibo.prm
CurrentCommandLine=calc.prm -w2
EditorDDEClientName=[open(%f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev
EditorCommandLine=C:\WinEdit\WinEdit.exe %f /#:%l

[Burner]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
TipFilePos=0
ShowTipOfDay=1
Options=-w1
EditorType=3
RecentCommandLine0=-ffibo.bbl -w1
CurrentCommandLine=-ffibo.bbl -w2
EditorDDEClientName=[open(%f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev
EditorCommandLine=C:\WinEdit\WinEdit.exe %f /#:%l
BurnerUndefByte=255
BurnerSwapByte=0
BurnerOrigin=0
BurnerDestination=0
BurnerLength=65536
BurnerFormat=0
BurnerDataBus=0
290 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Paths
BurnerOutputType=4
BurnerDataBits=1
BurnerParity=0
BurnerByteCommands=0
BurnerBaudRate=9600
BurnerOutputFile=outputfile.s19
BurnerHeaderFile=headerfile
BurnerInputFile=InputFile.abs

[Maker]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
TipFilePos=0
ShowTipOfDay=1
EditorType=3
RecentCommandLine0=mkall.mak
RecentCommandLine1=cpplib.mak -D(LIBNAME=cpplib)
CurrentCommandLine=mkall.mak
EditorDDEClientName=[open(%f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev
EditorCommandLine=C:\WinEdit\WinEdit.exe %f /#:%l

Paths
Most environment variables contain path lists telling where to look for files. A path list is
a list of directory names, separated by semicolons, following the syntax below:

PathList = DirSpec {“;” DirSpec}.

DirSpec = [“*”] DirectoryName.

Example:

GENPATH=C:\INSTALL\LIB;D:\PROJECT\TESTS;\usr\local\freescale
\lib;/home/me/my_project

If a directory name is preceded by an asterisk (*), the programs recursively search that
whole directory tree for a file, not just the given directory itself. The directories are
searched in the order they appear in the path list.

Example:

LIBPATH=*C:\INSTALL\LIB
291HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Line Continuation
NOTE Some DOS/UNIX environment variables (like GENPATH, LIBPATH, etc.) are
used. For further details refer to Environment Variable Details.

We recommend working with WinEdit and setting the environment by means of a
DEFAULT.ENV (.hidefaults for UNIX) file in your project directory. You can set
this project directory in WinEdit's Project Configure menu command. This way, you can
have different projects in different directories, each with its own environment.

NOTE When using WinEdit, do not set the system environment variable
DEFAULTDIR: Default Current Directory. If you use this variable and it does
not contain the project directory given in WinEdit’s project configuration, files
might not be put where you expect them.

Line Continuation
It is possible to specify an environment variable in an environment file (default.env/
.hidefaults) over different lines, using the line continuation character ‘\’:

Example:

COMPOPTIONS=\

-W2 \

-Wpd

This is the same as:

COMPOPTIONS=-W2 -Wpd

Use caution when pairing this continuation character with paths. The following code:

GENPATH=.\

TEXTFILE=.\txt

Results in:

GENPATH=.TEXTFILE=.\txt

To avoid such problems, use a semicolon (;) at the end of a path if the path contains a ‘\’
at the end:

GENPATH=.\;

TEXTFILE=.\txt
292 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Environment Variable Details
The remainder of this section describes each of the environment variables available for the
tools. Table A.1 shows the types of information provided in the variable descriptions.

ABSPATH: Absolute Path

Tools

SmartLinker, Debugger

Synonym

None

Syntax

ABSPATH= {<path>}

Table A.1 Environment Variable Description

Topic Description

Tools Lists tools which use this variable.

Synonym Synonyms exist for some environment variables. Those synonyms
may be used for older releases of the SmartLinker and will be removed
in the future. A synonym has lower precedence than the environment
variable.

Syntax Specifies the syntax of the option in EBNF format.

Arguments Describes and lists optional and required arguments for the variable.

Default Shows the default setting for the variable, or none.

Description Provides a detailed description of the option and how to use it.

Example Gives a usage example, and illustrates the effects of the variable when
possible. Shows an entry in the default.env for PC or in the
.hidefaults for UNIX.

See also Names related sections.
293HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Arguments

<path>: Paths separated by semicolons, without spaces.

Description

When you define this environment variable, the SmartLinker stores the absolute files it
produces in the first directory specified there. If ABSPATH is not set, the SmartLinker
stores the generated absolute files in the directory in which the parameter file was found.

Example

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

See also

None

COMP: Modula-2 Compiler

Tools

Maker

Synonym

None

Syntax

COMP = <compiler>.

Arguments

<compiler>: Used Modula-2 compiler.

Default

None.

Description

Use this environment variable to specify the Modula-2 compiler.

Example

COMP=C:\INSTALL\PROG\TPM.EXE
294 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
COPYRIGHT: Copyright Entry in Absolute File

Tools

Compiler, Assembler, SmartLinker, Libmaker

Synonym

None

Syntax

COPYRIGHT= <copyright>

Arguments

<copyright>: copyright entry.

Default

None

Description

Each absolute file contains an entry for a copyright string. Use the decoder to retrieve this
information from the absolute files.

Example

COPYRIGHT=Copyright by PowerUser

See also

Environment variables USERNAME: User Name in Object File and
INCLUDETIME: Creation Time in Object File.

DEFAULTDIR: Default Current Directory

Tools

Compiler, Assembler, SmartLinker, Decoder, Debugger, Libmaker, Maker, Burner

Synonym

None
295HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Syntax

DEFAULTDIR= <directory>.

Arguments

<directory>: Directory to be the default current directory.

Default

None

Description

Use this environment variable to specify the default directory for all tools. When you use
this environment variable, all the tools indicated above take the specified directory as their
current directory instead of the one defined by the operating system or launching tool.

Example

DEFAULTDIR=C:\INSTALL\PROJECT

See also

Current Directory and Global Initialization File (MCUTOOLS.INI - PC Only).

NOTE This is a the system level (global) environment variable. It cannot be specified
in a default environment file (DEFAULT.ENV/.hidefaults).

ENVIRONMENT: Environment File Specification

Tools

Compiler, SmartLinker, Decoder, Debugger, Libmaker, Maker, Burner

Synonym

HIENVIRONMENT

Syntax

ENVIRONMENT= <file>

Arguments

<file>: file name with path specification, without spaces
296 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Default

None

Description

You must specify this variable at the system level. Normally the application looks in the
current directory for the default.env/.hidefaults environment file. Using
ENVIRONMENT (e.g. set in the autoexec.bat (DOS) or .cshrc (UNIX) file), a
different file name may be specified.

Example

ENVIRONMENT=\Freescale\prog\global.env

See also

None

NOTE This is a system level (global) environment variable. It cannot be specified in a
default environment file (DEFAULT.ENV/.hidefaults).

ERRORFILE: Error File Name Specification

Tools

Compiler, SmartLinker, Assembler, Burner, Libmaker, Maker (restricted)

Synonym

None

Syntax

ERRORFILE= <filename>

Arguments

<filename>: File name with possible format specifiers.

Description

The environment variable ERRORFILE specifies the name for the error file. Possible
format specifiers are:

%n: Substitute with the file name, without the path.
297HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
%p: Substitute with the path of the source file.

%f: Substitute with full file name, i.e. with path and name (the same as %p%n).

Using an invalid error file name causes a notification box to appear.

NOTE Maker does not recognize error files of other tools containing % substitutions.
Maker reads the string assigned to the environment variable ERRORFILE as
filename string without substitutions, so tools that use % substitutions for their
error output report their error to Maker as the unspecified error message
M5108 called application detected an error.

NOTE Maker cannot report error-position information with the same precision as a
compiler because most of the errors have a long history. Maker can only report
the general position, not the position where the error occurred. Most of
Maker’s messages lack position information (pos = 0).

Example

ERRORFILE=MyErrors.err lists all errors into the file MyErrors.err in
the project directory.

ERRORFILE=\tmp\errors lists all errors into the file called errors in the
\tmp directory.

ERRORFILE=%f.err lists all errors into a file with the same name as the source
file, but with extension .err, into the same directory as the source file. For
example, linking a file called \sources\test.prm generates an error list file
called \sources\test.err.

Specifying ERRORFILE=\dir1\%n.err and linking a source file called
test.prm generates an error list file called \dir1\test.err.

Specifying ERRORFILE=%p\errors.txt and linking a source file called
\dir1\dir2\test.prm generates an error list file called
\dir1\dir2\errors.txt.

If the environment variable ERRORFILE is not set, the errors are written to the file
EDOUT in the project directory, or to the default error file. The default error file
name depends on the way the application is started:

• If a file name is provided on the application command line, the errors are written
to the file EDOUT in the project directory.

• If no file name is provided on the application command line, the errors are
written to the file ERR.TXT in the project directory.
298 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Example

This example shows usage of this variable to support correct error feedback with
the WinEdit Editor, which looks for an error file called EDOUT:

Installation directory: E:\INSTALL\PROG

Project sources: D:\MEPHISTO

Common Sources for projects: E:\CLIB

Entry in default.env (D:\MEPHISTO\DEFAULT.ENV):

ERRORFILE=E:\INSTALL\PROG\EDOUT

Entry in WINEDIT.INI (in Windows directory):

OUTPUT=E:\INSTALL\PROG\EDOUT

NOTE Be sure to set this variable if the WinEdit Editor is use, otherwise the editor
cannot find the EDOUT file.

Maker-Specific Error Listing Information

If Maker detects any errors, it creates an error listing file ERR.TXT. Maker generates this
file in the working directory.

If you start Maker from WinEdit (with %f on the command line) or Codewright (with
%b%e on the command line), it does not produce this error file. Instead, Maker writes the
error messages in a special format in a file called EDOUT using the default Microsoft
format. Use WinEdit’s Next Error or Codewright’s Find Next Error command
to see both the error positions and the error messages.

Interactive Mode (Main Window Opened)

If you set ERRORFILE: Error File Name Specification, Maker creates a message file with
the name specified in this environment variable.

If you do not set ERRORFILE, Maker generates a default file named ERR.TXT in the
current directory.

Batch Mode (Main Window Closed)

If you set ERRORFILE: Error File Name Specification, Maker creates a message file with
the name specified in this environment variable.

If you do not set ERRORFILE, Maker generates a default file named EDOUT in the
current directory.
299HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
FLAGS: Options for Modula-2 Compiler

Tools

Maker for Modula-2

Syntax

FLAGS = {<optionlist>}.

Arguments

<optionlist>: List of options.

Default

None

Description

Maker, fed with a Modula-2 main module, starts the compiler with the options specified
with FLAGS. The environment variable COMP specifies the Modula-2 compiler.

GENPATH: Define Paths to Search for Input Files

Tools

Compiler, Assembler, SmartLinker, Decoder, Debugger, Libmaker, Burner, Maker

Synonym

HIPATH

Syntax

GENPATH= {<path>}

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

The application looks for the prm first in the project directory, then in the directories
listed in the environment variable GENPATH. The object and library files specified in the
300 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
linker prm file are searched in the project directory, then in the directories listed in the
environment variable OBJPATH and finally in those specified in GENPATH.

Example

GENPATH=\obj;..\..\lib;

GENPATH=\sources\include;..\..\headers;\usr\local\lib

NOTE If a directory specification in this environment variables starts with an asterisk
(*), the application searches the whole directory tree recursively, depth first,
i.e., all subdirectories and their subdirectories and so on are searched, too.
Within one level in the tree, search order of the subdirectories is indeterminate.

INCLUDETIME: Creation Time in Object File

Tools

Compiler, Assembler, SmartLinker, Libmaker

Synonym

None

Syntax

INCLUDETIME= (ON | OFF)

Arguments

ON : Include time information into object file.

OFF : Do not include time information into object file.

Default

ON

Description

Normally each absolute file created contains a time stamp indicating the creation time and
data as strings. When one of the tools creates a new file, the new file gets a new time
stamp entry.

This behavior may be undesirable if a binary file compare must be performed. Even if the
information in two absolute files is the same, the files do not match exactly because the
301HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
time stamps are different. To avoid such problems this variable may be set to OFF. In this
case the time stamp strings in the absolute file for date and time are none in the object file.

Use the decoder to retrieve the time stamp from the object files.

Example

INCLUDETIME=OFF

LINK: Linker for Modula-2

Tools

Maker for Modula-2

Syntax

LINK = {<linker>}.

Arguments

<linker>: Linker for Modula-2.

Default

none

Description

Maker, fed with a Modula-2 main module, starts the linker specified in this environment
variable.

LINKOPTIONS: Default SmartLinker Options

Tools

SmartLinker

Synonym

None

Syntax

LINKOPTIONS= {<option>}
302 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Arguments

<option>: SmartLinker command line option.

Description

Setting this environment variable appends the option contents to the SmartLinker
command line each time a file is linked. Use this option to specify certain required
options, so that you do not have to specify them each time a file is linked.

Example

LINKOPTIONS=-W2

See also

Option Details

OBJPATH: Object File Path

Tools

Compiler, Assembler, SmartLinker, Decoder, Debugger

Synonym

None

Syntax

OBJPATH= {<path>}

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

Defining this environment variable causes the linker to search for the object and library
files specified in the linker prm file in the project directory, then in the directories listed in
the environment variable OBJPATH, and finally in those specified in GENPATH.

Example

OBJPATH=\sources\bin;..\..\headers;\usr\local\bin
303HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
RESETVECTOR: Reset Vector Location

Tools

Compiler, Assembler, SmartLinker

Synonym

None

Syntax

RESETVECTOR= <Address>

Arguments

<Address>: Address of reset vector

Default

0xFFFE

Description

For the VECTOR directive, the linker must know where to place VECTOR 0.

Example

RESETVECTOR=0xFFFE

SRECORD: S Record File Format

Tools

Assembler, SmartLinker, Burner

Synonym

None

Syntax

SRECORD= <RecordType>
304 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Arguments

<Record Type>: Force the type for the S Record which must be generated. This
parameter may take the value S1, S2 or S3.

Description

This environment variable is relevant only when absolute files, rather than object files, are
directly generated by the macro assembler. When you define this environment variable,
the Assembler generates a Freescale S-record file containing records of the specified type
(S1 records when S1 is specified, S2 records when S2 is specified and S3 records when
S3 is specified).

If you do not set this variable, the assembler generates S records based on the address size.
If the address can be coded on two bytes, the assembler generates an S1 record. If the
address is coded on three bytes, the assembler generates an S2 record. Otherwise the
assembler generates an S3 record.

Example

SRECORD=S2

NOTE If you set the SRECORD environment variable, it is your responsibility to
specify the appropriate S-record type. Specifying S1 when your code is loaded
at an address greater than 0xFFFF results in an incorrect S file, in which all
addresses are truncated to 2-byte values.

TEXTFAMILY: Text Font Family

Tools

Compiler, Assembler, Linker, Decoder, Libmaker, Maker

Synonym

HITEXTFAMILY

Syntax

TEXTFAMILY = <FontName>.

Arguments

<FontName>: Font family name to use.
305HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Default

Terminal

Description

Defines the font family to use. The default font family is “Terminal.”

Example

TEXTFAMILY=Times

TEXTKIND: Text Font Character Set

Tools

Compiler, Assembler, Linker, Decoder, Libmaker, Maker

Synonym

HITEXTKIND

Syntax

TEXTKIND = (OEM | ANSI).

Arguments

OEM: Use OEM font character set.

ANSI: Use ANSI font character set.

Default

OEM

Description

Gives the character set, OEM or ANSI. OEM is the default value.

Example

TEXTKIND=ANSI
306 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
TEXTPATH: Text Path

Tools

Compiler, Assembler, SmartLinker, Decoder, Libmaker

Synonym

None

Syntax

TEXTPATH= {<path>}

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

When you set this environment variable, the application stores the map file it produces in
the first directory specified in the path. If TEXTPATH is not set, the application stores
generated map file in the directory where the prm file was found.

Example

TEXTPATH=\sources..\..\headers;\usr\local\txt

TEXTSIZE: Text Font Size

Tools

Compiler, Assembler, Linker, Decoder, Libmaker, Decoder, Maker

Synonym

HITEXTSIZE

Syntax

TEXTSIZE = <number>

Arguments

<number>: Font size to use.
307HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
Default

14

Description

Defines the size of the font. The default size is 14 point.

Example

TEXTSIZE=12

TEXTSTYLE: Text Font Style

Tools

Compiler, Assembler, Linker, Decoder, Libmaker, Maker

Synonym

HITEXTSTYLE

Syntax

TEXTSTYLE = (NORMAL | BOLD)

Arguments

NORMAL: Use normal font style (not bold or italic).

BOLD: Use bold font style.

Default

NORMAL

Description

Defines the font style to use, NORMAL or BOLD. The default value is NORMAL.

Example

TEXTSTYLE=BOLD
308 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
TMP: Temporary Directory

Tools

Compiler, Assembler, SmartLinker, Debugger, Libmaker, Burner

Synonym

None

Syntax

TMP= <directory>

Arguments

<directory>: Directory to be used for temporary files.

Description

This environment variable works in conjunction with the ANSI function tmpnam()
when the tools must create a temporary file. The tmpnam() library function stores the
temporary files in the directory specified by the TMP environment variable. If the variable
is empty or does not exist, the tool stores the temporary files in the current directory.
Check this variable if you get an error message Cannot create temporary file.

Example

TMP=C:\TEMP

See also

Current Directory

NOTE This is a system level (global) environment variable. It cannot be specified in a
default environment file (DEFAULT.ENV/.hidefaults).
309HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Environment Variables
Environment Variable Details
USERNAME: User Name in Object File

Tools

Compiler, Assembler, SmartLinker, Libmaker

Synonym

None

Syntax

USERNAME= <user>

Arguments

<user>: Name of user.

Description

Each absolute file contains an entry identifying the user who created the file. Use the
decoder to retrieve this information from the absolute files.

Example

USERNAME=PowerUser

See also

COPYRIGHT: Copyright Entry in Absolute File and INCLUDETIME: Creation
Time in Object File
310 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

B
Tool Options

Each tool offers a number of options that you can use to control operation. Options are
composed of a dash (-) followed by one or more letters or numerals. Options not starting
with a dash are interpreted as the name of a parameter file to be linked.

Command line options are not case-sensitive. For example, –W1 is the same as –w1.

• SmartLinker Specific: Anything not starting with a dash is the name of a parameter
file to be linked. Specify SmartLinker options on the command line or in the
LINKOPTIONS variable (see LINKOPTIONS: Default SmartLinker Options).
Typically, each linker option is specified only once per linking session.

Setting the LINKOPTIONS environment variable appends the option contents to the
SmartLinker command line each time a file is linked. Use this option to specify
certain required options, so that you do not have to specify them each time a file is
linked.

• Burner specific: The burner command line can contain the name of a file to be built
with the -F: Execute Command File (Burner), or a list of commands.

Options before the first command on the command line are recognized. Then, all
remaining text is taken as arguments to the command, including options. For
example:

OPENFILE "fibo.out" format=freescale len=0x1000 SENDBYTE
1 "fibo.abs.abs" CLOSE

Command is executed.

-f=fibo.bbl executes the fibo.bbl command file.

-f fibo.bbl is an alternate form of the recommended -f=fibo.bbl. This
form is allowed for compatibility only.

fibo.bbl -f is not allowed, because the burner interprets fibo.bbl as a
command with argument -f. This generates an error, since no such command exists.

• Options for the Freescale object file format may differ from the options for decoding
ELF/DWARF binaries.

• You can specify maker options on the command line or interactively in the Advanced
Option Settings dialog box.
311HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Option Details
The remainder of this section describes each of the options available for the tools. Table
B.1 lists the details available for each of the options.

Table B.1 Option Details

Topic Description

Group Specifies the groups influenced by the option.

Syntax Specifies the option syntax.

Arguments Describes and lists optional and required arguments for the option.

Default (Where used): Shows the default setting for the option.

(Where not used): No default setting for the option.

Description Provides a detailed description of the option and how to use it.

Example Gives an example of usage, and effects of the option where possible.
Shows settings, source code and/or prm files where applicable.

See also (Where used): Names related topics.

Table B.2 Option Groupings

Group Tools Description

HOST All Host-related options

INPUT All Specification of command-line handling, such as
macro definitions and unknown-macro expansions.

MESSAGES All Message handling, such as specification of format,
kind, and number of Maker printed messages

MODULA-2 M Modula-2 make-specific options. (No effect for C
users.)

NONE SL These options cannot be specified interactively.

OPTIMIZATIONS SL

OUTPUT SL, LM,
D, M

Specification of command execution and output print
312 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Special Modifiers
You can use special modifiers with some options, although some modifiers may not make
sense for all options. Table B.3 lists and describes these modifiers.

Examples
For these examples we assume that our actual file name (base file name for the modifiers)
is:

c:\Freescale\my demo\TheWholeThing.myExt

%p gives the path only with a file separator:

c:\Freescale\my demo\

%N results in the file name in 8.3 format, that is the name with only eight characters:

STARTUP SL These options cannot be specified interactively.

VARIOUS SL, B, M Does not appear in the dialog box

Table B.3 Supported Modifiers

Modifier Description

%p Path including file separator

%N File name in strict 8.3 format

%n File name without extension

%E Extension in strict 8.3 format

%e Extension

%f Path + file name without extension

%” A double quote (“) if the file name, path or extension contains a space

%’ A single quote (‘) if the file name, path or extension contains a space

%(ENV) Replaces it with contents of an environment variable

%% Generates a single ‘%’

Table B.2 Option Groupings (continued)

Group Tools Description
313HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
TheWhole

%n returns just the file name without extension:

TheWholeThing

%E gives the extension in 8.3 format, that is, the extension with only three characters:

myE

%e is used for the whole extension:

myExt

%f gives the path plus the file name:

c:\Freescale\my demo\TheWholeThing

Because the path contains a space, using %” or %’ is recommended: Thus %”%f%” gives:

c:\Freescale\my demo\TheWholeThing

where %’%f%’ gives:

‘c:\Freescale\my demo\TheWholeThing’

When using %(envVariable) an environment variable may be used too. A file
separator after %(envVariable) is ignored if the environment variable is empty or
does not exist. For example, $(TEXTPATH)\myfile.txt is replaced with:

c:\Freescale\txt\myfile.txt

if TEXTPATH is set to:

TEXTPATH=c:\Freescale\txt

But is set to:

myfile.txt

if TEXTPATH does not exist or is empty.

%% may be used to print a percent sign. %e%% gives:

myExt%

-A: Print Full Listing (Decoder)

Group

OUTPUT

Syntax

-A
314 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Arguments

None

File Format

Only Freescale. ELF Object files are not affected by this option.

Description

Prints a listing with the header information of the object file.

Example

Listing with command line fibo.o -A:

*** Header information ***
Program Version 2700
Format Version 2
File Id 129
flags 0
processor family 11
processor type 1
Unitname fibo.abs
Username PFR
Program time string Feb 25 1998
Creation time string Wed Feb 25 11:43:22 1998
CopyRight

*** Directory information for Absfile***
Is romlib? 0

Init start:end 32774:32774
Code beg:end 32768:32939
Data beg:end 384:4096
Total number of objects 7

At address: 8000 code size: 40
00008000 1410 ORCC #16
.........
315HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-A: Warning for Missing .DEF File (Maker)

Group

MODULA-2

Syntax

-A

Arguments

None

Description

Invokes a warning for a missing .DEF file and affects only the processing of Modula-2
makefiles.

Example

maker test.mod -M -A

-Add: Additional Object/Library File

Group

INPUT

Syntax

-Add <FileList>

Arguments

<FileList>: Names of an additional object files or libraries.

Description

Use this option to add additional files to a project without modifying the link parameter
file.

If you intend to specify all binary files using the -Add command line option, then you
must include an empty NAMES block (just NAMES END) in the link parameter file.
316 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
SmartLinker links object files added with this option before linking the object files
specified in the NAMES block.

Example

To specify more than one file either use several -Add options:

linker.exe demo.prm -addFileA.o -addFileB.o

Or use braces to bind the list to the -Add option:

linker.exe demo.prm -add(FileA.o FileB.o)

Use braces together with double quotes to add a file in which the name contains
spaces:

linker.exe demo.prm -add(“File A.o” “File B.o”)

linker.exe fibo.prm -addfibo1.o -addfibo2.o

This example links the additional object files fibo1.o and fibo2.o with the
fibo application.

See also

NAMES: List Files Building the Application.

NOTE To turn off smart linking for the additional object file, use a + sign immediately
behind the filename.

-Alloc: Allocation Over Segment Boundaries (ELF)

Group

OPTIMIZATION

Syntax

-Alloc (First | Next | Change)

Arguments

First : Use first free location

Next : Always use next segment

Change : Check when segment changes only
317HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Default

-AllocNext

Description

The linker supports allocating objects from one ELF section into different segments. This
option controls where space for the next object is allocated as soon as the first segment is
full.

When you use -AllocNext, the linker always takes the next segment as soon as the
current segment is full. Gaps resulting from this process are not used later. With the Next
argument, the allocation order corresponds to the definition order in the object files.
Objects defined first in a source file are allocated before objects defined later.

When you use -AllocFirst, the linker checks space requirements for every object. If
the object fits into a previously used, partially filled segment, the linker uses that space.
-AllocFirst does not maintain the definition order.

When you use -AllocChange, the linker checks space requirements only when the
object does not fit into the current segment. If the object fits into a previously used,
partially filled segment, the linker uses that space. -AllocChange does not maintain the
definition order, but uses fewer different ranges than -AllocFirst.

NOTE This option has no effect in the Freescale format. In the Freescale format, the
linker always uses the -AllocNext strategy. The linker does not maintain
allocation order for small variables.

NOTE This option has no effect if sections are not split into segments. Then all
strategies behave identically.

NOTE Some compilers perform code optimization in the assumption that the
definition order is maintained in the memory. Such code is not split into
multiple segments so no problems result from using this option.

Example

Objects: AAAA BB CCC D EEE FFFFF

Segments: “---” “-------” “------------”

AllocNext: “---” “AAAABB-” “CCCDEEEFFFFF”

AllocChange:“CCC” “AAAABBD” “EEEFFFFF----”

AllocFirst: “BBD” “AAAACCC” “EEEFFFFF----”
318 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
In this example, objects A (size 4 bytes), B (size 2 bytes), and F (size 5 bytes) must
be allocated into three segments of size 3, 7 and 12 bytes. Because object A does
not fit into the first segment, -AllocNext does not use this space at all. The two
other strategies fill this space later. Only -AllocNext maintains object order.

-AsROMLib: Link as ROM Library

Group

OUTPUT

Syntax

-AsROMLib

Arguments

<FileList>: Names of an additional object files or libraries.

Description

Set -AsROMLib to link the application as a ROM library. This option has the same effect
as specifying AS ROM_LIB in the linker parameter file.

Example

linker.exe myROMlib.prm -AsROMLib

-B: Generate S-Record file (SmartLinker)

Group

OUTPUT

Syntax

-B

Arguments

None
319HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Default

Disabled

Description

Setting this option tells the linker to generate an S-record file in addition to an absolute
file. The name of the S-record file is the same as the name of the .abs file, except that the
extension .SX is used. The default.env variable SRECORD may specify an
alternative extension.

Example

LINKOPTIONS=-B

-C: Write Disassembly Listing with Source Code (Decoder)

Group

OUTPUT

Syntax

-C

Arguments

None

Default

None

File Format

Only Freescale. (ELF Object files are not affected by this option.)

Description

This option setting is default for the Freescale object files as input. When this option is
specified, the Decoder decoding Freescale object files writes the source code within the
disassembly listing.

Example

Listing with command line fibo.o -C (code depends on target):
 8: unsigned int Fibonacci(unsigned int n)
320 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
 9: {
 10: unsigned fib1, fib2, fibo;
 11: int i;
 12:
00000000 3B PSHD
00000001 3B PSHD
 13: fib1 = 0;
00000002 C7 CLRB
00000003 87 CLRA
 14: fib2 = 1;
00000004 52 INCB
00000005 6C82 STD 2,SP
 15: fibo = n;
00000007 EE80 LDX 0,SP
 16: i = 2;
.................

-C: Ignore Case (Maker)

Group

INPUT

Syntax

-C

Arguments

None

Description

The make utility has default case sensitivity. Use this option to disable case sensitivity and
treat lowercase characters the same as uppercase characters.

Example

maker test.mak -o

In the file test.mak:

OBJECTFILES = startup.o fibo.o

makeAll: $(ObjectFiles)
321HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
This line with -c is equivalent to:

makeAll: $(OBJECTFILES)

-CAllocUnusedOverlap: Allocate Unreferenced Overlap Variables

(Freescale)

Group

OPTIMIZATION

Syntax

-CAllocUnusedOverlap

Arguments

None

Description

When Smart Linking is switched off, defined but unreferenced overlapped variables are
not allocated by default. Such variables do not belong to a specific function, therefore they
cannot be allocated overlapped with other variables.

This option only changes the behavior of variables in the special _OVERLAP segment.
This segment is used only to allocate parameters and local variables for processors which
do not have a stack. Not allocating an unreferenced overlap variable is similar to not
allocating a variable on the stack for other processors. If you use this stack analogy, then
allocating such variables this way corresponds to allocating unreferenced stack variables
in global memory.

This option allows allocation of all defined objects. Using this option is not recommended.

