CodeWarrior Development Studio for
Microcontrollers V10.x S12Z
Assembler Reference Manual

Document Number: CWMCUS12ZASMREF
Rev 10.6, 02/2014

<&,

7" freescale

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

L __4
Contents
Section number Title Page
Chapter 1
Using S12Z Assembler
Lol HIGRIIERTS ettt ettt b et b e h e bttt eb et eb e bt e h e bt et b et b et eh et ebe e b eaee 19
1.2 Structure of thiS DOCUMENL.c.coiiiiiiiiiiiiiii e s 19
1.3 AccOmMPANYing DOCUMEIEATION.c.eeutiiiiitietietteiteet et et ettt et e st e ebeetesaeestee bt eaeeeseeesee st enteensesseebeenseensesaeesneenseeneeenes 20
Chapter 2
Working with Assembler
B B €)< o 4 1<) OO RPSRSTRSRPRR 23
2.1.1 PrOJECE DATECIOTY ...eeiiuiteitiitetteteeit ettt ettt ettt e b et s bbbt et e bt e s bt et sb b e s bt embesbtenbeembesatenbeenaesaees 24
2,12 EXternal EdItOr......cooiiiiiiiiiiiii e 25
2.2 Managing Assembly Language Project Using CodeWarrior IDE...........c.cccooiiiiiiiiiiiniieiee e 25
2.2.1 Create NEW PrOJECT. . .iiuiiiiiiieiieiteeit ettt ettt ettt sb e bt e ea e st s be e bt et satesbeenaeenaeeae 25
2.2.2 Additional Project INfOrMation.c.ueiiiiiiiiniiiiiienieee ettt ettt e st e st e e bt e e sbeesbeesbeesanee e 27
2.3 Analysis of Groups and Files iN @ PrOJECt........ccieiiiiiiiiiieieeeeee et ettt sttt s eeee 30
2.3.1 COACWAITIOL GIOUPS. ...cutieutiiieiiieitentteiteettet ettt ettt et e st sbt et eb e e st e e st s bt e bt ebtesaeestesbee bt eatesbeentesbee bt entesbeensesaeen 31
2.3.2 CreatiNg NEW GIOUD.eeetieiiieriieetteetee et e steestteesbteebtesabeessbeeabte e baesabeesabeesaseesbteanstesabeesabeessteessbesnbeesbeenaseenn 32
2.3.3 Adding New File t0 the ProOjeCt........cooiiiiiiiieiieiee ettt ettt sae e seeeneas 32
234 Renaming File OF GIOUP......cocuiiiiiiiiiiiieiiteitete ettt et ettt ettt et ebt e bt et et eanesaaenaees 33
2.3.5 IMOVING FALC......tiiiiieie ettt ettt e b e e bt e s at e e bt e et e e sat e e bt e eabeesbbeenbeesateenssesnseenas 33
2.3.0 REMOVING FIlC ...ttt ettt e e bt et e bt et e e st e bt ent e ene e bt eae e bt et e eneeneeenes 33
2.3.7 Restoring DEleted FIle.........ooiiiiiiiiiiiiieiie ettt 33
2.3.8 USINE EItOT. ... ciiiiiiiie ettt ettt e st e st e bt e bt e e it e e sa bt e s st e e bt e e bt e sabeesabe e bt e sbeeeabee e 34
2.3.9 Generating LiStiNg FIIES......cccoiiiiiiiiiiiiieietcteee ettt sttt st s ebe e 35
2.4 Writing your ASSEmDbLY SOUICE FAIES......c.eiiiiiiiiiiiiiiiee ettt ettt ettt 36
2.5 ANALYZING PrOJECE FAIES. ..ottt ettt et e et et e bt e bt e bt e s st e e bt e sabe e bt e sabeenateeabs 37
2.6 ASSEMDIING SOUICE FIIES......oiiuiiiiiiiiiiiiiiitcte ettt ettt sttt ettt ettt ebe et ae b e 39
2.6.1 Assembling and Linking with CodeWarrior IDE...........ccccccoiiiiiiiiiiiiniiniietceee e 39

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 3

h o
g |

Section number Title Page
2.6.2 Assembling With ASSEMDIET......c...eiiiiiiiiiiiiiiiieet ettt sb e st e st e st e sabeesabeesaree e 40
2.6.2.1 Configuring ASSEIMDICT.......c..iiuiiiiieiieiietiete ettt ettt ettt ettt et et e bt e e s st e bt enbeeseesbeeseeneesneas 41
2.6.2.2 TNPUE FILBS..eiiiiiiiiieiteee ettt ettt et et ettt 45
2.6.2.3 Assembling Assembly Source-code Files...........cooiiiiiiiriiiiiiiiiiiiienieee e 46
B 3111 0 TN o] o) L Ter: Vi (o) FO OSSPSR 53
2.7.1 Linking with CodeWarrior IDE.........c..ccocciiiiiiiiiitte ettt ettt st 53
2701 PRM FALE ..ttt ettt sttt 53
2.7.1.2 Linking Object-Code FIles.cciiriiiiiiiiiiieiieeee ettt sttt 55
2.7.2 LinKing With LINKET.....c.ooiiiiiiiiiiiiii ettt ettt b et ettt e nbeeaae i 56
2.8 Assembler Build Properties Panels...........cooueiiiiiiiiiiiiiieiice ettt ettt st et st 60
2.8.1 S127 Assembler Build Properties Panels...........cccooiiiiiiiiiiiiiiieeeeee et 60
2.8. 1.1 S12Z ASSEMDIET.....coiiiiiiiiiiiiiiiicite e et 61
2.8.1.2 S127 ASSEMDIET > OULPUL.....vieuiieiiiieiieeiie ettt ettt ettt ettt e sbt e s bt e satesabeesatesabeesbaeenseenaees 61
2.8.1.3 S12Z Assembler > Output > Configure Listing File.........ccccoooiiiiiiiiiniiiieeeeeeee e 62
2.8.1.4 S127 ASSEMDICT > INPUL......eouiiiiiiiiiiieieitetece ettt ettt ettt 63
2.8.1.5 S127 AsSSembIer > LaANGUAZE.ccceeiiuiiiiieiiieiieeite ettt ettt ettt ettt e e st e st e e saes 63
2.8.1.6 S12Z Assembler > Language > Compatibility MOdes..........ccceerueruiriiirieniinieneeieseee e 63
2.8.1.7 S127Z ASSembIEr > HOSt...c..oouiiiiiiiiiiiiiiicicccc e 64
2.8.1.8 S127Z Assembler > Code GENETAtION..........ccuiiiiiiiiiiiiiiiiicieie e 64
2.8.1.9 S127 ASSEMDIET > MESSAZES.veuveuriiiririirtieienitetieit ettt ettt ste e st st see ettt ettt e s et enenaennen 65
2.8.1.10 S12Z Assembler > Messages > Disable USer MESSages.......coeeveruerienierienienieneeneneenieeeeneeeennee 66
2.8.1.11 S127Z Assembler > General...........cccccooiiiiiiiiiiiiiiiiiiiice s 66
Chapter 3
Assembler Graphical User Interface
3.1 SHATtING ASSEIMDIETccuuiiiitiiiiiiiie ettt ettt ettt s bt e bt e s et e e bt e et e e s at e e bt e se bt e b teeabeeshb e e bt e sab e e bt e eabeenbaeenbeenanean 69
3.2 ASSEMDIET MaIN WINAOW....cctiiiiiiiiiiiiieeie ettt ettt st e et e e et e s bt e bt e meesaeesbe e et saeesaeenseemeesaeenaeeneesneeseeeneeenes 70
321 WINAOW THHE. ...ttt st et sa e 71
322 CONLENE ATCA.....uiiiiiiiiiiiieiieie ettt s b e e b e e 71
T8 B Koo L USROS USRS 72

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor,

Inc.

h o
g |

L __4
Section number Title Page
324 SHATUS BAT...oiiiiiii e s 73
32,5 ASSEMDIET MENU BToiiiiiiiiiiiiiieeee ettt ettt ettt h et e bt et neeeaeas 73
3200 BB MENUL..uiiiiiiiiiiic ettt 73
3277 ASSEMDIEr MENUL.....oiiiiiiiiiiiiiiiiii e e 75
T B VA 1o\ (71 L FO OO U OUPR USRS 75
3.3 Editor Setting DIalog BOX......cotiiiiiiiiiieiiiieiteetest ettt sttt b ettt e h et et h et bttt e e saeen 75
3.3.1 Global Editor (shared by all tools and PIOJECLS)......cerueerrurieriiieriieeiieeitteerteesteesteeeiee ettt e sireesiteesbeesbeeesaeeenes 76
332 Local Editor (Shared DY all t00IS)........ccuieiiiieitiieieee ettt ettt ettt e e e e e 76
3.3.3 Editor Started with Command LINE..........ccccocoeiiiiiiiiiiiiiiiiiceeeeeee e e 77
3.3.3.1 Example of Configuring a Command Line EditOr...........ccccceeriiiiiiiiiiiiiiieniieiecceeeeeeeeee e 78
3.3.4 Editor Started With DDE..........coiiiiiiiiiiee ettt ettt et st b ettt et st e et e eesneas 78
335 CodeWarrior With COML........ccciiiiiiiiiiiiiiiiiiet ettt st 79
33060 MOGIFIETS. ..t 80
3.4 Save Configuration DIialog BOX.......cc.eeiiiiiiiiiiiiiei ettt ettt b ettt a et n e h et st e e enee 81
3.4.1 Environment Configuration DIalog BOX......c.ccooiiiiiiiiiiiiiiiiiinie ettt 83
3.5 Option Settings DIAloZ BOX.....uiiuiiiiiiiiiiiie ittt ettt et sttt et s b e st e e be e e bt e sttt e bt e et e esabe e ateeabeesabeenaee s 84
3.6 Message Settings DIialoZ BOX.......ooiiiiiiiiieie ittt ettt ettt ettt ettt et e a e a ettt eeae et e et e et e naeenes 85
3.6.1 Changing the Class Associated With @ MESSAZE........cccuerririiriiriiiierienitert ettt ettt 87
3.0, 1.1 EXAMPIE...eiiiiiiiiiiiieette ettt ettt ettt e h bt e bt bt e e bt e e bt e e bt e e be e e bt e sabeeenbeesares 87
3.7 ADOUE DHAIOZ BOX ..ttt ettt et h bttt et e bt e a b e bt ekt e a e e bt et e en e e bt en bt en b e bt et e ent e bt enteeneeaeenee 88
3.8 SPecifying INPUL FHIC.....cuiiiiiiiiiiiiet ettt ettt b e et sbe et s bt et sba b ebae bt ebeenaeenee 89
3.8.1 Use Command Line in Toolbar to ASSEMDIE............cccceiiiiiiiiiiiiiiiiiiiii e 89
3.8.2 AsSSembIING @ NEW FIle....c.ooiiiiiiiiiiiiiieee ettt ettt ettt 89
3.8.3 Assembling a File which has Already been Assembled..........c.ccoeerieriiiiiiiiniiinienieeeceeeceeee e 89
3.8.4 Use File > ASSEMDIE ENTY..cc..oiiiiiiiiiiiieiieeeie ettt sttt ettt e bt et e et e st e sabeeenbeesates 90
3.8.5 USE Drag and DIOP....c.ccueiiiiniiniiiiitietete ettt sttt st sttt 90
3.9 MeSSAZE/EITOTr FEEADACK.oiuiiiiiiiiiiiiie ettt et ettt et b et e bt et e bttt eatesaeenaenbean 90
3.9.1 Use Information from Assembler Window...........cccccceiiiiiiiiiiiiiiiiiiiiii e 91
3.9.2 Use UsSer-defined EdIOr.couiiuiiiiiieeiee ettt ettt ettt ettt et e st e e st etesaeeneeeneas 91

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

|
Section number Title Page
393 Line Number can be Specified on the Command Line...........cccceerieiriiiniiiniiiiieeiesieesieesee e 91
3.9.4 Line Number cannot be Specified on the Command Line...........cccocveiriiiiiiiiiiiiiiiiiiiicccicenceseseeee 91
Chapter 4
Environment
4.1 CUITENE QITECEOTY ..ttt ettt ettt ettt ettt ettt s et a e bt e bt e bt eb e et e bt e bt eb e bt saeeb e b e saeeb e besaesteebesaeste b nee 94
4.2 ENVITONIMENE INACTOS. .. .cuiiuiuiitietiitiettett et ettete ettt ettt et et esee st esteseestestessestestessensestestess et este s estense st essessessestesestebessesaesnenne 95
4.3 Global initialization file - MCtoOlS.INT (PC ONIY).....eiiiiiiiiiiiiiiieeiie ettt ettt s bee st e b e sinee e 96
4.4 Local configuration file (USUIlY PrOJECLANT).c..cc.eririrriririieiiieiieiiet ettt ettt et st 96
4.5 LNE CONTMUALION. c....titiiiieiieiiiit ettt ettt s a et be st eb e bt bbbt bt b e ae e bt e bt oo s e et et ess et e e et e s et e s e sa et e saesaeene e 98
4.6 Environment variables details............ccooiiiiiiiiiiiiiiii e 99
4.6.1 ABSPATH: ADbSOIUte file Pathi......cc.couiiiiiiiiiiiiicicicec ettt 99
4.6.2 ASMOPTIONS: Default assembIer OPtIONS.c..ccoueeieriirtirieniteieete ettt ettt st siee s e st et sbtesaeesbeenneens 100
4.6.3 COPYRIGHT: Copyright entry in ObJECt fIle........c.uiiiiiiiiiiiiiiiiieiieeie ettt s 101
4.6.4 DEFAULTDIR: Default CUITeNt Air@CIOIYcc.eetirtieiieiieriieie ettt ete st ettt e st ettt eeesseesaeseteseeesesseesbeensenaeans 102
4.6.5 ENVIRONMENT: Environment file SPeCifiCation........cc.cocueriiriiriiiiniiiiineeienieeiesieeesitee ettt 102
4.6.6 ERRORFILE: Filename SPeCifiCatiOn ©TTOT..........cccueertieriieriienieeiieesteesiteeieesbeesieesbeesseebeesnbeesateenbaesnseenaneas 103
4.6.7 GENPATH: Search path fOr input file..........cooeiuiiiiiieiieieeee ettt seens 105
4.6.8 INCLUDETIME: Creation time in the object file........c.ceoiriiiiiiiiiiiiiiiiiiiiieeeeccec e 106
4.6.9 OBJPATH: Object file Path.......cccoviiiiiiiiiiiiiicieeceeeere ettt st 107
4.6.10 SRECORD: S-RECOTA LYPC.....uvertietietieiieiiieittete ettt ettt ette st e et et e et e bt e bt eseessee bt eateesee st enseeneeebeenteenseeseanseans 108
4.6.11 TEXTPATH: Text file Pathi....c..ccouiiiiiiiiiiiieiei ettt sttt et eas 109
4.6.12 TMP: TeMPOTATY QITECIOTY ..ccuuvietiiitieetiesitteste ettt ettt etee st e sate e sttt e sateebeesbeesateesabeesseeebaeenbeesabeesnseessneesaseenseean 109
4.6.13 USERNAME: User Name in ODJECE fIl....c.eeuiiiiiiiiiieiieit ettt sttt et ens 110
Chapter 5
Files
ST B 11 (o 0[SOS 113
5.1.1 SOUICE FIIES..c..cueieiieieiie ettt ettt ettt et et a e sa e b sae s 113
S.L2 0 INCIUAE FIIES....uiiiiiiiiiic e 113
CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014
6 Freescale Semiconductor, Inc.

h o
g |

Section number Title Page
5.2 OULPUL FILES..c ettt ettt e b e et e st e e ab e e sa bt e e ab e e bt e e bt e ea bt e e ab e e eab e e sabeeeab e e eabeeeht e e bt e e bt e e beeebeesates 114
5.2.1 L0 o) [<Tot a1 1SR SUSPSRRPO 114

522 ADSOIULE FILES...uiiiiiiiiiiiicie ettt 114

523 S-RECOTA LS. 115

5.2.4 LISHNE F1ES. .ottt ettt ettt h e bttt a e e h e bt et e e a e e eh e e bt et e enteeh e e bt e beenbeenteeneenaeenneenes 115

5.2.5 Debug LISTNEZ fIIES..c..eiotiiiiritiitieieet ettt sttt et sttt et 115

5.2.6 EITOT TISHNE FIlE...ceoutiiiiiiiiiieiecte ettt ettt st e b e et e sa bt e s ate e bt e s bt e sabeeabbesabeesabeenbeesabee e 116
5.2.6.1 Interactive mode (Assembler WindOW OPEI)........ccueruieruieriierieeitieieeie ettt eiee st e e 116

5.2.6.2 Batch mode (Assembler Window NOt OPEM)......cc.eeveruieriierierieniienieenieeee ettt et e e e 116

5.3 FLE PIOCESSINE. ... eeeuiiieiiiieiteeitte ettt ettt ettt ettt et e e at e b bt e bt eea bt e s ab e e bt e e bt e eab e e sabeensteea bt e eabeesabeesbbeeabeesabeesabeesbbeeaeenates 117

Chapter 6
Assembler Options

6.1 Types Of ASSEMDIET OPLIOMNS.cccuuiiiiiiiieeieeiie ettt ettt et e et e st e e saeesa bt e s ateeabeesbbeeabeebeesabeesbeesabeessbesaseenbaesnseenseean 119
6.2 ASSembIer OPHiON DELAILS.cccuiiiiiiiiitiete ettt et ettt et e a e st e et e e a e bt et e ea e e bt ea e e ea e et e ene e bt enteeneenaeenes 121
6.2.1 USING SPECIAl MOGIIIETS.eutitieiiieiiiieeiteeeee ettt ettt ettt sbe ettt sb et ebe e e s 121
6.2.1.1 Examples using special MOAIfIEIS.........coouiiiiiiiiiiiiiiieeiecee et 122

6.3 LiSt OF ASSCMDIET OPLIONS. ...c.ueiitietieiiietiett ettt ettt ettt et e et e bt et e eb e e bt eateeseesbe e bt eaeesae e bt eaeesaee st eneesmeenaeenseeneesseenseenee 124
6.4 Detailed Listing of All ASSEMDBIET OPLIONS.....c..eiiiiiiriiriieiiiiieiteett ettt ettt ettt ettt et et sbtesbeesbeeseeenaeeaee 126
6.4.1 -ArgFile: Specify a file from which additional command line options will be read..........cccccceeeeviieeriieennnnee. 126

6.4.2 -AsmDbg: Emit assembly source file information in debug SECONS.........cevveeriirierierierieriee e 127

6.4.3 -Ci: Switch case sensitivity on label names OFF.........c...ccccooiiiiiiiniiiiiiiicee e 127

6.44 -CMacAngBrack: Angle brackets for grouping Macro ATgUMENTS.........cocveeveerieriieenieniieenreeieenieesveesee e 128

6.4.5 -CMacBrackets: Square brackets for macro arguments roUPINg.........c.cceeeveruerrererrereenieneneeeenreneneenennens 129

6.4.6 -Compat: COmMPAtiDILILY MOAES.cccueiiiriiiiiriiiriiiteetee ettt ettt st sb ettt et e sae e e ene 130

6.4.7 -D:iDefine Label..........ccoooiiiiiiiiiiiii e 133

6.4.8 -DefLabel: Improves support for data allocation dir€CtiVES.........c.eeruiruerriierieeiieie et 135

6.4.9 -Env: Set environment VAriabIe...........c..ccieiiiiiiiiiiiiiiiiiciece e e 136
6.4.10 -F (-Fh, -F20, -FA2o0, -F2, -FA2): Output file format...........ccccceeriiiiiiiiiiiiiieeetese ettt 137

(O3 I Y & BN 1 1o a5 (51 | o TSROSO 138

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 7

h o
g |

Section number Title Page
6.4.12 -1 INCIUAE fI1€ PALN..c...eiiiiiiiieeiie ettt et ettt e st e bt e st esabeeabeesabeestesabeesabeeabee e 139
6.4.13 -L: Generate @ LIStING fle.......ooiiiiiiiie ettt ettt et s b e bt et ae e ens 140
6.4.14 -Lasmc: Configure IStNG fIle.......coueiiiiiiiiiiiiiece ettt st et 142
6.4.15 -Lasms: Configure the address size in the LiStNG file.......ccceeiiiiiiiiiiiiiiiiieeeeeee e 144
6.4.16 -Lc: No Macro call in HStING fle.....c..eeuiiiiiieiieie ettt 146
6.4.17 -Ld: No macro definition in HStIng fle........ccccoriiiiriiiiiiiniii ittt 148
6.4.18 -Le: No Macro expansion in HSHNG fIl€.......ccuiiiiiiiiiiiiiiiiiiiecie ettt sttt e 150
6.4.19 -Li: No included file in HStING fIle.......cc.ooiiiiiiiiiiiiciccecere et 152
6.4.20 -Lic: License INfOIMAatiON.cc.couiiiiiiiiiiiiiiiitietieste ettt e 154
6.4.21 -LicA: License information about every feature in dir€Ctory........oouierieiriierieeeiiie ittt 155
6.4.22 -LicBorrow: BOrrow LiCENSE fEATUIE.eiuiitieiieiieitieieee ettt ettt ettt et sae e b e ene 156
6.4.23 -LicWait: Wait until floating license is available from floating License Server..........ccccooceevieriirieenieeneenne. 158
6.4.24 -L1: SHOW 1aDEI STALISICS.ccuviuiiiiiiiiiiiiieicec et 159
6.4.25 -MacroNest: Configure maxXimum MaCTO NESLINEZ........ccueeuirirrierierterinereetertenenrteteeterestesreeseesessessesseennensens 159
6.4.26 Message A1004 (available in the Online Help)........coccevuiiiiiiiniiniiiiiiieicicteteeeee e 160
6.4.27 -MCUasm: Switch compatibility with MCUaSM ON.......cceeriiiiiiiiiiiiiierieeiie ettt 160
6.4.28 -IN: DiSPlay NOLIEY DOX...cetiiiieiieeieiie ettt ettt ettt e bt ettt e eb e et e en b e ee b e e seeebeebeenaesneesneenbeeneeenes 161
6.4.29 -NoBeep: NO Deep in CASE OF QN CITOT......ccueetiriirtieiieiteieett ettt ettt ettt ettt ettt ebeesae et saee e eseesbeeneeene 162
6.4.30 -NoDebuglnfo: No debug information for ELF/DWARF files........ccocouiiiiiiiiiiiiiiiiieiiceceieeeeeeeeeee e 163
6.4.31 -NOEnNV: DO NOt USE ENVITONIMENLueeuttiiiertietietieteetteeteesteesteeteeteseeesteesteeeeenseeseeeseebeenbeensesseesaeesseeseenseenes 163
6.4.32 -ObjN: Object filename SPECITICAION.c.tiuiriiriiiriieieeie ettt ettt et st st e 164
6.4.33 -Prod: Specify project file At SLATTUP........eeerueeriieritieriie ettt ettt ettt ettt et esbeesbeesabeesabeesabeesabeesaneenns 165
6.4.34 -Struct: SUPPOTt fOI SIIUCTUIET LY PES....eeuvteuierrieteeieetieite et stte it et et ettt e et e bt etesae e aeeeesaee bt eaeesaee st eneesneenseenes 166
6.4.35 -V: Prints the ASSEMDIET VEISION......c..cciiiiiiiiiiiiiiiiiiieiccie et 167
6.4.36 -View: Application Standard OCCUITEICE.eevuteruitriieriieeteeeiteette sttt et esite e bt e satesbeesabesbeesbbeebeesseesbeenseesases 168
6.4.37 -W1: NO InfOrMAatiON MESSAZES.cuveureureuierieririertintirtertenteteteteseeatesteseeuteaesre st e besaessessesentensensenteneeneeaeeseesessenee 169
6.4.38 -W2: No information and Warning MESSAZES........coueeuerueeruerrerieetertientertenteetesitesteetesteestesseenseeseesseesesseesseeses 170
6.4.39 -WErrFile: Create "err.10g" eITOT file.........ooiuiiiiiiiiieiiiiiieeite ettt ettt et e sabee e 170
6.4.40 -Wmsg8x3: Cut filenames in Microsoft format to 8.3..........cooiiiiiiiiiiii e 172

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

Section number Title Page
6.4.41 -WmSZCE: RGB COIOT fOT ITOT MESSAZES. .. .veeuvierureeiiteiieniteeitieetee sttt et e st et e esieesiteesitessbeesbbeebeesareesssesseenas 173
6.4.42 -WmsgCF: RGB color fOr fatal MESSAZES. ... eevietieiieiieieeiienie ettt ettt sttt ettt et et see et e sseesaesneeneeeneas 173
6.4.43 -WmsgCI: RGB color for information mMeSSAZES.cc.eeverieriirieniieiinienieetesiteteeite ettt et eiee e ene 174
6.4.44 -WmsgCU: RGB COIOT fOI USET MESSAZES. ..uuveeurieruiieritieniiertieeteestteeitesbteetteebteesatesbeeessteesbbeesaneessseesaneenns 175
6.4.45 -WmsgCW: RGB color fOr Warning MESSAZES.ueeueertieuieiertienteeteeiientienteeteeseesseesseesesneesseenseesesneesseenseenes 176
6.4.46 -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode............cccceoieniiiinninncnncn. 177
6.4.47 -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode..........cccceeevveeenieenineennns 178
6.4.48 -WmsgFob: Message format for batch MOde...........coouiiiiiiiiiiiieeeee e 180
6.4.49 -WmsgFoi: Message format for interactive MOAE........cocuevviriiriiniiniiiiieieeieeie sttt 182
6.4.50 -WmsgFonf: Message format for no file information...........cocuieiiiiiiiiiiiiii e 184
6.4.51 -WmsgFonp: Message format for no position information...............eeceerierienienienienie e 185
6.4.52 -WmsgNe: NUMDET Of EITOI MESSAZES.eouvetieiiirtieiieitentieteeitet ettt ettt et estesae et sbeesbeetesbeesaeentesbeeneeenee 187
6.4.53 -WmsgNi: Number of Information MESSAZES.c.eerriiriiiiiieniieiiierie ettt ettt sbeesbeesbeesbeesanee e 188
6.4.54 -WmsgNU: DiSable USET MESSAZES......cruertirueruiriiriirtietieieeieeie ettt ettt et ettt ettt et te st bestestenbessesaesaenaens 189
6.4.55 -WmsgNw: Number of Warning mMeSSAZES.c.ueeuuerierierierieniienieeieeteete et sitesitesieesieesteesbeebeebeebesaesseesnee 190
6.4.56 -WmsgSd: Setting a message tO dISADIE.........eoiiiiiiieiiii ittt e 191
6.4.57 -WmsgSe: Setting @ MESSAZE t0 EITOT.......c.coiiiriiiiiiiiriiciceeect ettt 192
6.4.58 -WmsgSi: Setting a message to INfOrmation.............coceeviriiriiiiniriiniee ettt 193
6.4.59 -WmsgSw: Setting @ MesSSage t0 WAITINZ.cccueeiiiiiiriiiiiieiiee it eiee et eit et e sttt e sbe e st esbeesbeesbeesbaeenaneenes 193
6.4.60 -WOutFile: Create error lIStING file..........couiiiiiiiiiiiiiiiciieeeeeteee et 194
6.4.61 -WStdout: Write to Standard OULPUL........cecueruiertiriirieieeteetett ettt sttt sttt sttt esae e eae 195

Chapter 7
Sections

Tl SECHON ALITDULES. ...ttt ettt ettt et e b bbb s b st s ettt et eae bt ebesaeeae b e suesaeanes 197
TLL €O SECHIOMS. ...ttt bbbt bbb e b s e a e e e e e saeaesae e 197
T.1.2 CONSTANE SECTIOMS. . .uteutteueeteeuiesteeeteeteete et ete et ente et e e bt euee bt esee st eaeesaeeseesbeemeesheemseeseenteeseenteeseenteeseenseeneenseeneenseeneas 198
T.1.3 DAtA SECLIOMS. c..euuiviiieiieiieiieitetet ettt ettt ettt et et a e e b s a e et e bt bbbt bttt ettt s e e ae e 198

7.2 SECLION LYPRS.cuuteeutieiutieeitteetie ettt et e sttt ettt et e e st e esate e beeeabeesate e bteeabeesabeesteeabeeeas e e bt e e bt e easeesab e e bt e eab e e eabe e bt e e b e e eabeesabeeneeeates 198
7.2.1 ADSOIULE SECLIOMNS. ... ettt ettt ettt ettt e ee e bt e et et e et e bt e bt emeees e e ebeenteemteeseeeseenbeenbeembeemeesbeenbeeneesaeesaeenseenseenes 199

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc. 9

h -

g |

|
Section number Title Page
7.2.2 RelOCAADIE SECLIOMS.eiuiiiiiiiiiiiiiiiiii ettt s st st s en e s 201
7.2.2.1 Example: Defining one RAM and one ROM area.............cceeiuieiiiiienienieicie e 202

7.2.2.2 Example: Defining multiple RAM and ROM areas...........c.ccocueverienenieninienieienceieeeene e 203

7.3 Relocatable vS. abSOIULE SECIOMS.ccuiiiiiiiiiiiiiie ittt et s st st 204
7 0 BV (o Ta L 1 L 2SSOSR 204

7.3.2 MUIPIE AEVEIOPETS. ...ttt ettt ettt ettt ettt et et b et e bt et e bt et e bt et ebe et e ebtenbeeateneeeaees 204

7.3.3 Early deVELOPIMENL.eiiitiiiiieiiieeiee ettt ettt et ettt e st e et e e sat e e s ab e e bt e e sabeeabeesabaesabeesabeesabeesabeennneenns 205

7.3.4 Enhanced POrtability........cccoiiiiiiieiieii ettt ettt ettt ettt h et et e s e b et e et st e ea e e bt et eneeeaeeneenes 205

7.3.5 TracKing OVEILAPS....cueetiriieiieiieieeitett ettt ettt b et st b e et b e et sbe et ea b e bt et s bt et e ebe e e ene 206

T30 REUSADIIILY ..eeeuiieiiie ettt ettt e st e st e e s bt e e at e e bt e e bt e e bt e e bt e eabee s b e e sateesabeeeateen 206

Chapter 8
Assembler Syntax

8.1 COMMENE LINC.....oiuiiiiiiiiiiiiiiiiiicc ettt a e e ea e en s sa e s 207
8.2 SOUICE LN .ottt ettt a e ettt ea e ea e e bt e bt ea e ea e e eb e e bt em b e es e e bt e bt eabeeeeeehe e bt eneeeaeeeae e bt enteeneenaeenneenes 207
821 LAl fIR1A. ... cuiieiiiiieiitcete et bbbttt 208

8.2.2 OPETAION FIEIA. ... eieiiiiiii ettt ettt et e st e bt e bt e et e e s bt e eabeesebeenabe e bt e enbtesabeeenbeesates 209
8.2.2.1 TIISIITUCTION S@L...tieutieuiitieieeiierie et ettt e e et e st e et seee bt et e sate bt eseesae e bt eaeesseebeemeesaeenseemeesbeensesmeenseensesneas 209

8.2.2.1.1 HCSI12Z INSIUCHION SEL....c.eiuiiuiiiiiiiiieieieieietete ettt sttt s 209

8.2.2.2 DIIECHIVE.....ciiiiiiiiiiiiicicce e 216

82,23 IMIACTO. ettt ettt et ettt e ea bbbt e bt e bt e e a bt e s at e nae e e be e e b e nars 217

8.2.3 Operand Field: Addressing MOGES.co.eovuieiiriiriinieniteieee ettt ettt sttt et ettt st saeesiees 217
8.2.3.1 Inherent AddreSSing MOME.......cccueiiuiiiiiieiiieiiieieett ettt ettt et e st sabeebeesabeenaaesares 218

8.2.3.2 Register Addressing MOGE..........coiuiriiiuieiirieie ettt ettt ettt sttt ettt eaees 218

8.2.3.3 Immediate Addressing MOME...........coouiiiiiiiiiiniiiiiiteieeteet ettt 218

8.2.3.4 Short Immediate Addressing Mode (IIMIME4).........ueiiiiiiiiiiiiiinite ettt e 219

8.2.3.5 Relative Addressing Modes (REL, RELT)........cccooiiiiiiiiiiiieie e 219

8.2.3.6 Extended Addressing Modes (EXT1, EXT2, EXT3, EXT24)...cccccociniiiiniiniiienieneeieneceeeen 219

8.2.3.7 Indexed AdAressing MOAESccc.eeviiiriiiriieiieeiieetee ettt sttt sttt e et e st e btesabeesaaesaes 220

8.2.3.7.1 4-Bit Short Constant Offset from X, Y, or SP (IDX).......oooiiiiiiiiiiiiieeeeieeeeeeeee e 220

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

10

Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
8.2.3.7.2 9-Bit Constant Offset from X, Y, SP or PC (IDX1).....uvvviiiiiiiiiiiiiieeeeeeeecireeeeeee e 221

8.2.3.7.3 24-Bit Constant Offset from X, Y, SP or PC (IDX3)......ccoiiiiieiiiieeeiieeeeeeeeeeeee e 221

8.2.3.7.4 Register Offset Indexed from X, Y, or SP (REG,IDX)....ccccovuvrviimiiiniineiniinienieneee 222

8.2.3.7.5 Automatic Pre/Post Increment/Decrement from X, Y, or SP (++IDX)......cccceeevviennnn. 222

8.2.3.7.6 18-Bit Constant Offset from Di (IDX2,REG)........ccccoeeeiiiiiiiiiiiieeecieeeeee e 223

8.2.3.7.7 24-Bit Constant Offset from Di (IDX3,REG)........ccccceeeviiiiiiiiiciiieeieeeee e 223

8.2.3.8 Indexed Indirect AddreSsing MOAEScoouuiiriiiriiiiriienieere ettt e s e st e s 223

8.2.3.8.1 Register Offset Indexed Indirect from X or Y ([REG,IDX])..cc.cccvevureiiinienenieiineeene 223

8.2.3.8.2 9-Bit Constant Offset Indexed Indirect from X, Y, SP or PC ([IDX1])....cccccvvvreeennnnnn. 224

8.2.3.8.3 24-Bit Constant Offset Indexed Indirect from X, Y, SP or PC ([IDX3])....ccccovvvrvrvennns 224

8.2.3.8.4 Address Indirect Addressing Mode ([EXT3])...cccceiierierienienieiieiie e 224

8.3 SYIMDOIS. .ttt bbbt bbbttt b et 225
8.3.1 USer-defiNed SYMDOLS.couiiiiiiiiiieie ettt e st e st e st e st e e st e esibeesabeesabeenaneenes 225

8.3.2 EXtEINAl SYMIDOLS.iiuiiitiiiieiieieee ettt ettt et e h ettt e a e et e h e e bt et e e bt e beent e bt enteeneebeeaean 226

8.3.3 UNAefiNed SYMIDOLS.eoouiiiiiiiiieiieit ettt ettt et et st be ettt e bt e s bbbt et saees 226

8.3.4 RESEIVEA SYMDOLS.....eiiiiiiiieiieeiie ettt ettt st et e st e st e e s bt e e sat e e bt e e bt e e bbeenbeeeabeeenbeesabeeenbeenates 227

I G0) 1 1 2] 1L OO OO P O P SO PO PR PRRRUPOP 227
B4l INEEEET COMSTANES...eutiitiititiettete ettt sttt ettt ettt et ea e a e bt e b e et e st sbeesbe e bt e st e eat e s bt et e embeebb e et b enbeenbeenbeeabenbees 228

8.4.2 SHTINEZ COMSTANTS.eiitieiieitie ettt ettt ettt et ettt et e s bt e sttt e bt e sa bt e s abeeabteeabteeabeesabeenseesabeesabeenseeenbeesaseesnseenseenates 228

8.4.3 Floating-POINt CONMSTANES........coeririiriirtiitiitieterte ettt ettt ettt ettt et ettt ettt et bbbt bttt besbe bt ebesaesr e b nae 229

8.5 OPLIALOLS. .cutuiiitenit ettt ettt ettt ettt ettt h e bbbt ea e eh et e bt e bt e a e e e bt et ehe e h e e ht e bt e et eb e e bt e h b bt ea e b et e bt e bt eab e eb et eb e e e enee 229
8.5.1 Addition and subtraction OPErators (DINATY).......cccueerruieriieriienieeniee ettt ebe e siteebeeebeeebeesbeesbeesabeesanee e 229

8.5.2 Multiplication, division and modulo operators (DINATY).........ccecueruierieriirieeie ettt e 230

8.5.3 SiZN OPETALOTS (UINATY)..eeuveiutertteteritenteeitentt et et et e ett e bt eatesbe et eebe et e et b e st e esteebeeateebee bt eseesaeembeebeebeeseesbeentesbeensesaeen 231

8.5.4 Shift OPETAOTS (DINATY).c..eiiiiiiiiieiiteiitt ettt ettt ettt et e e st e e st e e bt e et e e sabeesab e e bteebtesabeesabeesabeenbaeenseesates 231

8.5.5 BitWiSe OPEIatOrS (DINMAIY)....ccueerueiuietieiietieiteettete ettt et e st e et e bt es e st e eneeete et e eaee bt emeeeseenbeemeenbeeneesseennesneensesneas 232

8.5.6 BItWiSE OPETALOTS (UNMATY)....euveeuritientieiienteenteettenteetesttenteettesteestesbee et estesueentesbtesbeestesbeenteestesbeentesbeenbeentesbeeneesaeen 233

8.5.7 LOZICAl OPETALOTS (LNATY)..eeuvterurreirieieeriteeniteeteesiteesttesteessseesteesabeessteebeesabeesaseebeeeaseessteenseesaseensbesnseesaseenseennses 233

8.5.8 Relational OPerators (DINATY).........ceruieruiertieieeieettenteerte ettt eteeette st e bt esteeste st eesseesseebeeneesneeeseenseenseanseansesneesneas 234

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc. 11

h o
g |

|
Section number Title Page
8.5.9 HIGH OPCTALOT.....utiiiiieiie ettt ettt ettt ettt bttt e st e st e s st e e s ab e e bt e e bt e eabee s bt eeabeesabeensbeebbeenseeeabaeenseenates 235
8.5.10 HIGH_O_13 OPCIALOT e eutieiiietietieteeteeitesite st e et et e aee et e ete e bt eateeseeebeebe e beeasesaeesaeesaeenseenseeseeeseenseanseenseeneenneas 236

B.5. 11 LLOW OPCTALOTeutiiieniteiteeitestt ettt ettt et sb ettt s bt et e st eht e s bt et e ea bt eb e e bt e st e eb s eeb e et e eabeeb s e bt enbesbbesbeebeeneesaeen 236
8.5.12 MAP_ADDR_6 OPEIALOT........cecuiiiiieiieiiieiietiteiteitete ettt ettt st e e st ne e 237
8.5.13 FFOTCE OPEIALOT (LINATY)..cuuteeritieiteeniteeniieenite ettt ettt e ettt esbte ettt ettt e bt e e bt e e bt e e abeeeabeesabeeeabeesabeeeabeesabeesabeesabeeeaseenanes 237
8.5.14 OPCIALOr PIECEUGIICE. ...c.uvevtiitiitetteite ettt sttt ettt ettt et e bt ettt et b e sb e e bt e bt eatesbtesbeesbeenteeateebeesbeenbeeaseeanesbeenbeen 238

LI R 254 3) I o) 1 OO OO OO OUROUUROPRORUPOP 239
8.0.1 ADSOIULE EXPICSSION. ¢.uveueitietieuteeiiertteteeuteette bt esteeueesteeateesee bt emteeseeeseenteeneeeseenteenteeseenbeanseesseabeenseeneesneanseensesneen 240
8.0.1.1 EXAMIPIC...ceuiiiiiiiiiiiiieitee ettt et et e h e bbbt naeen 240

8.6.2 SimpIe relOCatable EXPIESSION. ...eeiiiiitiiitieriieetie et ettt ettt e st ebeesbeesate st e e sabe e bt e sabeesseesabeesabeebeesabeenseesases 241

8.0.3 UNAry OPEration TESUIL......ceuiiuieiiiiieitieie ittt ettt ettt e et e e st eeb e et e et e et e eaeeebeeneeeaeenbeeseenbeeneesseeneesneensesneas 241

8.60.4 BiInary OPErations TESUIL.........eoiiriiriirtieiteitteteet ettt ettt ettt e btesb ettt sb s e bt et e esbesbtenbeebeeaeesaees 242

8.7 Translation TIMIIES........ccoiiiiiiiiiiiiii e 242

Chapter 9
Assembler Directives

9.1 DIECHVE OVEIVIBW......ouiiiiiiiiiiiiitiic ettt s s s b e s ea e b s eb b e b b st s eae e 245
9.1.1 Section-Definition DITECIIVES.c.tetiiiiiiieitieitiete ettt ettt et et e st e bt e beeeeeseesseesbeebeenteenteeneesseenneas 245

9.1.2 Constant-Definition dIFECTIVES.ccueiiriiriiriiiiiiiitieie ettt sttt 246

9.1.3 Data-AlloCation dITECLIVES.......c.ciuiiiiiiiiiiiiiiiii it s 246

9.1.4 Symbol-LinKage dIr@CLIVES......ccuevuiririiriiitieiieieiiet ettt sttt ettt ettt s b ettt et ss oo saenenaens 246

9.1.5 ASSEMDbLY-CONIIOL QIT@CIVES. ... ceutitiiitiriieientieteett ettt sttt ettt b et ebe e et e bee et saeesbeeaees 247

9.1.6 LiSting-File COontrol QIT@CIIVES.eeitieriiiiiiteitieetie sttt ettt ettt et ettt et sib e e st e e s abe e baeebeesabeesaseebeesbeesaseenns 247

9.1.7 MACTO CONLIOL QITECEIVES.eeutietieiieie ettt etie sttt ettt ettt e b et ettt e s aeeste e bt et e emteese e s e enbeenbeenseeseesseesbeeseenneenes 248

9.1.8 Conditional ASSEMDbLY AITECHIVES...c..ecouieiiriiriiiriiiieete ettt ettt ettt s sbe et st st e b e e eae 248

9.2 Detailed descriptions of all aSSEMDbIET QITECIIVES.c...eiruiiiriieriiiiie ettt ettt st ettt e st eebeesbeesaeesans 249
9.2.1 ABSENTRY - Application €Ntry POINL........ccceeueeuerrierirerieiinieeitetieitete ettt testessestesaesessesaenaesaessesaesaens 249

9.2.2 ALIGN - Align LoCAtiON COUNLET.......coutirtiriiiriieieniienteeite sttt ettt et sttt b et sbe et ebte bt eatesbeenteebeenaeenee 250

9.2.3 BASE - Set NUMDET DASE......c.oouiiiiiiiiiiiiiiiiiiii e 251

9.2.4 CLIST - List conditional @SSEMDLYc..ccuerviiiiriiriiniininieeeeetetee ettt sttt ettt ae e saesae e 252

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014
12 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
9.2.5 DC - Define COMSIANL.......couiiuiiiiiiiiiiiiitiiiie ettt a e s en e s saseneeaesaa 254
9.2.6 DCB - Define Constant BIOCK.........ccuiiiiiiiiiiiiiie ettt et st e b b e ene 255
9.2.7 DS = DEfINE SPACE.....couiiriiiniiiitiieiteeite ettt et ettt h ettt b et b ettt h et ebe e aeene 257
9.2.8 ELSE - Conditional aSSEMDBLY.......ccocuiiiiiiiiiiiieiiie ettt ettt ettt st et et et e st e e sabe e bt e sbeesanee e 258
9.2.9 END - ENd @SSEMDLY....couiiuiiiiiiiiiiiiiiiieiieite ettt ettt s b e sttt st n e e 260
9.2.10 ENDFOR - End 0f FOR DIOCK.......c.ciiiiiiiiiiiiiiiiiiciecec ettt st s 261
9.2.11 ENDIF - End conditional @SSEMDIY..........cccuiiiiiiiiiiiiiieiiienieeeieerite ettt ettt st st st esbeesabeesabeesanee e 261
9.2.12 ENDM - End mMacro defiNition.........cecuiiuieiiiitieiietieie ettt ettt ettt ettt ettt e e e s et es e ntesseesaeeneeneeeneas 262
9.2.13 EQU - Equate SYMDOI VAIUC......ccc.iiuiiiiiiiiiiiiiieeteeetee ettt ettt sttt 263
9.2.14 EVEN - FOrce Word ali@NIMENt........c..eiiuiiiiiiiiiieiteeiie ettt ettt et st e sttt e st esabeesabeesabeesabeesaneesaneenaneenns 263
9.2.15 FAIL - Generate EIrOr MESSAZE.ccuuiiuiiiiiiiiiiiiiieiti ettt st st st s s e s 264
9.2.16 FOR - Repeat assembLy DLOCK.........ccouiiiiriiiiiiiieiienccest ettt ettt ettt et 267
9.2.17 TF - Conditional @SSEIMDIY.........eiiuiiiiiiiiiiiiiieie ettt ettt ettt et eab e st e e st e e baeebeesabeesabeebeesbeesaseenns 269
9.2.18 TFcc - Conditional aSSEMDIY........ccveuiiiiiiiiiriirieniieieee ettt ettt ettt a ettt 271
9.2.19 INCLUDE - Include text from another file............cccooiiviiiiiiiiiiiiiiiiiiiiicc e 272
0220 LIST - ENabIe LISHNG.....cciiuiiiiiiiiiiiceeceeteree ettt ettt 273
9.2.21 LLEN - Set Line Length......cc.cociiiiiiiiiiiienie ettt ettt st 274
9.2.22 LONGEVEN - Forcing Long-Word ali@NMeNt.........ccceevuiriirieniinienieiieiie ettt sttt 275
9.2.23 MACRO - Begin Macro defiNitiON.c.eevuieiiiiriieiieeiieeie ettt sttt sttt sit e e bt e sbeebeesabeebeesateebeesaseenses 276
9.2.24 MEXIT - Terminate Macro EXPanSION........c..coceeeruiriirierininenieeiinieeie ettt ettt ettt ettt saesaesaesaesaesaesaens 277
9.2.25 MLIST - LiSt MACIO EXPANSIONS. ..c..tettiutiriterttentieteeteeiteeitesteesteeteetesttesbeesteeteeateettesbeenbeebeeabesbaesbeenbeenaeeneennes 279
0.2.26 NOLIST - DiSable LISHINE.c.eoueuiiieiiieiiitcieiciectetee ettt 282
9.2.27 NOPAGE - DiSable PaING.......ccccceruiriiriiriiiiiiiitietinieeeetese sttt sttt st sae st b st sae e 283
9.2.28 OFFSET - Create absolute SYMDOLS.......cc.eetiriiiiriiiieieeiteteteettee ettt ettt ene 284
9.2.29 ORG - Set LoCation COUNLET........cciiuiiiiiiiiiiiiieieteie et en e s 286
9.2.30 PAGE - InSert Page Break.........cccouiriiriiiiiiiiiieietee ettt et 287
9.2.31 PLEN - Set Page Len@th.......cc.ooiiiiiiiiiiiieieteet ettt sttt sttt st 288
9.2.32 RADSO0 - RADS0-encoded StriNg CONSTANES.eciuttiriiertieriteeitieettesiteentteeteesiteesiaeeteesabeesseesbeesseesssessssessseenns 288
9.2.33 SECTION - Declare Relocatable SECHOM.ciuieiieriieie ettt ettt et nee e sseesneesaeeeeens 290

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc. 13

g |

Section number Title Page
0.2.34 SET - Set SYMDOI VAIUC.....cccutiiiiiiiieiitett ettt ettt sttt e sb e et e st e e sabeesab e e sbbeenbeesbeesanee e 292
9.2.35 SPC - InSert BIanK LNES.......co.eeiuieiiiieieeiieie ettt sttt ettt b et e st et e e st e bt et e ese et e eneeeeeenes 293
9.2.36 TABS - Set Tab Len@th....c...coiiiiiiiiiii ittt ettt ettt st 293
9.2.37 TITLE - Provide Listing Title........ccoiiiriiiiiiiiinicieeieereceeeeee et 294
9.2.38 XDEF - External Symbol Definition.c..ceteteiiieriinininiiicieentente sttt sttt nne 294
9.2.39 XREF - External Symbol REefErenCe..........c.coeeriiiiiniiiiiiiiiiiitcte ettt et 295
9.2.40 XREFB - External Reference for Symbols located on the Direct Page..........ccoceevviiniiiniiiiniiinieiiciienieee 296

Chapter 10
Macros

LO.1 MACTO OVEIVIEW. ...ttt et b et e bbb b a et et a e ne e 297

10.2 DEfINING IMACTO.....ecuiiiieiiiiiiieetieiteteeteett ettt ettt ettt ettt st b bt bttt be bt sa b s bt sa e b s bt sb e b e s bt sae bt s bt sae et e s b sae et e b saeste b nae 297

10.3 CallING IMACTOS. ¢ttt ettt ettt et bttt st b e et s bt et s bt e bt eh b e bt e et e s bt ea bt eb e et e eb b e sbeeateebe et e ebeenaeenee 298

10.4 MACTO PATAIMELETS.oviiiiiiiiiiiiiiiii et s a e s b b ettt 298
10.4.1 Macro Argument GIOUPING.c..eevertertertertertetetent ettt ettt et et et et ettt et eteesteuteseeueeaeebeebessesbeebesbesaeebesueseeas 299

10.5 Labels INSIAE IMACTOS.ceuviuiiiiiiiiiiiiiiieietetetet ettt sttt ettt ettt et ettt et sa e s saesnesbe e 301

10.6 MACTO EXPANSION. ¢...ttiitiiiitiiie ettt ettt ettt et et et e e it e e sa bt e st e e bt e e bt e eabeeesbeeabeesabeesabeensb e e st e eabeesabeesateebaeenseesases 302

1.7 INESEEA IMACTOS. ..ttt ettt et e at e bt ettt et e e e et e sa bt e e st e e bt e e bt e e bt e e abe e e et e e s abeeebteesbbeennteeabaeenbeenanee 302

Chapter 11
Assembler Listing File

| B o T () & (214 < OSSPSR 306

L1.2 SOUICE LISTIIIZ. ..ttt ettt et ettt et h ettt s bt et eb e s bt e st e bt e sbeeat e e bt e sb e emt e ebe e bt estesbee bt eatesbeenaeenee 306
LL2.T ADS e e ettt ettt et 306
T1.2.2 Rl b ettt b bt h et bt h et b et h et bttt b ettt b e 307
T1.2.3 Li0C ittt et h e e b et h et h bttt h et h et be et b e b e ene 308
L1224 ODB]. COUR.....oneuiiiieiirieiteteee ettt sttt ettt et s a ettt et sttt 309
L1.2.5 SOUICE LINC. ..ottt ettt ettt ettt et et e e bt e bt em b e e et e s bt e beembe s et e ebeenbeeaeesmee bt enseeneenneenseenes 309

Chapter 12
Mixed C and Assembler Applications
12.1 Parameter PasSing SCREIME........couiiuiiiiiiieie ettt ettt ettt ettt eat e st e bt enbesseesbe e beebeeneesneenaeeneeenes 311
12.2 RETUITE VAIUC.....ceiiiiiiiiiiiet e et et et ettt ettt ettt sa et saesa b 311

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

14

Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
12.3 Accessing Assembly Variables in ANSI-C S0OUICE File.........cooiiiiiiiiiiiiiiiiiei et 311
12.4 Accessing ANSI-C Variables in AsSembly SOUICE File.........cooiiiiiiiiiiiiieieiieiee e 312
12.5 Invoking Assembly Function in ANSI-C Source File.........ccccoooiiiiiiiiiiiiiiiiiiieiceieesteee et 313

12.5.1 EXQMPIE OF @ C FHLE...couiiiiiiiiiii ittt ettt st e st e s bt e s bt esabeeeab e e sabeesabeesabeesaneenes 314

12.6 SUPPOIL FOr STUCTUIEA TYPES. ..t ueetieuieetiete ettt ettt ettt ettt e bt et e e bt et e eb e e bt ea b e et e enteesee bt enee bt enteeseenbeeneenseenes 316
12.6.1 Structured TyPe DefiNitiON.cccueeiiriiriiiiieieeieet ettt sttt st s st enaeeneeeae 316
12.6.2 Types Allowed for Structured TYPE FIEIAS........ooviiriiiiiiiiiiiiie ettt 317
12.6.3 Variable DefiNItION.ciiiiuiiiiiie ettt ettt e ettt et ea e st e et e e abeenteeb e e b e enbeenbeemeesneesaeenbeeneeenes 318
12.6.4 Variable DECIaration..........ccccoieiiiiiiiiiiiiiitcieeee ettt st sttt 318
12.6.5 Accessing Structured Variable.........coc.eiiiiiiiiiieiieie ettt sttt ettt e et e st e bt e sabee e 319

12.6.5.1 Accessing FIeld AdAIess.......coeeiririiiririiieiieteeet ettt ettt sttt s s 319
12.6.5.2 AccesSing FIeld OffSEL.....c.eoiiiiiriiiiiiiiitieee ettt et sttt 320
12,7 Structured TYPe: LAMIEATIONS. . eeeuveitieeiieetieiiteeeite ettt ettt ettt et e st e ettt esbte e baesabeesabeebeeeabaeeaseesateesaseenbeesnbeesaseenbaeanseesases 321
Chapter 13
Make Applications
13,1 ASSEINIDIY APPIICALIONS. ..ceuuttitiieiieiitteitie ettt ettt ettt et e et e st e ettt e bt e eab e e sab e e steeabeesabeeeaeeebbeenseesabeesaseeabeeenbeesabeessneanseenases 323
13.1.1 Directly Generating ADSOIULE FIle.........cccuiiiiiiiiiiiiee ettt et st 323
13.1.1.1 Generating ODbJECt FALES.ccueiruiiiiiiiiiiiiiietete ettt e 323
13.1.2 Mixed C and ASSEmMDbBIY APPIICAIONS.ccuuiiruiiiiiiieiiiteriteeite ettt ettt ettt et et e e st e esiteesbbeesseeessbeesateesaseenaseenes 324
13.2 Memory Maps and SEZMENTATION.cc.eeuteuiertieteetieittete et et et et e et e steetesteesbeeateseeesseesesaeesseenseeseesaeeseeneesaeeaeeneesseenseenes 324
Chapter 14
How to...

