
CodeWarrior Development Studio
Macro-processor Language

Reference Manual

Document Number: CWPEXMLREF
Rev 10.6, 02/2014

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Introduction

Chapter 2
Terms and definitions

Chapter 3
Processor Expert macro-language description

3.1 Symbols..11

3.1.1 Global symbols..11

3.1.1.1 Processor component symbols ..11

3.1.1.2 Symbols defined at all times..13

3.1.2 Component module symbols ...16

3.1.3 CPUDB functions..17

3.1.3.1 Registers...17

3.1.3.2 CPU package and pins...19

3.1.3.3 Memory Map..19

3.1.3.4 Others...20

3.1.4 Symbols for driver...21

3.1.5 Component functions...21

3.2 Source file syntax for macro-processor..22

3.2.1 Denotation..23

3.2.1.1 Math operations..26

3.2.2 Macro commands...26

3.2.2.1 Conditional translation...27

3.2.2.2 Symbol definition...27

3.2.2.3 Inserting files, calling external DLLs..28

3.2.2.4 Text formatting and comments ...30

3.2.2.5 Output language and compiler...31

3.2.2.6 Errors..31

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 3

Section number Title Page

3.2.2.7 Working with lists..32

3.2.2.8 Sections..34

3.2.2.9 Code identification ..37

3.2.2.10 Working with component items...38

3.2.2.10.1 Modification of string-list...45

3.2.2.11 Expressions..46

3.2.2.12 Debugging..47

3.2.2.13 Insertion marks...47

3.2.2.14 %set ReqValue <value>=<reason> ...48

3.2.3 Inherited item symbols...49

3.2.4 Other macros..49

3.3 Component translation sequence, generating initialization..53

3.4 Generated code format: requirements...55

3.5 Limitations of code generation...55

Chapter 4
TST script for component testing

Chapter 5
Component scripts

5.1 CHG script: setting control script...59

5.2 CHG script types...60

Chapter 6
TS2 script for component interdependence testing

Chapter 7
CDB

7.1 readyMASK..63

Chapter 8
External libraries

8.1 OS shared libraries API..65

8.2 Java libraries API..67

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

4 Freescale Semiconductor, Inc.

Chapter 1
Introduction

This document describes the macro-processor embedded in PE serving namely for
component code generation based on the component driver. It defines the syntax and
semantics of the macro-processor, as well as the symbols predefined including their
importance. In addition, TST and CHG script files are described herein. This manual is
composed of the following chapters:

Table 1-1. Structure of the Manual

Chapter Title Description

Introduction Provides the introduction of the manual.

Terms and Definitions Describes the terms and definitions used in the manual.

Processor Expert Macro-language Description Describes the symbols and commands for Processor Expert
Macro-language.

TST Script for Component Testing Describes the TST script files for component testing.

Component Scripts Describes the setting control script for CHG script files

TS2 Script for Component Interdependence Testing Describes the TS2 script file for component interdependence
testing.

CDB Describes the CDB files.

External Libraries Describes the external libraries API.

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 5

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

6 Freescale Semiconductor, Inc.

Chapter 2
Terms and definitions

" PE " means an acronym for Processor Expert.

"Source file" means a file containing source texts for the device in question. In code
generation, this file is processed using an internal macro-processor (see Processor Expert
macro-language description), which will process, in a defined manner, conditional
translations, replacing the symbols defined by their values. The name of this file derives
from the component name, with extension that reads "src".

"RTI" stands for Real Time Interrupt.

"Shadow variables" are variables for sharing values in the write-only registers.

"Resource" means an internal processor peripheral (for example, pin, port, timer, serial
channel, etc.), while component means a PE component (for example, "One-bit input/
output" or "Date and time".)

" " this character means that the following symbol/convention is no more recommended
for use, it is preserved only for backward compatibility and may not be supported within
future PE versions.

"template" means a file containing blank function bodies ready for code writing by the
user. PE has the capacity of generating both the interface and implementation part of this
module, where the interface will contain headers and implementation will contain imports
of shared items and empty function bodies.

"CHG script file" is a script for component setting control within OOI in the PE
environment.

"TST script file" is a script for component setting testing prior generating, which
dependant in terms of implementation.

"CPUDB" stands for CPU database in Processor Expert. Proprietary format.

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 7

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

8 Freescale Semiconductor, Inc.

Chapter 3
Processor Expert macro-language description

The text of the component driver is processed by Processor Expert macroprocessor. This
is special macroprocessor designed for this kind of component drivers. The
macroprocessor supports:

Macro is an identifier that holds any value. Identifier of a macro can contain characters:
a..z, A..Z, 0..9, _ and cannot start with a digit. The value can be string or number. If
macro value is a number or a string, the macro identifier can be directly replaced by its
value in the driver text.

%{def_name}, %'{def_name}', %"{def_name}", %~{def_name}~ will be replaced by its value.

Example:

%define MyMacro local_value

MyMacro=%MyMacro

MyMacro=%'MyMacro'_3333

After processing by macroprocessor the result will be:

MyMacro=local_value

MyMacro=local_value_3333

There are several types of macros:

Command starts with character % as a first non-space character on line. The command
ends at the end of line.

A source file may be a driver (*.DRV), TST or TS2 script file and CHG script file. Source file is
processed by Processor Expert macro-processor to validate component settings or
generate code.

Processor Expert defines the following symbols (macros) prior to script execution:

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 9

• Global macros or symbols - Defined by Processor Expert, the same for all
components during code generation, cannot be changed by driver. Driver can define
new global macro but cannot modify them. Processor Expert settings, CPU
component settings, same information for all components;

• Local macros or symbols specific for Component - contains component specific
settings. They are of two types:

• Defined by Processor Expert for each component, cannot be changed by a driver.
Some of them are defined for each component and the others depend on
component's properties, methods, and events.

• Defined by driver and can be changed by a driver.
• Special macros and directives or symbols for each property/method/event -

information about settings for each item;

Symbol small/capital letters are distinguished; however, two identical symbols differing
only by a small/capital letter in the symbol name cannot be used due to the backward
compatibility. The driver-defined symbol names are subject to the conventions described
herein.

Methods

Symbols determining generating methods match method names; if pre-defined, the user
will require the method in the source code, otherwise, the method will not be required.
Method name small/capital letters are distinguished and included in the description. The
symbol values correspond to method user names or match the method symbols unless
method renaming has been opted by the user.

If the target language does not support identical method names in different modules (or
the object approach), a method name will be created as %'ModuleName'_MethodName. The "_"
character positioned between the module name and method is defined using "%." macro
and depends on the compiler.

Events

Symbols determining handling the events in question match event names. If pre-defined,
the user will require event handling in the source code, where the symbol value will
correspond the name of the procedure to be executed at each event.

This chapter consists of the following topics:

• Symbols
• Source file syntax for macro-processor
• Component translation sequence, generating initialization
• Generated code format: requirements
• Limitations of code generation

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

10 Freescale Semiconductor, Inc.

3.1 Symbols

This section explains the symbols defined based on processor component and contains
the following topics:

• Global symbols
• Component module symbols
• CPUDB functions
• Symbols for driver
• Component functions

3.1.1 Global symbols

This section describes the symbols defined globally for the entire project. The topics
covered here:

• Processor component symbols
• Symbols defined at all times

3.1.1.1 Processor component symbols

This topic describes the symbols defined based on processor component.

Language Targets the language identification, 'ANSIC', 'ASM'.

TimeStamp Translation time (date, time), data and time formats from the
operating system (long date, short time); the symbol is
intended only for information included in the comment; the
comment must extend over the entire line for easier
comparison of the files within PE.

CPUvariant Types item within the processor property editor provided there
are multiple variants in the processor; if not, the same as
CPUtype.

 CPU
{deprecated} Same as the CPUvariant.

CPUtype Processor type (component name).

CPUfamily Processor family as per CPU DB.

CPUsubFamily Processor sub-family as per CPU DB.

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 11

CPUproducer Processor producer as per CPU DB.

CPUendian Byte coding for CPU ('big' (for example, Freescale), 'little').

CPU_DB_version CPU database version.

CPUmanualVersion CPU manual version as per which CPUDB has been created.

ProcessorModule CPU module name.

ProcessorName CPU component name (as named by the user).

ExternalModules List of names of external user modules that the user wishes to
link to the project.

ExternalModuleExts List of external user module extensions.

ExternalModuleDir List of paths to external user modules; backslash is used as
sub-directory delimiter and it is finished by backslash.

ExternalModuleRelDir List of relative paths to external user modules against the
code directory; ends with a slash; not supported for Eclipse -
the list contains empty string instead relative path.

ExternalModuleHeader List of Y/N values depending on whether include for the
external user module exists on the disk or not.

Xtal_kHz Processor timing frequency in kHz, integer (rounded).

Xtal_kHz_real Processor timing frequency in kHz, real number.

[High|Low|Slow]Clock_kHz Clock before the system prescaler in the high|low|slow speed
mode, i.e. PE timing source clock frequency (timing model
root), integer number; the symbols are not provided for
SpeedModeList mode.

[High|Low|Slow]Clock_kHz_real Clock, i.e. PE timing source clock frequency (timing model
root), before the system prescaler in the high|low|slow speed
mode, real number; the symbols are not provided for
SpeedModeList mode.

[High|Low|Slow]SpeedClock Setting for the main prescaler (item value), defined only for
supported speed-modes.
NOTE: This is a remainder of the Toshiba time module,

where the timing source was pre-selected using the
main prescaler; recently not in use, 1 remains; these
symbols are not available for data-driven CPU
components, if there are no corresponding properties
in the component; the list is not provided for
SpeedModeList mode.

CPUsystem_ticks Number of ticks after pre-selecting by the main prescaler, i.e.
main prescaler setting (a list of 3 values - for each mode); the
list is not provided for SpeedModeList mode.

OnChipRAM

OnChipEEPROM

OnChipFLASH Sizes of RAM, EEPROM and FLASH on the chip; for other
memories, the size is defined only locally for the processor
module.

Dir_Compiler
{deprecated} External compiler directory (slash-terminated
absolute path), to be defined based on the tools setting; it is
not defined for Eclipse.

PE_GENERATING Defined under the following conditions: 1) generating; 2) TS2
script file processing prior generating the code; 3) TS2 script
file processing, if the peripheral initialization inspector is open
and all symbols for RGI processing need to be defined.

Table continues on the next page...

Symbols

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

12 Freescale Semiconductor, Inc.

InstructionClock Frequency of the instruction execution clock in MHz; a list of
real numbers for all speed modes; to be defined as per the
prescaler from CPU DB named InstructionClock, which, in
addition, contains a special register with a function named in
the same manner; if the frequency is not defined or unknown,
the list will contain an undef value.

OperatingSystemId Identification of the Operating System as per the component
in the project presenting the Operating System;

O_xxx Symbols based on the active configuration items (convention:
each item symbol must start with O_).

__REG_INIT_ONLY__ RGI processing identification, this symbol is not defined in PE,
it serves for crating RGI from the driver - by %ifdef
__REG_INIT_ONLY__ conditional translation, or %ifndef
__REG_INIT_ONLY__;

3.1.1.2 Symbols defined at all times

An error corrected in the 2.71 edition - no global symbols could be defined unless the
project included CPU component. (For CPU.chg, which is not selected as a target, no
symbol needs to be defined.)

PEversion Processor Expert (core/service) version number that reads as
'XX.XX'; the version may be presented as a hex number
however in the past was used only decimal digits; see also
PEversionDecimal.

PEversionDecimal Processor Expert (core/service) version number, as a decimal
number; PE version is internally represented as a hex number
(for example version 4.46 is internally represented as number
0x446), this symbol contains decimal representation of this
number (for example, for 0x446 = 1094).

PE_ProductVersion Processor Expert (product) version number.

PE_ProductVersionLimited Defined only if the PE version is not a full version; it may
become one of the following values: ALPHA, BETA,
PROTOTYPE and DEMO; the information needs to be obtained
from PE.cfg - ProductVersion.

ProjectStaticFilesGenerationMode Performs the identification of the selected mode of creation of
static files for the project (the selection is done only during
project creation), supported values: LINKED (default) and
STANDALONE.

Compiler Compiler identification; the symbol as per the file name in the
directory as follows: Config\Compilers*.cmplr

CommentLine Defined if a sequence of characters exists for the language in
question quoting the comment to the line ends; if this value is
reached, information will be obtained from the configuration
file of the compiler selected.

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 13

CommentBrackets Defined if a sequence of characters exists for the language in
question quoting and terminating the multiple-line comment;
the sequence presents the symbol value, information will be
obtained from the configuration file of the compiler selected.

DriverExtension Durrent driver file extension; necessary for processing TST,
RGI, DRV and DMO files using SRC.

ModuleList List of names of all component modules (except for the CPU
module); not defined provided no additional module exists; the
symbol will be available only for generating.

EventModuleList List of names of all potential modules; not defined if there are
no modules; the symbol will be available only for generating.

Dir_Project
{deprecated} Project directory (slash-terminated absolute
path); replaced by ClientDir_Project.

ClientDir_Project Project directory, absolute path; backslash is used as sub-
directory delimiter and it is finished by backslash.

Dir_Drivers, Dir_Events, Dir_Binary
{deprecated} Absolute target directories for generating codes
for drivers, events and binary (translated) files, slash-
terminated; use relative paths if possible.

ClientDir_Code, Dir_Events, Dir_Binary
{deprecated} Absolute target directories for generating codes
for drivers, events and binary (translated) files, slash-
terminated; use relative paths if possible.