Example

LINKOPTIONS=-CAllocUnusedOverlap

-Ci: Link Case Insensitive

Group

INPUT
322 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax

-Ci

Arguments

None

Description

With this option, the linker ignores object name capitalization.

This option supports case-insensitive linking of assembly modules. Since all identifiers
are linked case insensitive, this also affects C or C++ modules.

NOTE This option can cause severe problems when combined with the name
mangling of C++. Do not use this option with C++.

This option only affects the comparison of names of linked objects. Section names or the
parsing of the link parameter file are unaffected. They remain case sensitive.

Example

void Tim(void);

void main(void) {

 tim(); /* with -ci this call is resolved to Tim */

}

The linker matches the tim and Tim identifiers at link time. However, for the
compiler these are still two separate objects and therefore the code above issues an
“implicit parameter declaration” warning.

-Cmd: Libmaker Commands

Group

OUTPUT

Syntax

“-Cmd” "“" <commands> "“").

Arguments

<commands>: libmaker commands, separated by semicolon.
323HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Default

None.

Description

You can either run a libmaker command file (preceded by ‘@’), or use the -Cmd command
on the command line to run libmaker commands. Alternatively, you can use the command
without the ‘+’ operator as well:

-Cmd”a.o b.o c.o = d.lib”

Instead of “..” to wrap around the command string, you can use as well:

-Cmd(a.o b.o c.o = d.lib)

-Cmd[a.o b.o c.o = d.lib]

-Cmd{a.o b.o c.o = d.lib}

-Cmd’a.o b.o c.o = d.lib’

If your file names have spaces or operator characters in the file name, you need to use
double quotes for the file name:

-Cmd(a.o “my b.o” “c-c.o” = d.lib)

You still can use double quotes for the -Cmd option, but in such a case you need to
double-double quote files names in double quotes:

-Cmd”a.o ““my b.o”” ““c-c.o”” = d.lib”

Example

-Cmd”a.o + b.o = c.lib”

See also

-Mar: Freescale Archive Commands (Libmaker)

-Cocc: Optimize Common Code (ELF)

Group

OPTIMIZATION

Syntax

-Cocc [= [D] [C]]
324 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Arguments

D : optimize Data (constants and strings).

C : optimize Code

Description

This option defines the default when optimizing constants and cod. The commands
DO_OVERLAP_CONSTS and DO_NOT_OVERLAP_CONSTS take precedence over the
option.

Example

printf(“Hello World\n”); printf(“\n”);

-Cocc allocates the string “\n” inside of the string “Hello World\n”.

-CRam: Allocate Non-specified Constant Segments in RAM (ELF)

Group

OPTIMIZATION

Syntax

-CRam

Arguments

None

Description

This option allocates constant data segments not explicitly allocated in a READ_ONLY
segment in the default READ_WRITE segment.

This was the default for old versions of the linker, so this option provides a compatible
behavior with old linker versions.

Example

When C source files are compiled with -CC, the constants are put into the
ROM_VAR segment. If the ROM_VAR segment is not mentioned in the prm file,
then without this option, these constants are allocated in DEFAULT_ROM. With
this option they are allocated in DEFAULT_RAM.
325HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-D: Display Dialog Box (Burner)

Group

VARIOUS

Syntax

“-D”.

Arguments

None

Default

None

Description

This option displays the Burner dialog box. This interface, with its three tabs, allows you
to launch the burner from a make file and await user input.

Figure B.1 Burner Dialog Window Input/Output Tab

Example

burner.exe -D

-D: Decode DWARF Sections (Decoder)

Group

OUTPUT

Syntax

-D

Arguments

None

Default

Disabled
326 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
File Format

Only ELF. Freescale object files are not affected by this option.

Description

When you specify this option, DWARF section information is also written to the listing
file. Decoding from the DWARF section inserts this information in the listing file. See the
following listings for more information.

Listing B.1 Source/code reference information

.debug_line
 0x4 Version 2
 0x6 PrologLen 122l
 0xa MinInstrLen 1c
 0xb DefIsStmt 0c
 0xc LineBase 0c
 0xd LineRange 4c
 0xe DW2L_OpcodeBase 9c
 0xf Opcodelengths : 0c 1c 1c 1c 1c 0c 0c 0c 1c

Includedir :
 0x19 File 1: Y:\DEMO\WAVE12C\fibo.c, 0, 0, 0
 0x33 File 2: y:\LIB\ELF12C\hidef.h, 0, 0, 0
 0x4c File 3: y:\LIB\ELF12C\default.sgm, 0, 0, 0
 0x69 File 4: y:\LIB\ELF12C\stddef.h, 0, 0, 0
 0x84 Set Addr 867(2151): ADDR FILE LINE COL STMT BASIC
 0x8b set column : 867 1 1 14 0 0
 0x8d advance line : 867 1 8 14 0 0
 0x8f negate stmt : 867 1 8 14 1 0
 0x90 negate stmt : 867 1 8 14 0 0
...

Listing B.2 Argument location for local variables information

.debug_loc
 0 Start 867, End 869 (2)DW_OP_breg15 0(0)
 0xc Start 869, End 86a (2)DW_OP_breg15 8(8)
 0x18 Start 86a, End 895 (2)DW_OP_breg15 10(a)
 0x24 Start 895, End 896 (2)DW_OP_breg15 0(0)
 0x30 0, 0 : end of location-list

Listing B.3 Symbol Debug information

DWARF: .debug_info (1053) [0x734]
327HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Compi.Unit Header: size 304, version 2, abbrev 0, addrsize 4
 0xb Abbrevation 128 ,compile_unit
 0xd name string fibo.c
 0x14 producer string FREESCALE
 0x1b comp_dir string Y:\DEMO\WAVE12C
 0x2b language udata DW_LANG_C89
 0x2c stmt_list data4 0(0)

Listing B.4 Frame Debug Information

.debug_frame
 0 CIE Information 0x8 Version 1
 0x9 Augmentor Freescale CFA 1.0
 0x18 CodeAlign: 1, DataAlign: 1, ReturnAddr-Column: 18
 0x1b instruction PC FP(Reg) R[0] R[1] R[2] R[3] R[4] R[5]
R[6] R[7] R[8] R[9] R[10] R[11] R[12] R[13] R[14] R[15] R[16] R[17]
R[18] R[19] R[20] R[21] R[22] R[23] R[24] R[25] R[26] R[27] R[28] R[29]
R[30] R[31]
 0x1b start-values 84d: 0(15)
 0x1b Def CFA Register reg: 15,
 0x1d Def CFA Offset ofs: 0
 0x1f Offset: reg 18, Ofs: 0
 0x21 Undefined reg: 0
 0x23 Undefined reg: 1

NOTE Specify the -E option when the -D option is activated.

-D: Define a Macro (Maker)

Group

INPUT

Syntax

-D <macroname> = <value>

Arguments

The macro definition string “<macroname> = <value>”.
328 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

This option defines command-line macros. Command-line macros define macros and
arguments for the make file. A macro defined this way has a higher priority than a macro
defined in the makefile. Because you separate the arguments in the command line with
spaces, you cannot place spaces in a command-line macro.

Examples

-dCOMP=chc12.exe

-dCOMP=chc12.exe -Li -Wi

-d[MAKE=Maker.exe -s -d(COMP=$(COMP))]

-Disp: Display Mode (Maker)

Group

OUTPUT

Syntax

-Disp

Arguments

None

Description

Maker echoes executing commands without calling them. Use this mode to check the
dependency graph without affecting any files.

Example

maker test.mak -disp

-Dist: Enable Distribution Optimization (ELF) (SmartLinker)

Group

OPTIMIZATIONS
329HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax

-Dist

Arguments

None

Description

This option enables the linker optimizer. Instead of a link, the linker generates a
distribution file which contains an optimized distribution.

-DistFile: Specify Distribution File Name (ELF) (SmartLinker)

Group

OPTIMIZATIONS

Syntax

-DistFile <file name>

Arguments

<file name>: Name of the distribution file.

Default

distr.inc

Description

Enable this option to specify the name of the distribution file. The distribution file lists all
distributed functions and specifies how the compiler reallocates them.

Example

LINKOPTIONS=-DistFileMyFile

-DistInfo: Generate Distribution Information File (ELF)
330 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
(SmartLinker)

Group

OPTIMIZATIONS

Syntax

-DistInfo <file name>

Arguments

<file name>: Name of the information file.

Default

distr.txt

Description

Using this option, the optimizer generates a distribution information file containing a list
of all sections and their functions. Available function information includes the old size,
optimized size, and new calling convention.

Example

LINKOPTIONS=-DistInfoMyInfoFile

-DistOpti: Choose Optimizing Method (ELF) (SmartLinker)

Group

OPTIMIZATIONS

Syntax

-DistOpti (FillBanks | CodeSize)

Arguments

FillBanks : Priority is to fill the banks.

CodeSize : Priority is to minimize the code size.

Default

-DistOptiFillBanks
331HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

Enable this option to choose the optimizing method. With the FillBanks argument the
linker minimizes the free space in every bank. FillBanks is most effective for functions
using the near calling convention. Use the CodeSize argument to minimize code when
free space within the banks is no concern.

Example

LINKOPTIONS=-DistOptiFillBanks

-DistSeg: Specify Distribution Segment Name (ELF) (SmartLinker)

OPTIMIZATIONS

Syntax

-DistSeg <segment name>

Arguments

<segment name>: Name of the distribution segment.

Default

DISTRIBUTE

Description

Use this option to specify the name of the distribution segment.

Example

LINKOPTIONS=-DistSegMyDistributionSegment

-E: Define Application Entry Point (ELF) (SmartLinker)

Group

INPUT

Syntax

-E= <FunctionName>
332 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Arguments

<FunctionName> : Name of the function considered to be the entry point in the
application.

Description

This option specifies the name of the application entry point.

The symbol specified must be externally visible (not defined as static in an ANSI-C source
file or XREFed in an assembly source file).

Example

LINKOPTIONS=-E=entry

This is the same as using the command:

INIT entry

in the prm file.

-E: Decode ELF sections (Decoder)

Group

OUTPUT

Syntax

-E

Arguments

None

File Format

Only ELF. Freescale Object files are not affected by this option.

Description

When you specify this option, ELF section information is also written to the listing file.
Decoding from the ELF section inserts the following information in the listing file:

Listing B.5 ELF Header Information

File: Y:\DEMO\WAVE12C\fibo.abs
Ident: ELF with 32-bit objects, MSB encoding, Version 1
333HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Type: Executable file, Machine: Freescale HC12, Vers: 1
Entry point: 83D
Elf flags: 0
ElfHSiz: 34
ProgHOff: 34, ProgHSi: 20, ProgHNu: 6
SectHOff: E3A, SectHSi: 28, SectHNu: 19,
SectHSI: 18

Usually the ELF Program header Table is available only for absolute files.

Listing B.6 ELF Program header Table Information

PROGRAM HEADER TABLE - 6 Items
Starts at: 34, Size of an entry: 20, Ends at: F4
 NO TYPE OFFSET SIZE VIRTADDR PHYADDR MEMSIZE FLAGS ALIGNMNT
 0 - PT_PHDR 34 C0
 1 - PT_LOAD F4 0 0 800 4 6 0
 2 - PT_LOAD F4 AE 0 810 AE 1 0

Listing B.7 ELF Section Header Table Information

SECTION HEADER TABLE - 19 Items
Starts at: E3A, Size of an entry: 28, Ends at: 1132
String table is in section: 12
 NO NAME TYPE FLAGS OFFSET SIZE ADDR ALI RECS LINK INFO
 0- NULL 0 0 0 0 0 0 0
 1-.common NOBITS WA F4 4 800 0 0 0 0
 2-.init PROGBITS AX F4 3D 810 0 0 0 0
 3-.startData PROGBITS AX 131 1A 84D 0 0 0 0
 4-.text PROGBITS AX 14B 55 867 0 0 0 0
 5-.copy PROGBITS AX 1A0 2 8BC 0 0 0 0
 6-.stack NOBITS WA 1A2 100 B00 0 0 0 0
 7-.vectSeg0_vect PROGBITS AX 1A2 2 FFFE 0 0 0 0

Listing B.8 Symbol Table Information

SYMBOL TABLE: .symtab - 13 Items
Starts at: 1A4, Size of an entry: 10, Ends at: 274
String table is in section: 9
First global symbol is in entry no.: 8
 NO NAME VALUE SIZE BIND TYPE SECT
 0- 0 0 LOCAL NOTYPE
 1- 0 0 LOCAL SECTION 1
 2- 0 0 LOCAL SECTION 2
 3-Init 810 2D LOCAL FUNC 2
334 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
 4- 0 0 LOCAL SECTION 3
 5- 0 0 LOCAL SECTION 4

Listing B.9 Relocation Section Information

RELOCATION TABLE RELA: .rela.init - 1 Items
Starts at: 2AA, Size of an entry: C, Ends at: 2B6
Symbol table is in section: 8
Binary code/data is in section: 2
 NO OFFSET SYMNDX TYP ADDEND SYMNAME
 0 - 2163 873 3 3 4107 Init

Listing B.10 Hexadecimal dump from all sections defined in the binary file

HEXDUMP OF: .init FROM 244 TO 305 SIZE 61 (0X3D)
OFFSET +0 +1 +2 +3 +4 +5 +6 +7 : +8 +9 +A +B +C +D +E +F ASCII DATA
000000 FE 08 55 FD 08 53 27 10 : 35 ED 31 EC 31 69 70 83 ...U ...
S'.5.1.1ip.
000010 00 01 26 F9 31 03 26 F0 : FE 08 57 EC 31 27 0D ED .&.1.&...
W.1'..
000020 31 18 0A 30 70 83 00 01 : 26 F7 20 EF 3D FC 08 4D 1..0p. .&.
.=..M
000030 26 03 FF 08 51 07 C9 15 : FB 00 04 20 F0 &...Q.... . .

-E: Unknown Macros as Empty Strings (Maker)

Group

INPUT

Syntax

-E

Arguments

None

Description

This macro discards errors for unknown macros referenced in the makefile. Maker
substitutes an unknown macro with an empty string.
335HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

maker -m test.mod -e

-Ed: Dump ELF Sections in LST File (Decoder)

Group

OUTPUT

Syntax

-Ed

Arguments

None

Default

None

File Format

Only ELF. Freescale object files are not affected by this option.

Description

This option generates a HEX dump of all ELF sections.

NOTE The related option -E shows the information contained in ELF sections in a
more readable form.

-Env: Set Environment Variable

Group

HOST

Syntax

-Env <Environment Variable> = <Variable Setting>
336 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Arguments

<Environment Variable> : Environment variable to be set.

<Variable Setting> : Setting of the environment variable.

Description

This option sets an environment variable. The environment variable may be used in the
maker or to overwrite system environment variables.

Example

-EnvOBJPATH=\sources\obj

This is the same as:

OBJPATH=\sources\obj

in default.env

To use an environment variable with file names that contain spaces, use the
following syntax:

-Env”OBJPATH=program files”

-F: Execute Command File (Burner)

Group

INPUT

Syntax

“-F=” <fileName>.

Arguments

<fileName>: Batch Burner command file to be executed.

Default

None

Description

This option causes the Burner to execute a Batch Burner command file (usual extension is
.bbl).
337HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

-F=fibo.bbl

-F: Object File Format (Decoder)

Group

INPUT

Syntax

-F (A | E | I | H | S)

Arguments

None

Default

-FA

Description

The decoder is able to decode different object file formats. This option defines which
object file format should be decoded:

-FA : the decoder determines the object file format automatically.

-FE : this can be overridden and only ELF files are correctly decoded.

-FH : only Freescale files are decoded.

-FS : only S-Record files can be decoded.

-FI : Intel Hex files can be decoded.

NOTE This option defines the Object File Format, which also defines the format of
absolute files and libraries. It does not only affect object files. Many other
options only effect a specific object file format. See the corresponding option
for details.

NOTE To decode an S-Record or Intel Hex file, use the option -Proc: Set Processor
(Decoder) to specify the processor.
338 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-FA, -FE, -FH -F6: Object File Format (SmartLinker)

Group

INPUT

Syntax

-F (A | E | H | 6)

Arguments

none

Default

-FA

Description

Using this option the linker is able to link different object file formats. This option defines
which object file format the linker uses:

• Using -FA, the linker determines the object file format automatically.

• Using -FE, the linker recognizes only ELF files correctly.

• Using -FH, the linker recognizes only Freescale files correctly.

• Using -F6, the linker produces a V2.6 Freescale absolute file.

NOTE It is not possible to build an application consisting of both Freescale and ELF
files. Either all files must be in ELF format or all files must be in Freescale
format.
The format of the generated absolute file is the same as the format of the object
files. ELF object files generate ELF absolute files and Freescale object files
generate Freescale absolute files.

-H: Prints the List of All Available Options (Short Help)

Group

OUTPUT, VARIOUS
339HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax

-H

Arguments

None

Description

This option prints the list of all options, sorted by Group. Options in the same group are
sorted alphabetically. No other option or source file should be specified with the -H
option.

Example

Linker option output of -H:

-F Object File Format
-Fh Freescale
-FEo Compatible ELF (DWARF 1.1/DWARF 2.0)
-Fa Automatic Detection
-F6 Freescale V2.6

Burner option output of -H:

...
VARIOUS:
-H Prints this list of options
-V Prints the Compiler version
...

Libmaker option output of -H:

HOST:
-Env Set environment variable
-View Application Standard Occurrence

-ViewWindow Window
-ViewMin Min
-ViewMax Max
-ViewHidden Hidden
340 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-I: Ignore Exit Codes (Maker)

Group

OUTPUT

Syntax

-I

Arguments

None

Description

This option lets Maker ignore exit codes of the called programs. Maker continues
processing even if the called application reports a fatal error or creation of the
corresponding process fails. Use this option for testing purposes, where Maker resolves
only the dependencies of a make file.

Example

maker -m test.mod -i

-L: Add a Path to Search Path (ELF) (SmartLinker)

Group

INPUT

Syntax

-L <Directory>

Arguments

<Directory> : Name of an additional search directory for object files.

Description

With this option, the ELF part of this linker searches object files first in all paths given
with this option before considering the usual environment variables.
341HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

LINKOPTIONS=-Lc:\freescale\obj

See also

OBJPATH: Object File Path

-L: Produce Inline Assembly File (Decoder)

Group

OUTPUT

Syntax

-L

Arguments

None

File Format

Only Freescale. ELF Object files are not affected by this option.

Description

The output listing is an inline assembly file without additional information, but in C
comments.

Example

Part of Listing with command line fibo.o -L (code depends on target):

unsigned int Fibonacci(unsigned int n)
{
 unsigned fib1, fib2, fibo;
 int i;
 asm{
 CLRB
 CLRA
 INCB
 STD 2,SP
 LDX 0,SP
 LDY #2
 SEX A,D
342 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
 BRA LBL25
 LBL16: ADDD 2,SP
 ...
 RTS
 }

}

-L: List Modules (Maker)

Group

MODULA-2

Syntax

-L <listfile>

Arguments

File name of the generated listing file

Description

This option lists compiled files in build order in the file specified in the argument
<listfile>. This option affects only the processing of Modula-2 makefiles.

Example

maker -m test.mod -ltest.lst

-LibFile

Specifies the name of the file that contains linker-generated library information.

Syntax

-LibFile<filename>

Arguments

<filename>: Name of the file that has the information about libraries and
startup(optional) to be used in second link step.
343HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

When this option is enabled,linker generates file<filename> which has information about
the current libraries and also about the files with which they should be replaced with.

-LibOptions

Enables library information generation.

Syntax

-LibOptions

Arguments

None

Description

When this option is enabled,linker generates file(default libFile.txt) which has
information about the current library and the startup file and also about the files with
which they should be replaced with.

-Lic: Print License Information

Group

Various

Syntax

-Lic

Arguments

None

Description

This options shows the current state of the license information. When no full license is
available, the tool runs in demo mode. This information is also displayed in the About
box.
344 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

-Lic

-LicA: License Information About Every Feature in Directory

Group

Various

Syntax

-LicA

Arguments

None

Description

The -LicA option prints the license information of every tool or dll in the directory
where the executable is located. Because the option analyzes every single file in the
directory, this may take a long time.

Example

-LicA

-LicBorrow: Borrow License Feature

Group

HOST

Syntax

-LicBorrow <feature>[; <version>] : <Date>

Arguments

<feature>: the feature name to be borrowed (e.g. HI100100).

<version>: optional version of the feature to be borrowed (e.g. 3.000).

<date>: date with optional time until when the feature shall be borrowed (e.g.
15-Mar-2007:18:35).
345HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

This option allows you to borrow a license feature until a given date/time. Borrowing
allows you to use a floating license even if disconnected from the floating license server.

You need to specify the feature name and the date you will return the feature. If the feature
you want to borrow is a feature belonging to the tool where you use this option, then you
do not need to specify the feature version (because the tool knows the version). To borrow
any feature not belonging to the tool, you need to specify the feature version. You can
check the status of currently borrowed features in the tool About box.

You can borrow features only if you have a floating license and borrowing is enabled on
your floating license. See the FLEXlm documentation for details on borrowing.

Example

-LicBorrowHI100100;3.000:12-Mar-2004:18:25

-LicWait: Wait for Floating License from Floating License Server

Group

HOST

Syntax

-LicWait

Arguments

None

Description

By default, if a license is not available from the floating license server, then the
application returns immediately. When you set -LicWait, the application waits until a
license is available from the floating license server. This is called blocking.

Example

-LicWait
346 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-M: Generate Map File (SmartLinker)

Group

OUTPUT

Syntax

-M

Arguments

None

Description

This option forces map file generation after a successful linking session.

Example

LINKOPTIONS=-M

This is the same as using the command:

MAPFILE ALL

in the prm file.

See also

MAPFILE: Configure Map File Content

-M: Produce Make File (Maker)

Group

MODULA-2

Syntax

-M [<makefile>]

Arguments

File name of the generated makefile
347HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

This option generates a makefile. If this option immediately follows a file name, Maker
writes the makefile to that file; otherwise, the makefile has the same name as the main
module, but with suffix .MAK. This makefile uses macros by referencing above
environment variables.

Example

maker test.mod -m test.mak

-Mar: Freescale Archive Commands (Libmaker)

Group

OUTPUT

Syntax

“-Mar” “““ <library> [<member>] “““.

Arguments

<library>: name of the library.

<member>: list of members for the library to be added.

Default

None

Description

This command provides a more ‘ar’ (archive) like way to create a library out of object
files. Instead of the following:

-Cmd”a.o b.o c.o = d.lib”

You can use:

-Mar”d.lib a.o b.o c.o”

Unlike the -Cmd command, this command performs no operator processing (‘+’/’-’),
which makes it easier to deal with file names containing operator characters.

Example

-Mar”c.lib a.o b.o”
348 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
See also

-Cmd: Libmaker Commands

-MkAll: Make Always (Maker)

Group

INPUT

Syntax

-MkAll

Arguments

None

Description

This option skips Maker time-checking. Maker rebuilds up-to-date files. Use this option
for updating the application after a change not covered by makefile dependencies.

Example

maker test.mak -mkall

-N: Display Notify Box

Group

MESSAGE

Syntax

-N

Arguments

None
349HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

This option makes the tool display an alert box if an error occurs during linking. This is
useful when running a makefile since the linker waits for the user to acknowledge the
message, thus suspending makefile processing. (The N stands for Notify.) This option is

Use this feature for halting and aborting a build using the Make Utility.

Example

SmartLinker: LINKOPTIONS=-N

Burner: -Fnofile -N

If an error occurs during linking, an error dialog box opens.

NOTE This option is only present on the PC version of the tools. The UNIX version
does not accept -n as an option string.
350 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-NoBeep: No Beep in Case of an Error

Group

MESSAGE

Syntax

-NoBeep

Arguments

None

Description

Normally there is a ‘beep’ notification at the end of processing if an error occurs. To
silence this error behavior, use this option to switch off the beep.

Example

None

-NoCapture: Do Not Redirect stdout of Called Processes (Maker)

Group

OUTPUT

Syntax

-NoCapture

Arguments

None

Description

Maker’s default behavior is to redirect from stdout the output text of called
applications. Use this option to prevent redirection and text output for errors. This option
affects only text output, since Maker does not detect the called application issuing the
error.
351HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
This option accelerates the make process and older applications that do not support output.
Using this option is equivalent to placing “*” at the start of every command line.

Example

maker test.mak -NoCapture

-NoEnv: Do Not Use Environment

Group

Startup. (This option cannot be specified interactively.)

Syntax

-NoEnv

Arguments

None

Description

This option can be specified only while starting the application at the command line. It
cannot be specified in any other circumstance, including the default.env file, and the
command line.

When this option is given, the application does not use any environment (default.env,
project.ini or tips file).

Example

linker.exe -NoEnv

See also

Environment Variables
352 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-NoPath: Strip Path Info (Libmaker)

Group

OUTPUT

Syntax

“-NoPath”.

Arguments

None

Default

None

Description

Use this option to ignore path information in object files. This is useful if you want to
move object files to another file location or hide your path structure.

Example

-NoPath

-NoSym: No Symbols in Disassembled Listing (Decoder)

Group

OUTPUT

Syntax

-NoSym

Arguments

None

Description

Prevents symbols from printing in the disassembled listing.
353HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
NOTE In previous versions of the Decoder, this option was called -N. It was renamed
because of a conflict with the common option -N, which was not present in
previous versions. The option -NoSym has no effect when decoding .abs
files. As the .abs file does not contain any relocation information, it is not
possible to display symbol names in the disassembly listing.

Example

Part of Listing with command line fibo.o -NoSym.

DISASSEMBLY OF: '.text' FROM 531 TO 664 SIZE 133 (0X85)
Source file: 'fibo.c'
 19: unsigned int Fibonacci(unsigned int n)
Fibonacci:
00000000 1B98 LEAS -8,SP
00000002 3B PSHD
 24: fib1 = x[0] + f + g;
00000003 FC0000 LDD $0000
00000006 F30000 ADDD $0000
00000009 F30000 ADDD $0000
0000000C 6C88 STD 8,SP
 25: fib2 = x[1];
0000000E FC0002 LDD $0002
00000011 6C84 STD 4,SP

-Ns: Configure S-Records (Burner)

Group

OUTPUT

Syntax

“-Ns” [“=” {“p” | “0” | “7” | “8” | “9”}].

Arguments
“p”: no path in S0 record

“0”: no S0 record

“7”: no S7 record

“8”: no S8 record

“9”: no S9 record
354 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Default

None

Description
Usually an S-Record file contains a S0-Record at the beginning that contains the name of
the file and an S7, S8 or S9 record at the end, depending on the address size. For the S3
format, an S7 record is written at the end. For S2 format, an S8 record is written at the end.
For the S1 format, an S9 record is written at the end.

This feature is useful for disabling some S-Record generation in case a non-standard S-
Record file reader cannot read S0, S7, S8 or S9 records.

In case the option is specified without suboptions (only -Ns), no start (S0) and no end
records (S7, S8 or S9) are generated.

The option -Ns=p removes the path (if present) from the file name in the S0 record.

Example

-Ns=0

See also:

SRECORD: S-Record Type

-O: Define Absolute File Name (SmartLinker)

Group

OUTPUT

Syntax

-O <FileName>

Arguments

<fileName>: Name of the absolute file which must be generated by the linking
session.

Description

Use this option to define the name of the generated ABS file. If you are using the Linker
with the CodeWarrior Development Studio, this option is automatically added to the
command line passed to the linker. You can see this if you enable Display generated
355HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
command lines in message window in the Linker preference panel in the CodeWarrior
IDE.

No extension is added automatically. Specifying the option -otest generates a file
named test. To get the usual .abs file extension, use -otest.abs.

Example

LINKOPTIONS=-Otest.abs

This is the same as using the command:

LINK test.abs

in the prm file,

See also

LINK: Specify Name of Output File

-O: Defines Listing File Name (Decoder)

Group

OUTPUT

Syntax

-O <FileName>

Arguments

<fileName>: Name of listing file that must be generated by the decoding
session.

Default

None

Description

This option defines the name of the output file to be generated.

Example

-O=TEST.LST

The decoder generates a file named TEST.LST.
356 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-O: Compile Only (Maker)

Group

MODULA-2

Syntax

-O

Arguments

None.

Example

maker test.mod -o

Description

Use this macro to have Maker perform only compile steps for a Modula-2 build. Maker
does not call the linker. This option affects only Modula-2 makefile processing.

-OCopy: Optimize Copy Down (ELF) (SmartLinker)

Group

OPTIMIZATION

Syntax

-OCopy (On | Off)

Arguments

On : Do the optimization.

Off: Optimization disabled.

Default

-OCopyOn
357HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

This optimization changes the copy-down structure to use as little space as possible.

The optimization assumes that the application performs both the zero out and the copy
down step of the global initialization. If a value is set to zero by the zero out, then zero
values are removed from the copy down information. The resulting initialization is not
changed by this optimization if the default startup code is used.

This switch only has an effect in the ELF Format. The optimizations done in the Freescale
format cannot be switched off.

Example

LINKOPTIONS=-OCopyOn

-Options

Enables compiler option generation. The generated options will be used for second step
compilation.

Syntax

-Options

Arguments

None

Description

Linker generates a text file containing a compiler option for the second step (one of the
following: -ConstQualiNear, -NonConstQualiNear, -Mb). The content of the
file is appended to the compiler options for the second compilation step.