14.1 Working With ADSOIULE SECHIONS.....cuieuiiiiiiiiietiete ettt ettt et e e s bt et e et e e st e sbe e b e eaeesbeebeentesseesbeenbesneesseeneeenes 327
14.1.1 Defining Absolute Sections in Assembly SoUrce File.........ccccooiriiriiiiiiiiiiniiiieeecc e 327
14.1.2 Linking Application Containing ADSOIULE SECOMS.cccuviiriiiiriiiriiie ittt ettt ettt aeesbaeesaee e 329

14.2 Working with RelOCatable SECHIONS.eeiuiiuiiiiiiieii ettt ettt ettt et et e st e et e b e eseeebeenteeseebeeseeneeenes 330
14.2.1 Defining Relocatable Sections in SOUICE Fle........cccoiiriiriiriiiiniiiiiiieeeseeeeee et 330
14.2.2 Linking Application Containing Relocatable SECtionS............cecuiiriiieriiiiiiirie ettt s 331

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 15

g |

Section number Title Page
14.3 InitialiZiNg VECIOT TaADIE.......coiiiiiiiiiiiie ettt ettt et sa e at e et e st e e satesabe e s b e e sate e bbesabeesabeaaeesases 333
14.3.1 Initializing the Vector table in the linker PRM file.........cccooiiiiiiiiiiiiie e 333
14.3.2 Initializing Vector Table in Source File Using Relocatable SEeCtion..........c.ccveerierierienicnienienienienieneee 336
14.3.3 Initializing Vector Table in Source File Using AbSOIUtE SECON.......cccuvieriiiriiiriiiiieiieeie e 339
14.4 Splitting Application Nt MOGULES.c.uiruieiiriieie ettt ettt ettt ettt et e et et esbeesee s et ensesbeenbeebeenteeseabeeneenseenes 341
14.4.1 Example of Assembly File (TeSt1.aSm).....cccoiiiiriiririiiiiiniiieiiencete ettt et st 342
14.4.2 Corresponding Include File (TeStL.NC)...cccuuiiiuiiiriieiiiiiiie ettt sttt sttt st e st esabeesasee e 342
14.4.3 Example of Assembly File (TeSt2.aSM)...cc.uiiuiiiiiieriieie ettt ettt ettt ettt saeenbeeneesaeeneeenes 343
14.4.3.1 Example of PRM File (TeSt2.pIM)...c..cooutiiiiiriiiiiiiiiieeteeiteeiteeitesite sttt et 343
Chapter 15
Appendices
Chapter 16
Symbols and Notation
Chapter 17
Global Configuration File Entries
17.1 [INStallationN] SECTION. .. .uuviiiiieeiiiiieeee ettt e e eeeeitte e e e e eeettee e e e e eeetaeeeeeeeeeateseeeeeeaasaeeeeeeaaatasseeeaesssseseeeeantreeeeeseetaseeeeeeannreeeens 351
T7.10T PAteciiiiice ettt bbb bbbt h bbbt b et b ettt b e 351
L7.1.2 GIOUP. ettt ettt et ettt ettt e a e e bt b et ea e e bt e bt et e et e e bt e bt e bt ea bt eb b s bt e bt et e ebtesaee bt eneeeaee 352
17.2 [OPUIONS] SECHIOM. .. uieitieeiteeite et et te ettt ettt et e st esab e e bt e e bt e eab e e sab e e st e ettt e b tesabeessbeeaseeeabeeesbeesabeesateenbeesabeesabeensseanseenases 352
| T B o 2111 L1 D OSSPSR 352
17.3 [XXX _ASSEIMDIET] SECHIOMN.coiiuiiiiiieieeiitiee et e et e e e e e e et e e e e e e eeaaaeeeeeeesataseeeeseesaaaeeeeeeesastaneeeeeeenareeeeas 353
17.3.1 SAVEONEXIL.....oiuiiiiiiiiiiiiiic e 353
17.3.2 SAVEAPPEATAINCE. ...cueeeueeeieueeetieteente et ete et e steeate et e e et eate bt eate et e e beaneeaseem b e eaee st anseeseemtees s e st enseeseenseensesseenteeneeeeenes 353
17.3.3 SAVEEGILOT.....iuiiiiiiiiiieeee ettt st st st st s a b et 354
17.3.4 SAVEOPUONS. ...eeiutieiiteitte ettt et sit e sttt ettt et e et eesabeesab e e bt e ebteeabeesabeesateessbeeasteeabbeaaseesabeesabeenbbeenbaesnbeesnbeesnbeenns 354
17.3.5 RecentProject0, RECENIPIOJECTL.c..iiuiiiiiiiitieeeee ettt ettt et et et e b et eaeenaeenes 354
17,4 [EEItOr] SECHOM....eeiiiiieiiiiiee e eeetiee e ee ettt eeeea e e e eee e e e e eeeaaeeeeeeeeeataseeeeeenaaaeseeeesastaseeeesessaaseseeeessteeeeeesentaseeeeeennsnseeens 355
1741 BdItOr_NAIME.....ccoiiuiiiiiiiiiiiiiiiiice ettt 355
174,22 EAIOT _EXE ettt ettt et et et e 356
17.4.3 EIEOT_OPES. ettt ettt sttt ettt ettt bt ettt sbe e bt e at e s bt et e e at e sbe e bt e st e ebt e bt et sbteshe et st e nbe e e eaee 356

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

16

Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
17,5 EXAIMPIC.....iiiuiiiiiiieiieeite ettt ettt e bt e b e et e s st esat e e bt e e bt e e at e sa bt e eht e e bt e e bt e eab e e e hb e e bt e e bt e eab e e sa bt e eabe e baeenbeeeates 357

Chapter 18
Local Configuration File Entries
18,1 [EEQILOr] S@CHIOM. .. .eiiiiiitiriieeeeeeitte et e e eeete e e eeet e e e e eeetaeeeeeeeetareeeeeeeeataseeeeeeaasseeeeeeaantaseeeeeesssseseeeeantssseeeeeentaseeeeeeannrreeens 359
)T R a1 o\ 4 1 TR 359
)R IR e 1170 a5 (=TRSO T TR 360
I18.1.3 EdIOT_OPLS....uiiiuieiiieiieieiete ettt ettt sttt st st st sttt ettt 360
18.2 [XXX ASSEIMDIET] SECHIOMN. ... iutiiiiiie ettt e e e ettt e e e e et a e e e e e eeaaaeeeeseesataseeeeseasaaseeeeeesansaaeeeeeeenanaeeeas 361
18.2.1 RecentCommandLineX, X= INtEEET.......cccuerterieririiiieeiteeitentt ettt ettt st ettt ettt etaesbtesbeesbee et eeeeneenae 362
18.2.2 CurrentCommandLine............cccoiiiiiiiiiiiiiiiiiiiii e 362
18.2.3 StatusbarENabIEd........cccuoiuiiiiiieii et ettt ettt h bt ea et e b en et et e e enes 362
18.2.4 ToOIDArENaDIE.........ciiiiiiiiiiiiiiiie ettt sttt st 363
18.2.5 WINAOWPOS.......iiiiiiiiiiiiciii et 363
18.2.6 WIANAOWEONL. ...ttt ettt e bt a e e bt et e e bt et e e bt em e e ebeen b e es e emteeseenteeneenbeeneenseeneenaeeneas 364
L8.2.7 THPFIIEPOS. ...ttt ettt ettt et bttt et s at e bt et s be e sbe et st sbe e 364
18.2.8 SHOWTIPOLDIAY.....ceeuiitiiiiiiieieierec ettt sttt et 365
18.2.9 OPHIONS ..ttt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et et a et b na et e b naen 365
18.2.10 EdIIOITYPC. ..ttt ettt sttt et et eh e b et e a e e bt e bt e bt e st sb bt sb e e s bt et e eatesbeesaeenaeeneeeaee 365
18.2.11 EditorCommandLine............cccciiiiiiiiiiiiiiiiiiiii e e 366
18.2.12 EditOrDDECHENINGAINE.eetieiietietieiieetietiet ettt tete et st et eteeseesbeenbeeaeesaeesbeenbesaeesseenbeeneesseenbeensesneesseenseenes 366
18.2.13 EditOrDDETOPICINAIE.eiuiitiiiieiieiteiteeiteste ettt ettt ettt sttt sttt et e bees e sbe et bt eabesbeesteebeenaesbee et eseenaeeneen 367
18.2.14 EditorDDESEIVICENAIME.c.eouiiiiiiiiiiiiiiiiiiiiii e s 367
LT T 21111 o) (=TSO SUSSRR USRI 368
Chapter 19
MASM Compatibility
L B 107511153 1 L 5 USROS 369
19.2 CONSLANLS (TNEEZETS)... ettt ettt ettt ettt b et e b e bt e bt e st s bt et eatesh e e bt e st e sbeenbeemtesbeenbeemteestenbee bt eaeenbeeneeenee 369
19,3 OPETALOTS.eeeeteeiteette ettt ettt ettt et e sttt et e et e e s bt e et e e eute e bt e e at e e beeeab e e st e e beeeabeeab et e abeeeat e eabeeeabeeabeeeabeeeaeeeabeeenbeenbeeeabeenaneeabes 370
L G T B B (<11 T SO PSSP 370

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 17

b -

Section number Title Page
Chapter 20
MCUasm Compatibility
O B 1 o) OO ORI 373
20,2 SET QITECIIVE. c.uteeiutieiitieiitteeite ettt ettt ettt ettt ettt ettt et ee e bt e sabeesabeesat e e bt e eabteeabeeeabeesa bt e sabeaasbeensbeeabeesabeesabeesabeennteenbaeenseenates 373
20.3 ODSOIELE QITECTIVES.eeeeeieeetieeeeteeeeeeteeeeet e e et e e e et e e ettt e e eetteeeeaeeeeeaaeeeeseeeeesseeeeaseeeeseeeeeaseeeeessseeeasseeensseseensseesessseeesreeeanns 374

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

18 Freescale Semiconductor, Inc.

Chapter 1
Using S12Z Assembler

This document explains how to effectively use the S12Z Macro Assembler.

1.1 Highlights

The major features of the S12Z Assembler are:

* Graphical User Interface

e On-line Help

» 32-bit Application

* Conformation to the Freescale Assembly Language Input Standard

1.2 Structure of this Document

This section has the following chapters:

* Working with Assembler : Tutorial using the CodeWarrior Development Studio for
Microcontrollers V10.x to create and configure an assembly-code project. In
addition, there is a description of using the Assembler and the Linker as standalone
Build Tools.

» Assembler Graphical User Interface : Description of the Macro Assembler's
Graphical User Interface (GUI).

* Environment : Detailed description of the Environment variables used by the Macro
Assembler.

* Files : Description of the input and output file the Assembles uses or generates.

» Assembler Options : Detailed description of the full set of assembler options.

* Sections : Description of the attributes and types of sections.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 19

Accumpanying Documentation

» Assembler Syntax : Detailed description of the input syntax used in the assembly
input files.

» Assembler Directives : List of every directive that the Assembler supports.

* Macros : Description of how to use macros with the Assembler.

» Assembler Listing File : Description of the assembler output files.

* Mixed C and Assembler Applications : Description of the important issues to be
considered when mixing both the assembly and C source files in the same project.

* Make Applications : Description of special issues for the Linker.

* How to... : Examples of the assembly source code, linker PRM, and assembler output
listings.

* Symbols and Notation : Description of the expressions of instruction that represents
the variable content.

In addition to the chapters in this section, there are the following chapters of Appendices:

* Global Configuration File Entries : Description of the sections and entries that can
appear in the global configuration file - mcutoois.ini.

 Local Configuration File Entries : Description of the sections and entries that can
appear in the local configuration file - project.ini.

* MASM Compeatibility : Description of extensions for compatibility with the MASM
Assembler.

* MCUasm Compatibility : Description of extensions for compatibility with the
MCUasm Assembler.

1.3 Accompanying Documentation

The Documentation page describes the documentation included in the CodeWarrior
Development Studio for Microcontrollers v10.x. You can access the Documentation by:

b opening the START HERE.html in <CWInstallDir>\MCU\Help fOldeI‘,

* selecting Help > Documentation from the IDE's menu bar, or selecting the Start >
Programs > Freescale CodeWarrior > CW for MCU v10.x > Documentation
from the Windows taskbar.

NOTE
To view the online help for the CodeWarrior tools, first
select Help > Help Contents from the IDE's menu bar.
Next, select required manual from the Contents list. For
general information about the CodeWarrior IDE and

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

20 Freescale Semiconductor, Inc.

b -

4
Chapter 1 Using S12Z Assembler

debugger, refer to the CodeWarrior Common Features
Guide 1n this folder: <cwinstallpir>\MCU\Help\PDF

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 21

PR 4

Accumpanying Documentation

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

22 Freescale Semiconductor, Inc.

Chapter 2
Working with Assembler

This chapter is primarily a tutorial for creating and managing S12Z assembly projects
with CodeWarrior Development Studio for Microcontrollers V10.x. In addition, there are
directions to utilize the Assembler and Smart Linker Build Tools in the CodeWarrior
Development Studio for assembling and linking assembly projects.

In this chapter:

* Overview

e Managing Assembly Language Project Using CodeWarrior IDE
* Analysis of Groups and Files in a Project

* Writing your Assembly Source Files

* Analyzing Project Files

* Assembling Source Files

* Linking Application

» Assembler Build Properties Panels

2.1 Overview

In general terms, an embedded systems developer programs small but powerful
microprocessors to perform specific tasks. These software programs for controlling the
hardware are often referred to as firmware. One such use for firmware might be
controlling small stepping motors in an automobile seat.

The developer instructs what the hardware should do with one or more programming
languages, which have evolved over time. The three principal languages in use to
program embedded microprocessors are C and its variants, various forms of C++, and
assembly languages that are specially tailored to families of microcontrollers. C and C++
have been fairly standardized through years of use, whereas assembly languages vary
widely and are usually designed by semiconductor manufacturers for specific families or
even subfamilies, which are often called derivatives, of their embedded microprocessors.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 23

uvverview

Assembly language instructions are considered as being at a lower level (closer to the
hardware) than the essentially standardized C statements. Programming in C may require
some additional assembly instructions to be generated over and beyond what an
experienced developer could do in straight assembly language to accomplish the same
result. As a result, assembly language programs are usually faster to execute than C
instructions, but require much more programming effort. In addition, each chip series
usually has its own specialized assembly language which is only applicable for that
family (or subfamily) of CPU derivatives.

Higher-level languages, such as C use assemblers to translate the syntax used by the
programmer to the machine-language of the microprocessor, whereas assembly language
uses assemblers. It is also possible to mix assembly and C source code in a single project.
See the Mixed C and Assembler Applications chapter.

This manual covers the Assembler dedicated to the Freescale S12Z series of
microcontrollers. The S127Z Assembler can be used as a transparent, integral part of
CodeWarrior Development Studio for Microcontrollers V10.x. This is the recommended
way to get your project up and running in minimal time. Alternatively, the Assembler can
also be configured and used as a standalone macro assembler as a member of Build Tool
Utilities, such as a (Smart) Linker, Assembler, ROM Burner, Simulator, or Debugger.

The typical configuration of an Assembler is its association with a Project Directory and
an External Editor. The CodeWarrior software uses the project directory for storing the
files it creates and coordinates the various tools integrated into the CodeWarrior suite.
The Assembler is but one of these tools that the IDE coordinates for your projects. The
tools used most frequently within the CodeWarrior IDE are its Editor, Compiler,
Assembler, Linker, the Simulator/Debugger, and Processor Expert. Most of these Build
Tools are located in the <mcus\s121isa_support subfolder of the CodeWarrior installation
directory. The others are directly integrated into CodeWarrior Development Studio for
Microcontrollers V10.x.

The textual statements and instructions of the assembly-language syntax are written by
editors. The CodeWarrior IDE has its own editor, although any external text editor can be
used for writing assembly code programs. If you have a favorite editor, chances are that it
can be configured so as to provide both error and positive feedback from either the
CodeWarrior IDE or the standalone Assembler.

2.1.1 Project Directory

A project directory contains all of the environment files that you need to configure your
development environment.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

24 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

There are three methods of designing a project.

* Start from scratch, make your project configuration (*.ini) and layout files for use
with the Build Tools,

* Use CodeWarrior IDE to coordinate and manage the entire project, or

» Begin project construction with CodeWarrior IDE and use the standalone build tools
to complete the project.

NOTE
The Build Tools (including Assembler, Compiler, Linker,
Simulator/ Debugger, and others) are a part of the
CodeWarrior Suite and are located in the prog folder in the
CodeWarrior installation. The default location this folder
1s:

<CWInstallDir>\MCU\prog

2.1.2 External Editor

The CodeWarrior IDE reduces programming effort because its internal editor is
configured with the Assembler to enable error feedback. You can use the Configuration
dialog box of the standalone Assembler or other standalone CodeWarrior Tools to
configure or to select your choice of editors. Refer to the Editor Setting Dialog Box
section of this manual.

2.2 Managing Assembly Language Project Using
CodeWarrior IDE

The CodeWarrior IDE has an integrated wizard to easily configure and manage the
creation of your project. The wizard will get your project up and running in short order
by following a short series of steps to create and coordinate the project and to generate
the basic files that are located in the project directory.

2.2.1 Create New Project

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 25

managing Assembly Language Project Using CodeWarrior IDE

This section demonstrates creating a new project using the New Bareboard Project
wizard.

1.

*®

10.

11.

12.
13.

Select Start > Programs > Freescale CodeWarrior > CW for MCU v10.x >
CodeWarrior.

The Workspace Launcher dialog box appears, prompting you to select a workspace
to use.

Click OK to accept the default workspace. To use a workspace different from the
default, click the Browse button and specify the desired workspace.

. Select File > New > Bareboard Project from the IDE menu bar.

The New Bareboard Project wizard launches - the Create an MCU Bareboard
Project page appears.

Specify a name for the new project. For example, enter the project name as
Project_1.
Click Next.

The Devices page appears.

Expand the tree control and select the derivative or board you would like to use. For
example, select S12Z > S12ZVH Family > MC9S12ZVH64.
Click Next.

The Connections page appears.

Select the appropriate connection(s).
Click Next.

The Language and Build Tools Options page appears.

Select the ASM option and select the floating point format and the memory model
aapropriate for your project. By default None option is selected for best code density.
Click Next.

The Rapid Application Development page appears.

Select the appropriate rapid application development tool.
Click Finish.

The wizard creates a project according to your specifications. The newly created project
is displayed in the CodeWarrior Projects view.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

26

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

NOTE
For detailed descriptions of the options available in the New
Bareboard Project wizard pages, refer to the Microcontrollers
V10.x Targeting Manual.

Select the project in the CodeWarrior Projects view. From the IDE menu bar, select
Project > Build Project to build the project. The Console view displays the statements
that direct the build tools to compile and link the project. The Binaries link appears, and
so does the rrasu folder (Additional Project Information).

NOTE
You can configure the IDE to build the project automatically.
To configure the IDE to build the project automatically, check
the Build automatically checkbox in the Window >
Preferences > General > Workspace page.

2.2.2 Additional Project Information

The New Bareboard Project wizard sets up the S127Z project in few minutes. You can add
additional components to your project afterwards. A number of files and folders are
automatically generated in the project folder. This folder is referred to in this manual as
the project directory.

The major GUI component for your project is the CodeWarrior Projects view, as when
the project is created, the project appears in the CodeWarrior Projects view in the
Workbench window.

The following figure shows the project in the CodeWarrior Projects view.

1 CodewWarrior Projects &7 =0

2218, | [E H & Fie Hame =

+ d} Binaries
+ (2= FLASH
+ [~ Project_Headers
= [= Project_Settings
== Debuager
4 = Linker_Files
= Startup_Code
+ [= Sources

Figure 2-1. CodeWarrior Projects View

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 27

managing Assembly Language Project Using CodeWarrior IDE

NOTE
The contents of the project directory vary depending upon the
options selected while creating the project.

If you expand the folder icons, actually groups of files, by clicking in the CodeWarrior
Project view, you can view the files created by the New Bareboard Project wizard.

The following figure shows the expanded project in the CodeWarrior Projects view.

3 Codewarrior Projects &3 =0
2218, | [E H & Fie Hame =
File: Marne: Build

= d} Binaries
5§ Project_1.elf v
[FLASH
= [Project_Headers
D derivative.inc
[E] megsizzvhed.ine

= [= Project_Settings
== Debugger
=l = Linker_Files
= mc9s1Zzvhed.prm
= Startup_Code
=l [= Sources
+ rnain, asm v

Figure 2-2. CodeWarrior Projects View Showing Files

The expanded view displays the logical arrangement of the project files. At this stage,
you can safely close the project and reopen it later, if desired.

The following is the list of default groups and files displayed in the project window.

* minaries 1S a link to the generated binary (.e1¢) files.

* rrasu 18 the directory that contains all of the files used to build the application for
project_1. This includes the source, header, generated binary files, and the makefiles
that manage the build process.

* project Headers 18 the directory that contains any Microcontrollers-specific header
files.

® project_Settings group contains the pebugger folder, the vinker riles folder, and the
Startup Code folder.

* The pebugger folder stores the memory configuration, launch configuration , and
debug configuration file.

* The rinker riles folder stores the linker command file (.prm).

e The startup_code folder has a C file that initializes the Microcontrollers's stack
and critical registers when the program launches.

* sources folder contains the assembly source code files. For this example, the wizard
has created the main.asn file.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

28 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

Examine the project folder that the IDE generated when you created the project. To do
this, right-click on the project's name (project_1 : rrass) in the CodeWarrior Projects
view, and select Show in Windows Explorer . Windows displays the Eclipse workspace
folder, along with the project folder, project_1, within it.

These are the actual folders and files generated for your project. When working with
standalone tools, you may need to specify the paths to these files, so it is best that you
know their locations and functions.

Note that there are some files (.project, .cproject, and .chenerateFileSetLog) that store
critical information about the project's state. The CodeWarrior Projects view does not
display these files, and they should not be deleted.

The rrasu\sources folder, which is created after the project is built, holds an object file for
every assembly source-code file. In this case, main.obj is generated.

Double-click the main.asm file in the Sources group. The main.asm file opens in the editor
area.

The following image displays the main.asm file in the editor view.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 29

A\ 4
N
nnaiysis of Groups and Files in a Project

[5] main.asm &2 =0

:1?ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ r.Y

This stationery serves as the framework for a w
user application. For a more comprehensive programm that *
demonstrates the more advanced functiconality of this w
processor, please see the demonstration applications *
located in the examples subdirectory of the w

*

+*

Freescale CodeWarrior for the 2127 Progran directory
;1:t****t****t****t****t***

L T
E R L

; Include derivative-specific definitions
INCLUDE 'derivative.ine'

; export symbols
IZDEF Entry, _3tartup, main
; we use export 'Entry' as symbol. This allows us to
; reference 'Entry' either in the linker .prm file
; or from C/CH++ later on

ZREF _ 3EG_END_S3TACK ; symbol defined by the linker for the end of the stack

; wvariable/datsa section

MY EXTEHDED RAM: 3SECTION

; Insert here wour dats definition.
Counter ds.w 1

FiboRes ds.w 1

; code section

HyCode: SECTION

main:

_Startup:

Entry:
LDL 3, #__SEG_END_SSTACK -1 ; initialize the stack pointer
CLI ; enable interrupts

Figure 2-3. main.asm File

You can use this sample main.asn file as a base to rewrite your own assembly source
program. Otherwise, you can import other assembly-code files into the project and delete
the default main.asm file from the project. For this project, the main.asm file contains the
sample Fibonacci program.

2.3 Analysis of Groups and Files in a Project

In the CodeWarrior Projects view, the project files are distributed into four major
groups, each with their own folder within the project_1 folder. You can add, rename, or
delete files or groups, or you can move files or groups anywhere in the CodeWarrior
Projects view.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

30 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

2.3.1 CodeWarrior Groups

These groups and their usual functions are:
® Sources
This group contains the assembly source code files.

® Project Settings

® Debugger

The pebugger folder stores the memory configuration file containing commands
that define the legally accessible areas of memory for your specific part, the
launch configuration file, and the debug configuration file.

® Tinker Files

This group contains the linker command file (.prm).
® Startup Code

This group contains the source code that manages the Microcontrollers
initialization and startup functions. For S12Z derivatives, these functions appear
in the source file start.c.

® Project Headers

This group holds include files. One include file is for the particular CPU derivative.
In this case, the mcos12zvhea. inc file 1S for the mcosi2zvies derivative.

NOTE
The default configuration of the project by the wizard does
not generate an assembler output listing file for every «.asm
source file. However, you can afterwards select Generate a
listing file in the assembler options for the Assembler to
generate a format-configurable listing file of the assembly
source code (with the inclusion of include files, if desired).
Assembler listing files (with the «.1st file extension) are
located in the project directory when «.asn files are
assembled with this option set.

This initial building of your project shows whether it is created and configured correctly.
Now, you can utilize some of the CodeWarrior IDE features for managing your project.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 31

nnaiysis of Groups and Files in a Project

However, it is not at all necessary to rename files and groups in the CodeWarrior IDE, so
you can skip the following sections and resume the Assembler part of this tutorial at
Writing your Assembly Source Files.

2.3.2 Creating New Group

To create a new group:

1.

5.
6.

Select File > New > Other from the IDE menu bar.
The New dialog box appears.

Expand the General tree node and select Group.

. Click Next.

The Group wizard appears.

Enter the project directory to which you want to add the new group in the Enter or
select the parent folder text box or select the required directory in the area below
the Enter or select the parent folder text box.

Enter the name of the new group in the Folder name text box.

Click Finish.

The new group appears under the selected parent folder.

2.3.3 Adding New File to the Project

To add a new file to the project:

1.

W

Select File > New > Other from the IDE menu bar.
The New dialog box appears.

Expand the General tree node and select File .

. Click Next .

The File page appears.

Enter the project directory to which you want to add the new file in the Enter or
select the parent folder text box or select the required directory in the area below
the Enter or select the parent folder text box.

Enter the name of the new file with appropriate extension in the File name text box.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

32

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler
6. Click Finish .

The new file appears under the selected parent folder.

2.3.4 Renaming File or Group

To rename a file or group:

1. Right-click the file or group you want to rename in the CodeWarrior Projects view
and select Rename from the context menu. Or, select the file or group and press F2.
The Rename Resource dialog box appears.

2. Enter new name for the file or group and click OK or press Enter.

The selected file or group appears with the changes you made in the name.

2.3.5 Moving File
To move a file to a different group or project:

1. Right-click the file you want to move in the CodeWarrior Projects view and select
Move from the context menu. The Move Resources dialog box appears.
2. Select the desired destination and click OK.

The file 1s moved to the selected location.

2.3.6 Removing File

To remove a file from a project:

1. Right-click the file in the CodeWarrior Projects view and select Delete from the

context menu. A dialog box appears asking you to confirm the deletion.
2. Click Yes.

This deletes the selected file from the project directory.

2.3.7 Restoring Deleted File

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 33

g |

nnaiysis of Groups and Files in a Project

To restore a deleted file:

1. In the CodeWarrior Projects view, right-click the project to which the deleted file
belongs.

2. Select Restore from Local History from the context menu. The Restore from
Local History dialog box appears. The dialog box lists the deleted files available in
the local history.

3. Check the required file checkbox and click Restore.

This restores the file to the original directory structure.

2.3.8 Using Editor

1. Double-click a file in the CodeWarrior Projects view to open the file in the editor

area of the Workbench window.

2. With two or more files open in the editor area, select one of the editor tabs.

. Holding down the left mouse button, drag the editor tab over the left, right, top, or
bottom border of the editor area. Notice that the mouse pointer changes to a drop
cursor that indicates where the editor tab will be moved when you release the mouse
button. By dragging the editor tabs, you can tile the source files in the editor area in
order to view source files side by side.

W

The following image shows the tiled source files in the editor area.

(5] main.asm 2 =8

;wwwwwwwwwa-wwwwﬁwwwwwwwwwwwwwwwwwwwwwwww:nnnnnnnnnnnnnnnnnnnnnnr L
Thi=z stationery serves as the framework for a w
uzer application. For a mwore comprehensive programm that *
demonstrates the more adwvanced functionality of this w
processor, please see the demonstration applications *
located in the examples subdirectory of the w

*

+*

Ne v v v ve e
e

Freescale CodeWarrior for the 21ZZ Progran directory
;'ﬂ"ﬂ"k‘k‘k'ﬂ"ﬂ"k‘k‘k'ﬂ"ﬂ"k‘k‘k'ﬂ"ﬂ"k‘k‘k##‘k‘k‘k##‘k‘k‘k‘k*1:1:1:1:1:t****t****t****t****t***
; Include derivative-specific definitions

INCLUDE 'derivatiwve.inc!
< >

[8] main.asm 53

;‘k‘ﬂ"k‘k*1:1{1:1;1;1:1{1:1:********************* .

Thizs stationery serves as the framework for a *
user application. For a wore comprehensive prograsm that w
demonstrates the more advanced functionality of this *
processor, please see the demonstration applications w
located in the examples subdirectory of the *

+*

*

Freescale CodeWarrior for the 5127 Programm directory
;wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww:nnnnnnnnnnnnnnnnnnnnnr

Ne v v v v e
P N

; Include derivative-specific definitions
INCLUDE 'derivatiwve.inc' b

Figure 2-4. Editor Area Showing Tiled Source Files

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

34 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

4. Drag the borders of the editor area or each editor, to resize as desired.
5. Make desired changes in the source file. To save the file perform any of the
following:
e Select File > Save from the IDE menu bar.
* Right-click the file and select Save from the context menu.
e Press CTRL+S.
 Click the Save icon on the toolbar.

The file is saved with the changes you made using the editor.

2.3.9 Generating Listing Files

It was mentioned previously that the assembler output listing files are not generated
without making configuration changes for the build target. To generate listing files, set up
assembler options:

1. In the CodeWarrior Projects view, right-click the assembler project for which you
want to generate output listing files.

2. Select Properties from the context menu that appears. The Properties for <project
name> dialog box appears.

3. Select C/C++ Build > Settings . The Tool Settings page appears in the right panel.

4. Select S12Z Assembler > Output in the Tool Settings page.

5. Specifies the name, sn, and path, sTextears, of the assembly listing file in the
Generate listing file (e.g. % (TEXTPATH)/%n.lIst) text box. For example, enter
<Workspace>\Project 1/lis.lst n the text bOX, if <Workspace>\Project 1 and 1is.1st are the
path and name of the listing file, where <workspaces is the current working directory.

6. Click Apply to save the modified settings.

Click OK to close the Properties dialog box.

8. Right-click the project in the CodeWarrior Projects view and select Build Project
from the context menu.

~

The listing file appears in the CodeWarrior Projects view under the specified directory.

The following figure displays the assembly listing file in the CodeWarrior Projects
view.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 35

wrniung your Assembly Source Files

3 Codewarrior Projects £ =8
|£|laz =] B 4| File Hame =
File: Marre Build
= == Project_1 @ FLASH
dﬁb Binaries
2= FLASH

= Project_Headers
= = Project_Settings
== Debugger
= Linker_Files
== Startup_Code
= Sources

Figure 2-5. CodeWarrior Projects View - Assembly Listing File

2.4 Writing your Assembly Source Files

Once your project is configured, you can start writing your application's assembly source
code and the Linker's PRM file.

NOTE
You can write an assembly application using one or several
assembly units. Each assembly unit performs one particular
task. An assembly unit is comprised of an assembly source file
and, perhaps, some additional include files. Variables are
exported from or imported to the different assembly units so
that a variable defined in an assembly unit can be used in
another assembly unit. You create the application by linking all
of the assembly units.

The usual procedure for writing an assembly source-code file is to use the editor that is
integrated into the CodeWarrior IDE.

To create a new assembly source file:

1. Select File > New > Source File from the IDE menu bar. The New Source File
dialog box appears.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

36 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

2 New Source File

Source File

Create a new source file, C

= |

Source fFolder: |F‘ru:|ject_1 | [Browse. ..]
Source files | |

Template: |DeFauIt C source template vl [Configure...]

3
@

Figure 2-6. New Source File Dialog Box
2. Enter the folder in which you want to add the new file in the Source Folder text box
or click Browse to select the desired folder, for example project_1/sources.
3. Enter the name of the new file with extension *.asm in the Source File text box.
4. Click Finish.

A newly created file opens in the editor area. Write your assembly source code in the file.

2.5 Analyzing Project Files

We will analyze the default nain.asm file that was generated when the project was created
with the New Bareboard Project wizard. The following listing shows the assembler
source code for the Fibonacci program.

Listing: main.asm file

;***

;* This stationery serves as the framework for a *
;* user application. For a more comprehensive program that *
;* demonstrates the more advanced functionality of this *
;* processor, please see the demonstration applications *
;* located in the examples subdirectory of the *
;* Freescale CodeWarrior for the S12Z Program directory *

;***

; Include derivative-specific definitions

INCLUDE 'derivative.inc'

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 37

r
4\ |

Anaiyzing Project Files

; export symbols
XDEF Entry, _Startup, main
; we use export 'Entry' as symbol. This allows us to
; reference 'Entry' either in the linker .prm file
; or from C/C++ later on

XREF _ SEG_END_SSTACK ; symbol defined by the linker
for the end of the stack

; variable/data section

MY EXTENDED RAM: SECTION

; Insert here your data definition.
Counter ds.w 1

FiboRes ds.w 1

; code section

MyCode : SECTION
main:
_Startup:
Entry:
LD S, #_ SEG_END SSTACK - 1 ; initialize the stack pointer
CLI ; enable interrupts
EndlessLoop:
LD D2, #1 ; D2 contains counter
CouterLoop:
ST D2, Counter ; update global.

BSR CalcFibo

ST D4, FiboRes ; store result

LD D2, Counter

INC D2

CMP D2, #24 ; larger values cause overflow.
BNE CouterLoop

BRA EndlessLoop ; restart.

; Function to calculate fibonacci numbers. Argument is in D2.

CalcFibo:
LD D3, #$00 ; second last
LD D4, #$01 ; last
DBEQ D2, FiboDone ; loop once more (if D2 was 1,

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

38 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

were done already)
FiboLoop:

ADD D3, D4 ; overwrite second last with new
value

EXG D3, D4 ; exchange them -> order is
correct again

DBNE D2, FiboLoop
FiboDone:

RTS ; result in D4

When writing your assembly source code, pay special attention to the following:

* Make sure that symbols outside the current source file (in another source file or in
the linker configuration file) that are referenced from the current source file are
externally visible. Notice that we have inserted the assembly directive xper_startup,
main Where appropriate in the example.

* In order to make debugging from the application easier, we strongly recommend that
you define separate sections for code, constant data (defined with oc) and variables
(defined with ps). This will mean that the symbols located in the variable or constant
data sections can be displayed in the data window component.

* Make sure to initialize the stack pointer when using the ssr or gsr instructions in your
application. The stack can be initialized in the assembly source code and allocated to
RAM memory in the Linker parameter file, if a «.prm file is used.

NOTE
The default assembly project created using the New
Bareboard Project wizard initializes the stack pointer
automatically with a symbol defined by the Linker for the
end of the stack sec Exp sstack.

2.6 Assembling Source Files

Once an assembly source file is available, you can assemble it. Either use the
CodeWarrior IDE to assemble the ».asm files or use the standalone assembler of the build
tools in the <mcus\s121isa Tools folder in the CodeWarrior installation.

2.6.1 Assembling and Linking with CodeWarrior IDE

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 39

nssembling Source Files

The CodeWarrior IDE simplifies the assembly of your assembly source code. To
assemble and link all the files in the project, select the project in the CodeWarrior
Projects view and select Project > Build Project from the IDE menu bar. The files
generated after assembling and linking the project are placed into the <CPU
Derivativessubfolder in the project directory. The files include:

* < assembly_source_file> .aog

This file contains symbolic debugging information.
* < project_name> .elt

This is the final executable file.
* < project_name> .map

This Linker map file lists the names, load addresses, and lengths of all segments in
your program. In addition, it lists the names and load addresses of any groups in the
program, the start address, and messages about any errors the Linker encounters.

Also, when you build a project, the project's source code files assembles into object
(*.obj) files.

The object files are generated and placed into the <CPU Derivatives\sourcessubfolder in
the project directory. The path of the object file created on assembling the main.asn file is:

<project directory>\<CPU Derivatives\sources\main.ob]

The Wizard does not generate default assembler-output listing files. If you want such
listing files generated, follow the steps in topic Generating Listing Files.

You can add the =.1st files to the project window for easier viewing. This way you do not
have to continually hunt for them with your editor.

2.6.2 Assembling with Assembler

It is also possible to use the S12Z Assembler as a standalone assembler. If you prefer not
to use the assembler but you want to use the Linker, you can skip this section and proceed
to Linking Application.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

40 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

This tutorial does not create another project from scratch with the Build Tools, but
instead uses some files of a project already created by the New Bareboard Project
wizard. The CodeWarrior IDE can create, configure, and manage a project much easier
and quicker than using the Build Tools. However, the Build Tools could also create and
configure another project from scratch.

A Build Tool, such as the Assembler makes use of a project directory file for configuring
and locating its input and generated files. The folder that is designated for this purpose is
referred to by a Build Tool as the current directory.

Start the Assembler by double-clicking the asi21isa.exe file in the <M CU>\prog folder in
the CodeWarrior installation directory. The Assembler opens (refer to the figure listed
below). Read the tip displayed in the Tip of the Day dialog box, if you want to, and then
click Close to close the dialog box.

il HCS12Z Assembler Default Configuration

Eile Assembler Wiew Help

Dz 78| RAIR - =R

| ~

v
< *

Ready 15:13:56

Figure 2-7. S12Z Assembler Default Configuration Dialog Box

2.6.2.1 Configuring Assembler

A Build Tool, such as the Assembler, requires information from the configuration files.
There are two types of configuration data:

* Global

This data is common to all Build Tools and projects. There may be common data for
each Build Tool, such as listing the most recent projects, etc. All tools may store
some global data into the mcutoois.ini file. The tool first searches for this file in the

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 41

nssembling Source Files

directory of the tool itself (path of the executable). If there is N0 mcutoo1s.ini file in
this directory, the tool looks for an mcutoo1s.ini file located in the MS WINDOWS
installation directory (for example, c:\wnpows), as the following listing shows.

Listing: Typical Locations for a Global Configuration File

\<CWInstallDir>\MCU\prog\mcutools.ini - #1 priority
C:\WINDOWS\mcutools.ini - used if there is no mcutools.ini file above

If a tool is started in the default location <cwinstaiipirs\<mcus\si21isa_Tools directory,
the initialization file in the same directory as the tool is used:

<CWInstallDir>\<MCU>\prog\mcutools.ini

But if the tool is started outside the CodeWarrior installation directory, the
initialization file in the Windows directory is used. For example, c:\winpows

\mcutools.ini.

For information about entries for the global configuration file, refer to the section
Global Configuration File Entries in the Appendices.

Local

This file could be used by any Build Tool for a particular project. For information
about entries for the local configuration file, refer to the section Local Configuration
File Entries in the Appendices.

After opening the Assembler, you would load the configuration file for your project if it
already had one. However, you will create a new configuration file for the project in this
tutorial and save it so that when the project is reopened, its previously saved
configuration state is used.

Now let's save this configuration in a newly created folder that will become the project

directory.

1.
2.

Select File > New / Default Configuration to open a new default configuration.
Select File > Save Configuration As to save this configuration.

The Saving Configuration as dialog box appears.

. Navigate to the desired location and click the Create New Folder icon on the dialog

box toolbar.
Enter a name for the project directory.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

42

Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

Saving Configuration as...

Save in: |Lf} Projects j . = E3-
Save as bype: |Pn:|ject files (*ini:* pit) j Cancel

Figure 2-8. Loading Configuration Dialog Box
5. Click Open.

In this case, mode1T becomes the project directory in the projects folder.

6. Click Save.

The project.ini file 1s created in the moce1T folder and becomes the local configuration file
for this project.

The current directory for the Microcontroller Assembler is changed to your project
directory.

The following image shows the assembler window displaying the current directory.

Wl HCS12Z Assembler D:\Projecis\odel Thproject.ini E]|E|E|

File Assembler Wiew Help

ODzE 28| RAIR g =)

Changed current directory to D:%Projects\Model T

£

0 | >

Ready 10:13:47

Figure 2-9. Assembler Displaying Current Directory

If you were to examine the project directory with the Windows Explorer at this point, it
would only contain the project.ini configuration file that the Assembler just created.

The following image displays the project.ini configuration file that the Assembler just
created.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 43

A 4
4\ |

nssembling Source Files

B Model T =1

File Edit View Favorites Tools Help [t

»

eBack - &l lj]- ﬁ:' ﬁ‘ /-'-\I Search

Address ||;i'| D:\ProjectsModel T V| Go
Mame

) Profies A | [#project.ini

IC2) Program Files
=) Projects

=] rodel 7 |

W
= nerwer cn

< » < >
1 objects (Disk free space: 6.32GB) 115 bytes J My Computer

H =] Folders

Folders

Figure 2-10. Project directory in Windows Explorer

If you further examined the contents of the project.ini configuration file, you would see
that it contains Assembler options in the [ancsi2z_assembler] portion of the file. The
project.ini file for this project only has an (auncsi2z_assemvier] section, as the following
listing displays.

Listing: Contents of project.ini File

[AHCS12Z Assembler]
StatusbarEnabled=1

ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,494,406,953,697
EditorType=4

The ancs12z_assembler Options are described in detail in [XXX_Assembler] Section in the
Appendices.

Next, you have to set the object-file format that you will use (HIWARE or ELF/
DWAREF).

1. Select Assembler > Options.
The HCS12Z Assembler Option Settings dialog box appears.

2. Click the Output tab. Check the Generate a listing file checkbox.

Check the Object File Format checkbox. Select ELF/DWAREF 2.0 Object File

Format from the options displayed for the Object File Format checkbox.

4. Check the Do not print included files in list file checkbox if you want the listing
file to be shorter.

W

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

44 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

HCS12Z Assembler Option Settings PXI
Code Generation] tMeszages] W arious]
Output] [nput] Language] Host l

[w|Generate a listing file

[Configure lizting file

[|Configure the address size in the listing file
100 nat prink macro call in lizting file

1D nat print macra definition in listing file
100 not prink macro expanzion in ligting file
[w|Da nat print included files in listing file

[10bject file name specification [enter [<file:])

-F[hi&2[2]: Object File Format

" HIwARE Object File Fornat

" ELF/D'WaRF 2.0 Absolute File

f* ELF/D'WARF 2.0 Object File Farmat
F2 L=E[TEXTPATH] 3 Ist -Li

QK | Cancel | Help |

Figure 2-11. S12Z Assembler Option Settings Dialog Box
5. Click OK to close the HCS12Z Assembler Option Settings dialog box.

Save the changes to the configuration by:

* selecting File > Save Configuration (Ctrl + S) or
* pressing the Save button on the toolbar.

The assembler is now set with the object-file format that you have selected.

The following listing shows the project. ini file's contents, after the changes to the
configuration are saved.

Listing: project.ini File with Additional Assembly Options

[AHCS12Z Assembler]
StatusbarEnabled=1

ToolbarEnabled=1
WindowPos=0,1,-32000,-32000,-1,-1,495,471,941,739
EditorType=4

Options=-F2 -L=% (TEXTPATH) \%n.lst -Li

2.6.2.2 Input Files

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 45

g |

|
nssembling Source Files
Now that the project's configuration is set, you can assemble an assembly-code file.
However, the project does not contain any source-code files at this point. You could
create assembly =.asm and include «. inc files from scratch for this project. However, for
simplicity's sake, you can copy and paste the main.asm, derivative.inc and the
mc9s12zvhe4 . inc files from the previous CodeWarrior project.

For this project, you should have a project directory named moge1 . Within this folder,
you should have another folder named sources, which contains the two files described
above. Using a text editor of your choice, modify the main.asm file so that it appears as the
main.asm file shows.

Now there are four files in the project (refer to the figure listed below):

* the project.ini configuration file and
e two files in the sources folder:

® main.asm

® derivative.inc

® mc9sl2zvhé64.inc

% D:\Projects\Model T\Sources

File Edit ‘“iew Favorites Tools Help ",'
Q Back - () ? /.') Search H Falders E\'
Address |5 Dr\Projects\Model ThSources 4 . o
Folders X Marne Size Type
£ <e# Data (D7) ~ EEmain.asm 3KB Assembly Souf
3 Profiles [£] derivative.inc 1KE INCFile
= 3 Projects [Z) mcos1zzvhed.inc 637 KB INC File
=) Model T
w
o ¥ % »

Figure 2-12. Project Files

2.6.2.3 Assembling Assembly Source-code Files

To assemble the main.asn file:

1. Select File > Assemble from the menu bar.
2. The Select File to Assemble dialog box appears. Browse to the sources folder in the
project directory and select the main.asm file.

The following image shows main.asn file.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

46 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

Select File to Assemble

Look in: | £ Sources | = EF-

File name: |main.asm Cpen

Files of type: |assembler source files {*.asm) - Cancel

Figure 2-13. Select File to Assemble Dialog Box

3. Click Open.

The main.asm file starts assembling.

The following image shows the result of assembling of main.asn file.

il HCS12Z Assembler D:¥ProjectsiModel Tiproject.ini |Z||E|rg|

File Assembler View Help

Rl =0

D:%ProjectsSources\main. asm
Command Line: '-F2Z -L=%(TEXTPATH)‘%n.lst -Li D:‘Projects\3ources\main.asn'

Top: D:ivProjectaliourcesimain, asm
Could not open the file 'deriwatiwve.inc'

»» in "D:YVProjects\Sources\main.asn”, line 10, col 0O, pos 574
INCLUDE 'deriwatiwve.inc'
~
ERREOR 4230%: File not found
HC312Z Assembler: *%% 1 error(s), 0 warningi(s), 0 information message(s)] **%
%% pommand line: '-F2 -L=%|TEXTPATH)%%n.lst -Li D:“Projects)\Sources\main.asn' *%*
HC312Z Assembler: *%% Error occurred while processing! *#%%

Processing failed! 10:55:57

Figure 2-14. Results of Assembling main.asm File

The project window provides information about the assembly process or generates error
messages 1f the assembly was unsuccessful. In this case, the A2309 File not found error
message is generated. As the following image displays, if you right-click on the text
containing the error message, a context menu appears.

NOTE

If you get any other types of errors, make sure the main.asn file
is modified as shown main.asm file.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 47

h -

g |

nssembling Source Files

il HCS12Z Assemblen D:\Projects\odel Thproject.ini |Z||E|E|

Eile Assembler Wiew Help

RAIE Y =1

D:yProjects) 3ources\main. asm
Command Line: '-F2 -L=%(TEXTPATH)‘%n.lst -Li D:“Projects\Sources‘\main.asm'

Top: D:YWProjectsSources\main. asn
Could not open the file 'deriwative.inc'

= in "DiyProjects)dourcegtmsde santddws 10 asl 0asss B0
INCLUDE 'deriy MainHelp
~ Help on "File nok Found”
EREOR AZ309: File not four Open file "DniProjects!Sourcesimain, asm”
HCS12Z Azsemhler: *%% 1 er Copy "= in "Di\Projects|Sourcesimain, asm”, line 10..." 3| wERE
**% conmand line: '-F2 -L=s(IEATFAIO]S3IL LS50 —L1 L SPLOJECLEYsUMLCES s Wain, asn' *+*
HC512Z Assembler: #%% Error occurred while processing! %

Ready

15:14:31

Figure 2-15. Context Menu

Select Help on '"file not found'' and help for the 22309 error message appears, as the
following image displays.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

48 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

e

A2309: File not
found

[ERROR]
Description

The assembler cannot find the file,
which name is specified in the include
directive.

Tips

+ If the file exist, check if the
directory where it is located is
specified in the GENPATH
environment variable.

s First check if your project directary
is correct. A file "default.env"
should be located there, where the
environment variables are stored.

+ The macro assembler looks for the
included files in the working
directory and then in the directory
enumerated in the ‘¢ GENPATH
environment variable.

+« If the file do not exist, create it or
remove the include directive.

Figure 2-16. A2309: File not found

You know that the file exists because it is included in the sources folder that you imported
into the project directory. The help message for the az2309 error states that the Assembler is
looking for this "missing" include file first in the current directory and then in the
directory specified by the ceneaTn environment variable. This suggests that the cenearn
environment variable should specify the location of the gerivative.inc include file.

NOTE
If you read the main.asn file, you could have anticipated this on
account of this statement on line 20: tncLupE 'derivative.inc'.

To fix this error:

1. Select File > Configuration.

2. The Configuration dialog box appears. Click the Environment tab and then select
General Path.

3. Click the " ..." button and navigate in the Browse for Folder dialog box for the
folder that contains the gerivative.inc file - the sources folder in the project directory.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 49

PR 4

nssembling Source Files

I Configuration

[General Path

Object Path

Text Path

Absolute Path

Header File Path

Warious Environment Variables

il HCS127 Assembler D:\Proiects\Model Tinroiect.ini

Editor Setlingsl Save Configuration Environment |

X

Browse for Folder

Select a directory:

= @ Deskiop ~
#-5) My Documents

i ' B31562 on B31562-02

[Local Disk (C:)

Add | Changel Deletel Up | annl

- Data (D:)
. [@-3) Profiles
=) Projects

N

: BEJ Model T

----- Sources

-[3) TEMPLATES
-|C0) TortaiseCys_Checkout

[NV

i | >

W

[~

L Ok J[Cancel l

ok |

Cancel | Help | Z

Ready

150954~

Figure 2-17. Browsing for Sources Folder
4. Click OK to close the Browse for Folder dialog box.
5. The Configuration dialog box is active again. Click the Add button.

The path to the gerivative.inc filé p:\projects\Mode1l T\sources appears in the area
below the Add button.

Configuration

Editar Settings I Save Configuration Enviranment |

General Path

Object Path

Text Path

Abzolute Path

Header File Fath

W arious Ernvironment W ariables

ID:\Prniects'\Mndel ThSources

N

Add |I:hange| Deletel g | annl

L:4Projectgihodel ThSources

[o |

Cancel | Help |

6. Click OK.

Figure 2-18. Adding GENPATH

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

50

Freescale Semiconductor, Inc.

3
4

4
A

. ___4
Chapter 2 Working with Assembler

An asterisk appears in the title bar of the Assembler window, so save the change to
the configuration.

7. Click the Save button in the toolbar or select File > Save Configuration.

The asterisk disappears.

The new path is updated for the gerivative.inc file.
Tip
You can clear the messages in the Assembler window at any
time by selecting View > Log > Clear Log.

Now that you have supplied the path to the gerivative.inc file, assemble the main.asm file
again.

Select File > Assemble and again navigate to the main.asn file and click Open . The
following image displays the successful assembling of the project with the second
attempt.

iwi HCS12Z Assembler D:\Projects\Model Thproject.ini
File Assembler Wiew Help
D Dq E ? k? "'D:5ProjectsiModel ThSourceshmain. asm' j @ ;‘ b= E

"DivProjectsiModel TYSources‘\main.asm™ i
Command Line: '-F2 -L=%(TEXTPATH]\%n.lst -Li "D:%Projects'Model TV 3ources‘main.asm™'

Top: D:yvProjectsilModel T\Zources‘imain.asm

"DiyProjects\Model Th3ources\derivatiwve.inc™

"DiZProjectsiModel TYSources\ncfslizvhed. inc™

writing debug listing to D:%Projects\Model Thmain.dbg

output file: "D:\ProjectsyModel Tymain.o'

Code 3ize: 52

writing listing to D:%YProjectsi\Model Thmain.lst

HC312Z Aszsembler: *%*% 0 error(s), 0 warningis), 0 information message(s) **%
HC312Z Assemhler: *%% Processing ok *#%

v
< >
Processing ok 10:36:40

Figure 2-19. Assemble Attempt #2 - Success!

The Macro Assembler indicates successful assembling and indicated that the Code Size
was 39 bytes. The message «+» o error(s), indicates that the main.asn file assembled
without errors. Do not forget to save the configuration one additional time.

The Assembler also generated a main.dbg file (for use with the Simulator/Debugger), a
main.o Object file (for further processing with the Linker), and a main.1st output listing file
in the project directory. The binary object-code file has the same name as the input
module, but with the «.o extension - main.o. The debug file has the same name as the input

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 51

r
4\ |

nssembling Source Files

module, but with the +.a0g extension - main.abg and the assembly output listing file has the
«.1st extension. The following image displays the project directory after the successful
assembly of the project.

v D:\ProjectsiModel T r—_”'E|E|
File Edit ‘“iew Favorites Tools Help ",'
o <’ l_? Fa ! Search H_H Folders -
Address |lﬁ D:\ProjectsiMadel T v| Go
Folders X Mame Size Type
= e Data(D:) ~ [C)50urces File Falder
[ﬁ Prafiles _ |-°=j ERR.TET OKE Text Documer
= 3) Projects HlE main. dbag KB CodeWarriar
EY&]110del T [main st SKE LSTFile
) Sources main.o 3KE OFile
|5 TEMPLATES v [Bproject.ini 1KE Configuration
< | > < | .

Figure 2-20. Project Directory After Successful Assembly

The err.xT file is present in the project directory because of the earlier failed attempts at
assembling. The =rr.Txt file is empty after a successful assembly. You can delete this file.
The following listing shows the project. ini file.

Listing: project.ini file after GENPATH environment variable is created

[AHCS12Z Assembler]
StatusbarEnabled=1

ToolbarEnabled=1

WindowPos=0,1,-1,-1,-1,-1,319,392,953,747

EditorType=4

Options=-F2 -L=% (TEXTPATH)\%n.lst -Li
RecentCommandLine0=""D:\Projects\Model T\Sources\main.asm""
CurrentCommandLine=""D:\Projects\Model T\Sources\main.asm""
RecentCommandLinel=D:\Projects\Sources\main.asm
[Environment Variables]

GENPATH=D: \Projects\Model T\Sources

OBJPATH=

TEXTPATH=

ABSPATH=

LIBPATH=

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

52 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

The haphazard running of this project was intentionally designed to fail to illustrate what
occurs if the path of any inciuge file is not properly configured. Be aware that inciuge files
may be included by either .asm Or =.inc files. In addition, remember that the 1i» folder in
the CodeWarrior installation contains several derivative-specific inciuge and prn files
available for inclusion into your projects.

2.7 Linking Application

Once the object files are available you can link your application. The linker organizes the
code and data sections into ROM and RAM memory areas according to the project's
linker parameter (PRM) file.

2.7.1 Linking with CodeWarrior IDE

The Linker's input files are object-code files from the assembler and compiler, the library
files, and the Linker PRM file.

2.7.1.1 PRM File

If you are using the CodeWarrior IDE to manage your project, a pre-configured PRM file
for a particular derivative is already set up, as the following listing displays .

Listing: Linker PRM file for MC9S12ZVH64 derivative - <derivative>.prm

/* This is a linker parameter file for the MC9S12ZVHé64 */
NAMES END /* CodeWarrior will pass all the needed files to the linker
by command line. But here you may add your own files too. */

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

/* Register space */

/
* IO _SEG = PAGED 0x000000 TO 0x000FFF; intentionally
not defined */
/* RAM */
RAM = READ WRITE 0x001000 TO 0x001FFF;

/* EEPROM */

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 53

g |

cimnring Application

EEPROM = READ ONLY 0x100000 TO 0x100FFF;
/* non-paged FLASHs */
ROM = READ ONLY O0xFFO0000 TO OxFFFDFF;

/* VECTORS = READ ONLY OxXFFFEOQO TO 0xXFFFFFF; intentionally
not defined: used for VECTOR commands below */

//OSVECTORS = READ ONLY OxXFFFE10 TO OxXFFFFFF; /* OSEK
interrupt vectors (use your vector.o) */

END

PLACEMENT /* here all predefined and user segments are placed into the
SEGMENTS defined above. */

_PRESTART, /* Used in HIWARE format: jump to
_Startup at the code start */

STARTUP, /* startup data structures */

ROM_VAR, /* constant variables */

STRINGS, /* string literals */

VIRTUAL TABLE SEGMENT, /* C++ virtual table segment */

// .ostext, /* OSEK */
NON_ BANKED, /* runtime routines which must not be
banked */

DEFAULT_ ROM,
COPY INTO ROM;

// .stackstart, /* eventually used for OSEK kernel
awareness: Main-Stack Start */

SSTACK, /* allocate stack first to avoid
overwriting variables on overflow */

// .stackend, /* eventually used for OSEK kernel
awareness: Main-Stack End */

DEFAULT_ RAM INTO RAM;
// .vectors INTO OSVECTORS; /* OSEK */
END
ENTRIES /* keep the following unreferenced variables */

/* OSEK: always allocate the vector table and all dependent
objects */

//_vectab OsBuildNumber OsOrtiStackStart _OsOrtiStart
END
STACKSIZE 0x100

VECTOR 0 _Startup /* reset vector: this is the default entry point for
a C/C++ application. */

//VECTOR 0 Entry /* reset vector: this is the default entry point for
an Assembly application. */

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

54 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler
//INIT Entry /* for assembly applications: that this is as well
the initialization entry point */
The Linker PRM file allocates memory for the stack and the sections named in the
assembly source code files. If the sections in the source code are not specifically
referenced in the rracemenT section, then these sections are included in peraurT rom OF

DEFAULT_ RAM.

The stacks1ze entry is used to set the stack size. The size of the stack for this project is 80
bytes. Some entries in the Linker PRM file may be commented-out by the IDE, as are the
three last items in the <derivatives.prm file in Linker PRM file for MC9S12ZVH64

derivative - <derivative>.prm.

2.7.1.2 Linking Object-code Files

You can build this relocatable assembly project by selecting Project > Build Project
from the IDE menu bar. When the project is built, the Linker generates a «.e1f and a *.map
file in the rrasa subfolder in the project directory.

The project_1.e1f and project_1.map files are the Linker output files resulting from the
object-code and PRM files.

To debug the project:
1. From the main menu bar of the IDE, select Run > Debug Configurations .

The Debug Configurations dialog box appears. The left side of this dialog box has a
list of debug configurations that apply to the current application.

Expand the CodeWarrior Download configuration.

From the expanded list, select the debug configuration that you want to modify.
Click the Debugger tab. The Debugger page appears in the area beneath the tabs.
Change the settings on this page as per your requirements. For example, select the
required target processor and simulator/emulator.

