
CodeWarrior Development Studio for
Microcontrollers V10.x Digital Signal

Controller Assembler Manual

Document Number: CWMCUDSCASMREF
Rev 10.6, 01/2014

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Where to Read More...9

Chapter 2
Assembler Statement Syntax

2.1 Statement Format..11

2.1.1 Label Field...11

2.1.2 Operation Field..12

2.1.3 Operand Field...12

2.1.4 Data Transfer Fields (X and Y Fields)...12

2.1.5 Comment Field...13

2.2 Name and Label Format..13

2.3 Expressions...13

2.3.1 Absolute and Relative Expressions..14

2.3.2 Expression Memory Space Attribute...14

2.3.3 Constants..14

2.3.3.1 Numeric Constants...14

2.3.3.2 String Constants...15

2.3.4 Operators..15

2.3.4.1 Operator Precedence..16

2.4 Functions...17

2.4.1 Mathematical Functions...17

2.4.1.1 ABS..18

2.4.1.2 ACS..18

2.4.1.3 ASN..19

2.4.1.4 AT2..19

2.4.1.5 ATN...19

2.4.1.6 CEL..20

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 3

Section number Title Page

2.4.1.7 COH...20

2.4.1.8 COS..20

2.4.1.9 FLR..21

2.4.1.10 L10...21

2.4.1.11 LOG...21

2.4.1.12 MAX..22

2.4.1.13 MIN..22

2.4.1.14 POW...22

2.4.1.15 RND...23

2.4.1.16 SGN..23

2.4.1.17 SIN...23

2.4.1.18 SNH..24

2.4.1.19 SQT..24

2.4.1.20 TAN...24

2.4.1.21 TNH...25

2.4.1.22 XPN..25

2.4.2 Conversion Functions..25

2.4.2.1 CVF..26

2.4.2.2 CVI...26

2.4.2.3 CVS..26

2.4.2.4 FLD..27

2.4.2.5 FRC..27

2.4.2.6 LFR..28

2.4.2.7 LNG...28

2.4.2.8 RVB...28

2.4.2.9 UNF..29

2.4.3 String Functions...29

2.4.3.1 LEN..29

2.4.3.2 POS..30

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

4 Freescale Semiconductor, Inc.

Section number Title Page

2.4.3.3 SCP...30

2.4.4 Macro Functions..30

2.4.4.1 ARG...31

2.4.4.2 CNT..31

2.4.4.3 MAC...31

2.4.4.4 MXP...32

2.4.5 Assembler Mode Functions...32

2.4.5.1 CCC..32

2.4.5.2 CHK...33

2.4.5.3 CTR..33

2.4.5.4 DEF..34

2.4.5.5 EXP..34

2.4.5.6 INT...34

2.4.5.7 LCV..35

2.4.5.8 LST...35

2.4.5.9 MSP..36

2.4.5.10 REL..36

Chapter 3
Software Project Management

3.1 Using Sections..37

3.2 Data Hiding...38

3.2.1 Symbols..39

3.2.2 Macros..40

3.2.3 Nesting and Fragmentation..41

3.3 Relocation...41

Chapter 4
Macros

4.1 Macro Operations..43

4.2 Macro Definition...44

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 5

Section number Title Page

4.3 Macro Calls...46

4.4 Dummy Argument Operators...47

4.4.1 Concatenation \..47

4.4.2 Return Value ?...48

4.4.3 Return Hex Value %..49

4.4.4 String Operator "..50

Chapter 5
Directives

5.1 Assembly Control...51

5.1.1 COMMENT...51

5.1.2 DEFINE...52

5.1.3 END...53

5.1.4 FAIL...54

5.1.5 FORCE...54

5.1.6 INCLUDE..55

5.1.7 ORG...55

5.1.8 RDIRECT...56

5.1.9 SCSJMP...57

5.1.10 SCSREG...57

5.1.11 UNDEF..58

5.1.12 WARN...59

5.2 Symbol Definition...59

5.2.1 ENDSEC..59

5.2.2 EQU...60

5.2.3 GLOBAL...61

5.2.4 LOCAL..62

5.2.5 SECTION...62

5.2.6 SET...65

5.2.7 SUBROUTINE..66

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

6 Freescale Semiconductor, Inc.

Section number Title Page

5.2.8 XREF...66

5.3 Data Definition and Allocation...67

5.3.1 ALIGN...67

5.3.2 BSB..68

5.3.3 BSC..69

5.3.4 BSM...69

5.3.5 BUFFER...70

5.3.6 DC..72

5.3.7 DCB...73

5.3.8 DCBR...74

5.3.9 DS...74

5.3.10 DSB..75

5.3.11 DSM...75

5.3.12 DSR..76

5.3.13 ENDBUF..77

5.3.14 @HB()..77

5.3.15 @LB()..78

5.3.16 DWARF Symbolics...78

5.3.16.1 Example...79

5.4 Macros and Conditional Assembly...80

5.4.1 DUP..80

5.4.2 DUPA...81

5.4.3 DUPC...82

5.4.4 DUPF...83

5.4.5 ENDIF..84

5.4.6 ENDM..85

5.4.7 ENTRFIRQ..86

5.4.8 ENTRXP..86

5.4.9 EXITM...87

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 7

Section number Title Page

5.4.10 EXITXP...88

5.4.11 IF..88

5.4.12 MACRO...89

5.4.13 PMACRO...90

5.5 Structured Programming...91

5.5.1 .BREAK...91

5.5.2 .CONTINUE..92

5.5.3 .IF, .ELSE, and .ENDI...93

5.5.4 .FOR and .ENDF..93

5.5.5 .REPEAT and .UNTIL...94

5.5.6 .WHILE and .ENDW...95

Chapter 6
Options, Listings, and Errors

6.1 OPT...97

6.2 Listing Format Control...98

6.3 Reporting Options...98

6.4 Message Control...99

6.5 Symbol Options..100

6.6 Assembler Operation..101

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

8 Freescale Semiconductor, Inc.

Chapter 1
Introduction
The Freescale DSP Assembler not only processes assembly code for the Freescale DSP
instruction set, but offers a set of useful directives and macros which makes your
assembly coding much easier. This manual discusses the directives and macros.