-OptionFile

Specifies the name of the file that contains the set of linker-generated compiler
options.

Syntax

-OptionFile<filename>
358 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Arguments

<filename> : Name of the option file.

Description

When this option is enabled, linker places the second step compiler options in the
specified file<filename>.

-P2LibFile

Specifies the name of the library information file.

 Syntax

-P2libFile<filename>

Arguments

<filename> Name of the library information file.

Description

When this option is enabled in second link step,linker reads file<filename> which has
information about the libraries.

-Proc: Set Processor (Decoder)

Group

INPUT

Syntax

-Proc= <ProcessorName>[: <Derivative>].

Arguments

<ProcessorName>: Name of a supported processor.

<DerivativeName>: Name of supported derivative.

Default

None
359HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

This option specifies which processor should be decoded. For object files, libraries and
applications, the processor is usually detected automatically. For S-Record and Intel Hex
files, however, the decoder cannot determine which CPU the code is for, and therefore the
processor must be specified with this option to get a disassembly output. Without this
option, only the structure of a S-Record file is decoded.

The following values are supported:

HC08, HC08:HCS08, HC11, HC12, HC12:CPU12, HC12:HCS12, HC12:HCS12X,
HC16, M68k, MCORE, PPC, RS08, 8500, 8300, 8051 and XA

Example

decoder.exe fibo.s19 -proc=HC12

-Prod: Specify Project File at Startup (PC) (No d, no m)

Group

None. This option cannot be specified interactively.

Syntax

-Prod= <file>

Arguments

<file>: Name of a project or project directory.

Description

This option can only be specified while starting the linker at the command line. It cannot
be specified in any other circumstances, including the default.env file, the command
line, etc.

When you use this option, the linker opens the file as a configuration file. When <file>
contains only a directory name, the linker appends the default name project.ini.
When the loading fails, a message box appears.

Example

linker.exe -prod=project.ini
360 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-ReadLibFile

Instructs the linker to read in the library information file that it generated in step
one.

Syntax

-ReadLibFile

Arguments

None

Description

This option is passed in second link step. It tells the linker to read library information
file(default libFile.txt).

-S: Do Not Generate DWARF Information (ELF) (SmartLinker)

Group

OUTPUT

Syntax

-S

Arguments

None

Description

This option disables the generation of DWARF sections in the absolute file to save
memory space.

Example

LINKOPTIONS=-S

NOTE If the absolute file does not contain any DWARF information, you will not be
able to debug it symbolically.
361HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-S: Silent Mode (Maker)

Group

OUTPUT

Syntax

-S

Arguments

None

Example

maker test.mod -s

Description

Maker does not echo executed commands. Use this option to examine only Maker
messages or those of the called tools, where an otherwise long list of executed commands
is inconvenient.

-SFixups: Creating Fixups (ELF) (SmartLinker)

Group

OUTPUT

Syntax

-SFixups

Arguments

None

Description

Usually, absolute files do not contain any fixups because all fixups are evaluated at
link time. But with fixups, the decoder might symbolically decode the content in
absolute files. Some debuggers do not load absolute files which contain fixups
362 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
because they assume that these fixups are not yet evaluated. But the fixups inserted
with this option are actually already handled by this linker.

This option is included to ensure compatibility with previous linker versions.

Example

LINKOPTIONS=-SFixups

-StartUpInfo

Enables startup information generation.

Syntax

-StartUpInfo

Arguments

None

Description

The information about the current startup file and the replacement startup file will be
added to the library file(default libFile.txt) and used during the second compile-link step.

-StatF: Specify Name of Statistic File (SmartLinker)

Group

OUTPUT

Syntax

-StatF= <fileName>

Arguments

<fileName>: Name for the file to be written.

Description

With this option set, the linker generates a statistic file. The statistic file reports
each allocated object and its attributes. Every attribute is separated by a tab
363HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
character, so it can be easily imported into a spreadsheet/database program for
further processing.

Example

LINKOPTIONS=-StatF

-T: Show Cycle Count for Each Instruction (Decoder)

Group

OUTPUT

Syntax

-T

Arguments

None

Description

If you specify this option, each instruction line contains the count of cycles in ‘[‘,’]’
braces. The cycle count is written before the mnemonics of the instruction. Note that the
cycle count display is not supported for all architectures.

Example

Part of Listing (HC12, ELF) with command line fibo.o -T:

DISASSEMBLY OF: '.text' FROM 531 TO 664 SIZE 133 (0X85)
Source file: 'X:\CHC12E\DEMO\ELF12C\fibo.c'
 19: unsigned int Fibonacci(unsigned int n)
Fibonacci:
00000000 1B98 [2] LEAS -8,SP
00000002 3B [2] PSHD
 24: fib1 = x[0] + f + g;
00000003 FC0000 [3] LDD x
00000006 F30000 [3] ADDD f
00000009 F30000 [3] ADDD g
0000000C 6C88 [2] STD 8,SP
 25: fib2 = x[1];
0000000E FC0002 [3] LDD x
00000011 6C84 [2] STD 4,SP
 26: fibo = 0;
00000013 C7 [1] CLRB
364 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
00000014 87 [1] CLRA
00000015 6C86 [2] STD 6,SP
 27: i = 2;
00000017 C602 [1] LDAB #2
00000019 6C82 [2] STD 2,SP

-V: Prints Tool Version

Group

OUTPUT

Syntax

-V

Arguments

None

Description

Prints the SmartLinker version and the project directory.

Use this option to determine the SmartLinker project directory.

Example

-V produces the following list:

Directory: \software\sources\asm

SmartLinker, V5.0.4, Date Apr 20 1997

-View: Application Standard Occurrence (PC)

Group

HOST

Syntax

-View <kind>
365HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Arguments

<kind> is one of:

Window : Application window maintains default window size.

Min : Minimizes application window.

Max : Maximizes application window.

Hidden : Hides application window (only if arguments are used).

Default

Application started with arguments: Minimized.

Application started without arguments: Window.

Description

If no arguments are given the application starts as normal window. If the application starts
with arguments (e.g. from the maker to compile/link a file) then the application runs
minimized to allow batch processing. Use this option to specify window behavior. Using
-ViewWindow the application appears with its normal window. Using -ViewMin the
application appears in the task bar. Using -ViewMax the application appears maximized
(filling the whole screen). Using -ViewHidden the application processes arguments
(e.g. files to be compiled/linked) invisibly in the back ground (no window/icon in the
taskbar visible). However if you use the -N option (see -N: Display Notify Box), a dialog
box is still possible.

Example

-ViewHidden fibo.prm

-W: Display Window (Burner)

Group

VARIOUS

Syntax

“-W”.

Arguments

None
366 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Default

None

Description

In the V2.7 Burner, this option was used to show the Batch Burner Window. This option is
ignored with the V5.x versions or later.

NOTE This option is only provided for compatibility reasons, and is NOT present in
the dialog box.

Example

burner.exe -W

-W1: No Information Messages

Group
MESSAGE

Syntax
-W1

Arguments
None

Description
Prevents the Linker from printing INFORMATION messages, only WARNING and
ERROR messages are printed.

Example
LINKOPTIONS=-W1

-W2: No Information and Warning Messages

Group
MESSAGE
367HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax
-W2

Arguments
None

Description
Suppresses all messages of type INFORMATION and WARNING, only ERRORs are
printed.

Example
LINKOPTIONS=-W2

-WErrFile: Create “err.log” Error File

Group
MESSAGE

Syntax
-WErrFile (On | Off)

Arguments
None

Default
err.log is created/deleted

Description
The error feedback from the compiler to called tools is done with a return code. In 16-bit
Windows environments, this was not possible, so when an error occurred the compiler
created an err.log, which included error numbers, to signal an error. When no error
occurred, the err.log file was deleted. Using UNIX or WIN32, a return code is
available, so this option is not needed. To use a 16-bit maker with this tool, you must
create the error file to signal any error.

Example
-WErrFileOn
368 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Creates or deletes err.log when the application finishes.

-WErrFileOff

Existing err.log is not modified.

See also
-WStdout: Write to Standard Output

-WOutFile: Create Error Listing File

-Wmsg8x3: Cut File Names in Microsoft Format to 8.3 (PC)

Group

MESSAGE

Syntax

-Wmsg8x3

Arguments

None

Description

This option truncates the file name in the Microsoft message to the 8.3 format. Some
editors (e.g. early versions of WinEdit) expect the file name in a strict 8.3 Microsoft
message format. This means the file name can have at most eight characters with not more
than a three characters extension.

Example

x:\mysourcefile.prm(3): INFORMATION C2901: Unrolling
loop

With the option -Wmsg8x3 set, the above message becomes:

x:\mysource.c(3): INFORMATION C2901: Unrolling loop
369HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-WmsgCE: RGB Color for Error Messages

Group

MESSAGE

Scope

Function

Syntax

-WmsgCE <RGB>

Arguments

<RGB>: 24bit RGB (red green blue) value

Default

-WmsgCE16711680 (rFF g00 b00, red)

Description

Use this option to change the error message color. The value specified must be an RGB
(Red/Green/Blue) value, and may be specified in decimal. Use the 0X prefix when using
hexadecimal. To produce gray errors use -WmsgCE0x808080.

Example

-WmsgCE255 changes the error messages to blue.

-WmsgCF: RGB Color for Fatal Messages

Group

MESSAGE

Scope

Function

Syntax

-WmsgCF <RGB>
370 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Arguments

<RGB>: 24bit RGB (red green blue) value

Default

-WmsgCF8388608 (r80 g00 b00, dark red)

Description

Use this option to change the fatal message color. The value specified must be an RGB
(Red/Green/Blue) value, and may be specified in decimal. Use the 0X prefix when using
hexadecimal. To produce gray fatal messages use -WmsgCF0x808080.

Example

-WmsgCF255 changes the fatal messages to blue.

-WmsgCI: RGB Color for Information Messages

Group

MESSAGE

Scope

Function

Syntax

-WmsgCI <RGB>

Arguments

<RGB>: 24bit RGB (red green blue) value.

Default

-WmsgCI32768 (r00 g80 b00, green)

Description

Use this option to change the information message color. The value specified must be an
RGB (Red/Green/Blue) value, and may be specified in decimal. Use the 0X prefix when
using hexadecimal. To produce gray information messages use -WmsgCI0x808080.
371HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

-WmsgCI255 changes the information messages to blue.

-WmsgCU: RGB Color for User Messages

Group

MESSAGE

Scope

Function

Syntax

-WmsgCU <RGB>

Arguments

<RGB>: 24bit RGB (red green blue) value.

Default

-WmsgCU0 (r00 g00 b00, black)

Description

Use this option to change the user message color. The value specified must be an RGB
(Red/Green/Blue) value, and may be specified in decimal. Use the 0X prefix when using
hexadecimal. To produce gray user messages use -WmsgCU0x808080.

Example:

-WmsgCU255 changes the user messages to blue.

-WmsgCW: RGB Color for Warning Messages

Group

MESSAGE

Scope

Function
372 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax

-WmsgCW <RGB>

Arguments

<RGB>: 24bit RGB (red green blue) value.

Default

-WmsgCW255 (r00 g00 bFF, blue)

Description

Sets user message color. User messages use -WmsgCU0x808080.

Use this option to change the warning message color. The value specified must be an RGB
(Red/Green/Blue) value, and may be specified in decimal. Use the 0X prefix when using
hexadecimal. To produce gray warning messages use -WmsgCW0x808080.

Example

-WmsgCW0 changes the warning messages to black.

-WmsgFb (-WmsgFbv, -WmsgFbm): Set Message File Format for

Batch Mode

Group

MESSAGE

Syntax

-WmsgFb [v | m]

Arguments

v : Verbose format.

m : Microsoft format.

Default

-WmsgFbm
373HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

You can start the tool with additional arguments. If you start the tool with arguments (for
example, from the Make Tool or with the %f argument from WinEdit), the tool links the
files in a batch mode; that is, no tool window appears and the tool terminates after job
completion.

If the linker is in batch mode the linker writes messages to a file instead of to the screen.
This file contains only the linker messages (see examples below). By default, the tools use
a Microsoft message format to write the tool messages (errors, warnings, information
messages) if the linker is in batch mode. With this option, the default format may be
changed from the Microsoft format (only line information) to a more verbose error format
with line, column and source information.

Example

LINK fibo2.abs

NAMES fibo.o start12s.o ansis.lib END

PLACEMENT

 .text INTO READ_ONLY 0x810 TO 0xAFF;

 .data INTO READ_WRITE 0x800 TO 0x80F

END

By default, the SmartLinker generates the following error output in the
SmartLinker window if it is running in batch mode:

X:\fibo2.prm(7): ERROR L1004: ; expected

Setting the format to verbose writes more information in the file:

LINKOPTIONS=-WmsgFbv

>> in “X:\fibo2.prm”, line 7, col 0, pos 159

 .data INTO READ_WRITE 0x800 TO 0x80F

END

^

ERROR L1004: ; expected

-WmsgFi: Set Message File Format for Interactive Mode

Group

MESSAGE
374 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax

-WmsgFi [v | m]

Arguments

v : Verbose format.

m : Microsoft format.

Default

-WmsgFiv

Description

If you start the SmartLinker without additional arguments, the SmartLinker is in the
interactive mode (that is, a window is visible).

By default, the SmartLinker uses the verbose error file format to write the SmartLinker
messages (errors, warnings, information messages).

With this option, you can change the default format from the verbose format (with source,
line and column information) to the Microsoft format (only line information), or from
Microsoft format to verbose format.

NOTE Using the Microsoft format may speed up the compilation, because the
SmartLinker has to write less information to the screen.

Example

PLACEMENT

 .text INTO READ_ONLY 0x810 TO 0xAFF;

 .data INTO READ_WRITE 0x800 TO 0x80F

END

By default, the following error output appears in the window if the SmartLinker is
running in interactive mode:

>> in “X:\fibo2.prm”, line 7, col 0, pos 159

 .data INTO READ_WRITE 0x800 TO 0x80F

END

^

ERROR L1004: ; expected
375HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Set the format to Microsoft to display less information:

LINKOPTIONS=-WmsgFim

X:\fibo2.prm(7): ERROR L1004: ; expected

See also

-WmsgFb (-WmsgFbv, -WmsgFbm): Set Message File Format for Batch Mode

-WmsgFob: Message Format for Batch Mode

Group

MESSAGE

Syntax

-WmsgFob <string>

Arguments

<string>: format string (see Table B.4).

Default

-WmsgFob”%”%f%e%”(%l): %K %d: %m\n”

Description

Use this option to modify the default message format in batch mode. This option supports
formats shown in Table B.4 (assumes that the source file is
x:\freescale\sourcefile.prmx).

Table B.4 WmsgFob-Supported Format String Symbols

Format Description Example

%s Source Extract

%p Path x:\freescale\

%f Path and name x:\freescale\sourcefile

%n File name sourcefile

%e Extension .prmx

%N File (8 chars) sourcefi
376 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

LINKOPTIONS=-WmsgFob”%’%f%e%’(%l): %k %d: %m\n”

Produces a message in the following format:

x:\freescale\sourcefile.prmx(3): error L1000: LINK not
found

See also

Environment variable: ERRORFILE: Error File Name Specification

-WmsgFb (-WmsgFbv, -WmsgFbm): Set Message File Format for Batch Mode

-WmsgFi: Set Message File Format for Interactive Mode

-WmsgFonp: Message Format for No Position Information

-WmsgFonf: Message Format for no File Information

-WmsgFoi: Message Format for Interactive Mode

%E Extension (3 chars) .prm

%l Line 3

%c Column 47

%o Pos 1000

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number L1051

%m Message text

%” ” if full name contains a space ”

%’ ’ if full name contains a space

%% Percent %

\n New line

Table B.4 WmsgFob-Supported Format String Symbols (continued)

Format Description Example
377HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-WmsgFoi: Message Format for Interactive Mode

Group

MESSAGE

Syntax

-WmsgFoi<string>

Arguments

<string>: format string (see Table B.5).

Default

-WmsgFoi”\n>> in \”%”%f%e%”\”, line %l, col %c, pos
%o\n%s\n%K %d: %m\n”

Description

Use this option to modify the default message format in interactive mode. Table B.5
shows the supported formats if the source file is
x:\freescale\sourcefile.prmx.

Table B.5 WmsgFoi-Supported Format String Symbols

Format Description Example

%s Source Extract

%p Path x:\freescale\

%f Path and name x:\freescale\sourcefile

%n File name sourcefile

%e Extension .prmx

%N File (8 chars) sourcefi

%E Extension (3 chars) .prm

%l Line 3

%c Column 47

%o Pos 1234
378 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

LINKOPTIONS=-WmsgFoi”%f%e(%l): %k %d: %m\n”

Produces a message in the following format:

x:\freescale\sourcefile.prmx(3): error L1000: LINK not
found

See also

Environment variable: ERRORFILE: Error File Name Specification

-WmsgFb (-WmsgFbv, -WmsgFbm): Set Message File Format for Batch Mode

-WmsgFi: Set Message File Format for Interactive Mode

-WmsgFonp: Message Format for No Position Information

-WmsgFonf: Message Format for no File Information

-WmsgFob: Message Format for Batch Mode

-WmsgFonf: Message Format for no File Information

Group

MESSAGE

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number L1000

%m Message text

%” ” if full name contains a space ”

%’ ’ if full name contains a space

%% Percent %

\n New line

Table B.5 WmsgFoi-Supported Format String Symbols (continued)

Format Description Example
379HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax

-WmsgFonf<string>

Arguments

<string>: format string (see Table B.6).

Default

-WmsgFonf”%K %d: %m\n”

Description

When no file information is available for a message (for example, if a message is not
related to a specific file), then this message format string is used.

Example

LINKOPTIONS=-WmsgFonf”%k %d: %m\n”

Produces a message in following format:

information L10324: Linking successful

-WmsgFonp: Message Format for No Position Information

Group

MESSAGE

Table B.6 WmsgFonf-Supported String Format Symbols

Format Description Example

-

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number L10324

%m Message text

%% Percent %

\n New line
380 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax

-WmsgFonp <string>

Arguments

<string>: format string (see Table B.7).

Default

-WmsgFonp”%”%f%e%”: %K %d: %m\n”

Description

When no position information available for a message (e.g. if a message is not related to a
certain position), then this message format string is used. Table B.7 shows the supported
formats, assuming that the source file is x:\freescale\sourcefile.prmx.

Table B.7 WmsgFonp-Supported String Formats

Format Description Example

-

%p Path x:\freescale\

%f Path and name x:\freescale\sourcefile

%n File name sourcefile

%e Extension .prmx

%N File (8 chars) sourcefi

%E Extension (3 chars) .prm

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number L10324

%m Message text

%” ” if full name contains a space ”

%’ ’ if full name contains a space

%% Percent %

\n New line
381HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

LINKOPTIONS=-WmsgFonf”%k %d: %m\n”

This produces a message in the following format:

information L10324: Linking successful

See also

Environment variable: ERRORFILE: Error File Name Specification

-WmsgFb (-WmsgFbv, -WmsgFbm): Set Message File Format for Batch Mode

-WmsgFi: Set Message File Format for Interactive Mode

-WmsgFonp: Message Format for No Position Information

-WmsgFoi: Message Format for Interactive Mode

-WmsgFob: Message Format for Batch Mode

-WmsgNe: Number of Error Messages

Group

MESSAGE

Syntax

-WmsgNe <number>

Arguments

<number>: Maximum number of error messages.

Default

50

Description

Use this option to set the maximum number of error messages, after which the
SmartLinker stops the current linking session.

NOTE Subsequent error messages which depend on previous error messages may be
confusing.
382 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Example

LINKOPTIONS=-WmsgNe2

The SmartLinker stops compilation after two error messages.

See also

-WmsgNi: Number of Information Messages

-WmsgNw: Number of Warning Messages

-WmsgNi: Number of Information Messages

Group

MESSAGE

Syntax

-WmsgNi <number>

Arguments

<number>: Maximum number of information messages.

Default

50

Description

Use this option to specify the maximum number of information messages.

Example

LINKOPTIONS=-WmsgNi10

Logs only ten information messages.

See also

-WmsgNi: Number of Information Messages

-WmsgNw: Number of Warning Messages

-WmsgNe: Number of Error Messages
383HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-WmsgNu: Disable User Messages

Group

MESSAGE

Syntax

-WmsgNu [= { a | b | c | d }]

Arguments

a : Disable messages about all included files

b : Disable messages about reading files (e.g. the files used as input)

c : Disable messages about generated files

d : Disable messages about processing statistics (At the end of processing, the
application may provide statistical information, such as code size, and RAM/ROM
usage.)

e : Disable informal messages (e.g. memory model, floating point format)

Description

The application produces some messages which are not in the normal message categories
(WARNING, INFORMATION, ERROR, FATAL). Use this option to disable such
messages. Using this option reduces the number of messages and simplifies the error
parsing of other tools.

Example

-WmsgNu=c

NOTE Depending on the application, not all suboptions may make sense. The system
ignores these options.

-WmsgNw: Number of Warning Messages

Group

MESSAGE
384 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Syntax

-WmsgNw <number

Arguments

<number>: Maximum number of warning messages.

Default

50

Description

Use this option the to specify the number of warning messages.

Example

LINKOPTIONS=-WmsgNw15

Logs only 15 warning messages.

See also

-WmsgNi: Number of Information Messages

-WmsgNw: Number of Warning Messages

-WmsgNe: Number of Error Messages

-WmsgSd: Setting a Message to Disable

Group

MESSAGE

Syntax

-WmsgSd <number>

Arguments

<number>: Message number to be disabled, for example, 1201

Default

None
385HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Description

Use this option to disable a specific message, so it does not appear in the error output.

Example

LINKOPTIONS=-WmsgSd1201

Disables the message for no stack declaration.

See also

-WmsgSi: Setting a Message to Information

-WmsgSw: Setting a Message to Warning

-WmsgSe: Setting a Message to Error

-WmsgSe: Setting a Message to Error

Group

MESSAGE

Syntax

-WmsgSe <number>

Arguments

<number>: Message number to be an error, for example, 1201

Description

Allows the user to change a message to an error message.

Example

LINKOPTIONS=-WmsgSe1201

See also

-WmsgSi: Setting a Message to Information

-WmsgSw: Setting a Message to Warning

-WmsgSd: Setting a Message to Disable
386 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-WmsgSi: Setting a Message to Information

Group

MESSAGE

Syntax

-WmsgSi <number>

Arguments

<number>: Message number to be an information, e.g. 1201.

Description

Use this option to set a message to an information message.

Example

LINKOPTIONS=-WmsgSi1201

See also

-WmsgSd: Setting a Message to Disable

-WmsgSw: Setting a Message to Warning

-WmsgSe: Setting a Message to Error

-WmsgVrb: Verbose Mode (Maker)

Group

MESSAGE

Syntax

-WmsgVrb

Arguments

None
387HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Default

None

Description

Maker prints the error messages to an error file, as explained in the section Message/Error
Feedback

Example

maker.exe test.mak -WmsgVrb

-WmsgSw: Setting a Message to Warning

Group

MESSAGE

Syntax

-WmsgSw <number>

Arguments

<number>: Error number to be a warning, for example, 1201.

Description

Use this option to set a message as a warning message.

Example

LINKOPTIONS=-WmsgSw1201

See also

-WmsgSi: Setting a Message to Information

-WmsgSd: Setting a Message to Disable

-WmsgSe: Setting a Message to Error
388 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-WOutFile: Create Error Listing File

Group

MESSAGE

Syntax

-WOutFile (On | Off)

Arguments

None

Default

Creates an error listing file

Description

This option controls whether or not the SmartLinker creates an error listing file. The error
listing file contains a list of all messages and errors created during a compilation. Since the
text error feedback can be handled with pipes to the calling application, it is possible to
obtain this feedback without an explicit file. Control the name of the listing file by using
the ERRORFILE environment variable (see ERRORFILE: Error File Name
Specification).

Example

-WOutFileOn

Creates the error file as specified with ERRORFILE.

-WOutFileOff

Creates no error file.

See also

-WErrFile: Create “err.log” Error File

-WStdout: Write to Standard Output
389HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-WStdout: Write to Standard Output

Group

MESSAGE

Syntax

-WStdout (On | Off)

Arguments

None

Default

Writes output to stdout.

Description

In Windows applications, the usual standard streams are available, but text written to them
does not appear anywhere unless explicitly requested by the calling application. This
option controls whether the SmartLinker writes text written to the error file into the
stdout as well.

Example

-WStdoutOn

Writes all messages to stdout.

-WErrFileOff

Writes nothing to stdout.

See also

-WErrFile: Create “err.log” Error File

-WOutFile: Create Error Listing File

-X: Write Disassembled Listing Only (Decoder)

Syntax

-X
390 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
Arguments

None

Default

None

Description

Writes the pure disassembly listing without any source or comments within the listing.
391HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Options
Option Details
-Y: Write Disassembled Listing with Source And All Comments

(Decoder)

Syntax

-Y

Arguments

None

Default

None

File Format

Only Freescale. ELF Object files are not affected by this option.

Description

Writes the origin source and its comments within the disassembly listing.
392 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

C
Messages

This chapter describes messages produced by the tools. Because of the number of
messages produced, some may not have been documented at the time of this release.
Messages are sorted according to the tool that produces them. Messages for the assembler
and compiler are listed in their respective manuals.

Types of Generated Messages
Table C.1 describes the five types of generated messages.

Message Details
If the application prints a message, the message contains a one-character alphabetic
message code and a four- or five-digit number. Use the code and number to search for the
indicated message. Following message codes are supported:

• A for Assembler

• B for Burner

• C for Compiler

Table C.1 Types of Generated Messages

Message
Type

Behavior

Information A message prints and compilation continues.

Warning A message prints and processing continues. These messages indicate
possible programming errors.

Error A message prints and processing stops. These messages indicate
incorrect language usage.

Fatal A message prints and processing aborts. These messages indicate a
severe error, which causes processing to stop.

Disable The message is disabled. No message is issued and processing
continues. The application ignores the Disabled message.
393HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Burner Message List
• L for Linker

• LM for Libmaker

• M for Maker

All messages generated by the application are documented in ascending order for quick
retrieval.

Each message also has a description and if available a short example with a possible
solution or tips to fix a problem.

For each message, the type of message is also noted, e.g. [ERROR] indicates that the
message is an error message.

[DISABLE, INFORMATION, WARNING, ERROR]

This indicates that the message is a warning message by default, but the user might change
the message to either DISABLE, INFORMATION or ERROR.

After the message type, there may be an additional entry indicating the related language:

• C++: Message is generated for C++

• M2: Message is generated for Modula-2

Message numbers less than 10000 are common to all tools. Not every compiler can issue
all messages. For example, many compilers do not support any type of struct return.
Those compilers will never issue the message C2500: Expected: No support
of class/struct return type.

Burner Message List
The section describes all burner messages.

B1: Unknown Message Occurred

[FATAL]

Description

The application tried to issue an undefined message. This is an internal error. Report any
occurrences to your distributor.
394 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Burner Message List
B2: Message Overflow, Skipping <kind> Messages

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates the application has reached the maximum allowed number of displayed
messages as controlled by the burner options:

• -WmsgNi: Number of Information Messages,

• -WmsgNw: Number of Warning Messages

• -WmsgNe: Number of Error Messages

Further options of this kind are not displayed.

TIP Use the options -WmsgNi, -WmsgNw and -WmsgNe to change the number of
messages of whatever type the utility accepts.

B50: Input file ‘<file>’ not found

[FATAL]

Description

Indicates the Application was unable to find a file needed for processing.

TIP Make sure the file really exits. If you are using a file for which the name contains
spaces, you must place quotes around the filename.

B51: Cannot Open Statistic Log File <file>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates that the application was unable to open a statistic output file, therefore no
statistics were generated.
395HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Burner Message List
NOTE Not all tools support statistic log files. Even if a tool does not support it, the
message still exists, but is never issued.

B52: Error in Command Line '<cmd>

[FATAL]

Description

Issued when an error occurs while processing the command line.

B64: Line Continuation Occurred in <FileName>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

In an environment file, the character '\' at the end of a line is interpreted as line
continuation. This line and the next one are interpreted as one line. Because the path
separation character of MS-DOS is also '\', paths are often incorrectly written that end with
'\'. Instead use a '.' after the last '\' in a path.

Example

Current Default.env:

...

LIBPATH=c:\Freescale\lib\

OBJPATH=c:\Freescale\work

...

Is interpreted as

...

LIBPATH=c:\Freescale\libOBJPATH=c:\Freescale\work

...

TIP To fix this code, append a '.' at the end of '\'
...
LIBPATH=c:\Freescale\lib\.
396 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Burner Message List
OBJPATH=c:\Freescale\work\
...

NOTE Because this information occurs during the initialization phase of the
application, the message prefix might not occur in the error message. It may
appear as 64: Line Continuation occurred in <FileName>.

B65: Environment Macro Expansion Error '<description>' for

<variablename>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates that a problem occurred during an environment variable macro substitution.
Possible causes are that the named macro did not exist, or that some length limitation was
reached. Recursive macros may also cause this message.

Example

Current variables:

...

LIBPATH=${LIBPATH}

...

TIP Check the definition of the environment variable.