6. Click the Apply button to save the new settings.

7. Click the Debug button button to start the debugging session.

A

The perspective switches to the Debug perspective displaying the debugging process.

In the Debug perspective, you can control your program's execution by setting
breakpoints, suspending launched programs, stepping through your code, and examining
the values of variables.

The Debug perspective displays information about:

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 55

cimnring Application

» The stack frame of the suspended threads of each target that you are debugging
 Each thread in your program represented as a node in the tree
* The process of each program that you are running

The Debug perspective also drives the Source view. As you step through your program,
the Source view highlights the location of the execution pointer.

2.7.2 Linking with Linker

If you are using the Linker (SmartLinker) build tool utility for a relocatable assembly
project, you will use a PRM file for the Linker to allocate ROM and RAM memory areas.

1.

2.
3.

Using a text editor, create the project's linker parameter file. You can modify a *.prm
file from another project and rename it as <project_names.prm.

Store the PRM file in a convenient location, such as the project directory.

In the <project_names.prm file, change the name of the executable (».e1¢) file to
whatever you choose, for example, <project_names.e1£. In addition, you can also
modify the start and end addresses for the ROM and RAM memory areas. The
module's Mode1 T.prm file (a PRM file for mcosi2zvues from another CodeWarrior
project was adapted), as the following listing shows.

Listing: Layout of a PRM file for the Linker - Model T.prm

/* This is a linker parameter file for the MC9S12ZVH64 */
LINK Model T.elf /* Absolute executable file */

NAMES main.o /* Input object-code files are listed here. */
END

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

Z _RAM = READ WRITE 0x0080 TO OxOOFF;
RAM = READ WRITE 0x0100 TO 0x107F;
ROM = READ ONLY 0x182C TO OxFFAF;
ROM1 = READ ONLY 0x1080 TO Ox17FF;
ROM2 = READ ONLY O0xFFCO TO OxFFCB;
/* INTVECTS = READ ONLY 0xFFCC TO OxFFFF; Reserved

for Interrupt Vectors */
END

PLACEMENT /* Here all predefined and user segments are placed into the
SEGMENTS defined above. */

DEFAULT RAM, /* non-zero page variables */

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

56

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

INTO RAM;
_PRESTART, /* startup code */
STARTUP, /* startup data structures */
ROM_VAR, /* constant variables */
STRINGS, /* string literals */
VIRTUAL_ TABLE SEGMENT, /* C++ virtual table segment */
DEFAULT_ROM,
COPY /* copy down information: how

to initialize variables */

INTO ROM; /* ,ROM1,ROM2: To use
"ROM1,ROM2" as well, pass the option -OnB=b to the compiler */

_DATA ZEROPAGE, /* zero page variables */
MY ZEROPAGE INTO Z_RAM;

END

STACKSIZE 0x50

VECTOR 0 _Startup /* Reset vector: this is the default entry point for
an application. */

NOTE
If you are adapting a PRM file from a CodeWarrior project,
all you really need to add is the vink portion and the object-
code filenames to be linked in the naves portion.

The default size for the stack using the New Bareboard Project wizard for mcesoscTso
is 80 bytes - (stacks1ze 0xs0). This Linker statement and _ sec_ewp_sstack in the
assembly-code snippet below determine the size and placement of the stack in RAM:

MyCode: SECTION ; code section
main:
_Startup:

LDHX #__SEG_END_SSTACK ; initialize stack pointer

TXS

The statements in the linker parameter file are described in the Linker portion of the
Build Tool Utilities manual.

4. Start the SmartLinker tool by double-clicking 1inker.exe located in the <ucus
\s121isa_tools folder in the CodeWarrior installation directory.

Click Close to close the Tip of the Day dialog box.

6. Load the project's configuration file.

hd

Use the same <project.ini> file that the Assembler used for its configuration - the
project.ini file in the project directory.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 57

PR 4

cinking Application

7. Select File > Load Configuration and navigate to and select the project's
configuration file.

The following image displays the Loading configuration dialog box.

SmartLinker D:\Projects\Model A\project.ini

; Loading configuration

Look in: | £ Model A

) Sources

3prnject.ini

File name: Im Open I

Files of type: | Project files {*ini." pit) | Cancel |4 o

£/ 1)
Ready

Figure 2-21. Microcontroller Linker
Click Open to load the configuration file.

The project directory is now the current directory for the Linker.

Select File>Save Configuration to save the configuration.
. Select File > Link. The Select File to Link dialog box appears (refer to the figure
listed below).

11. Browse to locate and select the PRM file for your project.

SmartLinker D:\Projects\Model A\project.ini

| Select File to Link

Look in: IE} Model A

) Sources

'Mndel A.prm

Filz name: || Open I

Files of [T les [v Cancel

iles of type |I|nk parameter files {*prm) _l | 3
o' <
Ready 13:50:39 2

Figure 2-22. Select File to Link Dialog Box
12. Click Open.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

58 Freescale Semiconductor, Inc.

A 4
N
Chapter 2 Working with Assembler

The Smart Linker links the object-code files in the namzs section to produce the executable
« e1f file, as specified in the Link portion of the Linker PRM file.

The following image displays the smart linker window after linking.

SmartLinker D:\Projects\Model A\project.ini =3

File Smartlinker View Help

=2 = R Yl D-\Projecis\Model A\Model Ao TREEEEEINES |-~ == S =20 |

"D:\EFrojects’\Model RA\Model A.prm"

Command Line: '"D:\Projects‘Model A\Model A.prm™'
Reading Parameters

Linking D:“Projects\Model A\Model A.prm

Read Binary Input Files

Reading f£ile 'D:“\Projects\Model A\main.o'

Marking Referenced Objects

Moving Cbjects ross Sections

Reserving Memory for Startup Data

Allcecating Ckbjects

Preparing Startup Data

Generating Code

Generating Symbol table

Generating DWARF data wversicn 2.0

Code Size: 13

Generating MAP file 'D:® ectsi\Model A\Model A.map’
Smartlinker: #** 0 error(s), 0 warning(s), 0 information message(s) ***
Smartlinker: #*** Processing ok ***

Processing ok 13:56:31

Figure 2-23. SmartLinker Window After Linking

The messages in the linker's project window indicate that:

The current directory for the Linker is the project directory, p:\projects\Model a.

The mode1 a.prm file is used to name the executable file, which object files are linked,
and how the RAM and ROM memory areas are allocated for the relocatable sections.
The Reset and application entry points are also specified in this file.

There is one object file, main.o.

The output format is DWARF 2.0.

The Code Size is 13 bytes.

A Linker Map file, mode1_a.map 1S generated.

* No errors or warnings occurr and no information messages are issued.

The TexTeara environmental variable was not used for this project. Therefore, the Linker
generates its «.map Linker Map file in the same folder that contains the PRM file for the
project. Because the asseats environment variable was not used, the «.e1f executable file
is generated in the same folder as the Linker PRM file. The following image shows the
contents of the project directory after the relocatable assembly project is linked.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 59

A 4
4\ |

nssembler Build Properties Panels

8% Model A =3
File Edit View Favorites Tools Help |'f
Qi - © B & F| Pt [0 | (3 3 X 9| F-

7 | = J 7 l =t 3
Address |@ D:\Projects \Model A b | Go
Folders ® Mame Size Type Date Mt
{3 Profiles || Chsources File Folder 4f7/200¢
[C2) Program Files [Z) ERR.TYT 0KE Text Document 43 200"
E-C3) Projects main.dbg 136 KB DBG File 48/ 200¢
-3 Model A B i st 215K8 list file 4f3/200
) Sources main.o 3IKE OFle 432008
I Model T !Model A.prm 2KB SmartLinker parameter file 43/ 200¢
{3 RECYCLER Model_A.elf 2KB ABS File 4/3/200¢
) software Model_A.map 6 KE MAP File 43 200"
) swati _'_;‘rproject.ini 1KE Configuration Settings 48/ 200¢
[T System Volume Information %
< » S >
2 pbjects (Disk free space: 5,20 GB) 361KE J My Computer

Figure 2-24. Project Directory After Linking

2.8 Assembler Build Properties Panels

The following sections describe how to configure the S12Z Assembler Build Properties
Panels. These panels are part of the project's build properties settings, which are managed
in the Properties dialog box. To access these panels, proceed as follows:

1. Select the project for which you want to set the build properties, in the CodeWarrior
Projects view.
2. Select Project > Properties.

The Properties for <project> dialog box appears.

3. Expand the C/C++ Build tree node and select Settings .

The various settings for the build tools appears in the right panel. If not, click the Tool
Settings tab.

The options are grouped by tool, such as General options, Linker options, Assembler
options, and Assembler options. Depending on the build properties you wish to
configure, select the appropriate option in the Tool Settings tab page.

2.8.1 S12Z Assembler Build Properties Panels

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

60 Freescale Semiconductor, Inc.

g |

Chapter 2 Working with Assembler
The following listed are the build properties panels for the S12Z Assembler.

NOTE
For information about other build properties panels, refer to the
Microcontrollers V10.x Targeting Manual.

Table 2-1. Build Properties Panel for S12Z Assembler

Build Tool Build Properties Panels

S12Z Assembler S12Z Assembler > Output
S12Z Assembler > Output > Configure Listing File

S12Z Assembler > Input

S12Z Assembler > Language
S12Z Assembler > Language > Compatibility Modes

S12Z Assembler > Host

S12Z Assembler > Code Generation

S12Z Assembler > Messages

S12Z Assembler > Messages > Disable User Messages

S12Z Assembler > General

2.8.1.1 S12Z Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler.

The following table lists and describes the assembler options for S127 architectures.

Table 2-2. Tool Settings - Assembler Options

Option Description

Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the Ul.

All options Shows the actual command line the assembler will be called
with.

Expert Settings Shows the command line pattern; default is $ {COMMAND} $

Command line pattern {FLAGS} ${OUTPUT FLAG}S${OUTPUT PREFIX}S

{ouTpuT} ${INPUTS}

2.8.1.2 S12Z Assembler > Output

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 61

nssembler Build Properties Panels

Use this panel to control how the assembler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

The following table lists and describes the output options for S12Z assembler.

Table 2-3. Tool Settings - S12Z Assembler > Output Options

Option

Description

Object File Format

For description, refer to the topic -F (-Fh, -F20, -FA20, -F2, -
FA2): Output file format.

Show Label Statistics

For description, refer to the topic -LI: Show label statistics.

Generate Listing File (e.g. $ (TEXTPATH) /%n. lst)

For description, refer to the topic -L: Generate a listing file.

Address Size in the Listing File (integer)

For description, refer to the topic -Lasms: Configure the
address size in the listing file.

Do Not Print Macro Call in Listing File

For description, refer to the topic -Lc: No Macro call in listing
file.

Do Not Print Macro Definition in Listing File

For description, refer to the topic -Ld: No macro definition in
listing file.

Do Not Print Macro Expansion in Listing File

For description, refer to the topic -Le: No Macro expansion in
listing file.

Do Not Print Included Files in Listing File

For description, refer to the topic -Li: No included file in listing
file.

2.8.1.3 S12Z Assembler > Output > Configure Listing File

Use this panel to specify the general assembler behavior. The following image shows the

Configure Listing File panel options.

[J5elect al
[] Do Mot Write the Source Line

[Do Mot Write the Relative Line

[] Do Mot Wyrite Hhe Macro Mark
[Do Mot Write the Address

[] Do Mot Write the Location Kind
[Do Mok Write the Include Mark Column
[] Do Mot Werite the Object Code
] Do Mot Write the Absolute Line

Figure 2-25. Tool Settings - S12Z Assembler > Output > Configure Listing File

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

62

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

NOTE
For information about the description of the options available in
the Configure Listing File panel, refer to the topic -Lasmc:
Configure listing file.

2.8.1.4 S12Z Assembler > Input

Use this panel to specify file search paths and any additional include files the S12Z
Assembler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The following table lists and describes the input options for S12Z assembler.

Table 2-4. Tool Settings - S12Z Assembler > Input Options

Option Description
Case Insensitivity on Label Name For description, refer to the topic -Ci: Switch case sensitivity
on label names OFF.
Define Label (use spaces to separate labels) For description, refer to the topic -D: Define Label.
Support for Structured Types For description, refer to the topic -Struct: Support for

structured types.

Include File Search Path For description, refer to the topic -I: Include file path.

2.8.1.5 S12Z Assembler > Language

Use this panel to specify code- and symbol-generation options for the S127 assembler.

The following table lists and describes the language options for S12Z assembler.

Table 2-5. Tool Settings - S12Z Assembler > Language Options

Option Description

Angle Brackets for Macro Arguments Grouping For description, refer to the topic -CMacAngBrack: Angle
brackets for grouping Macro Arguments.

Square Braces for Macro Arguments Grouping For description, refer to the topic -CMacBrackets: Square
brackets for macro arguments grouping.

Maximum Macro Nesting For description, refer to the topic -MacroNest: Configure
maximum macro nesting.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 63

nssembler Build Properties Panels

2.8.1.6 S12Z Assembler > Language > Compatibility Modes

The following image shows the Compatibility modes panel options.

[J5elect al

[]5ymbol Prefixes

D Ignore FF Character at Line Start
[]alternate Comment Rules

D Suppart FOR Directive
[]support additional Directives

D Ciperator 1= Means Equal
[]support ¢ Character in Symbols
[support Additional | Operataors

Figure 2-26. Tool Settings - S12Z Assembler > Language > Compatibility Modes

NOTE
For information about the description of the options available in
the Compatibility Modes panel, refer to the topic -Compat:
Compeatibility modes.

2.8.1.7 S12Z Assembler > Host

Use this panel to specify the host settings of the S12Z assembler.

The following table lists and describes the memory model options for S12Z assembler.

Table 2-6. Tool Settings - S12Z Assembler > Host Options

Option Description

Borrow License Feature For description, refer to the topic -LicBorrow: Borrow license
feature.

Wait Until a License is Available from Floating License Server |For description, refer to the topic -LicWait: Wait until floating
license is available from floating License Server.

Application Standard Occurrence For description, refer to the topic -View: Application standard
occurrence.

Set Environment Variable For description, refer to the topic -Env: Set environment
variable.

2.8.1.8 S12Z Assembler > Code Generation

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

64 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

Use this panel to specify the code generation assembler behavior.

The following table lists and describes the code generation assembler options for S127
assembler.

Table 2-7. Tool Settings - S12Z Assembler > Code Generation Options

Option Description

Associate Debug Information to Assembly Source File For description, refer to the topic -AsmDbg: Emit assembly
source file information in debug sections.

2.8.1.9 S12Z Assembler > Messages

Use this panel to specify whether to generate symbolic information for debugging the
build target.

The following table lists and describes the messages options.

Table 2-8. Tool Settings - S12Z Assembler > Messages Options

Option Description

Don't Print INFORMATION Messages For description, refer to the topic -W1: No information
messages.

Don't Print INFORMATION or WARNING Messages For description, refer to the topic -W2: No information and
warning messages.

Create err. log Error File For description, refer to the topic -WErrFile: Create "err.log"
error file.

Create Error Listing File For description, refer to the topic -WOutFile: Create error
listing file.

Cut File Names in Microsoft Format to 8.3 For description, refer to the topic -Wmsg8x3: Cut filenames in

Microsoft format to 8.3.

Set Message File Format for Batch Mode For description, refer to the topic -WmsgFb (-WmsgFbyv, -
WmsgFbm): Set message file format for batch mode.

Message Format for Batch Mode (e.g. $"%£%e%" (%1) : %K |For description, refer to the topic -WmsgFob: Message format

$d: %m\n) for batch mode.

Message Format for No File Info (e.g. $K %d: %m\n) For description, refer to the topic -WmsgFonf: Message
format for no file information.

Message Format for No Position Info (e.g. $"$f%e%": %K For description, refer to the topic -WmsgFonp: Message

%$d: %m\n) format for no position information.

Maximum Number of Error Messages For description, refer to the topic -WmsgNe: Number of error
messages.

Maximum Number of Information Messages For description, refer to the topic -WmsgNi: Number of

Information messages.

Set Messages to Disable For description, refer to the topic -WmsgSd: Setting a
message to disable.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 65

nssembler Build Properties Panels

Table 2-8. Tool Settings - S12Z Assembler > Messages Options (continued)

Option Description

Set Messages to Error For description, refer to the topic -WmsgSe: Setting a
message to Error.

Set Messages to Warning For description, refer to the topic -WmsgSw: Setting a
Message to Warning.

Set Messages to Information For description, refer to the topic -WmsgSi: Setting a
message to Information.

2.8.1.10 S12Z Assembler > Messages > Disable User Messages

Use this panel to specify the options for disabling the user messages for the S12Z
assembler. The following image shows the Disable User Messages panel options.

[]Disable all Messages

[Joisplay Type of Messages

[]Disable Informal Messages (e.g. memaory madel, Floating paint Format)
[Jpisable Included Files Messages

[]Disable Reading Files Messages fe.q. input files)

[JDisable Generated Files Messages

[]Disable Processing Statistics Messages (&.g. code size, RAMIROM usage)

Figure 2-27. Tool Settings - S12Z Assembler > Messages > Disable User Messages

NOTE
For information about the options available in the Disable User
Messages panel, refer to the topic -WmsgNu: Disable user
messages.

2.8.1.11 S12Z Assembler > General

Use this panel to specify the general assembler behavior.

The following table lists and describes the general assembler options for S127Z.

Table 2-9. Tool Settings - S12Z Assembler > General Options

Option Description

MCUasm Compatibility For description, refer to the topic -MCUasm: Switch
compatibility with MCUasm ON.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

66 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

Table 2-9. Tool Settings - S12Z Assembler > General Options (continued)

Option

Description

Other Flags

Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the Ul.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

67

}{ |

nssembler Build Properties Panels

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

68 Freescale Semiconductor, Inc.

g |

Chapter 3
Assembler Graphical User Interface

The Macro Assembler runs under Windows® 2000, Windows XP, Windows Vista™, and
compatible operating systems.

This chapter covers the following topics:

 Starting Assembler

* Assembler Main Window
 Editor Setting Dialog Box

e Save Configuration Dialog Box
* Option Settings Dialog Box

* Message Settings Dialog Box

* About Dialog Box
 Specifying Input File

* Message/Error Feedback

3.1 Starting Assembler

When you start the Assembler, the Assembler displays a standard Tip of the Day dialog
box containing news and tips about the Assembler.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 69

g |

nAssembler Main Window

Tip of the Day g|

@ Did you know...

It you have comments about thiz product or suggestions
for future versions, pleage get in touch with our support
tearn.

% Bl Tims o Sioilin NewTip | [Dose |

Figure 3-1. Tip of the Day dialog box

To use the Tip of the Day dialog box:

* Click Next Tip to see the next piece of information about the Assembler.

* Click Close to close the Tip of the Day dialog box.

* If you do not want the Assembler to automatically open the standard Tip of the Day
dialog box when the Assembler is started, clear the Show Tips on StartUp
checkbox.

* If you want the Assembler to automatically open the standard Tip of the Day dialog
box at Assembler start up, select Help > Tip of the Day . The Assembler displays
the Tip of the Day dialog box. Check the Show Tips on StartUp checkbox.

3.2 Assembler Main Window

This window is only visible on the screen when you do not specify any filename when
you start the Assembler.

The Assembler window consists of a window title, a menu bar, a toolbar, a content area,
and a status bar, as the following image displays.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

70 Freescale Semiconductor, Inc.

g |

Chapter 3 Assembler Graphical User Interface

il HCS12Z Assembler Default Configuration E‘E|E|
File Assembler Wiew Help
DeE %8| RAIR g =)
| -
b
4 *
Ready 1320132

Figure 3-2. HCS12Z Assembler Main Window

3.2.1 Window Title

The window title displays the Assembler name and the project name. If a project is not
loaded, the Assembler displays Default Configuration in the window title. An asterisk
(~) after the configuration name indicates that some settings have changed. The
Assembler adds an asterisk () whenever an option, the editor configuration, or the
window appearance changes.

3.2.2 Content Area

The Assembler displays logging information about the assembly session in the content
area. This logging information consists of:

* the name of the file being assembled,

* the whole name (including full path specifications) of the files processed (main
assembly file and all included files),

e the list of any error, warning, and information messages generated, and

* the size of the code (in bytes) generated during the assembly session.

When a file is dropped into the assembly window content area, the Assembler either
loads the corresponding file as a configuration file or the Assembler assembles the file.
The Assembler loads the file as a configuration if the file has the «.ini extension. If the
file does not end with the «.ini extension, the Assembler assembles the file using the
current option settings.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 71

nAssembler Main Window

All text in the assembler window content area can have context information consisting of
two items:

* a filename including a position inside of a file and
* a message number.

File context information is available for all output lines where a filename is displayed.
There are two ways to open the file specified in the file-context information in the editor
specified in the editor configuration:

* [If a file context is available for a line, double-click on a line containing file-context
information.

* Click with the right mouse on the line and select Open . This entry is only available
if a file context is available.

If the Assembler cannot open a file even though a context menu entry is present, then the
editor configuration information is incorrect (refer to the Editor Setting Dialog Box
section below).

The message number is available for any message output. There are three ways to open
the corresponding entry in the help file:

* Select one line of the message and press the F1 key. If the selected line does not have
a message number, the main help is displayed.

* Press Shift-F1 and then click on the message text. If the point clicked does not have
a message number, the main help is displayed.

* Click the right mouse button on the message text and select Help on . This entry is
only available if a message number is available.

3.2.3 Toolbar

The three buttons on the left hand side of the toolbar correspond to the menu items of the
File menu. You can use the New , Load , and Save buttons to reset, load and save
configuration files for the Macro Assembler.

The Help button and the Context Help button allow you to open the Help file or the
Context Help.

When pressing the buttons above, the mouse cursor changes to a question mark beside an
arrow. The Assembler opens Help for the next item on which you click. You can get
specific Help on menus, toolbar buttons, or on the window area by using this Context
Help.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

72 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

The editable combo box contains a list of the last commands which were executed. After
a command line has been selected or entered in this combo box, click the Assemble
button to execute this command. The Stop button becomes enabled whenever some file is
assembled. When the Stop button is pressed, the assembler stops the assembly process.

Pressing the Options Dialog Box button opens the Option Settings dialog box.
Pressing the Message Dialog Box button opens the Message Settings dialog box.

Pressing the Clear button clears the assembler window's content area.

3.2.4 Status Bar

When pointing to a button in the toolbar or a menu entry, the message area displays the
function of the button or menu entry to which you are pointing.

Ready 1&:22:31

Figure 3-3. Status Bar

3.2.5 Assembler Menu Bar

The following table lists the menus available in the menu bar:

Table 3-1. Menu bar options

Menu Description
File Menu Contains entries to manage Assembler configuration files
Assembler Menu Contains entries to set Assembler options
View Menu Contains entries to customize the Assembler window output
Help A standard Windows Help menu

3.2.6 File Menu

With the File menu, Assembler configuration files can be saved or loaded. An Assembler
configuration file contains the following information:

* the assembler option settings specified in the assembler dialog boxes,

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 73

nAssembler Main Window

¢ the list of the last command line which was executed and the current command line,

* the window position, size, and font,

* the editor currently associated with the Assembler. This editor may be specifically
associated with the Assembler or globally defined for all Tools (see the Editor

Setting Dialog Box),

* the Tips of the Day settings, including its startup configuration, and what is the

current entry, and

* Configuration files are text files which have the standard » .ini extension. You can
define as many configuration files as required for the project and can switch among
the different configuration files using the File > Load Configuration, File > Save
Configuration menu entries, or the corresponding toolbar buttons.

Table 3-2. File Menu

Options

Menu Entry

Description

Assemble

A standard Open File dialog box is opened,
displaying the list of all the * . asm files in the project
directory. The input file can be selected using the
features from the standard Open File dialog box.
The selected file is assembled when the Open File
dialog box is closed by clicking OK.

New/Default Configuration

Resets the Assembler option settings to their default
values. The default Assembler options which are
activated are specified in the Assembler Options
chapter.

Load Configuration

A standard Open File dialog box is opened,
displaying the list of all the * . ini files in the project
directory. The configuration file can be selected
using the features from the standard Open File
dialog box. The configuration data stored in the
selected file is loaded and used in further assembly
sessions.

Save Configuration

Saves the current settings in the configuration file
specified on the title bar.

Save Configuration As...

A standard Save As dialog box is opened, displaying
the list of all the * . ini files in the project directory.
The name or location of the configuration file can be
specified using the features from the standard Save
As dialog box. The current settings are saved in the
specified configuration file when the Save As dialog
box is closed by clicking OK.

Configuration...

Opens the Configuration dialog box to specify the
editor used for error feedback and which parts to
save with a configuration. See Editor Setting Dialog
Box and Save Configuration Dialog Box.

1. project.ini 2.

Recent project list. This list can be used to reopen a
recently opened project.

Exit

Closes the Assembler.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

74

Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

3.2.7 Assembler Menu

The Assembler menu allows you to customize the Assembler. You can graphically set or
reset the Assembler options or to stop the assembling process. The following table lists
the assembler menu options.

Table 3-3. Assembler Menu Options

Menu entry Description

Options Defines the options which must be activated when
assembling an input file (see Option Settings Dialog Box).

Messages Maps messages to a different message class (see Message
Settings Dialog Box).

Stop assembling Stops the assembling of the current source file.

3.2.8 View Menu

The View menu lets you customize the Assembler window. You can specify if the status
bar or the toolbar must be displayed or be hidden. You can also define the font used in
the window or clear the window. The following table lists the View menu options.

Table 3-4. View Menu Options

Menu Entry Description

Toolbar Switches display from the toolbar in the Assembler window.

Status Bar Switches display from the status bar in the Assembler
window.

Log... Customizes the output in the Assembler window content area.
The following two entries in this table are available when you
select Log:

Change Font Opens a standard font dialog box. The options selected in the
font dialog box are applied to the Assembler window content
area.

Clear Log Clears the Assembler window content area.

3.3 Editor Setting Dialog Box

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 75

g |

|
cunur Setting Dialog Box
The Editor Setting dialog box has a main selection entry. Depending on the main type of
editor selected, the content below changes.

These are the main entries for the Editor configuration:

 Global Editor (shared by all tools and projects)
* Local Editor (shared by all tools)

e Editor Started with Command Line

e Editor Started with DDE

e CodeWarrior with COM

3.3.1 Global Editor (shared by all tools and projects)

This entry (refer to the figure listed below) is shared by all tools for all projects. This
setting is stored in the (raitor] section of the mcutools.ini global initialization file. Some
Modifiers can be specified in the editor command line.

Configuration El
Editor Seftings] Save Corfiguration | Environmert |

* Global Editor (Shared by all Tools and all Projects)
" Local Editor (Shared by all Tools)

(" Editor started with Command Line

(" Editor Communication with DDE

" CodeWamior fwith COM)

Editor Name ||_||t|T:|Ed'rt-32

Editar Executable |C:"-.Prog|am Fileg“IDM Computer §

Editar Arguments |f.;ff.;jf.;c|

Usze %f for the filename, % for the line and %c forthe
column.

QK I Cancel | Help |

Figure 3-4. Global Editor Configuration Dialog Box

3.3.2 Local Editor (shared by all tools)

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

76 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Assembler Graphical User Interface

This entry is shared by all tools for the current project. This setting is stored in the
[editor] section of the local initialization file, usually project.ini in the current directory.
Some Modifiers can be specified in the editor command line.

Configuration El

Editor Settings] Save Configuration | Environmert |

" Global Editor (Shared by all Tools and all Projects)

* | ocal Editor (Shared by all Toolsk

(" Editor started with Command Line
(" Editor Communication with DDE

™ CodeWamior {with COM)

Editor Name |Ed'ftP|LIS 2

Editor Executable |C:"-.Proglam Files"EditPlus 2'editpl J

Editar Arguments |=_.'=f=_.'=]=_.':c

Use %f for the filename, %l forthe line and %c forthe
calumn.

QK | Cancel | Help |

Figure 3-5. Local Editor Configuration Dialog Box

3.3.3 Editor Started with Command Line

When this editor type is selected, a separate editor is associated with the Assembler for
error feedback. The editor configured in the shell is not used for error feedback.

Enter the command which should be used to start the editor (refer to the figure listed
below).

The format from the editor command depends on the syntax which should be used to start
the editor. Modifiers can be specified in the editor command line to refer to a filename
and line and column position numbers. (See the Modifiers section below.)

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 77

A\ 4
N
cunur Setting Dialog Box

Configuration El
Editor Seftings] Save Corfiguration | Environmert |

" Global Editor (Shared by all Tools and all Projects)
" Local Editor (Shared by all Tools)
{+ Editor started with Command Line:

(" Editor Communication with DDE

" CodeWamior fwith COM)

Command Line

C:“Program Files*IDM Computer Solutions™Ukra Edit

Usze %f for the filename, % for the line and %c forthe
column.

QK I Cancel | Help |

Figure 3-6. Command Line Editor Configuration

3.3.3.1 Example of Configuring a Command Line Editor

The following case portrays the syntax used for configuring an external editors. The
following listing can be used for the UltraEdit-32 editor.

Listing: UltraEdit-32 configuration

C:\UltraEdit32\uedit32.exe %f /#:%1

3.3.4 Editor Started with DDE

Enter the service, topic and client name to be used for a Dynamic Data Exchange (DDE)
connection to the editor (refer to the figure listed below). All entries can have modifiers
for the filename and line number, as explained in the Modifiers section.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

78 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Assembler Graphical User Interface

Configuration §|

Editor Seftings] Save Corfiguration | Environmert |

" Global Editor (Shared by all Tools and all Projects)
" Local Editor (Shared by all Tools)

(" Editor started with Command Line

* Fditor Communication with DDE:

" CodeWamior {with COM)

msdev

Service MNams

Topic Name systsm

Client Command |[open::=.-;f]:

Usze %f for the filename, % for the line and %c forthe
column.

QK I Cancel | Help |

Figure 3-7. DDE Editor Configuration

For the Microsoft Developer Studio, use the settings in the following listing:

Listing: Microsoft Developer Studio configuration settings

Service Name: msdev
Topic Name: system

Client Command: [open (%f)]

3.3.5 CodeWarrior with COM

If the CodeWarrior with COM is enabled (refer to the figure listed below), the
CodeWarrior IDE (registered as a COM server by the installation script) is used as the
editor.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

79

g |

cunur Setting Dialog Box

Configuration El
Editor Seftings] Save Corfiguration | Environmert |

" Global Editor (Shared by all Tools and all Projects)
" Local Editor (Shared by all Tools)

(" Editor started with Command Line

(" Editor Communication with DDE

& o

QK I Cancel | Help |
Figure 3-8. COM Editor Configuration

3.3.6 Modifiers

The configurations may contain some modifiers to tell the editor which file to open and at
which line and column.

* The =+ modifier refers to the name of the file (including path and extension) where
the error has been detected.

* The =1 modifier refers to the line number where the message has been detected.

* The :c modifier refers to the column number where the message has been detected.

CAUTION
The 1 modifier can only be used with an editor which can
be started with a line number as a parameter. This is not the
case for WinEdit version 3.1 or lower or for the Notepad.
When you work with such an editor, you can start it with
the filename as a parameter and then select the menu entry
Go to to jump on the line where the message has been
detected. In that case the editor command looks like: c:

\WINAPPS\WINEDIT\Winedit .exe %f

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

80 Freescale Semiconductor, Inc.

g |

Chapter 3 Assembler Graphical User Interface

NOTE

Check your editor manual to define the command line
which should be used to start the editor.

3.4 Save Configuration Dialog Box

The Save Configuration tab of the Configuration dialog box contains all options for the
save operation. The following image displays the Save Configuration tab of the
Configuration dialog box.

Configuration El
Editor Settings Save Configuration]Environmerrt]

ftems to Save
Save

W Dptions Q
[¥ Editor Corfiguration Save As
¥ Appearance (Posttion, Size, Fort)

¥ Environmert Variables

[¥ Save on Exit

All marked items are saved. Any unchanged tems
remain valid.

QK | Cancel | Help |

Figure 3-9. Save Configuration Dialog Box

In the Save Configuration tab, you can select which items to save into a project file
when the configuration is saved.

This dialog box has the following configurations:

* Options : This item is related to the option and message settings. If this check box is
set, the current option and message settings are stored in the project file when the
configuration is saved. By disabling this check box, changes done to the option and
message settings are not saved, and the previous settings remain valid.

» Editor Configuration : This item is related to the editor settings. If you set this
check box, the current editor settings are stored in the project file when the

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 81

save Configuration Dialog Box

configuration is saved. If you disable this check box, the previous settings remain
valid.

* Appearance : This item is related to many parts like the window position (only
loaded at startup time) and the command line content and history. If you set this
check box, these settings are stored in the project file when the current configuration
is saved. If you disable this check box, the previous settings remain valid.

* Environment Variables : With this set, the environment variable changes done in
the Environment property panel are also saved.

NOTE
By disabling selective options only some parts of a
configuration file can be written. For example, when the
best Assembler options are found, the save option mark can
be removed. Then future save commands will not modify
the options any longer.

* Save on Exit: If this option is set, the Assembler writes the configuration on exit.
The Assembler does not prompt you to confirm this operation. If this option is not
set, the assembler does not write the configuration at exit, even if options or other
parts of the configuration have changed. No confirmation will appear in any case
when closing the assembler.

Almost all settings are stored in the project configuration file. The only exceptions
are:

 The recently used configuration list.
» All settings in the Save Configuration dialog box.

NOTE
The configurations of the Assembler can, and in fact
are intended to, coexist in the same file as the project
configuration of other tools and the IDF. When an
editor is configured by the shell, the assembler can read
this content out of the project file, if present. The
default project configuration filename is project.ini.
The assembler automatically opens an existing
project.ini 1N the current directory at startup. Also
when using the -Prod: Specify project file at startup
assembler option at startup or loading the configuration
manually, a different name other than project.ini can
be chosen.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

82 Freescale Semiconductor, Inc.

g |

Chapter 3 Assembler Graphical User Interface

3.4.1 Environment Configuration Dialog Box

The Environment tab of the Configuration dialog box is used to configure the
environment. The following image displays the Environment tab.

E ditar Settings] 5 ave Configuration Ernvironment l

‘General Fath
Dbject Path
Text Path
Abzaolute Path

Header File Path

Warious Environment VW ariables

|e"~EW RMCU w10.8\MCUNST 2liza_Supportsel disac

C:hFreescaleh\Cw MCL w10 5NCIUNST 2liga_Supporthal:

Help |

Cancel |

o]

Figure 3-10. Environment Configuration Dialog Box

The content of the dialog box is read from the actual project file out of the [environment
Variables] SecCtion.

The following table lists the available variables:

Table 3-5. Path Environment Variables

Path Environment variable
General GENPATH
Object OBJPATH
Text TEXTPATH
Absolute ABSPATH
Header File LIBPATH

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 83

g |

upuon Settings Dialog Box

Various Environment Variables: other variables not covered in the above table.

The following buttons are available for the Configuration dialog box:

Add: Adds a new line or entry
Change: Changes a line or entry
Delete: Deletes a line or entry

Up: Moves a line or entry up
Down: Moves a line or entry down

Note that the variables are written to the project file only if you press the Save button (or
using File > Save Configuration or Ctrl + S). In addition, it can be specified in the Save
Configuration dialog box if the environment is written to the project file or not.

3.5 Option Settings Dialog Box

Use this dialog box to set or reset assembler options. The following image displays the
S127Z Assembler Option Settings dialog box.

HES127Z Assembler Option Settings E
Code Generation I Meszages] W ariousg I
Output] Input] Language] Host I

[]0bject File Farmat
[Generate a ligting file
[|Canfigure lizting file
[Configure the addreszs size in the lizting file
1D nat print macra call in listing file

100 not prink macro definition in ligting file
[Do nat print macro expanzion in listing file

| 2 N1 =
[0bject file name zpecification (enter [<filg:]]

-Li: Do not print included files in listing file

Click on the checkbaox of any option ta enable it

0k | Cancel | Help |

Figure 3-11. Option Settings dialog box

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

84 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

The options available are arranged into different groups, and a sheet is available for each
of these groups. The content of the list box depends on the selected sheet:

Table 3-6. Option Settings Options

Group Description

Output Lists options related to the output files generation (which kind
of file should be generated).

Input Lists options related to the input files.

Language Lists options related to the programming language (ANSI-C,
C++, etc.)

Host Lists options related to the host.

Code Generation Lists options related to code generation (memory models,
etc.)

Messages Lists options controlling the generation of error messages.

Various Lists various additional options, such as options used for
compatibility.

An assembler option is set when the check box in front of it is checked. To obtain more
detailed information about a specific option, select it and press the Flkey or the Help
button. To select an option, click once on the option text. The option text is then
displayed inverted.

When the dialog box is opened and no option is selected, pressing the Flkey or the Help
button shows the help about this dialog box.

The available options are listed in the Assembler Options chapter.

3.6 Message Settings Dialog Box

You can use the Message Settings dialog box to map messages to a different message
class.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 85

g |

wmessage Settings Dialog Box

x]

HCS1 24 Assembler Message Settings

Disabled llnfnrmatinn] Waming | Enor | Fatal |

Infarmation

W arning

Error

Drefault

Rezet Al

Ok | Cancel | Help |

Figure 3-12. Message Settings Dialog Box

e

Some buttons in the dialog box may be disabled. For example, if an option cannot be
moved to an information message, the Move to: Information button is disabled. The
following table lists the options available in the Message Settings dialog box:

Table 3-7. Message Settings Options

Button Description
Move to: Disabled Disables selected messages. The disabled messages will no
longer be displayed.
Move to: Information Changes selected messages to information messages.
Move to: Warning Changes selected messages to warning messages.
Move to: Error Changes selected messages to error messages.
Move to: Default Changes selected messages to their default message types.
Reset All Resets all messages to their default message types.
OK Exits this dialog box and saves any changes.
Cancel Exits this dialog box without accepting any changes.
Help Displays online help about this dialog box.

The following table lists and describes the tabs available in the dialog box for each
message group:

Table 3-8. Message Group

Message Group Description
Disabled Lists all disabled messages. That means that messages
displayed in the tab page will not be displayed by the
Assembler.
Information Lists all information messages. Information messages informs
about action taken by the Assembler.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

86 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

Table 3-8. Message Group (continued)

Message Group Description

Warning Lists all warning messages. When such a message is
generated, translation of the input file continues and an object
file will be generated.

Error Lists all error messages. When such a message is generated,
translation of the input file continues, but no object file will be
generated.

Fatal Lists all fatal error messages. When such a message is

generated, translation of the input file stops immediately.
Fatal messages cannot be changed. They are only listed to
call context help.

Each message has its own character (A’ for Assembler message) followed by a 4- or 5-
digit number. This number allows an easy search for the message on-line help.

3.6.1 Changing the Class Associated with a Message

You can configure your own mapping of messages to the different classes. To do this, use
one of the buttons located on the right hand of the dialog box. Each button refers to a
message class. To change the class associated with a message, you have to select the
message in the dialog box and then click the button associated with the class where you
want to move the message.

3.6.1.1 Example

To define the a2336: value too big Warning as an error message:

* Click the Warning tab to display the list of all warning messages.

* Click on the a2336: value too big String in the to select the message.

* Click Error to define this message as an error message. The <Microcontroller>
dialog box appears, as the following image displays.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 87

A 4
4\ |

Aoouut Dialog Box
* x|

Dizabled | Information WaminglError]Fatal]

451: Cannot open statistic lag file '<filles' ~ [Movelo

A53 Message <Messageld: iz not used by thiz versiol Disabled
ABE: Opti i —
1057 CREEFLIES

Infarmation

Error

Drefault

A232% Label iz ighored b

< > Rezet Al

Ok | Cancel | Help |

Figure 3-13. Microcontroller Dialog Box
* Click Yes to close the dialog box

NOTE

Messages cannot be moved from or to the fatal error class.

NOTE
The Move to buttons are enabled when all selected
messages can be moved. When one message is marked,
which cannot be moved to a specific group, the
corresponding Move to button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the Message Settings dialog box with the OK button. If you close it
using the Cancel button, the previous message mapping remains valid.

3.7 About Dialog Box

The About dialog box can be opened with the menu Help > About . The About dialog
box contains much information including the current directory and the versions of
subparts of the Assembler. The main Assembler version is displayed separately on top of
the dialog box.

With the Extended Information button it is possible to get license information about all
software components in the same directory of the executable.

Click OK to close this dialog box.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

88 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

NOTE
During assembling, the subversions of the subparts cannot be
requested. They are only displayed if the Assembler is not
processing files.

3.8 Specifying Input File

There are different ways to specify the input file which must be assembled. During
assembling of a source file, the options are set according to the configuration performed
by the user in the different dialog boxes and according to the options specified on the
command line.

Before starting to assemble a file, make sure you have associated a working directory
with your assembler.

3.8.1 Use Command Line in Toolbar to Assemble

You can use the command line to assemble a new file or to reassemble a previously
created file.

3.8.2 Assembling a New File

A new filename and additional assembler options can be entered in the command line.
The specified file is assembled when you click the Assemble button in the toolbar or
when you press the enter key.

3.8.3 Assembling a File which has Already been Assembled

The commands executed previously can be displayed using the arrow on the right side of
the command line. A command is selected by clicking on it. It appears in the command
line. The specified file will be processed when the button Assemble in the toolbar is
selected.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 89

wmiessage/Error Feedback

3.8.4 Use File > Assemble Entry

When the menu entry File > Assemble is selected, a standard file Open File dialog box
is opened, displaying the list of all the «.asm files in the project directory. You can browse
to get the name of the file that you want to assemble. Select the desired file and click
Open in the Open File dialog box to assemble the selected file.

3.8.5 Use Drag and Drop

A filename can be dragged from an external software (for example the File Manager/
Explorer) and dropped into the assembler window. The dropped file will be assembled
when the mouse button is released in the assembler window. If a file being dragged has
the =.ini extension, it is considered to be a configuration and it is immediately loaded and
not assembled. To assemble a source file with the «.ini extension, use one of the other
methods.

3.9 Message/Error Feedback

After assembly, there are several ways to check where different errors or warnings have
been detected. The default format of the error message is as shown in the following
listing.

Listing: Typical error feedback message

Default configuration of an error message
>> <FileName>, line <line number>, col <column numbers,

pos <absolute position in file>
<Portion of code generating the problems

<message class><message number>: <Message strings>

A typical error message is like the one in the following listing.

Listing: Error message example

>> in "C:\Freescale\demo\fiboerr.asm", line 18, col 0, pos 722
DC label

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

90 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

ERROR Al1104: Undeclared user defined symbol: label

For different message formats, see the following Assembler options:

* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFob: Message format for batch mode

* -WmsgFoi: Message format for interactive mode

* -WmsgFonf: Message format for no file information

* -WmsgFonp: Message format for no position information

3.9.1 Use Information from Assembler Window

Once a file has been assembled, the Assembler window content area displays the list of
all the errors or warnings detected.

The user can use his usual editor to open the source file and correct the errors.

3.9.2 Use User-defined Editor

The editor for Error Feedback can be configured using the Configuration dialog box.
Error feedback is performed differently, depending on whether or not the editor can be
started with a line number.

3.9.3 Line Number can be Specified on the Command Line

Editors like UltraEdit-32 or WinEdit (v95 or higher) can be started with a line number in
the command line. When these editors have been correctly configured, they can be started
automatically by double clicking on an error message. The configured editor will be
started, the file where the error occurs is automatically opened and the cursor is placed on
the line where the error was detected.

3.9.4 Line Number cannot be Specified on the Command Line

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 91

wmiessage/Error Feedback

Editors like WinEditv31 or lower, Notepad, or Wordpad cannot be started with a line
number in the command line. When these editors have been correctly configured, they
can be started automatically by double-clicking on an error message. The configured
editor will be started, and the file is automatically opened where the error occurs. To
scroll to the position where the error was detected, you have to:

1.
2.

Nownsw

Switch to the assembler again.

Click the line on which the message was generated. This line is highlighted on the
screen.

Copy the line in the clipboard by pressing Ctrl + C .

Switch to the editor again.

Select Search > Find ; the standard Find dialog box appears.

Paste the contents of the clipboard in the Edit box by pressing Ctrl + V .

Click Forward .

The cursor jump to the position where the error was detected.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

92

Freescale Semiconductor, Inc.

Chapter 4
Environment

This part describes the environment variables used by the Assembler. Some environment
variables are also used by other tools (e.g., Linker or Compiler), so consult also the
respective documentation.

There are three ways to specify an environment:

e The current project file with the Environment Variables section. This file may be
specified on Tool startup using the -Prod: Specify project file at startup assembler
option. This is the recommended method and is also supported by the IDE.

* An optional gefault.env file in the current directory. This file is supported for
compatibility reasons with earlier versions. The name of this file may be specified
using the ENVIRONMENT: Environment file specification environment variable.
Using the dgefault.env file is not recommended.

 Setting environment variables on system level (DOS level). This is also not
recommended.

Various parameters of the Assembler may be set in an environment using the
environment variables. The syntax is always the same as the following listing shows:

Listing: Syntax for setting environment variables

Parameter: KeyName=ParamDef

The following listing shows a typical example of setting an environment variable.

Listing: Setting the GENPATH environment variable

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS; /usr/local/lib;
/home/me/my project

These parameters may be defined in several ways:

» Using system environment variables supported by your operating system.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 93

vurrent directory

* Putting the definitions in a file called dgefauit.env (.higefauits for UNIX) in the default
directory.

* Putting the definitions in a file given by the value of the exv rronmeEnT SYStem
environment variable.

NOTE
The default directory mentioned above can be set via the
DEFAULTDIRSYStem environment variable.

When looking for an environment variable, all programs first search the system
environment, then the default.env (.higefrauits for UNIX) file and finally the global
environment file given by exv: romvent. If no definition can be found, a default value is
assumed.

NOTE
The environment may also be changed using the -Env: Set
environment variable assembler option.

4.1 Current directory

The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (e.g., for the
default .env or ‘hidefaults)

Normally, the current directory of a launched tool is determined by the operating system
or by the program that launches another one (e.g., IDE, Make Utility, etc.).

For the UNIX operating system, the current directory for an executable is also the current
directory from where the binary file has been started.

For MS Windows-based operating systems, the current directory definition is quite
complex:

* If the tool is launched using the File Manager/ Explorer, the current directory is the
location of the launched executable tool.

* If the tool is launched using an Icon on the Desktop, the current directory is the one
specified and associated with the Icon in its properties.

* If the tool is launched by dragging a file on the icon of the executable tool on the
desktop, the directory on the desktop is the current directory.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

94 Freescale Semiconductor, Inc.

Chapter 4 Environment

* If the tool is launched by another launching tool with its own current directory
specification (e.g., an editor as IDE, a Make utility, etc.), the current directory is the
one specified by the launching tool.

* When a local project file is loaded, the current directory is set to the directory which
contains the local project file. Changing the current project file also changes the
current directory if the other project file is in a different directory. Note that
browsing for an assembly source file does not change the current directory.

To overwrite this behavior, the DEFAULTDIR: Default current directory system
environment variable may be used.

The current directory is displayed among other information with the -V: Prints the
Assembler version assembler option and in the About box.

4.2 Environment macros

It is possible to use macros in your environment settings, as the following listing displays.

Listing: Using a macro for setting environment variables

MyVAR=C: \test
TEXTPATH=$ (MyVAR) \txt

OBJPATH=${MyVAR} \obj

In the above listed example, texreaTn is expanded to ~ c:\test\txt', and osseatn is expanded
to " C:\test\obj'.

From the example above, you can see that you either can use $ () or $ {}. However, the
variable referenced has to be defined somewhere.

In addition, the following special variables in Listing: Usual locations for the
mcutools.ini files are allowed. Note that they are case-sensitive and always surrounded by
{}. Also the variable content contains a directory separator ~ \" as well.

{Ccompiler}

This is the path of the directory one level higher than the directory for executable tool.
That iS, if the executable is C:\Freescale\prog\linker.exe, then the variable is C:\Freescale\.
Note that {compiler} 1S also used for the Assembler.

{Project}

Path of the directory containing the current project file. For example, if the current
project file is c:\demo\project .ini, the variable contains c:\demo\.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 95

wivwal initialization file - mctools.ini (PC only)

{system}

This is the path where Windows OS is installed, e.g., c:\wrwr\.

4.3 Global initialization file - mctools.ini (PC only)

All tools may store some global data into the mcutoo1s.ini file.The tool first searches for
this file in the directory of the tool itself (path of the executable tool). If there is no
mcutools.ini file in this directory, the tool looks for an mcutoois.ini file located in the MS
Windows installation directory (e.g., c:\winpows).

The following listing shows two typical locations used for the mcutools. ini files.

Listing: Usual locations for the mcutools.ini files

C: \WINDOWS\mcutools.ini

D:\INSTALL\prog\mcutools.ini

If a tool is started in the p:\1nsTaLL\prog\ directory, the initialization file located in the
same directory as the tool is used (p:\1NsTaLL\prog\mcutools. ini).

But if the tool is started outside of the p:\1nstarr\prog directory, the initialization file in
the Windows directory is used (c:\winpows\mcutools.ini).

4.4 Local configuration file (usually project.ini)

The Assembler does not change the defauit.env file in any way. The Assembler only reads
the contents. All the configuration properties are stored in the configuration file. The
same configuration file can and is intended to be used by different applications.

The processor name is encoded into the section name, so that the Assembler for different
processors can use the same file without any overlapping. Different versions of the same
Assembler are using the same entries. This usually only leads to a potential problem
when options only available in one version are stored in the configuration file. In such
situations, two files must be maintained for the different Assembler versions. If no
incompatible options are enabled when the file is last saved, the same file can be used for
both Assembler versions.

The current directory is always the directory that holds the configuration file. If a
configuration file in a different directory is loaded, then the current directory also
changes. When the current directory changes, the whole gefauit.env file is also reloaded.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

96 Freescale Semiconductor, Inc.

Chapter 4 Environment

When a configuration file is loaded or stored, the options located in the ASMOPTIONS:
Default assembler options environment variable are reloaded and added to the project's
options.

This behavior has to be noticed when in different directories different gefauit.env files
exist which contain incompatible options in their asmorrrons environment variables. When
a project is loaded using the first gefauit.env file, its asmoprrons options are added to the
configuration file. If this configuration is then stored in a different directory, where a
default.env file exists with these incompatible options, the Assembler adds the options
and remarks the inconsistency. Then a message box appears to inform the user that those
options from the defauit.env file were not added. In such a situation, the user can either
remove the options from the configuration file with the advanced option dialog box or he
can remove the option from the defauit.env file with the shell or a text editor depending
upon which options should be used in the future.

At startup, the configuration stored in the project.ini file located in the current Paths
Local Configuration File Entries documents the sections and entries you can put in a
project.ini file.

Most environment variables contain path lists telling where to look for files. A path list is
a list of directory names separated by semicolons following the syntax, as listed in the
following listing:

Listing: Syntax used for setting path lists of environment variables
PathList=DirSpec{";"DirSpec}
DirSpec=["*"]DirectoryName

The following listing shows a typical example of setting an environment variable.

Listing: Setting the paths for the GENPATH environment variable

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS; /usr/local/Freescale/lib;/

home/me/my project

If a directory name is preceded by an asterisk (+), the programs recursively search that
whole directory tree for a file, not just the given directory itself. The directories are
searched in the order they appear in the path list. The following listing shows the use of
an asterisk () for recursively searching the entire C drive for a configuration file with a
\INSTALL\LIB path.

Listing: Recursive search for a continuation line

LIBPATH=+*C:\INSTALL\LIB

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 97

rine continuation

NOTE
Some DOS/UNIX environment variables (like GENPATH, LIBPATH,
etc.) are used. For further details refer to the section
Environment variables details.

We strongly recommend working with the Shell and setting the environment by means of
a default.env file in your project directory. (This project dir can be set in the Shell's
'configure’ dialog box). Doing it this way, you can have different projects in different
directories, each with its own environment.

NOTE
When starting the Assembler from an external editor, do not set
the peraurToIRSYStem environment variable. If you do so and this
variable does not contain the project directory given in the
editor's project configuration, files might not be put where you
expect them to be put!

A synonym also exists for some environment variables. Those synonyms may be used for
older releases of the Assembler, but they are deprecated and thus they will be removed in
the future.

4.5 Line continuation

It is possible to specify an environment variable in an environment file (defauit.env
Or .hidefaults) over multiple lines using the line continuation character "\'. The following
listing shows using multiple lines for an environment variable.

Listing: Using multiple lines for an environment variable

ASMOPTIONS=\
-W2\

-WmsgNe=10
The above listing is the same as the alternate source code in the following listing.

Listing: Alternate form of using multiple lines

ASMOPTIONS=-W2 -WmsgNe=10

But this feature may be dangerous when used together with paths, as following listing
shows:

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

98 Freescale Semiconductor, Inc.

Chapter 4 Environment
Listing: A path is included by the line continuation character

GENPATH=. \
TEXTFILE=. \txt

will result in

GENPATH=.TEXTFILE=.\txt

To avoid such problems, we recommend that you use a semicolon (;) at the end of a path
if there is a backslash (\) at the end, as the following listing shows:

Listing: Recommended style whenever a backslash is present

GENPATH=. \ ;
TEXTFILE=.\txt

4.6 Environment variables details

The remainder of this section is devoted to describing each of the environment variables
available for the Assembler. The environment variables are listed in alphabetical order
and each is divided into several sections. The following table lists and describes the
environmental variables.

Table 4-1. Topics used for describing environment variables

Topic Description
Tools Lists tools which are using this variable.
Synonym (where one exists) A synonym exists for some environment variables. These

synonyms may be used for older releases of the Assembler
but they are deprecated and they will be removed in the
future. A synonym has lower precedence than the
environment variable.

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments for the
variable.

Default (if one exists) Shows the default setting for the variable if one exists.

Description Provides a detailed description of the option and its usage.

Example Gives an example of usage and effects of the variable where

possible. An example shows an entry in the default.env
for the PC or in the .hidefaults for UNIX.

See also (if needed) Names related sections.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 99

cnvironment variables details

4.6.1 ABSPATH: Absolute file path

Tools
Compiler, Assembler, Linker, Decoder, or Debugger

Syntax

ABSPATH={<path>}

Arguments
<path>: Paths separated by semicolons, without spaces
Description

This environment variable is only relevant when absolute files are directly generated by
the Macro Assembler instead of relocatable object files. When this environment variable
is defined, the Assembler will store the absolute files it produces in the first directory
specified there. If asseats 1S not set, the generated absolute files will be stored in the
directory where the source file was found.

Example

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

4.6.2 ASMOPTIONS: Default assembler options

Tools
Assembler

Syntax

ASMOPTIONS={<option>}

Arguments
<option>: Assembler command-line option

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

100 Freescale Semiconductor, Inc.

Chapter 4 Environment

If this environment variable is set, the Assembler appends its contents to its command
line each time a file is assembled. It can be used to globally specify certain options that
should always be set, so you do not have to specify them each time a file is assembled.

Options enumerated there must be valid assembler options and are separated by space
characters.

Example

ASMOPTIONS=-W2 -L

See also

Assembler Options chapter

4.6.3 COPYRIGHT: Copyright entry in object file

Tools
Compiler, Assembler, Linker, or Librarian

Syntax

COPYRIGHT=<copyright>

Arguments
<copyright>: copyright entry
Description

Each object file contains an entry for a copyright string. This information may be
retrieved from the object files using the Decoder.

Example

COPYRIGHT=Copyright

See also
« USERNAME: User Name in object file
* INCLUDETIME: Creation time in the object file

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 101

cnvironment variables details

4.6.4 DEFAULTDIR: Default current directory

Tools
Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Syntax

DEFAULTDIR=<directorys>

Arguments
<directorys: Directory to be the default current directory
Description

The default directory for all tools may be specified with this environment variable. Each
of the tools indicated above will take the directory specified as its current directory
instead of the one defined by the operating system or launching tool (e.g., editor).

NOTE
This is an environment variable on the system level (global
environment variable). It cannot be specified in a default
environment file (default.env OI .hidefaults).

Example

DEFAULTDIR=C:\INSTALL\PROJECT

See also
Current directory

All tools may store some global data into the mcutools.ini file.The tool first searches for
this file in the directory of the tool itself (path of the executable tool). If there is no
mcutools. ini file in this directory, the tool looks for an mcutools.ini file located in the MS
Windows installation directory (e.g., c:\winpows).