DirRel_Code Relative target directory for generating code; sub-directories
are separated by backslash, the path is finished by backslash.

DirRel_Binary, DirRel_Docs Relative target directories for generating binary files and
documentation, in formats specified by the user (relative in
respect to the project directory, or absolute); slash-terminated
if not empty; (DirRel_Binary is relative path to project even
the user can enter only relative path to code directory);
backslash is used as sub-directory delimiter and it is finished
by backslash.

DirRel_StaticCode Relative target directory for static code (relative in respect to
the project directory, or absolute); backslash is used as sub-
directory delimiter and it is finished by backslash.

DirRel_EventToDrivers
{deprecated} Relative path from the events directory to the
drivers directory, i.e. empty string, setting not possible by the
current PE.

DirRel_EventToBinary Relative path from the events directory to the binary directory,
i.e. exactly what is set by the user; backslash is used as sub-
directory delimiter and it is finished by backslash.

DirRel_Events Relative path from the project directory to the events
directory; backslash is used as sub-directory delimiter and it is
finished by backslash.

DirRel_Drivers
{deprecated} Relative path from the project directory to the
generated code and events directory (for DirRel_Drivers
is applied DirRel_Events+DirRel_EvntToDrivers); the
symbol was replaced by DirRel_Code.

DirRel_DriverToEvents
{deprecated} Relative path from the drivers folder to the
events folder (empty string: current PE does not allow the
setup).

DirRel_BinaryToEvents Relative path from the binary directory to the events directory
(in most cases, "" or "..\"); backslash is used as sub-directory
delimiter and it is finished by backslash.

Table continues on the next page...

Symbols

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

14 Freescale Semiconductor, Inc.

DirRel_Sources
{deprecated} Relative path of main & events directory
selected by user, this symbol is available only in Eclipse with
Java PE service; should be replaced by DirRel_Code.

DirRel_ProjectSettings Relative path of Project settings directory selected by user,
this symbol is available only in Eclipse with Java PE service;
backslash is used as sub-directory delimiter and it is finished
by backslash.

Dir_PE PE system directory (slash-terminated absolute path).

ServerDir_PE, ClientDir_PE Root PE directory on server and on client (absolute path,
finished by backslash); for stand-alone PE, PE Java service
and CW plug-in both symbols are the same; backslash is
used as sub-directory delimiter and it is finished by backslash.

PE_DemoVersion Indicates PE demo version.

PE_DEVELOPMENT Eclipse: PE development mode is tuned ON, for example,
"CDE mode".

PE_ECLIPSE Symbol is defined only in PE plug-in for Eclipse (correctly
saying symbol is defined in PE server version for Eclipse or
Java PE-service).

ProjectName Project name; for Eclipse the value is ProcessorExpert for
projects created in older version (to preserve backward
compatibility); otherwise it is name of the Eclipse project
(might not be an identifier, only character % is replaced by
underscore character).

EclipseProjectName Name of the Eclipse project; the name may contain relative
path in the workspace; the symbol may not be available
during project creation or project closing; recommended to
use symbol ProjectName instead.

ProjectModule Main project module name generated from the "Main.src" file;
this module usually contains only import of processor module
and empty main function (a user template); deprecated,
replaced by ProjectMainModule.

ProjectMainModule
{deprecated}Main project module name generated from the
Main.src file; this module usually contains only main()
function.

SetHighSpeedMode Within CPU, HighSpeedMode is supported (always defined) -
at the same time, this is a mode change method name, the
value stands for the mode name (main clock source) as it is
selected in the corresponding property, empty string If there is
no property for clock source selection; the symbol is not
available for SpeedModeList mode, list SpeedModeList
should be used instead.

SetLowSpeedMode Within CPU, LowSpeedMode is supported - at the same time,
this is a mode change method name, the value stands for the
mode name (main clock source) as it is selected in the
corresponding property, empty string If there is no property for
clock source selection; the symbol is not available for
SpeedModeList mode, list SpeedModeList should be used
instead.

SetSlowSpeedMode Within CPU, SlowSpeedMode is supported - at the same
time, this is a mode change method name, the value stands
for the mode name (main clock source) as it is selected in the
corresponding property, empty string If there is no property for

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 15

clock source selection; the symbol is not available for
SpeedModeList mode, list SpeedModeList should be used
instead.

CPUrunSpeedModeNum A number of speed modes supported within CPU.

SpeedModeList List of all supported speed modes
[SpeedMode0,SpeedMode1,...,SpeedMode7], number of
items in the list matches with CPUrunSpeedModeNum; the list
is available only in SpeedModeList mode.

SpeedModeNames All speed mode names: High, Low, Slow or SpeedMode0,
SpeedMode1, ..., SpeedMode<N>, where <N> is index of last
selected speed mode.

3.1.2 Component module symbols

This topic describes the symbols defined for each component module.

DeviceType Component type, corresponding to the component name
within PE.

DeviceTypeCount() A number of components of the given type included and
enabled in the project (current project configuration); the
function is available for component scripts only.

DeviceName User-defined component name unique within the project (in
future, this may be more than just an identifier).

ModuleName Module name, so far identical with DeviceName, 100%
identifier.

Comment Comments to the component, list of strings, component
header generating symbol, not defined unless a comment is
written by the user.

runHighSpeed If the device is capable of running in HighSpeedMode; the
symbol is not available for SpeedModeList mode,
runSpeedMode should be used instead.

runLowSpeed If the device is capable of running in LowSpeedMode; the
symbol is not available for SpeedModeList mode,
runSpeedMode should be used instead.

runSlowSpeed If the device is capable of running in SlowSpeedMode; the
symbol is not available for SpeedModeList mode,
runSpeedMode should be used instead.

runSpeedMode List of supported modes (Yes/No identifiers).

runSpeedModeNum Number of supported modes.

<method> Names of all methods requested by the user.

<method>_Hint Hint for the method in question - header declaration.

<method>_HintHint Hint for the method in question - description according to the
component (reduced).

<method>_HintLong Hint for the method in question - description according to the
component (unreduced).

Table continues on the next page...

Symbols

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

16 Freescale Semiconductor, Inc.

<event> Names of all events requested by the user; the value stands
for the user implementation (procedure name).

<event>Prior Event priority (>= device priority), only defined if the event has
a priority.

<event>Module Module of event implementing (replaces the EventModule).

<event>_Hint Hint for the event in question - header declaration.

MethodList List of names of all methods requested.

MethodHints list of hints (headers) of all methods requested.

EventList list of names of all events requested.

EventModules List of all component event modules (replaces EventModule);
the list is empty if event modules are not generated; the
symbol will be available only during generating. In shared
modules, this will contain event modules of all components
within the project.

InhrSymbolList List of symbols of all inheritance items with components
generating code (a component module) and all linked
components.

ComponentVersion Component version.

ComponentTemplate Component template, defined for templates only.

ComponentUserCopyright User copyright for the component (only defined if specified
in .bean), a list of lines to be generated within the header.

ComponentAllocatedLicenses The list is available if the component options contains feature
"AllocateAllLicenses" and contains all licenses, that were
allocated; as the licenses are allocated only for code
generation, the symbol is also available only during code
generation - it should not be accessed from TST or CHG
scripts, use PE_GENERATING symbol to check if it is code
generation in progress.

3.1.3 CPUDB functions

This section describes the CPUDB functions and covers the following topics:

• Registers
• CPU package and pins
• Memory Map
• Others

3.1.3.1 Registers

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 17

CPUDB_get_register_bit_name(reg,num) Stands for a register bit name, reg stands for a register name,
num stands for a number of bit from zero to the highest bit; if
the num refers to a bits group, function returns <BG><i>
where <BG> is name of the bits group and <i> is index of a
bit in the bits group (starting from zero); an error return an
empty string (
NOTE: Any unused pins are stored under "Unused" within

CPUDB).

CPUDB_get_register_bits_name(reg,num) Stands for register bit names, reg stands for a register name,
num stands for a number of bit from zero to the highest bit; an
error will return an empty string (
NOTE: Any unused pins are stored under "Unused" within

CPUDB)

CPUDB_get_register_bits_size(reg,num) Stands for register bit width, reg stands for a register name,
num stands for a number of bit from zero to the highest bit; an
error will return an empty string.

CPUDB_get_register_bit_offset(reg,bitname) Bit position/positions within the register (from zero), reg
stands for a register name, bitname stands for a bit or bit
group name; an error will return an empty string.

CPUDB_get_register_bit_mask(reg,bitname) Returns a value of (1 <<
%CPUDB_get_register_bit_offset(reg,bitname))
expression; an error will return an empty string; should not be
applied to bit groups.

CPUDB_get_register_bits_mask(reg,bitsgroupnam
e)

Returns a mask for a bit group (or even a single bit); an error
will return an empty string.

CPUDB_get_register_bit_reset(reg,num) Bit value/values following resetting within the register (from
zero) as per CPU-DB, except for 0 and 1 values, this may
return the following codes: P (0 after supply, other reset will
not change the value), Q (1 after supply, not changed by other
reset), C (mode-dependant), ? (not defined), reg stands for a
register name, num stands for a number from zero to the
highest bit; if num ‚all' the function will return a value (binary
number) for every bit within the register (the lowest bit on the
right); an error will return an empty string.

CPUDB_get_register_bit_access(reg,num) Access to a bit or bits within the register (from zero), reg
stands for a register name, num stands for a number from
zero to the highest bit; if num ‚all' the function will return a
value for every bit within the register (the lowest bit on the
right); possible values: R (read-only), W (write-only), X (read-
write), U (unused), M (mode dependant), F (register in flash,
read-only), E (register in flash, no access), 1 (read/write
once), V (write-once); an error will return an empty string.

CPUDB_get_register_bit_hint(reg,num) Stands for a register bit description, reg stands for a register
name, num stands for a number of bit from zero to the highest
bit; an error will return an empty string.

CPUDB_get_register_bits_hint(reg,num) Stands for register bit descriptions, reg stands for a register
name, num stands for a number of bit from zero to the highest
bit; an error will return an empty string.

CPUDB_get_register_width(reg) Returns register width - a decimal number; an error will return
an empty string (if the register does not exist).

CPUDB_get_register_addr(reg) Returns register address - a decimal number; an error will
return an empty string (if the register does not exist).

CPUDB_get_register_addr_offset(reg) Returns register address without register base; if register not
found, returns empty string.

Table continues on the next page...

Symbols

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

18 Freescale Semiconductor, Inc.

CPUDB_get_register_unused_bits_mask(reg) Returns mask (as a decimal number) of all reserved bit-fields
in register passed as command parameter; reg stands for a
register name; on error, will return an empty string (if the
register does not exist)

CPUDB_is_register_in_FLASH(reg) Returns yes/no if the register is in FLASH; an error will return
an empty string (if the register does not exist).

CPUDB_is_write_once_register(reg) Returns yes/no if the register contains at least a single write-
once bit; an error will return an empty string (if the register
does not exist).

3.1.3.2 CPU package and pins

CPUDB_get_total_number_of_pins() Returns a total number of pins on the CPU packaging.

CPUDB_get_number_of_pins_horiz Returns a total number of pins on a single horizontal edge of
the CPU packaging.

CPUDB_get_number_of_pins_vert Returns a total number of pins on a single vertical edge of the
CPU packaging.

CPUDB_is_pin_clock_numbering() Returns Y/N for a clockwise packaging pin numbering
sequence.

CPUDB_get_first_pin_side() Returns U/R/D/L location (side of the packaging) of the first
pin.

CPUDB_get_first_pin_pos() Returns EGDE/CENTER position of the first pin on the
packaging edge.

CPUDB_get_pin_name_by_number(num) Returns a pin name by a number on the CPU packaging.

CPUDB_get_pin_channel_number(<cht>,<pin>,<prp
h>)

Returns a number of the channel for the pin entered with
respect to the peripheral entered (decimal number), <cht>
will specify a type of channel, it may achieve the following
values: I/O (for example, pin of port) or A/D (for example,
input channel of ADC) or IRQ (for example, pin of external
interrupt of "IRQ" type); the pin will specify an active name of
existing pin (if one exists - internal error); if the name does not
exist, the peripheral will return -1; <prph> stands for
peripheral name (it is preferred to use active user name, but
can be used also default CPUDB name).

3.1.3.3 Memory Map

CPUDB_get_[unused_]memory_block_count() Returns a number of memory blocks within the memory map
as displayed in the memory map window (full version inc. I/O
and external space). The unused_ function works with non-
allocated memory only.

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 19

CPUDB_get_[unused_]memory_block_info(index,
info-type)

Returns the requested information on the memory block with
index specified by parameter index (1 up to the number of
blocks), info-type is ADDRESS (initial block address), SIZE
(block size in addressable units), TYPE (memory type: RAM,
ROM (i.e. ROM or OTP), FLASH, I/O, EEPROM, FIRMWARE,
EXTERNAL i.e. unoccupied external address space),
DISPLAY_TYPE (memory type as displayed in the User
Interface, standard memory type may be overwritten by
custom value), AREA (name of memory area if there are
multiple supported by CPU; if not supported, this will return an
empty string; naming will depend on the CPU model, largely
CODE or DATA), MIRROR (returns yes/no, depending on
whether this is a memory block that mirrors a memory of
another block), MIRROR_FROM_ADDR (returns the address of
source address, "n/a" if the block is not mirrored), WORDSIZE
(the width of addressable block word in bits), EXTERNAL (will
return yes/no, depending on whether this is a block outside
the internal memory); SDRAM (returns yes/no, depending on
whether this is SDRAM-like RAM); StandByRAM (will return yes/
no, depending on whether RAM is battery backed-up RAM);
NAME (returns specific name of the memory block, usually it is
unused; used for "BootROM"); HINT (will return the hint to the
memory block that has been assigned to that block under the
PE code, contains additional information regarding the block
and is displayed in the hint within PE); the unused_ function
will work with non-allocated memory only.