B66: Search Path <Name> Does Not Exist

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates that the tool searched for a file or file path that was not found.

TIP - Check the spelling of your paths.
- Update the paths when moving a project.
397HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Burner Message List
- Use relative paths in your environment variables.
- Make sure network drives are available.

B1000: Could Not Open '<FileType>' '<File>

[ERROR]

Description

Indicates that the specified file could not be opened.

This message is used for input and output files.

TIP For files to be generated, they must be modifiable and sufficient space must be
available on the disk. Ensure that the file is not locked by another application and
that the path exists.

B1001: Error in Input File Format

[ERROR]

Description

Indicates that an error occurred while reading the input file.

TIP - Try to generate the input file again.
- Make sure you have enough free disk space.

B1002: Selected Communication Port is Busy

[ERROR]

Description

Indicates that the application cannot access the selected communication port.
398 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Burner Message List
TIP - Find out if another application has locked the serial port.
- Make sure the correct serial port is specified.

B1003: Timeout or Failure for the Selected Communication

[ERROR]

Description:

Indicates that a timeout or general failure occurred on the selected communication port.

TIP Find out if another application has locked the serial port.

B1004: Error in Macro ‘<macro>’ at Position <pos>: ‘<msg>’

[ERROR]

Description

Indicates that the Burner was unable to resolve a macro. A macro is surrounded by %
characters (e.g. %ABS_FILE%).

TIP - Make sure the macro is defined in the environment.
- Make sure the macro is passed on the command line using the -Env option.

B1005: Error in Command Line at Position <pos>: ‘<msg>’

[ERROR]

Description

Indicates that the command line scanner detected an invalid command line.

TIP Check the syntax of your command line.
399HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Libmaker Message List
B1006: ‘<msg>’

[ERROR]

Description

Indicates that a generic error occurred.

Libmaker Message List
The section describes all documented libmaker messages.

LM1: Unknown Message Occurred

Message Type

[FATAL]

Description

Indicates that the application tried to issue an undefined message. This is an internal error.
Report any occurrences to your distributor.

LM2: Message Overflow, Skipping <kind> Messages

Message Type

[INFORMATION]

Description

Indicates that the application has displayed the maximum number of messages of the
specific type, as specified by the options:

• -WmsgNi: Number of Information Messages,

• -WmsgNw: Number of Warning Messages, and

• -WmsgNe: Number of Error Messages.

Additional messages of this type that exceed the specified limit are not displayed.
400 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Libmaker Message List
TIP Use the options listed above to specify the number of messages that can be
displayed.

LM50: Input File ‘<file>’ Not Found

Message Type

[FATAL]

Description

The Application was not able to find a file needed for processing.

TIP Make sure the file really exits. If you are using a file with a name that contains
spaces, you must put quotes around the file name.

LM51: Cannot Open Statistic Log File <file>

Message Type

[WARNING]

Description

Indicates that it was not possible to open a statistic output file, therefore no statistics were
generated.

NOTE Not all tools support statistic log files. Even if a tool does not support it, the
message still exists, but is never issued in this case.

LM52: Error in Command Line <cmd>

Message Type

[FATAL]
401HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Libmaker Message List
Description

Indicates that an error while processing the command line.

LM64: Line Continuation Occurred in <FileName>

Message Type

[INFORMATION]

Description

In any environment file, the character '\' at the end of a line is interpreted as a line
continuation character. Because the path separation character for MS-DOS is also '\', paths
can be incorrectly written if they end with '\'. Use a '.' after the last '\' to distinguish a path
from a line continuation character.

Example

Current Default.env:

...

LIBPATH=c:\freescale\lib\

OBJPATH=c:\freescale\work

...

Is interpreted as

...

LIBPATH=c:\freescale\libOBJPATH=c:\freescale\work

...

To fix it, append a '.' after the '\'

...

LIBPATH=c:\freescale\lib\.

OBJPATH=c:\freescale\work

...

NOTE Because this information occurs during the initialization phase of the
application, the message prefix might not occur in the error message. The
message may appear as 64: Line Continuation occurred in
<FileName>.
402 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Libmaker Message List
LM65: Environment Macro Expansion Message '<description>' for

<variablename>

Message Type

[ERROR]

Description

Indicates that a problem occurred during an environment variable macro substitution. The
named macro may not exist or some length limitation may have been reached. Also
recursive macros may cause this message.

Example

Current variables:

...

LIBPATH=${LIBPATH}

...

TIP Check the definition of the environment variable.

LM66: Search Path <Name> Does Not Exist

Message Type

[INFORMATION]

Description

Indicates that the tool searched for a file that was not found, or that the specified path did
not exist.

TIP Check the spelling of your paths. Update the paths when moving a project. Use
relative paths.
403HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Decoder Message List
Decoder Message List
This section lists all decoder messages.

D1: Unknown Message Occurred

[FATAL]

Description

Indicates the application tried to issue an undefined message. This is an internal error.
Report this message to your distributor.

D2: Message Overflow, Skipping <kind> Messages

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates the application has issued the maximum number of message types specified with
the options:

-WmsgNi: Number of Information Messages

-WmsgNw: Number of Warning Messages

-WmsgNe: Number of Error Messages.

Additional messages of this type are not displayed.

TIP Use the options listed above to change the number of messages to display.

D50: Input File ‘<file>’ Not Found

[FATAL]

Description

Indicates the application was unable to find a file needed for processing.
404 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Decoder Message List
TIP Make sure the file really exists. If you are using a file with a name that contains
spaces, you must enclose the file name in quotes.

D51: Cannot Open Statistic Log File <file>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates the application was unable to open a statistic output file, therefore no statistics
are generated.

NOTE Not all tools support statistic log files. Even if a tool does not support it, the
message still exists, but is not issued in this case.

D52: Error in Command Line <cmd>

[FATAL]

Description

Indicates an error occurred while processing the command line.

D64: Line Continuation Occurred in <FileName>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

In any environment file, the character '\' at the end of a line is interpreted as line
continuation. This line and the next one are handled as one line. Because the path
separation character of MS-DOS is also '\', paths that end with '\' are often incorrectly
written. Instead, use a '.' after the last '\' unless you really want a line continuation.
405HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Decoder Message List
Example

Current Default.env:

...

LIBPATH=c:\freescale\lib\

OBJPATH=c:\freescale\work

...

This is identical to:

...

LIBPATH=c:\freescale\libOBJPATH=c:\freescale\work

...

To fix it, append a '.' after the '\'

...

LIBPATH=c:\freescale\lib\.

OBJPATH=c:\freescale\work

...

D65: Environment Macro Expansion Message '<description>' for

<variablename>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates a problem occurred during an environment variable macro substitution. Possible
causes are that the named macro did not exist or a length limitation was reached. Also,
recursive macros may cause this message.

Example

Current variables:

...

LIBPATH=${LIBPATH}

...

TIP Check the definition of the environment variable.
406 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Decoder Message List
D66: Search Path <Name> Does Not Exist

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates that the tool looked for a file that was not found, or a path name that does not
exist.

TIP Check the accuracy of your paths. Update the paths when moving a project. Use
relative paths.

D1000: Bad Hex Input File <Description>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Indicates that the decoder detected incorrect entries in the file while decoding an S-Record
or an Intel Hex file. The content of <Description> gives more detail.

TIP Check the descriptive text to ensure that the correct file was passed to the decoder.

D1001: Because Current Processor is Unknown, No Disassembly is

Generated. Use -proc.

[DISABLE, INFORMATION, WARNING, ERROR]

Description

While decoding n S-Record or an Intel Hex file, the decoder needs to know about the
processor used to decode the file with disassembly information. This is needed because
these formats do not contain information about the processor.

TIP Use the -Proc option (see -Proc: Set Processor (Decoder)) to specify the
processor.
407HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
Makefile Messages
This section lists and describes error messages that can appear when:

• Maker detects an error in the makefile

• A called application detects an error that Maker catches

M1: Unknown Message Occurred

Message Type

[FATAL]

Description

Maker tried to send an undefined message. This internal error should not occur. Report it
to your distributor.

M2: Message Overflow, Skipping <kind> Messages

Message Type

[INFORMATION]

Description

The tool displays the number of messages of the specific kind as controlled with the
options -WmsgNi: Number of Information Messages, -WmsgNw: Number of Warning
Messages and -WmsgNe: Number of Error Messages. Maker does not display further
options of this kind.

TIP Use the options -WmsgNi, -WmsgNw and -WmsgNe to change the number of
messages.
408 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M50: Input File ‘<file>’ Not Found

Message Type

[FATAL]

Description

The Application did not find a file needed for processing.

TIP Make sure the file really exists. If using a file name containing spaces, enclose the
file name in quotes.

M51: Cannot Open Statistic Log File <file>

Message Type

[WARNING]

Description

Maker could not open a statistic output file, therefore it generated no statistics.

NOTE If a tool does not support statistical log files, the message still exists but Maker
does not issue it.

M64: Line Continuation Occurred in <FileName>

Message Type

[INFORMATION]

Description

In any environment file, the backslash character (\) at the end of a line denotes a line
continuation. Maker handles this line and the next one as a single line. Because the
backslash is also the path-separation character in MS-DOS, paths often incorrectly end in
'\'. Use a period (.) after the last backslash unless you really want a line continuation.
409HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
Example

Current Default.env:

...

LIBPATH=c:\freescale\lib\

OBJPATH=c:\freescale\work

...

which Maker interprets as:

...

LIBPATH=c:\freescale\libOBJPATH=c:\freescale\work

...

TIP Append a period (.) behind the backslash (\).

...

LIBPATH=c:\freescale\lib\.

OBJPATH=c:\freescale\work

...

NOTE Because this information occurs during the Maker’s initialization phase, the M
may not occur in the error message but may appear as 64: Line
Continuation occurred in <FileName>.

M65: Environment Macro Expansion Error '<description>' for

<variablename>

Message Type

[INFORMATION]

Description

Indicates that a problem occurred during an environment-variable macro substitution.
Possible causes are that the named macro did not exist or some length limitation occurred.
Recursive macros may also cause this message.
410 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
Example

Current Default.env:

...

LIBPATH=${LIBPATH}

...

TIP Check the definition of the environment variable.

M66: Search Path <Name> Does Not Exist

Message Type

[INFORMATION]

Description

Indicates that the tool was unable to find a file. The search failed because the tool was
searching for a non-existent path.

TIP Check the spelling of your paths.
Update the paths when moving a project.
Use relative paths in your environment variables.
Make sure network drives are available.

M5000: User Requested Stop

Message Type

[ERROR]

Description

The user clicks the Stops the current make process icon. A message dialog prompts you
to continue or interrupt the current make process.
411HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5001: Error in Command Line

Message Type

[ERROR]

Description

Maker detected a syntax error in the command line. Maker scans only the tokens that start
with a dash (-) (which signals options) but leaves the other names in command line
unscanned. Because Maker assumes that these tokens represent filenames, it answers only
option errors with this message. It prints M5019 for other syntactical errors.

Example

maker -Y

Y is an illegal option

TIP Call Maker with the -h argument for a list of options.

M5002: Can't Return to <makefile> at End of Include File

Message Type

[ERROR]

Description

The makefile executed before opening the include file and Maker cannot reopen it again.

TIP Make sure the makefile exists.
412 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5003: Illegal Dependency

Message Type

[ERROR]

Description

Only identifiers or filenames can reside in the dependency list. Maker reports other tokens
as invalid.

Example

makeall:

 inout.o message.o main.o (*)

TIP Name your targets with identifiers.

M5004: Illegal Macro Reference

Message Type

[ERROR]

Description

You used a name for a macro that is not an identifier. You must name all your macros with
identifiers.

Example

makeall:

cc src.c $(***)
413HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5005: Macro Substitution Too Complex

Message Type

[ERROR]

Description

Maker cannot resolve the macro in a table overflow.

TIP Organize your makefile structure. Use template makefiles called from Maker with
command-line macros as arguments.

M5006: Macro Reference Not Closed

Message Type

[ERROR]

Description

Macro has no right brace to close the macro.

Example

makeall:

cc src.c $(MYMAC

TIP Add a right brace.

M5007: Unknown Macro: <macroname>

Message Type

[ERROR]

Description

Maker did not recognize <macroname> as a declared macro.
414 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5008: Macro Definition or Command Line Too Long

Message Type

[ERROR]

Description

Maker cannot read a line in the makefile because it is too long.

M5009: Illegal Include Directive

Message Type

[ERROR]

Description

The include directive has too many arguments.

Example (invalid)

INCLUDE macros.inc utils.inc

TIP Divide the include into multiple includes:
INCLUDE macros.inc
INCLUDE utils.inc

M5010: Illegal Line

Message Type

[ERROR]

Description

Maker encountered a syntax error in the makefile. The line starts with an invalid token
sequence.
415HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
Example (invalid)

makeAll: Compile Link

echo “-- all done ## command has to start with spaces

M5011: Illegal Suffix for Inference Rule

Message Type

[ERROR]

Description

The rule has incorrect syntax.

Example (correct)

.c.o :

$(CC) $(CFLAGS) $*.c

M5012: Include File Not Found: <includefile>

Message Type

[WARNING]

Description

The filename given as an argument of the INCLUDE command does not specify an
existing file.

TIP Verify the accuracy of the path settings in your default.env file; verify that
the environment variable DefaultDir in the File MCUTOOLS.INI did not set
the default directory.
416 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5013: Include File Too Long: <includefile>

Message Type

[ERROR]

Description

Maker cannot include the specified file because it is too big.

TIP Divide your included file into several smaller files.

M5014: Circular Macro Substitution in <macroname>

Message Type

[ERROR]

Description

Maker detected a circular reference in the macro substitution.

M5015: Colon (:) Expected

Message Type

[ERROR]

Description

Always mark a target declaration with a colon after the target identifier, followed by the
dependencies.
417HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5016: Filename After INCLUDE Expected

Message Type

[ERROR]

Description

Maker detected a token after the INCLUDE command that is not a filename which
conforms to a Maker identifier.

TIP Do not use non-alphanumeric characters in filenames, even if the operating system
allows them.

M5017: Circular Include, File <includefile>

Message Type

[ERROR]

Description

Maker does not allow circular include references in a makefile.

Example

.mak file includes A.inc. A.inc includes B.inc. B.inc
includes C.inc. C.inc includes A.inc

M5018: Entry Doesn't Start at Column 0

Message Type

[ERROR]

Description

Entries (Identifier: dependencies.) must start at the first column of a line.
418 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5019: No Makefile Found

Message Type

[ERROR]

Description

The makefile specified in the argument list does not exist.

TIP Verify the accuracy of the path settings in your default.env file; also verify
that the default directory, set by the DefaultDir environment variable in the
MCUTOOLS.INI file, is not set.

M5020: Fatal Error During Initialization

Message Type

[ERROR]

Description

The Maker initialization procedure failed.

TIP Restore a previously functional configuration.

M5021: Nothing to Make: No Target Found

Message Type

[ERROR]

Description

The Maker did not specify a target.
419HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5022: Don't Know How to Make <target>

Message Type

[ERROR]

Description

The target-dependency list contains an identifier that does not exist as a file and does not
reside in the target list of the makefile.

TIP This message sometimes appears even if target or file dependencies exist. Maker
dependency resolutions do not always find all targets, especially when you work
with multiply layered rules. For this reason, structure the makefile another way
and check the settings in your default.env file.

M5023: Circular Dependencies Between <target1> and <target2>

Message Type

[ERROR]

Description

<target1> is in the transitive closure of circular dependencies. For example, build
<target1> <target1>. <target2> is the last target handled before Maker detects
the circular dependencies.

Example

XX: AA BB

AA: FF EE

BB: DD

DD: XX

EE:

FF:

XX is dependent (transitive closure) on
AA,BB,FF,EE,DD,XX
420 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Makefile Messages
M5024: Illegal Option

Message Type

[ERROR]

Description

The option specified in the command line has an incorrect format.

Example

Maker test.mak -DCC+\HC12\CHC12.EXE

instead of

Maker test.mak -DCC=\HC12\CHC12.EXE

TIP With -h, Maker prints all available options with the expected argument list.

M5027: Making Target <target>

Message Type

[INFORMATION]

Description

Maker currently builds the specified target.

TIP The two special targets BEFORE and AFTER execute just before and after the top
target. Use them for initiations and cleanup.
421HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
M5028: Command Line Too Long: <commandline>

Message Type

[ERROR]

Description

The command line passed to Maker is too long for Maker.

M5029: Illegal Target Name: <targetname>

Message Type

[ERROR]

Description

You specified an invalid name as the target, which can happen when using multiple
command-line arguments. Maker takes the first argument as a make file name and all
remaining arguments as target names. If some target names are invalid, this message
appears. If you ignore this message with the message move options, then Maker ignores
the invalid target name.

Exec Process Messages
This section explains messages that can appear when a command in a target’s build-
command list fails.

M5100: Command Line Too Long for Exec

Message Type

[ERROR]

Description

The length of a command in the target’s command list in the makefile is too long to
execute.
422 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
M5101: Two File Names Expected

Message Type

[ERROR]

Description

Some Maker commands (such as Copy or Ren) need two filenames as arguments. This
error message occurs when the command did not contain two filenames.

M5102: Input File Not Found

Message Type

[ERROR]

Description

A built-in file command required to open a source file for reading was unable to find that
source file.

M5103: Output File Not Opened

Message Type

[ERROR]

Description

A built-in file command required to open or create a destination file for writing failed to
open or create that destination file.

TIP Check the settings in your default.env file.
423HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
M5104: Error While Copying

Message Type

[ERROR]

Description

While copying one file, another failed in the block-copy loop. Maker opened the file but
the blockwise write operation failed.

TIP Check the attributes of the destination file.

M5105: Renaming Failed

Message Type

[ERROR]

Description

Maker failed to rename a file.

Potential causes are:

• Inappropriate filenames as arguments

• The source file does not exist, or another process is using it

• The destination file name is already in use.

TIP Check the file (including its attributes) to rename the file.
424 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
M5106: File Name Expected

Message Type

[ERROR]

Description

Maker expects an argument of a built-in command to specify an existing file, but it has an
illegal format for a file name.

TIP Use only names and extensions allowed for C-identifiers, even if your operating
system permits more character types for filenames.

M5107: File Does Not Exist

Message Type

[ERROR]

Description

Maker expects a built-in command argument to specify an existing file, but the file does
not exist.

TIP Check the settings in your default.env file.

M5108: Called Application Detected an Error

Message Type

[ERROR]

Description

The application that Maker called detected an error not reported in detail in its error
output, or Maker did not find the error output.
425HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
TIP Use a file named EDOUT, or another file that you specify using the environment
variable ERRORFILE, in your default.env file. Maker prints the lines in this
file starting with ERROR, FATAL, WARNING or INFORMATION if enabled in the
Maker.

M5109: Echo <commandline>

Message Type

[INFORMATION]

Description

This message appears when Maker calls an application. The entire macro-expanded
command line displays.

M5110: Called Application Caused a System Error

Message Type

[ERROR]

Description

The program that Maker executed exited with an operating-system error.

M5111: Change Directory (cd) Failed

Message Type

[ERROR]

Description

The built-in cd command was unable to change the directory.

TIP Make sure the specified directory exists. Check your working directory when
using relative paths.
426 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
M5112: Called Application: <error>

Message Type

[ERROR]

Description

The called application detected an error and wrote it to the error-output file. Maker prints
the error message if you enable the message type in Maker.

Example

ERROR M5112: called application detected an error: “ERROR
C1005: Illegal storage class!”

The string quoted is the called program’s message.

TIP Try to run the application manually with the specified arguments. You can
reclassify the called program’s message class to ERROR, WARNING, or
INFORMATION; you can also disable it.

M5113: Called Application: <warning>

Message Type

[WARNING]

Description

The called application issued a warning and wrote it to the error output file. Maker prints
the warning message if you enable its message type in Maker.

Example

WARNING M5113: called application: “WARNING C1038:
Cannot be friend of myself”

The string quoted is the called program’s message. If you classify M5113 as an
error, Maker prints message as:

ERROR M5113: called application: “WARNING C1038: Cannot
be friend of myself”
427HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
TIP Try to run the application manually with the specified arguments. You can
reclassify the called program’s message class to ERROR, WARNING, or
INFORMATION; you can also disable it.

M5114: Called Application: <information>

Message Type

[INFORMATION]

Description

The called application issued information and wrote it to its error output file. Maker prints
the information message in Maker.

Example

INFORMATION M5114: called application: “INFORMATION
C1390: Implicit virtual function”

The string quoted is the called program’s message.

TIP Try to run the application manually with the specified arguments. You can
reclassify the called program’s message class to ERROR, WARNING, or
INFORMATION; you can also disable it.

M5115: Called Application: <fatal>

Message Type

[ERROR]

Description

The called application detected a fatal error and wrote the message to its error output file.
Maker prints the fatal warning message if you enabled that message type in Maker.

Example

ERROR M5115: called application: “FATAL C1403: Out of
memory”
428 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
The string quoted is the called program’s message.

TIP Try to run the application manually with the specified arguments. You can
reclassify the called program’s message class to ERROR, WARNING, or
INFORMATION; you can also disable it.

M5116: Could Not Delete File

Message Type

[WARNING]

Description

The built-in del command was unable to delete the specified argument file.

TIP Make sure that the file exists and that its attributes allow Maker to delete it.

M5117: Path Was Not Found

Message Type

[ERROR]

Description

Maker was unable to restore an old directory that changed with the built-in command cd
after the end of the command-list scope.

TIP Make sure the old directory exists. It must exist to use cd.
429HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
M5118: Could Not Create Process: <diagnostic>

Message Type

[ERROR]

Description

The operating system issues this message when the called process cannot run. The detailed
message resides in <diagnostic>.

M5119: Exec <commandline>

Message Type

[INFORMATION]

Description

Maker issues this message after it calls an application. The entire macro-expanded
command line displays.

M5120: Running Version with Limited Number of Execution Calls.

Number of Allowed Execution Calls Exceeded

Message Type

[FATAL]

Description

This message does not appear when you have a fully registered version of Maker. A non-
registered demonstration version has processing limitations. The demonstration version
has a limit of five command calls. If you exceed this limit in one run, M5120 appears and
the make process stops.
430 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Exec Process Messages
M5121: The Files <file1> and <file2> Are Not Identical

Message Type

[INFORMATION]

Description

An fc or fctext built-in command detected that two files are not identical.

M5122: The Files <file1> and <file2> Are Identical

Message Type

[INFORMATION]

Description

A fc or fctext built-in command detected that two files are identical.

M5153: Processing Make Files Under Win32s Is Not Supported by

the Maker

Message Type

[FATAL]

Description

Maker cannot synchronize the execution of commands with its own processing under
Win32s and cannot run under Win32s. This error occurs because a 32-bit application
running under Win32s with the 32-bit API cannot detect a completed called application.
The Maker issues this message if you try to run a makefile under Win32s and stops
execution.
431HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Modula-2 Maker Messages
Modula-2 Maker Messages
This section explains messages that can appear when the build process for Modula-2 fails.

M5700: Environment Variable COMP Not Set

Message Type

[ERROR]

Description

The COMP environment variable defines the Modula-2 compiler. When you do not set this
variable, the Modula-2 Maker can run only in silent mode (option -s).

M5701: Environment Variable LINK Not Set

Message Type

[ERROR]

Description

The LINK environment variable defines the linker. When you do not set this variable, the
Maker can run only in silent (option -s) or in compile-only mode (option -c).

M5702: Neither Source Nor Symbol File Found: <source file>

Message Type

[ERROR]

Description

The compiler found neither the object file nor the source file, and was unable to build the
target.

TIP Check the settings in your default.env file.
432 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Modula-2 Maker Messages
M5703: Circular Imports in Definition Modules

Message Type

[ERROR]

Description

The transitive closure of a module’s import list includes the module itself (a circular
dependency list).

TIP Layer your application and put basic types included from different layers into
separate modules.

M5704: Can't Recompile <source file> (No Source Found)

Message Type

[ERROR]

Description

The compiler was unable to find the specified source file.

TIP Determine whether the source file exists in a location other than expected. Also
check the settings in your default.env file.

M5705: No Make File Generated (Top Module Not Found)

Message Type

[WARNING]

Description

The compiler was unable to write the makefile for the Modula-2 project because you did
not specify the top target.
433HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Modula-2 Maker Messages
TIP Check the settings in your default.env file.

M5706: Couldn't Open the Listing File <list file>

Message Type

[WARNING]

Description

A file error occurred upon opening or closing the listing file for Modula-2 Make.

TIP Check the settings in your default.env file.

M5708: Couldn't Open the Makefile

Message Type

[ERROR]

Description

The makefile does not exist, or the make process was unable to open it for reading.

TIP The default extension for Modula-2 makefiles is .MOD.

TIP Check the settings in your default.env file.
434 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Modula-2 Maker Messages
M5761: Wrote Makefile <makefile>

Message Type

[INFORMATION]

Description

Maker prints this information if no error occurred and the Modula-2 Maker succeeded in
creating the makefile.

M5762: Wrote Listing File <listfile>

Message Type

[INFORMATION]

Description

Maker prints this information if no error occurred and the Modula-2 Maker succeeded in
creating the listing file.

M5763: Compilation Sequence

Message Type

[INFORMATION]

Description

Announces the print listing to the Maker standard output instead of to a file listing.
435HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Messages
Modula-2 Maker Messages
436 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

D
Tool Commands

SmartLinker Commands
This section describes each SmartLinker parameter command. Each command description
includes the following:

• Syntax: Description of the command syntax.

• Description: Detailed description of the command.

• Example: Example of how to use the command.

Some commands are available only in ELF/DWARF format, and some commands only in
Freescale object file format. This is indicated with the object file format in parenthesis
(ELF) or (Freescale).

If a command is available only for a specific language, it is also indicated. For example,
M2 denotes that the feature is available only for Modula-2 linker parameter files.

Additionally, it is also noted if the behavior of a command is different for Freescale and
ELF/DWARF formats.

AUTO_LOAD: Load Imported Modules (Freescale, M2)

Syntax

AUTOLOAD ON | OFF

Description:

The optional AUTO_LOAD command affects linking only when there are Modula-2
modules present. When AUTO_LOAD is switched ON, the linker automatically loads and
processes all modules imported in some Modula-2 modules. It is not necessary to
enumerate all object files of Modula-2 applications. The linker assumes that the object file
name of a Modula-2 module is the same as the module name with the .o extension.
Modules automatically loaded by the linker (i.e. imported in a Modula-2 Module present
in the NAMES list) must not appear in the NAMES list. The default setting is ON.
437HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
You must switch AUTO_LOAD OFF when linking with a ROM library. If switched ON,
the linker automatically loads the missing object files, and disregards the objects in the
ROM library.

NOTE You must also switch AUTO_LOAD OFF if the object file names are not the
same as the module names, because this prevents the linker from finding the
object files.

Example:

AUTOLOAD ON

CHECKSUM: Checksum Computation (ELF)

Syntax

Checksum= CHECKSUM {ChecksumEntry} END.

ChecksumEntry= CHECKSUM_ENTRY

 ChecksumMethod

 [INIT Number]

 [POLY Number]

 OF MemoryArea

 OF MemoryArea

 OF MemoryArea

 ...

 ..

 INTO MemoryArea

 [UNDEFINED Number]

 END.

ChecksumMethod= METHOD_CRC_CCITT | METHOD_CRC8

| METHOD_CRC16 | METHOD_CRC32

| METHOD_ADD [SIZE <Size>] | METHOD_XOR.

Description:

This command instructs the linker to compute checksum over some memory areas. All
necessary information for this is specified in this structure.
438 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
NOTE The specified OF MemoryArea usually also has its separate SEGMENTS
entry. Use the FILL directive to fill all gaps and ensure a predictable result.

Example

SEGMENTS
MY_ROM = READ_ONLY 0xE020 TO 0xFEFF FILL 0xFF;
....
END
CHECKSUM
 CHECKSUM_ENTRY METHOD_CRC_CCITT
 OF READ_ONLY 0xE020 TO 0xEEFF
 OF READ_ONLY 0xEF00 TO 0xFEFF
 INTO READ_ONLY 0xE010 SIZE 2
 UNDEFINED 0xff
 END
END

The checksum computes only over areas with READ_ONLY and CODE qualifiers.
Checksum computations support the following methods:

• METHOD_XOR – XORs the elements of the memory areas together. The size of the
INTO_AREA defines the element size.

• METHOD_ADD – Adds the elements of the memory areas together. The optional
SIZE argument defines the element size. If you do not specify the SIZE option, the
linker uses the size of the INTO_AREA instead.

• METHOD_CRC_CCITT – Computes a 16-bit cyclic redundancy check (CRC)
checksum according to CRC CCITT over all bytes in the areas. The INTO_AREA
size must be 2 bytes.

• METHOD_CRC16 – Computes a 16-bit CRC checksum according to the commonly
used CRC 16 over all bytes in the areas. The INTO_AREA size must be 2 bytes.

• METHOD_CRC32 – Computes a 32-bit CRC checksum according to the commonly
used CRC 32 over all bytes in the areas. The INTO_AREA size must be 4 bytes.

The linker uses the optional [INIT Number] entry as the initial value in checksum
computation. If it is not specified, the linker uses the default value of 0xffffffff for
CRC checksums and 0 for addition and XOR.