This introductory chapter provides this information:

• Where to Read More

1.1 Where to Read More

This manual does not discuss how to construct programs for the Freescale DSP digital
signal processor.

For a complete description of the Freescale DSP instruction set, refer to the following
documents.

• DSP56800E 16-bit Digital Signal Processor Core Manual, Freescale Semiconductor,
Inc. 2001. Part DSP56800ERM/D.

• DSP56800 16-bit Digital Signal Processor Family Manual, Freescale
Semiconductor, Inc. 1996. Part DSP56800FM/AD.

These references are available at the following web address:

http://www.Freescale.com

Freescale DSP56800x specifies ELF (Executable and Linker Format) as the output file
format, and DWARF as the symbol file format. For more information about those file
formats, you should read the following documents:

• Executable and Linker Format, Version 1.1, published by UNIX System
Laboratories.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 9

• DWARF Debugging Information Format, Revision: Version 1.1.0, published by
UNIX International, Programming Languages SIG, October 6, 1992.

• DWARF Debugging Information Format, Revision: Version 2.0.0, Industry Review
Draft, published by UNIX International, Programming Languages SIG, July 27,
1993.

Where to Read More

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

10 Freescale Semiconductor, Inc.

Chapter 2
Assembler Statement Syntax

Assembler statements are used to control the operation of the assembler itself. The syntax
of assembler statements mirrors the syntax of assembly language. This chapter is
organized into the following topics:

• Statement Format
• Name and Label Format
• Expressions
• Functions

2.1 Statement Format

Freescale DSP Assembler statements are formatted as follows:

label operation X field Y field Comment

The following syntax applies:

• Spaces or tabs delimit the fields.
• Comments normally follow the operand or Y field and start with a semi-colon (;).

Lines which consist only of space or tab characters are treated as comments. Any line
that starts with a semi-colon is a comment.

2.1.1 Label Field

The first field on the source line is the label field. The label field follows these rules:

• A space or tab as the first character indicates that there is no label for this line.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 11

• An alphabetic character as the first character indicates that the line contains a symbol
called label.

• An underscore character as the first character indicates that the label is a local label.

A label may be indented (not starting with the first character of the line) if the last
character in the label is a colon (:). Local labels have a scope limited by any two
bounding non-local labels. Local labels are useful in the instance that a label is needed,
but you don't need to refer to it outside of a limited scope, such as in the case of a DO loop.

You may not define a label twice, unless you do so in conjunction with a SECTION, a SET
directive, or as a local label.

2.1.2 Operation Field

The entries in the operation field may be one the following types:

• Opcode - instructions for the Freescale DSP processor.
• Directive - a special code that controls the assembly process.
• Macro call - invocation of a previously defined macro.

The assembler first searches for a macro with the same name as the operation specified in
this field. Then the assembler searches the instruction set and lastly the assembler
directives. Therefore, macro names can replace machine instructions. Be careful not to
name macros after instruction names unknowingly. You can use the REDIRECT directive to
change this default behavior.

2.1.3 Operand Field

The contents of the operand field are dependent on the contents of the operation field.
The operand may contain a symbol, an expression, or a combination of symbols and
expressions separated by commas.

2.1.4 Data Transfer Fields (X and Y Fields)

Statement Format

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

12 Freescale Semiconductor, Inc.

Most opcodes can specify one or more data transfers to occur during the execution of the
instruction. These data transfers are indicated by two addressing mode operands
separated by a comma, with no embedded blanks. See Expression Memory Space
Attribute for further discussion of Freescale DSP data transfers.

2.1.5 Comment Field

Comments begin with a semicolon (;). All characters after the semicolon are ignored.