CPUDB_get_[unused_]memory_block_index(addr[,s
pace])

Returns the memory block index within the memory map
according to the address specified (from one); in case of
error, it will return zero; the optional space parameter
specifies the name of the area in which the address is to be
searched (implicitly, the main address area), area names are
displayed within the memory map heading; the unused_
function will work with a non-allocated memory only.

3.1.3.4 Others

CPUDB_get_allocated_bean_type(prph) Returns a component name (DeviceType) that allocates the
device specified, prph is a default device name as per CPU
DB; if the peripheral does not exist, PE will report an internal
error; in the case of other error (no CPU component selected,
peripheral not allocated) the function will return an empty
string.

CPUDB_get_allocated_bean_name(prph) Returns a user component name that allocates the device
specified, prph is a default device name as per CPU DB; if the
peripheral does not exist, PE will report an internal error; in
the case of other error (no CPU component selected,
peripheral not allocated) the function will return an empty
string.

Symbols

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

20 Freescale Semiconductor, Inc.

3.1.4 Symbols for driver

This section describes the symbols defined by each driver, as local symbols, i.e. by
%define command.

DriverVersion Driver version number that reads as XX.XX

DriverAuthor Driver author name

DriverDate Driver modification last date that reads as DD.MM.YYYY

3.1.5 Component functions

setVariable(name,value) Assigns the variable (with the specified value) to the current
component. The variable exists with the component instance;
it is not affected if the component is disabled, but for future
extension it is not guaranteed that the variables will be
preserved for disabled components. All variables are removed
if variant of the peripheral initialization component is changed.
It is not stored into the project. The function returns empty
string. The variable name must be an identifier. The variable
names starting with PE_ and PEx_ prefixes are reserved for
interaction with Processor Expert core.

getVariable([@comp@]name[,default-value]) Returns value of the component variable; if the variable does
not exists, returns default-value; if default-value is not
specified generates script error; optional @comp@ prefix can
be used to refer variables from other components (via
component name), prefix @_CPU_@ can be used to refer
processor component.

delVariable(name) Removes the component variable; if variable does not exists,
returns string not_found, otherwise returns empty string.

Listing: Example - Count Execution of Script

%setVariable(exec_counter,%EXPR(1+%getVariable(exec_counter,0)))
%hint COUNTER = %getVariable(exec_counter)
%if (%getVariable(exec_counter) == "1000")
 %delVariable(exec_counter)
%endif

Reserved script variables for Processor Expert Core:

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 21

PEx_RequiredInitMethodName Defines with non-empty value, if the component initialization is
not called after reset, value contains name of the method, that
needs to be invoked for the initialization.

PEx_RequiredPinRoutingInitMethodName Defines with non-empty value, if the pin-routing initialization is
not called after reset; value contains name of the method, that
needs to be invoked for the initialization; this variable is used
to identify "dynamic" configuration for pins model.

PEx_RequiredPeripheralsModelInitMethodName Defines with non-empty value, if the peripheral initialization is
not called after reset; value contains name of the method, that
needs to be invoked for the initialization; this variable (if
defined) is used to identify "dynamic" configuration for
property model.

PEx_InitSequenceComment Contains comment displayed for the component in the
InitializationSequence view; optional value.

PEx_ClkSigOutFreqTxt_<element> Reserved for interaction with clock diagrams custom view
plug-in; specifies text to be displayed as output frequency for
clock signal element in clock flow diagram; <element> is a
name (identifier) of the clock signal element.

PEx_GeneratesComponentModule Used to disable generation of the component module using
%INTERFACE and %IMPLEMENTATION; acceptable value is
"no"; this information may be also specified statically in the
Options section of .bean file.

PEx_PinAndPropertyModelDynamicConflictResolut
ionMsg

Contains extension of dynamic (run-time) error message
displayed for the component; the component may define the
text to specify recommended resolution for the conflict.

PEx_ImplementationModules comma separated list of the component implementation
modules including project relative path and file extension; “/”
slashes are used to separate directories in the path
(backslashes shall not be used); it is used if the
implementation module does not match with component
name, usually if static implementation module is provided
from the component; the variable is used in Processor Expert
to display code of the selected method; for example,
GeneratedCode/UART3.c, GeneratedCode/UART3.h

PEx_ImplementationModules4Method{mthd} Same as PEx_ImplementationModules, but content is
applicable only for method identified by symbol {mthd}.

PEx_ComponentMethodFirstParam Value of first method parameter (valid for all component
methods); used for drag'n'drop method invocation in user
code.

PEx_PddMethodFirstParam Value of first PDD/PESL parameter (valid for all PDD/PESL
component commands); used for drag'n'drop command
invocation in user code.

PEx_ NoModulePrefix the variable is alternative way to component option
NoModulePrefix, how the component may specify, that
generated code does not contain module prefix in the method
name. If the variable is defined, the methods are generated
without prefix. Value of the variable is ignored. This option
does not affect code generation, the component script must
ensure the corresponding code is generated.

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

22 Freescale Semiconductor, Inc.

3.2 Source file syntax for macro-processor

The source file is processed using the internal macro-processor which will produce a
source file (driver), or even more files in the language required (C, assembler, Java).

This section includes the following topics:

• Denotation
• Macro commands
• Inherited item symbols
• Other macros

3.2.1 Denotation

<def_name> Identifier of the symbol defined (see %define), the symbol
name is case-sensitive.

<string> String starting with a symbol of quotes or a single quote or
also back quote or tilde and ending with the same character; if
it starts with tilde (~), macro substitution is applied to its value.

<def_value> Text up to the end of line (the first space will be ignored),
presents a value of the symbol defined (see %define).

<def_list> Special list-like symbol, may contain string items.

<number> Decimal number

<item-ref> Reference to inspector item in one of the following formats:

item-symbol

@_CPU_@item-symbol

@component-name@item-symbol

<binary_operator> See also Math Operations

+ Summation

- Subtraction

* Multiplication

/ Real division

\ Integer division

: Modulo, remainder of integer division, binary operator only,
this binary operator was replaced by the : symbol to avoid
ambiguity the original symbol can be used as an unary
operator

| Bit or, logical count, integer operation & bit and, logical
multiplication, integer operation

~ bit xor, integer operation

^ power (only a non-negative integer may be an exponent)

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 23

> or >> bit shift to the right, integer operation

< or << bit shift to the left, integer operation

Binary operator priority (top to bottom):

^

* / \ :

+ -

> >> < <<

&

~

|

<unary_operator> = Assignment, works in the same way as %define!

<binary_operator>= See binary operator description

$= Converts floating point number to closest integer by
rounding

.= Converts floating point number to integer by removing of
the decimal section (truncate)

@= Logarithm (inversion operator to ^), the parameter on the
left is the logarithm of the one on the right is the base, (8@=2
will return 3), the result is a real number

<expression> <number> Macros and built-in functions in the format %func(params)will
be accepted as well, for example, %get; the mark can be
changed by superposing the minus mark, for example, -
%tmp;
(<expression>)<expression><binary_operator><e
xpression>

<pvalue> <def_name> or <string> or %"def_name" or list element
(see macro %[)

<condition> 1. defined(<def_name>) - Testing if the symbol has
been defined; it is also possible to test inherited
symbols using: defined(@<InhrItem>@<def_name>),
where <InhrItem> is a symbol of property for
inheritance, but it is not recommended practice to
create dependency on symbols from another
component.

2. ndefined(<def_name>) - Testing if the symbol has
not been defined.

3. <pvalue> = <pvalue>
4. <pvalue> == <pvalue>
5. <pvalue> <> <pvalue>
6. <pvalue> != <pvalue>
7. <pvalue> > <pvalue>
8. <pvalue> < <pvalue>
9. <pvalue> >= <pvalue>

10. <pvalue> <= <pvalue>
11. <pvalue> =N <pvalue>
12. <pvalue> ==N <pvalue>
13. <pvalue> <>N <pvalue>
14. <pvalue> !=N <pvalue>
15. <pvalue> >N <pvalue>
16. <pvalue> <N <pvalue>
17. <pvalue> >=N <pvalue>

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

24 Freescale Semiconductor, Inc.

18. <pvalue> <=N <pvalue> - N is figure 0..9 or full
stop, strings will be justified before comparison (i.e. cut
or spaces will be added to the left) to the length of N
characters; if N is zero, the shorter string will be
expanded to match the length of the longer string; if N is
full stop, both strings will be converted to a real number.

19. <pvalue> =^ <pvalue> - Prior comparison, both
strings will be converted to capital letters.

20. <pvalue> =$ <pvalue>
21. <pvalue> ==$ <pvalue>
22. <pvalue> !=$ <pvalue>
23. <pvalue> <>$ <pvalue> - Performs the

comparison of strings; comparison with the operator
without the symbol $; the only difference at the end: in
the internal version, the operator without $ will report an
error that integer and real number is being compared,
while the operator including $ will not contain such
control (the control serves as warning on frequent
errors).

24. <condition> | <condition> - Logical count (or),
<condition> may not contain logical multiplication, the
operator cannot be combined with logical multiplication,
processed using shortevaluation; This expression is not
recommended, brackets should be used.

25. <condition> & <condition> - logical multiplication
(along with), <condition> may not contain logic count,
the operator cannot be combined with logical count,
processed using short evaluation; This expression is not
recommended, brackets should be used

26. for_last - Testing if the current cycle variable
contains the last field item.

27. for_lastmod4 - Testing if the current cycle variable
contains the last field item or its index can be divided by
4.

28. for_lastmod8 - Testing if the current cycle variable
contains the last field item or its index can be divided by
8.

29. for_lastmod16 - Testing if the current cycle variable
contains the last field item or its index can be divided by
16.

30. <string> in <def_list> - Testing if the string is
contained within the list, <def_list> must be a
variable.

<boolean expression> <condition>

(<boolean expression>)

(<boolean expression>) & (<boolean
expression>)

(<boolean expression>) | (<boolean
expression>)

The priority of & and | operators is not defined and needs to
be treated using brackets. The Boolean expression can be
divided even to multiple lines; however, the end of line must
be behind the & or |operators.

To be evaluated only partially using a so-called short
evaluation.

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 25

The following topic is covered here:

• Math Operations

3.2.1.1 Math operations

All symbols in macro-language are stored as a string; however there are supported
several math operations as well. Macro-language allows to work both with real-numbers
(with double precision) and integer-numbers (unlimited width from version PE 5.02).

For integer operations, string is converted to integer number. If the string represents real
number with non-zero fractional part, error is reported.

For operations, that are supported with both real and integer operands, the real numbers
are preferred. If both operands are integers, operation is executed above integer type.

3.2.2 Macro commands

A macro command must start at the beginning of the line (% as the first non-space
character on the line); this line may contain only this command. The remainder of the line
is a comment. For a macro command, a comment up to the end of line can also be used in
the following format: %--.

A list of macro commands by type follows under these topics:

• Conditional translation
• Symbol definition
• Inserting files, calling external DLLs
• Text formatting and comments
• Output language and translator
• Errors
• Working with lists
• Sections
• Code identification
• Working with component items
• Expressions
• Debugging
• Insertion marks
• %set ReqValue <value>=<reason>

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

26 Freescale Semiconductor, Inc.

3.2.2.1 Conditional translation

The following listing displays the conditional translation:

Listing: Conditional translation

%ifdef <def_name> conditional translation
%ifndef <def_name> (<def_name> can be macro as well)
%if <condition> [%-comment]
%if (<boolean expression>) [%-comment]
%else
%elif <condition> [%-comment] as a %else/%if sequence
%elif (<boolean expression>) [%-comment] as a %else/%if sequence
%endif

3.2.2.2 Symbol definition

%define <def_name> <def_value> Defines a symbol for the given driver, i.e. scope of
applicability will be limited to the framework of the given file,
the symbol possess <def_value>value; from
<def_value>, all spaces at the start and at the end of this
value will be removed with subsequent replacement of
macros.

%define! <def_name> <def_value> The same as with %define, but if a symbol of the same
name exists (and is a local symbol, i.e. driver-defined), the
symbol will be re-defined instead of invoking an error; from
<def_value>, all spaces at the start and at the end of this
value will be removed with subsequent replacement of
macros.

%define_prj <def_name> <def_value> Defines a symbol for the project as such, the symbol value will
be <def_value>; will not work for TST and CHG scripts,
when only a local symbol will be defined (while the local
symbols from main.tst will be available for starting TST
component as well); the symbol name can be defined using
macros, for example, iv%IntDevice; from <def_value> all
spaces at the start and at the end of this value will be
removed with subsequent replacement of macros;
define_prj. Allows for re-defining the formerly defined
value, which should be, however, used only exceptionally.

%undef <def_name> Deletes the definition of a driver-defined local symbol/list, if
the symbol does not exist, error will be reported.

%undef! <def_name> If a local driver-defined <def_name> symbol/list exists, this
will delete the definition of such symbol/list.

%compute_fraction(<def_name>, <real_value>,
<number>)

Calculates a fraction, which is the closest, by its value, to the
real number specified and define the output into the
<def_name>_mul and <def_name>_div symbols (if the
symbols exist, they will be re-defined) - when both such

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 27

values must be lesser or equal to integer <number>; the
function operates with 32-bit signed integer only; serves for
generating a timer driver.