The optional [POLY Number] entry allows you to specify alternative polynomials for
the CRC checksum computation.

OF MemoryArea: The area for which to compute the checksum.
439HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
INTO MemoryArea: The area into which to store the computed checksum. This area
must be distinct from any other placement in the prm file and from the OF
MemoryArea.

The linker uses the optional [UNDEFINED Number] value when no memory is
available at certain places. Use the FILL directive to prevent this linker behavior (for an
example see above).

Example 1

CHECKSUM

 CHECKSUM_ENTRY

 METHOD_CRC_CCITT

 OF READ_ONLY 0xE020 TO 0xEEFF

 OF READ_ONLY 0xEF00 TO 0xFEFF

 INTO READ_ONLY 0xE010 SIZE 2

 UNDEFINED 0xff

 END

END

This entry causes the computation of a checksum of areas 0xE020 to 0xEEFF and
0xEF00 to 0xFEFF, and stores the checksum value at address 0xE010.

The linker calculates the checksum according to the CRC CCITT.

Example 2

Assume the following memory content:

0x1000 02 02 03 04

Then the XOR 1-byte checksum from 0x1000 to 0x1003 is 0x07
(=0x02^0x02^0x03^0x04).

NOTE METHOD_XOR is the fastest computation method; METHOD_ADD is the next
fastest computation method. However, for both METHOD_XOR and
METHOD_ADD, multiple regular 1-bit changes can cancel each other out. The
CRC methods avoid this weakness.
For example, if you clear both 0x1000 and 0x1001, then the XOR checksum
does not change. Similar cases exist for ADD checksum as well.

NOTE METHOD_XOR and METHOD_ADD also support using larger element sizes to
compute the checksum.
440 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
By default, the linker uses the size of INTO MemoryArea as the element size.
However for METHOD_ADD you can explicitly specify the size (in bytes) as less
than the INTO MemoryArea size.

With an element size of 2, the checksum of the example is 0x0506 (= 0x0202 ^
0x0304).

NOTE Larger element sizes allow faster computation of the checksums on 16- or 32-
bit machines.

The OF MemoryArea size and address must be multiples of the element size.

CRC-based methods compute the checksum values in bytes.

Often, the actual size of the area to be checked is not known in advance.

Depending on how much C source code the compiler generates, the placements
may be relatively full.

NOTE This method does not support varying element sizes. Instead, fill unused areas
in the placement with the FILL directive to a known value. This increases
overhead as the checksum computes these fill areas as well.

CHECKKEYS: Check Module Keys (Freescale, M2)

Syntax

CHECKKEYS ON | OFF

Description

If the optional CHECKKEYS command is switched ON (default), the linker compares
module keys of the Modula-2 modules in the application and issues an error message if it
detects an inconsistency (symbol file newer than the object file). CHECKKEYS OFF turns
off this module key check.

Example

CHECKKEYS ON
441HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
DATA: Specify the RAM Start (Freescale)

Syntax

DATA Address

Description

NOTE Older linker parameter files support this command. This command will not be
supported in future releases.

Use this command to specify the default ROM start address. The specified address must
be in hexadecimal notation. The linker translates this command internally as:

DATA 0x????' => 'DEFAULT_RAM INTO READ_WRITE 0x???? TO
0x????

The unknown end address of DEFAULT_RAM causes the linker to specify or attempt to
find out the end address itself.

Example

START 0x1000

DEPENDENCY: Dependency Control

Syntax

DEPENDENCY {Dependency} END.

Dependency = ROOT {ObjName} END

| ObjName USES {ObjName} END

| ObjName ADDUSE {ObjName} END

| ObjName DELUSE {ObjName} END.

Description

The DEPENDENCY keyword allows the modification of automatically-detected
dependency information.

Use this command to add new roots (ROOT keyword) and overwrite (USES), extend
(ADDUSE), or remove (DELUSE) existing dependencies.
442 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
The dependency information serves two purposes:

• Smart Linking – Links only the objects that depend on roots.

• Overlapping local variables and parameters – Some small 8-bit processors use
global memory instead of stack space to allocate local variables and parameters.
The linker uses the dependency information to allocate local variables of
different functions to the same addresses, provided the functions are never
active simultaneously.

ROOT Keyword

Use the ROOT keyword to specify a group of root objects.

A ROOT entry with a single object functions the same as using the object in an ENTRIES
section (see ENTRIES: List of Objects to Link with Application). A ROOT entry with
several objects functions the same as using the object in an OVERLAP_GROUP entry (see
OVERLAP_GROUP: Application Uses Overlapping (ELF)). If you use several objects in
one root group, only one object of the group is active at a time. Use this information to
improved variable overlap allocation. The linker allocates function variables of the same
group in the same area. To avoid this, either use several ROOT blocks or add the objects in
the ENTRIES section.

Example: Overlapped Allocation of Variables (Not Applicable for all
Targets)

Listing D.1 C source

void main(void) { int i;}
void interrupt int1(void) { int j; ... }
void interrupt int2(void) { int k; ... }
prm file:
...DEPENDENCY
 ROOT main END
 ROOT int1 int2 END
END

In this example, the linker allocates the variables of the function main and all its
dependents first, then allocates the variables of int1 and int2 into the same area. This
means j and k may overlap.

USES Keyword

The USES keyword defines all dependencies for a single object. Only the given
dependencies are used. Any unlisted dependencies are ignored. If a needed dependency is
not specified after the USES, the linker issues error messages.
443HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example: Overlapped Allocation of Variables (Not Applicable for all
Targets)

Listing D.2 C Source

void f(void(* fct)(void)) { int i; ... fct();...}
void g(void) { int j;... }
void h(void) { int k;... }
void main(void) { f(g); f(h); }
444 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Listing D.3 prm File

DEPENDENCY
 f USES g h END
END

This USES statement assures that the variable i of f does not overlap any of the variables
of g or h.

NOTE The automatic detection does not work for functions called by a function
pointer initialized outside of the function, as in this case.

The USES keyword hides any compiler-specified dependencies. If the code of f (not
shown above) calls any additional functions, USES generates errors. It is usually better to
use ADDUSE than USES.

ADDUSE Keyword

Use the ADDUSE keyword to add additional dependencies to those that are automatically
detected. Use ADDUSE to ensure that no dependencies are lost. Generated application
code may use more memory, but considers all known dependencies.

Example: Overlapped Allocation of Variables (Not Applicable for all
Targets)

Listing D.4 C Source

void f(void(* fct)(void)) { int i; ... fct();...}
void g(void) { int j;... }
void h(void) { int k;... }
void main(void) { f(g); f(h); }

Listing D.5 prm File

DEPENDENCY
 f ADDUSE g h END
END

This code adds only new dependencies.

For smart linking, automatic detection covers almost all cases. You only need to link
additional depending objects if objects are accessed by a fixed address.
445HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example: (Smart Linking)

Listing D.6 C Code

int i @ 0x8000;
void main(void) {
 (int)0x8000 = 3;
}

To tell the linker to link i as well as main, add the following line to the link parameter
file:

DEPENDENCY main ADDUSE i END

DELUSE Keyword

Use the DELUSE keyword to remove single dependencies from the set of automatically-
detected dependencies.

To get a list of all automatically-detected dependencies, comment out any DEPENDECY
blocks in the prm file, switch on map file generation and look at the OBJECT-
DEPENDENCIES SECTION in the generated map file.

Automatic dependency generation can generate unnecessary dependencies because some
runtime behavior is not taken into account.

Example:

Listing D.7 C Source

void MainWaitLoop(void) { int i; for (;;) { ... } }
void _Startup(void) { int j; InitAll();
 MainWaitLoop(void); }

Listing D.8 prm File

DEPENDENCY
 _Startup DELUSE MainWaitLoop END
 ROOT _Startup MainWaitLoop END
END

Because MainWaitLoop takes no parameters and never returns, the linker can allocate
the local variable i overlapped with _Startup. The ROOT directive specifies that the
locals of the two functions can be allocated at the same addresses.
446 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Overlapping of Local Variables and Parameters

The most common application of the DEPENDENCY command is for overlapping.

See Also:

OVERLAP_GROUP: Application Uses Overlapping (ELF)

ENTRIES: List of Objects to Link with Application

Syntax (ELF):

ENTRIES

 [FileName ” :”](*|objName)

 {[FileName “:”](*|objName)}

END

Syntax (Freescale):

ENTRIES objName {objName} END

Description

Use the ENTRIES block to specify a list of objects that must always be linked with the
application, even when they are never referenced. The specified objects are used as
additional entry point in the application. The linker links all objects referenced within
these objects with the application.

The optional ENTRIES block cannot be specified more than once in a prm file.

Table D.1 describes the supported notations.

Table D.1 Notations and Descriptions

Notation Description

<Object Name> Links the specified global object with the application.

<File Name>:<Object
Name> (ELF)

Links the specified local object defined in the specified
binary file with the application.

<File Name>:* (ELF) Links all objects defined within the specified file with
the application.

* (ELF) Links all objects with the application. This switches
OFF smart linking for the application.
447HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
ELF-Specific Issues

If a file name specified in the ENTRIES block is not present in the NAMES block, the
linker inserts the file name in the list of binary files building the application.

Example:

 NAMES
 startup.o
 END

 ENTRIES
 fibo.o:*
 END

In this example, the linker builds the application from the files fibo.o and
startup.o.

File names specified in the ENTRIES block may also be present in the NAMES block.

Example:

 NAMES
 fibo.o startup.o
 END

 ENTRIES
 fibo.o:*
 END

In this example, the linker builds the application from the files fibo.o and
startup.o. The file fibo.o specified in the NAMES block is the same file specified in
the ENTRIES block.

NOTE We strongly recommend that you avoid switching smart linking OFF when the
ANSI library is linked with the application. The ANSI library contains the
implementation of all runtime functions and ANSI-standard functions. This
generates a large amount of code not needed by the application.
448 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
HAS_BANKED_DATA: Application Has Banked Data (Freescale)

Syntax

HAS_BANKED_DATA

Description

(HC12 only)

In the Freescale object file format, use this entry to specify that all pointers in zero out and
copy down must be 24 bits in size.

The ELF object file format ignores this entry.

Example

HAS_BANKED_DATA

HEXFILE: Link Hex File with Application

Syntax

HEXFILE <fileName> [OFFSET <hexNumber>]

Arguments

<fileName>: Any valid file name. The linker searches for this file in the current
directory first, and then in the directories specified in the GENPATH environment
variable.

<hexNumber>: If specified, adds this number to the address found in each
record of the hex file. The result is the address to which the linker copies the data
bytes.

Description

Use this command to link an S-Record or Intel Hex file with the application.

HEXFILE fiboram.s1 OFFSET 0xFFFF9800 /* 0x800 - 0x7000 */

The above code adds the optional offset specified in the HEXFILE command to each
record in the Freescale S-record file, and encodes the code at address 0x7000 at address
0x800. The offset 0xFFFF9800 used above is the unsigned representation of -0x68000. To
calculate it, use a hex-capable calculator and subtract 0x7000 from 0x800.
449HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
NOTE In the Freescale format, the linker does not perform any checking to avoid
overwriting any portion of normal linked code by data from hex files.

Example

HEXFILE fiboram.s1 OFFSET 0xFFFF9800 /* 0x800 - 0x7000 */

INIT: Specify Application Init Point

Syntax

INIT FuncName

Description

This command defines the initialization entry point for the application. The INIT
command is mandatory for assembly application and optional otherwise. It cannot be
specified more than once in the prm file.

When you specify the INIT command in the prm file, the linker uses the specified
function as application entry point. This is either the main routine or a startup routine
calling the main routine.

When INIT is not specified in the prm file, the linker looks for a function named
_Startup and uses it as the application entry point.

Example

INIT MyGlobStart /* Specify a global variable as
application entry point.*/

ELF Specific issues:

You can specify any static or global function as entry point.

ELF Specific Example:

INIT myFile.o:myLocStart /* Specify a local variable
as application entry point.*/

Do not use this command for ROM libraries. Specifying an INIT command in a
ROM library prm file generates a warning.
450 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
LINK: Specify Name of Output File

Syntax

LINK <NameOfABSFile> [‘AS ROM_LIB’]

Description

The LINK command defines the name of the file generated by the link session. This
command is mandatory and can only be specified once in a prm file.

After a successful link session the linker creates the file NameOfABSFile. If you
defined the ABSPATH environment variable (see ABSPATH: Absolute Path), the linker
generates the absolute file in the first directory listed there. Otherwise, the linker writes the
file to the directory in which the parameter file was found. If a file with this name already
exists, it is overwritten.

A successful linking session also creates a map file with the same base name as
NameOfABSFile and with extension .map. If you defined the TEXTPATH environment
variable (see TEXTPATH: Text Path), the linker generates the .map file in the first
directory listed there. Otherwise, the linker writes the file to the directory where the
parameter file was found. If a file with this name already exists, it is overwritten.

If you include AS ROM_LIB after the name of the absolute file, the linker generates a
ROM library instead of an absolute file (see ROM Libraries). A ROM library is an
absolute file which cannot be executed alone.

Prm files require the LINK command. If you omit the LINK command, the SmartLinker
generates an error message unless you specify the -O option on the command line (see -O:
Define Absolute File Name (SmartLinker)).

NOTE If you start the linker from the CodeWarrior IDE, the linker automatically adds
the -O option. If you specify the -O option on the command line, it has higher
priority than the LINK command.

Example

LINK fibo.abs

NAMES fibo.o startup.o END
SECTIONS
 MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
 MY_ROM = READ_ONLY 0x8000 TO 0x8FFF;
 MY_STK = READ_WRITE 0x1900 TO 0x1FFF;
PLACEMENT
451HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
END
VECTOR ADDRESS 0xFFFE _Startup /* set reset vector */

In this case, the linker generates fibo.ABS and fibo.map after successfully
linking from the previous prm file.

MAIN: Name of Application Root Function

Syntax

MAIN FuncName

Description

The optional MAIN command cannot be specified more than once in the prm file. This
command defines the root function for an ANSI-C application (the function invoked at the
end of the startup function).

When you do not specify MAIN in the prm file, the linker looks for a function named
main to use as the application root.

Example

MAIN MyGlobMain /* Specify a global variable as
application root.*/

ELF-Specific issues:

You can specify any static or global function as application root function.

ELF-Specific Example:

MAIN myFile.o:myLocMain /* Specify a local variable as
application root.*/

This command is not required for ROM libraries. Specifying the MAIN command
in a ROM Libraries prm file generates a warning.
452 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
MAPFILE: Configure Map File Content

Syntax (ELF):

MAPFILE (ALL|NONE|TARGET|FILE|STARTUP_STRUCT|SEC_ALLOC|

OBJ_ALLOC|SORTED_OBJECT_LIST|OBJ_DEP|OBJ_UNUSED|

COPYDOWN|OVERLAP_TREE|STATISTIC|MODULE_STATISTIC)

[,{(ALL|NONE|TARGET|FILE|STARTUP_STRUCT|SEC_ALLOC|OBJ_A
LLOC

|OBJ_DEP|OBJ_UNUSED|COPYDOWN|OVERLAP_TREE|STATISTIC|MOD
ULE_STATISTIC)}]

Syntax (Freescale):

MAPFILE (ON|OFF)

Description

Use this optional command to control .map file generation. The default condition
activates the command MAPFILE ALL, indicating that a map file must be created,
containing all linking time information.

Table D.2 and Table D.3 describe the available map file specifiers.

Table D.2 Map File Specifiers and Descriptions (ELF Specific)

Specifier Description

ALL Generates a map file containing all available information

COPYDOWN Writes information about the initialization value for objects
allocated in RAM to the map file (COPYDOWN section)

FILE Includes information about the files building the application
in the map file (FILE section)

NONE Generates no map file

OBJ_ALLOC Includes information about the allocated objects in the map
file (OBJECT ALLOCATION section)

SORTED_OBJECT_LIST Generates a list of all allocated objects, sorted by address,
and includes it in the map file (OBJECT LIST SORTED BY
ADDRESS section)
453HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
See The Map File for detailed descriptions of information generated by each specifier.

ELF-Specific Issues:

Specifying ALL in the MAPFILE command includes all available sections in the
map file.

Example

The following commands are all equivalent. Each of these commands generates a
map file containing all the possible information about the linking session.

 MAPFILE ALL
 MAPFILE TARGET, ALL
 MAPFILE TARGET, ALL, FILE, STATISTIC

Specifying NONE in the MAPFILE command prevents the linker from generating
the map file.

OBJ_UNUSED Includes a list of all unused objects in the map file (UNUSED
OBJECTS section)

OBJ_DEP Includes a list of dependencies between the objects in the
application in the map file (OBJECT DEPENDENCY section)

DEPENDENCY_TREE Shows the allocation of overlapped variables
(DEPENDENCY TREE section)

SEC_ALLOC Includes information about the sections used in the
application in the map file (SECTION ALLOCATION
section)

STARTUP_STRUCT Includes information about the startup structure in the map
file (STARTUP section).

MODULE_STATISTIC Includes information about how much ROM/RAM specific
modules (compilation units) use.

STATISTIC Includes statistic information about the link session in the
map file (STATISTICS section)

TARGET Includes information about the target processor and
memory model in the map file (TARGET section)

Table D.2 Map File Specifiers and Descriptions (ELF Specific) (continued)

Specifier Description
454 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example

The following commands are all equivalents. No map file is generated.

 MAPFILE NONE
 MAPFILE TARGET, NONE
 MAPFILE TARGET, NONE, FILE, STATISTIC

Freescale-Specific Issues:

For compatibility with old-style Freescale-format prm files, the MAPFILE
command supports the following arguments:

• MAPFILE OFF is equivalent to MAPFILE NONE

• MAPFILE ON is equivalent to MAPFILE ALL

NAMES: List Files Building the Application

Syntax

NAMES <FileName>[‘+’|’-’] {<FileName>[‘+’|’-’]} END

Description

The NAMES block contains a list of binary files building the application. This block is
mandatory and can only be specified once in a prm file.

The linker reads all files given between NAMES and END. The linker searches for the files
first in the project directory, then in the directories specified in the OBJPATH environment
variable (see OBJPATH: Object File Path) and finally in the directories specified in the
GENPATH environment variable (see GENPATH: Define Paths to Search for Input Files).
The files may be either object files, absolute or ROM Library files, or libraries.

You may specify additional files by using the -Add option (see -Add: Additional Object/
Library File). The linker links object files specified with the -Add option before linking
the files mentioned in the NAMES block.

Table D.3 Map File Specifiers and Descriptions (Freescale Specific)

Specifier Description

OFF Generates no map file

ON Generates a map file containing all information available
455HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
The SmartLinker links only the referenced objects (variables and functions) to the
application. You can specify any number of files in the NAMES block, however the
application contains only the functions and variables really used.

The plus sign after a file name (e.g. <FileName>+) switches smart linking OFF for the
specified file. This links all the objects defined in this file, even unused objects, with the
application.

Specifying a minus sign after an absolute file name (e.g. <FileName>-) tells the linker
not to use the absolute file in the application startup, that is, the linker does not initialize
global variables defined in the absolute file during application startup (see Using ROM
Libraries).

Do not include a space or spaces between the file name and the plus or minus sign.

Example

LINK fibo.abs

NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
 MY_ROM = READ_ONLY 0x8000 TO 0x8FFF;
 MY_STK = READ_WRITE 0x1900 TO 0x1FFF;
PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
END
VECTOR ADDRESS 0xFFFE _Startup /* set reset vector */

In this example, the linker builds the application fibo from the files fibo.o and
startup.o.

OVERLAP_GROUP: Application Uses Overlapping (ELF)

Syntax

OVERLAP_GROUP {<Objects>} END

Description

Use the OVERLAP_GROUP only for overlapping locals. See also Overlapping Locals.
456 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
In some cases the linker cannot detect that functions have no dependencies, and does not
overlap local variables which might benefit from overlapping. Use OVERLAP_GROUP
block to specify a group of functions which do not overlap.

OVERLAP_GROUP is only available in the ELF object file format. However, you can
achieve the same functionality with the DEPENDENCY command (see DEPENDENCY:
Dependency Control, ROOT Keyword) available in the Freescale format.

Example:

Assume the default implementations of the C startup routines:

• _Startup: the main entry point of the application. It calls first Init and then
uses _startupData to call main.

• Init: Uses the information in _startupData to generate the zero out

• _startupData: The linker fills this data-structure with information, such as
the address of the main function and identity of areas to be handled by zero
out in Init.

• main: The main startup point of C code

The following dependencies exist between these objects:

• _Startup depends on _startupData and Init

• Init depends on _startupData

• _startupData depends on main.

Assume the following entry in the prm file:

/* _Startup is a group of its own */

OVERLAP_GROUP _Startup END

When investigating _Startup, linker does not know that Init does not call
main. According to the dependency information, it might call main, so the linker
does not overlap the variables of Init and main.

But in this case, the linker builds the following OVERLAP_GROUP:

/* Overlap the variables of main and the variables of
_Startup */

OVERLAP_GROUP main _Startup END

This way, the linker overlaps the variables of Init and main because the linker
allocates main first and then allocates _Startup.

For the HC05 with the usual startup code, this entry saves eight bytes in the
OVERLAP_GROUP segment. To modify the usual startup code so that _Startup
and main do not overlap, insert OVERLAP_GROUP _Startup END into the
prm file.
457HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
NOTE You can configure the names of the _Startup function, main and
_startupData to a non-default name in the prm file.

Example:

Assume that a processor has two interrupt priorities: Interrupt 1 priorities and
Interrupt 0 priorities.

Assume the two functions IntPrio1A and IntPrio1B handle interrupt 1
priority requests.

Assume the two functions IntPrio0A and IntPrio0B handle the interrupt 0
priority requests.

Since two functions on the same priority level can never be active at the same time,
use two OVERLAP_GROUPs to overlap the functions of the same level.

OVERLAP_GROUP IntPrio1A IntPrio1B END

OVERLAP_GROUP IntPrio0A IntPrio0B END

See also

DEPENDENCY: Dependency Control

PLACEMENT: Place Sections into Segments

Syntax (ELF)

PLACEMENT

SectionName{,sectionName} (INTO | DISTRIBUTE_INTO)
SegSpec{,SegSpec};

{SectionName{,sectionName} (INTO | DISTRIBUTE_INTO)
SegSpec{,SegSpec};}

END

Description

The PLACEMENT block is mandatory in a prm file and it cannot be specified more than
once.

Each placement statement between the PLACEMENT and END, defines:

• (ELF) A relation between logical sections and physical memory ranges, called
segments.
458 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
• (Freescale) A relation between logical segments and physical memory ranges
called sections. Standard terminology for Freescale uses a SECTIONS block,
rather than a SEGMENTS block; the ELF linker accepts this syntax.

Example (ELF)

 SEGMENTS
 ROM_1 = READ_ONLY 0x800 TO 0xAFF;
 ROM_2 = READ_ONLY 0xB00 TO 0xCFF;
 END
 PLACEMENT
 DEFAULT_ROM INTO ROM_1, ROM_2;
 END

In this example, the linker allocates the objects from DEFAULT_ROM section in
ROM_1 segment first. As soon as the ROM_1 segment is full, allocation continues
in section ROM_2.

You can split a statement inside of the PLACEMENT block over several lines. The
statement terminates as soon as the linker detects a semicolon.

Always define the SEGMENTS block before defining the PLACEMENT block,
because segments referenced in the PLACEMENT block must be defined in the
SEGMENTS block.

 Some restrictions apply on the commands specified in the PLACEMENT block:

• When you specify the .copy section in the PLACEMENT block, specify it as
the last section in the section list.

• When you specify the .stack section in the PLACEMENT block, the prm file
requires an additional STACKSIZE command if the stack is not the single
section specified in the placement statement.

• Always specify the predefined sections .text and .data in the PLACEMENT
block. These files retrieve the default placement for code or variable sections.
The linker allocates all code or constant sections not appearing in the
PLACEMENT block into the same segment list as the .text section. The linker
allocates all variable sections not appearing in the PLACEMENT block into the
same segment list as the .data section.

Example (Freescale)

 SECTIONS
 ROM_1 = READ_ONLY 0x800 TO 0xAFF;
 PLACEMENT
 DEFAULT_ROM, ROM_VAR INTO ROM_1;
 END
459HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
In this example, the linker allocates the objects from DEFAULT_ROM segment first
and then allocates the objects from the ROM_VAR segment.

Object allocation starts with the first section in the list; the linker allocates objects
to the first memory range in the list as long as available memory can accommodate
the object. If a section is full (i.e., the next object to be allocated is too large for the
available space in the section), allocation continues with the next section in the list.

PRESTART: Application Prestart Code (Freescale)

Syntax

PRESTART ([“+”] HexDigit {HexDigit} | OFF)

Description

This optional command allows the modification of the default init code generated by
the linker at the very beginning of the application. Normally this code looks like:

DisableInterrupts.
On some processor, setup page registers
JMP StartupRoutine ("_Startup" by default)

Use the PRESTART command to replace all code before JMP by the code given by the
Hex numbers following the keyword. If you add + after PRESTART, the linker inserts the
code just before JMP but does not replace the standard code sequence.

NOTE Do not write a sequence of hexadecimal numbers in C (or Modula-2) format
after the PRESTART command. Write an even number of hexadecimal digits.
Example:
PRESTART + 4E714E71

PRESTART OFF turns off prestart code completely, i.e., the first instruction executed is
the first instruction of the startup routine.

Example

PRESTART OFF
460 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
SECTIONS: Define Memory Map (Freescale)

Syntax

SECTIONS {(READ_ONLY|READ_WRITE|NO_INIT|PAGED)

 <startAddr> (TO <endAddr> | SIZE <size>)}

Description

Specify the optional SECTIONS block in the prm file only once. Follow the SECTIONS
block immediately by the PLACEMENT block.

The SECTIONS command allows you to assign meaningful names to address ranges.
Subsequently you can use these names in PLACEMENT statements, thus increasing the
readability of the parameter file.

Each address range you define is associated with one of the following:

• Qualifier (see Qualifier Handling)

• Start and end address

• Start address and a size

NOTE The ELF linker accepts SECTION syntax as an alias for SEGMENTS syntax.

Section Qualifier

The following qualifiers are available for sections:

• READ_ONLY: used for address ranges which are initialized at program load
time. The application (*.abs) contains content only for this qualifier.

• READ_WRITE: used for address ranges initialized by the startup code at
runtime. The linker initializes memory area defined with this qualifier with 0 at
application startup. Information about READ_WRITE section initialization is
stored in a READ_ONLY section.

• NO_INIT: used for address ranges where read/write accesses are allowed. The
linker does not initialize memory area defined with this qualifier at application
startup. This is useful if your target has a battery-buffered RAM or to speed up
application startup.

• PAGED: used for address ranges where read/write accesses are allowed. The
linker does not initialize memory area defined with this qualifier at application
startup. Additionally, the linker does not control overlap between segments
defined with the PAGED qualifier. When you use overlapped segments, it is your
461HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
responsibility to select the correct page before accessing the data allocated on a
page.

1. These cases are unintended, although the linker allows some of them. If allowed, the
qualifier controls what is written into the application.

2. To allocate code in a RAM area, declare the area as READ_ONLY.

3. Initialized objects and constants in READ_WRITE sections also need RAM memory
and space in the copy down area. The copy down contains the information about object
initialization in the startup code.

4. The zero out information defines which areas to initialize with 0 at startup. Because
the zero out contains only an address and a size per area, it is usually much smaller
than a copy down area, which also contains the (non-zero) content of the objects to be
initialized.

Table D.4 Section Qualifiers

Qualifier Initialized
Variables

Non-
Initialized
Variables

Constants Code

READ_ONLY Not applicable (1) Not applicable
(1)

Content written to
target address

Content
written to
target address

READ_WRITE Content written into
copy down area, along
with information
defining startup
location. Area
contained in zero out
information (3, 4)

Area contained
in zero out
information (4)

Content written into
copy down area,
along with information
defining startup
location. Area
contained in zero out
information (3, 4)

Not applicable
(1, 2)

NO_INIT Not applicable (1) Handled as
allocated.
Nothing
generated.

Not applicable (1) Not applicable
(1)

PAGED Not applicable (1) Handled as
allocated.
Nothing
generated.

Not applicable (1) Not applicable
(1)
462 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example

SECTIONS
 ROM = READ_ONLY 0x1000 SIZE 0x2000;
 CLOCK = NO_INIT 0xFF00 TO 0xFFFF;
 RAM = READ_WRITE 0x3000 TO 0x3EFF;
 Page0 = PAGED 0x4000 TO 0x4FFF;
 Page1 = PAGED 0x4000 TO 0x4FFF;
END

In this example:

• The ROM section is a READ_ONLY memory area. It starts at address 0x1000
and its size is 0x2000 bytes (from address 0x1000 to 0x2FFF).

• The RAM section is a READ_WRITE memory area. It starts at address 0x3000
and ends at 0x3FFF (size = 0x1000 bytes). Application startup allocates all
variables in this segment with 0.

• The CLOCK section is a READ_WRITE memory area. It starts at address
0xFF00 and ends at 0xFFFF (size = 100 bytes). Variables allocated in this
segment are not initialized at application startup.

• The Page0 and Page1 sections are READ_WRITE memory areas. These are
overlapping segments. It is your responsibility to select the correct page before
accessing any data allocated in one of these segments. Variables allocated in this
segment are not be initialized at application startup.