4.6.5 ENVIRONMENT: Environment file specification

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

102 Freescale Semiconductor, Inc.

Chapter 4 Environment

Tools
Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Synonym
HIENVIRONMENT

Syntax
ENVIRONMENT=<file>

Arguments
<files: filename with path specification, without spaces
Description

This variable has to be specified on the system level. Normally the Assembler looks in
the current directory for an environment file named gefauit.env (.hidefauits on UNIX).
Using environment (€.g., Set in the autoexec.bat (DOS) or .cshre (UNIX)), a different
filename may be specified.

NOTE
This is an environment variable on the system level (global
environment variable). It cannot be specified in a default
environment file (default.env OF .hidefaults).

Example

ENVIRONMENT=\Freescale\prog\global.env

4.6.6 ERRORFILE: Filename specification error

Tools
Compiler, Assembler, or Linker

Syntax
ERRORFILE=<filename>
Arguments

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 103

cnvironment variables details

<filenames>: Filename with possible format specifiers

Default

EDOUT

Description

The errorrire environment variable specifies the name for the error file (used by the
Compiler or Assembler).

Possible format specifiers are:

* 'sn': Substitute with the filename, without the path.

* 'sp": Substitute with the path of the source file.
* 's£+: Substitute with the full filename, i.e., with the path and name (the same as "spsn").

In case of an improper error filename, a notification box is shown.
Examples
The following listing lists all errors into the myerrors.err file in the current directory.

Listing: Naming an error file

ERRORFILE=MyErrors.err

The following listing lists all errors into the errors file in the \tmp directory.

Listing: Naming an error file in a specific directory

ERRORFILE=\tmp\errors

The following listing lists all errors into a file with the same name as the source file, but
with extension «.err, into the same directory as the source file, e.g., if we compile a file
\sources\test.c, Al €ITOT list file \sources\test.err will be generated.

Listing: Naming an error file as source filename

ERRORFILE=%f.err

For a test.c source file, a \airi\test.err error list file will be generated, as the following
listed shows:

Listing: Naming an error file as source filename in a specific directory

ERRORFILE=\dirl\%n.err

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

104 Freescale Semiconductor, Inc.

Chapter 4 Environment

For a \airi\airz\test.c source file, a \airi\dir2\errors.txt error list file will be generated,
as the following listed shows:

Listing: Naming an error file as a source filename with full path

ERRORFILE=%p\errors. txt

If the errorrILE environment variable is not set, errors are written to the default error file.
The default error filename depends on the way the Assembler is started.

If a filename is provided on the assembler command line, the errors are written to the
epour file in the project directory.

If no filename is provided on the assembler command line, the errors are written to the
err.txt file in the project directory.

The following listed shows another example for the usage of this variable to support
correct error feedback with the WinEdit Editor which looks for an error file called spour:

Listing: Configuring error feedback with WinEdit

Installation directory: E:\INSTALL\prog
Project sources: D:\SRC

Common Sources for projects: E:\CLIB
Entry in default.env (D:\SRC\default.env):
ERRORFILE=E:\INSTALL\prog\EDOUT
Entry in WinEdit.ini (in Windows directory) :
OUTPUT=E: \INSTALL\prog\EDOUT

NOTE

You must set this variable if the WinEdit Editor is used,
otherwise the editor cannot find the =pour file.

4.6.7 GENPATH: Search path for input file

Tools
Compiler, Assembler, Linker, Decoder, or Debugger

Synonym

HIPATH

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 105

cnvironment variables details

Syntax

GENPATH={<path>}

Arguments
<path>: Paths separated by semicolons, without spaces.
Description

The Macro Assembler will look for the sources and included files first in the project
directory, then in the directories listed in the cenearn environment variable.

NOTE
If a directory specification in this environment variables starts
with an asterisk («), the whole directory tree is searched
recursive depth first, i.e., all subdirectories and their
subdirectories and so on are searched. Within one level in the
tree, the search order of the subdirectories is indeterminate.

Example

GENPATH=\sources\include;..\..\headers;\usr\local\lib

4.6.8 INCLUDETIME: Creation time in the object file

Tools
Compiler, Assembler, Linker, or Librarian

Syntax

INCLUDETIME= (ON | OFF)

Arguments
on: Include time information into the object file.

orr: Do not include time information into the object file.

Default

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

106 Freescale Semiconductor, Inc.

Chapter 4 Environment

ON

Description

Normally each object file created contains a time stamp indicating the creation time and
data as strings. So whenever a new file is created by one of the tools, the new file gets a
new time stamp entry.

This behavior may be undesired if for SQA reasons a binary file compare has to be
performed. Even if the information in two object files is the same, the files do not match
exactly because the time stamps are not the same. To avoid such problems this variable
may be set to orr. In this case the time stamp strings in the object file for date and time
are " none" in the object file.

The time stamp may be retrieved from the object files using the Decoder.

Example

INCLUDETIME=OFF

See also
* COPYRIGHT: Copyright entry in object file
» USERNAME: User Name in object file

4.6.9 OBJPATH: Obiject file path

Tools
Compiler, Assembler, Linker, or Decoder

Syntax

OBJPATH={<path>}

Arguments

<path>: Paths separated by semicolons, without spaces

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 107

cnvironment variables details

Description

This environment variable is only relevant when object files are generated by the Macro
Assembler. When this environment variable is defined, the Assembler will store the

object files it produces in the first directory specified in path. If orseaTs is not set, the
generated object files will be stored in the directory the source file was found.

Example

OBJPATH=\sources\bin;..\..\headers;\usr\local\bin

4.6.10 SRECORD: S-Record type

Tools
Assembler, Linker, or Burner

Syntax

SRECORD=<RecordType>

Arguments

<recordTypes: Forces the type for the S-Record File which must be generated. This
parameter may take the value “s1', *s2', or “s3.

Description

This environment variable is only relevant when absolute files are directly generated by
the Macro Assembler instead of object files. When this environment variable is defined,
the Assembler will generate an S-Record File containing records from the specified type
(s1 records when s1 is specified, sz records when sz is specified, and s3 records when s3 is
specified).

NOTE
If the srecorp environment variable is set, it is the user's
responsibility to specify the appropriate type of S-Record File.
If you specify s1 while your code is loaded above oxrrrr, the S-
Record File generated will not be correct because the addresses
will all be truncated to 2-byte values.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

108 Freescale Semiconductor, Inc.

Chapter 4 Environment

When this variable is not set, the type of S-Record File generated will depend on the size
of the address, which must be loaded there. If the address can be coded on 2 bytes, an s1
record is generated. If the address is coded on 3 bytes, an sz record is generated.
Otherwise, an s3 record 1s generated.

Example

SRECORD=S2

4.6.11 TEXTPATH: Text file path

Tools
Compiler, Assembler, Linker, or Decoder

Syntax

TEXTPATH={<path>}

Arguments
<path>: Paths separated by semicolons, without spaces.
Description

When this environment variable is defined, the Assembler will store the listing files it
produces in the first directory specified in pach. If TexreaTs 1S not set, the generated listing
files will be stored in the directory the source file was found.

Example

TEXTPATH=\sources\txt;..\..\headers;\usr\local\txt

4.6.12 TMP: Temporary directory

Tools

Compiler, Assembler, Linker, Debugger, or Librarian

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 109

cnvironment variables details

Syntax

TMP=<directory>

Arguments
<directorys: Directory to be used for temporary files
Description

If a temporary file has to be created, normally the ANSI function tmpnam() 1s used. This
library function stores the temporary files created in the directory specified by this
environment variable. If the variable is empty or does not exist, the current directory is
used. Check this variable if you get an error message Cannot create temporary file.

NOTE

TMp 1S an environment variable on the system level (global
environment variable). It CANNOT be specified in a default
environment file (default .env Or .nidefaults).

Example

TMP=C: \TEMP

See also

Current directory section

4.6.13 USERNAME: User Name in object file

Tools
Compiler, Assembler, Linker, or Librarian

Syntax

USERNAME=<user>

Arguments

<user>: Name of user

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

110 Freescale Semiconductor, Inc.

g |

Chapter 4 Environment

Description

Each object file contains an entry identifying the user who created the object file. This
information may be retrieved from the object files using the decoder.

Example

USERNAME=PowerUser

See also
* COPYRIGHT: Copyright entry in object file
* INCLUDETIME: Creation time in the object file

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 111

PR 4

cnvironment variables details

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

112 Freescale Semiconductor, Inc.

g |

Chapter 5
Files

This chapter covers these topics:

e Input files
* QOutput files
* File processing

5.1 Input files

Input files to the Assembler:

e Source files
e Include files

5.1.1 Source files

The Macro Assembler takes any file as input. It does not require the filename to have a
special extension. However, we suggest that all your source filenames have the «.asn
extension and all included files have the «.inc.extension. Source files will be searched
first in the project directory and then in the directories enumerated in GENPATH: Search
path for input file.

5.1.2 Include files

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 113

vuput files

The search for include files is governed by the cexears environment variable. Include files
are searched for first in the project directory, then in the directories given in the ceneaTn
environment variable. The project directory is set via the Shell, the Program Manager, or
the DEFAULTDIR: Default current directory environment variable.

5.2 Output files

Output files from the Assembler:

* Object files
 Absolute files

* S-Record Files

e Listing files

* Debug listing files
* Error listing file

5.2.1 Object files

After a successful assembling session, the Macro Assembler generates an object file
containing the target code as well as some debugging information. This file is written to
the directory given in the OBJPATH: Object file path environment variable. If that
variable contains more than one path, the object file is written in the first directory given;
if this variable is not set at all, the object file is written in the directory the source file was
found. Object files always get the «.o extension.

5.2.2 Absolute files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an absolute file instead of an object file.
This file is written to the directory given in the ABSPATH: Absolute file path
environment variable . If that variable contains more than one path, the absolute file is
written in the first directory given; if this variable is not set at all, the absolute file is
written in the directory the source file was found. Absolute files always get the » .abs
extension.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

114 Freescale Semiconductor, Inc.

Chapter 5 Files

5.2.3 S-Record Files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an ELF absolute file instead of an object
file. In that case an S-Record File is generated at the same time. This file can be burnt
into an EPROM. It contains information stored in all the READ ONLY sections in the
application. The extension for the generated S-Record File depends on the setting from
the SRECORD: S-Record type environment variable.

* If srecorp = s1, the S-Record File gets the «.s1 extension.
* If srecorp = s2, the S-Record File gets the ».s2 extension.
e If srecorp = s3, the S-Record File gets the «.s3 extension.
* If srecorp 1S not set, the S-Record File gets the «.sx extension.

This file is written to the directory given in the asseaTtn environment variable. If that
variable contains more than one path, the S-Record File is written in the first directory
given,; if this variable is not set at all, the S-Record File is written in the directory the
source file was found.

5.2.4 Listing files

After successful assembling session, the Macro Assembler generates a listing file
containing each assembly instruction with their associated hexadecimal code. This file is
always generated when the -L: Generate a listing file assembler option is activated (even
when the Macro Assembler generates directly an absolute file). This file is written to the
directory given in the TEXTPATH: Text file path.environment variable. If that variable
contains more than one path, the listing file is written in the first directory given; if this
variable is not set at all, the listing file is written in the directory the source file was
found. Listing files always get the .1st extension. The format of the listing file is
described in the Assembler Listing File chapter.

5.2.5 Debug listing files

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 115

vuput files

After successful assembling session, the Macro Assembler generates a debug listing file,
which will be used to debug the application. This file is always generated, even when the
Macro Assembler directly generates an absolute file. The debug listing file 1s a duplicate
from the source, where all the macros are expanded and the include files merged. This
file is written to the directory given in the OBJPATH: Object file path environment
variable. If that variable contains more than one path, the debug listing file is written in
the first directory given; if this variable is not set at all, the debug listing file is written in
the directory the source file was found. Debug listing files always get the «.abg extension.

5.2.6 Error listing file

If the Macro Assembler detects any errors, it does not create an object file but does create
an error listing file. This file is generated in the directory the source file was found (for
more information, refer to the topic ERRORFILE: Filename specification error.

If the Assembler's window is open, it displays the full path of all include files read. After
successful assembling, the number of code bytes generated is displayed, too. In case of an
error, the position and filename where the error occurs is displayed in the assembler
window.

If the Assembler is started from the IDE (with ' s¢' given on the command line) or
CodeWright (with ' spse' given on the command line), this error file is not produced.
Instead, it writes the error messages in a special Microsoft default format in a file called
epout. Use WinEdit's Next Error or CodeWright's Find Next Error command to see both
error positions and the error messages.

5.2.6.1 Interactive mode (Assembler window open)

If =rrorrrLE 1S Set, the Assembler creates a message file named as specified in this
environment variable.

If =rrorF1LE 1S DOt set, a default file named err.txt 1S generated in the current directory.

5.2.6.2 Batch mode (Assembler window not open)

If =rrorF1LE 1S Set, the Assembler creates a message file named as specified in this
environment variable.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

116 Freescale Semiconductor, Inc.

g |

Chapter 5 Files

If =rrorrrrE 18 NOt set, a default file named =pour is generated in the current directory.

5.3 File processing

The following image shows the priority levels for the various files used by the
Assembler.

asm 1. current dir ine 1. current dir
2. GENPATH 2. GENPATH
iy,
Assembler
ERRORFILE

o | 1. oBIPATH st | 1. TEXTPATH | ERR.TXT

dbg | 2. Source file 2. Source file or
path path EDOUT

abs | 1. ABSPATH
2. Source file
path

Figure 5-1. Files used with the Assembler

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 117

PR 4

rue processing

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

118 Freescale Semiconductor, Inc.

Chapter 6
Assembler Options

This chapter describes the assembler options available for S12Z derivatives. The
following topics are covered here:

* Types of Assembler Options

* Assembler Option Details

* List of Assembler Options

 Detailed Listing of all Assembler Options

6.1 Types of Assembler Options

The Assembler offers a number of assembler options that you can use to control the
Assembler's operation. Options are composed of a hyphen (-) followed by one or more
letters or digits. Anything not starting with a hyphen is supposed to be the name of a
source file to be assembled. Assembler options may be specified on the command line or
in the ASMOPTIONS: Default assembler options (refer to the table listed below)
environment variable. Typically, each Assembler option is specified only once per
assembling session.

Command-line options are not case-sensitive. For example, -vi is the same as -11. It is
possible to combine options in the same group, i.e., one might write -rci instead of -1c -
Li. However such a usage is not recommended as it makes the command line less
readable and it does also create the danger of name conflicts. For example -ri -1c is not
the same as -1ic because this is recognized as a separate, independent option on its own.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 119

g |

1ypes of Assembler Options

NOTE
It is not possible to combine options in different groups, e.g., -
Lc -wicannot be abbreviated by the terms -rca or -rews.

Table 6-1. ASMOPTIONS environment variable

ASMOPTIONS If this environment variable is set, the Assembler appends its
contents to its command line each time a file is assembled. It
can be used to globally specify certain options that should

always be set, so you do not have to specify them each time

a file is assembled.

Assembler options (refer to the table listed below) are grouped by:
* Output,
* Input,
* Language,
e Host,
Code Generation,
* Messages, and

e Various.
Table 6-2. Assembler option categories
Group Description
Output Lists options related to the output files generation (which kind
of file should be generated).
Input Lists options related to the input files.
Language Lists options related to the programming language (ANSI-C,
C++, etc.)
Host Lists options related to the host.
Code Generation Lists options related to code generation (memory models,
etc.).
Messages Lists options controlling the generation of error messages.
Various Lists various options.

The group corresponds to the property sheets of the graphical option settings.

Each option has also a scope. The following table lists the scopes for assembler oprions.

Table 6-3. Scopes for assembler options

Scope Description

Application This option has to be set for all files (assembly units) of an
application. A typical example is an option to set the memory
model. Mixing object files will have unpredictable results.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

120 Freescale Semiconductor, Inc.

g |

Chapter 6 Assembler Options

Table 6-3. Scopes for assembler options (continued)

Scope

Description

Assembly Unit

This option can be set for each assembling unit for an
application differently. Mixing objects in an application is
possible.

None

The scope option is not related to a specific code part. A
typical example are options for the message management.

The options available are arranged into different groups, and a tab selection is available
for each of these groups. The content of the list box depends upon the tab that is selected.

6.2 Assembler Option Details

The remainder of this section is devoted to describing each of the assembler options
available for the Assembler. The options are listed in alphabetical order and each is
divided into several sections. The following table lists and describes the topics listed in

the assembler options.

Table 6-4. Assembler option details

Topic Description

Group Output, Input, Language, Host, Code Generation, Messages,
or Various.

Scope Application, Assembly Unit, Function, or None.

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments for the
option.

Default Shows the default setting for the option.

Description Provides a detailed description of the option and how to use
it.

Example Gives an example of usage, and effects of the option where

possible. Assembler settings, source code and/or Linker PRM
files are displayed where applicable. The examples shows an
entry in the default.env for the PC orin the .hidefaults
for UNIX.

See also (if needed)

Names related options.

6.2.1 Using special modifiers

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc.

121

nssembler Option Details

With some options it is possible to use special modifiers. However, some modifiers may
not make sense for all options. This section describes those modifiers.

The following table lists and dsecribes the supported modifiers.

Table 6-5. Special modifiers for assembler options

Modifier

Description

o
o)

Path including file separator

o
=z

Filename in strict 8.3 format

o
=]

Filename without its extension

o°
=

Extension in strict 8.3 format

Extension

Path + filename without its extension

A double quote (") if the filename, the path or the extension
contains a space

A single quote () if the filename, the path, or the extension
contains a space

Replaces it with the contents of an environment variable

Generates a single " %'

6.2.1.1

Examples using special modifiers

The assumed path and filename (filename base for the modifiers) used for the examples

Listing 5.2 through Listing 5.13 is displayed in the following listing.

Listing: Example filename and path used for the following examples

C:\Freescale\my demo\TheWholeThing.myExt

Using the sp modifier as the following listing displays the path with a file separator but
without the filename.

Listing: %p gives the path only with the final file separator

C:\Freescale\my demo\

Using the sx modifier only displays the filename in 8.3 format but without the file
extension, as the following listing displays.

Listing: %N results in the filename in 8.3 format (only the first 8 characters)

TheWhole

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

122

Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

The sn modifier returns the entire filename but with no file extension, as the following
listing displays.

Listing: %n returns just the filename without the file extension

TheWholeThing

Using =& as a modifier returns the first three characters in the file extension, as the
following listing displays.

Listing: %E gives the file extension in 8.3 format (only the first 3 characters)

myE
If you want the entire file extension, use the se modifier, as the following listing displays.

Listing: %e is used for returning the whole extension

myExXt
The s£ modifier returns the path and the filename without the file extension, as the
following listing displays.

Listing: %f gives the path plus the filename (no file extension)

C:\Freescale\my demo\TheWholeThing

The path in the listing, Example filename and path used for the following examples listed
above contains a space, therefore using s or &' is recommended, as the following listings
displays.

Listing: Use %' %f%"' in case there is a space in its path, filename, or extension

"C:\Freescale\my demo\TheWholeThing"

Listing: Use %'%f%' where there is a space in its path, filename, or extension

“C:\Freescale\my demo\TheWholeThing'

Using s (envvariable) an environment variable may be used. A file separator following =
(envvariable) 18 ignored if the environment variable is empty or does not exist. If texreata
is set as in following listing, then s (rexreats) \myfile.txt 1S expressed as in next listing.

Listing: Example for setting TEXTPATH

TEXTPATH=C: \Freescale\txt

Listing: $(TEXTPATH)\myfile.txt where TEXTPATH is defined

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 123

\
Y

4
A

List of Assembler Options

C:\Freescale\txt\myfile.txt

However, if texreata does not exist or is empty, then s (TexTeaTh) \mytile.txt 1S expressed as
in the following listing.

Listing: $(TEXTPATH)\myfile.txt where TEXTPATH does not exist

myfile.txt

o\°

It is also possible to display the percent sign by using ss. e
percent sign after the extension as in the following listing.

s allows the expression of a

Listing: % % allows a percent sign to be expressed

myExt%

6.3 List of Assembler Options

The following table lists the command line options you can use with the S127
Assembler.

NOTE
Not all tools options have been defined for this release. All
descriptions will be available in an upcoming release.

Table 6-6. Assembler Options

Assembler option

-ArgFile: Specify a file from which additional command line options will be read

-AsmDbg: Emit assembly source file information in debug sections

-Ci: Switch case sensitivity on label names OFF

-CMacAngBrack: Angle brackets for grouping Macro Arguments

-CMacBrackets: Square brackets for macro arguments grouping

-Compat: Compatibility modes
-D: Define Label

-DefLabel: Improves support for data allocation directives

-Env: Set environment variable
-F (-Fh, -F20, -FA20, -F2, -FA2): Output file format
-H: Short Help

-I: Include file path

-L: Generate a listing file

-Lasmc: Configure listing file

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

124 Freescale Semiconductor, Inc.

b -

Table 6-6. Assembler Options (continued)

Chapter 6 Assembler Options

Assembler option

-Lasms: Configure the address size in the listing file

-Lc: No Macro call in listing file

-Ld: No macro definition in listing file

-Le: No Macro expansion in listing file

-Li: No included file in listing file

-Lic: License information

-LicA: License information about every feature in directory

-LicBorrow: Borrow license feature

-LicWait: Wait until floating license is available from floating License Server

-LI: Show label statistics

-MacroNest: Configure maximum macro nesting

-MCUasm: Switch compatibility with MCUasm ON

-N: Display notify box

-NoBeep: No beep in case of an error

-NoDebuglnfo: No debug information for ELF/DWARF files

-NoEnv: Do not use environment

-ObjN: Object filename specification

-Prod: Specify project file at startup

-Struct: Support for structured types

-V: Prints the Assembler version

-View: Application standard occurrence

-W1: No information messages

-W2: No information and warning messages

-WErrFile: Create "err.log" error file

-Wmsg8x3: Cut filenames in Microsoft format to 8.3

-WmsgCE: RGB color for error messages

-WmsgCF: RGB color for fatal messages

-WmsgCl: RGB color for information messages

-WmsgCU: RGB color for user messages

-WmsgCW: RGB color for warning messages

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode

-WmsgFob: Message format for batch mode

-WmsgFoi: Message format for interactive mode

-WmsgFonf: Message format for no file information

-WmsgFonp: Message format for no position information

-WmsgNe: Number of error messages

-WmsgNi: Number of Information messages

-WmsgNu: Disable user messages

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

125

A
4

4
A

veuailed Listing of All Assembler Options

Table 6-6. Assembler Options (continued)

Assembler option

-WmsgNw: Number of Warning messages

-WmsgSd: Setting a message to disable

-WmsgSe: Setting a message to Error

-WmsgSi: Setting a message to Information

-WmsgSw: Setting a Message to Warning

-WOutFile: Create error listing file

-WStdout: Write to standard output

6.4 Detailed Listing of All Assembler Options

The remainder of the chapter is a detailed listing of all assembler options arranged in
alphabetical order.

6.4.1 -ArgFile: Specify a file from which additional command line
options will be read

Group
HOST
Scope
Function

Syntax
-ArgFile<filenames

Arguments

<filename>: Specify filename that has options to be passed to command line
Description

The options present in file are appended to existing command line options.
Example

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

126 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

option.txt

Linker.exe -ArgFileoption.txt test.prm

This is equivalent to linker.exe -M test.prm and linker generates output file test.map

6.4.2 -AsmDbg: Emit assembly source file information in debug
sections

Group

CODE GENERATION
Scope

Function

Syntax
-AsmDbg

Arguments
None
Description

This option when enabled, passes the assembly source file name information to DWARF
sections. When the output .abs file is debugged, the actual assembly source file is
displayed instead of intermediary <filename>.dbg file.

6.4.3 -Ci: Switch case sensitivity on label names OFF

Group
Input
Scope

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 127

veuailed Listing of All Assembler Options

Assembly Unit
Syntax

-Ci

Arguments
None
Default
None
Description

This option turns off case sensitivity on label names. When this option is activated, the
Assembler ignores case sensitivity for label names. If the Assembler generates object
files but not absolute files directly (-ra2 assembler option), the case of exported or
imported labels must still match. Or, the -ci assembler option should be specified in the
linker as well.

Example

When case sensitivity on label names is switched off, the Assembler will not generate an
error message for the assembly source code in the following listing.

Listing: Example assembly source code

ORG $200
entry: NOP

BRA Entry

The instruction era entry branches on the encry label. The default setting for case
sensitivity is on, which means that the Assembler interprets the labels entry and encry as
two distinct labels.

See also

-F (-Fh, -F20, -FA2o0, -F2, -FA2): Output file format assembler option

6.4.4 -CMacAngBrack: Angle brackets for grouping Macro
Arguments

Group

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

128 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Language
Scope
Application
Syntax

-CMacAngBrack (ON | OFF)
Arguments

ON or
OFF

Default
None
Description

This option controls whether the < - syntax for macro invocation argument grouping is
available. When it is disabled, the Assembler does not recognize the special meaning for
< in the macro invocation context. There are cases where the angle brackets are
ambiguous. In new code, use the (> 2] syntax instead.

See also
Macro argument grouping

-CMacBrackets: Square brackets for macro arguments grouping option

6.4.5 -CMacBrackets: Square brackets for macro arguments
grouping

Group
Language
Scope
Application
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 129

A 4
4\ |

veuailed Listing of All Assembler Options

-CMacBrackets (ON|OFF)

Arguments

ON or
OFF

Default

ON

Description

This option controls the availability of the (> »1 syntax for macro invocation argument
grouping. When it is disabled, the Assembler does not recognize the special meaning for
r» in the macro invocation context.

See also
Macro argument grouping

-CMacAngBrack: Angle brackets for grouping Macro Arguments option

6.4.6 -Compat: Compatibility modes

Group
Language
Scope
Application
Syntax

-Compat [={!|=|c|s|£|$|a|b}

Arguments
See below.

Default

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

130 Freescale Semiconductor, Inc.

None

Chapter 6 Assembler Options

Description

This option controls some compatibility enhancements of the Assembler. The goal is not

to provide

100% compatibility with any other Assembler but to make it possible to reuse

as much as possible. The various suboptions control different parts of the assembly:

e -: Operator :- means equal

The Assembler takes the default value of the - operator as not equal, as it is in the C
language. For compatibility, this behavior can be changed to equal with this option.
Because the danger of this option for existing code, a message is issued for every :-

which

1s treated as equal.

* 1: Support additional : operators

The following additional operators are defined when this option is used:

e |~

® Im:

®* @

® 13

® It
® sl
® Isl
: unsigned less or equal
® 11
: one complement
: low operator

: high operator

® g

® In
'w

® 'h

lg.
: signed less or equal

: exponentiation

modulo
signed greater or equal
signed greater

signed less than
unsigned greater or equal

unsigned greater

unsigned less

The default values for the following : operators are defined:

r.: binary AND
1x: exclusive OR

1+: binary OR

c: Alternate comment rules

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc. 131

veuailed Listing of All Assembler Options

With this suboption, comments implicitly start when a space is present after the
argument list. A special character is not necessary. Be careful with spaces when this
option is given because part of the intended arguments may be taken as a comment.
However, to avoid accidental comments, the Assembler does issue a warning if such
a comment does not start with a "= or a ;.

Examples
The following listing demonstrates that when -compat-c, comments can start with a ».

Listing: Comments starting with an asterisk (*)

NOP * Anything following an asterisk is a comment.

When the -compat-c assembler option is used, the first oc.s directive in the following
listing, has »+ 1 , 1 as a comment. A warning is issued because the comment does not
start with a »;» or a »»». With -compat-=c, this code generates a warning and three bytes with
constant values 1, 2, and 1. Without it, this code generates four 8-bit constants of 2, 1, 2,
and 1.

Listing: Implicit comment start after a space

DC.B 1+ 1, 1
DC.B 1+1,1

* s: Symbol prefixes

With this suboption, some compatibility prefixes for symbols are supported. With
this option, the Assembler accepts "pgz:" and "oyte: " prefixed for symbols in xpers
and xrers. They correspond to xrer.& or xper.e With the same symbols without the
prefix.

* £: Ignore rr character at line start

With this suboption, an otherwise improper character recognized from feed character
1s ignored.

* 5: Support the $ character in symbols
With this suboption, the Assembler supports to start identifiers with a s sign.
* a: Add some additional directives

With this suboption, some additional directives are added for enhanced compatibility.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

132 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

The Assembler actually supports a secr directive as an alias of the usual SECTION -
Declare Relocatable Section assembly directive. The secr directive takes the section
name as its first argument.

* p: support the ror directive

With this suboption, the Assembler supports a FOR - Repeat assembly block
assembly directive to generate repeated patterns more easily without having to use
recursive macros.

6.4.7 -D: Define Label

Group

Input

Scope
Assembly Unit
Syntax

-D<LabelName> [=<Value>]

Arguments

<Labelname>: Name of label.

<values: Value for label. o if not present.
Default

o for vaiue.

Description

This option behaves as if a rave1: rou value is at the start of the main source file. When no
explicit value is given, 0 is used as the default.

This option can be used to build different versions with one common source file.
Example

Conditional inclusion of a copyright notice. See the following listings.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 133

g |

veuailed Listing of All Assembler Options

Listing: Source code that conditionally includes a copyright notice

YearAsString: MACRO
DC.B $30+(\1 /1000)%10

DC.B $30+(\1 / 100)%10
DC.B $30+(\1 / 10)%10
DC.B $30+(\1 / 1)%10
ENDM

ifdef ADD COPYRIGHT

ORG $1000

DC.B "Copyright by "
DC.B "John Doe"

ifdef YEAR

DC.B " 1999-"
YearAsString YEAR
endif

DC.B 0
endif

When assembled with the option -aapp_copvricuT -avear-200s, the code in the following
listing is generated:

Listing: Generated list file

1 1 YearAsString: MACRO
2 2 DC.B $30+(\1 /1000)%10
3 3 DC.B $30+(\1 / 100)%10
4 4 DC.B $30+(\1 / 10)%10
5 5 DC.B $30+(\1 / 1)%10
6 6 ENDM
7 7
8 8 0000 0001 ifdef ADD COPYRIGHT
9 9 ORG $1000
10 10 a001000 436F 7079 DC.B "Copyright by "
001004 7269 6768
001008 7420 6279
00100C 20
11 11 a00100D 4A6F 686E DC.B "John Doe"

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

134 Freescale Semiconductor, Inc.

g |

001011 2044 6F65

12 12 0000 0001

13 13 a001015 2031 3939

001019 392D

14 14

15 2m a00101B 32

16 3m a00101C 30

17 4m a00101D 30

18 5m a00101E 31

19 15

20 16 a00101F 00

21 17

ifdef YEAR

DC.B " 1999-"

YearAsString YEAR
+ DC.B $30+ (YEAR
+ DC.B $30+ (YEAR
+ DC.B $30+ (YEAR
+ DC.B $30+ (YEAR
endif

DC.B 0

endif

/1000) %10

/ 100)%10

Chapter 6 Assembler Options

6.4.8 -DefLabel: Improves support for data allocation directives

Group

Input

Scope
Assembly Unit
Syntax

-DefLabel

Arguments
None
Default
None

Description

Improves support for data allocation directives. On passing this option, the data directives
(not associated to any label) get associated with previous defined labels (if exists). This

inhibits the emission of temporary variables (varx) by assembler.

Example

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc.

135

A\ 4
N
veuailed Listing of All Assembler Options

The following listing shows the example for the -pefrabe1.

Listing: Example -DefLabel

MySection: SECTION

TTab TIT 45: ; Modo 5

DC.B SFF, SFF, SFF, SFF, SFF, SFF, SFF, SFA,$90,$20,$00,$01, $4F, SFF
. $FB, SFF, $FF, SFF, $FF, SFC

DC.B $SC1l, SFF, SFF, SFF, SFF, SFF, SFF, $SF7, 564,588,500, $14, $SBF, SFF
, $F5, SFF, SEF, $SB8, $3F, SFE

DC.B 5

DC.W 3
mainLoop:

RTS

With
-DeflLabel option
OFF:
Output:
9-VARO00O01 0 14 LOCAL FUNC 9 (MySection)
10-VAR0O0002 14 14 LOCAL FUNC 9 (MySection)
11-VAR0O0003 28 1 LOCAL FUNC 9 (MySection)
12-VAR00004 29 3 LOCAL FUNC 9 (MySection)
With
-DefLabel option
ON:
Output:
9-TTab TIT 45 0 29 LOCAL FUNC 9 (MySection)
10-VAROOOO1 29 3 LOCAL FUNC 9 (MySection)

The input file when assembled with option -perrabe1, allocates the oc.r directives to
symbol trab_trT_45 and pc.w to dummy variable varoooos.

6.4.9 -Env: Set environment variable

Group

Host

Scope
Assembly Unit

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

136 Freescale Semiconductor, Inc.

g |

Syntax

-Env<EnvironmentVariable>=<VariableSetting>

Arguments

<EnvironmentVariables: BEnvironment variable to be set

<variablesetting>: Setting of the environment variable

Default

None

Description

This option sets an environment variable.

Example

ASMOPTIONS=-EnvOBJPATH=\sources\obj

This is the same as:

OBJPATH=\sources\obj

in the default.env flle
See also

Environment variables details

Chapter 6 Assembler Options

6.4.10 -F (-Fh, -F20, -FA20, -F2, -FA2): Output file format

Group
Output
Scope
Application
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

137

veuailed Listing of All Assembler Options

-F(h|20]|Aa20]|2]|A2)

Arguments

n: HIWARE object-file format; this is the default

20: Compatible ELF/DWARF 2.0 object-file format
azo: Compatible ELF/DWAREF 2.0 absolute-file format
2: ELF/DWAREF 2.0 object-file format

a2: ELF/DWAREF 2.0 absolute-file format

Default

-F2

Description
Defines the format for the output file generated by the Assembler:

* With the -rhoption set, the Assembler uses a proprietary (HIWARE) object-file
format.

* With the -r2 option set, the Assembler produces an ELF/DWARF object file. This
object-file format may also be supported by other Compiler or Assembler vendors.

» With the -raz option set, the Assembler produces an ELF/DW ARF absolute file. This
file format may also be supported by other Compiler or Assembler vendors.

Note that the ELF/DWAREF 2.0 file format has been updated in the current version of the
Assembler. If you are using HI-WAVE version 5.2 (or an earlier version), -r2o Or -Fazo
must be used to generate the ELF/DWARF 2.0 object files which can be loaded in the
debugger.

Example

ASMOPTIONS=-F2

6.4.11 -H: Short Help

Group

Various

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

138 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Scope
None

Syntax

Arguments
None
Default
None
Description

The -z option causes the Assembler to display a short list (i.e., help list) of available
options within the assembler window. Options are grouped into Output, Input, Language,
Host, Code Generation, Messages, and Various.

No other option or source files should be specified when the -= option is invoked.
Example

The following listing is a portion of the list produced by the - option:

Listing: Example Help listing

MESSAGE :

-N Show notification box in case of errors
-NoBeep No beep in case of an error

-Wl Do not print INFORMATION messages

-W2 Do not print INFORMATION or WARNING messages

-WErrFile Create "err.log" Error File

6.4.12 -l: Include file path

Group
Input

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 139

A\ 4

N
veuailed Listing of All Assembler Options
Scope
None

Syntax

-I<path>

Arguments

<path>: File path to be used for includes

Default

None

Description

With the -1 option it is possible to specify a file path used for include files.

Example

-Id:\mySources\include

6.4.13 -L: Generate a listing file

Group
Output

Scope
Assembly unit
Syntax

-L[=<dest>]

Arguments
<dest>: the name of the listing file to be generated.

It may contain special modifiers (see Using special modifiers).

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

140 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options
Default

No generated listing file
Description

Switches on the generation of the listing file. If sest is not specified, the listing file will
have the same name as the source file, but with extension «.1st. The listing file contains
macro definition, invocation, and expansion lines as well as expanded include files.

Example

ASMOPTIONS=-L

In the following example of assembly code, the cpchar macro accepts two parameters. The
macro copies the value of the first parameter to the second one.

When the - option is specified, the portion of assembly source code in the following
listing, together with the code from an include file (Listing: Example source code from
an include file) generates the output listing in Listing: Assembly output listing.

Listing: Example assembly source code

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2

NOP

Listing: Example source code from an include file

cpChar: MACRO
LD DO, \1

ST DO, \2

ENDM
Listing: Assembly output listing

Abs. Rel. Loc Obj. code Source line

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 141

A
4

4
A

veuailed Listing of All Assembler Options

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DS.B 1

4 4 000001 char2: DS.B 1

5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO

7 21 LD DO, \1

8 31 ST DO, \2

9 41 ENDM

10 6 CodeSec: SECTION

11 7 Start:

12 8 cpChar charl, char2
13 2m 000000 XX XXXX + LD DO, charl

14 3m 000003 XX XXXX + ST DO, char2

15 9 000006 01 NOP

The Assembler stores the content of included files in the listing file. The Assembler also
stores macro definitions, invocations, and expansions in the listing file.

For a detailed description of the listing file, see the Assembler Listing File chapter.
See also
Assembler options:

e -Lasmc: Configure listing file

 -Lasms: Configure the address size in the listing file
* -Lc: No Macro call in listing file

* -L.d: No macro definition in listing file

* -Le: No Macro expansion in listing file

* -Li: No included file in listing file

6.4.14 -Lasmc: Configure listing file

Group
Output

Scope
Assembly unit

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

142 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

Syntax
-Lasmc={s|r|m|1l|k|i|c]|a}

Arguments

s - Do not write the source column

r - Do not write the relative column (Rel.)
m - Do not write the macro mark

1 - Do not write the address (Loc)

x - Do not write the location type

i - Do not write the include mark column
< - Do not write the object code

a - Do not write the absolute column (Abs.)
Default

Write all columns.

Description

The default-configured listing file shows a lot of information. With this option, the output
can be reduced to columns which are of interest. This option configures which columns
are printed in a listing file. To configure which lines to print, see the following assembler
options: -L.c: No Macro call in listing file, -L.d: No macro definition in listing file, -Le:
No Macro expansion in listing file, and -Li: No included file in listing file.

Example

For the following assembly source code, the Assembler generates the default-configured
output listing, as shown in the following listing:

DC.B "Hello World"

DC.B O

Listing: Example assembler output listing

Abs. Rel. Loc Obj. code Source line

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 143

1 1 000000 4865 6C6C DC.B "Hello World"
000004 6F20 576F
000008 726C 64

2 2 00000B 00 DC.B 0

In order to get this output without the source file line numbers and other irrelevant parts
for this simple oc.s example, the following option is added:

-Lasmc=ramki. This generates the output listing as shown in the following listing:

Listing: Example output listing

Loc Obj. code Source line

000000 4865 6C6C DC.B "Hello World"
000004 6F20 576F
000008 726C 64

000008 00 DC.B 0
For a detailed description of the listing file, see the Assembler Listing File chapter.
See also

Assembler options:

* -L: Generate a listing file

e -Lc: No Macro call in listing file

* -L.d: No macro definition in listing file

 -Le: No Macro expansion in listing file

* -Li: No included file in listing file

* -Lasms: Configure the address size in the listing file

6.4.15 -Lasms: Configure the address size in the listing file

Group
Output
Scope

Assembly unit

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

144 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

Syntax

-Lasms{1]2|3]4}

Arguments

1 - The address size is xx

2 - The address size is XXXX

3 - The address size 1S XXXXXX

4 - The address size 1S XXXXXXXX

Default

-Lasms3

Description

The default-configured listing file shows a lot of information. With this option, the size of
the address column can be reduced to the size of interest. To configure which columns

are printed, see the -Lasmc: Configure listing file option. To configure which lines to
print, see the -Lc: No Macro call in listing file, -Ld: No macro definition in listing file, -
Le: No Macro expansion in listing file, and -Li: No included file in listing file assembler
options.

Example

For the following instruction:
NOP

the Assembler generates this default-configured output listing as listed below:

Listing: Example assembler output listing

Abs. Rel. Loc Obj. code Source line

1 1 000000 XX NOP

In order to change the size of the address column the following option is added:
-rasms1. This changes the address size to two digits.
Listing: Example assembler output listing configured with -Lasms1

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 145

See also
Assembler Listing File chapter
Assembler options:

e -Lasmc: Configure listing file

* -L: Generate a listing file

* -Lc: No Macro call in listing file

e -L.d: No macro definition in listing file
* -Le: No Macro expansion in listing file
 -Li: No included file in listing file

6.4.16 -Lc: No Macro call in listing file

Group
Output

Scope
Assembly unit
Syntax

-Lc

Arguments
none
Default
none
Description

Switches on the generation of the listing file, but macro invocations are not present in the
listing file. The listing file contains macro definition and expansion lines as well as
expanded include files.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

146 Freescale Semiconductor, Inc.

g |

Example

ASMOPTIONS=

-Lc

Chapter 6 Assembler Options

In the following example of assembly code, the cpchar macro accept two parameters. The

macro copies the value of the first parameter to the second one.

When the -Lc option is specified, the following portion of assembly source code in the
following listing, along with additional source code (Listing: Example source code from
the macro.inc file) from the macro.inc include file generates the output in the assembly
listing file (Listing: Output assembly listing).

Listing: Example assembly source code

XDEF Start

MyData: SECTION
charl: DS.B 1
char2: DS.B 1

INCLUDE

CodeSec: SECT

Start:

cpChar charl,

NOP

Listing: Example source code from the macro.inc file

ION

cpChar: MACRO

LD D

ST D

ENDM

0, \1

0, \2

"macro.inc"

Listing: Output assembly listing

Abs. Rel
1 1
2 2
3 3
4 4
5 5
6 1i

000000

000001

Source line

XDEF Start
MyData: SECTION
charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"

cpChar: MACRO

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

147

A 4
4\ |

veuailed Listing of All Assembler Options

7 21 LD Do, \1

8 31 ST DO, \2

9 41 ENDM

10 6 CodeSec: SECTION

11 7 Start:

13 2m 000000 XX XXXX + LD DO, charl
14 3m 000003 XX XXXX + ST DO, char2
15 9 000006 01 NOP

The Assembler stores the content of included files in the listing file. The Assembler also
stores macro definitions, invocations, and expansions in the listing file.

The listing file does not contain the line of source code that invoked the macro.
For a detailed description of the listing file, see the Assembler Listing File chapter.
See also

Assembler options:

 -L: Generate a listing file

e -L.d: No macro definition in listing file
* -Le: No Macro expansion in listing file
* -Li: No included file in listing file

6.4.17 -Ld: No macro definition in listing file

Group
Output

Scope
Assembly unit
Syntax

-Ld

Arguments

None

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

148 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options
Default

None
Description

Instructs the Assembler to generate a listing file but not including any macro definitions.
The listing file contains macro invocation and expansion lines as well as expanded
include files.

Example

ASMOPTIONS=-Ld

In the following example of assembly code, the cpchar macro accepts two parameters. The
macro copies the value of the first parameter to the second one.

When the -ra option is specified, the assembly source code in the following listing along
with additional source code (Listing: Example source code from an include file) from the
macro. inc file generates an assembler output listing (Listing: Example assembler output
listing) file:

Listing: Example assembly source code

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2

NOP

Listing: Example source code from an include file

cpChar: MACRO
LD DO, \1

ST DO, \2

ENDM

Listing: Example assembler output listing

Abs. Rel. Loc Obj. code Source line

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 149

A
4

4
A

|
veuailed Listing of All Assembler Options

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DS.B 1

4 4 000001 char2: DS.B 1

5 5 INCLUDE "macro.inc"

6 1i cpChar: MACRO

10 6 CodeSec: SECTION

11 7 Start:

12 8 cpChar charl, char2

13 2m 000000 xxX XXXX + LD DO, charl

14 3m 000003 xxX XXXX + ST DO, char2

15 9 000006 01 NOP

The Assembler stores that content of included files in the listing file. The Assembler also
stores macro invocation and expansion in the listing file.

The listing file does not contain the source code from the macro definition.

For a detailed description of the listing file, see the Assembler Listing File chapter.
See also

Assembler options:

* -L: Generate a listing file

* -Lc: No Macro call in listing file
 -Le: No Macro expansion in listing file
* -Li: No included file in listing file

6.4.18 -Le: No Macro expansion in listing file

Group
Output

Scope
Assembly unit
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

150 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

-Le

Arguments
None
Default
None
Description

Switches on the generation of the listing file, but macro expansions are not present in the
listing file. The listing file contains macro definition and invocation lines as well as
expanded include files.

Example

ASMOPTIONS=-Le

In the following example of assembly code, the cpchar macro accepts two parameters. The
macro copies the value of the first parameter to the second one.

When the -re option is specified, the assembly code in the following listing along with
additional source code (Listing: Example source code from an included file) from the
macro. inc file generates an assembly output listing file (Listing: Example assembler
output listing):

Listing: Example assembly source code

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2

NOP
Listing: Example source code from an included file

cpChar: MACRO
LD DO, \1

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 151

A
4

4
A

|
veuailed Listing of All Assembler Options
ST DO, \2
ENDM
Listing: Example assembler output listing
Abs. Rel. Loc Obj. code Source line
1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 charl: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
7 21 LD DO, \1
8 3i ST DO, \2
9 41 ENDM
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
15 9 000006 01 NOP
The Assembler stores the content of included files in the listing file. The Assembler also
stores the macro definition and invocation in the listing file.
The Assembler does not store the macro expansion lines in the listing file.
For a detailed description of the listing file, see the Assembler Listing File chapter.
See also
-L: Generate a listing file
-Lc: No Macro call in listing file
-Ld: No macro definition in listing file -Li: No included file in listing file
6.4.19 -Li: No included file in listing file
Group
Output

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

152 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options
Scope
Assembly unit
Syntax

-Li

Arguments
None
Default
None
Description

Switches on the generation of the listing file, but include files are not expanded in the
listing file. The listing file contains macro definition, invocation, and expansion lines.

Example

ASMOPTIONS=-Li

In the following example of assembly code, the cpchar macro accepts two parameters. The
macro copies the value of the first parameter to the second one.

When -1i option is specified, the assembly source code in the following listing along with
additional source code (Listing: Example source code in an include file) from the
macro.inc file generates the following output in the assembly listing file:

Listing: Example assembly source code

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2

NOP

Listing: Example source code in an include file

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 153

A
4

4
A

veuailed Listing of All Assembler Options

cpChar: MACRO

LD DO, \1
ST DO, \2
ENDM

Listing: Example assembler output listing

Abs. Rel Loc Obj. code Source line
1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 charl: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 XX XXXX + LD DO, charl
14 3m 000003 XX XXXX + ST DO, char2
15 9 000006 01 NOP

The Assembler stores the macro definition, invocation, and expansion in the listing file.
The Assembler does not store the content of included files in the listing file.

For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

Assembler options:

* -L: Generate a listing file

* -Lc: No Macro call in listing file
 -Ld: No macro definition in listing file
» -Le: No Macro expansion in listing file

6.4.20 -Lic: License information

Group

Various

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

154 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Scope
None

Syntax

-Lic

Arguments
None
Default
None
Description

The -ric option prints the current license information (e.g., if it is a demo version or a
full version). This information is also displayed in the About box.

Example

ASMOPTIONS=-Lic

See also
Assembler options:

* -LicA: License information about every feature in directory
» -LicBorrow: Borrow license feature
» -LicWait: Wait until floating license is available from floating License Server

6.4.21 -LicA: License information about every feature in
directory

Group
Various
Scope

None

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 155

A
4

4
A

veuailed Listing of All Assembler Options

Syntax

-LicA

Arguments
None
Default
None
Description

The -vica option prints the license information of every tool or DLL in the directory
where the executable is (e.g., if tool or feature is a demo version or a full version).
Because the option has to analyze every single file in the directory, this may take a long
time.

Example

ASMOPTIONS=-LicA

See also
Assembler options :

* -Lic: License information
» -LicBorrow: Borrow license feature
» -LicWait: Wait until floating license is available from floating License Server

6.4.22 -LicBorrow: Borrow license feature

Group
Host
Scope
None

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

156 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

-LicBorrow<features>|[;<version>] :<Date>

Arguments
<features: the feature name to be borrowed (e.g., u1100100).
<versions: optional version of the feature to be borrowed (e.g., 3.000).

<dates: date with optional time until when the feature shall be borrowed (e.g., 1s-
Mar-2005:18:35).

Default
None
Defines
None
Pragmas
None
Description

This option lets you borrow a license feature until a given date/time. Borrowing allows
you to use a floating license even if disconnected from the floating license server.

You need to specify the feature name and the date until you want to borrow the feature. If
the feature you want to borrow is a feature belonging to the tool where you use this
option, then you do not need to specify the version of the feature (because the tool is
aware of the version). However, if you want to borrow any feature, you need to specify
the feature's version number.

You can check the status of currently borrowed features in the tool's About box.

NOTE
You only can borrow features if you have a floating license and
if your floating license is enabled for borrowing. See the
provided FLEXIm documentation about details on borrowing.

Example

-LicBorrowHI100100;3.000:12-Mar-2005:18:25

See also

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 157

3
4

4
A

veuailed Listing of All Assembler Options

Assembler options:

* -Lic: License information
* -LicA: License information about every feature in directory
e -LicWait: Wait until floating license is available from floating License Server

6.4.23 -LicWait: Wait until floating license is available from
floating License Server

Group
Host
Scope
None

Syntax

-LicWait

Arguments
None
Default
None
Description

If a license 1s not available from the floating license server, then the default condition is
that the application will immediately return. With the -vicwaic assembler option set, the
application will wait (blocking) until a license is available from the floating license
Server.

Example

ASMOPTIONS=-LicWait

See also

Assembler options:

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

158 Freescale Semiconductor, Inc.

A\ 4
A
Chapter 6 Assembler Options

e _Lic: License information
* -LicA: License information about every feature in directory
e -LicBorrow: Borrow license feature

6.4.24 -LI: Show label statistics

Group
Output
Syntax

-11

Arguments
None
Description

It displays label statistics in the list file.The option gives the gain in terms of code size for
a label if moved to SHORT or TINY section.

Example:

Test.asm:

TINY RAM VARS: SECTION S12Z SHORT;Insert your data
definition here

tmp: DS.B 1..

FiboLoop: ST DO, tmp ; store last
RTS

Test.lst:

Freescale Assembler
Ind. Name tiny short

1 tmp 1 1

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 159

veuailed Listing of All Assembler Options

6.4.25 -MacroNest: Configure maximum macro nesting

Group
Language
Scope
Assembly Unit
Syntax

-MacroNest<Value>

Arguments
<value>: max. allowed nesting level

Default

3000

Description

This option controls how deep macros calls can be nested. Its main purpose is to avoid
endless recursive macro invocations.

Example

See the description of message A1004 for an example.

6.4.26 Message A1004 (available in the Online Help)

6.4.27 -MCUasm: Switch compatibility with MCUasm ON

Group
Various

Scope
Assembly Unit

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

160 Freescale Semiconductor, Inc.

A\ 4
A
Chapter 6 Assembler Options

Syntax

-MCUasm

Arguments
None
Default
None
Description

This switches on compatibility mode with the MCUasm Assembler. Additional features
supported, when this option is activated are enumerated in the MCUasm Compatibility
chapter in the Appendices.

Example

ASMOPTIONS=-MCUasm

6.4.28 -N: Display notify box

Group
Messages
Scope
Assembly Unit
Syntax

Arguments
None

Default

None

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 161

veuailed Listing of All Assembler Options

Description

Makes the Assembler display an alert box if there was an error during assembling. This is
useful when running a makefile (please see the manual about Build Tools) because the
Assembler waits for the user to acknowledge the message, thus suspending makefile
processing. (The '~ stands for "Notify".)

This feature i1s useful for halting and aborting a build using the Make Utility.

Example
ASMOPTIONS=-N

If an error occurs during assembling, an alert dialog box will be opened.

6.4.29 -NoBeep: No beep in case of an error

Group
Messages
Scope
Assembly Unit
Syntax

-NoBeep

Arguments
None
Default
None
Description

Normally there is a “beep' notification at the end of processing if there was an error. To
have a silent error behavior, this “beep' may be switched off using this option.

Example

ASMOPTIONS=-NoBeep

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

162 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

6.4.30 -NoDebuginfo: No debug information for ELF/DWARF files

Group
Language
Scope
Assembly Unit
Syntax

-NoDebugInfo

Arguments
None
Default
None
Description

By default, the Assembler produces debugging info for the produced ELF/DW AREF files.
This can be switched off with this option.

Example

ASMOPTIONS=-NoDebugInfo

6.4.31 -NoEnv: Do not use environment

Group

Startup (This option cannot be specified interactively.)
Scope

Assembly Unit

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 163

3
4

4
A

veuailed Listing of All Assembler Options

Syntax

-NoEnv

Arguments
None
Default
None
Description

This option can only be specified at the command line while starting the application. It
cannot be specified in any other circumstances, including the gefauit.env file, the
command line or whatever.

When this option is given, the application does not use any environment (default.env,
project.ini O tlpS flle)

Example
xx.exe -NoEnv

(Use the actual executable name instead of xx)
See also

Environment chapter

6.4.32 -ODbjN: Object filename specification

Group

Output

Scope
Assembly Unit
Syntax

-ObjN<FileName>

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

164 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

Arguments

<rilename>: Name of the binary output file generated.
Default

-objNsn.o When generating a relocatable file or
-objNsn.abs When generating an absolute file.
Description

Normally, the object file has the same name than the processed source file, but with the .o
extension when relocatable code is generated or the .abs extension when absolute code is
generated. This option allows a flexible way to define the output filename. The modifier
sn can also be used. It is replaced with the source filename. If <zi1e> in this option
contains a path (absolute or relative), the osseats environment variable is ignored.

Example

For asvoprions=-objNa.out, the resulting object file will be a.out. If the ossrara environment
variable is set to \src\obj, the object file will be \src\obj\a.out.

For
fibo.c -ObjN%n.obj, the resulting object file will be
fibo.obj.

For myfile.c -objN..\objects_ %n.obj, the object file will be named relative to the current
directory to ...\objects_myfile.obj. Note that the environment variable oeseaTs is ignored,
because <file> contains a path.

See also

OBJPATH: Object file path environment variable

6.4.33 -Prod: Specify project file at startup

Group

None (This option cannot be specified interactively.)
Scope

None

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 165

veuailed Listing of All Assembler Options

-Prod=<file>

Arguments

<files: name of a project or project directory
Default

None

Description

This option can only be specified at the command line while starting the application. It
cannot be specified in any other circumstances, including the dgefauit.env file, the
command line or whatever.

When this option is given, the application opens the file as configuration file. When the
filename does only contain a directory, the default name project.ini 1s appended. When
the loading fails, a message box appears.

Example
assembler.exe -Prod=project.ini

(Use the Assembler's executable name instead of assembler.)
See also

Environment chapter

6.4.34 -Struct: Support for structured types

Group

Input

Scope
Assembly Unit
Syntax

-Struct

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

166 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Arguments
None
Default
None
Description

When this option is activated, the Macro Assembler also support the definition and usage
of structured types. This is interesting for application containing both ANSI-C and
Assembly modules.

Example

ASMOPTIONS=-Struct

See also

Mixed C and Assembler Applications chapter

6.4.35 -V: Prints the Assembler version

Group
Various
Scope
None

Syntax

Arguments
None
Default
None

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 167

g |

veuailed Listing of All Assembler Options

Prints the Assembler version and the current directory.
NOTE

Use this option to determine the current directory of the
Assembler.

Example
-V produces the following listing:

Listing: Example of a version listing

Command Line '-v'
Assembler V-5.0.8, Jul 7 2005

Directory: C:\Freescale\demo

Common Module V-5.0.7, Date Jul 7 2005

User Interface Module, V-5.0.17, Date Jul 7 2005
Assembler Kernel, V-5.0.13, Date Jul 7 2005

Assembler Target, V-5.0.8, Date Jul 7 2005

6.4.36 -View: Application standard occurrence

Group

Host

Scope
Assembly Unit
Syntax

-View<kind>

Arguments
<kind> 1S one of the following:

* 'window": Application window has the default window size.

e min": Application window is minimized.

e max": Application window is maximized.

* 'midden": Application window is not visible (only if there are arguments).