3.2.2.3 Inserting files, calling external DLLs

%include <filename> Insert a <filename> file into the text; the file name is the text
up to the end of the line. The file name is entered including
the directory relatively with respect to the Drivers\directory. A
file name cannot contain a for cycle variable.

%include <filename> (<par1>,<par2>,..) The same as with %include, in addition, defines the
parameters transferred as those available via %1,
%2, ..macros <par?> All characters between "(" and/or
"," and "," and/or ")"; the parameters may not contain quote
or bracket characters.

%include><indent> As above, plus inserts a number of spaces specified before
each line when pasted (similar as %inclSUB>X).

%inclSUB[><indent>] <subroutine>
[(<par1>,<par2>,..)]

Inserts a code from a sub-program with <subroutine>
identification to the current location of the file source, defines
forwarded parameters as those available via %1, %2, ..
macros <par?> or via identifiers of parameters defined under
%SUBROUTINE, where the value of such parameters includes
all characters between "(" and/or "," and "," and/or ")";
<indent> is an optional indent parameter - a decimal
number providing a number of spaces to be inserted at the
start of every sub-program line; if not provided otherwise, the
spaces are inserted according to the indentation of the
%inclSUB command; the current indent is specified by the
%SUBROUTINE_INDENT macro.

Comments for forwarding parameters to the
sub-routine:

If the number of parameters forwarded prior macro
replacement is equal to that of the sub-routine parameters,
then the parameters are separated first, and macro
replacement is applied subsequently. This will allow for
forwarding parameters containing characters like quotes or
enclosing brackets, for example,

%SUBROUTINE showhint(hintmsg)

%hint %hintmsg

%SUBROUTINE_END

%define tmp Long hint including comma, and
round brackets) ()

%inclSUB showhint(%tmp)

%inclSUB>>> A special variant of the %inclSUB command serving for use
of the sub-routine without forced indent into the code with a
forced indent (see %>>> and %<<<commands): inserts the
sub-routine with the indent defined by these commands
without applying the forced indent within the sub-routine

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

28 Freescale Semiconductor, Inc.

inserted this way; other command parameters including
execution are identical as these of the preceding command
variant.

%launchDLL <DLLname>,<functionname>[,<parameters>]
calling external DLL; <actionname>- this parameter
is not supported for MCU10; <DLLname> may also contain a
relative path to the PE or Windows system directory (for
example, Drivers\SW\DLL\MyDllDriver.dll or
Components\MyComponent\DLL\MyDllWizard.dll),
specifying the .dll extension is optional; <functionname> is the
name of the function to be called, function prototype: function
<functionname>(Params:pchar; var MacroCmds,
NewDefines:pchar):pchar; register far; or
function <functionname>_STD (Params:pchar;
var MacroCmds, NewDefines:pchar):pchar;
stdcall far;Optionally, arbitrary parameters can be
forwarded to the function, see <parameters>. The
parameters are forwarded to the function in the form
specified within the line via the%launchDLLcommand in the
Params parameter. The function will return the output that
can be included into current active section of the driver, lines
to be separated by CR/LF (this output will not be processed
by the macro-processor); including, for example,NULL.
Optionally, the function will return in the MacroCommands
parameter commands for the macro-processor (lines
separated by <CRLF>) to be executed immediately upon
finishing DLL (may include the%define or %setcommands);
however, nothing will be generated into the output. Not
implemented so far:Optionally,NewDefinescontains
definition of new symbols in the form as follows:
NAME=VALUE<CRLF>; old values will be re-defined.

 If DLL contains the SetParent function, the function is
called with the Handle parameter of the main application
window:procedure SetParent(Handle:HWND);
register far; procedure
SetParent_STD(Handle:HWND); stdcall far;

%launchExt <ExternalObjectRelFileName>,<function-
name>[,<parameters>] invoke function from external
object (either DLL, shared object, JAR class or class); this
command is supported only on Eclipse pure Java PE-service;
<ExternalObjectRelFileName> is relative path and file
name of the Windows DLL library, Linux shared object or JAR
class, file extension is optional, path is relative to component
directory, Processor Expert root directory or system directory
and <function-name> is name of function, that will be
invoked and <parameters> is optional list of parameters
passed to the function. If the external object extension is not
specified, firstly JAR library is looked for, secondly running OS
native dynamic library extension is used (.dll on MS Windows
or .so in Linux). Also, <function-name> may not end with
suffix _STD as this suffix is used internaly to distinguish
calling convention of external object function. For more details
see External Libraries.

%checkList (<list_name>,<new_list_name>,<title>,<header>[
,<hint_list>][,AllowOnlyOne]) displays a check box
dialogue for each item of the list_name list with the title sub-
title and the header sub-title, if the new_list_name list had

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 29

been defined prior starting the dialogue, it must contain the list
values that should be checked by default (if the list is not
defined, all values will be checked implicitly); once the
dialogue is terminated, the new_list_name list will be
defined/re-defined for all items that are left checked by the
user; the optional hint_list list can contain a description of
bubble tips for each item (the number of v items must match
that in the list_name list). Due to the optional
AllowOnlyOne parameter, only a single value can be
selected out of the offer.

%msg Command description is below.

3.2.2.4 Text formatting and comments

%+[<string1>[<string2>]]<text> Adds <string2><text> at the end of the previous line
provided the resulting line does not exceed DD characters,
where DD is a constant defined according to the compiler.
Otherwise, a separate line will be created containing
<string1><text>. The string specification is optional; the
strings are written enclosed in single quotes, however, they
are generated into the text without the quotes.

%++<text> Adds <text> to the end of the previous line regardless of the
length of the resulting line.

%+#[<num>]<string1>[<string2>]<text> Operates in the same way as %+, in addition, this splits the
text automatically into the block by words (word separators:
space, full stop, semicolon, exclamation mark, question mark,
colon, comma, right bracket); the string1 parameter is
mandatory. The optional num parameter provides the length
of the resulting line, on which the text is to be broken.

%substring <def_name>,<cislo1>,<cislo2> From the <def_name> string will create a sub-string starting
with <cislo1> and length <cislo2>. The first character has
an index 1.

%>>> Forced indent of the generated code: increases the required
level of nesting of the generated code; implicitly, the level is
not set and no alignment will be carried out; the first use of the
command will set the level to column 0, with increments by 2
with every additional use; setting the level will cause PE
enforce the alignment of the generated code to the set column
(addition or deletion of excess spaces); the script will have to
ensure returning the level back at the end of the generation
process (even at the end of each method); the alignment will
be carried out only for 'common' code generating, insertion
marks will be not involved.

%<<< Opposite function compared to the %>>> command.

%><number> (Not a command; can exist anywhere within the line) Carries
out the alignment of the generated text within the column
specified (the first column is numbered 1), alignment to the
right as well as to the left will be functioning (i.e. the directive
has the capacity of inserting/deleting excess spaces), checks

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

30 Freescale Semiconductor, Inc.

if at least a single space has been inserted; the number can
be provided enclosed in quotes or single quotes for
separating from the following text.

%>> (Not a command; can exist anywhere within the line) Carries
out alignment of the comment to the user-defined position
(default 40), in the case of the 'do not generate the comment'
option, the remainder of the line will be ignored.

%- A comment up to the end of line, can only be used as a
command, i.e. the "%" character must be the first non space
character within the line

%replaceGenLineEnd <string1>, <string2>[,
<string3>]

Substitutes, at the end of the last generated (i.e. previous)
line, string1 for string2; if string1 does not exist, a new
following line string3 (with an indent matching that of this
line)will be added; if string3 is not entered, an error will be
reported;
NOTE: this command has been designed for generating

well-arranged structures by the driver generator;
substitution of the macros for macro values is not
carried out within the strings.

%_space_ Macro to be replaced by a space (not a command).

3.2.2.5 Output language and compiler

%; Generates the symbol as per the compiler in question quoting
the comment up to the end of line within the source text of the
language, the same as with the %CommentLine global
symbol.

%>> (Not a command; can exist anywhere within the line) A
separator of a module name from the name of the method
defined as per compiler ; it is an underscore character in most
languages.

%{ (Not a command; can exist anywhere within the line) will
generate a symbol as per the compiler in question quoting the
beginning of a multiple-line comment in the source text of the
language.

%} (Not a command; can exist anywhere within the line) will
generate a symbol as per the compiler in question quoting the
end of a multiple-line comment in the source text of the
language.

3.2.2.6 Errors

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 31

%error <error_msg> Generates an error message to be displayed in the error
window, error text will read as <error_msg> until the end of
line.

%error!<error_msg> Same as with the %error, with the difference of displaying an
error message inc. file name and line #, terminating the
generating for the given driver, designed for indication of
internal errors, for example, in the driver file (mostly an
unfulfilled driver expectation which should not have taken
place); the error text will be displayed only in the internal PE
version, the full version will display only a general error
message.

%error^<error_msg> As with %error, in addition, this will terminate the generating
for the given script (for example, driver).

%warning <error_msg> Generates a warning to be displayed in the error window, the
warning text will read as <error_line> until the end of the line;
if a TST script file exists for the driver, the driver will not
generate messages (the developer version generates
messages denoted as "{{{HIDEN}}}"); the %warning!
Command will generate the message at all times.

%hint <error_msg> Generates a hint to be displayed within the error window, the
hint text will read as <error_line> until the end of the line. If a
TST script file exists for the driver, the driver will not generate
messages (the developer version generates messages
denoted as "{{{HIDEN}}}"); the %hint! Command will
generate messages at all times.

%log <message> Adds a message into Console view; the command is designed
for debugging purposes. %log Starting code generation,
%define result successfully, %result Code generation
finished

%exit^ Immediately terminates any additional processing
(generating) of the script.

3.2.2.7 Working with lists

%add <def_list> <def_value> Adds the <def_value> item into the <def_list> global list
and create a list if none has been defined, the item must not
be an empty string, automatic checking for duplicates: if the
item already exists on the list, it is not added for the second
time, the (<def_list>) list is a symbol valid for the project
as such, however, no list created by PE can be modified; prior
adding the <def_value>, all spaces in the beginning / at the
end of this value will be removed and macros substituted
subsequently; for global symbol definition limitations, see the
description of the %define_prj command.

%append <def_list> <def_value> Adds the <def_value>item into the <def_list>global list and
create a list if none has been defined, the item must not be an
empty string; the item is added in each case, even if one is
contained on the list, the (<def_list>) list is a symbol valid
for the project as such, however, no list created by PE can be

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

32 Freescale Semiconductor, Inc.

modified; prior adding the <def_value> all spaces in the
beginning / at the end of this value will be removed and
macros substituted subsequently; for global symbol definition
limitations, see the description of the %define_prj
command.

%apploc <def_list> <def_value> Same as with %append, with a difference of adding into the
local list.

%addloc <def_list> <def_value> Same as with %add, with a difference of adding into the local
list.

%define_list <def_list> <def_list> Creates a list by copying as per the existing one.

%define_list <def_list> %include <file-name> Creates a list as per the file content (filename a relative path
with respect to the PE directory)

%define_list <def_list> {

<def_value> or simple macro-command

<def_value> or simple macro-command

...

%define_list}[sorted] Definition of a local list, each item on a separate line; it is
possible to use simple macro commands inside list definition,
for example %if, %while, %for, %define, %:, but value of
the list should not be accessed and it is not allowed to switch
target output file; optional parameter sorted may be used to
sort the list items (especially useful to optimize speed of
searching items inside large lists)

%define_list MyList {

Item1

Item2

Item3

Item4

%define_list}sorted

%define_list_enabled_components(<def_list>) Creates list def_list with all enabled components in the
project, list contains component names and does not contain
target processor; if the list exists, it is replaced

%define_list_enabled_components(componentList
)

%for comp from componentList

%hint component: %comp

%endfor

%for <def_name> from/fromdown <def_list> Block

%endfor Block generating actions will match the number of items within
the <def_list> list, for each generating action, the
<def_value> symbol will achieve a value of a single list
item, the <def_value>symbol must not be defined either prior
starting or following terminating the command; fromdown will
browse the list from behind; in addition, sequence of numbers
entered in brackets can also be used in addition to the
def_list, for example, [1..5]; number of items in the list is
limited to 0xFFFFF to avoid poor response time of the script;
see also %for_index and %list_size.

%while (<boolean výraz>) Block

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 33

%endwhile While cycle command with a condition at the start; maximal
number of loops is limited to 0xFFFFF cycles (to avoid dead-
lock).

3.2.2.8 Sections

An output into multiple files will be generated from a single driver:

• Initialization of a device (a code for the initialization procedure within the CPU
driver),

• Module definition file (header file, *.H, *.DEF),
• Implementation file (*.C, *.MOD),
• Pre-generating headers (and empty bodies - templates) of event procedures into

special modules separately for each event,
• debug File designed only for driver debug; may contain anything, should contain a

list of all symbols (%ALL_SYMBOLS).

However, only a single (active) file into which the generating action is currently
underway will be selected each time. Section separating commands use for switching
between the files. These commands are not influenced by a conditional translation.
Section generating is optional; the source file can define only certain sections. If the
given file cannot access a section, the output will be generated implicitly into the
implementation section.

The process is case-sensitive.

Commands defining given sections (the section to end either with a command for
switching into another section or file end):

%INITIALIZATION Generates output in the initialization file.

%ENABLE Generates output in the initialization file permitting peripheral
and component functions.

%INTERFACE Generates output in the file interface.