SEGMENTS: Define Memory Map (ELF)

Syntax
SEGMENTS {(READ_ONLY|READ_WRITE|NO_INIT|PAGED)

 <startAddr> (TO <endAddr> | SIZE <size>)

 [RELOCATE_TO Address]

 [ALIGN <alignmentRule>]

 [FILL <fillPattern>]

 {(DO_OPTIMIZE_CONSTS | DO_NOT_OPTIMIZE_CONSTS)

 { CODE | DATA }

 }

 }

END
463HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Description

The optional SEGMENTS block cannot be specified more than once in a prm file.

Use the SEGMENTS command to assign meaningful names to address ranges. You can
then use these names in subsequent PLACEMENT statements, thus increasing the
readability of the parameter file.

Each address range you define is associated with:

• A qualifier.

• A start and end address or a start address and a size.

• An optional relocation rule

• An optional alignment rule

• An optional fill pattern.

• Optional constant optimization with Common Code commands.

Segment Qualifier

The following qualifiers are available for segments:

• READ_ONLY: used for address ranges which are initialized at program load
time.

• READ_WRITE: used for address ranges which are initialized by the startup code
at runtime. The linker initializes memory area defined with this qualifier with 0
at application startup.

• NO_INIT: used for address ranges where read/write accesses are allowed. The
linker does not initialize memory area defined with this qualifier at application
startup. This may be useful if your target has a battery-buffered RAM or to
speed up application startup.

• PAGED: used for address range where read/write accesses are allowed. The
linker does not initialize memory area defined with this qualifier at application
startup. Additionally, the linker does not control overlap between segments
defined with the PAGED qualifier. When using overlapped segments, it is your
responsibility to select the correct page before accessing the allocated data.
464 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Qualifier Handling

1. These cases are unintended, although the linker allows some of them. If allowed, the
qualifier controls what is written into the application.

2. To allocate code in a RAM area, declare this area as READ_ONLY.

3. Initialized objects and constants in READ_WRITE sections need RAM memory and
space in the copy down area. The copy down contains the information about object
initialization process in the startup code.

4. The zero out information identifies areas to initialize with 0 at startup. Because the
zero out contains only an address and a size per area, it is usually much smaller than a
copy down area, which also contains the (non-zero) content of the objects to be
initialized.

Table D.5 Qualifier Handling

Qualifier Initialized
Variables

Non-Initialized
Variables

Constants Code

READ_ONLY Not applicable (1) Not applicable (1) Content written to
target address

Content written
to target address

READ_WRITE Content written into
copy down area,
along with startup
location information.
Area contained in
zero out information
(3, 4)

Area contained in
zero out
information (4)

Content written into
copy down area,
along with startup
location information.
Area contained in
zero out information
(3, 4)

Not applicable
(1, 2)

NO_INIT Not applicable (1) Handled as
allocated. Nothing
generated.

Not applicable (1) Not applicable
(1)

PAGED Not applicable (1) Handled as
allocated. Nothing
generated.

Not applicable (1) Not applicable
(1)
465HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example

SEGMENTS

 ROM = READ_ONLY 0x1000 SIZE 0x2000;

 CLOCK = NO_INIT 0xFF00 TO 0xFFFF;

 RAM = READ_WRITE 0x3000 TO 0x3EFF;

 Page0 = PAGED 0x4000 TO 0x4FFF;

 Page1 = PAGED 0x4000 TO 0x4FFF;

END

In this example:

• The ROM segment is a READ_ONLY memory area. It starts at address 0x1000
and its size is 0x2000 bytes (from address 0x1000 to 0x2FFF).

• The RAM segment is a READ_WRITE memory area. It starts at address 0x3000
and ends at 0x3FFF (size = 0x1000 bytes). This example initializes all variables
allocated in this segment with 0 at application startup.

• The CLOCK segment is a READ_WRITE memory area. It starts at address
0xFF00 and ends at 0xFFFF (size = 100 bytes). Variables allocated in this
segment are not initialized at application startup.

• The Page0 and Page1 segments are READ_WRITE memory areas. These are
overlapping segments. It is your responsibility to select the correct page before
accessing any data allocated in one of these segments. The linker does not
initialize variables allocated in this segment at application startup.

Defining a Relocation Rule
Use the relocation rule if a segment is moved to a different location at runtime. With the
relocation rule, you instruct the linker to use different runtime addresses for all objects in a
segment.

This is useful when at runtime the code is copied and executed at a different address than
the linked location. One example is a Flash programmer which must run out of RAM.
Another example is a boot loader, which moves the actual application to a different
address before running it.

Specify a relocation rule as follows:

RELOCATE_TO Address

Use <Address> to specify the runtime address of the object.
466 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example

SEGMENTS
 CODE_RELOC = READ_ONLY 0x8000 TO 0x8FFF RELOCATE_TO 0x1000;
...
END

In this example, references to functions in CODE_RELOC use addresses from 0x1000 to
0x1FFF area, but the code is programmed from 0x8000 to 0x8FFF.

With RELOCATE_TO, you can execute code at an address different from where it was
allocated. The code need not be position independent (PIC), however, non-PIC code may
not run at its allocation address, as all references in the code refer to the RELOCATE_TO
address.

NOTE Usually the RELOCATE_TO address is in RAM. The linker does not check for
overlaps in the RELOCATE_TO address area. Set up the prm file so that no
overlapping is possible.

Defining an Alignment Rule
You can associate an alignment rule with each segment in the application. Use this feature
when specific alignment rules are expected on a certain memory range.

Specify an alignment rule as follows:

ALIGN [<defaultAlignment>] [{‘[‘(<Number>|
 <Number> ‘TO’ <Number>|
 (‘<‘ | ’>’ | ’<=’ | ’>=’)<Number>)’]:’<alignment>}]

Use the defaultAlignment argument to specify the alignment factor for objects not
matching any condition in the following alignment list. If you do not specify an alignment
list, the default alignment factor applies to all objects allocated in the segment. The default
alignment factor is optional.
467HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example

SEGMENTS
 RAM_1 = READ_WRITE 0x800 TO 0x8FF
 ALIGN 2 [1:1];
 RAM_2 = READ_WRITE 0x900 TO 0x9FF
 ALIGN [2 TO 3:2] [>= 4:4];
 RAM_3 = READ_WRITE 0xA00 TO 0xAFF
 ALIGN 1 [>=2:2];
END

In this example:

• RAM_1 segment: Aligns all objects of size equal to 1 byte on 1-byte boundaries.
Aligns all other objects on 2-byte boundaries.

• RAM_2 segment: Aligns all objects of size equal to 2 or 3 bytes on 2-byte
boundaries. Aligns all objects of size greater than or equal to 4 bytes on 4-byte
boundaries. Objects of size equal to 1 byte follow the default processor alignment
rule.

• RAM_3 segment: Aligns all objects of size greater than or equal to 2 bytes on 2-byte
boundaries. Aligns all other objects on 1-byte boundaries.

Alignment rules that apply during object allocation are described in the alignment chapter.

Defining a Fill Pattern
You can associate a fill pattern with each segment in the application. This can be useful
for automatically initializing uninitialized variables in the segments with a predefined
pattern.

Specify a fill pattern as follows:

FILL <HexByte> {<HexByte>}

NOTE Any segment defined with the FILL command in the SEGMENTS portion of
the prm file fills only if the segment is also used in the PLACEMENT section of
the prm file. If necessary, add a dummy entry to the PLACEMENT section.
468 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example

 SEGMENTS
 RAM_1 = READ_WRITE 0x800 TO 0x8FF
 FILL 0xAA 0x55;
 END
 PLACEMENT
 DUMMY INTO RAM_1
 END

This example initializes uninitialized objects and filling bytes with the pattern 0xAA55.

If the size of an object to initialize is greater than the size of the specified pattern, the
pattern repeats as many time as necessary to fill the objects. In this example, an object
with a size of 4 bytes initializes with 0xAA55AA55.

If the size of an object to initialize is less than the size of the specified pattern, the pattern
truncates to match the size of the object. In this example, an object with a size of 1 byte
initializes with 0xAA.

When the value specified in an element of a fill pattern does not fit into a byte, it truncates
to a byte value.

Example

 SEGMENTS
 RAM_1 = READ_WRITE 0x800 TO 0x8FF
 FILL 0xAA55;
 END

This example initializes uninitialized objects and filling bytes with the pattern 0x55. The
specified fill pattern truncates to a 1-byte value.

Fill patterns are useful for assigning an initial value to the padding bytes inserted between
two objects during object allocation. This allows marking from the unused position with a
specific marker and detecting them inside of the application.

For example, you can initialize an unused position inside a section of code with the
hexadecimal code for the NOP instruction.
469HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Optimizing Constants with Common Code
You can allocate constants having the same byte pattern to the same addresses. The most
common usage is to allocate some string in another string.

Example

const char* hwstr=“Hello World”;
const char* wstr= “World”;

The string Hello World contains the string World exactly. When the constants are
optimized, wstr points to hwstr+6.

In the Freescale format, the linker only optimizes strings. In the ELF format, all constant
objects, including strings, constants and code, can be optimized.

For all segments you can specify whether to optimize code or data (only constants and
strings). If nothing is specified, -Cocc controls the default (see -Cocc: Optimize
Common Code (ELF)).

Examples

Listing D.9 C-Source File

void print1(void) {
 printf(“Hello”);
}
void print2(void) {
 printf(“Hello”);
}

Listing D.10 Prm File

SECTIONS
 ...
 MY_ROM = READ_ONLY 0x9000 TO 0xFEFF DO_OVERLAP_CONSTS CODE DATA;
END

If you optimize data only, the string Hello appears once in the ROM-image. Optimizing
both code and data allocates the print1 and print2 functions at the same address.
However, if you optimize code only (this is not the case here), then print1 and print2
are not optimized because they use different instances of the string Hello.

If you optimize code only, the linker issues the warning:
470 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
L1951: Function print1 is allocated inside of print2 with
offset 0. Debugging may be affected.

The linker issues this warning because the debugger cannot distinguish between print1
and print2, so the wrong function might display while debugging. This does not,
however, affect the runtime behavior.

The linker detects certain branch distance optimizations done by the compiler because of
the special fixups used. If the linker detects this type of optimization, neither the caller and
the callee are moved into other functions. However, other functions can still be moved into
them.

NOTE Switching off the compiler optimizations can produce smaller applications, if
the compiler optimizations prevent linker optimizations.

In C++, several language constructs result in identical functions in different compilation
units. Different instances of the same template may have identical code. Compiler-
generated functions, and inline functions not actually inlined, are defined in every
compilation unit. Finally, constants defined in header files are static in C++, so they are
also contained once in every object file.

STACKSIZE: Define Stack Size

Syntax

STACKSIZE Number

Description

The STACKSIZE command is optional in a prm file and it cannot be specified more than
once. Additionally, you cannot specify both STACKTOP and STACKSIZE commands in
the same prm file (see STACKTOP: Define Stack Pointer Initial Value).

The STACKSIZE command defines the size requested for the stack. We recommend
using this command if you do not care where the stack is allocated but only how large it is.

When the stack is defined using a STACKSIZE command alone, the stack is placed next
to the section .data.

NOTE In the Freescale object file format allows the synonym STACK instead of
STACKSIZE. This is for compatibility only, and may be removed in a future
version.
471HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
Example

 SECTIONS

 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;

 MY_ROM = READ_ONLY 0x800 TO 0x9FF;

 PLACEMENT

 DEFAULT_ROM INTO MY_ROM;

 DEFAULT_RAM INTO MY_RAM;

 END

 STACKSIZE 0x60

In this example, if the section .data is 4 bytes wide (from address 0xA00 to
0xA03), the section .stack is allocated next to it, from address 0xA63 down to
address 0xA04. The stack initial value is set to 0xA62.

When the stack is defined through a STACKSIZE command associated with the
placement of the .stack section, the stack is supposed to start at the segment
start address incremented by the specified value and is defined down to the start
address of the segment, where .stack has been placed.

Example

 SECTIONS

 MY_STK = NO_INIT 0xB00 TO 0xBFF;

 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;

 MY_ROM = READ_ONLY 0x800 TO 0x9FF;

 PLACEMENT

 DEFAULT_ROM INTO MY_ROM;

 DEFAULT_RAM INTO MY_RAM;

 SSTACK INTO MY_STK;

 END

 STACKSIZE 0x60

This example allocates the SSTACK section from address 0xB5F down to address
0xB00. The initial stack value is set to 0xB5E.
472 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
STACKTOP: Define Stack Pointer Initial Value

Syntax

STACKTOP Number

Description

The optional STACKTOP command cannot be specified more than once in a prm file.
Additionally, you cannot specify both STACKTOP and STACKSIZE (see STACKSIZE:
Define Stack Size) in a prm file.

The STACKTOP command defines the initial value for the stack pointer.

 Example

Define STACKTOP as:

STACKTOP 0xBFF

This initializes the stack pointer with 0xBFF at application startup.

Defining the stack using a STACKTOP command alone affects the default stack
size. Stack size depends on the processor and is big enough to store the target
processor PC.

Defining the stack using a STACKTOP command associated with the placement of
the .stack section starts the stack at the specified address, and includes the start
address of the segment where .stack is placed.

Example

 SEGMENTS
 MY_STK = NO_INIT 0xB00 TO 0xBFF;
 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
 END
 PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
 END
 STACKTOP 0xB7E

This example defines the stack pointer from address 0xB7E to address 0xB00.
473HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
START: Specify the ROM Start (Freescale)

Syntax

START Address

Description

NOTE This command supports old-style linker parameter files. Future releases may
not support this command.

Use this command to specify start location of the default ROM. Address must be in
hexadecimal notation. Internally this command translates into:

START 0x????' => 'DEFAULT_ROM INTO READ_ONLY 0x???? TO
0x????

Because the end address of DEFAULT_ROM is unknown, the linker attempts to specify/
find the end address itself.

NOTE An error message during linking stating that START is undefined indicates that
no visible application entry point exists for the linker (e.g., the main routine is
defined as static).

Example

START 0x1000

VECTOR: Initialize Vector Table

Syntax

VECTOR (InitByAddr | InitByNumber)

Description

The VECTOR command is optional in a prm file and can be specified more than once.

A vector is a small piece of memory, having the size of a function address. This command
allows you to initialize the processor’s vectors while downloading the absolute file.

A VECTOR command consists of a vector location part (containing the location of the
vector) and a vector target part (containing the value to store in the vector).
474 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
SmartLinker Commands
You can specify the vector location part:

• Through a vector number. Vector number-to-address mapping is target specific.

– For targets with vectors starting at 0, this command allocates the vector at
<Number> * <Size of a Function Pointer>.

– For targets with vectors located from 0xFFFE and allocated downwards,
VECTOR 0 maps to 0xFFFE. Generally the address is 0xFFFE-
<Number> * 2.

– For HC05 the RESETVECTOR environment variable specifies VECTOR 0
address. All other vectors are calculated from VECTOR 0. 0xFFFE is the
default address.

– For all other supported targets, VECTOR numbers automatically map to
vector locations natural for this target.

• Through a vector address. In this case, specify the ADDRESS keyword in the
vector command.

 You can specify the vector target part:

• As a function name

• As an absolute address.

Example

 VECTOR ADDRESS 0xFFFE _Startup

 VECTOR ADDRESS 0xFFFC 0xA00

 VECTOR 0 _Startup

 VECTOR 1 0xA00

If the size of a function pointer is coded on two bytes, then this example:

• Initializes the vector located at address 0xFFFE with the address of the function
_Startup.

• Initializes the vector located at address 0xFFFC with the absolute address
0xA00.

The address of vector numbers is target specific.

• For an HC16:

– Initializes vector number 0 (located at address 0x000) with the address of the
function _Startup.

– Initializes vector number 1 (located at address 0x002) with the absolute
address 0xA00.

• For an HC08 or HC12:

– Vector number 0 is located at address 0xFFFE.
475HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
– Vector number 1 is located at address 0xFFFC.

You can specify an additional offset when the vector target is a function name.
This initializes the vector with the address of the object + the specified offset.

Example

VECTOR ADDRESS 0xFFFE CommonISR OFFSET 0x10

This example initializes the vector located at address 0xFFFE with the address of
the function CommonISR + 0x10 Byte. If CommonISR starts at address
0x800, this initializes the vector with 0x810.

This notation is very useful for common interrupt handlers.

All objects specified in a VECTOR command are entry points in the application.
They are always linked with the application, as well as the objects they refer to.

Batch Burner Commands
This section describes valid parameter values that can be used in commands. For more
details about commands, refer to the file FIBO.BBL, which shows how to write a script.

Following commands are available:

• baudRate: Baudrate for Serial Communication

• busWidth: Data Bus Width

• CLOSE: Close Open File or Communication Port

• dataBit: Number of Data Bits

• destination: Destination Offset

• DO: For Loop Statement List

• ECHO: Echo String onto Output Window

• ELSE: Else Part of If Condition

• END: For Loop End or If End

• FOR: For Loop

• format: Output Format

• header: Header File for PROM Burner

• IF: If Condition

• len: Length to be Copied

• OPENCOM: Open Output Communication Port

• OPENFILE: Open Output File
476 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
• origin: EEPROM Start Address

• parity: Set Communication Parity

• PAUSE: Wait until Key Pressed

• SENDBYTE: Transfer Bytes

• SENDWORD: Transfer Words

• SLINELEN: SRecord Line Length

• SRECORD: S-Record Type

• swapByte: Swap Bytes

• THEN: Statementlist for If Condition

• TO: For Loop End Condition

• undefByte: Fill Byte for Binary Files

baudRate: Baudrate for Serial Communication

Syntax

baudRate assign <baud>

Arguments

<baud>: valid baudrate.

Default

baudrate = 9600

Description

Sets the transmission speed. This parameter must not be used when the burner output is
redirected to a file. Valid identifier values are 300, 600, 1200, 2400, 4800, 9600, 19200 or
38400 (default is 9600).

Use this command only if output is sent to a communication port.

Example

baudRate = 19200

See also

• dataBit: Number of Data Bits

• parity: Set Communication Parity
477HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
• header: Header File for PROM Burner

• OPENCOM: Open Output Communication Port

busWidth: Data Bus Width

Syntax

busWidth assign (1 | 2 | 4)

Arguments

A bus width of 1, 2 or 4

Default

busWidth = 1

Description

Most EPROMs are 1 byte wide. To burn an application into EPROMs, you need 1, 2 or 4
EPROMs depending on the width of the data bus of the target system used. The Burner
program allows you to select the data bus width using the identifier busWidth. Only 1, 2
and 4 are valid values for the parameter busWidth (the default is 1).

Example

busWidth = 4

CLOSE: Close Open File or Communication Port

Syntax

CLOSE

Arguments

None

Default

None
478 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
Description

Use CLOSE to close a file opened by OPENFILE: Open Output File or COM port opened
with OPENCOM: Open Output Communication Port.

Example

CLOSE

See also

• OPENFILE: Open Output File

• OPENCOM: Open Output Communication Port

dataBit: Number of Data Bits

Syntax

dataBit assign (7 | 8)

Arguments

7 or 8 data bits.

Default

dataBit = 8

Description

Sets the number of data bits. This parameter must not be used when the burner output is
redirected to a file. Valid identifier values are 7 or 8 (default is 8).

Use this command only if the output is sent to a communication port.

Example

dataBit = 7

See also

• baudRate: Baudrate for Serial Communication

• parity: Set Communication Parity

• header: Header File for PROM Burner

• OPENCOM: Open Output Communication Port
479HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
destination: Destination Offset

Syntax

destination assign <offset>

Arguments

<offset>: offset to be added

Default

destination = 0

Description

Use this command to add an additional offset to the address field of an S-Record or a Intel
Hex Record.

Example

destination = 0x2000

See also

• len: Length to be Copied

• origin: EEPROM Start Address

DO: For Loop Statement List

Syntax

“FOR” Ident Assign SimpleExpr

“TO” SimpleExpr “DO” StatementList "END"

Arguments

None

Default

None
480 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
Description

This command starts the FOR statement list. As ident only i may be used, and the
burner replaces each occurrence of # in the loop with the actual value of i.

Example

FOR i=0 TO 10 DO

ECHO “#”

END

See also

• FOR: For Loop

• TO: For Loop End Condition

• END: For Loop End or If End

ECHO: Echo String onto Output Window

Syntax

ECHO [<string>]

Arguments

<string>: a string written to the output window

Default

None

Description

With this command you can write a string to the output window. If you do not specify a
string, the burner writes an empty line.

Example

ECHO

ECHO “hello world!”
481HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
ELSE: Else Part of If Condition

Syntax

IF RelExpr THEN StatementList

[ELSE StatementList] END

Arguments

None

Default

None

Description

This command starts the optional ELSE part of an IF conditional section.

Example

FOR i=0 TO 10 DO
IF i==7 THEN

ECHO “i is 7”
ELSE

ECHO “#”
END

END

See also

• END: For Loop End or If End

• IF: If Condition

• THEN: Statementlist for If Condition
482 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
END: For Loop End or If End

Syntax

FOR Ident Assign SimpleExpr

TO SimpleExpr DO StatementList END

or

IF RelExpr THEN StatementList

[ELSE StatementList] END

Arguments

None

Default

None

Description

This command ends either a FOR loop or IF condition.

Example

FOR i=0 TO 10 DO
IF i==7 THEN

ECHO “i is 7”
END
ECHO “#”

END

See also

• IF: If Condition

• THEN: Statementlist for If Condition

• ELSE: Else Part of If Condition

• TO: For Loop End Condition

• DO: For Loop Statement List

• FOR: For Loop
483HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
FOR: For Loop

Syntax

FOR Ident Assign SimpleExpr

TO SimpleExpr DO StatementList END

Arguments

None

Default

None

Description

This command starts a FOR loop.

Example

FOR i=0 TO 10 DO

IF i==7 THEN

ECHO “i is 7”

END

ECHO “#”

END

See also

• TO: For Loop End Condition

• DO: For Loop Statement List

• END: For Loop End or If End
484 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
format: Output Format

Syntax

format assign (freescale | intel | binary)

Arguments

Format, either Freescale S, Intel Hex or Binary.

Default

format = freescale

Description

The Burner supports three different data transfer formats: S-Records, Intel Hex-Format
and binary format. With the binary format the output destination must be a file. Valid
identifiers are: Freescale, intel, binary (the default is Freescale)

Example

format = binary

header: Header File for PROM Burner

Syntax

header assign <fileName>

Arguments

<fileName>: header file to be sent to serial port

Default:

header =

Description

Specifies an initialization file for the PROM burner. Do not use this parameter when the
burner output is redirected to a file. This file is sent byte by byte (binary) without
modification to the PROM burner before anything else is sent.

This command is only used if the output is sent to a communication port.
485HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
Example

header = “myheader.txt”

See also

• baudRate: Baudrate for Serial Communication

• parity: Set Communication Parity

• header: Header File for PROM Burner

• dataBit: Number of Data Bits

• OPENCOM: Open Output Communication Port

IF: If Condition

Syntax

IF RelExpr THEN StatementList

[ELSE StatementList] END

Arguments

None

Default

None

Description

This command starts an IF conditional section.

Example

FOR i=0 TO 10 DO

IF i==7 THEN

ECHO “i is 7”

END

ECHO “#”

END
486 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
See also

• END: For Loop End or If End

• THEN: Statementlist for If Condition

• ELSE: Else Part of If Condition

len: Length to be Copied

Syntax

len assign <number>

Arguments

<number>: length to be copied.

Default

len = 0x10000

Description

Range of program code to be copied. You can also specify length using the ANSI-C or
Modula-2 notation for hexadecimal constants (default is 0x10000).

Example

If an application is linked between address $3000 and $4000 and the EEPROM
start address is $2000 (origin), then len must be set to $2000. The code is stored at
address $1000 relative to the EEPROM start address.

If the EPROM start address is $3000 (origin) then len must be set to $1000. The
code is stored at the beginning of the EEPROM.

Example

len = 0x2000

See also

• destination: Destination Offset

• origin: EEPROM Start Address
487HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
OPENCOM: Open Output Communication Port

Syntax

OPENCOM <port>

Arguments

<port>: valid COM port number (1, 2, 3, 4).

Default

None

Description

With this command, the Burner sends the output to the specified communication port. To
close the port opened, use CLOSE: Close Open File or Communication Port.

Example

OPENCOM 2

See also

• baudRate: Baudrate for Serial Communication

• parity: Set Communication Parity

• header: Header File for PROM Burner

• dataBit: Number of Data Bits

• OPENFILE: Open Output File

• CLOSE: Close Open File or Communication Port

OPENFILE: Open Output File

Syntax

OPENFILE <file>

Arguments

<file>: valid file name.
488 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
Default

None

Description

With this command, the Burner sends the output to the specified file. To close the file, use
CLOSE: Close Open File or Communication Port command.

Example

OPENFILE “myFile.s19”

See also

• OPENCOM: Open Output Communication Port

• CLOSE: Close Open File or Communication Port

origin: EEPROM Start Address

Syntax

origin assign <address>

Arguments

<address>: start address.

Default

origin = 0

Description

Initialized with the EPROM start address in the target system. You can specify the start
address using ANSI C or Modula-2 notation for hexadecimal constants (default is 0).

Example:

origin = 0xC000

See also

• len: Length to be Copied

• destination: Destination Offset
489HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
parity: Set Communication Parity

Syntax

parity assign (none | even | odd)

Arguments

parity none, even or odd.

Default

parity = none

Description

Sets the parity used for transfer. Do not use this parameter when the burner output is
redirected to a file. Valid identifier values are none, odd, and even (default is none).

Use this command only if the output is sent to a communication port.

Example

parity = even

See also

• baudRate: Baudrate for Serial Communication

• dataBit: Number of Data Bits

• header: Header File for PROM Burner

• OPENCOM: Open Output Communication Port

SENDBYTE: Transfer Bytes

Syntax

SENDBYTE <number> <file>

Arguments

<number>: valid byte number (1, 2, 3, 4)

<file>: valid source file name.
490 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
Default

None

Description

This command starts the transfer.

If the data format is binary, the destination must be a file. The size of the file is the size
specified by len divided by the busWidth. All undefined bytes are initialized with $FF
or with the value specified by undefByte: Fill Byte for Binary Files.

If a data bus width of 1 byte is selected, the following command must be used to transfer
the code:

SENDBYTE 1 “InFile.abs”

If the data bus is 2 bytes wide, the code is split into two parts; the command SENDBYTE
1 “InFile.abs” transfers the even part of the code (corresponding to D8 to D15)
while the command SENDBYTE 2 “InFile.abs” transfers the odd part, which
corresponds to the LSB (D0 to D7).

If the data bus is 4 bytes wide, the command SENDBYTE 1 “InFile.abs” transfers
the MSB (D24 to D31), while the command SENDBYTE 4 “InFile.abs” sends the
LSB (D0 to D7).

If using 16-bit EPROMs, you must use the commands SENDWORD 1 “InFile.abs”
and SENDWORD 2 “InFile.abs”. If necessary, high and low byte can be swapped by
initializing swapBytes with yes.

Example

SENDBYTE 1 “myApp.abs”

See also

• busWidth: Data Bus Width

• SENDWORD: Transfer Words

SENDWORD: Transfer Words

Syntax

SENDWORD <number> <file>

Arguments

<number>: valid word number (1, 2)
491HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
<file>: valid source file name.

Default

None

Description

This command starts the transfer.

If the data format is binary, the destination must be a file. The size of the file is the size
specified by len divided by the busWidth. All undefined bytes are initialized with $FF
or value specified by undefByte: Fill Byte for Binary Files.

If a data bus width of 1 byte is selected, the following command must be used to transfer
the code:

SENDBYTE 1 “InFile.abs”

If the data bus is 2 bytes wide, the code is split into two parts; the command SENDBYTE
1 “InFile.abs” transfers the even part of the code (corresponding to D8 to D15)
while the command SENDBYTE 2 “InFile.abs” transfers the odd part, which
corresponds to the LSB (D0 to D7).

If the data bus is 4 bytes wide, the command SENDBYTE 1 “InFile.abs” transfers
the MSB (D24 to D31), while the command SENDBYTE 4 “InFile.abs” sends the
LSB (D0 to D7).

Using 16-bit EPROMs, the commands SENDWORD 1 “InFile.abs” and SENDWORD
2 “InFile.abs” must be used. If necessary, the high and low byte can be swapped by
initializing swapBytes with yes.

Example

SENDWORD 1 “myApp.abs”

See also

• SENDBYTE: Transfer Bytes

• busWidth: Data Bus Width
492 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
SLINELEN: SRecord Line Length

Syntax

SLINELEN assign <number>

Arguments

<number>: valid line length (1, 2,)

Default

<number> == 32

Description

This command configures how many bytes written are on a single SRECORD line. This
command only effects SRECORD file generation.

Example

With SLINELEN 16, the burner generates:

S113200000000000010100000000000000000000CA

S1132010000880020820800000000001020408106B

With SLINELEN 8, the burner generates:

S10B20000000000001010000D2

S10B20080000000000000000CC

S10B2010000880020820800092

S10B201800000001020408109D

See also

• format: Output Format
493HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
SRECORD: S-Record Type

Syntax

SRECORD= (Sx | S1 | S2 | S3)

Arguments

Sx : Automatic choose between S1, S2 or S3 records

S1 : use S1 records

S2 : use S2 records

S3 : use S3 records

Default

SRECORD=Sx

Description

This command is for S-Record output format.