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

168 Freescale Semiconductor, Inc.

Default

Chapter 6 Assembler Options

Application is started with arguments: Minimized.

Application is started without arguments: window.

Description

Normally, the application is started with a normal window if no arguments are given. If
the application is started with arguments (e.g., from the Maker to assemble, compile, or
link a file), then the application is running minimized to allow for batch processing.
However, the application's window behavior may be specified with the View option.

Using -viewwindow, the application is visible with its normal window. Using -viewmin the
application is visible iconified (in the task bar). Using -viewmax, the application is visible
maximized (filling the whole screen). Using -viewnidgen, the application processes

arguments (e.g.

, files to be compiled or linked) completely invisible in the background

(no window or icon visible in the task bar). However, for example, if you are using the -
N: Display notify box assembler option, a dialog box is still possible.

Example

C:\Freescale\prog\linker.exe -ViewHidden fibo.prm

6.4.37 -W1

Group
Messages
Scope
Assembly Unit
Syntax

-W1l

Arguments
None
Default

None

: No information messages

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc. 169

A\ 4
N
veuailed Listing of All Assembler Options

Description

Inhibits the Assembler's printing INFORMATION messages. Only WARNING and
ERROR messages are written to the error listing file and to the assembler window.

Example

ASMOPTIONS=-W1

6.4.38 -W2: No information and warning messages

Group
Messages
Scope
Assembly Unit
Syntax

-W2

Arguments
None
Default
None
Description

Suppresses all messages of INFORMATION or WARNING types. Only ERROR
messages are written to the error listing file and to the assembler window.

Example

ASMOPTIONS=-W2

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

170 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

6.4.39 -WErrFile: Create "err.log" error file

Group
Messages
Scope
Assembly Unit
Syntax

-WErrFile (On|Off)

Arguments

None

Default

an err.log file is created or deleted.
Description

The error feedback from the Assembler to called tools is now done with a return code. In
16-bit Windows environments this was not possible. So in case of an error, an "err.log"
file with the numbers of written errors was used to signal any errors. To indicate no
errors, the "err.log"file would be deleted. Using UNIX or WIN32, a return code is now
available. Therefore, this file is no longer needed when only UNIX or WIN32
applications are involved. To use a 16-bit Maker with this tool, an error file must be
created in order to signal any error.

Example

® _WErrFileOn
err.log 18 created or deleted when the application is finished.
® _WErrFileOff

existing err.1og 1S not modified.

See also
-WStdout: Write to standard output

-WOutFile: Create error listing file

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 171

3
4

4
A

veuailed Listing of All Assembler Options

6.4.40 -Wmsg8x3: Cut filenames in Microsoft format to 8.3

Group
Messages
Scope
Assembly Unit
Syntax

-Wmsg8x3

Default
None
Description

Some editors (e.g., early versions of WinEdit) are expecting the filename in the Microsoft
message format in a strict 8.3 format. That means the filename can have at most 8
characters with not more than a 3-character extension. Using a newer Windows OS,
longer file names are possible. With this option the filename in the Microsoft message is
truncated to the 8.3 format.

Example

x:\mysourcefile.c(3): INFORMATION C2901: Unrolling loop

With the -Wmsg8x3 option set, the above message will be

x:\mysource.c(3): INFORMATION C2901: Unrolling loop

See also
* -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFoi: Message format for interactive mode
* -WmsgFob: Message format for batch mode Option
* -WmsgFonp: Message format for no position information

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

172 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

6.4.41 -WmsgCE: RGB color for error messages

Group

Messages

Scope
Compilation Unit
Syntax

-WmsgCE<

RGB>

Arguments
<rce>: 24-bit RGB (red green blue) value.
Default

-WmsgCE16711680 (
rFF

go00

b00, red)

Description

It is possible to change the error message color with this option. The value to be specified
has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgce25s changes the error messages to blue.

6.4.42 -WmsgCF: RGB color for fatal messages

Group
Messages

Scope

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 173

3
4

4
A

veuailed Listing of All Assembler Options

Compilation Unit

Syntax

-WmsgCF<

RGB>

Arguments
<rce>: 24-bit RGB (red green blue) value.
Default

-WmsgCF8388608 (
r80

g00

b00, dark red)

Description

It is possible to change the fatal message color with this option. The value to be specified
has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgcr2ss changes the fatal messages to blue.

6.4.43 -WmsgCl: RGB color for information messages

Group

Messages

Scope
Compilation Unit
Syntax

-WmsgCI<

RGB>

Arguments

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

174 Freescale Semiconductor, Inc.

g |

Chapter 6 Assembler Options

<rGB>: 24-bit RGB (red green blue) value.
Default

-WmsgCI32768 (
r00

g80

b00, green)

Description

It is possible to change the information message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgc1255 changes the information messages to blue.

6.4.44 -WmsgCU: RGB color for user messages

Group

Messages

Scope
Compilation Unit
Syntax

-WmsgCU<

RGB>

Arguments
<rce>: 24-bit RGB (red green blue) value.
Default

-WmsgCUO (
r00
g00
b00, black)

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 175

veuailed Listing of All Assembler Options

Description

It is possible to change the user message color with this option. The value to be specified
has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgcuzss changes the user messages to blue.

6.4.45 -WmsgCW: RGB color for warning messages

Group

Messages

Scope
Compilation Unit

Syntax

-WmsgCW<

RGB>

Arguments
<rGB>: 24-bit RGB (red green blue) value.
Default

-WmsgCW255 (
r00

g00

bFF, blue)

Description

It is possible to change the warning message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgcwo changes the warning messages to black.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

176 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

6.4.46 -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file
format for batch mode

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFb [v | m]

Arguments
v: Verbose format.
m: Microsoft format.

Default

-WmsgFbm

Description

The Assembler can be started with additional arguments (e.g., files to be assembled
together with assembler options). If the Assembler has been started with arguments (e.g.,
from the Make tool), the Assembler works in the batch mode. That is, no assembler
window is visible and the Assembler terminates after job completion.

If the Assembler is in batch mode, the Assembler messages are written to a file and are
not visible on the screen. This file only contains assembler messages (see examples
below).

The Assembler uses a Microsoft message format as the default to write the assembler
messages (errors, warnings, or information messages) if the Assembler is in the batch
mode.

With this option, the default format may be changed from the Microsoft format (with
only line information) to a more verbose error format with line, column, and source
information.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 177

g |

veuailed Listing of All Assembler Options

Example

Assume that the assembly source code in the following listing is to be assembled in the
batch mode.

Listing: Example assembly source code

varl: equ 5
var2: equ 5

if (varl=var2)
NOP
endif

endif

The Assembler generates the error output, as shown in the following listing, in the
assembler window if it is running in batch mode:

Listing: Example error listing in the Microsoft (default) format for batch mode

X:\TW2.ASM(12) :ERROR: Conditional else not allowed here.

If the format is set to verbose, more information is stored in the file:

Listing: Example error listing in the verbose format for batch mode

ASMOPTIONS=-WmsgFbv
>> in "C:\tw2.asm", line 6, col 0, pos 81

endif

ERROR A1001: Conditional else not allowed here

See also

ERRORFILE: Filename specification error

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
-WmsgFob: Message format for batch mode

-WmsgFoi: Message format for interactive mode

-WmsgFonf: Message format for no file information

-WmsgFonp: Message format for no position information

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

178 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

6.4.47 -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format
for interactive mode

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFi [v|m]

Arguments
v: Verbose format.
m: Microsoft format.

Default

-WmsgFiv

Description

If the Assembler is started without additional arguments (e.g., files to be assembled
together with Assembler options), the Assembler is in the interactive mode (that is, a
window is visible).

While in interactive mode, the Assembler uses the default verbose error file format to
write the assembler messages (errors, warnings, information messages).

Using this option, the default format may be changed from verbose (with source, line and
column information) to the Microsoft format (which displays only line information).

NOTE
Using the Microsoft format may speed up the assembly process
because the Assembler has to write less information to the
screen.

Example

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 179

veuailed Listing of All Assembler Options

If the Assembler is running in interactive mode, the default error output is shown in the
assembler window as in the following listing.

Listing: Example error listing in the default mode for interactive mode

>> in "X:\TWE.ASM", line 12, col 0, pos 215
endif

endif

ERROR A1001: Conditional else not allowed here

Setting the format to Microsoft, less information is displayed:

Listing: Example error listing in Microsoft format for interactive mode

ASMOPTIONS=-WmsgFim
X:\TWE.ASM(12) : ERROR: conditional else not allowed here

See also
ERRORFILE: Filename specification error environment variable
Assembler options:

e -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
* -WmsgFob: Message format for batch mode

* -WmsgFoi: Message format for interactive mode

* -WmsgFonf: Message format for no file information

* -WmsgFonp: Message format for no position information

6.4.48 -WmsgFob: Message format for batch mode

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFob<string>

Arguments

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

180 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

<string>: format string (see below).

Default

-WmsgFob"%f%e (%1) : %K %d: %m\n"

Description

With this option it is possible to modify the default message format in the batch mode.
The formats in in the following listing are supported (assumed that the source file is x:

\Freescale\sourcefile.asmx).

Listing: Supported formats for messages in the batch node

Format Description Example

%s Source Extract

$p Path x:\Freescale\
st Path and name x:\Freescale\sourcefile
$n Filename sourcefile

%e Extension .asmx

$N File (8 chars) sourcefi

$E Extension (3 chars) .asm

$1 Line 3

e Column 47

%0 Pos 1234

$K Uppercase kind ERROR

sk Lowercase kind error

sd Number Al051

Fm Message text

%% Percent %

\n New line

Example

ASMOPTIONS=-WmsgFob"%f%e (%1): %k %d: $m\n"

produces a message, displayed in in the following listing, using the format in in the above
listing. The options are set for producing the path of a file with its filename, extension,
and line.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 181

A\ 4
N
veuailed Listing of All Assembler Options

Listing: Error message

x:\Freescale\sourcefile.asmx (3): error A1051: Right parenthesis expected
See also
Assembler options:

* -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode

* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFoi: Message format for interactive mode

* -WmsgFonf: Message format for no file information

* -WmsgFonp: Message format for no position information

6.4.49 -WmsgFoi: Message format for interactive mode

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFoi<string>

Arguments
<string>: format string (see below)

Default

-WmsgFoi"\n>> in \"%f%e\", line %1, col %c, pos
$o\n%s\n%K %d: sm\n"

Description

With this option it is possible modify the default message format in interactive mode. The
following formats are supported (supposed that the source file is x:\Freescale

\sourcefile.asmx):
Listing: Supported message formats - interactive mode

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

182 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Format Description Example

o\°
0]

Source Extract

$p Path x:\Freescale\
st Path and name x:\Freescale\sourcefile
$n Filename sourcefile

e Extension .asmx

$N File (8 chars) sourcefi

$E Extension (3 chars) .asm

$1 Line 3

sC Column 47

%0 Pos 1234

3K Uppercase kind ERROR

sk Lowercase kind error

sd Number Al1051

sm Message text

5% Percent %

\n New line

Example

ASMOPTIONS=-WmsgFoi"%f%e (%1): %k %d: %m\n"

produces a message in following listed format:

Listing: Error message resulting from the statement above

x:\Freescale\sourcefile.asmx(3) : error Al051: Right parenthesis
expected

See also

ERRORFILE: Filename specification error environment variable

Assembler options:

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
-WmsgFob: Message format for batch mode

-WmsgFonf: Message format for no file information

-WmsgFonp: Message format for no position information

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc. 183

A 4
4\ L __

veuailed Listing of All Assembler Options

6.4.50 -WmsgFonf: Message format for no file information

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFonf<string>

Arguments
<string>: format string (see below)

Default

-WmsgFonf"%K %d: %m\n"

Description

Sometimes there is no file information available for a message (e.g., if a message not
related to a specific file). Then this message format string is used. The following formats
are supported:

Format Description Example
3K Uppercase kind ERROR
sk Lowercase kind error

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

184 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

d Number 110324
sm Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFonf"%k %d: %m\n"

produces a message in following format:

information L10324: Linking successful

See also
ERRORFILE: Filename specification error environment variable
Assembler options:

* -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode

* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFob: Message format for batch mode

* -WmsgFoi: Message format for interactive mode

* -WmsgFonp: Message format for no position information

6.4.51 -WmsgFonp: Message format for no position information

Group
Messages
Scope
Assembly Unit

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 185

A\ 4
N
veuailed Listing of All Assembler Options

Syntax

-WmsgFonp<string>

Arguments

<string>: format string (see below)

Default

-WmsgFonp"%$f%e: %K %d: %m\n"

Description

Sometimes there is no position information available for a message (e.g., if a message not
related to a certain position). Then this message format string is used. The following
formats are supported (supposed that the source file is x:\Freescale\sourcefile.asmx)

Listing: Supported message formats for when there is no position information

Format Description Example

$p Path x:\Freescale\
st Path and name x:\Freescale\sourcefile
$n Filename sourcefile

%e Extension .asmx

SN File (8 chars) sourcefi

$E Extension (3 chars) .asm

$K Uppercase kind ERROR

sk Lowercase kind error

sd Number L10324

sm Message text

%% Percent %

\n New line

Example

ASMOPTIONS=-WmsgFonf"%k %d: %$m\n"

produces a message in following format:

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

186 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

information L10324: Linking successful

See also
ERRORFILE: Filename specification error environment variable
Assembler options:

* -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode

* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFob: Message format for batch mode

* -WmsgFoi: Message format for interactive mode

* -WmsgFonf: Message format for no file information

6.4.52 -WmsgNe: Number of error messages

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgNe<number>

Arguments
<number>: Maximum number of error messages.

Default

50

Description

With this option the amount of error messages can be reported until the Assembler stops
assembling. Note that subsequent error messages which depends on a previous one may
be confusing.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 187

A\ 4
N
veuailed Listing of All Assembler Options

Example

ASMOPTIONS=-WmsgNe2

The Assembler stops assembling after two error messages.
See also
Assembler options:

e -WmsgNi: Number of Information messages
* -WmsgNw: Number of Warning messages

6.4.53 -WmsgNi: Number of Information messages

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgNi<numbers>

Arguments
<number>: Maximum number of information messages.

Default

50

Description
With this option the maximum number of information messages can be set.

Example
ASMOPTIONS=-WmsgNil0

Only ten information messages are logged.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

188 Freescale Semiconductor, Inc.

See also
Assembler options:

* -WmsgNe: Number of error messages
* -WmsgNw: Number of Warning messages

6.4.54 -WmsgNu: Disable user messages

Group
Messages
Scope
None

Syntax

-WmsgNu [={a|b|c]|d}]

Arguments

a: Disable messages about include files

p: Disable messages about reading files

<: Disable messages about generated files

a: Disable messages about processing statistics
e: Disable informal messages

Default

None

Description

Chapter 6 Assembler Options

The application produces some messages which are not in the normal message categories
(WARNING, INFORMATION, ERROR, or FATAL). With this option such messages
can be disabled. The purpose for this option is to reduce the amount of messages and to

simplify the error parsing of other tools:

* a: The application provides information about all included files. With this suboption

this option can be disabled.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

189

veuailed Listing of All Assembler Options

* b: With this suboption messages about reading files e.g., the files used as input can be
disabled.

* c: Disables messages informing about generated files.

* 4: At the end of the assembly, the application may provide information about
statistics, e.g., code size, RAM/ROM usage, and so on. With this suboption this
option can be disabled.

* o: With this option, informal messages (e.g., memory model, floating point format,
etc.) can be disabled.

NOTE
Depending on the application, not all suboptions may make
sense. In this case they are just ignored for compatibility.

Example

-WmsgNu=c

6.4.55 -WmsgNw: Number of Warning messages

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgNw<number>

Arguments
<number>: Maximum number of warning messages.

Default

50

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

190 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

With this option the maximum number of warning messages can be set.

Example

ASMOPTIONS=-WmsgNwl5

Only 15 warning messages are logged.
See also
Assembler options:

* -WmsgNe: Number of error messages
* -WmsgNi: Number of Information messages

6.4.56 -WmsgSd: Setting a message to disable

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgSd<number>

Arguments

<number>: Message number to be disabled, e.g., 1801

Default

None

Description

With this option a message can be disabled so it does not appear in the error output.
Example

-WmsgSd1801

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 191

vy

N
veuailed Listing of All Assembler Options
See also
Assembler options:

e -WmsgSe: Setting a message to Error
* -WmsgSi: Setting a message to Information
* -WmsgSw: Setting a Message to Warning

6.4.57 -WmsgSe: Setting a message to Error

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgSe<number>

Arguments

<number>: Message number to be an error, €.g., 1853
Default

None

Description

Allows changing a message to an error message.

Example

-WmsgSel853

See also
e -WmsgSd: Setting a message to disable
* -WmsgSi: Setting a message to Information
* -WmsgSw: Setting a Message to Warning

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

192 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

6.4.58 -WmsgSi: Setting a message to Information

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgSi<numbers>

Arguments

<number>: Message number to be an information, e.g., 1853
Default

None

Description

With this option a message can be set to an information message.

Example

-WmsgSi1853

See also
Assembler options:

* -WmsgSd: Setting a message to disable
* -WmsgSe: Setting a message to Error
* -WmsgSw: Setting a Message to Warning

6.4.59 -WmsgSw: Setting a Message to Warning

Group

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 193

A\ 4
4\ |
veuailed Listing of All Assembler Options
Messages
Scope
Assembly Unit

Syntax

-WmsgSw<number>

Arguments

<number>: Error number to be a warning, e.g., 2901

Default

None

Description

With this option a message can be set to a warning message.

Example

-WmsgSw2901

See also
Assembler options:

* -WmsgSd: Setting a message to disable
* -WmsgSe: Setting a message to Error
* -WmsgSi: Setting a message to Information

6.4.60 -WOutFile: Create error listing file

Group
Messages
Scope
Assembly Unit
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

194 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

-WOutFile (On|Off)
Arguments

None

Default

Error listing file is created.
Description

This option controls if a error listing file should be created at all. The error listing file
contains a list of all messages and errors which are created during a assembly process.
Since the text error feedback can now also be handled with pipes to the calling
application, it is possible to obtain this feedback without an explicit file. The name of the
listing file is controlled by the environment variable ERRORFILE: Filename
specification error.

Example

-WOutFileOn

The error file 1s created as specified with errorrrrLE.

-WErrFileOff

No error file is created.
See also
Assembler options:

» -WErrFile: Create "err.log" error file
» -WStdout: Write to standard output

6.4.61 -WStdout: Write to standard output

Group
Messages

Scope

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 195

A\ 4
N
veuailed Listing of All Assembler Options

Assembly Unit
Syntax

-WStdout (On|Off)

Arguments

None

Default

output is written to stdout
Description

With Windows applications, the usual standard streams are available. But text written
into them does not appear anywhere unless explicitly requested by the calling application.
With this option is can be controlled if the text to error file should also be written into

stdout.

Example

-WStdoutOn

All messages are written to stdout.

-WErrFileOff

Nothing is written to stdout.
See also
Assembler options:

» -WETrrFile: Create "err.log" error file
e -WOutFile: Create error listing file

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

196 Freescale Semiconductor, Inc.

Chapter 7
Sections

Sections are portions of code or data that cannot be split into smaller elements. Each
section has a name, a type, and some attributes.

Each assembly source file contains at least one section. The number of sections in an
assembly source file is only limited by the amount of memory available on the system at
assembly time. If several sections with the same name are detected inside of a single
source file, the code is concatenated into one large section.

Sections from different modules, but with the same name, will be combined into a single
section at linking time.

Sections are defined through Section attributes and Section types. The last part of the
chapter deals with the merits of using relocatable sections (for more information, refer to
the topic Relocatable vs. absolute sections).

7.1 Section attributes

An attribute is associated with each section according to its content. A section may be:

* a data section,
* a constant data section, or
* a code section.

7.1.1 Code sections

A section containing at least one instruction is considered to be a code section. Code
sections are always allocated in the target processor's rom area.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 197

secuon types

Code sections should not contain any variable definitions (variables defined using the ps
directive). You do not have any write access on variables defined in a code section. In
addition, variables in code sections cannot be displayed in the debugger as data.

7.1.2 Constant sections

A section containing only constant data definition (variables defined using the oc or pcs
directives) is considered to be a constant section. Constant sections should be allocated in
the target processor's rou area, otherwise they cannot be initialized at application loading
time.

7.1.3 Data sections

A section containing only variables (variables defined using the DS directive) is
considered to be a data section. Data sections are always allocated in the target
processor's RAM area.

NOTE
A section containing variables (ps) and constants (oc) or code
is not a data section. The default for such a section with mixed
DC and code content is to put that content into ROM.

We strongly recommend that you use separate sections for the definition of variables and
constant variables. This will prevent problems in the initialization of constant variables.

7.2 Section types

First of all, you should decide whether to use relocatable or absolute code in your
application. The Assembler allows the mixing of absolute and relocatable sections in a
single application and also in a single source file. The main difference between absolute
and relocatable sections is the way symbol addresses are determined.

This section covers these two types of sections:

e Absolute sections
e Relocatable sections

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

198 Freescale Semiconductor, Inc.

Chapter 7 Sections

7.2.1 Absolute sections

The starting address of an absolute section is known at assembly time. An absolute
section is defined through the ORG - Set Location Counter assembler directive. The
operand specified in the ORG directive determines the start address of the absolute
section. The following listing shows an example of constructing absolute sections using
the orc assembler directive.

Listing: Example source code using ORG for absolute sections

XDEF entry
ORG $8000 ; Absolute constant data section.

cstl: DC.B $26

cst2: DC.B $BC

ORG $080 ; Absolute data section.
var: DS.B 1

ORG $8010 ; Absolute code section.

entry:
LD DO,cstl ; Loads value in cstl
ADD DO,cst2 ; Adds value in cst2
ST DO,var ; Stores result into var

BRA entry

In the previous example, two bytes of storage are allocated starting at address saoo. The
constantvariable - st1 - will be allocated one byte at address $sooo0 and another constant -
cst2 - Will be allocated one byte at address ssoo1. All subsequent instructions or data
allocation directives will be located in this absolute section until another section is
specified using the ors or secrron directives.

When using absolute sections, it is the user's responsibility to ensure that there is no
overlap between the different absolute sections defined in the application. In the previous
example, the programmer should ensure that the size of the section starting at address
sso00 1S not bigger than s10 bytes, otherwise the section starting at ssooo and the section
starting at sso10 will overlap.

Even applications containing only absolute sections must be linked. In that case, there
should not be any overlap between the address ranges from the absolute sections defined
in the assembly file and the address ranges defined in the linker parameter (PRM) file.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 199

secuon types

The PRM file used to link the example above, can be defined as the following listing
displays.

Listing: Example PRM file for linking source code using ORG for absolute sections

LINK test.abs /* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */

END

SECTIONS

/* READ_ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */
MY ROM = READ ONLY 0x8000 TO OxFDFF;

/* READ WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly

source file. */

MY RAM = READ WRITE 0x0100 TO 0x023F;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY RAM. */

DEFAULT RAM, SSTACK INTO MY RAM;

/* Relocatable code and constant sections are allocated in MY ROM. */
DEFAULT_ ROM INTO MY_ ROM;

END

STACKSTOP $014F /* Initializes the stack pointer */

INIT entry /* entry is the entry point to the application. */

VECTOR ADDRESS OxXFFFE entry /* Initialization for Reset vector.*/

The linker PRM file contains at least:

e The name of the absolute file (.zvk command).

* The name of the object file which should be linked (naves command).

» The specification of a memory area where the sections containing variables must be
allocated. At least the predefined peraurr ram (Or its ELF alias ~.data') section must be
placed there. For applications containing only absolute sections, nothing will be
allocated (sectrons and pracement commands).

» The specification of a memory area where the sections containing code or constants
must be allocated. At least the predefined section peraurt rom (or its ELF alias ~.4ata)

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

200 Freescale Semiconductor, Inc.

4
Chapter 7 Sections
must be placed there. For applications containing only absolute sections, nothing will
be allocated (secrrons and pracement commands).
» The specification of the application entry point (rnrT command)
* The definition of the reset vector (vector appress command)

7.2.2 Relocatable sections

The starting address of a relocatable section is evaluated at linking time according to the
information stored in the linker parameter file. A relocatable section is defined through
the SECTION - Declare Relocatable Section assembler directive. The following listing
shows an example using the secrron directive.

Listing: Example source code using SECTION for relocatable sections

XDEF entry

constSec: SECTION ; Relocatable constant data section.
cstl: DC.B SA6
cst2: DC.B S$BC
dataSec: SECTION ; Relocatable data section.
var: DS.B 1
codeSec: SECTION ; Relocatable code section.
entry:

LD DO,cstl ; Load value into cstl

ADD DO, cst2 ; Add value in cst2

ST DO, var ; Store into var

BRA entry

In the previous example, two bytes of storage are allocated in the constsec section. The
constant csc1 1s allocated at the start of the section at address saoo and another constant
cst2 18 allocated at an offset of 1 byte from the beginning of the section. All subsequent
instructions or data allocation directives will be located in the relocatable constSec
section until another section is specified using the ors or secrion directives.

When using relocatable sections, the user does not need to care about overlapping
sections. The linker will assign a start address to each section according to the input from
the linker parameter file.

The user can decide to define only one memory area for the code and constant sections
and another one for the variable sections or to split the sections over several memory
areas.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 201

secuon types

7.2.2.1 Example: Defining one RAM and one ROM area.

When all constant and code sections as well as data sections can be allocated
consecutively, the PRM file used to assemble the example above can be defined as the
following listing displays.

Listing: PRM file

LINK test.abs/* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */

END

SECTIONS

/* READ ONLY memory area. */
MY ROM = READ ONLY 0x8000 TO OxFDFF;

/* READ WRITE memory area. */
MY RAM = READ WRITE 0x0100 TO 0x023F;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY RAM. */
DEFAULT RAM, dataSec , SSTACK INTO MY RAM;

/* Relocatable code and constant sections are allocated in MY ROM. */

DEFAULT_ ROM, constSec INTO MY ROM;
END
INIT entry /* entry is the entry point to the application. */

VECTOR ADDRESS OxFFFE entry /* Initialization for Reset vector.*/

The linker PRM file contains at least:

The name of the absolute file (rzvx command).

The name of the object files which should be linked (xaves command).

The specification of a memory area where the sections containing variables must be
allocated. At least the predefined peraurr ram section (or its ELF alias .data) must be
placed there (secrrons and pracevent commands).

The specification of a memory area where the sections containing code or constants
must be allocated. At least, the predefined peraurr _rom section (or its ELF alias . text)
must be placed there (secrrons and pracement cOmmands).

Constants sections should be defined in the ROM memory area in the pracemenT
section (otherwise, they are allocated in RAM).

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

202 Freescale Semiconductor, Inc.

3
4

4
A

4
Chapter 7 Sections

 The specification of the application entry point (rxrT command).
e The definition of the reset vector (vector appress command).

According to the PRM file above:

* the datasec section will be allocated starting at oxooso.
* the cogesec section will be allocated starting at oxosoo.
* the constsec section will be allocated next to the codesec section.

7.2.2.2 Example: Defining multiple RAM and ROM areas

When all constant and code sections as well as data sections cannot be allocated
consecutively, the PRM file used to link the example above can be defined as the
following listing displays:

Listing: PRM file

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS

/* Two READ ONLY memory areas */
ROM AREA 1= READ ONLY 0x8000 TO 0x800F;
ROM AREA 2= READ ONLY 0x8010 TO OxFDFF;
/* Three READ WRITE memory areas */
RAM AREA 1= READ WRITE 0x0040 TO O0xO00FF; /* zero-page memory area */
RAM AREA 2= READ WRITE 0x0100 TO Ox01lFF;
MY STK = READ WRITE 0x0200 TO 0x023F; /* Stack memory area */
END
PLACEMENT

/* Relocatable variable sections are allocated in MY RAM. */

datasec INTO RAM AREA 2;
DEFAULT_ RAM INTO RAM AREA 1;
SSTACK INTO MY STK; /* Stack allocated in MY STK */

/* Relocatable code and constant sections are allocated in MY ROM. */
constSec INTO ROM_AREA 2;

codeSec, DEFAULT ROM INTO ROM AREA 1;

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 203

rieivcatable vs. absolute sections

END
INIT entry /* Application's entry point. */

VECTOR 0 entry /* Initialization of the reset vector. */

The linker PRM file contains at least:

* The name of the absolute file (nzxxk command).

* The name of the object files which should be linked (vaves command).

 The specification of memory areas where the sections containing variables must be
allocated. At least, the predefined peraurr ram section (or its ELF alias ~.data') must
be placed there (SECTIONS and PLACEMENT commands).

 The specification of memory areas where the sections containing code or constants
must be allocated. At least the predefined peraurt rom section (or its ELF alias ~.cext')
must be placed there (secrrons and pracement commands).

 Constants sections should be defined in the ROM memory area in the rracevent
section (otherwise, they are allocated in RAM).

 The specification of the application entry point (zxrr command)

* The definition of the reset vector (vecror command)

According to the PRM file listed above,

* the datasec section is allocated starting at oxo1o0.

* the constSec section is allocated starting at oxsooo.

* the codesec section is allocated starting at oxso1o.

* 64 bytes of RAM are allocated in the stack starting at oxozoo.

7.3 Relocatable vs. absolute sections

Generally, we recommend developing applications using relocatable sections.
Relocatable sections offer several advantages.

7.3.1 Modularity

An application is more modular when programming can be divided into smaller units
called sections. The sections themselves can be distributed among different source files.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

204 Freescale Semiconductor, Inc.

Chapter 7 Sections

7.3.2 Multiple developers

When an application is split over different files, multiple developers can be involved in
the development of the application. To avoid major problems when merging the different
files, attention must be paid to the following items:

* An include file must be available for each assembly source file, containing xrer
directives for each exported variable, constant and function. In addition, the interface
to the function should be described there (parameter passing rules as well as the
function return value).

* When accessing variables, constants, or functions from another module, the
corresponding include file must be included.

* Variables or constants defined by another developer must always be referenced by
their names.

» Before invoking a function implemented in another file, the developer should respect
the function interface, i.e., the parameters are passed as expected and the return value
1s retrieved correctly.

7.3.3 Early development

The application can be developed before the application memory map is known. Often
the application's definitive memory map can only be determined once the size required
for code and data can be evaluated. The size required for code or data can only be
quantified once the major part of the application is implemented. When absolute sections
are used, defining the definitive memory map is an iterative process of mapping and
remapping the code. The assembly files must be edited, assembled, and linked several
times. When relocatable sections are used, this can be achieved by editing the PRM file
and linking the application.

7.3.4 Enhanced portability

As the memory map is not the same for each derivative (MCU), using relocatable
sections allow easy porting of the code for another MCU. When porting relocatable code
to another target you only need to link the application again with the appropriate memory
map.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 205

A 4
4\ |

rieivcatable vs. absolute sections

7.3.5 Tracking overlaps

When using absolute sections, the programmer must ensure that there is no overlap
between the sections. When using relocatable sections, the programmer does not need to
be concerned about any section overlapping another. The labels' offsets are all evaluated
relatively to the beginning of the section. Absolute addresses are determined and assigned
by the linker.

7.3.6 Reusability

When using relocatable sections, code implemented to handle a specific I/0O device (serial
communication device), can be reused in another application without any modification.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

206 Freescale Semiconductor, Inc.

Chapter 8
Assembler Syntax

An assembler source program is a sequence of source statements. Each source statement
1s coded on one line of text and can be either a Comment line or a Source line.

This chapter covers the following topics:

e Comment line

e Source line

e Symbols

e Constants

e Operators

* Expression

e Translation limits

8.1 Comment line

A comment can occupy an entire line to explain the purpose and usage of a block of
statements or to describe an algorithm. A comment line contains a semicolon followed by
a text, as listed the following listing. Comments are included in the assembly listing, but
are not significant to the Assembler.

An empty line is also considered to be a comment line.

Listing: Examples of comments

; This is a comment line followed by an empty line and non comments
. (non comments)

8.2 Source line

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 207

swuurce line

Each source statement includes one or more of the following four fields:

e a Label field,

* an Operation field,

* one or several operands, or
e a comment.

Characters on the source line may be either upper or lower case. Directives and
instructions are case-insensitive, whereas symbols are case-sensitive unless the assembler
option for case insensitivity on label names (-Ci: Switch case sensitivity on label names
OFF) is activated.

This section covers the following topics:

 Label field
* Operation field
* Operand Field: Addressing Modes

8.2.1 Label field

The label field is the first field in a source line. A label is a symbol followed by a colon.
Labels can include letters (A-Z or a-z), underscores, periods and numbers. The first
character must not be a number.

NOTE
For compatibility with other Assembler vendors, an identifier
starting on column 1 is considered to be a label, even when it is
not terminated by a colon. When the -MCUasm: Switch
compatibility with MCUasm ON assembler option is activated,
you MUST terminate labels with a colon. The Assembler
produces an error message when a label is not followed by a
colon.

Labels are required on assembler directives that define the value of a symbol (ser or zqu).
For these directives, labels are assigned the value corresponding to the expression in the
operand field.

Labels specified in front of another directive, instruction or comment are assigned the
value of the location counter in the current section.

NOTE
When the Macro Assembler expands a macro it generates
internal symbols starting with an underscore -_'. Therefore, to

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

208 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

avoid potential conflicts, user defined symbols should not begin
with an underscore

NOTE
For the Macro Assembler, a .z or .w at the end of a label has a
specific meaning. Therefore, to avoid potential conflicts, user-
defined symbols should not end with .z or .w.

8.2.2 Operation field

The operation field follows the label field and is separated from it by a white space. The
operation field must not begin in the first column. An entry in the operation field is one of
the following:

* an instruction's mnemonic - an abbreviated, case-insensitive name for a member in
the Instruction set

e a Directive name, or

* a Macro name.

8.2.2.1 Instruction set

Executable instructions for the M68HC12 processor are defined in the CPU Reference
Manual (CPUIZRM/AD) (http://www.freescale.com/files/microcontrollers/doc/ ref manual/
ceuizrm.pdf). The instructions for the HCS12X processor are defined in the CPU
Reference Manual (SlZXCPUVl) (http://www.freescale.com/files/ microcontrollers/doc/
ref manual/S12XCPUV1.pdf).

8.2.2.1.1 HCS12Z Instruction Set

The following table presents an overview of the instructions available for HCS12Z. The
operands are described in the chapter Symbols and Notation.

Table 8-1. HCS12Z Instruction Set

Instruction Addressing modes Descriptions
ABS Di Inherent Absolute Value
ADC Di, #oprimmsz IMM 1/2/4 Add with Carry

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 209

A 4
4\ |

duurce line
Table 8-1. HCS12Z Instruction Set (continued)
Instruction Addressing modes Descriptions
ADC Di, oprmemreg OPR 1/2/3
ADD Di,#oprimmsz IMM 1/2/4 Add without Carry
ADD Di, oprmemreg OPR 1/2/3
ADD Di, #oprimmsz IMM 1/2/4 Bitwise AND
ADD Di, OPR 1/2/3
oprmemreg
ANDCC #opr8i IMMA1 Bitwise AND CCL with Immediate
ASL Dd,Ds,Dn REG-REG Arithmetic Shift Left
ASL Dd,Ds, #opr5i REG-IMM (1-bit, or 5-bit)
ASL Dd,Ds, oprmemreg REG-OPR/1/2/3
ASL.Dbwpl OPR/1/2/3-IMM (1-bit, or 5-bit)
Dd, oprmemreg, #opr5i OPR/1/2/3-OPR/1/2/3
ASL.bwpl REG-IMM (2-operand)

Dd, oprmemreg, oprmemreg

OPR/1/2/3-IMM (2-operand)
ASL Di,#oprli

ASL.bwpl oprmemreg, #oprli

ASR Dd,Ds,Dn REG-REG Arithmetic Shift Right
ASR D4, Ds, #opr5i REG-IMM
ASR.bwpl OPR/1/2/3-IMM
Dd, oprmemreg, #opr5i ASR.bwpl OPR/1/2/3-OPR/1/2/3
Dd, oprmemreg, oprmemreg OPR/1/2/3-IMM
ASR.bwpl oprmemreg, #oprli
BCC oprdest REL Branch if Carry Clear
BCLR Di, #opr5iBCLR REG-IMM Test and Clear Bit
Di,DnBCLR.bwl
oprmemreg, #opr5iBCLR.bwl REG-REG
oprmemreg, Dn OPR/1/2/3-IMM

OPR/1/2/3-REG
BCS oprdest REL Branch if Carry Set
BEQ oprdest REL Branch if Equal
BFEXT Dd,Ds, DpBFEXT REG-REG-REG Bit Field Extract
Dd,Ds, #width:offset REG-REG-IMM
BFEXT.bwplDd, oprmemreg, Dp
BFEXT.bwploprmemreg, Ds, Dp REG-OPR/1/2/3-REG
BFEXT.bwplDd, oprmemreg, #width: OPR/1/2/3-REG-REG
offset

BFEXT.bwploprmemreg, Ds, #width: | REG-OPR/1/2/3-IMM
offset OPR/1/2/3-REG-IMM

BFINS Dd,Ds,DpBFINS REG-REG-REG Bit Field Insert
Dd,Ds, #width:offset

BFINS.bwplDd, oprmemreg, Dp REG-REG-IMM
BFINS.bwploprmemreg, Ds, Dp REG-OPR/1/2/3-REG
BFINS.bwplDd, oprmemreg, #width:

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

210 Freescale Semiconductor, Inc.

g |

Chapter 8 Assembler Syntax

Table 8-1. HCS12Z Instruction Set (continued)

Instruction

Addressing modes

Descriptions

offset
BFINS.bwploprmemreg, Ds, #width:
offset

OPR/1/2/3-REG-REG
REG-OPR/1/2/3-IMM
OPR/1/2/3-REG-IMM

BGE oprdest REL Branch if greater than or equal to
BGND INH Enter background debug mode
BGT oprdest REL Branch if greater than

BHI oprdest REL Branch if higher

BHS oprdest REL Branch if higher or same

BIT Di, #oprimmszBIT IMM1/2/4 Bit Test

Di, oprmemreg OPR/1/2/3

BLE oprdest REL Branch if less than or equal to
BLO oprdest REL Branch if lower

BLSoprdest REL Branch if lower or same

BLT oprdest REL Branch if less than

BMI oprdest REL Branch if Minus

BNE oprdest REL Branch if Not Equal

BPL oprdest REL Branch if Plus

BRA oprdest REL Branch always

BRCLR Di, #opr5i, oprdest REG-IMM-REL Test Bit and Branch if Clear
BRCLR Di,Dn,oprdest REG-REG-REL

BRCLR.bwloprmemreg, #opr5i,
oprdest

BRCLR.bwloprmemreg, Dn, oprdest

OPR/1/2/3-IMM-REL
OPR/1/2/3-REG-REL

BRSET Di, #opr5i, oprdest

BRSET Di,Dn, oprdest

BRSET.bwloprmemreg, #opr5i, oprd
est

BRSET.bwloprmemreg, Dn, oprdest

REG-IMM-REL
REG-REG-REL
OPR/1/2/3-IMM-REL
OPR/1/2/3-REG-REL

Test Bit and Branch if set

BSET Di, #opr5i
BSET Di,Dn
BSET.bwl oprmemreg, #opr5i

BSET.bwl oprmemreg,Dn

REG-IMM
REG-REG
OPR/1/2/3-IMM
OPR/1/2/3-REG

Test and Set Bit

BSR oprdest REL Branch to subroutine
BTGL Di, #opr5i REG-IMM Test and Toggle Bit
BTGL Di,Dn REG-REG

BTGL.bwploprmemreg, #opr5i
BTGL.bwploprmemreg, Dn

OPR/1/2/3-IMM
OPR/1/2/3-REG

BVC oprdest

REL

Branch if overflow clear

BVS oprdest

REL

Branch if overflow set

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

211

r
A

4 |
duurce line
Table 8-1. HCS12Z Instruction Set (continued)
Instruction Addressing modes Descriptions
CLB cpureg-cpureg REG-REG Count leading bits
CLC IMMH1 Clear Carry (Translates to ANDCC #
$FE)
CLI IMMH1 Clear Interrupt Mask (Translates to
ANDCC #3$EF)
CLR.bwpl oprmemreg CLR Di CLR |OPR/1/2/3 Clear Memory, Register, or Index
X CLR Y INH Register
INH
INH
CLV IMMH1 Clear Overflow (Translates to ANDCC #
$FD)
CMP Di, #oprimmszCMP IMM1/2/4 Compare
T I 0P
CMP S,oprmemreg CMP X,Y IMM3
OPR/1/2/3
IMM3
OPR/1/2/3
INH
COM.bwl oprmemreg OPR/1/2/3 Complement memory
DBcc Di,oprdest REG-REL Decrement and Branch
DBcc X,oprdest REG-REL
DBcc Y,oprdest REG-REL
DBcc.bwploprmemreg, oprdest OPR/1/2/3-REL
DEC Di INH Decrement
DEC.bwl oprmemreg OPR/1/2/3
DIVS Dd,Dj,Dk DIVS.B REG-REG Signed Divide
Dd,Dj, #opr8i DIVS.W REG-IMM1

Dd,Dj, #oprlei DIVS.L
Dd,Dj, #opr32i DIVS.bwl REG-IMM2
Dd, Dj, oprmemreg

DIVS.bwplbwplDd, oprmemreg, oprm REG-IMM4
emreg REG-OPR/1/2/3
OPR/1/2/3-OPR/1/2/3
DIVU Dd,Dj,Dk REG-REG Unsigned divide
DIVU.B Dd,Dj, #opr8i REG-IMMA1
DIVU.W Dd,Dj, #oprléi REG-IMM2
DIVU.L Dd,Dj, #opr32i REG-IMM4
DIVU.bwl Dd,Dj, oprmemreg REG-OPR/1/2/3
DIVU.bwplbwplDd, oprmemreg, oprm |OPR/1/2/3-OPR/1/2/3
emreg
EOR Di, #oprimmsz IMM1/2/4 Exclusive OR

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

212 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Assembler Syntax

Table 8-1. HCS12Z Instruction Set (continued)

Instruction Addressing modes Descriptions
EOR Di, oprmemreg OPR/1/2/3
EXG cpureg, cpureg INH Exchange register contents
INC Di INH Increment
INC.bwl oprmemreg OPR/1/2/3
JMP opr24a EXT3 Jump
JMP oprmemreg OPR/1/2/3
JSR opr24a EXT3 Jump to subroutine
JSR oprmemreg OPR/1/2/3

LD Di, #oprimmsz
LD Di,opr24a
LD Di, oprmemreg
LD xy,#oprl8i
LD xy,#opr24i
LD xy,opr24a
LD xy,oprmemreg
LD S, #opr24i

LD S,oprmemreg

IMM1/2/4 (same size as Di)

EXT3 (24-bit address)

OPR/1/2/3 IMM2 (efficient 18-bit)
IMM3 (same size as X or Y)

EXT3 (24-bit address)

OPR/1/2/3 IMMS3 (same size as SP)
OPR/1/2/3

Load (Di, X,Y, or SP)

LEA D67, oprmemreg
LEA S,oprmemreg
LEA xy,oprmemreg
LEA S, (#opr8i,s)

LEA xy, (#opr8i,xy)

OPR/1/2/3
OPR/1/2/3
OPR/1/2/3
IMM1 (8-bit signed offset)
IMM1 (8-bit signed offset)

Load Effective Address

LSL Dd,Ds,Dn
LSL Dd,Ds, #opr5i
LSL.bwpl Dd, oprmemreg, #opr5i

LSL.bwpl
Dd, oprmemreg, oprmemreg

LSL.bwpl oprmemreg, #oprli

REG-REG

REG-IMM
OPR/1/2/3-IMM
OPR/1/2/3-OPR/1/2/3
OPR/1/2/3-IMM

Logical Shift Left

LSR Dd,Ds,Dn
LSR Dd,Ds, #opr5i
LSR.bwpl Dd, oprmemreg, #opr5i

LSR.bwpl
Dd, oprmemreg, oprmemreg

LSR.bwpl oprmemreg, #oprli

REG-REG

REG-IMM
OPR/1/2/3-IMM
OPR/1/2/3-OPR/1/2/3
OPR/1/2/3-IMM

Logical Shift Right

MACS Dd,Dj,Dk

MACS.B Dd,Dj, #opr8i
MACS.W Dd,Dj, #oprléi
MACS.L Dd,Dj,#opr32i

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

REG-REG
REG-IMM1
REG-IMM2
REG-IMM4
REG-OPR/1/2/3

Table continues on the next page...

10.6, 02/2014

Signed Multiply and Accumulate

Freescale Semiconductor, Inc.

A 4
4\ |

duurce line
Table 8-1. HCS12Z Instruction Set (continued)

Instruction Addressing modes Descriptions
MACS.bwl Dd,Dj, oprmemreg OPR/1/2/3-OPR/1/2/3
MACS .bwplbwplDd, oprmemreg, oprm
emreg
MACU D4, Dj,Dk REG-REG Unsigned multiply and accumulate
MACU.B Dd,Dj, #opr8i REG-IMMA1
MACU.W Dd,Dj, #oprléi REG-IMM2
MACU.L Dd,Dj, #opr32i REG-IMM4
MACU.bwl Dd,Dj, oprmemreg REG-OPR/1/2/3
MACU.bwplbwplDd, oprmemreg, oprm | OPR/1/2/3-OPR/1/2/3
emreg
MAXS Di, oprmemreg OPR/1/2/3 Maximum of two signed values to Di
MAXU Di, oprmemreg OPR/1/2/3 Maximum of two unsigned values to Di
MINS Di, oprmemreg OPR/1/2/3 Minimum of two signed values to Di
MINU Di, oprmemreg OPR/1/2/3 Minimum of two unsigned values to Di
MODS Dd,Dj, Dk REG-REG Signed Modulo
MODS.B Dd,Dj, #opr8i REG-IMMA1
MODS.W Dd,Dj, #oprléi REG-IMM2
MODS.L Dd,Dj, #opr32i REG-IMM4
MODS .bwl Dd,Dj, oprmemreg REG-OPR/1/2/3
MODS . bwplbwplDd, oprmemreg, oprm | OPR/1/2/3-OPR/1/2/3
emreg
MODU Dd, Dj, Dk REG-REG Unsigned Modulo
MODU.B Dd,Dj, #opr8i REG-IMM1
MODU.W Dd,Dj, #oprléi REG-IMM2
MODU.L Dd,Dj, #opr321i REG-IMM4
MODU.bwl Dd,Dj, oprmemreg REG-OPR/1/2/3
MODU. bwplbwplDd, oprmemreg, oprm | OPR/1/2/3-OPR/1/2/3
emreg
MOV.B #opr8i, oprmemreg IMM1-OPR/1/2/3 Move Data (8, 16, 24, or 32-bits; IMM-
MOV.W #oprlé6i,oprmemreg IMM2-OPR/1/2/3 OPR or OPR-OPR)
MOV.P #opr241i,oprmemreg IMM3-OPR/1/2/3
MOV.L #opr32i,oprmemreg IMM4-OPR/1/2/3
MOV.bwpl oprmemreg, oprmemreg OPR/1/2/3-OPR/1/2/3
MULS Dd,Dj,Dk REG-REG Signed Multiply
MULS.B Dd,Dj, #opr8i REG-IMM1
MULS.W Dd,Dj, #oprléi REG-IMM2
MULS.L Dd,Dj, #opr321i REG-IMM4
MULS.bwl Dd,Dj, oprmemreg REG-OPR/1/2/3
MULS . bwplbwplDd OPR/1/2/3-OPR/1/2/3

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

214 Freescale Semiconductor, Inc.

g |

Chapter 8 Assembler Syntax

Table 8-1. HCS12Z Instruction Set (continued)

Instruction

Addressing modes

Descriptions

’

oprmemreg, oprmemreg

MULU Dd,Dj,Dk

MULU.B Dd,Dj, #opr8i
MULU.W Dd,Dj, #oprl6i
MULU.L Dd,Dj, #opr32i
MULU.bwl Dd,Dj, oprmemreg

MULU. bwplbwplDd, oprmemreg, oprm
emreg

REG-REG

REG-IMM1
REG-IMM2
REG-IMM4
REG-OPR/1/2/3
OPR/1/2/3-OPR/1/2/3

Unsigned multiply

NEG.bwl oprmemreg OPR/1/2/3 Two's complement negate
NOP INH Null operation

OR Di, #oprimmsz IMM1/2/4 Bitwise OR

OR Di,oprmemreg OPR/1/2/3

ORCC #opr8i IMMA1 Bitwise OR with CCL Immediate
PSH oprregsil INH Push registers onto stack
PSH oprregs2 INH

PSH ALL INH

PSH ALL16b INH

PUL oprregsl INH Pull registers from stack
PUL oprregs2 INH

PUL ALL INH

PUL ALL16b INH

QMULS Dd,Dj, Dk REG-REG Signed Fractional multiply
QMULS.B Dd,Dj, #opr8i REG-IMMA1

QOMULS.W Dd,Dj, #oprlé6i REG-IMM2

QMULS.L Dd,Dj, #opr32i REG-IMM4

QOMULS.bwl Dd,Dj, oprmemreg

QMULS . bwplbwpl
Dd, oprmemreg, oprmemreg

REG-OPR/1/2/3
OPR/1/2/3-OPR/1/2/3

QMULU Dd,Dj,Dk

QMULU.B Dd,Dj, #oprsi
QMULU.W Dd, D7, #oprl6i
QMULU.L Dd,Dj, #opr32i
OMULU.bwl Dd,Dj, oprmemreg

QMULU. bwplbwpl
Dd, oprmemreg, oprmemreg

REG-REG

REG-IMMH1
REG-IMM2
REG-IMM4
REG-OPR/1/2/3
OPR/1/2/3-OPR/1/2/3

Unsigned Fractional multiply

ROL.bwpl oprmemreg OPR/1/2/3 Rotate left through carry
ROR.bwpl oprmemreg OPR/1/2/3 Rotate right through carry
RTI INH Return from Interrupt

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

215

r
A

4 |
duurce line
Table 8-1. HCS12Z Instruction Set (continued)
Instruction Addressing modes Descriptions

RTS INH Return from subroutine

SAT Di INH Saturate

SBC Di, #oprimmsz IMM1/2/4 Subtract with Borrow

SBC Di, oprmemreg OPR/1/2/3

SEV IMMA1 Set Carry Flag (Translates to ORCC #
$01)

SEI IMMA1 Set Interrupt Mask (Translates to ORCC
#$10)

SEV IMMH1 Set Overflow flag (Translates to ORCC #
$02)

SEX cpureg, cpureg INH Sign extend (smaller CPU register to a
larger CPU register)

ST Di,opr24a EXT (24-bit address) Store (Di,X,Y or SP)

ST Di, oprmemreg OPR/1/2/3

ST xy,opr24a EXT (24-bit address)

ST Xxy,oprmemreg OPR/1/2/3

ST S, oprmemreg OPR/1/2/3

STOP INH Stop processing

SUB Di, #oprimmsz IMM1/2/4 Subtract without borrow

SUB Di, oprmemreg OPR/1/2/3

SUB D6,X,Y INH

SUB D6,Y,X INH

SWI INH Software interrupt

SYS INH System call software interrupt

TBcc Di,oprdest REG-REL Test and branch

TBcc X, oprdest REG-REL

TBcc Y,oprdest REG-REL

TBcc.bwploprmemreg, oprdest OPR/1/2/3-REL

TFR cpureg, cpureg INH Transfer register contents

TRAP #num INH Unimplemented Page2 Opcode Trap

WAT INH Wait for interrupt

ZEX cpureg, cpureg INH Zero-extend (smaller CPU register to a
larger CPU register)

8.2.2.2 Directive

Assembler directives are described in the Assembler Directives chapter of this manual.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

216 Freescale Semiconductor, Inc.

g |

8.2.2.3 Macro

Chapter 8 Assembler Syntax

A user-defined macro can be invoked in the assembler source program. This results in the
expansion of the code defined in the macro. Defining and using macros are described in
the Macros chapter in this manual.

8.2.3 Operand Field: Addressing Modes

The operand fields, when present, follow the operation field and are separated from it by
a white space. When two or more operand subfields appear within a statement, a comma

must separate them.

The following table lists the addressing mode notatio ns allowed in the operand field:
Table 8-2. HCS12Z Addressing Mode Notation

Addressing Mode Notation Example
Inherent No operand RTS
Register INST Di ADD DO,D1
Immediate INST #oprimmsz ADD D2,#45
Relative INST oprdest JSR label
Extended (14 bit address) INST oprut4 ADD D4,100
Extended (18 bit address) INST opru18 ADD D5,65536
Extended (24 bit address) INST opru24 ADD D7,4194304

Indexed - IDX INST (opru4,XYS) ADD D1,(10,X)
Indexed - IDX1 INST (oprs9, XYSP) ADD D4,(254, X)
Indexed - IDX3 INST (opr24, XYSP) ADD D6,(8388604, X)
Indexed Indirect INST [Di,XYS] ADD DO0,[DO0,X]
Indexed Indirect - s9 INST [oprs9,XYSP] ADD D3,[254, X]
Indexed Indirect - 24b INST [opr24, XYSP] ADD D7,[8388000, Y]
Extended 3 INST opr24 JSR 8388000
Indexed Indirect Extended 3 INST [opr24] LD D6,[4552]

NOTE

For more information on the operands specified in Notation
column, refer to the chapter Symbols and Notation.

This section includes the following topics:

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

217

swuurce line

* Inherent Addressing Mode

* Register Addressing Mode

* Immediate Addressing Mode

e Short Immediate Addressing Mode (IMMe4)

» Relative Addressing Modes (REL, REL1)

» Extended Addressing Modes (EXT1, EXT2, EXT3, EXT24)
* Indexed Addressing Modes

* Indexed Indirect Addressing Modes

8.2.3.1 Inherent Addressing Mode

Instructions using this addressing mode have no operands or all operands are stored in
internal CPU registers. The CPU does not need to perform any memory access to
complete the instruction.

Listing: Inherent Addressing Mode Instructions

NOP ; Instruction with no operand
ABS DO ; Returns the absolute of value present in DO register.

8.2.3.2 Register Addressing Mode

The operand is one of the eight CPU data registers (Di) and so no memory access is
needed.

The register number 0-7 is encoded in the opcode or an instruction postbyte.

Listing: Register Addressing Mode

main: ADD DO,D1
AND D6,D7

8.2.3.3 Immediate Addressing Mode

The opcode contains the value to use with the instruction rather than the address of this
value. The '# character is used to indicate an immediate addressing mode operand. The
immediate value can be of 1,2,3, or 4 bytes.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

218 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

The effective address of the instruction is specified using the # character, as listed in the
following listing:

Listing: Immediate Addressing Mode

main: LD D2,#100
CMP D2,#100

BNE main

8.2.3.4 Short Immediate Addressing Mode (IMMe4)

A 4-bit immediate operand is encoded in the instruction to provide a very efficient way to
initialize registers or variables with the common values -1, 1, 2, 3,...13, 14, or 15
(automatically sign-extended to the required size).

Listing: Short Immediate Addressing Mode

main: LD DO, #10
CMP DO, #10

BNE main

8.2.3.5 Relative Addressing Modes (REL, REL1)

A 7-bit (or 15-bit) twos complement relative offset is included in the instruction opcode.
The relative offset is computed by adding the signed offset to the address of the first byte
of object code for the current instruction.

Listing: Relative Addressing Modes

main: LD DO, #10
CMP DO, #10

BEQ foo

foo:

REL addressing mode comprises of 7-bit signed relative offset and REL1 mode has 15-
bit signed relative offset.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 219

swuurce line

8.2.3.6 Extended Addressing Modes (EXT1, EXT2, EXT3, EXT24)

A 14-bit, 18-bit, or 24-bit address of the operand is provided in the instruction. In the
case of 14-bit EXT1 and 18-bit EXT2 addressing modes, the supplied address is zero-
extended to 24-bits to form the address of the operand.

Listing: Extended Addressing Modes

Main: LD X,8388000
BHS labell

8.2.3.7 Indexed Addressing Modes

This addressing mode adds a 4-bit(9-bit or 24-bit) unsigned offset to the base index
register to form the memory address that is referenced in the instruction. The valid range
for a 4-bit unsigned offset is [0..15]. The base index register may be X, Y, SP, PC.