%IMPLEMENTATION Generates output in the implementation file.

%INTERFACE <eventname> Interface of the event selected.

%IMPLEMENTATION <eventname> Implementation of the event selected.

%DEBUG Generates output in a special file <project>
\Project_Settings\Component_DEBUG\<component-
name>.dbg for debug purposes only. This file is generated
only if Component Development option is selected. (see
Window > Preferences > Processor Expert > Component
Debug Verbose Mode)

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

34 Freescale Semiconductor, Inc.

%FILE[?][+]["fldr"][<dir>]<filename> Generates output into an external file with a specified name
(implicitly into the project directory); the optional "?" parameter
will cause the command to be ignored if a conditional
translation has been disabled; the optional "+" parameter will
cause the generated content to be added to the end of the
project file (if one exists); for fldr parameter - for description
see %FILE! Command; <dir> - an absolute or relative path
with regards to the project directory, in Eclipse it is not
allowed to generate file outside Eclipse workspace; the
command can only be used within the component/CPU
drivers, not for main, event, shared modules etc.; the name of
the file to be generated must be unique within the project (a
file cannot be generated from multiple components), it is
possible to use macros to specify the filename.

%FILE[?]![<dir>]<filename> Denotes the file specified as a part of the application; it is
expected that the file exists in the project directory and will not
be generated, file addition can be conditioned by a conditional
translation; the optional ? parameter will cause the command
to be ignored if the conditional translation has been disabled;
<dir> - see previous command for description.

%FILE[?]!"srcdir[;fldr]" [<dir>]<filename> Same as previous command, but the file (if not exist in the
project) is copied from the srcdir (no macro allowed in this
parameter, should be an absolute or relative path with regards
to PE system directory, source file must be a plain file on the
disk, encoded or packed files are not supported), optional
obsolete fldr parameter (no macro allowed in this parameter)
will determine into which folder the file is to be filed within
project CW Classic (not supported in Eclipse). In case the file
is not more generated, PE binary compares source file and
project file, if the files are same, the file is removed from
project, otherwise user is asked to keep the file as user file or
remove from project.

%FILE[?]!~srcdir[;fldr]~ [<dir>]<filename> Same as previous, but macro symbols are replaced inside ~~
characters.

%FILE[?]$"srcdir" [<dir>]<filename>
{deprecated}, replaced by %synchronizeStaticFile(),
same as previous, but additionally the following rules are used
to update project file if srcdir is changed compare to previous
code generation (for example, changes in the file content are
not detected):

• If previous source file does not exist, the user is asked if
the project file should be updated (for example,
replaced by new source file).

• If both source files are same: no action.
• If the project file is same as previous source file, the

project file is updated automatically.
• Else user is informed, that user changes were detected

in the project file and is asked if it shall be updated.

%FILE#SAVE <filename> Immediately save the file generated as %FILE on the disc,
<filename> must be the name of the file generated by the
%FILE command.

%USER_MODULE[!["fldr"]]<filename> Generates output into the user module generated; the
optional exclamation mark behind the module means that the
module will be generated at all times, if not, it will be removed
from the project automatically by PE (otherwise, it is only

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 35

added or enabled within the project and never removed), the
optional fldr parameter: see the %FILE! command
description.

The file name is either an absolute path or relative with
respect to the generated code directory in PE-Delphi, to the
user code directory in PE-Eclipse, the file extension to be in
agreement with the one of the code or header file.

The command can be used within the component driver or
from main, but not from CPU.

The name of the file to be generated must be unique within
the project (a file cannot be generated from multiple
components).

If the module exists, it will not be changed similarly as with
other user modules.

%USER_MODULE[!~fldr~]<filename> Same as previous, but macro symbols are replaced inside ~~
characters.

%SUBROUTINE <subroutine>
[(param1,param2,...)]

Defines a sub-program, all subsequent lines will be
considered as a sub-program code if not processes (they will
be not generated on the output), up to the
%SUBROUTINE_END command; <subroutine> identifies the
sub-program (identifier), params are optional sub-program
parameters, a comma-separated list of identifiers; for use of
the sub-program, see the %inclSUB command; the sub-
program will be valid until all files have been processed;
maximum number of parameters = 16; the %ifdef command
must not be used for parameter symbols as the symbol
parameter value is defined at all times, which may also
include an empty string.

%SUBROUTINE_END See the %SUBROUTINE command description; the output will
be positioned back into the original section.

%createFileLink(src,dst) Creates link do destination file in the Eclipse project; src is
full file name of the source file; dst is relative path and file
name to project directory.

%createFileLink(%'Dir_PE'lib\PDD\PDD.c,PDD\PDD_Static.c)
%createFileLink(%'Dir_PE'lib\PDD\PDD.h,PDD\PDD_Static.h)

%synchronizeStaticFile(src,dst,[options]) Synchronizes static file in the project, if the file does not exists
it is created, if the file exists it is updated if the src file was
changed, if the command is no more generated, the file is
removed from project.

src is full file name of the source file or relative file to
Processor Expert directory (either system directory or user
components directory).

dst is relative path and file name to project directory.

options is comma separated list of the following options in
square brackets:

• confirmation - any modification of the file requires
user confirmation.

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

36 Freescale Semiconductor, Inc.

• autoCreateNew - this option can be used together
with confirmation option and creation of the file is not
confirmed by the user.

• notCreateNew - the file is not created. It is only
updated if exists.

%synchronizeStaticFile(Beans\Comp\PDD.c,PDD\PDD.c,[confirmation])
%synchronizeStaticFile(%'Dir_PE'lib\PDD\PD.h,PDD\PD.h,[confirmation,au toCreateNew])
%synchronizeStaticFile(%'Dir_PE'lib\doc\x.pdf,doc\x.pdf,[notCreateNew])

 The command may be applied for the same project file if the
source file is same. The options are merged with the following
rules:

Requirement #1 Requirement #2 Result

Confirmation USED confirmation NOT USED Confirmation USED

autoCreateNewUSED autoCreateNewNOTUSED autoCreateNewNOTUSED

notCreateNew USED notCreateNewNOTUSED notCreateNew NOTUSED

%saveCurrentSectionAs(filename) Saves the current section into selected file; filename is full
path file-name including extension; file path are create if not
exist.
WARNING!: This command works only in component

development mode and is designed for
development and debugging.

%saveCurrentSectionAs(c:\temp\temp.txt)

For more details, see Component translation sequence, generating initialization topic.

3.2.2.9 Code identification

%EMBED_CODE[!][+] <id>, %EMBED_END [msg] These commands are designed for code denoting within the
main module %IMPLEMENTATION or %USER_MODULE
sections; the code denoted this way is to be inserted into the
target user module in each generating unless it has been
already included.

The text will be inserted into the place to which it is generated
from the driver; the place can be found as per the longest
from the previous three lines generated (preceding the
%EMBED_CODE command) or in case %EMBED_CODE contains
the +(plus) option the longest from the three lines following
%EMBED_END; if the reference line is not found within the user
module, the embed code is not added and an error message
is displayed.

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 37

The embed code is denoted by an identification text (see
parameter <id>) that must be a part of the generated text
and as per which the existence of the embed code within the
user module will be identified, therefore, the identification
should be unique; it's recommended to place identification text
into the first line of the embed code; if the identification is also
found at the last line of the embed code, it is used to detect
position of the embed code inside user module; the parameter
should be human readable because it can be also displayed
in the message in case, user code is not found in the user
module;

The optional ! parameter (exclamation mark) will cause the
embed code comparison/substitution in every generating
action, the first and last line is found within the user module,
the whole content is deleted and replaced by a newly
generated embed code; advantages: this cannot be changed
by the user, the content can be modified as per generating
parameters.

The optional msg parameter (text until the end of the line) is
displayed in modal dialog in case of generating provided the
embed code is inserted or updated into the relevant module; if
this parameter is not specified, no message is displayed.

NOTE: Using this command to affect the main module may
cause incompatibility with other PE versions.

Listing: Example of recommended usage

%EMBED_CODE! <specific> initialization
/* Begin of <specific> initialization, DO NOT MODIFY LINES BELOW */

 // ### initialization code here ##

/* End <specific> initialization, DO NOT MODIFY LINES ABOVE */

%EMBED_END <specific> initialization was updated

3.2.2.10 Working with component items

%set[!] <PropName> <Feature> <Value> Sets the (Feature) feature of the property/method/event in
question feature selected from CHG script (identified by the
PropName symbol) to a new value (Value). The optional
exclamation mark behind the command means that the item
value does not need to be set exactly, disabling a report of
potential error (serves, for instance, for setting the request for
calculation of the PLL clock into PE).
NOTE: The command above will not modify the value of a

macro which has been already defined - the macros
will be maintained as defined with their original
values until the end of script processing.

<PropName> is also supported in the following formats:
@InhrItem@Symbol, where InhrItem stands for identification
of the item referring component (for example, an inheritance

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

38 Freescale Semiconductor, Inc.

item symbol or link-to-component item symbol) or
"@_CPU_@Symbol" which represents the target processor
component; or @_ProjectOptions_@Symbol for project
options; @>Component@Symbol where Component stands
for a user name of other component instance within the
project; and Symbol stands for the item symbol for the
component referred to. The "%set @..@" command will only
be processed if the component performing the operation has
been enabled or the referred component is inherited (such
case will be reported as development error). Nevertheless,
the inherited component method and event setting will be
subject to the limitations described in the
ComponentInheritandSharing.doc file.

Listing: Example of recommended usage

%set IntgPropSymbol Value D:0
%set @_CPU_@Clock Value 1.0
%set @InhrItem@PerphDevice ReqValue DMA0=Channel needed for correct operation of ADC0 in
trigger mode
%set @_CPU_@IntCtrl@PeriphDevice GIC=Peripheral required for proper operation
%set @>%compName@Clock Value 1.0

The table listed below contains a list of supported features including their values:

Table 3-1. Supported features

Items Feature Value

Method/event Selection always|never|enable|yes|no

always= Generate always, not user-
modified,

never= Do not generate, not user-
modified,

yes= Generate, user-modified,

no= Do not generate, user-modified,

enable= changes always/never values
to the value set last time by the user
yes/no, yes/no values are maintained,

(%set yes/no should not be used at all)
(using %get Selection is not
recommended due to frequent omission
of a certain setting in the test,
%getBoolis recommended instead)

Method/event MethodDeclaration, EventDeclaration Returns declaration (header) of the
method; %set not supported

Event EventParamCount Returns number of event parameters;
decimal number

Event EventParamName[index] Returns name of event parameter with
specified index (index of first parameter
is 0)

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 39

Table 3-1. Supported features (continued)

Items Feature Value

Event EventParamType[index] Returns type of event parameter with
specified index (index of first parameter
is 0); type is returned in the same format
as it is stored in the .bean file

Event EventParamAnsiCType[index] Returns ANSI-C type of event parameter
with specified index (index of first
parameter is 0); the following base types
are supported: bool, char, uint8_t, int8_t,
uint16_t, int16_t, uint32_t, int32_t,
uint64_t, int64_t, TPE_Float; if user type
is assigned, its name is returned; if the
parameter address is passed instead of
value, the type is returned with * as
suffix

Property ReadOnly yes|no|true|false specifies if the
item is read-only or editable; items set
as read-only in the component and
template cannot be edited

!no - will change the value and read-
only items in the component or template

Property like groups of items ReadOnlyALL Can only be used for %set,

Any value like ReadOnly,

The command applies %set ReadOnly
for all items within the group.

Property Value Value as per property
• Value format for %get: the same

as that of the macro. For
peripheral-like items, this is a
name of device as per database.

• Value format for %set: matches
the one entered in the text field
within the inspector.

• For integer number (integers)
items, entering the value as
<FORM>:<NUMBER> is
recommended, <FORM> stands
for H,D,O or B, i.e.: H ex, D ec, O
ctal, B inary. If the format is not
specified, the format as per the
current item setting is applied
(which leads to errors).

• Returns number of list elements
for lists (TListItem and
TListItemFromFile), setting to
be carried out via #{ number of list
elements}.

• Returns 0 (generate) or 1 (do not
generate) for methods and events.

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

40 Freescale Semiconductor, Inc.

Table 3-1. Supported features (continued)

Items Feature Value

• Returns template name for link
items, user component name for
inherited items.

• For timing, see the separate
description

Boolean property, method, event Bool yes/no as per item value. Returns only
these two identifiers regardless of item
symbol generating setting. Useful for
method and event setting tests.

Boolean group BoolValue Supported for %get command only. If a
symbol is defined for each item, will
return this very symbol; in the reverse
case, it will return yes/no.

All group property Expanded yes/no, based on the item status
(unpacked/packed)

Property Error Text of an error, for %get, it will return
the text in the column 3

Property LightError Sets light error to the property. %get not
supported. Light errors are supported
only if option LightErrorsSupported is
listed in the options of the .bean file (see
PEx_Data\Config\XMLSpec
\Component.xsd).

Property HtmlHint Gets description of the property in HTML
format. %set is not supported.

Property/Method/ Event IsError Works only for %get, will return yes if
the item contains an error due to PE, or
no in other cases. Any possible error
from CHG/TST is deleted.

Property/Method/ Event IsEnabled Returns yes/no depending on whether
the item is enabled in the current
component setting or not (i.e. will return
'yes' if the item is not version-specific for
other CPUs, not contained in a disabled
boolean group, or disabled within the
enumeration group). The item has to
exist.

Property/Method/ Event Exists? Returns yes/no based on whether the
item exists within the component or not

Property/Method/ Event Warning Works for %set only, sets the message
(warning) into the item column 3.