Normally the Burner chooses the matching S-Record type depending on the addresses
used. However, with this option a certain type may be forced because the PROM burner
only supports one type.

If Sx is active, the burner is in automatic mode:

if the highest address is >= 0x1000000, then S3 records are used,

if the highest address is >= 0x10000, then S2 records are used,

otherwise S1 records are used.

Example

SRECORD=S2

See also

• format: Output Format
494 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
swapByte: Swap Bytes

Syntax

swapByte assign (on | off)

Arguments

on : enables byte swapping

off : disables byte swapping

Default

swapByte = off

Description

If necessary, the high and low byte can be exchanged when 16-bit or 32-bit EPROMs are
used.

Example

swapByte = on

See also

• busWidth: Data Bus Width

THEN: Statementlist for If Condition

Syntax

IF RelExpr THEN StatementList

[ELSE StatementList] END

Arguments

None

Default

None
495HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
Description

This command starts an IF conditional section.

Example

FOR i=0 TO 10 DO
IF i==7 THEN

ECHO “i is 7”
END
ECHO “#”

END

See also

• END: For Loop End or If End

• IF: If Condition

• ELSE: Else Part of If Condition

TO: For Loop End Condition

Syntax

FOR Ident Assign SimpleExpr

TO SimpleExpr DO StatementList END

Arguments

None

Default

None

Description

Specifies the FOR loop end condition. As ident, only i may be used, and each
occurrence of # in the loop is replaced with the actual value of i.
496 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
Example

FOR i=0 TO 10 DO

ECHO “#”

END

See also

• FOR: For Loop

• DO: For Loop Statement List

• END: For Loop End or If End

undefByte: Fill Byte for Binary Files

Syntax

undefByte assign <number>

Arguments

<number>: 8bit number

Default

undefByte = 0xFF

Description

This command assigns the default fill byte to undefined bytes in binary output files.

This command is only used for binary files.

Example

undefByte = 0x33

See also

• format: Output Format
497HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Tool Commands
Batch Burner Commands
PAUSE: Wait until Key Pressed

Syntax

PAUSE [<string>]

Arguments

<string>: a string written to output window

Default

None

Description

This command causes the batch burner language program to wait until a key is pressed.
An optional message text may be specified. For Windows, a dialog box appears:

Figure D.1 Burner Pause Dialog Box

Example

PAUSE “please press a key.”
498 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

E
EBNF Notation

This chapter gives a brief overview of the Extended Backus–Naur Form (EBNF) notation,
which is frequently used in this manual to describe file formats and syntax rules.

Introduction to EBNF
EBNF is frequently used in this reference manual to describe file formats and syntax rules.
Therefore a short introduction to EBNF is given here.

EBNF Example
ProcDecl = PROCEDURE "(" ArgList ")".

ArgList = Expression {"," Expression}.

Expression = Term ("*"|"/") Term.

Term = Factor AddOp Factor.

AddOp = "+"|"-".

Factor = (["-"] Number)|"(" Expression ")".

The EBNF language is a formalism that can be used to express the syntax of context-free
languages. An EBNF grammar is a set of rules called productions of the form:

LeftHandSide = RightHandSide.

The left-hand side is a so-called non-terminal symbol, the right-hand side describes its
composition.

EBNF consists of the following symbols:

• Terminal symbols (terminals for short) are the basic symbols which form the
language described. In above example, the word PROCEDURE is a terminal.
Punctuation symbols of the language described (not of EBNF itself) are quoted (they
are terminals, too), while other terminal symbols are printed in boldface.

• Non-terminal symbols (non-terminals) are syntactic variables and must be defined in
a production, i.e. they must appear on the left-hand side of a production somewhere.
In the above example, there are many non-terminals, e.g. ArgList or AddOp.

• The vertical bar “|” denotes an alternative, i.e. either the left or the right side of the
bar can appear in the language described, but one of them must. The third production
499HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

EBNF Notation
Introduction to EBNF
above means “an expression is a term followed by either a “*” or a “/” followed by
another term”.

Parts of an EBNF production enclosed by “[” and “]” are optional. They may appear
exactly once in the language, or they may be skipped. The minus sign in the last
production above is optional, both –7 and 7 are allowed.

• The repetition is another useful construct. Any part of a production enclosed by “{”
and “}” may appear any number of times in the language described (including zero,
i.e. it may also be skipped). ArgList above is an example: an argument list is a
single expression or a list of any number of expressions separated by commas. (Note
that the syntax in the example does not allow empty argument lists)

• For better readability, normal parentheses may be used for grouping EBNF
expressions, as is done in the last production of the example. Note the difference
between the first and the second left bracket: the first one is part of EBNF itself, the
second one is a terminal symbol (it is quoted) and therefore may appear in the
language described.

• A production is always terminated by a period.

EBNF Syntax
We can now give the definition of EBNF in EBNF itself:

Production = NonTerminal "=" Expression ".".

Expression = Term {"|" Term}.

Term = Factor {Factor}.

Factor = NonTerminal

| Terminal

| "(" Expression ")"

| "[" Expression "]"

| "{" Expression "}".

Terminal = Identifier | “"“ <any char> “"“.

NonTerminal = Identifier.

The identifier for a non-terminal can be any name you like, terminal symbols are either
identifiers appearing in the language described or any character sequence that is quoted.

Extensions
In addition to this standard definition of EBNF, we use the following notational
conventions:
500 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

EBNF Notation
Introduction to EBNF
• The counting repetition: Anything enclosed by “{“ and “}” and followed by a
superscripted expression x must appear exactly x times. x may also be a non-terminal. In
the following example, exactly four stars are allowed:

Stars = {"*"}4.

• The size in bytes. Any identifier immediately followed by a number n in square
brackets (“[” and “]”) may be assumed to be a binary number with the most
significant byte stored first, having exactly n bytes. Example:

Struct=RefNo FilePos[4].

• In some examples, we enclose text by “<” and “>”. This text is a meta–literal, i.e.
whatever the text says may be inserted in place of the text. (cf. <any char> in the
above example, where any character can be inserted).
501HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

EBNF Notation
Introduction to EBNF
502 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Index

Symbols
%” modifier 313
%’ modifier 313
+ operator 172
/wait 174
? command 251

A
-A option 314, 316
About box 45, 194
.abs file 23, 25, 50, 151
Absolute file 23, 25, 50, 197, 451, 455

Decoder 197
Generated by SmartLinker 50
SmartLinker 50

Absolute section, using in assembly source
file 147

ABSPATH 107, 189, 293
-Add option 49, 316
Additional object/library file (-Add) 316
ALIGN 467
Alignment rule, defining 467
-Alloc option 317
Allocate non-specified constant segments in

RAM (-CRam) 325
Allocate unreferenced overlap variables (-

CAllocUnusedOverlap) 322
Allocating variables 74
Allocation over segment boundaries (-Alloc) 317
Appendices 261
Application

Entry points with smart linking 69
Error (M5112) 427
Fatal error (M5115) 428
Information (M5114) 428
Standard occurrence (-View) 365
Startup (also see Startup) 119
Warning (M5113) 427

-AsROMLib option 319
Assembly

Application linking 100

Application warning messages 101
Instructions 196
LINK_INFO 104
prm file 101
Smart linking 102

AUTOLOAD 437
Automatic

Structure detection 98

B
-B option 50, 319
Bad hex input file (D1000) 407
Batch burner

Commands 476
makefile 165
User interface 163

Batch Burner Language (BBL) 163
Batch file, writing 174
Batch mode

SmartLinker 52
Starting Libmaker in 174

baudRate 477
.bbl file 337
Binary files, using to build application 72
Borrow license feature (LicBorrow) 345
Building your own Libraries 253
Built-in commands 250

? 251
cd 250
copy 250
del 250
echo 250
fc 251
fctext 251
puts 250
rehash 252
ren 252

Built-in commands, executing 250
Burner

Com Settings group 157
Command File tab 161
Content tab 159
503HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Dialog box 156
Dialog entries 283
Execute group 158
Input group 157
Interactive 155
Output group 157
Range to Copy group 160

Burner command files
Syntax 164

Burner Default Configuration window 155
Burner GUI 155
Burner messages 394–400
BURNER section 156, 283
Burner utility 23, 151

Starting 152, 163
BurnerBaudRate 288
BurnerByteCommands 287
BurnerDestination 284
BurnerFormat 285
BurnerHeaderFile 289
BurnerLength 285
BurnerOutputFile 288
BurnerOutputType 286
BurnerSwapByte 284
busWidth 478

C
C applications

Building 239
Making 239

-C option 320, 321
.c source file 246
Called application

Error (M5112) 427
Fatal error (M5115) 428
Information (M5114) 428
Warning (M5113) 427

Called application caused system error
(M5110) 426

Called application detected an error (M5108) 425
-CAllocUnusedOverlap 322
Can’t recompile source (M5704) 433
Can’t return to makefile (M5002) 412
Cannot open statistic log file

B51 395
D51 405
LM51 401
M51 409

Case sensitivity 240
cd command 250
Change directory failed (M5111) 426
CHECKKEYS 441
CHECKSUM 438
checksum computation 96

Controlled by linker 97
Controlled by prm file 97
Supported 439

__Checksum partial fields 99
.checksum section 99
.checksum section placement 99
checksum.h runtime support 99
Choose optimizing method (-DistOpti) 331
-Ci option 322
Circular dependencies (M5023) 420
Circular imports in definition modules

(M5703) 433
Circular include (M5017) 418
Circular macro substitution (M5014) 417
ClientCommand setting 186
CLOSE 478
-Cmd 172
-Cocc option 324
CODE 63
CodeWright 185
Colon expected (M5015) 417
Color

Error messages 370
Fatal messages 370
Information messages 371
User messages 372
Warning messages 372

Com settings group
Burner 157

Command
AUTOLOAD 437
CHECKKEYS 441
CHECKSUM 438
DATA 442
504 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

DEPENDENCY 442
ENTRIES 70, 72, 135, 447
HAS_BANKED_DATA 449
HEXFILE 449
INIT 135, 450
LINK 107, 135, 356, 451
MAIN 135, 452
MAPFILE 347, 453
NAMES 72, 73, 107, 455
OVERLAP_GROUP 456
PLACEMENT 64, 107, 111, 117, 458
PRESTART 460
SECTIONS 61, 461
SEGMENTS 55, 107, 463
STACKSIZE 471
STACKTOP 473
START 474
VECTOR 68, 474

Command File tab
Burner 161

Command files
Comments 165
How to write 167
Libmaker 172, 174
Syntax for Burner 164

Command line 252
Echo (M5109) 426
Exec (M5119) 430
History, SmartLinker 31
Interface, Libmaker 171
Linking with 45
Macros 244
Maker 252
Modifiers 37

Command line too long
M5008 415
M5028 422

Command line too long for exec (M5100) 422
Command line, error in

B1005 399
B52 396
D52 405
LM52 401
M5001 412

Commands 241, 250
Batch burner 476
in Maker 241
Libmaker 172
SmartLinker 437

Comments 241
in command file 165
in macros 243
in makefile 241
in Maker 243

Common code 470
Communication port is busy (B1002) 398
COMP 294, 432
COMP not set (M5700) 432
Compilation sequence (M5763) 435
Compile only (-O) 357
Compiler search information 265
Concatenation of macros 244
Configuration

default.env 255
Modifiers 38
WinEdit 254

Configuration file example
project.ini 290

Configuration files
Defining 33
Description 33
Loading in SmartLinker 30
Local 274
Saving, loading 32, 179
Storing settings in 40

Configuration modifiers 186
Configuration window

Decoder 207
Libmaker 188
Maker 227

Constants
Allocating 470
Optimizing 470

Content tab
Burner 159

Context information
SmartLinker 30

Controls
505HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Decoder 201
Maker 221

COPY 116, 125
.copy 110, 120
copy command 250
COPY segment 116
COPYRIGHT 294
Could not create process (M5118) 430
Could not delete file (M5116) 429
Could not open file error (B1000) 398
Couldn’t open listing file (M5706) 434
Couldn’t open makefile (M5708) 434
-CRam option 325
Create err.log error file (-WErrFile) 368
Create error listing file (-WOutFile) 389
Creating fixups (-SFixups) 362
CTRL-S 190
Current directory 264
Current link session, aborting 31
CurrentCommandLine 278
Cut file names in Microsoft format to 8.3 (-

Wmsg8x3) 369

D
-D option 326, 328
DATA 442
.data 110, 111
dataBit 479
DDE option, communication with 38
Decode DWARF sections (-D) 326
Decode ELF sections (-E) 333
Decoder

Absolute files 197
Changing message class 215
Configuration window 207
Control 195
Controls 201
Editor Settings tab 207
Environment tab 210
Error feedback 217
Error messages 215
GUI 204
Input File 216
Input file 197

Input files 195, 197
Intel hex files 198
List menus 201
Main window 205
Message feedback 217
Message Settings window 214
Messages 214
Object files 197
Option Settings window 212
Output files 195, 198
Retrieving error information 215
Save Configuration tab 209
Specifying input file 216
S-Record files 198
Status bar 207
Toolbar 205, 206
User-defined editor 217
Window title 205

Decoder GUI 196
Decoder messages 404–407
Decoder utility 23, 195
Default Configuration window

Burner 155
DEFAULT.ENV 274
default.env 255

Configuring for Maker 255
DEFAULT_RAM 116, 117
DEFAULT_RAM segment 117
DEFAULT_ROM 116, 117
DEFAULT_ROM segment 117
DEFAULTDIR 268, 295
Define a macro (-D) 328
Define absolute file name (-O) 355
Define application entry point (-E) 332
Defines listing file name (-O) 356
Definition modules, circular imports in

(M5703) 433
del command 250
Dependencies 241

in makefiles 241
Dependencies, circular (M5023) 420
DEPENDENCY 442
Dependency information 51
Dependency information in map file 51
506 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

DEPENDENCY TREE section
in map file 84

destination command 480
Directives 249
Directory change failed (M5111) 426
Directory structure

in Maker 253
Directory, current 264
Disable user messages (-WmsgNu) 384
Disassembly not generated (D1001) 407
Display dialog box (-D) 326
Display notify box (-N) 349
Display window (-W) 366
-Dist option 329
-DistFile option 330
-DistInfo option 330
-DistOpti option 331
-DistSeg option 332
DO 480
Do not generate DWARF information (-S) 361
Do not redirect stdout of called processes (-

NoCapture) 351
Do not use environment (-NoEnv) 352
Don’t know how to make (M5022) 420
DOS 175
Dump ELF sections in LST file (-Ed) 336
Dynamic macros 245

E
%E modifier 313
%e modifier 313
-E option 332, 333, 335
EBNF 499

Extensions 500
Notation 499
Syntax 500

ECHO 481
echo command 250
Echo command line (M5109) 426
-Ed option 336
Editor

Command line option 36
Local option 35
Section 276

Editor Communication with DDE option 38
Editor section 272, 276
Editor Settings tab

Decoder 207
Maker 228
SmartLinker 35

Editor_Exe 273, 276
Editor_Name 276
Editor_Opts 273, 277
EDOUT 299
ELSE 482
Enable distribution optimization (-Dist) 329
END 483
ENTRIES 70, 72, 135, 447
ENTRIES block 72
Entry doesn’t start at column 0 (M5018) 418
Entry points with smart linking 69
Entry processing, Maker 241
%(ENV) modifier 313
-Env option 336
ENVIRONMENT 296
Environment macro expansion error

B65 397
M65 410

Environment macro expansion message
D65 406
LM65 403

Environment tab
Decoder 210
in Configuration window 41
Maker 230

Environment variable 194, 263, 293
ABSPATH 107, 265, 293
COMP 294, 432
COPYRIGHT 294
DEFAULTDIR 268, 295
ENVIRONMENT 296
ERRORFILE 297
FLAGS 300
GENPATH 107, 197, 266, 300
HIENVIRONMENT 296
HITEXTFAMILY 305
HITEXTKIND 306
HITEXTSIZE 307
507HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

HITEXTSTYLE 308
INCLUDETIME 301
LIBPATH 266
LINK 302, 432
LINKOPTIONS 311
OBJPATH 107, 265, 266, 303
RESETVECTOR 304
SRECORD 304
SYMPATH 265
TEXTFAMILY 305
TEXTKIND 306
TEXTPATH 107, 198, 266
TEXTSIZE 307
TEXTSTYLE 308
USERNAME 310

Environment variables 263
Description 293
Line continuation 292
Paths 291

Environment Variables section 189
Error

File 52
Listing 299
Listing generated by SmartLinker 52
Messages 194, 215, 235, 393

Error feedback 46
Decoder 217
Maker 236

Error in command line
B1005 399
B52 396
D52 405
LM52 401
M5001 412

Error in input file format (B1001) 398
Error in macro (B1004) 399
Error information, retrieving 215, 235
Error message information 194
Error message information, accessing 45
Error while copying (M5104) 424
ERRORFILE 297
Exec command line (M5119) 430
Exec Process messages 422–431
Execute group

Burner 158
Execution calls, exceeded allowed (M5120) 430
Explorer 264
Explorer, starting Libmaker with 170
Extended Backus-Naur Form 499

F
%f modifier 313
-F option 338, 339
F2 shortcut 177
Fatal error during initialization (M5020) 419
fc command 251
fctext command 251
File

Absolute 23, 25, 50, 197, 451, 455
Error 52
Intel hex 198
Library 455
Map 50, 133, 266, 451, 453
Object 49, 197, 455
Parameter 49
Parameter (linker) 105
S 50
S-Record 198

File does not exist (M5107) 425
File manager 264
File name expected (M5106) 425
File name expected after include (M5016) 418
File names, expected two (M5101) 423
Files

.bbl 337
Listing 198
.lst 198
map 133

Files identical (M5122) 431
Files not identical (M5121) 431
FILL 468
Fill pattern, defining 468
FLAGS 300
FOR 484
format command 485
FUNCS segment 116
Function

Definition with overlapping parameters 79
508 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

G
Generate distribution information file (-

DistInfo) 330
Generate map file (-M) 347
Generate S-record file (-B) 319
Generic error message (B1006) 400
GENPATH 107, 189, 266, 300
Global Editor option

SmartLinker 35
Global initialization file 267
Graphical User Interface (GUI) 169
GUI

Decoder 204
Maker 221

H
-H option 339
HAS_BANKED_DATA 449
header command 485
HEXFILE 449
HIENVIRONMENT 296
HITEXTFAMILY 305
HITEXTKIND 306
HITEXTSIZE 307
HITEXTSTYLE 308

I
-I option 341
Icon 170
IF 486
Ignore case (-C) 321
Ignore exit codes (-I) 341
Illegal dependency (M5003) 413
Illegal include directive (M5009) 415
Illegal line (M5010) 415
Illegal macro reference (M5004) 413
Illegal option (M5024) 421
Illegal suffix for inference rule (M5011) 416
Illegal target name (M5029) 422
Implementation restriction 252
INCLUDE directive 108
Include directive, illegal (M5009) 415
Include file not found (M5012) 416

Include file too long (M5013) 417
Include, circular (M5017) 418
INCLUDETIME 301
Inference rules 246

Multiple 248
.ini file 33, 179
INIT 135, 450
.init 111
Initialization

Suppressing 136
Vector table 143

Initialization, fatal error (M5020) 419
Input file not found

B50 395
D50 404
LM50 401
M50 409
M5102 423

Input files
Decoder 195, 197
SmartLinker 49
Specifying 45, 216, 236

Input group
Burner 157

Input/Output tab 156
Installation section 267
Intel hex files 198

Decoder 198
Decoding 338

Interactive mode
Libmaker 170
SmartLinker 52

Internal error 400

L
-L option 342, 343
len 487
-LibFile 343
Libmaker

Adding files to library 173
Building libraries 172
Changing message class 193
Command files 174
Command line interface 171
509HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Commands 172
Configuration 179
Configuration modifiers 186
Configuration window 188
Creating a new library 173
Default Configuration window 175
Editor Communication with DDE

option 186
Editor Settings tab 182
Editor started with Command Line

option 185
Error messages 194
Extract file from library 173
Global Editor option 182
Graphic Interface 169
GUI 175
List contents of library 173
Local Editor option 184
Menu 180
Menu bar 178
Message Settings window 191
Messages 191
Option Settings window 190
Removing files from library 173
Retrieving message information 194
Save Configuration tab 187
Search information 265
Starting in batch mode 174
Status bar 178
Toolbar 177
User interface 169
View menu 181
Window content area 176

Libmaker command file
Using to manage libraries 172

Libmaker messages 400–403
Libmaker utility 23, 169

Interactive mode 170
Starting 170

-LibOptions 344
LIBPATH 189
Libraries

Adding objects 256
Building in Maker 253

Building with defined memory-model
options 256

Building with Libmaker 172
Building with objects added 256
Creating and maintaining 169
Managing with libmaker command file 172
Object 172
Structured makefiles for 258

Library file 455
-Lic option 344
-LicA option 345
-LicBorrow option 345
License information about all features (-

LicA) 345
-LicWait option 346
Line breaks 240
Line continuation

Environment variables 292
Line continuation occurred

B64 396
D64 405
LM64 402
M64 409

Line, illegal (M5010) 415
LINK 107, 135, 302, 356, 432, 451
Link as ROM library (-AsROMLib) 319
Link case insensitive (-Ci) 322
LINK not set (M5701) 432
LINK_INFO 104
Linker

Parameter file 105, 137
Linker-defined objects 86
Linking, results of 451
List modules (-L) 343
List options 339
Listing 314
Listing file 198
Listing file written (M5762) 435
Listing file, unable to open (M5706) 434
Local configuration file 274
Local Editor option

SmartLinker 35
Locals, overlapping 75
Log file, unable to open
510 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

B51 395
D51 405
LM51 401

.lst file 174, 198

M
-M option 347
Macro

Circular definition 242
Circular substitution (M5014) 417
Comments in macros 243
Concatenation 244
Definition 242
Definition of 242
Dynamic macro 245
Error in 399
Expansion 406
Expansion message (LM65) 403
Illegal reference (M5004) 413
in make files 242
Redefinition 242
Reference 242
Static macro 242
Substitution 242
Unknown (M5007) 414
User-defined 242

Macro definition or command line too long
(M5008) 415

Macro expansion error (M65) 410
Macro reference not closed (M5006) 414
Macro substitution too complex (M5005) 414
Macros

in Maker 243
MAIN 135, 452
Main window

Decoder 205
Maker 222

Make always (-MkAll) 349
Makefile

Macros 244
with batch burner 165

Makefile messages 408–422
Makefiles

Case sensitivity 240

Comments 241
Include 249
Line breaks 240
None found (M5019) 419
Processing not supported (M5153) 431
Restrictions 252
Structured 258
Syntax 240
Unable to open (M5708) 434
Using 240
Written (M5761) 435

Makefiles not generated (M5705) 433
Maker

Building libraries 253
Building libraries with defined memory-

model options 256
Building libraries with objects added 256
Building your own Libraries 253
C application building 239
Case-sensitivity 240
Changing message class 235
Command line 252
Command-line macros 244
Comments 241, 243
Configuration window 227
Configuring default.env 255
Configuring WinEdit 254
Controls 221
Dependencies 241
Directives 249
Directory structure 253
Dynamic macros 245
Editor Settings tab 228
Environment tab 230
Error feedback 236
Error messages 235
Executing built-in commands 250
GUI 221
Inference rules 246
Inference rules, multiple 248
Input File 236
Line breaks 240
Macro concatenation 244
Macro substitution 242
511HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Macros 242, 243
Main window components 222
Makefile macros 244
Menus 222
Message feedback 236
Message Settings window 233
Messages 233
Modula-2 application building 239
Option Settings window 232
Options window 232
Processing entries 241
Retrieving error information 235
Save Configuration tab 229
Special targets 249
Specifying input file 236
Static macros 242
Status bar 227
Structure makefiles 258
Toolbar 226
User-defined editor 237
User-defined macros 242
Using commands 241
Using makefiles 240
Window title 222

Maker search information 266
Maker utility 24, 219

Starting 219
Making C applications 239
Making target (M5027) 421
Mandatory linking 69

of all defined objects 70
Map file 50, 51, 133, 138, 266, 451, 453

Contents 133
COPYDOWN 134
Dependency information in 51
DEPENDENCY TREE 134
DEPENDENCY TREE section 84
FILE 133
Generated by SmartLinker 50
OBJECT ALLOCATION 133
OBJECT DEPENDENCY 134
SEGMENT ALLOCATION 133
STARTUP 133
STATISTICS 134

TARGET 133
UNUSED OBJECTS 134

.map file 50, 133, 451
MAPFILE 347, 453
mcutools.ini 35, 183, 208, 228, 267
Memory-model options, libraries with 256
Menus

Libmaker 180
Maker 222

Message class 43
Message class, changing 44, 193, 215

Maker 235
Message colors 43
Message feedback 46

Decoder 217
Maker 236

Message format for batch mode (-WmsgFob) 376
Message format for no file information (-

WmsgFonf) 379
Message format for no position information (-

WmsgFonp) 380
Message help, accessing 30
Message list 394
Message overflow

B2 395
D2 404
LM2 400
M2 408

Message Settings window 43
Decoder 214
Libmaker 191
Maker 233

Messages
Burner 394
Decoder 404
Exec process 422
Libmaker 400
Makefile 408
Modula-2 maker 432–435
Moving from one class to another 43
Types of 393

Messages Settings 192, 214, 233
Microsoft Developer Studio 186
-MkAll option 349
512 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Modifiers
Special 313
Specifying in command line 37

Modula-2 applications, building 239
Modula-2 maker messages 432–435
Module initialization 137
msdev setting 186

N
%N modifier 313
%n modifier 313
-N option 349
Name mangling

in ELF object file format 78
Overlapping locals 77

NAMES block 72, 73, 107, 455
NAMES command 455
No beep in case of error (-NoBeep) 351
No information and warning messages (-W2) 367
No information messages (-W1) 367
No makefile found (M5019) 419
No symbols in disassembled listing (-

NoSym) 353
No target found (M5021) 419
NO_INIT 57, 63, 461, 464
-NoBeep option 351
-NoCapture option 351
-NoEnv option 352
Non-existent search path

B66 397
D66 407
LM66 403
M66 411

-NoSym option 353
Nothing to make (M5021) 419
Number of allowed execution calls exceeded

(M5120) 430
Number of error messages (-WmsgNe) 382
Number of information messages (-

WmsgNi) 383
Number of warning messages (-WmsgNw) 384

O
.o (object) file 197, 246

-O option 107, 355, 356, 357
Object

Library 172
Object allocation

by SmartLinker 55
Object file 49, 197, 455

Adding in SmartLinker 49
Decoder 197

Object file format (-F) 338, 339
Object linking, mandatory 69
Objects

Adding to libraries 256
Defined by linker 86

OBJPATH 107, 189, 303
-OCopy option 357
OPENCOM 488
OPENFILE 488
Optimize common code (-Cocc) 324
Optimize copy down (-OCopy) 357
Option Settings window 41

Decoder 212
Libmaker 190
Maker 232

-OptionFile 358
-Options 358
Options

-ShowAboutDialog 171
-ShowBurnerDialog 171
-ShowConfigurationDialog 171
-ShowMessageDialog 171
-ShowOptionDialog 171
-ShowSmartSliderDialog 171
Special modifiers 313
Startup 171

Options section 268
Options, illegal (M5024) 421
origin command 489
Output file not opened (M5103) 423
Output files

Decoder 195, 198
SmartLinker 50

Output group
Burner 157

_OVERLAP 77, 118
513HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

.overlap 77, 112
Overlap allocation algorithm 75
_OVERLAP segment 118
Overlap size

Optimizing 84
OVERLAP_GROUP 456
Overlapping locals 75

Name mangling 77
OVERLAYS 74

Using to allocate variables 73

P
%p modifier 313
-P2LibFile 359
PAGED 57, 63, 74, 461, 464
Parameter file 49

SmartLinker 49, 105
parity command 490
Partial fields 99

__checksum 99
Path List 291
Path not found (M5117) 429
Paths

Environment variables 291
Paths in S0 record 354
PAUSE 498
Physical segments 55

SECTIONS block 61
Piper utility 174
piper.exe 175
PLACEMENT 64, 107, 111, 117, 458
Placement block

SmartLinker 64
Predefined sections 110
Predefined segments 116
Premia 185
_PRESTART 117
PRESTART 460
_PRESTART segment 117
Print full listing (-A) 314
Print license information (-Lic) 344
Print list of all available options (-H) 339
Print tool version (-V) 365
.prm file 49, 197

Prm file-controlled checksum computation 97
-Proc option 359
Process creation, blocked (M5118) 430
Processing, make 241
-Prod option 275, 360
Produce inline assembly file (-L) 342
Program startup (also see Startup) 119
Project configuration file

Storing settings in 40
Project directory 264
project.ini 156, 275, 276
puts command 250

Q
Qualifier

Handling 465
Qualifiers 57, 63, 464

CODE 63
NO_INIT 57, 63, 461, 464
PAGED 57, 63, 461, 464
READ_ONLY 57, 63, 461, 464
READ_WRITE 57, 63, 461, 464

R
RAM_AREA segment 65
Range to Copy group

Burner 160
READ_ONLY 50, 57, 63, 461, 464
READ_WRITE 57, 63, 461, 464
-ReadLibFile 361
Recursion checks 85
rehash command 252
Relocatable section, using 145
RELOCATE_TO 467
Relocation rule, defining 466
ren command 252
Renaming failed (M5105) 424
RESETVECTOR 304
Restriction 252