These indexed addressing modes use an index register as a base address and add a
constant or register offset to form the effective address of the operand. The index register
1s usually X, Y, SP, or PC, but in a few modes a CPU data register Di can be used as the
index base address. IDX implies zero extension bytes which means everything the
instruction needs is included in the instruction or internal CPU registers itself.

IDX1, IDX2, and IDX3 imply 1, 2, or 3 additional extension bytes are needed,
respectively.

The topics covers here are as follows:

* 4-Bit Short Constant Offset from X, Y, or SP (IDX)

e 9-Bit Constant Offset from X, Y, SP or PC (IDX1)

e 24-Bit Constant Offset from X, Y, SP or PC (IDX3)

» Register Offset Indexed from X, Y, or SP (REG,IDX)

e Automatic Pre/Post Increment/Decrement from X, Y, or SP (++IDX)
e 18-Bit Constant Offset from Di (IDX2,REG)

e 24-Bit Constant Offset from Di (IDX3,REG)

8.2.3.7.1 4-Bit Short Constant Offset from X, Y, or SP (IDX)

A 4-bit unsigned constant (0-15) is added to X, Y, or SP to form the effective address of
the operand. This addressing mode is very compact and efficient and handles the most
common indexed addressing offsets.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

220 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

Larger offsets are supported with other indexed addressing mode variations which use
additional extension bytes to specify the larger offsets.

Listing: Example - 4-Bit Short Constant Offset

ORG $1000
CST TBL: DC.B $5, $10, $18, $20, $28, $30

ORG $800
DATA TBL: DS.B 10
main:
LD X, #CST_TBL
LD DO(3,X)
LD Y, #DATA TBL
ST DO, (8,Y)

Register DO is loaded with byte value stored in memory location $1003 ($1000 + 3) and
the contents of DO are stored to memory $808 ($800 + 8).

8.2.3.7.2 9-Bit Constant Offset from X, Y, SP or PC (IDX1)

A 9-bit signed constant (-256 to +255) is added to X, Y, SP or PC to form the effective
address of the operand.

Listing: Example - 9-Bit Constant Offset

ORG $1000
CST TBL: DC.B $5, $10, $18, $20, $28, $30, $38, $40, s$48

DC.B $50, $58, $60, $68, $70, s$78, $80, $88, $90
DC.B $98, SA0, S$SA8, $BO, $B8, s$CO, s$C8, $DO, $Ds8
ORG $800

DATA TBL: DS.B 40

main:

LD X, #CST TBL

LD D2, (20,X)

LD Y, #DATA TBL

ST D2, (18,Y)

8.2.3.7.3 24-Bit Constant Offset from X, Y, SP or PC (IDX3)

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 221

swuurce line

A 24-bit constant is added to X, Y, SP or PC to form the effective address of the operand.
Listing: Example - 24-Bit Constant Offset

main:
LD X,#3$600

LD D6, ($300,X)
LD Y,#$1000

ST D6, ($140, Y)

8.2.3.7.4 Register Offset Indexed from X, Y, or SP (REG,IDX)

A CPU data registers Di is added to X, Y, or SP to form the effective address of the
operand. This indexed addressing sub-mode allows a program-controlled offset which
can change during execution of the program. For registers D0, D1, D6, and D7 the
register is treated as an unsigned value. For D2~D35 the register is treated as a signed
value.

Listing: Example - Register Offset Indexed

main:
LD DO, #S$300

LD D1,#$400
LD X,#$600

LD D6, (DO, X)
LD Y,#$1000

ST D6, (D1,Y)

8.2.3.7.5 Automatic Pre/Post Increment/Decrement from X, Y, or SP (+
+IDX)

X, Y, or SP is used to access an operand either before or after it is incremented or
decremented. The increment/decrement value is determined by the size of the operand
that is being accessed. When SP is used as the index register, only pre-decrement (as in a
PUSH) and post-increment (as in a PULL) variations are allowed. When X or Y is used
as the index register, all four variations (pre-decrement, pre-increment, post-decrement,
and post increment) are supported. In cases where an instruction has more than one
operand that uses indexed addressing, any auto-increment or decrement is done during
processing of the current operand.

Listing: Example - Automatic Pre/Post Increment/Decrement

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

222 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

MOV.W (X+), (D2,X)

The CPU would first read the 16-bit memory value pointed to by index register X, then
increment X (by 2 because the operand that was read was two bytes), then store the value
at the address that is formed by adding D2 to index register X (the new incremented value
in X, not the value X had when the instruction started).

8.2.3.7.6 18-Bit Constant Offset from Di (IDX2,REG)

An 18-bit unsigned constant is added to a CPU registers Di to form the effective address
of the operand. For registers DO, D1, D6, and D7 the register is treated as an unsigned
value. For D2~D5 the register is treated as a signed value.

8.2.3.7.7 24-Bit Constant Offset from Di (IDX3,REG)

A 24-bit constant is added to a CPU registers Di to form the effective address of the
operand. For registers DO, D1, D6, and D7 the register is treated as an unsigned value.
For D2~DS5 the register is treated as a signed value.

8.2.3.8 Indexed Indirect Addressing Modes

These addressing modes use an indexed addressing mode to form the effective address of
a pointer to the operand rather than using the indexed addressing mode to get the
effective address of the operand itself.

In all cases, the intermediate pointer that is fetched from the effective address is 24 bits
and this 24-bit address is used to fetch the operand. The size of the operand (1, 2, 3, or 4
bytes) that this pointer points to, depends on the instruction.

The topics covered here are as follows:

» Register Offset Indexed Indirect from X or Y ([REG,IDX])

* 9-Bit Constant Offset Indexed Indirect from X, Y, SP or PC ([IDX1])
e 24-Bit Constant Offset Indexed Indirect from X, Y, SP or PC ([IDX3])
* Address Indirect Addressing Mode ([EXT3])

8.2.3.8.1 Register Offset Indexed Indirect from X or Y ([REG,IDX])

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 223

swuurce line

A CPU data registers Di is added to X or Y to form the effective address of the pointer to
the operand. For registers DO, D1, D6, and D7 the register is treated as an unsigned value.
For D2~D5 the register is treated as a signed value.

8.2.3.8.2 9-Bit Constant Offset Indexed Indirect from X, Y, SP or PC
([1IDX1])

A 9-bit signed constant (-256 to +255) is added to X, Y, SP or PC to form the effective
address of the pointer to the operand.

Listing: Example - Indexed Indirect 9-Bit Constant Offset

ORG $1000
CST TBL1l: DC.W $1020, $1050, $2001

ORG $2000

CST _TBL: DC.B $10, $35, $46

ORG $3000

main:

LD X,#CST TBL1

LD D6, [4,X]

The constant offset 4 is added to the value of register X ($1000) to form the address

$1004. Then an address pointer ($2001) is read from memory at $1004. The register D6
is loaded with $35, the value stored at address $2001.

8.2.3.8.3 24-Bit Constant Offset Indexed Indirect from X, Y, SP or PC
([IDX3])

A 24-bit constant is added to X, Y, SP or PC to form the effective address of the pointer
to the operand.

8.2.3.8.4 Address Indirect Addressing Mode ([EXT3])

This addressing mode uses a 24-bit constant to point to a pointer which is then used to
access the operand. This allows a 24-bit pointer to an operand to be located anywhere in
the 16-megabyte memory space. The 24-bit constant address that points to the pointer to
the operand is supplied as three extension bytes in the object code of the instruction.

Listing: Example - Address Indirect Addressing Mode

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

224 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

ORG $1100
Cnst_tbl DC.W $10,$11,%12,$13

ORG $1114
ptr DS 3
ORG $FF0000

main:

MOV . P #Cnst_tbl,$1114
LD D2, [$1114]
cMP D2, #10

per points to address of cnst_tb1. Then the first value of cnst_tb1 array is loaded to o2 and
compared with value 1o0.

8.3 Symbols

The following types of symbols are the topics of this section:

e User-defined symbols
* External symbols

* Undefined symbols

* Reserved symbols

8.3.1 User-defined symbols

Symbols identify memory locations in program or data sections in an assembly module.
A symbol has two attributes:

* The section, in which the memory location is defined
* The offset from the beginning of that section.

Symbols can be defined with an absolute or relocatable value, depending on the section
in which the labeled memory location is found. If the memory location is located within a
relocatable section (defined with the SECTION - Declare Relocatable Section assembler
directive), the label has a relocatable value relative to the section start address.

Symbols can be defined relocatable in the label field of an instruction or data definition
source line.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 225

symools

The following listing shows an example of a user-defined relocatable SECTION.
Listing: Example of a user-defined relocatable SECTION

Sec: SECTION
labell: DC.B 2 ; labell is assigned offset 0 within Sec.

label2: DC.B 5 ; label2 is assigned offset 2 within Sec.
label3: DC.B 1 ; label3 is assigned offset 7 within Sec.
It is also possible to define a label with either an absolute or a previously defined

relocatable value, using the SET - Set Symbol Value or EQU - Equate symbol value
assembler directives.

Symbols with absolute values must be defined with constant expressions.

Listing: Example of a user-defined absolute and relocatable SECTION

Sec: SECTION
labell: DC.B 2 ; labell is assigned offset 0 within Sec.

label2: EQU 5 ; label2 is assigned value 5.

label3: EQU labell ; label3 is assigned the address of labell.

8.3.2 External symbols

A symbol may be made external using the XDEF - External Symbol Definition assembler
directive. In another source file, an XREF - External Symbol Reference assembler
directive must reference it. Since its address is unknown in the referencing file, it is
considered to be relocatable. See the following listing for an example of using xoer and

XREF.

Listing: Examples of external symbols

XREF extLabel ; symbol defined in an other module.
; extLabel is imported in the current module

XDEF label ; symbol is made external for other modules
; label is exported from the current module
constSec: SECTION

label: DC.W 1, extLabel

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

226 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

8.3.3 Undefined symbols

If a label is neither defined in the source file nor declared external using xrer, the
Assembler considers it to be undefined and generates an error message. The following
listing shows an example of an undeclared label.

Listing: Example of an undeclared label

codeSec: SECTION
entry:

NOP

BNE entry

NOP

JMP end

JMP label ; <- Undeclared user-defined symbol: label
end:RTS

END

8.3.4 Reserved symbols

Reserved symbols cannot be used for user-defined symbols.
Register names are reserved identifiers.
For the S127Z processor the reserved identifiers are listed in the following listing:

Listing: Reserved identifiers for an HCS12Z derivative

A, CCR, H, X, SP

The keywords row and s1cu are also reserved identifiers. They are used to refer to the low
byte and the high byte of a memory location.

8.4 Constants

The Assembler supports integer and ASCII string constants:

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 227

vonstants

8.4.1 Integer constants

The Assembler supports four representations of integer constants:
* A decimal constant is defined by a sequence of decimal digits (0-9).
Example: 5, 512, 1024

* A hexadecimal constant is defined by a dollar character (s) followed by a sequence
of hexadecimal digits (0-9, a-f, A-F).

Example: s, $200, $400

* An octal constant is defined by the commercial at character () followed by a
sequence of octal digits (0-7).

Example: es, @1000, @2000

* A binary constant is defined by a percent character followed by a sequence of binary
digits (0-1)

Example :

%101,
%$1000000000,
$10000000000

The default base for integer constant is initially decimal, but it can be changed using the
BASE - Set number base assembler directive. When the default base is not decimal,
decimal values cannot be represented, because they do not have a prefix character.

8.4.2 String constants

A string constant is a series of printable characters enclosed in single (*) or double quote
("y. Double quotes are only allowed within strings delimited by single quotes. Single
quotes are only allowed within strings delimited by double quotes. See the following
listing for a variety of string constants.

Listing: String constants

,ABCD', "ABCD", lAll IllBlll IIAIBIII TA'R!

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

228 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Assembler Syntax

8.4.3 Floating-Point constants

The Macro Assembler does not support floating-point constants.

8.5 Operators

Operators recognized by the Assembler in expressions are:

* Addition and subtraction operators (binary)
e Multiplication, division and modulo operators (binary)
* Sign operators (unary)

* Shift operators (binary)

* Bitwise operators (binary)

 Bitwise operators (unary)

* Logical operators (unary)

» Relational operators (binary)

e HIGH operator

* HIGH_6_13 Operator

* LOW operator

* MAP_ADDR_6 Operator

» Force operator (unary)

 Operator precedence

8.5.1 Addition and subtraction operators (binary)

The addition and subtraction operators are + and -, respectively.

Syntax

Addition:
<operand> + <operand>

Subtraction:
<operand> - <operands>

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 229

vperators

The + operator adds two operands, whereas the - operator subtracts them. The operands
can be any expression evaluating to an absolute or relocatable expression.

Addition between two relocatable operands is not allowed.
Example
See the following listing for an example of addition and subtraction operators.

Listing: Addition and subtraction operators

SA3216 + $42 ; Addition of two absolute operands (= $A3258)
labelB - $10 ; Subtraction with value of ~labelB'

8.5.2 Multiplication, division and modulo operators (binary)

The multiplication, division, and modulo operators are =, /, and s, respectively.

Syntax

Multiplication:
<operand> * <operand>

Division:
<operand> / <operand>

Modulo:
<operand> % <operands>

Description

The « operator multiplies two operands, the ; operator performs an integer division of the
two operands and returns the quotient of the operation. The s operator performs an
integer division of the two operands and returns the remainder of the operation

The operands can be any expression evaluating to an absolute expression. The second
operand in a division or modulo operation cannot be zero.

Example

See the following listing for an example of the multiplication, division, and modulo
operators.

Listing: Multiplication, division, and modulo operators

23 * 4 ; multiplication (= 92)
23 / 4 ; division (= 5)

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

230 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Assembler Syntax

23 % 4 ; remainder (= 3)

8.5.3 Sign operators (unary)

The (unary) sign operators are + and -.

Syntax

Plus:
+<operand>

Minus:
-<operand>

Description

The + operator does not change the operand, whereas the - operator changes the operand
to its two's complement. These operators are valid for absolute expression operands.

Example
See the following listing for an example of the unary sign operators.

Listing: Unary sign operators

+$32 i
-$32 i

$32)
$CE = -$32)

8.5.4 Shift operators (binary)

The binary shift operators are << and »».

Syntax

Shift left:
<operand> << <counts

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 231

vperators

Shift right:
<operand> >> <counts>

Description

The << operator shifts its left operand left by the number of bits specified in the right
operand.

The - operator shifts its left operand right by the number of bits specified in the right
operand.

The operands can be any expression evaluating to an absolute expression.
Example
See the following listing for an example of the binary shift operators.

Listing: Binary shift operators

$25 << 2 ; shift left (= $94)
SA5 >> 3 ; shift right(= $14)

8.5.5 Bitwise operators (binary)

The binary bitwise operators are s, |, and *.

Syntax

Bitwise AND:
<operand> & <operands>

Bitwise OR:
<operand> | <operands

Bitwise XOR:

<operand> * <operands>

Description

The s operator performs an AND between the two operands on the bit level.
The | operator performs an OR between the two operands on the bit level.
The ~ operator performs an XOR between the two operands on the bit level.

The operands can be any expression evaluating to an absolute expression.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

232 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

Example
See the following listing for an example of the binary bitwise operators

Listing: Binary bitwise operators

$E & 3 ; = 32 (%1110 & %0011 = %0010)
$E | 3 ; = $F (%1110 | %0011 = %1111)
$SE * 3 = $D (%1110 * %0011 = $1101)

8.5.6 Bitwise operators (unary)

The unary bitwise operator is ~.

Syntax

One's complement:
~<operands>

Description

The - operator evaluates the one's complement of the operand.

The operand can be any expression evaluating to an absolute expression.
Example

See the following listing for an example of the unary bitwise operator.

Listing: Unary bitwise operator

~$C ; = SFFFFFFF3 (~%00000000 00000000 00000000 00001100
=%$11111111 11111111 11111111 11110011)

8.5.7 Logical operators (unary)

The unary logical operator is .

Syntax

Logical NOT: !<operands>

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 233

g |

vperators

The | operator returns 1 (true) if the operand is o, otherwise it returns o (false).
The operand can be any expression evaluating to an absolute expression.
Example

See the following listing for an example of the unary logical operator.

Listing: Unary logical operator

1 (8<5) ; = $1 (TRUE)

8.5.8 Relational operators (binary)

The binary relational operators are =, ==, !=, <>, <, <=, >, and >=.

Syntax

Equal:
<operand> = <operand>

<operand> == <operand>

Not equal:
<operand> != <operand>

<operand> <> <operand>

Less than: <operand> < <operand>

Less than or equal:
<operand> <= <operand>

Greater than:
<operand> > <operand>

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

234 Freescale Semiconductor, Inc.

3
4

4
A

4
Chapter 8 Assembler Syntax
Greater than or equal:
<operand> >= <operand>
Description
These operators compare two operands and return 1 if the condition is true or o if the
condition is false.
The operands can be any expression evaluating to an absolute expression.
Example

See the following listing for an example of the binary relational operators

Listing: Binary relational operators

3 >= ; =0 (FALSE)
label = 4 =1 (TRUE) if label is 4, 0 or (FALSE) otherwise.
9 < SB ; =1 (TRUE)

8.5.9 HIGH operator

The HIGH operator is u1ca.
Syntax

High Byte: HIGH (<operands>)

Description
This operator returns the high byte of the address of a memory location.
Example

Assume data1 is a word located at address s10s0 in the memory.

LDA #HIGH (datal)

This instruction will load the immediate value of the high byte of the address of aata1
(s10) in register A.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 235

3
4

4
A

vperators

LDA HIGH (datal)

This instruction will load the direct value at memory location of the higher byte of the
address of data1 (i.e., the value in memory location s10) in register A.

8.5.10 HIGH_6_13 Operator

Syntax

High Byte: HIGH 6 13 (<operand>)

Description
This operator returns the high byte of a 14-bit address of a memory location.
Example

Assume data1 is a word located at address s1010 in the memory.

LDA #HIGH 6 13 (datal)

This instruction will load the value $40 in the accumulator.

8.5.11 LOW operator

The LOW operator is row.
Syntax

LOW Byte: LOW (<operands)

Description

This operator returns the low byte of the address of a memory location.
Example

Assume data1 1s a word located at address s10s50 in the memory.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

236 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

LDA #LOW (datal)

This instruction will load the immediate value of the lower byte of the address of data1
(ss0) In register A.

LDA LOW (datal)

This instruction will load the direct value at memory location of the lower byte of the
address of data1 (i.e., the value in memory location sso) in register A.

8.5.12 MAP_ADDR_6 Operator

Syntax

MAP_ADDR_6 (<operands>)

Description

This operator returns the lower 6 bits for a memory location. It should be used to
determine the offset in the paging window for a certain memory address.Note that the
operator automatically adds the offset of the base of the paging window ($CO).

Example
MOV #HIGH 6 13 (data), S$001F
STA MAP ADDR_6 (data)

In this example, the S12Z PAGE register (mapped at $001F) is loaded with the memory
page corresponding to data and then the value contained in the accumulator is stored at
the address pointed by data.

8.5.13 Force operator (unary)

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 237

3
4

4
A

vperators

Syntax

8-bit address:
<<operand> oOr
<operand>.B

16-bit address:
><operand> oOr
<operand>.W

Description

The < or .& operators force direct addressing mode, whereas the > or .w operators force
extended addressing mode.

Use the < operator to force 8-bit indexed or 8-bit direct addressing mode for an
instruction.

Use the > operator to force 16-bit indexed or 16-bit extended addressing mode for an
instruction.

The operand can be any expression evaluating to an absolute or relocatable expression.

Example
<label ; label is an 8-bit address.
label.B ; label is an 8-bit address.
>label ; label is an 16-bit address.
label.W ; label is an 16-bit address.

For the S127Z the < operand forces the operand to short or tiny addressing mode
(depending on the instruction in which it is used). The same result can be obtained by
adding .s or .t to the referred symbol. The - operator forces an address to 8 bits, even if it
fits in 4 or 5 bits (so short or tiny addressing modes can be used).

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

238 Freescale Semiconductor, Inc.

g |

Chapter 8 Assembler Syntax

8.5.14 Operator precedence

The following table lists the operator precedence rules for ANSI - C operators.

Table 8-3. Operator precedence priorities

Operator Description Associativity

§] Parenthesis Right to Left

~+- One's complement Unary Plus Unary Left to Right
minus

*1 % Integer multiplication Integer division Left to Right
Integer modulo

+ - Integer addition Integer subtraction Left to Right

<< >> Shift Left Shift Right Left to Right

<<=>>= Less than Less or equal to Greater than |Left to Right
Greater or equal to

= === <> Equal to Not Equal to Left to Right

& Bitwise AND Left to Right

A Bitwise Exclusive OR Left to Right

| Bitwise OR Left to Right

8.6 Expression

An expression is composed of one or more symbols or constants, which are combined
with unary or binary operators. Valid symbols in expressions are:

 User defined symbols

» External symbols

» The special symbol = *' represents the value of the location counter at the beginning
of the instruction or directive, even when several arguments are specified. In the
following example, the asterisk represents the location counter at the beginning of
the oc directive:

pc.w 1, 2, *-2

Once a valid expression has been fully evaluated by the Assembler, it is reduced as one
of the following type of expressions:

» Absolute expression : The expression has been reduced to an absolute value, which is
independent of the start address of any relocatable section. Thus it is a constant.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 239

cxpression

» Simple relocatable expression : The expression evaluates to an absolute offset from
the start of a single relocatable section.

* Complex relocatable expression: The expression neither evaluates to an absolute
expression nor to a simple relocatable expression. The Assembler does not support
such expressions.

All valid user defined symbols representing memory locations are simple relocatable
expressions. This includes labels specified in xrer directives, which are assumed to be
relocatable symbols.

8.6.1 Absolute expression

An absolute expression is an expression involving constants or known absolute labels or
expressions. An expression containing an operation between an absolute expression and a
constant value is also an absolute expression.

See the following listing for an example of an absolute expression.

Listing: Absolute expression

Base: SET $100
Label: EQU Base * $5 + 3

Expressions involving the difference between two relocatable symbols defined in the
same file and in the same section evaluate to an absolute expression. An expression as
label2-label1 Can be translated as:

Listing: Interpretation of label2-labell: difference between two relocatable symbols

(<offset label2> + <start section address >) -
(<offset labells> + <start section address >)

This can be simplified to the following listing:

Listing: Simplified result for the difference between two relocatable symbols

<offset label2> + <start section address > -
<offset labell> - <start section address>

= <offset label2> - <offset labell>

8.6.1.1 Example

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

240 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

In the example in the following listing, the expression tabend-tabregin €valuates to an
absolute expression and is assigned the value of the difference between the offset of
tabEnd and tabBegin in the section patasec.

Listing: Absolute expression relating the difference between two relocatable
symbols

DataSec: SECTION
tabBegin: DS.B 5

tabEnd: DS.B 1
ConstSec: SECTION
label: EQU tabEnd-tabBegin ; Absolute expression
CodeSec: SECTION

entry: NOP

8.6.2 Simple relocatable expression

A simple relocatable expression results from an operation such as one of the following:

 <relocatable expression> + <absolute expression>

 <relocatable expression> - <absolute expression>

* < absolute expression> + < relocatable expression>
Listing: Example of relocatable expression

XREF XtrnLabel
DataSec: SECTION

tabBegin: DS.B 5
tabEnd: DS.B 1

CodeSec: SECTION

entry:
LDA tabBegin+2 ; Simple relocatable expression
BRA *-3 ; Simple relocatable expression
LDA XtrnLabel+6 ; Simple relocatable expression

8.6.3 Unary operation result

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 241

g |

1ranslation limits

The following table describes the type of an expression according to the operator in an
unary operation:

Table 8-4. Expression type resulting from operator and operand type

Operator Operand Expression
-0~ absolute absolute
-~ relocatable complex
+ absolute absolute
+ relocatable relocatable

8.6.4 Binary operations result

The following table describes the type of an expression according to the left and right
operators in a binary operation:

Table 8-5. Expression type resulting from operator and their operands

Operator Left Operand Right Operand Expression
- absolute absolute absolute
- relocatable absolute relocatable
- absolute relocatable complex
- relocatable relocatable absolute
+ absolute absolute absolute
+ relocatable absolute relocatable
+ absolute relocatable relocatable
+ relocatable relocatable complex
A, %, <<, >>, |, & A absolute absolute absolute
%, <<, >>, |, &N relocatable absolute complex
%, <<, >>, |, & A absolute relocatable complex
A %, <<, >>, 1, & A relocatable relocatable complex

8.7 Translation limits

The following limitations apply to the Macro Assembler:

* Floating-point constants are not supported.
* Complex relocatable expressions are not supported.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

242 Freescale Semiconductor, Inc.

A 4

g gl 4
Chapter 8 Assembler Syntax

* Lists of operands or symbols must be separated with a comma.

* Include may be nested up to so.

* The maximum line length is 1023.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 243

PR 4

iranslation limits

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

244 Freescale Semiconductor, Inc.

g |

Chapter 9
Assembler Directives

There are different classes of assembler directives. The following tables give you an
overview over the different directives and their classes:

9.1 Directive Overview

This chapter gives you the overview for assembler directives. The topics covered here are
as follows:

 Section-Definition Directives

* Constant-Definition directives

* Data-Allocation directives

* Symbol-Linkage directives

e Assembly-Control directives

* Listing-File Control directives

* Macro Control directives

* Conditional Assembly directives

9.1.1 Section-Definition Directives

The following table lists the directives to define new sections.

Table 9-1. Directives for defining sections

Directive Description
ORG - Set Location Counter Define an absolute section
SECTION - Declare Relocatable Section Define a relocatable section
OFFSET - Create absolute symbols Define an offset section

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 245

y
A]
uirective Overview

9.1.2 Constant-Definition directives

The following table lists the directives to define assembly constants.

Table 9-2. Directives for defining constants

Directive Description
EQU - Equate symbol value Assign a name to an expression (cannot be redefined)
SET - Set Symbol Value Assign a name to an expression (can be redefined)

9.1.3 Data-Allocation directives

The following table lists the directives to allocate variables.

Table 9-3. Directives for allocating variables

Directive Description
DC - Define Constant Define a constant variable
DCB - Define Constant Block Define a constant block
DS - Define Space Define storage for a variable
RAD50 - RAD50-encoded string constants RAD50 encoded string constants

9.1.4 Symbol-Linkage directives

The following table lists the symbol-linkage directives to export or import global
symbols.

Table 9-4. Symbol linkage directives

Directive Description
ABSENTRY - Application entry point Specify the application entry point when an absolute file is
generated
XDEF - External Symbol Definition Make a symbol public (visible from outside)
XREF - External Symbol Reference Import reference to an external symbol.
XREFB - External Reference for Symbols located on the Import reference to an external symbol located on the direct
Direct Page page.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

246 Freescale Semiconductor, Inc.

g |

4
Chapter 9 Assembler Directives

9.1.5 Assembly-Control directives

The following table lists the assembly-control general purpose directives to control the
assembly process.

Table 9-5. Assembly control directives

Directive Description
ALIGN - Align Location Counter Define Alignment Constraint
BASE - Set number base Specify default base for constant definition
END - End assembly End of assembly unit
ENDFOR - End of FOR block End of FOR block
EVEN - Force word alignment Define 2-byte alignment constraint
FAIL - Generate Error message Generate user defined error or warning messages
FOR - Repeat assembly block Repeat assembly blocks
INCLUDE - Include text from another file Include text from another file.
LONGEVEN - Forcing Long-Word alignment Define 4 Byte alignment constraint

9.1.6 Listing-File Control directives

The following table lists the listing-file control directives to control the generation of the
assembler listing file.

Table 9-6. Listing-file control directives

Directive Description

CLIST - List conditional assembly Specify if all instructions in a conditional assembly block must
be inserted in the listing file or not.

LIST - Enable Listing Specify that all subsequent instructions must be inserted in
the listing file.

LLEN - Set Line Length Define line length in assembly listing file.

MLIST - List macro expansions Specify if the macro expansions must be inserted in the listing
file.

NOLIST - Disable Listing Specify that all subsequent instruction must not be inserted in
the listing file.

NOPAGE - Disable Paging Disable paging in the assembly listing file.

PAGE - Insert Page break Insert page break.

PLEN - Set Page Length Define page length in the assembler listing file.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 247

g |

uirective Overview

Table 9-6. Listing-file control directives (continued)

Directive Description
SPC - Insert Blank Lines Insert an empty line in the assembly listing file.
TABS - Set Tab Length Define number of character to insert in the assembler listing

file for a TAB character.

TITLE - Provide Listing Title Define the user defined title for the assembler listing file.

9.1.7 Macro Control directives

The following table lists the macro control directives, used for the definition and
expansion of macros.

Table 9-7. Macro control directives

Directive Description
ENDM - End macro definition End of user defined macro.
MACRO - Begin macro definition Start of user defined macro.
MEXIT - Terminate Macro Expansion Exit from macro expansion.

9.1.8 Conditional Assembly directives

The following table lists the conditional assembly directives, used for conditional
assembling.

Table 9-8. Conditional assembly directives

Directive Description
ELSE - Conditional assembly alternate block
ENDIF - End conditional assembly End of conditional block
IF - Conditional assembly Start of conditional block. A boolean expression follows this
directive.
IFcc - Conditional assembly Test if two string expressions are equal.
IFDEF Test if a symbol is defined.
IFEQ Test if an expression is null.
IFGE Test if an expression is greater than or equal to 0.
IFGT Test if an expression is greater than 0.
IFLE Test if an expression is less than or equal to 0.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

248 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

Table 9-8. Conditional assembly directives (continued)

Directive Description
IFLT Test if an expression is less than 0.
IFNC Test if two string expressions are different.
IFNDEF Test if a symbol is undefined
IFNE Test if an expression is not null.

9.2 Detailed descriptions of all assembler directives

The remainder of the chapter covers the detailed description of all available assembler
directives.

9.2.1 ABSENTRY - Application entry point

Syntax

ABSENTRY <label>
Synonym
None
Description

This directive is used to specify the application Entry Point when the Assembler directly
generates an absolute file. The -ra2 assembly option - ELF/DWAREF 2.0 Absolute File -
must be enabled.

Using this directive, the entry point of the assembly application is written in the header of
the generated absolute file. When this file is loaded in the debugger, the line where the
entry point label is defined is highlighted in the source window.

This directive is ignored when the Assembler generates an object file.
NOTE

This instruction only affects the loading on an application by a
debugger. It tells the debugger which initial PC should be used.
In order to start the application on a target, initialize the Reset
vector.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 249

uewailed descriptions of all assembler directives
If the example in the following listing is assembled using the -ra2 assembler option, an
ELF/DWAREF 2.0 Absolute file is generated.

Listing: Using ABSENTRY to specify an application entry point

ABSENTRY entry
ORG sfffe

Reset: DC.W entry
ORG $70
entry: NOP
NOP
main: RSP
NOP

BRA main

According to the assentrY directive, the entry point will be set to the address of entry in
the header of the absolute file.

9.2.2 ALIGN - Align Location Counter

Syntax

ALIGN <n>

Synonym
None
Description

This directive forces the next instruction to a boundary that is a multiple of <n>, relative
to the start of the section. The value of <n> must be a positive number between 1 and
32767. The av1en directive can force alignment to any size. The filling bytes inserted for
alignment purpose are initialized with ~\o'.

ar1en can be used in code or data sections.
Example

The example shown in the following listing, aligns the uex label to a location, which is a
multiple of 16 (in this case, location ooo10 (Hex))

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

250 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

Listing: Aligning the HEX Label to a Location

Assembler
Abs. Rel. Loc Obj. code Source line
1 1
2 2 000000 6869 6768 DC.B "high"
3 3 000004 0000 0O0O0O ALIGN 16
000008 0000 0000
00000C 0000 0O0OO
4 4
5 5
6 6 000010 7F HEX: DC.B 127 ; HEX is allocated
7 7 ; on an address,
8 8 ; which is a
9 9 ; multiple of 16.

9.2.3 BASE - Set number base

Syntax

BASE <n>
Synonym
None
Description

The directive sets the default number base for constants to <n-. The operand <n- may be
prefixed to indicate its number base; otherwise, the operand is considered to be in the
current default base. Valid values of <n- are 2, 8, 10, 16. Unless a default base is specified
using the zase directive, the default number base is decimal.

Example
See the following listing, for examples of setting the number base.

Listing: Setting the number base
4 4 base 10 ; default base: decimal

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 251

uewailed descriptions of all assembler directives

5 5 000000 64 de.b 100

6 6 base 16 ; default base: hex

7 7 000001 0A de.b Oa

8 8 base 2 ; default base: binary
9 9 000002 04 de.b 100

10 10 000003 04 dc.b %100

11 11 base @12 ; default base: decimal
12 12 000004 64 dc.b 100

13 13 base Sa ; default base: decimal
14 14 000005 64 dc.b 100

15 15

16 16 base 8 ; default base: octal
17 17 000006 40 de.b 100

Be careful. Even if the base value is set to 16, hexadecimal constants terminated by a o
must be prefixed by the s character, otherwise they are supposed to be decimal constants
in old style format. For example, constant 4sp is interpreted as decimal constant 45, not as
hexadecimal constant 4sb.

9.2.4 CLIST - List conditional assembly

Syntax

CLIST [ON|OFF]

Synonym
None
Description

The cu1st directive controls the listing of subsequent conditional assembly blocks. It
precedes the first directive of the conditional assembly block to which it applies, and
remains effective until the next cuist directive is read.

When the on keyword is specified in a cu1st directive, the listing file includes all
directives and instructions in the conditional assembly block, even those which do not
generate code (which are skipped).

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

252 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

When the orr keyword is entered, only the directives and instructions that generate code
are listed.

A soon as the -L: Generate a listing file assembler option is activated, the Assembler
defaults to cr1sT ow.

Example
The following listing is an example where the crist orr option is used.

Listing: Listing file with CLIST OFF

CLIST OFF
Try: EQU 0

IFEQ Try

LD D2, #103
ELSE

LD D2, #0
ENDIF

The following listing is the corresponding listing file.

Listing: Example assembler listing where CLIST ON is used

Abs. Rel Loc Obj. code Source line
2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LD D2, #103
5 5 ELSE
7 7 ENDIF

The following listing is a listing file using CLIST ON.
Listing: CLIST ON is selected

CLIST ON
Try: EQU 0

IFEQ Try

LD D2, #103
ELSE

LD D2, #0

ENDIF

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 253

uewailed descriptions of all assembler directives

The following listing is the corresponding listing file.

Listing: Example assembler listing where CLIST ON is used

Abs. Rel. Loc Obj. code Source line
2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LD D2, #103
5 5 ELSE
6 6 LD D2, #0
7 7 ENDIF
8 8

9.2.5 DC - Define Constant

Syntax

[<label>:] DC [.<size>] <expression> [, <expressions>]...

where <size> = B (default), w, OF L.

Synonym
DCW (= 2 byte DCs), DCL (= 4 byte DCs),
FCB (= DC.B), FDB (= 2 byte DCs),
FOB (= 4 byte DCs)

Description

The oc directive defines constants in memory. It can have one or more <expressions
operands, which are separated by commas. The <expression- can contain an actual value
(binary, octal, decimal, hexadecimal, or ASCII). Alternatively, the <expression- can be a
symbol or expression that can be evaluated by the Assembler as an absolute or simple
relocatable expression. One memory block is allocated and initialized for each
expression.

The following rules apply to size specifications for oc directives:

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

254 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

* nc.s: One byte is allocated for numeric expressions. One byte is allocated per ASCII
character for strings.
Listing: Example for DC.B

000000 4142 4344 Label: DC.B "ABCDE"
000004 45

000005 OAOA 010A DC.B %1010, @12, 1,S%A
 pc.w: Two bytes are allocated for numeric expressions. ASCII strings are right

aligned on a two-byte boundary.
Listing: Example for DC.W

000000 0041 4243 Label: DC.W "ABCDE"
000004 4445

000006 000A 000A DC.W %1010, @12, 1, SA
00000A 0001 000OA

00000E xxxx DC.W Label

* pc.u: Four bytes are allocated for numeric expressions. ASCII strings are right
aligned on a four byte boundary.
Listing: Example for DC.L

000000 0000 0041 Label: DC.L "ABCDE"
000004 4243 4445

000008 0000 000A DC.L %1010, @12, 1, S$SA
00000C 0000 000A
000010 0000 0001
000014 0000 000A

000018 XXXX XXXX DC.L Label

If the value in an operand expression exceeds the size of the operand, the assembler
truncates the value and generates a warning message.

See also

Assembler directives:

DCB - Define Constant Block

DS - Define Space

ORG - Set Location Counter

SECTION - Declare Relocatable Section

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc.

255

uewailed descriptions of all assembler directives

9.2.6 DCB - Define Constant Block

Syntax

[<label>:] DCB [.<size>] <count>, <value>

where
<gsize> =

B (default),
W, or

L.

Description

The oce directive causes the Assembler to allocate a memory block initialized with the
specified <value>. The length of the block is <size> * <counts.

<count> may not contain undefined, forward, or external references. It may range from 1 to
4096.

The value of each storage unit allocated is the sign-extended expression <vaiues, which
may contain forward references. The <count> cannot be relocatable. This directive does
not perform any alignment.

The following rules apply to size specifications for ocs directives:

* nce.e: One byte is allocated for numeric expressions.
* pce.w: Two bytes are allocated for numeric expressions.
* oce.1: Four bytes are allocated for numeric expressions.

Listing: Examples of DCB directives

000000 FFFF FF Label: DCB.B 3, S$FF
000003 FFFE FFFE DCB.W 3, SFFFE

000007 FFFE
000009 0000 FFFE DCB.L 3, SFFFE
00000D 0000 FFFE

000011 0000 FFFE

See also
Assembler directives:

e DC - Define Constant
* DS - Define Space

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

256 Freescale Semiconductor, Inc.

A
4

4
A

Chapter 9 Assembler Directives

¢ ORG - Set Location Counter
e SECTION - Declare Relocatable Section

9.2.7 DS - Define Space

Syntax

[<label>:] DS[.<size>] <count>

where <size> =8 (default), w, or .

Synonym

RMB (= DS.B)

RMD (2 bytes)

RMQ (4 bytes)

Description

The s directive is used to reserve memory for variables, as listed in the following listing.
The content of the memory reserved is not initialized. The length of the block is <size>

*<counts>.

<count> May not contain undefined, forward, or external references. It may range from 1 to
4096.

Listing: Examples of DS directives

Counter: DS.B 2 ; 2 continuous bytes in memory
DS.B 2 ; 2 continuous bytes in memory

; can only be accessed through the label Counter

DS.W 5 ; 5 continuous words in memory

The label counter references the lowest address of the defined storage area.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 257

uewailed descriptions of all assembler directives

NOTE
Storage allocated with a ps directive may end up in constant
data section or even in a code section, if the same section
contains constants or code as well. The Assembler allocates
only a complete section at once.

Example

In the following listing, a variable, a constant, and code were put in the same section.
Because code has to be in ROM, then all three elements must be put into ROM.

Listing: Poor memory allocation

; How it should NOT be done ...

Counter: DS 1 ; l-byte used
InitialCounter: DC.B $f5 ; constant S$£f5

main: NOP ; NOP instruction

In order to allocate them separately, put them in different sections, as listed in the
following listing:

Listing: Proper memory allocation

DataSect: SECTION ; separate section for variables
Counter: DS 1 ; l-byte used

ConstSect: SECTION ; separate section for constants
InitialCounter: DC.B $f5 ; constant $£f5

CodeSect: SECTION ; section for code

main: NOP ; NOP instruction

An ore directive also starts a new section.

See also
e DC - Define Constant
e ORG - Set Location Counter
e SECTION - Declare Relocatable Section

9.2.8 ELSE - Conditional assembly

Syntax

IF <condition>

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

258 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

[<assembly language statementss>]
[ELSE]
[<assembly language statementss>]

ENDIF
Synonym
ELSEC

Description

If <conaitions is true, the statements between 1r and the corresponding ense directive are
assembled (generate code).

If <conditions 1s false, the statements between rnse and the corresponding Exp1r directive
are assembled. Nesting of conditional blocks is allowed. The maximum level of nesting is
limited by the available memory at assembly time.

Example
The following listing is an example of the use of conditional assembly directives:

Listing: Various conditional assembly directives

Try: EQU 1
IF Try !=

0
LD D2, #103
ELSE
LD D2, #0
ENDIF
The value of Try determines the instruction to be assembled in the program. As shown,
the 14a #103 Instruction is assembled. Changing the operand of the =ou directive to o causes
the 14a #o instruction to be assembled instead.

Listing: Output

1 1 0000 0001 Try: EQU 1

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 259

A 4
4\ |

uewailed descriptions of all assembler directives

2 2 0000 0001 IF Try != 0
3 3 000000 A667 LD D2,#103
4 4 ELSE

6 6 ENDIF

9.2.9 END - End assembly

Syntax

END

Synonym
None
Description

The =xo directive indicates the end of the source code. Subsequent source statements in
this file are ignored. The exp directive in included files skips only subsequent source
statements in this include file. The assembly continues in the including file in a regular
way.

Example

The exp statement in the following listing causes any source code after the END statement
to be ignored, as in the next listing.

Listing: Source File

Label: DC.W $1234
DC.W $5678

END
DC.W $90AB ; no code generated

DC.W SCDEF ; no code generated

Listing: Generated listing file

Abs. Rel. Loc Obj. code Source line
1 1 000000 1234 Label: DC.W $1234
2 2 000002 5678 DC.W $5678

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

260 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

9.2.10 ENDFOR - End of FOR block

Syntax

ENDFOR

Synonym
None
Description

The =npror directive indicates the end of a ror block.

NOTE
The ror directive is only available when the -compat-b assembler
option is used. Otherwise, the ror directive is not supported.

Example

See Listing: Using the FOR directive in a loop in the ror section.
See also

Assembler directives:

* FOR - Repeat assembly block
* -Compat: Compatibility modes

9.2.11 ENDIF - End conditional assembly

Syntax

ENDIF

Synonym

ENDC

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 261

N
uewailed descriptions of all assembler directives

The =xo1r directive indicates the end of a conditional block. Nesting of conditional blocks
is allowed. The maximum level of nesting is limited by the available memory at assembly
time.

Example
See Listing: [F and ENDIF in the 1r section.
See also

IF - Conditional assembly assembler directive

9.2.12 ENDM - End macro definition

Syntax

ENDM

Synonym

None

Description

The evom directive terminates the macro definition.

Example

The ENDM statement in the following listing terminates the cpChar macro.

Listing: Using ENDM to terminate a macro definition

cpChar: MACRO
LD D6, \1

ST D6, \2
ENDM
CodeSec: SECTION
Start:
cpChar charl, char2
LD D6, charl

ST D6, char2

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

262 Freescale Semiconductor, Inc.

9.2.13 EQU - Equate symbol value

Syntax

<label>: EQU <expression>

Synonym
None

Description

Chapter 9 Assembler Directives

The =ou directive assigns the value of the <expressions> in the operand field to <1ave1s. The
<labels and <expression> fields are both required, and the <1ave1- cannot be defined
anywhere else in the program. The <expression> cannot include a symbol that is undefined

or not yet defined.

The =ou directive does not allow forward references.

Example

See the following listing for examples of using the =ou directive.

Listing: Using EQU to set variables

0000
0000

0000

0000

0000

0014
0050

0000

0002

0004

MaxElement :

MaxSize:

Time:

Hour:

Minute:

Second:

DS.B
EQU
EQU

EQU

EQU 20
EQU MaxElement * 4

3
Time ; first byte addr.
Time+l ; second byte addr

Time+2 ; third byte addr

9.2.14 EVEN - Force word alignment

Syntax

EVEN

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

263

vewiled descriptions of all assembler directives
Synonym

None

Description

This directive forces the next instruction to the next even address relative to the start of
the section. even is an abbreviation for ar1ey 2. Some processors require word and long
word operations to begin at even address boundaries. In such cases, the use of the even
directive ensures correct alignment. Omission of this directive can result in an error
message.

Example

See the following listing for instances where the EVEN directive causes padding bytes to
be inserted.

Listing: Using the Force Word Alignment Directive

Abs. Rel Loc Obj. code Source line
1 1 000000 ds.b 4
2 2 ; location count has an even value
3 3 ; no padding byte inserted.
4 4 even
5 5 000004 ds.b 1
6 6 ; location count has an odd value
7 7 ; one padding byte inserted.
8 8 000005 even
9 9 000006 ds.b 3
10 10 ; location count has an odd value
11 11 ; one padding byte inserted.
12 12 000009 even
13 13 0000 000A aaa: equ 10
See also

ALIGN - Align Location Counter assembly directive

9.2.15 FAIL - Generate Error message

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

264 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

Syntax
FAIL <arg>|<string>

Synonym

None

Description

There are three modes of the ra1w directive, depending upon the operand that is specified:

* If <arg> 1S a number in the range [0-499], the Assembler generates an error message,
including the line number and argument of the directive. The Assembler does not
generate an object file.

* If <arg> 1S @a number in the range [soo-srrrrrrrr], the Assembler generates a warning
message, including the line number and argument of the directive.

e If a string is supplied as an operand, the Assembler generates an error message,
including the line number and the <string>. The Assembler does not generate an
object file.

* The raru directive is primarily intended for use with conditional assembly to detect
user-defined errors or warning conditions.

Examples

The assembly code in the following listing generates the error messages in the next
listing. The value of the operand associated with the “rarn 200 Or “rarn eoo-directives
determines (1) the format of any warning or error message and (2) whether the source
code segment will be assembled.

Listing: Example source code

cpChar: MACRO
IFC ll\lll’ nn

FAIL 200
MEXIT
ELSE
LD D6, \1
ENDIF
IFC "\2m", nn
FAIL 600
ELSE

ST D6, \2

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 265

A\ 4
N
uewailed descriptions of all assembler directives
ENDIF
ENDM
codSec: SECTION

Start:

cpChar charl
Listing: Error messages resulting from assembling the source code

>> in "C:\Freescale\demo\warnfail.asm", line 9, col 0, pos 99
FAIL 600

A

WARNING A2332: FAIL found

INFORMATION Macro Expansion FAIL 600

The following listing is another assembly code example which again incorporates the
ra1L 200 and the ratn 600 directives.

Listing: Example source code

cpChar: MACRO

IFC "\1", "o

FAIL 200
MEXIT
ELSE

LD D6, \1
ENDIF
IFC "\2", "o

FAIL 600
ELSE

ST D6, \2
ENDIF
ENDM

codeSec: SECTION
Start:
cpChar ,char2

The following listing is the error message that was generated as a result of assembling the
source code in the above listing.

Listing: Error messages resulting from assembling the source code

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

266 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

>> in "C:\Freescale\err.asm", line 3, col 0, pos 41
FAIL 200

ERROR A2329: FAIL found
INFORMATION Macro Expansion FAIL 200

The following listing has additional uses of the rarr directive. In this example, the
FAIL string and ra1r eoo directives are used.

Listing: Example source code

cpChar: MACRO
IFC Il\llll nn

FAIL "A character must be specified as first parameter"
MEXIT
ELSE
LD D6, \1
ENDIF
IFC "\2", "n
FAIL 600
ELSE
ST D6, \2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar ,char2

The following listing shows the error messages generated from the assembly code as a
result of the rars directive.

Listing: Error messages resulting from assembling the source code

>> in "C:\Freescale\test.asm", line 3, col 0, pos 37
FAIL "A character must be specified as first parameter"

ERROR A2338: A character must be specified as first parameter

INFORMATION Macro Expansion FAIL "A character must be
specified as first parameter"

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

267

uewailed descriptions of all assembler directives

9.2.16 FOR - Repeat assembly block

Syntax

FOR <label>=<num> TO <num>

ENDFOR

Synonym
None
Description

The ror directive is an inline macro because it can generate multiple lines of assembly
code from only one line of input code.

ror takes an absolute expression and assembles the portion of code following it, the
number of times represented by the expression. The ror expression may be either a
constant or a label previously defined using sou or ser.

NOTE
The ror directive is only available when the -Compat=b
assembly option is used. Otherwise, the ror directive is not
supported.

Example
The following listing is an example of using ror to create a S-repetition loop.

Listing: Using the FOR directive in a loop

FOR label=2 TO 6
DC.B label*7

ENDFOR

Listing: Resulting output listing

Abs. Rel Loc Obj. code Source line
1 1 FOR label=2 TO 6
2 2 DC.B 1label*7
3 3 ENDFOR

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

268 Freescale Semiconductor, Inc.

10
11
12

13

See also

ENDFOR - End of FOR block

-Compat: Compatibility modes assembler option

9.2.17

Syntax

000000

000001

000002

000003

000004

IF <condition>

OE

15

1cC

23

2A

DC.B

ENDFOR

DC.B

ENDFOR

DC.B

ENDFOR

DC.B

ENDFOR

DC.B

ENDFOR

[<assembly language statementss>]

[ELSE]

[<assembly language statementss>]

ENDIF

Synonym

None

label*7

label*7

label*7

label*7

label*7

IF - Conditional assembly

Chapter 9 Assembler Directives

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

269

uewailed descriptions of all assembler directives
Description

If <conaitions is true, the statements immediately following the 1 directive are assembled.
Assembly continues until the corresponding erse or exn1r directive is reached. Then all the
statements until the corresponding exprr directive are ignored. Nesting of conditional
blocks is allowed. The maximum level of nesting is limited by the available memory at
assembly time.

The expected syntax for <conditions 1S:

<condition> := <expression> <relations> <expression>

<relation> := =|!=|>=|>|<=|<]|<>

The <expression> must be absolute (It must be known at assembly time).
Example
The following listing is an example of the use of conditional assembly directives

Listing: IF and ENDIF

Try: EQU 0
IF Try != 0

LD D6,#100

ELSE

LD D6, #0

ENDIF

The value of Try determines the instruction to be assembled in the program. As shown,
the o pe, #0 Instruction is assembled. Changing the operand of the =qu directive to one
causes the o ps, #100 Instruction to be assembled instead. The following shows the listing
provided by the Assembler for these lines of code:

Listing: Output listing after conditional assembly

1 1 0000 0000 Try: EQU 0
2 2 0000 00O0O IF Try != 0
4 4 ELSE
5 5 000000 A600
LD D6,#0

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

270 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

6 6 ENDIF

9.2.18 IFcc - Conditional assembly

Syntax

IFcc <conditions

[<assembly language statementss]
[ELSE]

[<assembly language statementss>]

ENDIF

Synonym
None
Description

These directives can be replaced by the 1r directive 1fcc <conditions 1S true, the statements
immediately following the rtcc directive are assembled. Assembly continues until the
corresponding evse or exorr directive is reached, after which assembly moves to the
statements following the eno1r directive. Nesting of conditional blocks is allowed. The
maximum level of nesting is limited by the available memory at assembly time.

The following table lists the available conditional types:
Table 9-9. Conditional assembly types

Ifcc Condition Meaning
ifeq <expression> if <expression> ==
ifne <expression> if <expression>!=0
iflt <expression> if <expression> < 0
ifle <expression> if <expression> <=0
ifgt <expression> if <expression> > 0
ifge <expression> if <expression> >=0

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 271

4
A |

uewailed descriptions of all assembler directives

Table 9-9. Conditional assembly types (continued)

Ifcc Condition Meaning
ifc <string1>, <string2> if <string1> == <string2>
ifnc <string1>, <string2> if <string1> != <string2>
ifdef <label> if <label> was defined
ifndef <label> if <label> was not defined
Example

The following listing is an example of the use of conditional assembler directives:

Listing: Using the IFNE conditional assembler directive

Try: EQU 0
IFNE Try

LD D6,#103
ELSE
LD D6, #0
ENDIF
The value of try determines the instruction to be assembled in the program. As shown,

the o pe, #0 instruction is assembled. Changing the directive to 1reo causes the 1o ps, #103
instruction to be assembled instead.

The following listing shows the listing provided by the Assembler for these lines of code

Listing: Output

1 1 0000 0000 Try: EQU 0
2 2 0000 00O0O IFNE Try

4 4 ELSE

5 5 000000 A600 LD D6,#0

6 6 ENDIF

9.2.19 INCLUDE - Include text from another file

Syntax

INCLUDE <file specifications>

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

272 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives
Synonym
None
Description

This directive causes the included file to be inserted in the source input stream. The <fiie
specifications 18 NOt case-sensitive and must be enclosed in quotation marks.

The Assembler attempts to open <file specifications relative to the current working
directory. If the file is not found there, then it is searched for relative to each path
specified in the GENPATH: Search path for input file environment variable.

Example

INCLUDE "..\LIBRARY\macros.inc"

9.2.20 LIST - Enable Listing

Syntax
LIST

Synonym
None
Description

Specifies that instructions following this directive must be inserted into the listing and
into the debug file. This is a default option. The listing file is only generated if the -L:
Generate a listing file assembler option is specified on the command line.

The source text following the rrst directive is listed until a NOLIST - Disable Listing or
an END - End assembly assembler directive is reached.

This directive 1s not written to the listing and debug files.
Example

The assembly source code using the v1st and nov1st directives in the following listing
generates the output listed in the next listing.

Listing: Using the LIST and NOLIST assembler directives

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 273

A
4

4
A

uewailed descriptions of all assembler directives

aaa: NOP
LIST

bbb: NOP
NOP
NOLIST

ccc: NOP
NOP
LIST

ddd: NOP NOP

Listing: Output

Abs. Rel Loc Obj. code Source line

1 1 000000 9D aaa: NOP
2 2

4 4 000001 9D bbb: NOP
5 5 000002 9D NOP
6 6

12 12 000005 9D ddd: NOP
13 13 000006 9D NOP

9.2.21 LLEN - Set Line Length

Syntax

LLEN<n>

Synonym
None
Description

Sets the number of characters from the source line that are included on the listing line to
<n>. The values allowed for <n> are in the range (o - 1321. If a value smaller than o is
specified, the line length is set to o. If a value bigger than 132 is specified, the line length
is set to 132.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

274 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

Lines of the source file that exceed the specified number of characters are truncated in the
listing file.

Example

The following listing shows the portion of code which generates the listing file in next
listing. Notice that the rzex 24 directive causes the output at the location-counter line 7 to
be truncated.

Listing: Example assembly source code using LLEN

DC.B $55
LLEN 32

DC.W $1234, $4567
LLEN 24
DC.W $1234, $4567

EVEN

Listing: Formatted assembly output listing as a result of using LLEN

Abs. Rel. Loc Obj. code Source line
1 1 000000 55 DC.B $55
2 2
4 4 000001 1234 4567 DC.W $1234, $4567
5 5
7 7 000005 1234 4567 DC.W $1234, $
8 8 000009 00 EVEN

9.2.22 LONGEVEN - Forcing Long-Word alignment

Syntax

LONGEVEN

Synonym
None

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 275

A
4

4
A

uewailed descriptions of all assembler directives

This directive forces the next instruction to the next long-word address relative to the
start of the section. ronceven 1S an abbreviation for avren 4.

Example

See the following listing for an example where ronceven aligns the next instruction to have
its location counter to be a multiple of four (bytes).

Listing: Forcing Long Word Alignment

2 2 000000 01 dcb.b 1,1
; location counter is not a multiple of 4; three filling

; bytes are required.
3 3 000001 0000 0O longeven
4 4 000004 0002 0002 dcb.w 2,2
; location counter is already a multiple of 4; no filling

; bytes are required.

5 5 longeven

6 6 000008 0202 dcb.b 2,2
7 7 ; following is for text section

8 8 527 SECTION 27
9 9 000000 9D nop

; location counter is not a multiple of 4; three filling
; bytes are required.
10 10 000001 0000 0O longeven

11 11 000004 9D nop

9.2.23 MACRO - Begin macro definition

Syntax

<label>: MACRO

Synonym
None

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

276 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

The <1ave1> of the macro directive is the name by which the macro is called. This name
must not be a processor machine instruction or assembler directive name. For more
information on macros, see the Macros chapter.

Example
See the following listing for a macro definition.

Listing: Example macro definition

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
cpChar: MACRO
LD D6,\1
ST D6,\2
ENDM
CodeSec: SECTION
Start:
cpChar charl, char2
LD D6, charl

ST D6,char2

9.2.24 MEXIT - Terminate Macro Expansion

Syntax

MEXIT

Synonym
None
Description

mex1t 1S usually used together with conditional assembly within a macro. In that case it
may happen that the macro expansion should terminate prior to termination of the macro
definition. The mex1T directive causes macro expansion to skip any remaining source lines
ahead of the ENDM - End macro definition directive.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 277

A
4

4
A

uewailed descriptions of all assembler directives

Example

The code in the following listing allows the replication of simple instructions or
directives using macro with mexzT.