Supported in CHG and TS2 scripts only.

Property Name Item name - ItemName property (read-
only)

Property real or integer or list MinValue MaxValue Numerical value
NOTE: for %get, the real value will be

returned with/without 3
decimals

Property list MaxItem Returns last element index (from zero)

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 41

Table 3-1. Supported features (continued)

Items Feature Value

Property enum or bool or peripheral Index Enumerating item index

Boolean: 0 for true or 1 for false

Property enum, enumeration-group or
bool

IndexFromDefinedValue Sets item Index as per defined value (i.e.
converts the value defined to Index). If
the value is not defined, it will set Index
to -1 (deletes the values), for
enumeration group preserves current
value

Function
%get(_,IndexFromDefinedValue[def])
returns value -1 if defined value def not
found, otherwise index of the
corresponding item (decimal integer
>=0);

Property enum or enum-group DefinedValueFromIndex %get(_ , DefinedValueFromIndex
[index]) returns defined value for
selected index (decimal number from
range [0..ItemsCount-1];

%set is not supported

Property enum or bool or enum-group or
bool-group

IndexError, IndexWarning Sets an error message (or more
specifically warning) to the count value
with index specified. %set <symbol>
IndexError <index><message>

Does not work for %get. In addition, to
display the icons in the value selection,
the IconPopup needs to be set within
BW. Setting for all errors will be deleted
if item type is changed.

Property enum or enum-group LightIndexError Sets light error to the value with
specified index. %get not supported

Property enum or bool or peripheral ItemsCount Returns a count of possible enumeration
values.

Property enum or bool TypeSpecName Type name

Item TypeSpecChangeAble property
must be set within BW.

Property enum CustomValueRangeLo,
CustomValueRageHi

Sets limits for custom value. %get is not
supported. It is not allowed to set
CustomValueRangeLo>CustomValue
RageHi.

Property ListItemFromFile ItemFile File name (including extension) with item
definition, relative path to components
root directory).

If a list has been assigned to the item, it
is deleted before editing. Once edited,
the list will be completed to the minimum
number of items.

Property ListItemFromFile ItemFile_ReloadContent File name (including extension) with item
definition, relative path to components
root directory).

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

42 Freescale Semiconductor, Inc.

Table 3-1. Supported features (continued)

Items Feature Value

If the file is changed, number of items
and items configuration is re-loaded from
previous configuration (read-only items
are not stored for reload).

If the file does not exists, Processor
Expert displays error message.

Property addr AddrType A family of properties in comma-
separated brackets, [external,
internal, RAM, ROM, FLASH,
EEPROM,code,data]. For a complete list
of identifiers, see
InspectorItemFeatures.xls,
TaddrItem item, column of controls
from CHG script.

Property, method or event ItemLevel Setting an item visibility level: BASIC,
ADVANCED, EXPERT, "@ HIDDEN @".

It is recommended using this as least as
possible as this may cause the inspector
flashing and user confusing in editing
(the user will not see the item that is
described in the documentation).

Property Text Returns the value of the item as can be
visible in the item text field in the
inspector. For %set , this works
identically as %set(_,Value) .

It is recommend using %get(_,Value)
instead.

Property AutoSelectedValue If the property value is Automatic,
returns auto-selected value (text) of the
property in format for UI (empty string if
no value auto-selected).

Note: usually the same value is also
displayed in the third column in case
there is no warning; otherwise (if value is
not Automatic) returns value of the
property (text displayed in second
column).

Property IsDefaultValueAutoSelected Return yes if the property is set to
<Automatic> and default value is
selected without any user requirement
for register modification; for pin
properties returns yes also if no pin is
routed; returns no in all other cases. This
is designed to detect, if the value is
selected based on after reset register
configuration without any user
requirement for modification. %set is not
supported.

Property ExtraText Writes in the inspector column 3, the
write will be enabled only for items
displaying implicitly no value in the

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 43

Table 3-1. Supported features (continued)

Items Feature Value

column 3. The text will not disappear in
the case of new CHG script passing,
while for instance errors from CHG will be
deleted in the case of new passing.

If the text is enclosed within<tt> </
tt>, it will be displayed using Courier
font with a constant character width.

The following item types will display
ExtraText from CHG in the column 3 with
added specific information on item
setting: „CPU frequency".

Property for inheritance Text

Value

Component name

Component type

Property link to component Text

Value

Component type

Component name

Property link to component Value %set enables adding the component
into the project by setting the
new:<component/template name>value;
the component will be added once CHG
script is closed, with subsequent CHG
script restart

Property InitializationValue %get not supported. %set works same
as feature Value, but only in case the
property was not supported in the
component yet during CHG execution;
otherwise the command is ignored

Property string-list Line[index] Returns/sets the line with a number
index in the string-list (line numbering
from 1). Set will add a new line at the
end.

Property import from CPU ImportSymbols See Modification of string-list topic for
details about possibilities for modification
of string-list value using %set command.

Editing will immediately update the list of
items displayed.

%get not supported so far.

Property string-list Strings Feature to modify value of the string-list.
See Modification of string-list topic for
details about possibilities for modification
of string-list value using %set command.

Property string, real and CPU frequency RecommendedDropDownValues Feature to modify drop down list of
recommended values for the property.
The drop down list is used only to allow
easy modification of the value of the
property; it is not used for validation.

See Modification of string-list topic for
details about possibilities for modification
of string-list value using %set command.

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

44 Freescale Semiconductor, Inc.

Table 3-1. Supported features (continued)

Items Feature Value

Property SymbolValue[<symbol>] Current value of the symbol defined from
the item. If the symbol has not been
defined, #undef# will be returned. Can
only be used for %get.

The value returned from this feature may
be different from value currently defined
local symbol (if property value was
changed by any previous %set
command).

TIntrItem InterruptUsageStrategy Specifies usage of the interrupt vector by
the property. Supported values are:
NOT_USED,
USED_IF_NOT_ELSEWHERE,
USED_NOT_EXCLUSIVELY,
USED_EXCLUSIVELY

Property ReqValue Detailed description in 3.3.2.16

Any property NumberOfReqValues %set not supported, %get returns
number of requirements registered to the
property using %set ReqValue
command; return integer decimal
number, 0 if there is no requirement;

This is used in advanced technique for
sharing TimerUnit_LDD component

Any property PE_ItemType Item type name within PE

Property TListItem and
TListItemFromFile

DeleteItemIndex Deletes an item with specified index
from the list, works only for %set

Directory like property BaseDir Sets a directory to which a selected path
is to be set relatively

Example:

%set @_ProjectOptions_@MainModuleUpdate Index 4

3.2.2.10.1 Modification of string-list

The following values can be passed to %set command parameter to affect string-list value:

• +string adds a string into the list (if not contained);
• -string deletes a string from the list (if contained);
• [string1,string2,...] sets a complete list of strings;
• [] can be used to assign an empty list.
• def-list assigns a content of the list to the string-list; def_list is a identifier of existing

list

%apploc list One
%apploc list Two

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 45

%apploc list Three

%set STRING_PROPERTY_SYMBOL RecommendedDropDownValues list

%get(<PropName>,<Feature>) Returns the feature actually set (Feature) of the
property/method/event in question (PropName), for
values see the %set command. Can be used for
testing the setting following the "%set" command as
well (for example, %set MethodName Selection
enable). <PropName> can also look like
@InhrItem@Symbol or @>Component@Symbol
see the description of the %set command.

%changed(<PropName>) Can be used as a condition in CHG script files;
<PropName> is an item symbol; returns TRUE if CHG
script has been called due to editing the given item
(user-modified within the inspector); if <PropName>
equals to _unKnown_, then it will return TRUE
provided the edited item is unknown (CHG script will
start from other reason); if <PropName> equals to
ANY, then TRUE is returned if an arbitrary item has
been edited.

%changed(<TGrupItem>) Returns TRUE to an 'item group' item with no value
(not a boolean group), provided any item from the
group has been edited.

%findPropertyByRegExSymbol(<ComponentNa
me>,<RegExprSymbol>)

Finds a valid property in the component of the
specified name, a symbol of which will match the
regular expression specified; a property will be valid
if it is active and defining symbols - i.e. for instance is
not disabled within the boolean group of items; if the
component/item does not exist or the regular
expression matches multiple items, it will return an
error that reads as #<error description>.

3.2.2.11 Expressions

Handle real values, for bit operations, operands are rounded to sign 32-bit integers.

%:<def_name><unary_operator>(<expression>)[komentá?]

%:<def_name><unary_operator><number>[comment
]

Evaluates the expression and assign the result under the
variable <def_name> (only driver-defined symbols can be
used, values of the symbols generated by PE cannot be
edited); <unary_operator> a <expression> for description, see
chapter Identification above, an integer operation is an
operation above 32-bit sign type; example: %:a=0; will assign
the value 0 to the a symbol, %:a+=1; will add 1 to the a
symbol; excess spaces at the command end will be ignored.
The comment should be separated by a space and semicolon
or by a space and %-.

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

46 Freescale Semiconductor, Inc.

%:<def_name>?
=<number>,<cislo1>:<number_1>,<cislo2>:<numbe
r_2>, ..

Converts the (<number>) value according to the table, if
<number>=<cislo1>, then the result will be <number_1>, if
<number>=<cislo2>, then the result will be <number_2>
etc., the result will be assigned under <def_name> (the
symbol will be defined if it is not); failure to find the value in
the table will report an error; works for non-negative integers
only.

3.2.2.12 Debugging

%ALL_SYMBOLS Writes all symbols defined (local and global) into the source
text, designed for DEBUG file generating.

3.2.2.13 Insertion marks

Insertion marks serve for inserting a code in the case of follow-up generation to the
denoted place within the generated code and vice versa, (to generate a code to be used
later). Handling the insertion marks is controlled by means of the %THREAD command with
subsequent syntax, where <id> is an identifier denoting the thread:

%THREAD <id> CREATE Creates a new insertion.

%THREAD <id> CREATE_NO_DUPL Creates a new insertion, in which duplicate lines will be
removed automatically.

%THREAD <id> INSERT Inserts the insert to the point of current code generating
action, where each insert can be inserted to a single point.

%THREAD <id> SELECT Selects the insert as a target file, into which the code is
generated (similarly as with the section switching commands,
see Sections topic; unlike the section switching one, this
command will be subject to conditional translation (switching
will be selected only if generating by conditional translation
has not been disabled).

%THREAD <id> UNSELECT Recovers the previous target file into which the code is
generated.

%THREAD <id> DESTROY Releases the insert from the memory, the insert will remain
inaccessible, when a new insert with the same identification
can be created.

The parameters of the %THREAD command can be combined arbitrarily (but only
meaningfully), the processing takes place from the left to the right. For instance:

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 47

 %THREAD thrd CREATE INSERT
 %THREAD thrd UNSELECT DESTROY

3.2.2.14 %set ReqValue <value>=<reason>

The command creates a request for setting up a value of CPU component item, inherited
component, linked component or item of actual component itself, required from the
actual component. Value will be set according to the request and will be read only. After
the request is cancelled (i.e. component disabled) the initial value of the item will be
reset.

It is correct to use several different values (change the value according to the current
component setting). For reset is always used the initial value (value used before first
ReqValue request). If different components asked for different values, target item will
issue an error.

NOTE
Item initial values are stored into the project, after loading the
project the required value will be set from CHG script.

The value must have the format <value>=<reason>, where <value> is the requested item
value. Generally value displayed in the second column shall be used with the following
exceptions:

• value for integer properties must be in format D:num, where num is a decimal
number;

• value for time property must be in format H:m:s, for example 13:30:55;
• value for date property must be in format yyyy-mm-dd, for example 2012-01-31;

<reason> is the reason for the request shown in the hint. For enumeration items it is also
possible to use format #DefinedValue:<def-value>=<reason>, where <def-value> is value
defined from the item (it depends on settings of the property). For boolean items, it is also
possible to use format #Bool:<yes/no>=<reason>.

The request is cancelled by setting up the value $=NONE=$.

Cancelation of all requests from the current component to all items in the target
component excluding the TTmngItem and TPrscItem and TListItem items may be done by
entering the value $=CLEAR-ALL=$ into any item of the target component. It is recommended
to cancel all the requests on the start of CHG script and after that set up all of them again.
This is because it is not easy to cancel previous requests (i.e. after switching the
peripheral). If there is no need to cancel all the requests (for inherited components, linked

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

48 Freescale Semiconductor, Inc.

components and the component itself, because all the requests are always updated), value
$=CLEAR ALL NOT APPLICABLE=$ should be used (only suppress the error message from the
PE).

All settings and cancelations of requests are done immediately during the command
execution, so the interrupt and the following value setup may cause reallocation of the
peripheral, invalidate the calculated timing and also malfunctioning of the whole PE
project.

Supported is a setup of boolean, enumeration, prescaler type items.

Above that for inherited and linked components items string, priority, integer (value must
be in the format D:num), enumeration-group, periphery, signal name (pin), +/- list are
supported.

Limitations list (TListItem, TListItemFromFile) items: ReqValue cannot change value
outside range selected by Min/MaxValue of the list item.

3.2.3 Inherited item symbols

This section describes the access to inherited item symbols.

%@<symb>@<def_name> A value of <def_name> define-symbol from inherited or
shared component, which is referred to by an item with a
<symb> symbol; in case <symb> is a symbol of an event
shared by more descendants, the returned value is unique
identified for each descendant (the value depends on
component from which the command is executed).