Implementation 252
RGB color

for error messages (-WmsgCE) 370
for fatal messages (-WmsgCF) 370
for information messages (-WmsgCI) 371
514 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

for user messages (-WmsgCU) 372
for warning messages (-WmsgCW) 372

.rodata 110

.rodata1 110
ROM libraries 120, 125, 135, 450, 455

and overlapping locals 136
Creating 135
Uses for 135
Using 136

ROM_AREA segment 65
ROM_LIB 135, 451
ROM_VAR 116
ROM_VAR segment 116
Rules 246
Runtime support 99

checksum.h 99

S
S file 50
-S option 361
S0 record 354
.s1 extension 50
S1 format 355
.s2 extension 50
S2 format 355
.s3 extension 50
S3 format 355
S7 record 354
S8 record 354
S9 record 354
Save Configuration tab 39

Decoder 209
Libmaker 187
Maker 229

Search path does not exist
B66 397
D66 407
LM66 403
M66 411

Section
.copy 110, 120
.data 110, 111
Definition 109, 115
.init 111

.overlap 112
Qualifier 63
.rodata 110
rodata 110
.rodata1 110
.stack 110, 111
.startData 110, 111, 120
.text 110, 111

Sections
Predefined 110
Using 112

SECTIONS block 61
SECTIONS command 461
__SEG_END_ 87
__SEG_END_DEF 87
__SEG_END_REF 87
__SEG_SIZE_ 87
__SEG_SIZE_DEF 87
__SEG_SIZE_REF 87
__SEG_START_ 87
__SEG_START_DEF 87
__SEG_START_REF 87
__SEG_START_SSTACK 86
Segment

Alignment 58, 464, 467
COPY 116, 125
DEFAULT_RAM 116, 117
DEFAULT_ROM 116, 117
Definition 109, 115
Fill pattern 60, 464, 468
Optimizing constants 470
_OVERLAP 118
Predefined 116
_PRESTART 117
Qualifier 57, 464
Relocation 464, 466
ROM_VAR 116
SSTACK 116, 117
STARTUP 116, 117, 124
STRINGS 116

Segment alignment 58
Segment definition

SmartLinker 55
Segment fill pattern 60
515HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

Segment qualifiers 57, 63
SEGMENTS 107, 463
Segments 115
SEGMENTS block 55

SmartLinker 55
Segments, specifying a list of 65
SENDBYTE 490
SENDWORD 491
Service Name setting 186
Set environment variable (-Env) 336
Set message file format for batch mode (-

WmsgFb) 373
Set Processor (-Proc) 359
Setting a message to disable (-WmsgSd) 385
Setting a message to error (-WmsgSe) 386
Setting a message to information (-WmsgSi) 387
Setting a message to warning (-WmsgSw) 388
-SFixups option 362
Short help (-H) 339
Show cycle count for each instruction (-T) 364
-ShowAboutDialog option 171
-ShowBurnerDialog option 171
-ShowConfigurationDialog option 171
-ShowMessageDialog option 171
-ShowOptionDialog option 171
-ShowSmartSliderDialog option 171
SLINELEN 493
Smart linking 69, 71

Assembly application 102
Defined 25
Switching off 70

SmartLinker
Adding object files 49
Batch mode 52
Commands 437
Configuration 33
Configuration files 32
Content area 32
Context information 30
Customizing 34
Default configuration in title 30
Dependency information 51
Editor Communication with DDE 38
Editor Settings tab 35

Environment tab 41
Error listing file 52
Generating absolute files 50
Generating map files 50
Generating S-Record files 50
Global Editor option 35
Input file 49
Input files 49
Interactive mode 52
Loading a configuration file 30
Local Editor option 35
Main window toolbar 31
Menu 34
Menu Bar 32
Menus 32
Message Settings window 43
Messages 43
Object allocation 55
Option Settings window 41
Options 41
Output files 50
Parameter file 49
Runs under Win32 29
Save Configuration tab 39
Segment definition 55
SEGMENTS block 55
Starting 29
Status bar 32
Toolbar 31
Window content area 30
Window title 30

SmartLinker commands
Mandatory 107

SmartLinker Configuration window 34
SmartLinker menu 34
SmartLinker prm file

Using to initialize 143
SmartLinker search information 266
SmartLinker utility 23

Description 25
SmartLinker window, clearing 32
Source and symbol file not found (M5702) 432
Source not found (M5704) 433
Special modifiers 313
516 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

for options 313
Special targets 249
Specify distribution file name (-DistFile) 330
Specify distribution segment name (-

DistSeg) 332
Specify name of statistic file (-StatF) 363
Specify project file at startup (-Prod) 360
SRECORD 304, 494
S-Record

Decoding 338
S-Record files 198

Decoder 198
Generated by SmartLinker 50

SSTACK 116, 117
SSTACK segment 117
.stack 110, 111
STACK synonym 471
STACKSIZE 471
STACKTOP 473
START 474
Start 174
.startData 110, 111, 120
STARTUP 116, 117, 124
Startup

Application 119
Configuration loading 275
Descriptor 137
Descriptor (ELF) 119
Descriptor (Freescale) 124

Startup command line options
Libmaker 171

Startup function 124, 126
User defined 126

Startup option 171
Startup routine

User defined 124
STARTUP segment 117
Startup structure

finiBodies 122
flags 121, 125
initBodies 122
libInits 122, 125
main 121, 125
mInits 125

nofFiniBodies 122
nofInitBodies 122
nofLibInits 122
nofZeroOuts 121, 125
pZeroOut 121, 125
stackOffset 121, 125
toCopyDownBeg 121, 125
User defined 123

-StartUpInfo 363
-StatF option 363
Statistic log file, cannot open

M51 409
Status bar

Decoder 207
Maker 227

stderr 174
stdout 174
Stop requested by user (M5000) 411
STRINGS 116
STRINGS segment 116
Structure detection, automatic 98
Structured makefiles 258

for Libraries 258
Suffix, illegal (M5011) 416
swapByte 495
.sx extension 50
Synchronization 174
Syntax of makefiles 240
System error caused by called application

(M5110) 426

T
-T option 364
Target

Dependencies 241
Target name, illegal (M5029) 422
Target, making (M5027) 421
Target, none found 419
.text 110, 111
TEXTFAMILY 305
TEXTKIND 306
TEXTPATH 107, 189, 198
TEXTSIZE 307
TEXTSTYLE 308
517HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

THEN 495
Timeout or communication failure (B1003) 399
Tip of the Day 232
TipFilePos 280
TipTimeStamp 271
TO 496
Tool options 311
Toolbar

Decoder 205
Maker 226

Tool-specific commands 437
Tool-specific section 269, 277
Top module not found (M5705) 433
Topic Name setting 186
Two file names expected (M5101) 423

U
UltraEdit 186
undefByte 497
UNIX make 240
Unknown macro (M5007) 414
Unknown macros as empty strings (-E) 335
Unknown message occurred

B1 394
D1 404
LM1 400
M1 408

Unknown processor (D1001) 407
User requested stop (M5000) 411
User-defined

Macros 242
Startup function 126
Startup routine 124
Startup structure 123

User-defined editor
Using 217
Using in Maker 237

User-defined sections
Allocating (ELF) 66
Allocating (Freescale) 67

USERNAME 310

V
-V option 365

Variable allocation 74
Using OVERLAYS 73

Variables
Allocating overlapping local 136
Environment 194
Global, initializing 137
Local 136

VECTOR command 68, 474
Vector initialization 26
Vector table

Defining 147
Initialization 68, 143, 145

-View option 365
Virtual segments 56

SECTIONS block 62
VIRTUAL_TABLE_SEGMENT 118

W
-W option 366
-W1 option 367
-W2 option 367
Wait for floating license from server (-

LicWait) 346
Warning for missing .DEF file (-A) 316
Warning messages

Assembly application 101
-WErrFile option 368
Win32

SmartLinker 29
Window title

Decoder 205
Maker 222

WindowPos 279
WinEdit 185, 254, 299

Configuring for Maker 254
-Wmsg8x3 option 369
-WmsgCE option 370
-WmsgCF option 370
-WmsgCI option 371
-WmsgCU option 372
-WmsgCW option 372
-WmsgFb option 373
-WmsgFob option 376
-WmsgFonf option 379
518 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

-WmsgFonp option 380
-WmsgNe option 382
-WmsgNi option 383
-WmsgNu option 384
-WmsgNw option 384
-WmsgSd option 385
-WmsgSe option 386
-WmsgSi option 387
-WmsgSw option 388
-WOutFile option 389
Write disassembled listing only (-X) 390
Write disassembled listing with source and all

comments (-Y) 392
Write disassembly listing with source code (-

C) 320
Write to standard output (-WStdout) 390
Wrote listing file (M5762) 435
Wrote makefile (M5751) 435
-WStdout option 390

X
-X option 390
XOR checksums, unsupported 99

Y
-Y option 392
519HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

520 HC(S)08/RS08 and S12(X) Build Tools Utilities Manual

	Introduction
	CodeWarrior IDE Utilities
	SmartLinker
	Burner Utility
	Libmaker
	Decoder
	Maker: The Make Tool

	Starting a CodeWarrior Utility

	SmartLinker
	Purpose of a Linker
	Product Features
	Section Contents

	Starting the SmartLinker Utility
	SmartLinker User Interface
	SmartLinker Main Window
	Window Title
	Content Area
	Main Window Toolbar
	Main Window Status Bar
	Main Window Menu Bar
	SmartLinker Configuration Window
	Option Settings Window
	Message Settings Window
	About Dialog Box
	Retrieving Information about an Error Message
	Specifying the Input File
	Using the Command Line in the Toolbar to Link
	Message/Error Feedback

	SmartLinker Files
	Input Files
	Parameter File
	Object File

	Output Files
	Absolute Files
	S-Record Files
	Map Files
	Error Listing File

	Linking Issues
	Object Allocation
	The SEGMENTS Block (ELF)
	The SECTIONS Block (Freescale + ELF)
	PLACEMENT Block

	Initializing Vector Table
	VECTOR Command

	Smart Linking (ELF)
	Mandatory Linking of an Object
	Mandatory Linking of all Objects Defined in Object File
	Switching OFF Smart Linking for the Application

	Smart Linking (Freescale + ELF)
	Mandatory Linking from an Object
	Mandatory Linking from all Objects Defined in a File

	Binary Files Building an Application (ELF)
	NAMES Block
	ENTRIES Block

	Binary Files Building an Application (Freescale)
	NAMES Block

	Allocating Variables in OVERLAYS
	Overlapping Locals
	Algorithm
	Name Mangling for Overlapping Locals
	Name Mangling in ELF Object File Format
	Defining a Function with Overlapping Parameters in Assembler
	DEPENDENCY TREE Section in Map File
	Optimizing the Overlap Size
	Recursion Checks

	Linker-Defined Objects
	Stack Consumption Computation
	STACK_CONSUMPTION Block

	Checksum Computation
	prm File-Controlled Checksum Computation
	Automatic Linker-Controlled Checksum Computation
	Partial Fields
	Runtime Support

	Linking an Assembly Application
	prm File
	Warning Messages
	Smart Linking
	LINK_INFO (ELF)

	SmartLinker Parameter File
	Parameter File Syntax
	Mandatory SmartLinker Commands
	The INCLUDE Directive

	ELF Sections
	Segments and Sections
	Sections
	Predefined Sections

	Examples of Using Sections
	Example 1
	Example 2

	Segments
	Segments and Sections
	Segment
	Predefined Segments

	Program Startup
	Startup Descriptor (ELF)
	User-Defined Startup Structure (ELF)
	User-Defined Startup Routines (ELF)
	Startup Descriptor (Freescale)
	User-Defined Startup Routines (Freescale)
	Example of Startup Code in ANSI-C

	The Map File
	Map File Contents

	ROM Libraries
	Creating a ROM Library
	ROM Libraries and Overlapping Locals

	Using ROM Libraries
	Suppressing Initialization

	Initializing the Vector Table
	Using the SmartLinker prm File
	Using a Relocatable Section in the Assembly Source File
	Using an Absolute Section in the Assembly Source File

	Burner Utility
	Introduction
	Product Highlights
	Starting the Burner Utility
	Interactive Burner GUI
	Burner Default Configuration Window
	Burner Dialog Box
	Input/Output Tab
	Content Tab
	Command File Tab

	Batch Burner Language
	Batch Burner User Interface
	Syntax of Burner Command Files
	Command File Comments

	Batch Burner with Makefile
	Command File Examples

	Libmaker Utility
	Introduction
	User Interface
	Starting the Libmaker Utility
	Libmaker Interface
	Startup Command Line Options
	Command Line Interface
	Libmaker Commands
	Managing Libraries

	Libmaker Graphic User Interface
	Libmaker Default Configuration Window
	Default Configuration Window Status Bar
	Configuration Window
	Libmaker Option Settings Window
	Libmaker Message Settings Window
	About Libmaker Dialog Box

	Decoder Utility
	Introduction
	Product Highlights
	User Interface
	Input and Output Files
	Input Files
	Absolute Files
	Object File
	S-Record Files
	Intel Hex Files

	Output Files

	Decoder Controls
	List Menus
	File Menu
	Decoder Menu
	View Menu
	Help Menu

	Graphical User Interface
	Decoder Main Window
	Decoder Configuration Window
	Decoder Option Settings
	About Decoder Dialog Box

	Specifying the Input File
	Message and Error Feedback
	Using Information from the Main Window
	Using a User-Defined Editor

	Maker Utility
	Maker Controls
	Graphical User Interface
	Maker Main Window
	Main Window Components
	Maker Main Window Menu Bar
	Maker Main Window Toolbar
	Maker Configuration Window
	Maker Option Settings Window
	Maker Message Settings Window
	About Dialog Box

	Specifying the Input File
	Message and Error Feedback
	Using Information from the Main Window
	Using a User-Defined Editor

	Using Maker
	Making Modula-2 Applications
	Making C Applications
	Using Makefiles

	User-Defined Macros (Static Macros)
	Definition
	Reference
	Redefinition
	Macro Substitution
	Macros and Comments
	Concatenation
	Command-Line Macros

	Dynamic Macros
	Inference Rules
	Multiple Inference Rules

	Directives and Special Targets
	Built-In Commands
	Command Line
	Implementation Restrictions

	Building Libraries
	Maker Directory Structure
	Configuring WinEdit for the Maker
	Configuring default.env for the Maker
	Building Libraries with Defined Memory Model Options
	Building Libraries with Objects Added
	Structured Makefiles for Libraries

	Appendices
	Environment Variables
	Current Directory
	Tool-Specific Search Information
	Compiler
	Debugger
	Libmaker
	Maker
	SmartLinker

	Global Initialization File (MCUTOOLS.INI - PC Only)
	[Installation] Section
	Path
	Group
	[Options] Section
	DefaultDir
	[Tool] Section
	SaveOnExit
	SaveAppearance
	SaveEditor
	SaveOptions
	RecentProject0, RecentProject1, etc.
	TipFilePos
	ShowTipOfDay
	TipTimeStamp
	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	Local Configuration File (usually project.ini)
	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts
	[Tool] Section
	RecentCommandLineX, X=Integer
	CurrentCommandLine
	StatusbarEnabled
	ToolbarEnabled
	WindowPos
	WindowFont
	TipFilePos
	ShowTipOfDay
	Options
	EditorType
	EditorCommandLine
	EditorDDEClientName
	EditorDDETopicName
	EditorDDEServiceName
	Burner Dialog Entries in [BURNER]
	BurnerUndefByte
	BurnerSwapByte
	BurnerOrigin
	BurnerDestination
	BurnerLength
	BurnerFormat
	BurnerDataBus
	BurnerOutputType
	BurnerDataBits
	BurnerParity
	BurnerByteCommands
	BurnerBaudRate
	BurnerOutputFile
	BurnerHeaderFile
	BurnerInputFile
	Configuration File Example

	Paths
	Line Continuation
	Environment Variable Details
	ABSPATH: Absolute Path
	COMP: Modula-2 Compiler
	COPYRIGHT: Copyright Entry in Absolute File
	DEFAULTDIR: Default Current Directory
	ENVIRONMENT: Environment File Specification
	ERRORFILE: Error File Name Specification
	FLAGS: Options for Modula-2 Compiler
	GENPATH: Define Paths to Search for Input Files
	INCLUDETIME: Creation Time in Object File
	LINK: Linker for Modula-2
	LINKOPTIONS: Default SmartLinker Options
	OBJPATH: Object File Path
	RESETVECTOR: Reset Vector Location
	SRECORD: S Record File Format
	TEXTFAMILY: Text Font Family
	TEXTKIND: Text Font Character Set
	TEXTPATH: Text Path
	TEXTSIZE: Text Font Size
	TEXTSTYLE: Text Font Style
	TMP: Temporary Directory
	USERNAME: User Name in Object File

	Tool Options
	Option Details
	Special Modifiers
	-A: Print Full Listing (Decoder)
	-A: Warning for Missing .DEF File (Maker)
	-Add: Additional Object/Library File
	-Alloc: Allocation Over Segment Boundaries (ELF)
	-AsROMLib: Link as ROM Library
	-B: Generate S-Record file (SmartLinker)
	-C: Write Disassembly Listing with Source Code (Decoder)
	-C: Ignore Case (Maker)
	-CAllocUnusedOverlap: Allocate Unreferenced Overlap Variables (Freescale)
	-Ci: Link Case Insensitive
	-Cmd: Libmaker Commands
	-Cocc: Optimize Common Code (ELF)
	-CRam: Allocate Non-specified Constant Segments in RAM (ELF)
	-D: Display Dialog Box (Burner)
	-D: Decode DWARF Sections (Decoder)
	-D: Define a Macro (Maker)
	-Disp: Display Mode (Maker)
	-Dist: Enable Distribution Optimization (ELF) (SmartLinker)
	-DistFile: Specify Distribution File Name (ELF) (SmartLinker)
	-DistInfo: Generate Distribution Information File (ELF) (SmartLinker)
	-DistOpti: Choose Optimizing Method (ELF) (SmartLinker)
	-DistSeg: Specify Distribution Segment Name (ELF) (SmartLinker)
	-E: Define Application Entry Point (ELF) (SmartLinker)
	-E: Decode ELF sections (Decoder)
	-E: Unknown Macros as Empty Strings (Maker)
	-Ed: Dump ELF Sections in LST File (Decoder)
	-Env: Set Environment Variable
	-F: Execute Command File (Burner)
	-F: Object File Format (Decoder)
	-FA, -FE, -FH -F6: Object File Format (SmartLinker)
	-H: Prints the List of All Available Options (Short Help)
	-I: Ignore Exit Codes (Maker)
	-L: Add a Path to Search Path (ELF) (SmartLinker)
	-L: Produce Inline Assembly File (Decoder)
	-L: List Modules (Maker)
	-LibFile
	-LibOptions
	-Lic: Print License Information
	-LicA: License Information About Every Feature in Directory
	-LicBorrow: Borrow License Feature
	-LicWait: Wait for Floating License from Floating License Server
	-M: Generate Map File (SmartLinker)
	-M: Produce Make File (Maker)
	-Mar: Freescale Archive Commands (Libmaker)
	-MkAll: Make Always (Maker)
	-N: Display Notify Box
	-NoBeep: No Beep in Case of an Error
	-NoCapture: Do Not Redirect stdout of Called Processes (Maker)
	-NoEnv: Do Not Use Environment
	-NoPath: Strip Path Info (Libmaker)
	-NoSym: No Symbols in Disassembled Listing (Decoder)
	-Ns: Configure S-Records (Burner)
	-O: Define Absolute File Name (SmartLinker)
	-O: Defines Listing File Name (Decoder)
	-O: Compile Only (Maker)
	-OCopy: Optimize Copy Down (ELF) (SmartLinker)
	-Options
	-OptionFile
	-P2LibFile
	-Proc: Set Processor (Decoder)
	-Prod: Specify Project File at Startup (PC) (No d, no m)
	-ReadLibFile
	-S: Do Not Generate DWARF Information (ELF) (SmartLinker)
	-S: Silent Mode (Maker)
	-SFixups: Creating Fixups (ELF) (SmartLinker)
	-StartUpInfo
	-StatF: Specify Name of Statistic File (SmartLinker)
	-T: Show Cycle Count for Each Instruction (Decoder)
	-V: Prints Tool Version
	-View: Application Standard Occurrence (PC)
	-W: Display Window (Burner)
	-W1: No Information Messages
	-W2: No Information and Warning Messages
	-WErrFile: Create “err.log” Error File
	-Wmsg8x3: Cut File Names in Microsoft Format to 8.3 (PC)
	-WmsgCE: RGB Color for Error Messages
	-WmsgCF: RGB Color for Fatal Messages
	-WmsgCI: RGB Color for Information Messages
	-WmsgCU: RGB Color for User Messages
	-WmsgCW: RGB Color for Warning Messages
	-WmsgFb (-WmsgFbv, -WmsgFbm): Set Message File Format for Batch Mode
	-WmsgFi: Set Message File Format for Interactive Mode
	-WmsgFob: Message Format for Batch Mode
	-WmsgFoi: Message Format for Interactive Mode
	-WmsgFonf: Message Format for no File Information
	-WmsgFonp: Message Format for No Position Information
	-WmsgNe: Number of Error Messages
	-WmsgNi: Number of Information Messages
	-WmsgNu: Disable User Messages
	-WmsgNw: Number of Warning Messages
	-WmsgSd: Setting a Message to Disable
	-WmsgSe: Setting a Message to Error
	-WmsgSi: Setting a Message to Information
	-WmsgVrb: Verbose Mode (Maker)
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create Error Listing File
	-WStdout: Write to Standard Output
	-X: Write Disassembled Listing Only (Decoder)
	-Y: Write Disassembled Listing with Source And All Comments (Decoder)

	Messages
	Types of Generated Messages
	Message Details
	Burner Message List
	B1: Unknown Message Occurred
	B2: Message Overflow, Skipping <kind> Messages
	B50: Input file ‘<file>’ not found
	B51: Cannot Open Statistic Log File <file>
	B52: Error in Command Line '<cmd>
	B64: Line Continuation Occurred in <FileName>
	B65: Environment Macro Expansion Error '<description>' for <variablename>
	B66: Search Path <Name> Does Not Exist
	B1000: Could Not Open '<FileType>' '<File>
	B1001: Error in Input File Format
	B1002: Selected Communication Port is Busy
	B1003: Timeout or Failure for the Selected Communication
	B1004: Error in Macro ‘<macro>’ at Position <pos>: ‘<msg>’
	B1005: Error in Command Line at Position <pos>: ‘<msg>’
	B1006: ‘<msg>’

	Libmaker Message List
	LM1: Unknown Message Occurred
	LM2: Message Overflow, Skipping <kind> Messages
	LM50: Input File ‘<file>’ Not Found
	LM51: Cannot Open Statistic Log File <file>
	LM52: Error in Command Line <cmd>
	LM64: Line Continuation Occurred in <FileName>
	LM65: Environment Macro Expansion Message '<description>' for <variablename>
	LM66: Search Path <Name> Does Not Exist

	Decoder Message List
	D1: Unknown Message Occurred
	D2: Message Overflow, Skipping <kind> Messages
	D50: Input File ‘<file>’ Not Found
	D51: Cannot Open Statistic Log File <file>
	D52: Error in Command Line <cmd>
	D64: Line Continuation Occurred in <FileName>
	D65: Environment Macro Expansion Message '<description>' for <variablename>
	D66: Search Path <Name> Does Not Exist
	D1000: Bad Hex Input File <Description>
	D1001: Because Current Processor is Unknown, No Disassembly is Generated. Use -proc.

	Makefile Messages
	M1: Unknown Message Occurred
	M2: Message Overflow, Skipping <kind> Messages
	M50: Input File ‘<file>’ Not Found
	M51: Cannot Open Statistic Log File <file>
	M64: Line Continuation Occurred in <FileName>
	M65: Environment Macro Expansion Error '<description>' for <variablename>
	M66: Search Path <Name> Does Not Exist
	M5000: User Requested Stop
	M5001: Error in Command Line
	M5002: Can't Return to <makefile> at End of Include File
	M5003: Illegal Dependency
	M5004: Illegal Macro Reference
	M5005: Macro Substitution Too Complex
	M5006: Macro Reference Not Closed
	M5007: Unknown Macro: <macroname>
	M5008: Macro Definition or Command Line Too Long
	M5009: Illegal Include Directive
	M5010: Illegal Line
	M5011: Illegal Suffix for Inference Rule
	M5012: Include File Not Found: <includefile>
	M5013: Include File Too Long: <includefile>
	M5014: Circular Macro Substitution in <macroname>
	M5015: Colon (:) Expected
	M5016: Filename After INCLUDE Expected
	M5017: Circular Include, File <includefile>
	M5018: Entry Doesn't Start at Column 0
	M5019: No Makefile Found
	M5020: Fatal Error During Initialization
	M5021: Nothing to Make: No Target Found
	M5022: Don't Know How to Make <target>
	M5023: Circular Dependencies Between <target1> and <target2>
	M5024: Illegal Option
	M5027: Making Target <target>
	M5028: Command Line Too Long: <commandline>
	M5029: Illegal Target Name: <targetname>

	Exec Process Messages
	M5100: Command Line Too Long for Exec
	M5101: Two File Names Expected
	M5102: Input File Not Found
	M5103: Output File Not Opened
	M5104: Error While Copying
	M5105: Renaming Failed
	M5106: File Name Expected
	M5107: File Does Not Exist
	M5108: Called Application Detected an Error
	M5109: Echo <commandline>
	M5110: Called Application Caused a System Error
	M5111: Change Directory (cd) Failed
	M5112: Called Application: <error>
	M5113: Called Application: <warning>
	M5114: Called Application: <information>
	M5115: Called Application: <fatal>
	M5116: Could Not Delete File
	M5117: Path Was Not Found
	M5118: Could Not Create Process: <diagnostic>
	M5119: Exec <commandline>
	M5120: Running Version with Limited Number of Execution Calls. Number of Allowed Execution Calls Exceeded
	M5121: The Files <file1> and <file2> Are Not Identical
	M5122: The Files <file1> and <file2> Are Identical
	M5153: Processing Make Files Under Win32s Is Not Supported by the Maker

	Modula-2 Maker Messages
	M5700: Environment Variable COMP Not Set
	M5701: Environment Variable LINK Not Set
	M5702: Neither Source Nor Symbol File Found: <source file>
	M5703: Circular Imports in Definition Modules
	M5704: Can't Recompile <source file> (No Source Found)
	M5705: No Make File Generated (Top Module Not Found)
	M5706: Couldn't Open the Listing File <list file>
	M5708: Couldn't Open the Makefile
	M5761: Wrote Makefile <makefile>
	M5762: Wrote Listing File <listfile>
	M5763: Compilation Sequence

	Tool Commands
	SmartLinker Commands
	AUTO_LOAD: Load Imported Modules (Freescale, M2)
	CHECKSUM: Checksum Computation (ELF)
	CHECKKEYS: Check Module Keys (Freescale, M2)
	DATA: Specify the RAM Start (Freescale)
	DEPENDENCY: Dependency Control
	ENTRIES: List of Objects to Link with Application
	HAS_BANKED_DATA: Application Has Banked Data (Freescale)
	HEXFILE: Link Hex File with Application
	INIT: Specify Application Init Point
	LINK: Specify Name of Output File
	MAIN: Name of Application Root Function
	MAPFILE: Configure Map File Content
	NAMES: List Files Building the Application
	OVERLAP_GROUP: Application Uses Overlapping (ELF)
	PLACEMENT: Place Sections into Segments
	PRESTART: Application Prestart Code (Freescale)
	SECTIONS: Define Memory Map (Freescale)
	SEGMENTS: Define Memory Map (ELF)
	STACKSIZE: Define Stack Size
	STACKTOP: Define Stack Pointer Initial Value
	START: Specify the ROM Start (Freescale)
	VECTOR: Initialize Vector Table

	Batch Burner Commands
	baudRate: Baudrate for Serial Communication
	busWidth: Data Bus Width
	CLOSE: Close Open File or Communication Port
	dataBit: Number of Data Bits
	destination: Destination Offset
	DO: For Loop Statement List
	ECHO: Echo String onto Output Window
	ELSE: Else Part of If Condition
	END: For Loop End or If End
	FOR: For Loop
	format: Output Format
	header: Header File for PROM Burner
	IF: If Condition
	len: Length to be Copied
	OPENCOM: Open Output Communication Port
	OPENFILE: Open Output File
	origin: EEPROM Start Address
	parity: Set Communication Parity
	SENDBYTE: Transfer Bytes
	SENDWORD: Transfer Words
	SLINELEN: SRecord Line Length
	SRECORD: S-Record Type
	swapByte: Swap Bytes
	THEN: Statementlist for If Condition
	TO: For Loop End Condition
	undefByte: Fill Byte for Binary Files
	PAUSE: Wait until Key Pressed

	EBNF Notation
	Introduction to EBNF
	EBNF Example
	EBNF Syntax
	Extensions

	Index