Listing: Example assembly code using MEXIT

XDEF entry
storage: EQU $SOO0OFF

save: MACRO ; Start macro definition

LD X, #storage

LD D6, \1

ST D6, (0,x) ; Save first argument

LD D6, \2

ST D6, (2,x) ; Save second argument

IFC '\3', '' ; Is there a third argument?
MEXIT ; No, exit from macro

ENDC

LD D6, \3 ; Save third argument
ST D6, (4,X)
ENDM ; End of macro definition
datSec: SECTION
charl: ds.b 1
char2: ds.b 1
codSec: SECTION
entry:

save charl, char2

The following listing shows the macro expansion of the previous macro.

Listing: Macro expansion

Abs. Rel Loc Obj. code Source line
1 1 XDEF entry
2 2 0000 OOFF storage: EQU SOOFF
3 3 save: MACRO ; Start macro definition
4 4 LD X, #storage
5 5 LD D6, \1
6 6 ST D6, (0,x) ; Save first argument

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

278 Freescale Semiconductor, Inc.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

10

11

12

13

14

15

16

17

18

19

20

4m

5m

6m

7m

8m

Sm

10m

11lm

12m

13m

000000

000001

000000 9800

Chapter 9 Assembler Directives

ID D6, \2
ST D6, (2,x) ; Save second argument
IFC '\3','';Is there a third argument?

MEXIT ; No, exit from macro

ENDC
LD D6, \3 ; Save third argument
ST D6, (4,X)
ENDM ; End of macro definition
datSec: SECTION

charl: ds.b 1

char2: ds.b 1
codSec: SECTION
entry:

save charl, char2

00FF + LD X, #storage

000004 B6xx xXXxXxX + LD D6, charl

000008 C640

+ ST D6, (0,x) ; Save first argument

00000A B6XxX XXxXX + LD D6, char2

00000E C642 + ST D6, (2,x) ; Save second argument
0000 0001 + IFC '','';Is there a third argument?
+ MEXIT ; No, exit from macro
+ ENDC
+ LD D6, ;Save third argument
+ ST D6, (4,X)

9.2.25 MLIST - List macro expansions

Syntax

MLIST [ON|OFF]

Description

When the on keyword is entered with an mu1st directive, the Assembler includes the macro
expansions in the listing and in the debug file.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

279

g |

uewailed descriptions of all assembler directives

When the orr keyword is entered, the macro expansions are omitted from the listing and
from the debug file.

This directive is not written to the listing and debug file, and the default value is ow.
Synonym

None

Example

The assembly code in the following listing, with mu1sT on, generates the assembler output
listing in the next listing.

Listing: Example assembly source code using MLIST

XDEF entry
MLIST ON

swap: MACRO
LD D6, \1
LD X, \2
ST D6, \2
ST X, \1
ENDM
codSec: SECTION
entry:
LD D6, #SFO
LD X, #SOF
main:
ST D6, first
ST X, second
swap first, second
NOP
BRA main
datSec: SECTION
first: DS.B 1

second: DS.B 1

Listing: Assembler Output

Abs. Rel. Loc Obj. code Source line

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

280 Freescale Semiconductor, Inc.

g |

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

10

11

12

13

14

15

16

17

4m

5m

6m

7m

8m

18

19

20

21

22

S

XDEF entry

wap: MACRO

LD D6, \1
LD X, \2
ST D6, \2
ST X, \1
ENDM
codSec:
entry:

000000 9600 0000

000004 FO

000005 A87F

main:

000007 D6XX XXXX

00000B C800 xxxx

00000F xx

swap first,

000010 B6XX XXXX +
000014 A800 xxxx +
000018 xx
000019 D6XX XXXX +
00001D C800 xxxx +
000021 xx
000022 01

000023 20FF E4

000000

000001

datSec:

first:

second:

SECTION

LD D6, #SFO

LD X, #$SOF
ST D6, first
ST X, second

second
LD D6, first
LD X, second
ST De6,

ST X, first

NOP

BRA main
SECTION
DS.B 1

DS.B 1

second

Chapter 9 Assembler Directives

For the same code, with vu1sT orr, the listing file is as shown in the following listing.

Listing: Assembler Output

Abs.

Rel.

Obj. code Source line

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

281

A 4
4\ |

uewailed descriptions of all assembler directives

1 1 XDEF entry

3 3 swap : MACRO

4 4 LD D6, \1

5 5 LD X, \2

6 6 ST D6, \2

7 7 ST X \1

8 8

9 9 ENDM

10 10 codSec: SECTION

11 11 entry:

12 12 000000 9600 0000 LD D6, #SFO

000004 FO

13 13 000005 A87F LD X, #SOF
14 14 main:

15 15 000007 D6XX XXXX ST D6, first
16 16 00000B C800 xxxxX ST X, second

00000F xx

17 17 swap first, second
23 18 000022 01 NOP
24 19 000023 20FF E4 BRA main
25 20 datSec: SECTION
26 21 000000 first: DS.B 1
27 22 000001 second: DS.B 1

The urzst directive does not appear in the listing file. When a macro is called after a mr1st
oy, it is expanded in the listing file. If the mu1sT orr is encountered before the macro call,
the macro is not expanded in the listing file.

9.2.26 NOLIST - Disable Listing

Syntax
NOLIST

Synonym

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

282 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

NOL

Description

Suppresses the printing of the following instructions in the assembly listing and debug
file until a LIST - Enable Listing assembler directive is reached.

Example
See the following listing for an example of using v1st and nov1sT.

Listing: Examples of LIST and NOLIST

aaa: NOP
LIST

bbb NOP
NOP
NOLIST

ccc: NOP
NOP
LIST

ddd: NOP

NOP

The listing above generates the listing file in the following listing.

Listing: Assembler output listing from the assembler source code

Abs. Rel. Loc Obj. code Source line
1 1 000000 01 aaa: NOP
3 3 000001 01 bbb: NOP
4 4 000002 01 NOP
9 9 000005 01 ddd: NOP
10 10 000006 01 NOP

See also

LIST - Enable Listing assembler directive

9.2.27 NOPAGE - Disable Paging

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 283

uewailed descriptions of all assembler directives

Syntax

NOPAGE

Synonym
None
Description

Disables pagination in the listing file. Program lines are listed continuously, without
headings or top or bottom margins.

9.2.28 OFFSET - Create absolute symbols

Syntax

OFFSET <expressions>

Synonym
None
Description

The orrser directive declares an offset section and initializes the location counter to the
value specified n <expressions. The <expressions> MUSt be absolute and may not contain
references to external, undefined or forward defined labels.

Example

The following listing shows how the orrser directive can be used to access an element of
a structure.

Listing: Example assembly source code

Abs. Rel. Loc Obj. code Source line
1 1 OFFSET 0
2 2 000000 ID: DS.B 1
3 3 000001 COUNT : DS.W 1
4 4 000003 VALUE : DS.L 1

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

284 Freescale Semiconductor, Inc.

10

11

12

13

14

15

16

17

0000 0007 SIZE:

7 DataSec:
8 000000 Struct:
9
10 CodeSec:
11 entry:
12 000000 98xx xXXXX
13 000004 9600 0000

000008 00
14 000009 C640
15 00000B 9C41
16 00000D 36
17 00O000E C643

Chapter 9 Assembler Directives

EQU *

SECTION

DS.B SIZE

SECTION

LD X, #Struct

LD D6, #0

ST D6, (ID, X)
INC.B (COUNT, X)
INC D6

ST D6, (VALUE, X)

When a statement affecting the location counter other than sven, rongeven, ar1en, O Ds 1S
encountered after the orrser directive, the offset section is ended. The preceding section is
activated again, and the location counter is restored to the next available location in this
section. The following listing shows the example where the location counter is changed.

Listing: Example where the location counter is changed

10

11

12

13

14

15

16

17

10

11

12

13

14

15

16

17

ConstSec:
000000 11 cstl:
000001 13 cst2:
000000 ID:
000001 COUNT :
000003 VALUE:

0000 0007 SIZE:

000002 22 cst3:

SECTION

DC.B s11
DC.B $13
OFFSET 0
DS.B 1
DS.W 1
DS.L 1
EQU *

DC.B 822

In the example above, the cst3 symbol, defined after the orrser directive, defines a
constant byte value. This symbol is appended to the section constsec, Which precedes the
orrseT directive.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

285

uewailed descriptions of all assembler directives

9.2.29 ORG - Set Location Counter

Syntax
ORG <expressions

Synonym
None
Description

The ore directive sets the location counter to the value specified by <expressions.
Subsequent statements are assigned memory locations starting with the new location
counter value. The <expression> must be absolute and may not contain any forward,
undefined, or external references. The orc directive generates an internal section, which is
absolute (see the Sections chapter).

Example
See the following listing for an example where orc sets the location counter.

Listing: Using ORG to set the location counter

org $2000
bl: nop

b2: rts

Viewing the following listing, you can see that the »1 label is located at address $2000
and label b2 is at address $2001.

Listing: Assembler output listing from the source code

Abs. Rel Loc Obj. code Source line
1 1 ORG $2000
2 2 a002000 01 bl: nop
3 3 a002001 05 b2: rts
See also

Assembler directives:

e DC - Define Constant

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

286 Freescale Semiconductor, Inc.

A
4

4
A

e DCB - Define Constant Block
* DS - Define Space
e SECTION - Declare Relocatable Section

9.2.30 PAGE - Insert Page break

Syntax
PAGE

Synonym

None

Description

Insert a page break in the assembly listing.

Example

Chapter 9 Assembler Directives

The portion of code in the following listing demonstrates the use of a page break in the

assembler output listing.

Listing: Example assembly source code

SECTION
DC.B $00,%12

code:

DC.B $00,%$34
PAGE
DC.B $00,%56

DC.B $00,$78

The effect of the PAGE directive can be seen in the following listing.

Listing: Assembler output listing from the source code

Abs. Rel. Loc Obj. code Source line
1 1 code SECTION
2 2 000000 0012 DC.B $00,s12
3 3 000002 0034 DC.B $00,$34
Abs. Rel. Loc Obj. code Source line

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

287

5 5 000004 0056 DC.B $00, 856

6 6 000006 0078 DC.B $00,$78

9.2.31 PLEN - Set Page Length

Syntax

PLEN<n>

Synonym
None
Description

Sets the listings page length to <n- lines. <n> may range from 10 to 10000. If the number of
lines already listed on the current page is greater than or equal to <n», listing will continue
on the next page with the new page length setting.

The default page length is 65 lines.

9.2.32 RAD50 - RAD50-encoded string constants

Syntax
RAD50 <str>[, cnt]

Synonym
None

Description

This directive places strings encoded with the RADS0 encoding into constants. The
RADS0 encoding places 3 string characters out of a reduced character set into 2 bytes. It
therefore saves memory when comparing it with a plain ASCII representation. It also has
some drawbacks, however. Only 40 different character values are supported, and the
strings have to be decoded before they can be used. This decoding does include some
computations including divisions (not just shifts) and is therefore rather expensive.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

288 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

The encoding takes three bytes and looks them up in a string table. The following listing
shows the RADS50 encoding.

Listing: RADS0 Encoding

unsigned short LookUpPos (char x) {
static const char translate[]=

" ABCDEFGHIJKLMNOPQRSTUVWXYZS.?20123456789";
const char* pos= strchr(translate, x);
if (pos == NULL) { EncodingError(); return 0; }
return pos-translate;
}
unsigned short Encode(char a, char b, char c) {
return LookUpPos (a)*40*40 + LookUpPos (b) *40

+ LookUpPos (c) ;

}

If the remaining string is shorter than 3 bytes, it is filled with spaces (which correspond to
the RADSO0 character 0).

The optional argument cnc can be used to explicitly state how many 16-bit values should
be written. If the string is shorter than s+cnt, then it is filled with spaces.

See the example C code (Listing: Example-Program that Prints Hello World) listed
below about how to decode it.

Example

The string data in the following listing assembles to the following data (Listing:
Assembler output where 11 characters are contained in eight bytes). The 11 characters in
the string are represented by 8 bytes.

Listing: RADS50 Example

XDEF rad50, rad50Len
DataSection SECTION

rad50: RAD50 "Hello World"

rad50Len: EQU (*-rad50)/2

Listing: Assembler output where 11 characters are contained in eight bytes

$32D4 $4D58 $922A $4BA0

This C code shown in the following listing takes the data and prints "Hello World".

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 289

g |

uewailed descriptions of all assembler directives

Listing: Example-Program that Prints Hello World

#include "stdio.h"
extern unsigned short rad50I[];

extern int rad50Len; /* address is value. Exported asm label */
#define rad50len ((int) &rad50Len)
void printRadChar (char ch) {
static const char translatel[l=
" ABCDEFGHIJKLMNOPQRSTUVWXYZS.?0123456789";
char asciiChar= translatel[ch];
(void)putchar (asciiChar) ;
}
void PrintHallo(void) ({
unsigned char values= rad50len;
unsigned char i;
for (i=0; 1 < values; i++) {
unsigned short wval= rad50[i];
printRadChar (val / (40 * 40));
printRadChar ((val / 40) % 40);

printRadChar (val % 40);

9.2.33 SECTION - Declare Relocatable Section

Syntax

<name>: SECTION [SHORT] [<number>]

Synonym
None

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

290 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

This directive declares a relocatable section and initializes the location counter for the
following code. The first secrion directive for a section sets the location counter to zero.
Subsequent secrron directives for that section restore the location counter to the value that
follows the address of the last code in the section.

<name> 18 the name assigned to the section. Two secrzon directives with the same name
specified refer to the same section.

<number> 18 optional and is only specified for compatibility with the MASM Assembler.

A section is a code section when it contains at least one assembly instruction. It is
considered to be a constant section if it contains only pc or oce directives. A section is
considered to be a data section when it contains at least a ns directive or if it is empty.

Example

The example in the following listing demonstrates the definition of a section aaa, which is
split into two blocks, with section vbb in between them.

The location counter associated with the label zz is 1, because a wor instruction was
already defined in this section at label xx.

Listing: Example of the SECTION assembler directive

Abs. Rel Loc Obj. code Source line

1 1 aaa: SECTION 4
2 2 000000 O1 xX: NOP

3 3 bbb: SECTION 5
4 4

5 5 000000 01 yy: NOP

6 6 000001 01 NOP

7 7 000002 01 NOP

8 8 aaa: SECTION 4
9 9 000001 01 zz: NOP

The optional qualifier suorT specifies that the section is a short section, That means than
the objects defined there can be accessed using the direct addressing mode.

For S127Z, there are two additional section qualifiers: S12Z_SHORT and S127_TINY.
When a section is declared as S12Z_SHORT (or S12Z_TINY) all the objects defined
there can be accessed using the short (and respectively tiny) addressing modes.

See also

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 291

N
uewailed descriptions of all assembler directives

Assembler directives:

e ORG - Set Location Counter
e DC - Define Constant

e DCB - Define Constant Block
* DS - Define Space

9.2.34 SET - Set Symbol Value

Syntax

<label>: SET <expression>

Synonym
None
Description

Similar to the EQU - Equate symbol value directive, the ser directive assigns the value of
the <expressions In the operand field to the symbol in the <1ave1s field. The <expressions
must resolve as an absolute expression and cannot include a symbol that is undefined or
not yet defined. The <1ave1- is an assembly time constant. ser does not generate any
machine code.

The value is temporary; a subsequent ser directive can redefine it.
Example
See the following listing for examples of the SET directive.

Listing: Using the SET assembler directive

Abs. Rel. Loc Obj. code Source line
1 1 0000 0002 count: SET 2
2 2 000000 02 one: DC.B count
3 3
4 4 0000 0001 count: SET count-1
5 5 000001 O1 DC.B count
6 6

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

292 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

7 7 0000 0001 IFNE count

8 8 0000 0000 count: SET count-1
9 9 ENDIF

10 10 000002 00 DC.B count

The value associated with the label count 1S decremented after each oc.s instruction.

9.2.35 SPC - Insert Blank Lines

Syntax

SPC<count>

Synonym
None
Description

Inserts <count> blank lines in the assembly listing. <count> may range from O to 65. This
has the same effect as writing that number of blank lines in the assembly source. A blank
line is a line containing only a carriage return.

9.2.36 TABS - Set Tab Length

Syntax

TABS <n>

Synonym
None
Description

Sets the tab length to <n> spaces. The default tab length is eight. <n> may range from O to
128.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 293

uewailed descriptions of all assembler directives

9.2.37 TITLE - Provide Listing Title

Syntax

TITLE "title"
Synonym
TTL

Description

Print the <cic1e> on the head of every page of the listing file. This directive must be the
first source code line. A title consists of a string of characters enclosed in quotes ().

The title specified will be written on the top of each page in the assembly listing file.

9.2.38 XDEF - External Symbol Definition

Syntax

XDEF [.<size>] <label>[,<label>]...

where
<size> = B(direct), W (default),
L or Sor T

Synonym
GLOBAL, PUBLIC

Description

This directive specifies labels defined in the current module that are to be passed to the
linker as labels that can be referenced by other modules linked to the current module.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

294 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

The number of symbols enumerated in an xoer directive is only limited by the memory
available at assembly time.

The S and T size designators are only available for S12Z, and result in marking the
symbol as short or tiny.

Example

See the following listing for the case where the xper assembler directive can specify
symbols that can be used by other modules.

Listing: Using XDEF to create a variable to be used in another file

XDEF Count, main
;; variable Count can be referenced in other modules,

;; same for label main. Note that Linker & Assembler
;; are case-sensitive, i.e., Count != count.

Count: DS.W 2

code: SECTION

main: DC.B 1

9.2.39 XREF - External Symbol Reference

Syntax

XREF [.<size>] <symbols>[,<symbol>]...

where <size> - s(direct), w (default), or . or s or .

Synonym

EXTERNAL

Description

This directive specifies symbols referenced in the current module but defined in another
module. The list of symbols and corresponding 32-bit values is passed to the linker.

The number of symbols enumerated in an xrer directive is only limited by the memory
available at assembly time.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 295

uewailed descriptions of all assembler directives

The S and T size designators are only available for S12Z, and result in marking the
symbol as short or tiny.

Example

XREF OtherGlobal ; Reference "OtherGlobal" defined in
; another module. (See the XDEF
; directive example.)

9.2.40 XREFB - External Reference for Symbols located on the
Direct Page

Syntax
XREFB <symbols [, <symbol>]. ..

Synonym
None
Description

This directive specifies symbols referenced in the current module but defined in another
module. Symbols enumerated in a xrers directive, can be accessed using the direct
address mode. The list of symbols and corresponding 8-bit values is passed to the linker.

The number of symbols enumerated in a xrers directive is only limited by the memory
available at assembly time.

Example

XREFB OtherDirect ; Reference "OtherDirect" def in another
; module (See XDEF directive example.)

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

296 Freescale Semiconductor, Inc.

Chapter 10
Macros

A macro is a template for a code sequence. Once a macro is defined, subsequent
reference to the macro name are replaced by its code sequence.

10.1 Macro Overview

A macro must be defined before it is called. When a macro is defined, it is given a name.
This name becomes the mnemonic by which the macro is subsequently called.

The Assembler expands the macro definition each time the macro is called. The macro
call causes source statements to be generated, which may include macro arguments. A
macro definition may contain any code or directive except nested macro definitions.
Calling previously defined macros is also allowed. Source statements generated by a
macro call are inserted in the source file at the position where the macro is invoked.

To call a macro, write the macro name in the operation field of a source statement. Place
the arguments in the operand field. The macro may contain conditional assembly
directives that cause the Assembler to produce in-line-coding variations of the macro
definition.

Macros call produces in-line code to perform a predefined function. Each time the macro
is called, code is inserted in the normal flow of the program so that the generated
instructions are executed in line with the rest of the program.

10.2 Defining Macro

The definition of a macro consists of four parts:
e The header statement, a macro directive with a label that names the macro.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 297

vaimng Macros

* The body of the macro, a sequential list of assembler statements, some possibly
including argument placeholders.

* The expu directive, terminating the macro definition.

* eventually an instruction mexrT, which stops macro expansion.

See the Assembler Directives chapter for information about the macro, exom, vex1T, and
mu1st directives.

The body of a macro is a sequence of assembler source statements. Macro parameters are
defined by the appearance of parameter designators within these source statements. Valid
macro definition statements includes the set of processor assembly language instructions,
assembler directives, and calls to previously defined macros. However, macro definitions
may not be nested.

10.3 Calling Macros

The form of a macro call is:
[<label>:] <names>[.<sizearg>] [<argument> [,<argument>]...]

Although a macro may be referenced by another macro prior to its definition in the
source module, a macro must be defined before its first call. The name of the called
macro must appear in the operation field of the source statement. Arguments are supplied
in the operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the call, according to the macro
definition and the arguments specified in the macro call. The source statements of the
expanded macro are then assembled subject to the same conditions and restrictions
affecting any source statement. Nested macros calls are also expanded at this time.

10.4 Macro Parameters

As many as 36 different substitutable parameters can be used in the source statements
that constitute the body of a macro. These parameters are replaced by the corresponding
arguments in a subsequent call to that macro.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

298 Freescale Semiconductor, Inc.

Chapter 10 Macros

A parameter designator consists of a backslash character (\), followed by a digit (0 - 9) or
an uppercase letter (A - Z). Parameter designator \O corresponds to a size argument that
follows the macro name, separated by a period (.).

Consider the following macro definition:

MyMacro: MACRO
DC.\0 \1, \2

ENDM
When this macro is used in a program, e.g.:
MyMacro.B $10, $56
the Assembler expands it to:
DC.B $10, $56

Arguments in the operand field of the macro call refer to parameter designator \1 through
\s and \a through \z, in that order. The argument list (operand field) of a macro call
cannot be extended onto additional lines.

At the time of a macro call, arguments from the macro call are substituted for parameter
designators in the body of the macro as literal (string) substitutions. The string
corresponding to a given argument is substituted literally wherever that parameter
designator occurs in a source statement as the macro is expanded. Each statement
generated in the execution is assembled in line.

It is possible to specify a null argument in a macro call by a comma with no character
(not even a space) between the comma and the preceding macro name or comma that
follows an argument. When a null argument itself is passed as an argument in a nested
macro call, a null value is passed. All arguments have a default value of null at the time
of a macro call.

10.4.1 Macro Argument Grouping

To pass text including commas as a single macro argument, the Assembler supports a
special syntax. This grouping starts with the [? prefix and ends with the ?] suffix. If the [?
or ?] patterns occur inside of the argument text, they have to be in pairs. Alternatively,
escape brackets, question marks and backward slashes with a backward slash as prefix.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 299

wiacro Parameters

NOTE
This escaping only takes place inside of (> »1 arguments. A
backslash is only removed in this process if it is just before a
bracket (11), a question mark (»), or a second backslash ().

Listing: Example macro definition
MyMacro: MACRO
DC \1
ENDM
MyMacrol: MACRO
\1

ENDM

The following listing shows the macro calls with rather complicated arguments:

Listing: Macro calls

MyMacro [?$10, $567?]

MyMacro [?"\[?"?]

MyMacrol [?MyMacro [?$10, $567?]17?]
MyMacrol [?MyMacro \[?$10, $56\?]°?]

These macro calls expand to the following listing:

Listing: Macro expansion

DC $10, $56
DC n [?n

DC $10, $56
DC $10, $56

The Macro Assembler does also supports for compatibility with previous version's macro
grouping with an angle bracket syntax, as in the following listing:

Listing: Angle bracket syntax

MyMacro <$10, $56>

However, this old syntax is ambiguous as < and - are also used as compare operators. For
example, the following code does not produce the expected result:

Listing: Potential problem using the angle-bracket syntax

MyMacro <1 > 2, 2 > 3> ; Wrong!

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

300 Freescale Semiconductor, Inc.

Chapter 10 Macros

Because of this the old angle brace syntax should be avoided in new code. There is also
and option to disable it explicitly.

See also the -CMacBrackets: Square brackets for macro arguments grouping and the -
CMacAngBrack: Angle brackets for grouping Macro Arguments assembler options.

10.5 Labels Inside Macros

To avoid the problem of multiple-defined labels resulting from multiple calls to a macro
that has labels in its source statements, the programmer can direct the Assembler to
generate unique labels on each call to a macro.

Assembler-generated labels include a string of the form _nnnnn where nnnnn is a 5-digit
value. The programmer requests an assembler-generated label by specifying \e in a label
field within a macro body. Each successive label definition that specifies a \@ directive
generates a successive value of _nnnnn, thereby creating a unique label on each macro
call. Note that \@ may be preceded or followed by additional characters for clarity and to
prevent ambiguity.

The following listing shows the definition of the ciear macro:

Listing: Clear macro definition

clear: MACRO
LD X, #\1

LD D6, #16
\@LOOP: CLR.B (0,X)

INC.B (0,X)

DEC D6

BNE \@LOOP

ENDM
This macro is called in the application, as listed in the following listing:

Listing: Calling the clear macro

clear temporary
clear data

The two macro calls of ciear are expanded in the following manner, as listed in the
following listing:

Listing: Macro call expansion

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 301

wiacro Expansion

clear temporary
LD X, #temporary

LD D6, #16
_00001LOOP: CLR.B (0,X)
INC.B(0,X)
DEC D6
BNE _00001LOOP
clear data
LD X, #data
LD D6, #16
_00002LOOP: CLR.B (0,X)
INC.B (0,X)
DEC D6

BNE 00002LOOP

10.6 Macro Expansion

When the Assembler reads a statement in a source program calling a previously defined
macro, it processes the call as described in the following paragraphs.

The symbol table is searched for the macro name. If it is not in the symbol table, an
undefined symbol error message is issued.

The rest of the line is scanned for arguments. Any argument in the macro call is saved as
a literal or null value in one of the 35 possible parameter fields. When the number of
arguments in the call is less than the number of parameters used in the macro the
argument, which have not been defined at invocation time are initialize with » (empty
string).

Starting with the line following the macro directive, each line of the macro body is saved
and 1s associated with the named macro. Each line is retrieved in turn, with parameter
designators replaced by argument strings or assembler-generated label strings.

Once the macro is expanded, the source lines are evaluated and object code is produced.

10.7 Nested Macros

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

302 Freescale Semiconductor, Inc.

g |

4
Chapter 10 Macros

Macro expansion is performed at invocation time, which is also the case for nested
macros. If the macro definition contains nested macro call, the nested macro expansion
takes place in line. Recursive macro calls are also supported.

A macro call is limited to the length of one line, i.e., 1024 characters.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 303

PR 4

neswed Macros

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

304 Freescale Semiconductor, Inc.

Chapter 11
Assembler Listing File

The assembly listing file is the output file of the Assembler that contains information
about the generated code. The listing file is generated when the -1 assembler option is
activated. When an error is detected during assembling from the file, no listing file is
generated.

The name of the generated listing file 1S <base names.1st.
The following listed are the assembler options available for listing files.
The amount of information available depends upon the following assembler options:

* -L: Generate a listing file

* -Lc: No Macro call in listing file

* -L.d: No macro definition in listing file
 -Le: No Macro expansion in listing file
* -Li: No included file in listing file

The information in the listing file also depends on following assembler directives:

e LIST - Enable Listing

e NOLIST - Disable Listing

* CLIST - List conditional assembly
e MLIST - List macro expansions

The format from the listing file is influenced by the following assembler directives:

* PLEN - Set Page Length

* LLEN - Set Line Length

* TABS - Set Tab Length

* SPC - Insert Blank Lines

* PAGE - Insert Page break

* NOPAGE - Disable Paging

» TITLE - Provide Listing Title

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 305

raye Header

11.1 Page Header

The page header consists of three lines:
 The first line contains an optional user string defined in the r1tie directive.

The second line contains the name of the Assembler vendor (rreescale) as well as the
target processor name - S127.

* The third line contains a copyright notice.

Listing: Example page header output

Demo Application
Freescale S12Z-Assembler

(c) COPYRIGHT Freescale 1997-2012

11.2 Source Listing

The printed columns can be configured in various formats with the -Lasmc: Configure
listing file assembler option. The default format of the source listing has the following
five columns:

e Abs.

e Rel.

* Loc

* Obj. code
e Source line

11.2.1 Abs

This column contains the absolute line number for each instruction. The absolute line
number is the line number in the debug listing file, which contains all included files and
where any macro calls have been expanded.

Listing: Example output listing - Abs. column

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

306 Freescale Semiconductor, Inc.

Chapter 11 Assembler Listing File

Abs. Rel Loc Obj. code Source line
1 1 e
2 2 ; File: test.o
3 3 T e e
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 charl: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 21 1D DO, \1
12 31 ST DO, \2
13 41 ENDM
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar charl, char2
17 2m 000000 XX XXXX + LD DO, charl
18 3m 000003 XX XXXX + ST DO, char2
19 13 000006 01 NOP
20 14 000007 01 NOP
11.2.2 Rel

This column contains the relative line number for each instruction. The relative line
number is the line number in the source file. For included files, the relative line number is
the line number in the included file. For macro call expansion, the relative line number is
the line number of the instruction in the macro definition. See the code listed below.

An i suffix is appended to the relative line number when the line comes from an included
file. An n suffix is appended to the relative line number when the line is generated by a
macro call.

Listing: Example listing file - Rel. column

Abs. Rel. Loc Obj. code Source line

1 1 e
2 2 ; File: test.o

3 3 e et
4 4

5 5 XDEF Start

6 6 MyData: SECTION

7 7 000000 charl: DS.B 1

8 8 000001 char2: DS.B 1

9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 2i LD DO, \1
12 3i ST DO, \2
13 4i ENDM
14 10 CodeSec: SECTION
15 11 Start:

16 12 cpChar charl, char2
17 2m 000000 XX XXXX + LD DO, charl

18 3m 000003 XX XXXX + ST DO, char2

19 13 000006 01 NOP
20 14 000007 01 NOP

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 307

duurce Listing

In the previous example, the line number displayed in the re1. column. represent the line
number of the corresponding instruction in the source file.

11 on absolute line number 10 denotes that the instruction cpchar: macro 18 located in an
included file.

2m On absolute line number 17 denotes that the instruction 1o po, char1 is generated by a
macro expansion.

11.2.3 Loc

This column contains the address of the instruction. For absolute sections, the address is
preceded by an a and contains the absolute address of the instruction. For relocatable
sections, this address is the offset of the instruction from the beginning of the relocatable
section. This offset is a hexadecimal number coded on 6 digits.

A value is written in this column in front of each instruction generating code or allocating
storage. This column is empty in front of each instruction that does not generate code (for
example secrron, xoer). See the following listing:

Listing: Example Listing File - Loc column

Abs. Rel Loc Obj. code Source line
1 1 e e e
2 2 ; File: test.o
3 3 R
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 charl: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 21 LD DO, \1
12 31 ST DO, \2
13 4i ENDM
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar charl, char2
17 2m 000000 xX XXXX + LD DO, charl
18 3m 000003 xxX XXXX + ST DO, char2
19 13 000006 01 NOP
20 14 000007 01 NOP

In the previous example, the hexadecimal number displayed in the column roc. is the
offset of each instruction in the section codesec.

There is no location counter specified in front of the instruction rncrLubg"macro.inc" because
this instruction does not generate code.

The instruction 1o po, char1 1S located at offset O from the section codesec start address.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

308 Freescale Semiconductor, Inc.

Chapter 11 Assembler Listing File

The instruction st po, charz 1S located at offset 3 from the section codesec start address.

11.2.4 Obj. code

This column contains the hexadecimal code of each instruction in hexadecimal format.
This code is not identical to the code stored in the object file. The letter ~ x' is displayed at
the position where the address of an external or relocatable label is expected. Code at any
position when * ' is written will be determined at link time. See the following listing:

Listing: Example listing file - Obj. code column

Abs. Rel. Loc Obj. code Source line

1 1 R e e
2 2 ; File: test.o

3 3 e e e
4 4

5 5 XDEF Start

6 6 MyData: SECTION

7 7 000000 charl: DS.B 1

8 8 000001 char2: DS.B 1

9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 21 LD DO, \1
12 31 ST DO, \2
13 41 ENDM
14 10 CodeSec: SECTION
15 11 Start:

16 12 cpChar charl, char2
17 2m 000000 xx xXxxX + LD DO, charl

18 3m 000003 xx XXXX + ST DO, char2

19 13 000006 01 NOP
20 14 000007 01 NOP

11.2.5 Source Line

This column contains the source statement. This is a copy of the source line from the
source module. For lines resulting from a macro expansion, the source line is the
expanded line, where parameter substitution has been done. See the following listing:

Listing: Example listing file - Source line column

Abs. Rel Loc Obj. code Source line
1 1 R e e
2 2 ; File: test.o
3 3 R
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 charl: DS.B 1

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 309

}{ |

swuurce Listing

8 8 000001 char2: DS.B 1

9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO

11 21 LD DO, \1

12 3i ST DO, \2

13 41 ENDM

14 10 CodeSec: SECTION

15 11 Start:

16 12 cpChar charl, char2
17 2m 000000 xx xXXXX + LD DO, charl

18 3m 000003 XX XXXX + ST DO, char2

19 13 000006 01 NOP

20 14 000007 01 NOP

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

310 Freescale Semiconductor, Inc.

Chapter 12
Mixed C and Assembler Applications

To build mixed C and Assembler applications, you have to know how the C Compiler
uses registers and calls procedures. The following sections will describe this for
compatibility with the compiler. If you are working with another vendor's ANSI-C
compiler, refer to your Compiler Manual to get the information about parameter passing
rules.

When you intend to mix Assembly source file and ANSI-C source files in a single
application, the following issues are important:

* Parameter passing scheme

* Return Value

* Accessing assembly variables in an ANSI-C source file
» Accessing ANSI-C variables in an assembly source file
* Invoking an assembly function in an ANSI-C source file
* Support for structured types

* Structured Type: Limitations

12.1 Parameter Passing Scheme

Check the backend chapter in the compiler manual for the details of parameter passing.

12.2 Return Value

Check the backend chapter in the compiler manual for the details of parameter passing.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 311

rnuuessing ANSI-C Variables in Assembly Source File

12.3 Accessing Assembly Variables in ANSI-C Source File

A variable or constant defined in an assembly source file is accessible in an ANSI-C
source file.

The variable or constant is defined in the assembly source file using the standard
assembly syntax.

Variables and constants must be exported using the xper directive to make them visible
from other modules, as listed in the following listing:

Listing: Example of data and constant definition
XDEF ASMData, ASMConst

DataSec: SECTION

ASMData: DS.W 1 ; Definition of a variable

ConstSec: SECTION

ASMConst: DC.W $44A6 ; Definition of a constant

We recommend that you generate a header file for each assembler source file. This
header file should contain the interface to the assembly module.

An external declaration for the variable or constant must be inserted in the header file, ,
as listed in the following listing:

Listing: Example of data and constant declarations

/* External declaration of a variable */
extern int ASMData;

/* External declaration of a constant */

extern const int ASMConst;

The variables or constants can then be accessed in the usual way, using their names, , as
listed in the following listing:

Listing: Example of data and constant reference

ASMData = ASMConst + 3;

12.4 Accessing ANSI-C Variables in Assembly Source File

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

312 Freescale Semiconductor, Inc.

Chapter 12 Mixed C and Assembler Applications

A variable or constant defined in an ANSI-C source file is accessible in an assembly
source file.

The variable or constant is defined in the ANSI-C source file using the standard ANSI-C
syntax, as listed in the following listing:

Listing: Example definition of data and constants

unsigned int CData; /* Definition of a variable */
unsigned const int CConst; /* Definition of a constant */

An external declaration for the variable or constant must be inserted into the assembly
source file, as listed in the following listing:

This can also be done in a separate file, included in the assembly source file.

Listing: Example declaration of data and constants

XREF CDhata; External declaration of a wvariable
XREF CConst; External declaration of a constant

The variables or constants can then be accessed in the usual way, using their names, as
listed in the following listing:

Listing: Example of data and constant reference

LD D6,CData

LD D7,CConst

NOTE
The compiler supports also the automatic generation of
assembler include files. See the description of the -ra compiler
option in the compiler manual.

12.5 Invoking Assembly Function in ANSI-C Source File

An function implemented in an assembly source file (mixasm.asm in the following listing)
can be invoked in a C source file (Listing: Example C source code file: mixc.c). During
the implementation of the function in the assembly source file, you should pay attention
to the parameter passing scheme of the ANSI-C compiler you are using in order to
retrieve the parameter from the right place.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 313

invuking Assembly Function in ANSI-C Source File

Listing: Example of an assembly file: mixasm.asm

XREF CDhata
XDEF AddVar

XDEF ASMData
DataSec: SECTION
ASMData: DS.B 1
CodeSec: SECTION
AddVar:
ADD D2, CData ; add CData to the parameter in register A
ST D2, ASMData ; result of the addition in ASMData
RTS
We recommend that you generate a header file for each assembly source file, as listed in

the above listing. This header file (mixasm.n in the following listing) should contain the
interface to the assembly module.

Listing: Header file for the assembly mixasm.asm file: mixasm.h

/* mixasm.h */
#ifndef MIXASM H

#define MIXASM H

void AddvVar (unsigned char value) ;

/* function that adds the parameter value to global CData */
/* and then stores the result in ASMData */

/* variable which receives the result of Addvar */

extern char ASMData;

#endif /* MIXASM H_ */

The function can then be invoked in the usual way, using its name.

12.5.1 Example of a C File

A C source code file (mixc.c) has the main() function which calls the adavar () function.
See the following listing. (Compile it with the -cc compiler option when using the
HIWARE Object File Format.)

Listing: Example C source code file: mixc.c

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

314 Freescale Semiconductor, Inc.

g |

4
Chapter 12 Mixed C and Assembler Applications

static int Error

const unsigned char CData
#include "mixasm.h"
void main(void)
Addvar (10) ;
if (ASMData != CData + 10) {
Error = 1;
} else {
Error = 0;
}
for(;;); // wait forever

CAUTION
Be careful, as the Assembler will not make any checks on the
number and type of the function parameters.

The application must be correctly linked.

For these c and ».asn files, a possible linker parameter file is shown in the following
listing.

Listing: Example of linker parameter file: mixasm.prm

LINK mixasm.abs
NAMES

mixc.o mixasm.o
END
SECTIONS

RAM

READ WRITE 0x001000 TO 0x001FFF;
/* EEPROM */

EEPROM

READ ONLY 0x100000 TO O0x100FFF;
/* non -paged FLASHs */

ROM = READ ONLY O0xFF0000 TO OxXFFFDFF;
END
PLACEMENT

SSTACK,DEFAULT_RAM INTO RAM;

DEFAULT ROM INTO ROM;

END

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 315

support for Structured Types

INIT main

12.6 Support for Structured Types

When the -Struct: Support for structured types assembler option is activated, the Macro
Assembler also supports the definition and usage of structured types. This allows an
easier way to access ANSI-C structured variable in the Macro Assembler.

In order to provide an efficient support for structured type the macro assembler should
provide notation to:

* Define a structured type.

e Define a structured variable.

e Declare a structured variable.

» Access the address of a field inside of a structured variable.
» Access the offset of a field inside of a structured variable.

NOTE
Some limitations apply in the usage of the structured types
in the Macro Assembler. See Structured type: Limitations.

The topics covered here:

 Structured Type Definition

* Types Allowed for Structured Type Fields
* Variable Definition

* Variable Declaration

» Accessing Structured Variable

12.6.1 Structured Type Definition

The Macro Assembler is extended with the following new keywords in order to support
ANSI-C type definitions.

® STRUCT

® UNION
The structured type definition for struct can be encoded as in the following listing:

Listing: Definition for STRUCT

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

316 Freescale Semiconductor, Inc.

g |

4
Chapter 12 Mixed C and Assembler Applications

typeName: STRUCT
labl: DS.W 1 lab2: DS.W 1

ENDSTRUCT

where:

* typename 1S the name associated with the defined type. The type name is considered to
be a user-defined keyword. The Macro Assembler will be case-insensitive on
typeName.

* struct specifies that the type is a structured type.

* 12p1 and 1ap2 are the fields defined inside of the typenametype. The fields will be
considered as user-defined labels, and the Macro Assembler will be case-sensitive on
label names.

e As with all other directives in the Assembler, the struct and unzon directives are case-
insensitive.

* The struct and vnron directives cannot start on column 1 and must be preceded by a
label.

12.6.2 Types Allowed for Structured Type Fields

The field inside of a structured type may be:

* another structured type or
* a base type, which can be mapped on 1, 2, or 4 bytes.

The following table lists the ANSI-C standard types and their converted equivalents in
the assembler notation:

Table 12-1. Converting ANSI-C standard types to assembler notation

ANSI-C type Assembler Notation
char DS - Define Space
short DS.wW
int DS.W
long DS.L
enum DS.W
bitfield -- not supported --
float -- not supported --
double -- not supported --
data pointer DS.W
function pointer -- not supported --

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 317

3
4

4
A

support for Structured Types

12.6.3 Variable Definition

The Macro Assembler can provide a way to define a variable with a specific type. This is
done using the following syntax:

var: typeName

where:

* var 18 the name of the variable.
* cypename 1S the type associated with the variable.
Listing: Assembly code analog of a C struct of type: myType

myType: STRUCT
fieldl: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
fields: DS.W 1
ENDSTRUCT

DataSection: SECTION

structVar: TYPE myType ; var ~structVar' is of type “myType'

12.6.4 Variable Declaration

The Macro Assembler can provide a way to associated a type with a symbol which is
defined externally. This is done by extending the xrer syntax:

XREF var: typeName, var2

where:

* var is the name of an externally defined symbol.
* typename 1S the type associated with the variable var.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

318 Freescale Semiconductor, Inc.

Chapter 12 Mixed C and Assembler Applications

varz 1s the name of another externally defined symbol. This symbol is not associated with
any type. See the following listing for an example.

Listing: Example of extending XREF

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
fields: DS.W 1
ENDSTRUCT

XREF extData: myType ; var ~extData' is type “myType'

12.6.5 Accessing Structured Variable

The Macro Assembler can provide a means to access each structured type field absolute
address and offset.

12.6.5.1 Accessing Field Address

To access a structured-type field address (refer to the listing listed below), the Assembler
uses the colon character ":'.

var:field

where

* var 1s the name of a variable, which was associated with a structured type.
* rie1d 1S the name of a field in the structured type associated with the variable.

Listing: Example of accessing a field address

myType: STRUCT

fieldl: DS.W 1
field2: DS.Ww 1
field3: DS.B 1

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 319

g |

support for Structured Types

field4: DS.B 3
fields: DS.W 1
ENDSTRUCT

XREF myData:myType
XDEF entry
CodeSec: SECTION
entry:
LD D2, myData:field3 ;Loads register D2 with the content of
; field field3 from variable myData.
NOTE

The period cannot be used as separator because in assembly
language it is a valid character inside of a symbol name.

12.6.5.2 Accessing Field Offset

To access a structured type field offset, the Assembler will use following notation:
<typeName>-><field>

where:

* typename 1S the name of a structured type.

* rie1d 1s the name of a field in the structured type associated with the variable. See the
following listing for an example of using this notation for accessing an offset.
Listing: Accessing a field offset with the -><field> notation

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
fields: DS.W 1

ENDSTRUCT

XREF.B myData
XDEF entry
CodeSec: SECTION

entry:

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

320 Freescale Semiconductor, Inc.

g |

Chapter 12 Mixed C and Assembler Applications

LD X, #myData
LD D6, (myType->field3,X); Adds the offset of field 'field3'
; (4) to X and loads D6 with the

; content of the pointed address

12.7 Structured Type: Limitations

A field inside of a structured type may be:

* another structured type
* a base type, which can be mapped on 1, 2, or 4 bytes.

The Macro Assembler is not able to process bitfields or pointer types.

The type referenced in a variable definition or declaration must be defined previously. A

variable cannot be associated with a type defined afterwards.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

321

PR 4

suuctured Type: Limitations

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

322 Freescale Semiconductor, Inc.

Chapter 13
Make Applications

This chapters has the following sections:

* Assembly applications
* Memory maps and segmentation

13.1 Assembly Applications

This section covers:

 Directly generating an absolute file
» Mixed C and assembly applications

13.1.1 Directly Generating Absolute File

When an absolute file is directly generated by the Assembler:

* the application entry point must be specified in the assembly source file using the
directive apsenTRy.

* The whole application must be encoded in a single assembly unit.

 The application should only contain absolute sections.

13.1.1.1 Generating Object Files

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 323

memory Maps and Segmentation

The entry point of the application must be mentioned in the Linker parameter file using
the INIT funcname command. The application is build of the different object files with
the Linker. The Linker is document in a separate document.

Your assembly source files must be separately assembled. Then the list of all the object
files building the application must be enumerated in the application PRM file.

13.1.2 Mixed C and Assembly Applications

Normally the application starts with the main procedure of a C file. All necessary object
files - assembly or C - are linked with the Linker in the same fashion like pure C
applications. The Linker is documented in a separate document.

13.2 Memory Maps and Segmentation

Relocatable Code Sections are placed in the peraunT rom OT . text Segment.

Relocatable Data Sections are placed in the peraurLt ram OF .data Segment.
NOTE

The .text and .4ata names are only supported when the ELF
object file format is used.

There are no checks at all that variables are in ram. If you mix code and data in a section
you cannot place the section into rou. That is why we suggest that you separate code and
data into different sections.

If you want to place a section in a specific address range, you have to put the section
name in the placement portion of the linker parameter file, as listed in the following
listing:

Listing: Example assembly source code

SECTIONS
ROM1 = READ ONLY 0x0200 TO OxOFFF;
SpecialROM = READ ONLY 0x8000 TO Ox8FFF;
RAM = READ WRITE 0x4000 TO Ox4FFF;
PLACEMENT

DEFAULT_ ROM INTO ROM1;

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

324 Freescale Semiconductor, Inc.

h

4
Chapter 13 Make Applications

mySection INTO SpecialROM;
DEFAULT_ RAM INTO RAM;

END

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 325

}{ |

wemory Maps and Segmentation

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

326 Freescale Semiconductor, Inc.

Chapter 14
How to...

This chapter covers the following topics:

* Working with absolute sections

* Working with relocatable sections

* Initializing the Vector table
 Splitting an application into modules

14.1 Working with Absolute Sections

An absolute section is a section whose start address is known at assembly time.

(See modules fiboorg.asm and fiboorg.prm in the demo directory.)

14.1.1 Defining Absolute Sections in Assembly Source File

An absolute section is defined using the orc directive. In that case, the Macro Assembler
generates a pseudo section, whose name 1S "orc_<index>", where index is an integer which
is incremented each time an absolute section is encountered, as listed in the following
listing:

Listing: Defining an absolute section containing data

ORG $800 ; Absolute data section.
var: DS. 1
ORG SAQ00 ; Absolute constant data section.

cstl: DC.B $A6

cst2: DC.B S$BC

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 327

g |

wourking with Absolute Sections

In the previous portion of code, the label cst1 is located at address saoo, and label cst2 is
located at address szox.

Listing: Assembler output

1 1 ORG $800
2 2 a0b00800 var: DS.B 1

3 3 ORG SA00
4 4 a000AQ00 A6 cstl: DC.B $A6
5 5 a000A01 BC cst2: DC.B $BC

Locate program assembly source code in a separate absolute section, as listed in the
following listing:

Listing: Defining an absolute section containing code

XDEF entry
ORG $CO00 ; Absolute code section.

entry:
LD DO, cstl ; Load value in cstl
ADD DO, cst2 ; Add value in cst2
ST DO, var ; Store in var

BRA entry

In the portion of assembly code above, the o po, instruction is located at address scoo,
and the 2pp instruction is at address scos. See the following listing:.

Listing: Assembler output

8 8 ORG SC00 ; Absolute code
9 9 entry:
10 10 a000C00 A4FAO000AO00 LD DO, 2560 ; Load value
11 11 a000C05 64FA000A01 ADD DO 2561 ; Add value
12 12 a000COA C4FA000800 ST DO, 2561 ; Store in var
13 13 AQ00COF 2071 BRA entry
14 14

In order to avoid problems during linking or execution from an application, an assembly
file should at least:

* Initialize the stack pointer if the stack is used.
» The rsp instruction can be used to initialize the stack pointer to srr.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

328 Freescale Semiconductor, Inc.

Chapter 14 How to...

 Publish the application's entry point using xper.
* The programmer should ensure that the addresses specified in the source files are
valid addresses for the MCU being used.

14.1.2 Linking Application Containing Absolute Sections

When the Assembler is generating an object file, applications containing only absolute
sections must be linked. The linker parameter file must contain at least:

* the name of the absolute file

* the name of the object file which should be linked

* the specification of a memory area where the sections containing variables must be
allocated. For applications containing only absolute sections, nothing will be
allocated there.

« the specification of a memory area where the sections containing code or constants
must be allocated. For applications containing only absolute sections, nothing will be
allocated there.

* the specification of the application entry point, and

* the definition of the reset vector.

The minimal linker parameter file will look as shown in the following listing:.

Listing: Minimal linker parameter file

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS

/* READ ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/

MY ROM = READ ONLY 0x4000 TO Ox4FFF;

/* READ WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 329

wourking with Relocatable Sections

MY RAM = READ WRITE 0x2000 TO Ox2FFF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY RAM. */
DEFAULT_RAM INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY ROM. */
DEFAULT_ROM INTO MY_ROM;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS OxXFFFE entry /* Initialization of the reset vector. */
NOTE
There should be no overlap between the absolute sections

defined in the assembly source file and the memory areas
defined in the PRM file.

NOTE
As the memory areas (segments) specified in the PRM file are
only used to allocate relocatable sections, nothing will be
allocated there when the application contains only absolute
sections. In that case you can even specify invalid address
ranges in the PRM file.

14.2 Working with Relocatable Sections

A relocatable section is a section which start address is determined at linking time.

14.2.1 Defining Relocatable Sections in Source File

Define a relocatable section using the secrron directive. See the following listing for an
example of defining relocatable sections.

Listing: Defining relocatable sections containing data

constSec: SECTION ; Relocatable constant data section.
cstl: DC.B $A6
cst2: DC.B S$BC

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

330 Freescale Semiconductor, Inc.

Chapter 14 How to...

dataSec: SECTION ; Relocatable data section.

var: DS.B 1

In the previous portion of code, the label cst1 will be located at an offset O from the
section constsec start address, and label cst2 will be located at an offset 1 from the section
constsec start address. See the following listing:

Listing: Assembler output

2 2 constSec: SECTION ; Relocatable
3 3 000000 A6 cstl: DC.B SA6

4 4 000001 BC cst2: DC.B $SBC

5 5

6 6 dataSec: SECTION ; Relocatable
7 7 000000 var: DS.B 1

Locate program assembly source code in a separate relocatable section, as listed in the
following listing:

Listing: Defining a relocatable section for code

XDEF entry

codeSec: SECTION ; Relocatable code section.
entry:
LD DO, cstl ; Load value in cstl
ADD DO, cst2 ; Add value in cst2
ST DO, var ; Store in var

BRA entry

In the previous portion of code, the 1p po, instruction is located at an offset O from the
codesec Section start address, and aop instruction at an offset 3 from the cogesec section start
address.

In order to avoid problems during linking or execution from an application, an assembly
file should at least:

* Initialize the stack pointer if the stack is used
» The rsp instruction can be used to initialize the stack pointer to srr.
 Publish the application's entry point using the xper directive.

14.2.2 Linking Application Containing Relocatable Sections

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 331

wourking with Relocatable Sections

Applications containing relocatable sections must be linked. The linker parameter file

must contain at least:

* the name of the absolute file,
* the name of the object file which should be linked,

* the specification of a memory area where the sections containing variables must be

allocated,

* the specification of a memory area where the sections containing code or constants

must be allocated,
* the specification of the application's entry point, and
* the definition of the reset vector.

A minimal linker parameter file will look as shown in the following listing:

Listing: Minimal linker parameter file

/* Name of the executable file generated. */
LINK test.abs

/* Name of the object file in the application. */
NAMES
test.o
END
SECTIONS
/* READ_ONLY memory area. */
MY ROM = READ ONLY O0x2B00 TO Ox2BFF;
/* READ_WRITE memory area. */
MY RAM = READ WRITE 0x2800 TO Ox28FF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY RAM.

DEFAULT RAM INTO MY RAM;

/* Relocatable code and constant sections are allocated in MY ROM.

DEFAULT ROM, constSec INTO MY ROM;
END
INIT entry /* Application entry point.

VECTOR ADDRESS OxFFFE entry /* Initialization of the reset vector.

NOTE

*/

*/

*/
*/

The programmer should ensure that the memory ranges he
specifies in the secrrons block are valid addresses for the

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

332

Freescale Semiconductor, Inc.

Chapter 14 How to...

controller he is using. In addition, when using the SDI debugger
the addresses specified for code or constant sections must be
located in the target board ROM area. Otherwise, the debugger
will not be able to load the application

14.3 Initializing Vector Table

The vector table can be initialized in the assembly source file or in the linker parameter
file. We recommend that you initialize it in the linker parameter file.

* Initializing the Vector table in the linker PRM file (recommended),
* Initializing the Vector Table in a source file using a relocatable section, or
* Initializing the Vector Table in a source file using an absolute section.

The HCS12Z allows 128 entries in the vector table starting at memory location srroo
extending to memory location srrrr.

The Reset vector is located in grrre, and the SWI interrupt vector is located in srrrc. From
srrra down to srroo are located the troto) interrupt (srrra), 1rol1] ($FFFA),..., TRQO[125]

(sFFo0).

In the following examples, the Reset vector, the SWI interrupt and the 1ro11] interrupt are
initialized. The IRQ[O] interrupt is not used.

The topics covered here:

* Initializing the Vector table in the linker PRM file
* Initializing the Vector Table in a source file using a relocatable section
* Initializing the Vector Table in a source file using an absolute section

14.3.1 Initializing the Vector table in the linker PRM file

Initializing the vector table from the PRM file allows you to initialize single entries in the
table. The user can decide to initialize all the entries in the vector table or not.

The labels or functions, which should be inserted in the vector table, must be
implemented in the assembly source file (Listing: Initializing the Vector table from a
PRM File). All these labels must be published, otherwise they cannot be addressed in the
linker PRM file.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 333

g |

imualizing Vector Table

Listing: Initializing the Vector table from a PRM File

XDEF IRQ1Func, SWIFunc, ResetFunc
DataSec: SECTION

Data: DS.W 5 ; Each interrupt increments an element
; of the table.
CodeSec: SECTION

; Implementation of the interrupt functions.

IRQ1Func:

LD DO, #0

BRA int
SWIFunc:

LD DO, #4

BRA int
ResetFunc:

LD DO, #8

BRA entry
int:

PSHH

LD X, #Data ; Load address of symbol Data in X

; X <- address of the appropriate element in the tab
Ofset: TST DO,

TBEQ DO, Ofset3
Ofset2:

INC X #31

DEC A

BNE Ofset2

Ofset3:
INC.W (0,X) ; The table element is incremented
PULH
RTI

entry:

LD S, #O0x10FF; Init Stack Pointer to $1100-$1=$S10FF
TXS
CLRX
CLRH

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

334 Freescale Semiconductor, Inc.

g |

4
Chapter 14 How to...

CLI ; Enables interrupts
loop: BRA loop
NOTE

The 1ro1Func, swiFunc, and resetrunc functions are published. This
is required, because they are referenced in the linker PRM file.

NOTE
The S127Z processor automatically pushes the PC, X, A, and
CCR registers on the stack when an interrupt occurs. The
interrupt functions do not need to save and restore those
registers. It is the user's responsibility to save and restore it
prior to returning.

NOTE
All Interrupt functions must be terminated with an rrr
instruction

The vector table is initialized using the linker vecror appress command, as listed in the
following listing:

Listing: Using the VECTOR ADDRESS Linker Command

LINK test.abs
NAMES

test.o
END
SECTIONS
MY_ ROM = READ ONLY 0x0800 TO Ox08FF;

MY RAM

READ WRITE 0x0OB0O TO OxOCFF;

MY STACK = READ WRITE 0x0DO00 TO OxODFF;

END

PLACEMENT
DEFAULT_ RAM INTO MY RAM;
DEFAULT_ ROM INTO MY ROM;
SSTACK INTO MY_ STACK;

END

INIT ResetFunc

VECTOR ADDRESS O0xFFF8 IRQlFunc
VECTOR ADDRESS OxFFFC SWIFunc
VECTOR ADDRESS OxFFFE ResetFunc

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 335

imualizing Vector Table

NOTE
The statement vt resetrunc defines the application entry point.
Usually, this entry point is initialized with the same address as
the reset vector.