%[@<symb>@<i>,<def_list>] Returns inherited/shared component list item with index < i >
(<symb> is a symbol of an item that refers to an inherited/
shared component), <def_list> contains name of the list; <i >
represents the index, the items are numbered from 1, if the
index is out of range, an empty string will be returned (and
error displayed in development version), #undef# if def_list
not defined.

3.2.4 Other macros

The macro can be anywhere within the line; every line is processed from the right to the
left. Each macro must start with a per cent mark.

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 49

%% Character %

%<def_name> Converts to <def_value>.

%'<def_name> Converts to <def_value>.

%~<def_name>~ Converts to <def_value>, the conversion will be carried out
only once, therefore can be applied to a symbol with a value
containing the "%" character.

%for_index_1 Index of value currently set in for-variable in the range of 1..
{number of values in the list}; (if from_down is used, the
value is decremented in range {number of values in the list}..
1); the symbol is available only for latest for command.

%for_index_0 The same as with for_index within the range 0..<number
of items in the list>-1.

%list_size(<def_name>) A number of list elements, no spaces between the quotes;
<def_name> has to be a variable, it must not be a different
macro; if <def_name> is not defined, zero will be returned; I
recommend using the %if defined() test instead of %if
list_size()>'0'.

%str_length(<par>) String length, i.e. string character number, <par> is <string>
or <def_name>.

%str_pos(<par-sub>,<par-str>) The first string position within the second string, 0 position
starting with 1 if sub-string does not exist and otherwise,
case-sensitive, <par> is <string> or <def_name>.

%uppercase(<par>) Converts the string (all characters) to upper cases, <par> is
<string> or <def_name>.

%lowercase(<par>) Converts the string (all characters) to lower cases, <par> is
<string> or <def_name>

%get_index0(<value>,<def_name>) Returns an index of a list value (numbered from 0); if the list
does not contain the value, -1 will be returned; the list has to
be defined.

%get_index1(<value>,<def_name>) Returns an index of a list value (numbered from 1); if the list
does not contain the value, 1will be returned; the list has to be
defined.

%short_path(xx) Converts the absolute path (or file name as well) to a short
path for 16-bit applications. The parameter is a macro or text
within parentheses. The path (or file) requested has to exist.

 %file_exist(xx)
{deprecated} %prj/pex_file_exists() should be used
instead; returns yes or no depending on existence of the
specified file on the disk; the xx parameter should be the
absolute path (in Eclipse it must be Processor Expert system
subdirectory) and file name, or a relative path with respect to
the project directory; the function will not consider whether the
file is created in course of the generation process (all
generated files are saved in the target directory only after all
files have been generated successfully)

%prj_file_exists(relpath) Returns yes or no depending on existence of the specified
file on the disk; the relpath parameter should be relative
path with respect to the project directory; the function will not
consider whether the file is created in course of the
generation process (all generated files are saved in the target
directory only after all files have been generated
successfully).

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

50 Freescale Semiconductor, Inc.

%pex_file_exists(relpath) Returns yes or no depending on existence of the specified file
on the disk; the relpath parameter should be relative path
from Processor Expert data directory (system directory or
user components directory); the function ignores files located
in packages, returns only files on the disk.

%sys_file_exists(relpath) Returns yes or no depending on existence of the specified
system file on the disk or in the package; the relpath
parameter should be relative path from Processor Expert data
directory (system directory or user components directory).

%get_file_list(<filetype>,<def_list>,<filemas
k>)

Retrieves the list of files on the disk (optionally also sub-
directories) with specified mask on the disk and returns
number of found files (number of items in the list).
<filetype> can be FILES to retrieve list of files or
FILES_DIRS to retrieve also list of sub-directories.
<def_list> is identifier of new list, that shall be created by
the function, the symbol may not exist, the list will be defined
only if at least one file is found and will contain absolute
paths. <filemask> is absolute path and specification of file-
mask, wildcards are not supported in path, however they may
be used in file-mask (use * to list all files), file-mask may
additionally specify *\ prefix to proceed all sub-directories
non-recursively or **\ prefix to proceed all sub-directories
recursively; the file-mask may be finished by \. to return
names of the sub-directories; the function provides direct file-
access to the files on the disk, it does not support files in
packages, and does not support Eclipse file-system, so it shall
not be used to search files in the project. Example: %:num=
%get_file_list(FILES,FileList,c:\Users*.pe),
%:num=%get_file_list(FILES,FileList,c:\Users
**.pe), %:num=
%get_file_list(FILES,FileList,c:\Users**
*.pe), %:num=
%get_file_list(FILES_DIRS,FileList,c:\Users
**\.)

%get_prj_file_list(<filetype> <def_list>
<filemask>)

Same as get_file_list, but works with Eclipse project
files (including hidden files – name starting with “.”); the
function works with Eclipse directory separator “/”
independent on operating system;

%get_prj_file_location(<fileName>) returns source file (absolute path) for linked project file;
returns empty string if the project file not found or it is not
linked;

%html_link(<xx>) Converts the directory to an HTML link, the double characters
(< and >) to enclose the parameter will be necessary due to
the directory name containing a bracket character.

%sinus(<value>) Calculates sinus.

%round(<value>[,<prec>]) Rounds a real number to specified number of decimals (range
0-9), if the number of decimals is not specified, rounding to
integers will be performed; serves for formatting - i.e. results
may include a number with specified number of decimals
even in the case there are nulls at the end, for example,
%round(1.5)=2, %round(1.5,2)=1.50.

%msg(<id>,<text>) Displays a dialogue with the relevant text (in which the \n
sequence will be replaced by the end of line); id presents one
of the following dialogue types (buttons in brackets are
displayed behind each description): INFO - Information (OK),
YN_CNFRM - Prompt/confirmation (Yes, No), YNC_CNFRM -

Table continues on the next page...

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 51

Prompt/confirmation (Yes, No, Cancel), YN_CNFRM_N - As
with YN_CNFRM, but the default button will be No,
YNC_CNFRM_N - As with YNC_CNFRM, but the default button
will be No, WARN - Warning (OK), ERROR - Error (OK),
C_ERROR - Error (Cancel), INTERNAL_ERROR - PE internal
error (OK); the function will result in a button, which was
pressed by the user or Cancel.

%makeIdentifier(<text>) A macro function to convert the string characters to identifiers,
replacing unsupported characters by an underscore; have on
mind: the function does not check if the first character is non
numeric.

%getCurrentTime() Returns current time and date in the format as per Windows
settings.

%toAscii(<number>) Converts an 8-bit positive integer to an ASCII character; if that
number is outside the range of characters that can be
displayed, a HEX value in the format XX will be returned.

%EXPR(<expression>) Evaluates the expression and returns its value.

%createProjectItem(<itemtype>,<params>[,Enabl
eInAllConfigurations])

Creates item for projects of the specified types; <itemtype>
can be:

• Configuration - creates configuration, <params> is its
name.

• Bean - creates a component or template of the specified
type <params>; local template supported as well; for
inserting a specific CPU variant, a parameter in the
format as follows can be entered: <CPU-
component>=<CPU-variant>

• Bean_autoconnect - creates a component or template
of the type specified <params>, performing auto-
connect to the target CPU.

optional parameter EnableInAllConfigurations
can be used to add component enabled in all
configurations (by default it is enabled in current
configuration only)

• Whichever is the case, defines the
CreatedProjectItemName symbol with a value
presenting the name of a newly created object.

%addAllPeripheralInitComponents() Adds peripheral initialization components for all peripherals on
the selected target processor; if supported adds also
PinSettings component; returns number of added
components; the function is designed to be used by new
project wizard.

%getTargetFileName() Returns file name with extension (without directory) of
currently selected output file; If no output file selected or event
or %INITIALIZATION or %THREAD is selected, returns empty
string.

%convertPathToOsSpecificFormat(<path>) Converts path to OS-specific directories delimiters, <path> is
<string> or <def_name>. Processor Expert uses
backslash as default path delimiter, this function can format
output path to be compatible with operating system ,where
Processor Expert is running; this function is supported only in
PE Java.

%convertListToString(<def_name>,<string>) Converts list to string, first parameter is name of existing list,
second parameter is string used as a delimiter of list values
(can be empty string); all list items are added into string

Table continues on the next page...

Source file syntax for macro-processor

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

52 Freescale Semiconductor, Inc.

delimited by specified delimiter; the function can be used to
generate list content to output or pass the list as %launchExt
parameter.

%[<i>,<def_list>] Returns a list item no. i, where items are numbered from 1, if
the index is out of range, an empty string will be returned,
def_list has to exist.

%#<srcf><dstf>[-]<number> Converts an integer (-0x7FFFFFFF..0xFFFFFFFF) from a
specified into the requested format:

<srcf> ''(if not specified) - decimal number,

' d ' - decimal number,

' 2 ' - binary number,

' L ' - non-sign 32-bit number,

' H ' - hex number,

<dstf> ' h ' - high-level language format

' d ' - decimal number

' a ' - assembler format - data

' aa ' - assembler format - address

' ab ' - assembler format - binary data

' B ' - binary number (without a prefix and extension)

%#R<number> Real number formatting.

Serves for outputs to help, linker, maker and debug files and comments:

%#b<number> Converts a number from a decimal format to a hex form ??
(without a prefix and extension) , to generate constants, prefer
%#h or %#a.

%#w<number> Converts a number from a decimal into a hex format (4 digits
without a prefix and extension), to generate constants, prefer
%#h or %#a.

%#l<number> Converts a number from a decimal into a hex format (8 digits
without a prefix and extension), to generate constants, prefer
%#h or %#a. .

3.3 Component translation sequence, generating
initialization

First, a source code is generated (only the sections as follows: interface/implementation,
help, linker and maker) from a SRC file named "Main.src" that should generate (entire)
main module - namely the interface and implementation part (generating into other
sections is optional).

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 53

Subsequently, modules for each device are generated; these modules can add the code
into the joint initialization procedure (all of them will add a code only). The initialization
procedure is a part of the processor module. Further, the module as such will be
generated from their SRC file (header as well as implementation) that will implement the
functions requested by the user. If handlers for certain events are required by the user as
well, a template (again, header and implementation) is generated for writing the code for
these events by the user. The template will be generated into the shared modules
(multiple drivers can share a single module - for module name, see %EventModule).

Afterwards, shared modules are generated from the SharedModules global list.

Finally, the processor module is generated. At the same time, this module represents an
initialization module; an initialization and enable codes that had been successively
generated by each component are added to the end of the module. This means that the
resulting processor (implementation) module will be composed step by step from the
following sections: %IMPLEMENTATION from the processor, %INITIALIZATION from all
components, %ENABLE from the processor, %ENABLE from all components, %INITIALIZATION from
the processor. In addition, termination of the initialization code must be generated by the
processor driver (for example, END command), into the initialization section
(%INITIALIZATION), i.e. to the end of the initialization and enable codes. Similarly, the same
will go for assembler initialization, except for %ENABLE, i.e. the section sequence will be as
follows %ASSEMBLER and all %INITIALIZATION asm.

Further, the processor module usually also generates initialization code for interrupt
vectors.

The processor driver can terminate generating files for LINKER and MAKER, as well as the
project for the target compiler.

Once drivers for each device and processor module have been generated, files containing
templates for each event are completed; these modules will be created by merging codes
from relevant drivers and generating the "event.src" file and adding its "interface" and
"implementation" sections to the beginning and "interface end" and "implementation end"
sections to the end of the generated source code from all modules.

COMPONENT.SRC

INTERFACE Header of the device module.

IMPLEMENTATION Implementation of the device module.

INTERFACE <event> Generates into the header of the events module.

IMPLEMENTATION <event> Generates into the implementation of the events module.

INITIALIZATION Generates into the implementation of the processor module.

ENABLE Generates into the implementation of the processor module.

LINKER Generates into the linker file.

Table continues on the next page...

Component translation sequence, generating initialization

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

54 Freescale Semiconductor, Inc.

MAKER Generates into the maker file.

3.4 Generated code format: requirements

Processor Expert defines certain additional conventions for the generated code that allow
for finding implementation of driver method from the environment (using a double-click
on the method/event on the Project Panel), this is performed via searching for method/
event name in the comments maintain the user code in the event implementation.
Additionally, the following actions are applied to user (event) module after successful
code generation,

• Module and event name renaming:
• Execute for all renamed modules and events - Change all names to internal

identification
• Execute for all renamed modules and events- Change all internal identifications

to new names
• Deleting imports not generated anymore. For all imports within the user module,

• If not exists on the list of all generated modules within the current project, then
• If generated the last time, then delete it

• Adding new imports. For all newly generated imports,
• If not exists within the user module, then add it behind the last import

• Adding new events. For all newly generated events,
• If not exists within the user module, then add it to the module end (before

MODULE END)
• Deleting events not used anymore.

• On option, if the event does not contain any user code

3.5 Limitations of code generation

There is limit of total lines for one script to avoid recursive %include, which could cause
abnormal memory allocation and invalid operation. Currently maximal number of lines is
768 000 lines.

Chapter 3 Processor Expert macro-language description

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 55

Limitations of code generation

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

56 Freescale Semiconductor, Inc.

Chapter 4
TST script for component testing

The files are stored in the driver directory on the same location as drv files, but they
possess the tst extension; they are processed by PE macro processor using src file, with
the only difference of the DriverExtension macro having tst instead of drv value. The
existence of the TST script file is not necessary (unlike the driver). The output from this
file is not expected and is not saved anywhere, only errors, warnings and hints or possibly
setting by the %set command will be accepted. Prior processing the component TST script
file, main.tst will be processed (if exists). In the course of tst processing, defining global
symbols (except for the main.tst driver) will not be permitted - any possible symbols will
be defined only locally, when the symbols from the main.TST script file will be available
for component TST as well.