NOTE
The statement vector appress oxrrrs IRo1Func specifies that the
address of the 1roi1runc function should be written at address

OxFFF8.

14.3.2 Initializing Vector Table in Source File Using Relocatable
Section

Initializing the vector table in the assembly source file requires that all the entries in the
table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions that should be inserted in the vector table must be implemented in
the assembly source file or an external reference must be available for them. The vector
table can be defined in an assembly source file in an additional section containing
constant variables. See the following listing:

Listing: Initializing the Vector Table in source code with a relocatable section

XDEF ResetFunc
XDEF IRQOInt

DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:
LD DO, #0
BRA int
SWIFunc:
LD DO, #4
BRA int
ResetFunc:
LD DO, #8

BRA entry

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

336 Freescale Semiconductor, Inc.

g |

4
Chapter 14 How to...

DummyFunc:
RTI
int:
PSHH
1D X #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab
Ofset: TSTA
TBEQ DO, Ofset3
Ofset2:

INC X #51
DEC A
BNE Ofset2
Ofset3:
INC.W (0,X) ; The table element is incremented
PULH
RTI
entry:
LD S, #0x10FF ; Init Stack Pointer to $1100-$1=$10FF
TXS
CLRX
CLRH
CLI ; Enables interrupts
loop: BRA loop
VectorTable: SECTION
; Definition of the vector table.
IRQ1Int: DC.W IRQlFunc
IRQOInt: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc
NOTE
Each constant in the vectorranie section is defined as a word (a

2-byte constant), because the entries in the vector table are 16
bits wide.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 337

A\ 4
N
imualizing Vector Table

NOTE
In the previous example, the constant 1ro11nt is initialized with
the address of the label rro1runc. The constant trooint 18
initialized with the address of the label pummy Func because this
interrupt is not in use.

NOTE
All the labels specified as initialization value must be defined,
published (using xoer) or imported (using xrer) before the vector
table section. No forward reference is allowed in the oc
directive.

NOTE

The constant rroo1nt is exported so that the section containing
the vector table is linked with the application.

The section should now be placed at the expected address. This is performed in the linker
parameter file, as listed in the following listing:

Listing: Example linker parameter file

LINK test.abs
NAMES

test.o+
END
ENTRIES

IRQOInt
END
SECTIONS

MY ROM = READ ONLY 0x0800 TO OxO08FF;

MY RAM READ WRITE 0xO0B0O TO OxOCFF;
MY STACK = READ WRITE 0x0DO0O0 TO OxODFF;

/* Define the memory range for the vector table */

Vector = READ ONLY OxFFF8 TO OxXFFFF;
END
PLACEMENT

DEFAULT_ RAM INTO MY RAM;

DEFAULT ROM INTO MY ROM;

SSTACK INTO MY STACK;

/* Place the section 'VectorTable' at the appropriated address. */

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

338 Freescale Semiconductor, Inc.

Chapter 14 How to...

VectorTable INTO Vector;
END

INIT ResetFunc

NOTE

The statement vector - rREaD onLY oxFFFs To oxrrrF defines the
memory range for the vector table.

NOTE
The statement vectortable nTO vector Specifies that the vector
table should be loaded in the read only memory area vector.
This means, the constant 1ro11nt Will be allocated at address
oxrFFs, the constant rroornt Will be allocated at address oxrrra,
the constant swiint Will be allocated at address oxrrrc, and the
constant reset 1nt Will be allocated at address oxrrre.

NOTE
The "+ after the object file name switches smart linking off. If
this statement is missing in the PRM file, the vector table will
not be linked with the application, because it is never
referenced. The smart linker only links the referenced objects in
the absolute file.

14.3.3 Initializing Vector Table in Source File Using Absolute
Section

Initializing the vector table in the assembly source file requires that all the entries in the

table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions, which should be inserted in the vector table must be implemented
in the assembly source file or an external reference must be available for them. The
vector table can be defined in an assembly source file in an additional section containing
constant variables. See the following listing for an example.

Listing: Initializing the Vector Table using an absolute section

XDEF ResetFunc
DataSec: SECTION

Data: DS.W 5 ; Each interrupt increments an element of the table.

CodeSec: SECTION

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 339

h o
g |

imualizing Vector Table

; Implementation of the interrupt functions.

IRQ1Func:

SWIFunc:

LD DO, #0

BRA int

LD DO, #4

BRA int

ResetFunc:

LD DO, #8

BRA entry

DummyFunc:

int:

Ofset:

Ofset2:

Ofset3:

entry:

loop:

RTI

PSHH

LD X #Data ; Load address of symbol Data in X

; X <- address of the appropriate element in the tab
TSTA

TBEQ DO, Ofset3

INC X
DEC A

BNE Ofset2

INC.W (0,X); The table element is incremented
PULH

RTI

LD S, #O0x10FF ; Init Stack Pointer to $1100-$1=$10FF
TXS

CLRX

CLRH

CLI; Enables interrupts

BRA loop

ORG SFFF8

; Definition of the vector table in an absolute section

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

340

Freescale Semiconductor, Inc.

A\ 4
A
Chapter 14 How to...
; starting at address SFFF8.
IRQ1Int: DC.W IRQlFunc
IRQOInt: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc
The section should now be placed at the expected address. This is performed in the linker
parameter file, as listed in the following listing:

Listing: Example linker parameter file

LINK test.abs
NAMES

test.o+
END

SECTIONS

MY_ ROM READ ONLY 0x0800 TO Ox08FF;

MY RAM = READ WRITE 0x0B00 TO OxOCFF;

MY STACK = READ WRITE 0x0DO00 TO OxODFF;

END

PLACEMENT
DEFAULT_ RAM INTO MY RAM;
DEFAULT_ ROM INTO MY ROM;
SSTACK INTO MY STACK;

END

INIT ResetFunc

NOTE
The -+ after the object file name switches smart linking off. If
this statement is missing in the PRM file, the vector table will
not be linked with the application, because it is never
referenced. The smart linker only links the referenced objects in
the absolute file.

14.4 Splitting Application into Modules

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 341

opuiting Application into Modules

Complex application or application involving several programmers can be split into
several simple modules. In order to avoid any problem when merging the different
modules, the following rules must be followed.

For each assembly source file, one include file must be created containing the definition
of the symbols exported from this module. For the symbols referring to code label, a
small description of the interface is required.

14.4.1 Example of Assembly File (Test1.asm)

See the following listing for an example Test1.asm include file.

Listing: Separating Code into Modules - Testl.asm

XDEF AddSource
XDEF Source

DataSec: SECTION
Source: DS.W 1
CodeSec: SECTION
AddSource:

RSP

ADD DO, Source

ST DO, Source

RTS

14.4.2 Corresponding Include File (Test1.inc)

See the following listing for an example Test1.inc include file.

Listing: Separating Code into Modules - Test1.inc

XREF AddSource
; The AddSource function adds the value stored in the variable

; Source to the contents of the DO register. The result of the

; computation is stored in the Source variable.

; Input Parameter: The DO register contains the value that should be

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

342 Freescale Semiconductor, Inc.

Chapter 14 How to...

added to the Source variable.
; Output Parameter: Source contains the result of the addition.
XREF Source

; The Source variable is a 1-byte variable.

14.4.3 Example of Assembly File (Test2.asm)

The following listing shows another assembly code file module for this project.

Listing: Separating Code into Modules-Test2.asm

XDEF entry
INCLUDE "Testl.inc"

CodeSec: SECTION
entry: RSP
LD DO, #57
JSR AddSource
BRA entry
The application's «.prn file should list both object files building the application. When a
section is present in the different object files, the object file sections are concatenated into

a single absolute file section. The different object file sections are concatenated in the
order the object files are specified in the ».prm file.

14.4.3.1 Example of PRM File (Test2.prm)

Listing: Separating assembly code into modules-Test2.prm

LINK test2.abs /* Name of the executable file generated. */
NAMES

testl.o

test2.0 / *Name of the object files building the application. */

END
SECTIONS
MY ROM = READ ONLY 0x2B00 TO 0x2BFF; /* READ ONLY mem. */
MY RAM = READ WRITE 0x2800 TO 0x28FF; /* READ WRITE mem. */
END

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 343

g |

|
opuiting Application into Modules

PLACEMENT
/* variables are allocated in MY RAM */
DataSec, DEFAULT_ RAM INTO MY_ RAM;

/* code and constants are allocated in MY ROM */
CodeSec, ConstSec, DEFAULT ROM INTO MY_ROM;
END
INIT entry /* Definition of the application entry point. */

VECTOR ADDRESS OXFFFE entry /* Definition of the reset vector. */

NOTE
The codesec section is defined in both object files. In test1.0, the
codesec section contains the symbol adadsource. In test2.o, the
codesec Section contains the encry symbol. According to the
order in which the object files are listed in the namzs block, the
function adasource 1s allocated first and the entry symbol is
allocated next to it.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

344 Freescale Semiconductor, Inc.

h o
g |

Chapter 15
Appendices

This document has the following appendices:

 Global Configuration File Entries
* Local Configuration File Entries
* MASM Compatibility

* MCUasm Compatibility

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

345

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

346 Freescale Semiconductor, Inc.

g |

Chapter 16
Symbols and Notation

This chapter describes the expressions of instruction that represents the variable content
such as register names, program labels, and expressions.

The following table lists the symbols & notations with their descriptions:

Table 16-1. Expressions of Instruction

Expression Description

bwplbwpl Any of the characters B, W, P, L, or 2-letter pairs BB, BW, BP,
BL, WB, WW.... LB, LW, LP, or LLL to indicate the sizes for an
instruction with two input operands. B=byte, W=16-bit
word, P=24-bit pointer, L=32-bit long-word. The two-
letter codes allow the size of each operand to be specified
separately and the one-letter codes indicate the same size is
used for both input operands.

bwl Any of the characters B, W, or L to indicate the size of the
operation. B=byte, W=16-bit word, L=32-bit long-word

bwpl Any of the characters B, W, P, or L to indicate the size of the
operation. B=byte, W=16-bit word, P=24-bit pointer,
L=32-bit long-word

cc Branching condition (EQ, NE, MI, PL, GT, or LE) for loop
instructions test-and branch (TBcc) or decrement and branch
(DBcc). Branch if... EQ - equal; NE - not equal; MI - minus; PL
- plus; GT - greater than; LE - less than or equal

cpureg Any of the CPU registers Do, D1, D2, D3, D4, D5, D6, D7, X, Y,
SP, CCH, CCL, or CCW. Used for transfer and exchange
instructions.

Di Any of the eight CPU data registers D2, D3, D4, D5, DO, D1,
D6, or D7.

Dj Typically used for a second operand.

Dk Used for a third operand in MAC, MOD, MUL, and DIV
instructions.

Ds Used for a source operand.

bd Used for a destination operand.

Dn Used for a numeric control parameter such as the number of

positions to shift.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 347

g |

Table 16-1. Expressions of Instruction (continued)

Expression Description

Dp Any of the four 16-bit CPU data registers D2, D3, D4, or D5.
Used to specify the width and offset parameters in bit field
instructions BFEXT and BFINS.

oprli opr5i Any label or expression that evaluates to a 1-bit (5-bit)
immediate operand. Used to specify number of shifts for shift
and rotate instructions. Immedaiate value is encoded in the
shift postbytes (sb) or (sb+xb).

opr8i Any label or expression that evaluates to an 8-bit immediate
operand.

oprléi Any label or expression that evaluates to a 16-bit immediate
operand.

oprl8i Any label or expression that evaluates to an 18-bit immediate

operand. Two bits of the 18-bit operand are encoded into the
opcode. The value is zero-extended and placed in X or Y.

opr24 A 24-bit address which can be considered signed or
unsigned.

opr24a A 24-bit address.

opr24i A 24-bit immediate constant.

opr24u A 24-bit unsigned constant offset.

opr32i Any label or expression that evaluates to a 32-bit immediate
operand.

oprdest Any label or expression that evaluates to an address within

+127/-128 or +/-16K from the current location. Used for 7-bit
or 15-bit relative branches.

oprimmsz Any label or expression that evaluates to an immediate
operand of the same size as the CPU register involved in the
instruction (8, 16, or 32 bits).

Operators

oprmemreg Refer to the CPUS12Z Reference Manual for the OPR
addressing summary to see how to expand this into the
operand specification for 1 of 16 OPR addressing modes
(allowed forms and brief description shown here below).

#oprsxedi Short Immediate. oprsxed4i is any label or expression which

evaluates to one of the values -1, 1, 2, 3...14, or 15. Auto
sign-extended to 8, 16, 24, or 32 bits.

Di Register as operand. Di is any one of the eight CPU data
registers DO, D1, D2, D3, D4, D5, D6, Or D7.

(opru4,xys) Short offset (0-15) from X, Y, or S. opru4 is any label or
expression that evaluates to unsigned 0-15.

(+xy) | (xy+) | (-xy) | (xy-) | (-8) | (S+) Auto pre/post inc/dec from X, Y, or S (S=SP).Where xy is
either of the two index register names X or Y.

(Di, xys) Register offset from X, Y, or S. xys is any one of the 24-bit
indexing registers X, Y, or S (§=SP). 16-bit D2, D3, D4, D5
treated as signed, Do, D1, D6, D7 treated as unsigned.

[Di, xy] Register offset from X or Y Indirect. D2, D3, D4, D5 treated as
signed, DO, D1, D6, D7 are unsigned.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

348 Freescale Semiconductor, Inc.

g |

Chapter 16 Symbols and Notation

Table 16-1. Expressions of Instruction (continued)

Expression

Description

(oprs9, xysp)

9-bit signed offset from X, Y, S, or P. oprs9 is any label or
expression that evaluates to a 9-bit signed value from -256 to
+256. (0 is treated as +256) xysp is any one of the 24-bit
registers X, Y, S or P (S=SPP=PC).

[oprs9, xyspl

9-bit signed offset from X, Y, S, or P Indirect.

oprul4

Short Extended (16K).

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

349

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

350 Freescale Semiconductor, Inc.

Chapter 17
Global Configuration File Entries

This appendix documents the sections and entries that can appear in the global
configuration file. This file is named mcutools. ini.

The mcutools.ini can contain these sections:

* [Installation] Section

* [Options] Section

e [XXX_Assembler] Section
e [Editor] Section

17.1 [Installation] Section

This section lists the entries that can appear in the (1nstallation] section section of the
mcutools.ini file. The topics covered here are as follows:
* Path

* Group

17.1.1 Path

Arguments
Last installation path.
Description

Whenever a tool is installed, the installation script stores the installation destination
directory into this variable.

Example

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 351

3
4

4
A

Lvpuons] Section

Path=C:\install

17.1.2 Group

Arguments
Last installation program group.
Description

Whenever a tool is installed, the installation script stores the installation program group
created into this variable.

Example

Group=Assembler

17.2 [Options] Section

This section lists the entries that can appear in the (options] section section of the
mcutools. ini file. The topics covered here are as follows:
e DefaultDir

17.2.1 DefaultDir

Arguments
Default directory to be used.
Description

Specifies the current directory for all tools on a global level. See also DEFAULTDIR:
Default current directory environment variable.

Example

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

352 Freescale Semiconductor, Inc.

Chapter 17 Global Configuration File Entries

DefaultDir=C:\install\project

17.3 [XXX_Assembler] Section

This section documents the entries that can appear in an (XXX assembler] section of the

mcutools.ini file.

NOTE
XXX is a placeholder for the name of the name of the particular
Assembler you are using. For example, if you are using the

S127 Assembler, the name of this section would be
[HCS12Z_Assembler].

The topics covered here are as follows:

e SaveOnExit

* SaveAppearance

e SaveEditor

* SaveOptions

» RecentProject0, RecentProjectl

17.3.1 SaveOnExit

Arguments
1/0
Description

1 if the configuration should be stored when the Assembler is closed, O if it should not be
stored. The Assembler does not ask to store a configuration in either cases.

17.3.2 SaveAppearance
Arguments

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 353

LAAA_Assembler] Section

1/0
Description

1 if the visible topics should be stored when writing a project file, O if not. The command
line, its history, the windows position and other topics belong to this entry.

This entry corresponds to the state of the Appearance check box in the Save
Configuration dialog box.

17.3.3 SaveEditor

Arguments
1/0
Description

If the editor settings should be stored when writing a project file, O if not. The editor
setting contain all information of the Editor Configuration dialog box. This entry
corresponds to the state of the check box Editor Configuration in the Save
Configuration Dialog Box.

17.3.4 SaveOptions

Arguments

1/0

Description

1 if the options should be contained when writing a project file, O if not.

This entry corresponds to the state of the Options check box in the Save Configuration
Dialog Box.

17.3.5 RecentProject0, RecentProjecti

Arguments

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

354 Freescale Semiconductor, Inc.

Chapter 17 Global Configuration File Entries

Names of the last and prior project files
Description

This list is updated when a project is loaded or saved. Its current content is shown in the
file menu.

Example

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1
RecentProject0=C:\myprj\project.ini

RecentProjectl=C:\otherprj\project.ini

17.4 [Editor] Section

This section lists the entries that can appear in the (edaitor] section section of the
mcutools.ini file. The topics covered here are as follows:

e Editor Name

e Editor Exe

» Editor_Opts

17.4.1 Editor Name

Arguments
The name of the global editor
Description

Specifies the name of the editor used as global editor. This entry has only a descriptive
effect. Its content is not used to start the editor.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 355

Lcunor] Section

17.4.2 Editor Exe

Arguments
The name of the executable file of the global editor (including path).
Description

Specifies the filename which is started to edit a text file, when the global editor setting is
active.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

17.4.3 Editor_Opts

Arguments
The options to use with the global editor
Description

Specifies options (arguments), which should be used when starting the global editor. If
this entry is not present or empty, st is used. The command line to launch the editor is
built by taking the raitor_exe content, then appending a space followed by the content of
this entry.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

Example

[Editor]
editor name=IDF
editor exe=C:\Freescale\prog\idf.exe

editor opts=%f -g%l,%c

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

356 Freescale Semiconductor, Inc.

g |

4
Chapter 17 Global Configuration File Entries

17.5 Example
The following listing shows a typical mcutoois. ini file.

Listing: Typical mcutools.ini file layout

[Installation]
Path=c:\Freescale

Group=Assembler

[Editor]

editor name=IDF

editor exe=C:\Freescale\prog\idf.exe
editor opts=%f -g%l,%c

[Optiong]

DefaultDir=c:\mypr]j

[HCS12Z Assembler]

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1
RecentProjectO=c:\myprj\project.ini

RecentProjectl=c:\otherprj\project.ini

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 357

PR 4

cxample

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

358 Freescale Semiconductor, Inc.

Chapter 18
Local Configuration File Entries

This appendix documents the sections and entries that can appear in the local
configuration file. Usually, you name this file project.ini, Where project is a placeholder
for the name of your project.

A project.ini file can contains these sections:

e [Editor] Section
e [XXX_Assembler] Section

e Example

18.1 [Editor] Section

This section lists the entries that can appear in the (gaitor] section section of the
project.ini file, where project is a placeholder for the name of your project.. The topics
covered here are as follows:

e Editor Name

» Editor_Exe

» Editor_Opts

18.1.1 Editor Name

Arguments
The name of the local editor

Description

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 359

Lcunor] Section

Specifies the name of the editor used as local editor. This entry has only a description
effect. Its content is not used to start the editor.

This entry has the same format as for the global editor configuration in the mcutoois.ini
file.

Saved

Only with editor configuration set in the File > Configuration > Save Configuration
dialog box.

18.1.2 Editor Exe

Arguments
The name of the executable file of the local editor (including path).
Description

Specifies the filename with is started to edit a text file, when the local editor setting is
active. In the editor configuration dialog box, the local editor selection is only active
when this entry is present and not empty.

This entry has the same format as for the global editor configuration in the mcutoois.ini
file.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

18.1.3 Editor_Opts

Arguments
The options to use with the local editor.
Description

Specifies options (arguments), which should be used when starting the local editor. If this
entry is not present or empty, st is used. The command line to launch the editor is build
by taking the Editor_Exe content, then appending a space followed by the content of this
entry.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

360 Freescale Semiconductor, Inc.

g |

Chapter 18 Local Configuration File Entries

This entry has the same format as for the global editor configuration in the mcutools. ini
file.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

Example

[Editor]
editor name=IDF
editor exe=C:\Freescale\prog\idf.exe

editor opts=%f -g%l,%c

18.2 [XXX_Assembler] Section

This section documents the entries that can appear in an (xxx_assembler] section of a
project.ini file.

NOTE
xxx 18 a placeholder for the name of the name of the particular
Assembler you are using. For example, if you are using the
HCS127Z Assembler, the name of this section would be

[HCS12Z Assembler].
The topics covered here are as follows:

* RecentCommandLineX, X= integer
e CurrentCommandLine
e StatusbarEnabled

e ToolbarEnabled

* WindowPos

* WindowFont

* TipFilePos

e ShowTipOfDay

* Options

» EditorType

e EditorCommandLine

e EditorDDEClientName

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 361

LAAA_Assembler] Section

» EditorDDETopicName
e EditorDDEServiceName

18.2.1 RecentCommandLineX, X= integer

Arguments

String with a command line history entry, €.g., fivo.asm
Description

This list of entries contains the content of the command line history.
Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

18.2.2 CurrentCommandLine

Arguments

String with the command line, €.g., fivo.asm -w1
Description

The currently visible command line content.
Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

18.2.3 StatusbarEnabled

Arguments
1/0
Special

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

362 Freescale Semiconductor, Inc.

Chapter 18 Local Configuration File Entries

This entry is only considered at startup. Later load operations do not use it any more.
Description
Current status bar state.

e 1: Status bar is visible
e (): Status bar is hidden

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

18.2.4 ToolbarEnabled

Arguments
1/0
Special

This entry is only considered at startup. Afterwards, any load operations do not use it any
longer.

Description
Current toolbar state:

e 1: Toolbar is visible
e (: Toolbar is hidden

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

18.2.5 WindowPos

Arguments
10 integers, e.g., 0,1,-1,-1,-1,-1,390,107,1103, 643

Special

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 363

LAAA_Assembler] Section

This entry is only considered at startup. Afterwards, any load operations do not use it any
longer.

Changes of this entry do not show the "« in the title.
Description

This numbers contain the position and the state of the window (maximized, etc.) and
other flags.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

18.2.6 WindowFont

Arguments

size: = 0 -> generic size, < 0 -> font character height, > 0 -> font cell height
weight: 400 = normal, 700 = bold (valid values are 0-1000)

italic: 0 =no, 1 = yes

font name: Max. 32 characters.

Description

Font attributes.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

Example

WindowFont=-16,500, 0,Courier

18.2.7 TipFilePos

Arguments
any integer, e.g., 236

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

364 Freescale Semiconductor, Inc.

Chapter 18 Local Configuration File Entries

Description
Actual position in tip of the day file. Used that different tips are shown at different calls.
Saved

Always when saving a configuration file.

18.2.8 ShowTipOfDay

Arguments

0/1

Description

Should the Tip of the Day dialog box be shown at startup?

* 1: It should be shown
* 0: No, only when opened in the help menu

Saved

Always when saving a configuration file.

18.2.9 Options

Arguments

current option string, €.g.: -w2

Description

The currently active option string. This entry can be very long.
Saved

Only with Options set in the File > Configuration > Save Configuration dialog box.

18.2.10 EditorType

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 365

LAAA_Assembler] Section

Arguments

0/1/2/3/4

Description

This entry specifies which editor configuration is active:

* (: global editor configuration (in the file mcutools.ini)

* 1: local editor configuration (the one in this file)

* 2: command line editor configuration, entry EditorCommandLine
 3: DDE editor configuration, entries beginning with EditorDDE

* 4: CodeWarrior with COM. There are no additional entries.

For details, see also Editor Setting Dialog Box.
Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

18.2.11 EditorCommandLine

Arguments

Command line, fOI' UltraEd1t—32 " c:\Programs Files\IDM Software Solutions

\UltraEdit-32\uedit32.exe $f -g31,%c

Description

Command line content to open a file. For details, see also Editor Setting Dialog Box.
Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

18.2.12 EditorDDECIlientName

Arguments

client command, e.g., " [open (3£) 1™

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

366 Freescale Semiconductor, Inc.

Chapter 18 Local Configuration File Entries

Description

Name of the client for DDE editor configuration. For details, see also Editor Setting
Dialog Box.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

18.2.13 EditorDDETopicName

Arguments
Topic name, €.g., system
Description

Name of the topic for DDE editor configuration. For details, see also Editor Setting
Dialog Box.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

18.2.14 EditorDDEServiceName

Arguments
service name, €.g., system
Description

Name of the service for DDE editor configuration. For details, see also Editor Setting
dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 367

g |

cxample

18.3 Example

The example in the following listing shows a typical layout of the configuration file

(usually project. ini).

Listing: Example of a project.ini file

[Editor]
Editor Name=IDF

Editor Exe=c:\Freescale\prog\idf.exe
Editor Opts=%f -g%l,%c

[HCS12Z Assembler]
StatusbarEnabled=1

ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
TipFilePos=0

ShowTipOfDay=1

Options=-wl

EditorType=3
RecentCommandLineO=fibo.asm -w2
RecentCommandLinel=fibo.asm
CurrentCommandLine=fibo.asm -w2
EditorDDEClientName= [open (%f)]
EditorDDETopicName=system

EditorDDEServiceName=msdev

EditorCommandLine=c:\Freescale\prog\idf.exe %$f -g%l,%c

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

368

Freescale Semiconductor, Inc.

Chapter 19
MASM Compatibility

The Macro Assembler has been extended to ensure compatibility with the MASM
Assembler.

19.1 Comment Line

A line starting with a (=) character is considered to be a comment line by the Assembler.

19.2 Constants (Integers)

For compatibility with the MASM Assembler, the following notations are also supported
for integer constants:

A decimal constant is defined by a sequence of decimal digits (o-9) followed by a 4
or o character.

A hexadecimal constant is defined by a sequence of hexadecimal digits (o-9, a-£, a-F)
followed by a » or = character.

An octal constant is defined by a sequence of octal digits (0-7) followed by an o, o, g,
or ¢ character.

A binary constant is defined by a sequence of binary digits (o-1) followed by av or s
character.

Listing: Example

512d ; decimal representation
512D ; decimal representation
200h ; hexadecimal representation
200H ; hexadecimal representation

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc. 369

A 4
4\ |

vperators
10000 ; octal representation
10000 ; octal representation
1000g ; octal representation
1000Q ; octal representation

1000000000b ; binary representation

1000000000B ; binary representation

19.3 Operators

For compatibility with the MASM Assembler, the notations listed in the following table
are also supported for operators:

Table 19-1. Operator notation for MASM compatibility

Operator Notation
Shift left l<
Shift right I>
Arithmetic AND L
Arithmetic OR I+
Arithmetic XOR Ix, IX

19.3.1 Directives

The following table enumerates the directives that are supported by the Macro Assembler
for compatibility with MASM:

Table 19-2. Supported MASM directives

Operator Notation Description

RMB DS Defines storage for a variable. Argument
specifies the byte size.

RMD DS 2* Defines storage for a variable. Argument
specifies the number of 2-byte blocks.

RMQ DS 4* Defines storage for a variable. Argument
specifies the number of 4-byte blocks.

ELSEC ELSE Alternate of conditional block.

ENDC ENDIF End of conditional block.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

370 Freescale Semiconductor, Inc.

g |

Chapter 19 MASM Compatibility

Table 19-2. Supported MASM directives (continued)

Operator Notation Description

NOL NOLIST Specify that no subsequent instructions
must be inserted in the listing file.

TTL TITLE Define the user-defined title for the
assembler listing file.

GLOBAL XDEF Make a symbol public (visible from
outside)

PUBLIC XDEF Make a symbol public (visible from
outside)

EXTERNAL XREF Import reference to an external symbol.

XREFB XREF.B Import reference to an external symbol
located on the direct page.

SWITCH Allows switching to a previously defined
section.

ASCT Creates a predefined section named id
ASCT.

BSCT Creates a predefined section named id
BSCT. Variables defined in this section
are accessed using the direct
addressing mode.

CSCT Creates a predefined section named id
CSCT.

DSCT Creates a predefined section named id
DSCT.

IDSCT Creates a predefined section named id
IDSCT.

IPSCT Creates a predefined section named id
IPSCT.

PSCT Creates a predefined section named id

PSCT.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

371

PR 4

vperators

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

372 Freescale Semiconductor, Inc.

Chapter 20
MCUasm Compatibility

The Macro Assembler has been extended to ensure compatibility with the MCUasm
Assembler.

MCUasm compatibility mode can be activated, specifying the -mcuasm Option.
This chapter covers the following topics:

e Labels
e SET directive
e Obsolete directives

20.1 Labels

When MCUasm compatibility mode is activated, labels must be followed by a colon,
even when they start on column 1.

When MCUasm compatibility mode is activated, following portion of code generate an
error message, because the label 1ave1 is not followed by a colon.

Listing: Example

label DC.B 1

When MCUasm compatibility mode is not activated, the previous portion of code does
not generate any error message.

20.2 SET directive

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 373

vy
N
vwpsolete directives

When MCUasm compatibility mode is activated, relocatable expressions are also allowed
in a SET directive.

When MCUasm compatibility mode is activated, the following portion of code does not
generate any error messages:

Listing: Example

label: SET *

When MCUasm compatibility mode is not activated, the previous portion of code
generates an error message because the ser label can only refer to the absolute
expressions.

20.3 Obsolete directives

The following table enumerates the directives, which are not recognized any longer when
the MCUasm compatibility mode is switched ON.

Table 20-1. Obsolete directives

Operator Notation Description

RMB DS Define storage for a variable

NOL NOLIST Specify that all subsequent instructions
must not be inserted in the listing file.

TTL TITLE Define the user-defined title for the
assembler listing file.

GLOBAL XDEF Make a symbol public (visible from the
outside)

PUBLIC XDEF Make a symbol public (visible from the
outside)

EXTERNAL XREF Import reference to an external symbol.

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual, Rev.
10.6, 02/2014

374 Freescale Semiconductor, Inc.

g |

Index

"err.log" 171
(-Fh, 137

(PC 96

(usually 96
(-WmsgFiv, 179
-ArgFile: 126
-AsmDbg /127
-Ci 127
-CMacAngBrack: 7128
-CMacBrackets: 129
-Compat /30
-D: 133
-DefLabel 135
-Env: 136

-F2, 137

-F2o0, 137
-FA2): 137
-FA2o, 137

-H: 138

-1: 139

-L: 140

-Lasmc: 142
-Lasms: /44
-Lc: 146

-Ld: 148

-Le: 150

-Li: 152

-Lic: 154
-LicA: 155
-LicBorrow: 156
-LicWait: 158
-LI: 159
-MacroNest: /160
-MCUasm: 160
-N 161
-NoBeep /62
-NoDebuglnfo: 163
-NoEnv: 163
-ObjN: 164
-Prod: 165
-Struct: 166

-V: 167

-View: 168
-W1: 169

-W2: 170
-WErrFile: 171
-Wmsg8x3: 172
-WmsgCE: 173
-WmsgCF: 173
-WmsgCI: 174
-WmsgCU: 175
-WmsgCW: 176
-WmsgFb 177

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual

-WmsgFbm /77
-WmsgFbv 177
-WmsgFi 179
-WmsgFim): /79
-WmsgFob: /180
-WmsgFoi: 182
-WmsgFonf: /184
-WmsgFonp: 185
-WmsgNe: 187
-WmsgNi: /88
-WmsgNu: /89
-WmsgNw: 190
-WmsgSd: /91
-WmsgSe: 192
-WmsgSi: 7193
-WmsgSw: 193
-WOutFile: 194
-WStdout: 795

18-Bit 223

24-Bit 221, 223, 224
4-Bit 220

83172

9-Bit 221, 224

A

A1004 160

Abs 306

ABSENTRY 249

Absolute 100, 199, 240
absolute file 323

Absolute files /74

absolute section 339

absolute sections 204, 327, 329
absolute symbols 284
ABSPATH: 100
Accompanying 20

Addition 229

address /44

Address 224

Addressing 218, 220
Addressing Mode 218, 219, 224
Addressing Modes 217, 219, 220, 223
ALIGN 250

alignment 275

Analysis 30

Angle 128

ANSI-C 312, 313

Appendices 345

application 329, 331, 341
Application 53, 168, 249

Index

Freescale Semiconductor, Inc.

375

\
Y

y
A

muex

applications 323
Applications 323

area 202

areas 203

argument 299

arguments /29

Arguments /28
ASMOPTIONS: 100
Assemble 89

Assemble Entry 90
assembler 100

Assembler 19, 23, 40, 41, 60-66, 69, 70, 73, 75,
119,121,124, 167, 207, 245, 305
Assembler Applications 371
assembler directives 249
Assembler Options 119, 126
Assembler window /16
Assembler Window 91
Assembling 39, 40, 46, 89
assembly 269, 271, 312, 327
Assembly 36, 46, 323
assembly applications 324
assembly block 268
Assembly-Control 247
Assembly directives 248
assembly file 343

Assembly file 342

assembly function 373
Assembly Language 25
assembly source file /127
assembly variables 372
Associated 87

attributes 7197

Automatic 222

available /58

B

Bar 73

BASE 251

batch /80

Batch mode /16
beep 162

Begin 276

binary 229-232, 234
Binary 242

Bitwise 232, 233
Blank Lines 293
Borrow 156

Box 85, 88
brackets 128, 129
Build Properties 60

C

call 7146
Calling 298

C file 314

Class 87

CLIST 252

Code Generation 64

color 173—-176

COM 79

command /26

Command 89

Command Line 77, 78, 91
Comment 207

Comment Line 369
compatibility /60
Compatibility 130, 369, 373
Compatibility Modes 64
Conditional 248, 269, 271
conditional assembly 252, 261
Conditional assembly 258
configuration 96
Configuration 81, 83
Configure 142, 144, 160
Configure Listing File 62
Configuring 41, 78
Constant 198, 220, 221, 223, 224
Constant Block 256
Constant-Definition 246
constants 228, 229, 288
Constants 227, 369
continuation 98

Control directives 247, 248
Copyright 101
COPYRIGHT: 101

Create 25, 171, 194
Creation 106

current /102

Current 94
CurrentCommandLine 362
Cut 172

D

Data 198
Data-Allocation 246
DC 254

DCB 256

DDE 78

debug /63

Debug 715

debug sections /27
declaration 3/8
Declare 290
Decrement 222
Default 7100, 102
DefaultDir 352
DEFAULTDIR: /02
Define 133, 256
Define Constant 254
Define Space 257

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual

376

Freescale Semiconductor, Inc.

g |

Index

Defining 202, 203, 297 ERRORFILE: 103
definition /48, 316, 318 Error message 264
Definition 294 EVEN 263
Deleted file 33 every 155
details 99 Example 87, 240
developers 205 expansion /50, 302
development 205 expression 240, 241
directive 373 Expression 239
Directive 216, 245 EXTI1 220
directives 246, 247, 374 EXT2 220
Directives 245, 370 EXT24 220
directory 94, 102, 109, 155 EXT3 220, 224
Directory 24 Extended 220
Direct page 296 External 25, 226
disable /91 External Reference 296
Disable /89 External Symbol 294, 295
Disable Listing 282
Disable Paging 283 F
Disable User Messages 66
Display notify box 161 FAIL 264
division 230 fatal 173
Document /9 feature 155, 156
Documentation 20 Feedback 90
Drag and Drop 90 field 208, 209
DS 257 field address 379

field offset 320
E File Menu 73

filename /64
Editor 25, 34, 77,78, 91, 355, 359 Filename /03
Editor_Exe 356, 360 filenames /72
Editor_Name 355, 359 files 113, 114, 163
Editor_Opts 356, 360 Files 30, 113
EditorCommandLine 366 floating 758
EditorDDEClientName 366 Floating-Point 229
EditorDDEServiceName 367 FOR 268
EditorDDETopicName 367 FOR block 261
Editor Setting 75 Force 237, 263
EditorType 365 Forcing 275
ELF/DWAREF 163 format 7137, 172, 179, 180, 182, 184, 185
ELSE 258
Enable Listing 273 G
End 261, 262
END 260 General 66
End assembly 260 Generate 140
ENDFOR 261 generating 323
ENDIF 261 GENPATH: 105
ENDM 262 Global 96
Enhanced 205 Global Configuration 357
entry 101 Global Editor 76
entry point 249 Graphical User Interface 69
environment /36, 163 Group 33, 352
Environment 83, 93, 95, 99, 102 grouping 128, 129, 299
ENVIRONMENT: /02 Groups 30’ 31
EQU 263
Equate 263
error 162 H
Error 90, 116 HCS12Z 209

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual
Freescale Semiconductor, Inc. 377

\
Y

y
A

muex

header 306

Help 738

HIGH 235
HIGH_6_13 236
Highlights /9
Host 64

IDE 25, 39, 53

IDX 220, 222, 223
IDX1 221, 224
IDX2 223

IDX3 221,223,224
IF 269

1Fcc 271

IMMe4 219
Immediate 278, 219
Include 713, 139
INCLUDE 272
included 752
include file 342
INCLUDETIME: 106
Increment 222
Indexed 220, 222-224
Indirect 223, 224
Inherent 278
initialization 96
input /05

Input 63, 89, 113
Input Files 45
Insert 293
Installation 357
Instruction set 209
Instruction Set 209
integer 362

Integer 228
Integers 369
interactive 179, 182
Interactive mode 116
Invoking 313

L

label 759

Label 133, 208
Labels 301, 373
Language 63, 64
license 156, 158
License 154, 155, 158
Limitations 32/
limits 242

Line Length 274
Line Number 9/
linker 333
Linker 56
Linking 329, 331

List 124, 252,279

LIST 273

listing 140, 142, 144, 146, 148, 150, 152, 194
Listing 715, 305
Listing-File 247

listing files 115

Listing Files 35

Listing Title 294

LLEN 274

Loc 308

Local 96

Local Configuration 359
Local Editor 76

Location Counter 250, 286
Logical 233

LONGEVEN 275
Long-Word 275

LOW 236

macro 129, 148, 160, 297
Macro 128, 146, 150, 217, 248, 297-299, 302
MACRO 276

macro definition 262, 276
Macro Expansion 277
macro expansions 279
macros 95, 298, 301, 302
Macros 297

Main Window 70

Make 323
MAP_ADDR_6 237
MASM 369

maximum /60
mctools.ini 96

MCUasm /60, 373
Memory maps 324

Menu 75

Menu Bar 73

Message 90

messages 169, 170, 173-176, 187-190
Messages 65, 66

MEXIT 277

Microsoft 172

Mixed C 311, 324
MLIST 279

mode 179, 180, 182
Mode 218

Modes 220

modifiers /121

Modifiers 80

Modularity 204

modules 34/

modulo 230

multiple 203

Multiple 205
Multiplication 230

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual

378

Freescale Semiconductor, Inc.

g |

Index

N Path 351

PLEN 288
Name /10 portability 205
Nested 302 position 185
nesting /60 Post 222
New 25 Pre 222
New File 32 precedence 239
New Group 32 Prints 167
NOLIST 282 PRM 53, 333, 343
NOPAGE 283 processing 117
not /63 project.ini) 96
Notation 347 Project Files 37
Number /87, 188, 190 projects 76
number base 25/

R
o

RADS0 288
Obj 309 RADS50-encoded 288
object 101, 106, 110 RAM 202, 203
Object 107, 114, 164 read 126
Object-code 55 RecentCommandLineX 362
object files 323 RecentProject0 354
OBJPATH: 107 RecentProjectl 354
Obsolete 374 Reference 295
occurrence /68 REG 222, 223
Offset 220-224 Register 218, 222, 223
OFFSET 284 Rel 307
Online Help /60 REL 279
only) 96 REL1 279
Operand Field 217 Relational 234
operation 24/ Relative 279
Operation 209 relocatable 241
operations 242 Relocatable 201, 204
operator 235-237 relocatable section 336
Operator 236, 237, 239 Relocatable Section 290
operators 229-234 relocatable sections 330, 331
Operators 229, 370 Removing 33
Option 84 Renaming 33
Option Details /21 Repeat 268
options 100, 126 Reserved 227
Options 119, 124, 352, 365 Restoring 33
ORG 286 result 241, 242
output /95 Return Value 371
Output 61, 62, 114, 137 Reusability 206
overlaps 206 RGB 173-176
overview 297 ROM 202, 203
P S
PAGE 287 S127 19
Page break 287 S12Z Assembler 61
Page Length 288 SaveAppearance 353
Panels 60 SaveEditor 354
Parameter 311 SaveOnExit 353
parameters 298 SaveOptions 354
passing scheme 371/ Search 105
path 100, 105, 107, 109, 139 Section 197

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual
Freescale Semiconductor, Inc. 379

\
Y

y
A

muex

SECTION 290
Section-Definition 245
sections /197-199, 201
Sections 197

Section types 198
segmentation 324
Server 158

Set 136, 179, 288

SET 292, 373

Setting 191-193
Settings 84, 85

shared 76

Shift operators 231
Short 138, 220

Show 159
ShowTipOfDay 365
Sign 231

Simple 241

size 144

Source 207
Source-code Files 46
source file 312, 313, 327, 330, 336, 339
Source files 113
Source Files 36, 39
Source line 309
Source listing 306
SPC 293

special 7121

special modifiers /22
specification 102, 103, 164
Specify 126, 165
Specifying 89

Square 129

S-Record 108, 115
SRECORD: 108
standard 168, 195
startup 165

statistics 159

Status 73
StatusbarEnabled 362
string 288

String 228

Structure /9

structured /66
Structured type 316, 321
structured type fields 377
structured types 316
structured variable 379
subtraction 229
Support 166

Switch 160
Symbol-Linkage 246
symbols 225-227
Symbols 225, 296, 347
symbol value 263
Symbol Value 292
Syntax 207

T

Tab Length 293
TABS 293
Temporary 109
Terminate 277
Testl.asm 342
Testl.inc 342
Test2.asm 343
Test2.prm 343
Text 109
TEXTPATH: 109
this 79

time /06
TipFilePos 364
TITLE 294
TMP: 109
Toolbar 72, 89
ToolbarEnabled 363
tools 76
Tracking 206
Translation 242
type 108

types 166

U

unary 231, 233,237
Unary 241
Undefined 227

use 163

user 175, 189

User 110
USERNAME: /10

\'

variable /36

Variable 378

variables 99, 312
Vector table 333
Vector Table 336, 339
version /167

View Menu 75

w

Wait 158

warning /70, 176
Warning /90, 193
will 126
WindowFont 364
WindowPos 363
Window Title 71
word alignment 263
Working 23

Write 195

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual

380

Freescale Semiconductor, Inc.

Index

X

XDEF 294

XREF 295

XREFB 296
XXX_Assembler 353, 361

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual

Freescale Semiconductor, Inc. 381

PR 4

muex

CodeWarrior Development Studio for Microcontrollers V10.x S12Z Assembler Reference Manual

382 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Processor Expert are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other
product or service names are the property of their respective owners.

© 2010-2014 Freescale Semiconductor, Inc.

Document Number CWMCUS12ZASMREF
Revision 10.6, 02/2014

<&

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Using S12Z Assembler
	Highlights
	Structure of this Document
	Accompanying Documentation

	Chapter 2: Working with Assembler
	Overview
	Project Directory
	External Editor

	Managing Assembly Language Project Using CodeWarrior IDE
	Create New Project
	Additional Project Information

	Analysis of Groups and Files in a Project
	CodeWarrior Groups
	Creating New Group
	Adding New File to the Project
	Renaming File or Group
	Moving File
	Removing File
	Restoring Deleted File
	Using Editor
	Generating Listing Files

	Writing your Assembly Source Files
	Analyzing Project Files
	Assembling Source Files
	Assembling and Linking with CodeWarrior IDE
	Assembling with Assembler
	Configuring Assembler
	Input Files
	Assembling Assembly Source-code Files

	Linking Application
	Linking with CodeWarrior IDE
	PRM File
	Linking Object-code Files

	Linking with Linker

	Assembler Build Properties Panels
	S12Z Assembler Build Properties Panels
	S12Z Assembler
	S12Z Assembler > Output
	S12Z Assembler > Output > Configure Listing File
	S12Z Assembler > Input
	S12Z Assembler > Language
	S12Z Assembler > Language > Compatibility Modes
	S12Z Assembler > Host
	S12Z Assembler > Code Generation
	S12Z Assembler > Messages
	S12Z Assembler > Messages > Disable User Messages
	S12Z Assembler > General

	Chapter 3: Assembler Graphical User Interface
	Starting Assembler
	Assembler Main Window
	Window Title
	Content Area
	Toolbar
	Status Bar
	Assembler Menu Bar
	File Menu
	Assembler Menu
	View Menu

	Editor Setting Dialog Box
	Global Editor (shared by all tools and projects)
	Local Editor (shared by all tools)
	Editor Started with Command Line
	Example of Configuring a Command Line Editor

	Editor Started with DDE
	CodeWarrior with COM
	Modifiers

	Save Configuration Dialog Box
	Environment Configuration Dialog Box

	Option Settings Dialog Box
	Message Settings Dialog Box
	Changing the Class Associated with a Message
	Example

	About Dialog Box
	Specifying Input File
	Use Command Line in Toolbar to Assemble
	Assembling a New File
	Assembling a File which has Already been Assembled
	Use File > Assemble Entry
	Use Drag and Drop

	Message/Error Feedback
	Use Information from Assembler Window
	Use User-defined Editor
	Line Number can be Specified on the Command Line
	Line Number cannot be Specified on the Command Line

	Chapter 4: Environment
	Current directory
	Environment macros
	Global initialization file - mctools.ini (PC only)
	Local configuration file (usually project.ini)
	Line continuation
	Environment variables details
	ABSPATH: Absolute file path
	ASMOPTIONS: Default assembler options
	COPYRIGHT: Copyright entry in object file
	DEFAULTDIR: Default current directory
	ENVIRONMENT: Environment file specification
	ERRORFILE: Filename specification error
	GENPATH: Search path for input file
	INCLUDETIME: Creation time in the object file
	OBJPATH: Object file path
	SRECORD: S-Record type
	TEXTPATH: Text file path
	TMP: Temporary directory
	USERNAME: User Name in object file

	Chapter 5: Files
	Input files
	Source files
	Include files

	Output files
	Object files
	Absolute files
	S-Record Files
	Listing files
	Debug listing files
	Error listing file
	Interactive mode (Assembler window open)
	Batch mode (Assembler window not open)

	File processing

	Chapter 6: Assembler Options
	Types of Assembler Options
	Assembler Option Details
	Using special modifiers
	Examples using special modifiers

	List of Assembler Options
	Detailed Listing of All Assembler Options
	-ArgFile: Specify a file from which additional command line options will be read
	-AsmDbg: Emit assembly source file information in debug sections
	-Ci: Switch case sensitivity on label names OFF
	-CMacAngBrack: Angle brackets for grouping Macro Arguments
	-CMacBrackets: Square brackets for macro arguments grouping
	-Compat: Compatibility modes
	-D: Define Label
	-DefLabel: Improves support for data allocation directives
	-Env: Set environment variable
	-F (-Fh, -F2o, -FA2o, -F2, -FA2): Output file format
	-H: Short Help
	-I: Include file path
	-L: Generate a listing file
	-Lasmc: Configure listing file
	-Lasms: Configure the address size in the listing file
	-Lc: No Macro call in listing file
	-Ld: No macro definition in listing file
	-Le: No Macro expansion in listing file
	-Li: No included file in listing file
	-Lic: License information
	-LicA: License information about every feature in directory
	-LicBorrow: Borrow license feature
	-LicWait: Wait until floating license is available from floating License Server
	-Ll: Show label statistics
	-MacroNest: Configure maximum macro nesting
	Message A1004 (available in the Online Help)
	-MCUasm: Switch compatibility with MCUasm ON
	-N: Display notify box
	-NoBeep: No beep in case of an error
	-NoDebugInfo: No debug information for ELF/DWARF files
	-NoEnv: Do not use environment
	-ObjN: Object filename specification
	-Prod: Specify project file at startup
	-Struct: Support for structured types
	-V: Prints the Assembler version
	-View: Application standard occurrence
	-W1: No information messages
	-W2: No information and warning messages
	-WErrFile: Create "err.log" error file
	-Wmsg8x3: Cut filenames in Microsoft format to 8.3
	-WmsgCE: RGB color for error messages
	-WmsgCF: RGB color for fatal messages
	-WmsgCI: RGB color for information messages
	-WmsgCU: RGB color for user messages
	-WmsgCW: RGB color for warning messages
	-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
	-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
	-WmsgFob: Message format for batch mode
	-WmsgFoi: Message format for interactive mode
	-WmsgFonf: Message format for no file information
	-WmsgFonp: Message format for no position information
	-WmsgNe: Number of error messages
	-WmsgNi: Number of Information messages
	-WmsgNu: Disable user messages
	-WmsgNw: Number of Warning messages
	-WmsgSd: Setting a message to disable
	-WmsgSe: Setting a message to Error
	-WmsgSi: Setting a message to Information
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create error listing file
	-WStdout: Write to standard output

	Chapter 7: Sections
	Section attributes
	Code sections
	Constant sections
	Data sections

	Section types
	Absolute sections
	Relocatable sections
	Example: Defining one RAM and one ROM area.
	Example: Defining multiple RAM and ROM areas

	Relocatable vs. absolute sections
	Modularity
	Multiple developers
	Early development
	Enhanced portability
	Tracking overlaps
	Reusability

	Chapter 8: Assembler Syntax
	Comment line
	Source line
	Label field
	Operation field
	Instruction set
	HCS12Z Instruction Set

	Directive
	Macro

	Operand Field: Addressing Modes
	Inherent Addressing Mode
	Register Addressing Mode
	Immediate Addressing Mode
	Short Immediate Addressing Mode (IMMe4)
	Relative Addressing Modes (REL, REL1)
	Extended Addressing Modes (EXT1, EXT2, EXT3, EXT24)
	Indexed Addressing Modes
	4-Bit Short Constant Offset from X, Y, or SP (IDX)
	9-Bit Constant Offset from X, Y, SP or PC (IDX1)
	24-Bit Constant Offset from X, Y, SP or PC (IDX3)
	Register Offset Indexed from X, Y, or SP (REG,IDX)
	Automatic Pre/Post Increment/Decrement from X, Y, or SP (++IDX)
	18-Bit Constant Offset from Di (IDX2,REG)
	24-Bit Constant Offset from Di (IDX3,REG)

	Indexed Indirect Addressing Modes
	Register Offset Indexed Indirect from X or Y ([REG,IDX])
	9-Bit Constant Offset Indexed Indirect from X, Y, SP or PC ([IDX1])
	24-Bit Constant Offset Indexed Indirect from X, Y, SP or PC ([IDX3])
	Address Indirect Addressing Mode ([EXT3])

	Symbols
	User-defined symbols
	External symbols
	Undefined symbols
	Reserved symbols

	Constants
	Integer constants
	String constants
	Floating-Point constants

	Operators
	Addition and subtraction operators (binary)
	Multiplication, division and modulo operators (binary)
	Sign operators (unary)
	Shift operators (binary)
	Bitwise operators (binary)
	Bitwise operators (unary)
	Logical operators (unary)
	Relational operators (binary)
	HIGH operator
	HIGH_6_13 Operator
	LOW operator
	MAP_ADDR_6 Operator
	Force operator (unary)
	Operator precedence

	Expression
	Absolute expression
	Example

	Simple relocatable expression
	Unary operation result
	Binary operations result

	Translation limits

	Chapter 9: Assembler Directives
	Directive Overview
	Section-Definition Directives
	Constant-Definition directives
	Data-Allocation directives
	Symbol-Linkage directives
	Assembly-Control directives
	Listing-File Control directives
	Macro Control directives
	Conditional Assembly directives

	Detailed descriptions of all assembler directives
	ABSENTRY - Application entry point
	ALIGN - Align Location Counter
	BASE - Set number base
	CLIST - List conditional assembly
	DC - Define Constant
	DCB - Define Constant Block
	DS - Define Space
	ELSE - Conditional assembly
	END - End assembly
	ENDFOR - End of FOR block
	ENDIF - End conditional assembly
	ENDM - End macro definition
	EQU - Equate symbol value
	EVEN - Force word alignment
	FAIL - Generate Error message
	FOR - Repeat assembly block
	IF - Conditional assembly
	IFcc - Conditional assembly
	INCLUDE - Include text from another file
	LIST - Enable Listing
	LLEN - Set Line Length
	LONGEVEN - Forcing Long-Word alignment
	MACRO - Begin macro definition
	MEXIT - Terminate Macro Expansion
	MLIST - List macro expansions
	NOLIST - Disable Listing
	NOPAGE - Disable Paging
	OFFSET - Create absolute symbols
	ORG - Set Location Counter
	PAGE - Insert Page break
	PLEN - Set Page Length
	RAD50 - RAD50-encoded string constants
	SECTION - Declare Relocatable Section
	SET - Set Symbol Value
	SPC - Insert Blank Lines
	TABS - Set Tab Length
	TITLE - Provide Listing Title
	XDEF - External Symbol Definition
	XREF - External Symbol Reference
	XREFB - External Reference for Symbols located on the Direct Page

	Chapter 10: Macros
	Macro Overview
	Defining Macro
	Calling Macros
	Macro Parameters
	Macro Argument Grouping

	Labels Inside Macros
	Macro Expansion
	Nested Macros

	Chapter 11: Assembler Listing File
	Page Header
	Source Listing
	Abs
	Rel
	Loc
	Obj. code
	Source Line

	Chapter 12: Mixed C and Assembler Applications
	Parameter Passing Scheme
	Return Value
	Accessing Assembly Variables in ANSI-C Source File
	Accessing ANSI-C Variables in Assembly Source File
	Invoking Assembly Function in ANSI-C Source File
	Example of a C File

	Support for Structured Types
	Structured Type Definition
	Types Allowed for Structured Type Fields
	Variable Definition
	Variable Declaration
	Accessing Structured Variable
	Accessing Field Address
	Accessing Field Offset

	Structured Type: Limitations

	Chapter 13: Make Applications
	Assembly Applications
	Directly Generating Absolute File
	Generating Object Files

	Mixed C and Assembly Applications

	Memory Maps and Segmentation

	Chapter 14: How to...
	Working with Absolute Sections
	Defining Absolute Sections in Assembly Source File
	Linking Application Containing Absolute Sections

	Working with Relocatable Sections
	Defining Relocatable Sections in Source File
	Linking Application Containing Relocatable Sections

	Initializing Vector Table
	Initializing the Vector table in the linker PRM file
	Initializing Vector Table in Source File Using Relocatable Section
	Initializing Vector Table in Source File Using Absolute Section

	Splitting Application into Modules
	Example of Assembly File (Test1.asm)
	Corresponding Include File (Test1.inc)
	Example of Assembly File (Test2.asm)
	Example of PRM File (Test2.prm)

	Chapter 15: Appendices
	Chapter 16: Symbols and Notation
	Chapter 17: Global Configuration File Entries
	[Installation] Section
	Path
	Group

	[Options] Section
	DefaultDir

	[XXX_Assembler] Section
	SaveOnExit
	SaveAppearance
	SaveEditor
	SaveOptions
	RecentProject0, RecentProject1

	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	Example

	Chapter 18: Local Configuration File Entries
	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	[XXX_Assembler] Section
	RecentCommandLineX, X= integer
	CurrentCommandLine
	StatusbarEnabled
	ToolbarEnabled
	WindowPos
	WindowFont
	TipFilePos
	ShowTipOfDay
	Options
	EditorType
	EditorCommandLine
	EditorDDEClientName
	EditorDDETopicName
	EditorDDEServiceName

	Example

	Chapter 19: MASM Compatibility
	Comment Line
	Constants (Integers)
	Operators
	Directives

	Chapter 20: MCUasm Compatibility
	Labels
	SET directive
	Obsolete directives

	Index