Warning
If a TST script file exists for the driver, the driver will not
generate the %warning and %hint messages (these are expected
to have been generated by means of the corresponding TST
script file).

TS2 script file will be in most times started only after tst.

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 57

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

58 Freescale Semiconductor, Inc.

Chapter 5
Component scripts

The following are supported component scripts:

• CHG script - validation of component settings; executed even if the component
contains errors

• TST script - validation of component settings; executed after CHG script only if the
component does not contain any error

• TS2 script - inter-component validations; executed after TST script only if the
component does not contain any error

• DRV script - component code generation script (for example,. executed during code
generation)

5.1 CHG script: setting control script

The scripts serve for HW-independent as well as HW-dependant test of setting of the
given component or compiler with the possibility of changing the setting (that is setting
for specific component properties, methods and events or compiler setting). The scripts
are located in the component directory (the same as with the *.bean file); the extension
reads as chg; for types and naming of scripts, see CHG script types topic. These files are
processed by PE in the same way as that for the drivers, starting them directly without
using the src files; in addition, these files can employ the %set command. The
DriverExtension macro will have the chg value. Unlike the src file, the existence of the
CHG script file is not required. The output from this script will not be saved anywhere,
only errors, warnings and hints will be displayed and item setting will be executed using
the %set command. Other non empty line generated to output is considered as wrong CHG
script. Generating errors directly for the corresponding item using the " %set Property
Error ErrorMessage" command is recommended.

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 59

NOTE
Within the CHG script file processing, the symbols defined will
not be changed, even if the item value is modified by the %set
command. The current item setting value (for example, after the
%setMethod Selection enable command) can be tested using the
%get command. Instead of testing the value of the corresponding
symbol, only use of the %get command is recommended.

The CHG script file will be processed each time the component setting is modified
regardless of correctness of the setting or if a target processor had been selected or not.
During the process above, some symbols may not be defined (no symbol will be
guaranteed). Within the CHG script file, work will be possible only with the symbols
valid for the given component, but not with global symbols. Inserting the component into
the project will open CHG script with the defined BeanInitialization symbol (which does
not apply for project loading); during project loading CHG file is executed after
component is loaded with symbol _SpecialBeanCompatibilityInitialization defined; creation
of inherited component will invoke CHG script of parent component with symbol
_BeanInInheritedItemInitialization and its value is symbol of property, that contains new
inherited component.

In addition, during execution of CHG script will be defined the symbol CHG_BeanIsEnabled
with yes or no values provided information if the component is enabled.

5.2 CHG script types

The common CHG script has the same name as the component/compiler. A script specific
only for a certain processor family must be enlarged by _<family> suffix in file name; this
script will be executed after the common script (of course only if the target processor
belongs to the corresponding family). Finally, a script may exist with a name extended by
_ZZ_finish; such script will be run in the end.

All the CHG scripts above are optional; however, it is recommended that at least common
CHG script exists. If common CHG does not exists, none of these described above will be
launched.

CHG script types

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

60 Freescale Semiconductor, Inc.

Chapter 6
TS2 script for component interdependence testing

TS2 scripts have been designed to allow for the following:

• Component interdependence testing
• Definition of global symbols for generating

TS2 script will be processed in the same way as TST script, with the only differences as
follows:

• TS2 script can define global symbols that will remain defined for generating codes
• TS2 script will always be processed for all components at the same time
• TS2 script can set errors to items of arbitrary components by the %set @>Component@Item

Error command
• TS2 script can set an extra text to items of arbitrary components by the %set

@>Component@Item ExtraText command
• TS2 script can influence the sequence of their processing as follows: at the start of the

TS2 script (the file used from SRC) the first line (or lines) in the format like %
AFTER_BEAN:component, where component stands for the name of the component, the
TS2 script file of which is to be processed prior this component. Init components: for
each family, a component name can be entered in the format as follows:
Init_<name>_*. The sequence is determined statically, i.e. without conditional
translation. The sequence determined this way is preferred to that determined by a
reference to a different component instance (inherited or shared components).

NOTE
Any modification will need project reloading.

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 61

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

62 Freescale Semiconductor, Inc.

Chapter 7
CDB

CDB file contains information about supported components for the selected processor and
selected peripheral. The CDB files are created/updated automatically by Processor
Expert, after new component is installed.The CDB file is stored within the directory of the
processor component.

7.1 readyMASK

readyMASK is used in the component code-generation script (.drv) to identify supported
derivatives and supported peripherals by the component and the component script.

%- readyMASK families={F}[,..] [CPUDBversion>={V.VV.VVV}]
peripherals={P}[,{P},...] [special_reg={SR}] [not_special_reg={SR}]
[special_CPU_reg={SR}] [numOfPrphInstances>={NumInst}]

%- notreadyMASK families={F} [subfamily={S}]
[cpu_components={C}[,...]] peripherals={P}[,...]

%- notreadyMASK families={F} [subfamily={S}]
[cpu_components={C}[,...]] peripherals={P}[,...]

%- notreadyMASK families={F} [subfamily={S}]
[cpu_components={C}[,...]] peripherals={P}[,...]

Where, {F} is identifier of Processor family from CPUDB; {S} is identifier of Processor
subfamily from CPUDB;

{C} is identifier/mask of Processor component, mask can be specified using * and ?
wildcards;

{V.VV.VVV} is version of CPUDB database for compare, it is not necessary to specify
complete version number, for example CPUDBversion>=3 can be used as well;

{P} is name of the peripheral from CPUDB, that is required for functionality of the
component; it is not allowed to use peripheral names, that are not supported on any
processor,

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 63

{SR} is an identifier of special register (function), that is required (or conflicting) to be
assigned to the peripherals (for example: it must be used for EventCounter component,
which can allocate only counter, that contains external clock pin - so peripheral name is
not sufficient, it is necessary to specify extra functionality); if both special_reg and
not_special_reg are used, so the peripheral must contain the first special register and may
not contain the second special register; special_CPU_reg is used to specify required register
in CPU peripheral.

{NumInst} decimal integer number specifying minimal number of peripheral instances;
user-case: should be used for Byte2/3/4IO components that require at least 2/3/4 port
instances

readyMASK is used to specify list of Processor components and peripherals, which are
supported by the component, while notreadyMASK is used to specify exceptions (what is not
supported yet). It is expected, that notreadyMASK will be used only as an exceptional or
temporary solution.

Listing: Example

%- readyMASK families=HCS08,ColdFireV1,RS08 CPUDBversion>=3
peripherals=PTA,PTB,PTC
%- readyMASK families=RS08 peripherals=TPM
special_reg=PE_PRPHREQ_EVENTCOUNTER

readyMASK

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

64 Freescale Semiconductor, Inc.

Chapter 8
External libraries

The PE macro-processor language allows invoking of code from external dynamically
loaded libraries (external objects). This chapter describes how to implement those
libraries and provides description of their API. Supported are MS Windows DLL libraries
via %launchDLL command and on Eclipse pure Java PE-service platform %launchExt
command is also available extending %launchDLL functionality to Java class libraries, Java
class libraries stored in JAR files and shared objects on Linux systems.

This chapter describes required interface of external shared libraries so PE macro
language is able to use them.

To make shared libraries functions accessible by PE macro language, unified API has to
be used for them. Required API for Java libraries (.class and .jar files) and OS shared
libraries (dynamic-link libraries and shared objects) differs as Java libraries are accessible
directly from PE Eclipse implementation contrary to OS shared libraries which are
accessible only through Java Native Interface.

The topics covered here are as follows:

• OS shared libraries API
• Java libraries API

8.1 OS shared libraries API

Following API should be used in MS Windows dynamic-link libraries (.dll files) and
Linux shared objects (.so files) accessed by %launchExt macro language command (in case
of dll libraries it is also possible to use %launchDLL).

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 65

Implmenetation node:Interface between PE and external library is made through stub
library, which is implemented for both MS Windows and Linux platform as part of PE in
Eclipse. This library manages sub-layer between Java environment and OS environment
using Java Native Interface.

PE is supporting two C language function calling conventions: "regparm" and "stdcall".
Distinction between them is determined by _STD suffix in library function name, which
usage is obligatory for functions implemented with stdcall convention. However, there is
no explicit specification of used calling convention in %launchDLL/%launchExt command and
library is searched in following sequence:

1. Function <function-name> is searched as first.
2. If <function-name> is not found, <function-name>_STD is searched.

This means that:

• every external library function has to have an unique name - _STD suffix can't be used
to differentiate two functions names,

• name of function implementing stdcall convention have to end with _STD suffix and
• name of function implementing regparm convention can not end with _STD suffix.

Functions declaration:

char * __stdcall <function-name>_STD (const char *params, char
 **macroCmds, char **defineSymbols);

 char * __regparm(3) <function-name> (const char *params, char
 **macroCmds, char **defineSymbols);

params - string containing parameters passed to the function

macroCmds - pointer to string used to pass PE macro language commands from function.
After processing %launchExt/%launchDll command, it can be processed additional macro
commands from macroCmds content. Multiple commands stored in macroCmds has to be
separated with \n or \r\n sequence. See Macro commands topic for list of supported
macro commands.

defineSymbol - pointer to string - deprecated, used only for backward compatibility

returns - string with lines directly sent to the output of the script

This is the basic declaration of API which should be used. Particular declaration used in
external library implementation may differ depending on compiler used to build the
shared library (.DLL/ .SO) - supported attribute declaration may slightly differ.

Listing: Example

char local_buffer[1000];
char* __attribute__((stdcall)) returnInputSTD_STD (char *params, char
**MacroCmds, char **DefineSymbols)
{

OS shared libraries API

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

66 Freescale Semiconductor, Inc.

 sprintf(local_buffer, params);

 *MacroCmds = local_buffer;

 return local_buffer;
}
char* __attribute__((regparm(3))) returnInput (char *params, char
**MacroCmds, char **DefineSymbols)
{
 sprintf(local_buffer, params);
 *MacroCmds = local_buffer;
 return local_buffer;
}

Example of functions just returning string passed in params input parameter is showed
above using GCC attribute declaration, one using " regparm" calling convention and one
using " stdcall" convention.

Next example shows possible declaration of same functions when using Microsoft

Listing: Example - 2

 __declspec (dllexport) keyword used to export these functions:
__declspec (dllexport) char* __attribute__((stdcall))
returnInputSTD_STD (char *params, char **MacroCmds, char
**DefineSymbols)
{
 sprintf(local_buffer, params);
 *MacroCmds = local_buffer;
 return local_buffer;
}
__declspec (dllexport) char* __attribute__((regparm(3))) returnInput
(char *params, char **MacroCmds, char **DefineSymbols)
{
 sprintf(local_buffer, params);
 *MacroCmds = local_buffer;
 return local_buffer;
}

8.2 Java libraries API

External libraries functions stored in .class or .jar files API:

String[][]<function_name> (Object component, String params);

component - interface to processor expert component context
com.processorexpert.core.service.api.IPExComponentAPI; null if the calling script is not
running for any component;

params - string containing parameters passed to the function

returns - String array of two elements - first element contains array of string that will be
generated to script output, second element contains array of macro command strings (see
Macro commands topic for list of available commands; %include, %inclSUB, %launchExt and
%launchDLL are not supported).

Chapter 8 External libraries

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 67

Listing: Example

class LaunchExtObjectTestClass {
 public String[][] testMethod(Object component, String params) {

 String[][] result = new String[2][2];

 //to generate on the script output

 if (component == null) {

 result[0][0] = null;

 result[0][1] = params;

 } else {

 result[0][0] = component.toString();

 result[0][1] = params + component.toString();

 }

 //macro-commands to execute

 result[1][0] = "%set ItmSymbol1 Text YYY1";

 result[1][1] = "%set ItmSymbol2 Text YYY2";

 //

 return result;

 }

}

%launchExt LaunchExtObjectTestClass.class,testMethod,PARAM

Java libraries API

CodeWarrior Development Studio Macro-processor Language Reference Manual, Rev. 10.6, 02/2014

68 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, and Processor
Expert are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat.
& Tm. Off. All other product or service names are the property of their
respective owners.

© 2012–2014 Freescale Semiconductor, Inc.

Document Number CWPEXMLREF
Revision 10.6, 02/2014

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Chapter 2: Terms and definitions
	Chapter 3: Processor Expert macro-language description
	Symbols
	Global symbols
	Processor component symbols
	Symbols defined at all times

	Component module symbols
	CPUDB functions
	Registers
	CPU package and pins
	Memory Map
	Others

	Symbols for driver
	Component functions

	Source file syntax for macro-processor
	Denotation
	Math operations

	Macro commands
	Conditional translation
	Symbol definition
	Inserting files, calling external DLLs
	Text formatting and comments
	Output language and compiler
	Errors
	Working with lists
	Sections
	Code identification
	Working with component items
	Modification of string-list

	Expressions
	Debugging
	Insertion marks
	%set ReqValue <value>=<reason>

	Inherited item symbols
	Other macros

	Component translation sequence, generating initialization
	Generated code format: requirements
	Limitations of code generation

	Chapter 4: TST script for component testing
	Chapter 5: Component scripts
	CHG script: setting control script
	CHG script types

	Chapter 6: TS2 script for component interdependence testing
	Chapter 7: CDB
	readyMASK

	Chapter 8: External libraries
	OS shared libraries API
	Java libraries API