2.2 Name and Label Format

Identifiers or symbol names may be as long as 512 characters. The first character of the
name must be alphabetic; remaining characters may be alphanumeric or an underscore
character (_). By default, upper- and lowercase characters are distinct unless case-
sensitivity is turned off in the Freescale DSP Assembler settings panel.

The identifiers listed in the following table are reserved for the assembler. These names
identify the Freescale DSP registers.

Table 2-1. Reserved Identifiers

X A PC

X0 A0 M01

X1 A1 N

Y A2 SP

Y0 B MR

Y1 B0 CCR

R0 B1 SR

R1 B2 OMR

R2 LC SSH

R3 LA

2.3 Expressions

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 13

The Freescale DSP Assembler supports the following constant types and other
expressions.

2.3.1 Absolute and Relative Expressions

An expression may be either relative or absolute. An absolute expression is one which
consists only of absolute terms.

A relative expression consists of a relative mode. All address expressions must adhere to
these definitions for absolute or relative expressions. This is because only these types of
expressions retain a meaningful value after program relocation.

2.3.2 Expression Memory Space Attribute

Memory space attributes become important when an expression is used as an address.
Errors occur when the memory space attribute of the expression result does not match the
explicit or implicit memory space specified in the source code. Memory spaces are
explicit when the address has any of the following forms:

 X: address expression

 P: address expression

The memory space is implic itly P when an address is used as the operand of a DO, branch,
or jump-type instruction.

Expressions used for immediate addressing can have any memory space attribute.

2.3.3 Constants

Constants represent data that does not change during the course of the program.

2.3.3.1 Numeric Constants

Expressions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

14 Freescale Semiconductor, Inc.

Binary and hexadecimal constants require the use of the leading radix indicator character:

• Binary-Percent sign (%) followed by a string of binary digits (0,1). Example: %0101
• Hexadecimal-Dollar sign ($) followed by a string of hexadecimal digits (0-9, A-F, a-

f). Example: $7FFF
• Decimal-A string of digits (0-9), optionally preceded by a grave accent (`). Example:

`12345

A constant may be expressed without the leading radix indicator if a RADIX directive is
used before the constant evaluation.

2.3.3.2 String Constants

String constants used in expressions are converted to a concatenated sequence of right-
aligned ASCII bytes. String constants for the Freescale DSP processor are limited to four
characters; subsequent characters are ignored by the assembler. You may use the DC and
DCB directives to define strings longer than 4 bytes. The table below lists some examples.

Table 2-2. Use of String Constants in Expressions

Expression String Bytes

'ABCD' ABCD $41424344

'"79' "79 $00273739

'' null string $00000000

'abcdef' abcd $61626364

2.3.4 Operators

This section defines valid operators and operator precedence.

Valid operators:

• Unary Operators
• Shift Operators
• Bitwise Operators
• Arithmetic Operators
• Relational Operators
• Logical Operators

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 15

Table 2-3. Unary Operators

Positive +

Negative -

Ones complement ~

Logical negate !

Table 2-4. Shift Operators

Shift left <<

Shift right >>

Table 2-5. Bitwise Operators

AND &

OR |

XOR ^

Table 2-6. Arithmetic Operators

Multiplication *

Division /

Modulus %

Addition +

Subtraction -

Table 2-7. Relational Operators

Less than <

Less than or equal <=

Greater than >

Greater than or equal >=

Equal ==

Not equal !=

Table 2-8. Logical Operators

Logical AND &&

Logical OR ||

Expressions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

16 Freescale Semiconductor, Inc.

2.3.4.1 Operator Precedence

Operators are evaluated in the following order:

1. Parenthetical expression (innermost first)
2. Unary positive, unary negative, ~, !
3. <<, >>
4. &, |, ^
5. Multiplication, division, modulus
6. Addition, subtraction
7. <, <=, >, >=, ==, !=
8. &&, ||

Operators with the same precedence are evaluated left to right.

2.4 Functions

The Freescale DSP Assembler provides a number of convenient functions for the
programmer. There are five different types of functions:

• Mathematical Functions
• Conversion Functions
• String Functions
• Macro Functions
• Assembler Mode Functions

2.4.1 Mathematical Functions

This section describes the Freescale DSP Assembler mathematical functions:

• ABS
• ACS
• ASN
• AT2
• ATN
• CEL
• COH
• COS

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 17

• FLR
• L10
• LOG
• MAX
• MIN
• POW
• RND
• SGN
• SIN
• SNH
• SQT
• TAN
• TNH
• XPN

2.4.1.1 ABS

Absolute value

@ABS(expression)

Description

Returns the absolute value of expression as a floating-point value.

Example

MOVE #@ABS(0.5),b0

2.4.1.2 ACS

Arc cosine

@ACS(expression)

Description

Returns the arc cosine of expression as a floating-point value in the range zero to pi. The
result of expression must be between -1 and 1.

Example

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

18 Freescale Semiconductor, Inc.

ACOS = @ACS(-1.0) ; ACOS = 3.141593

2.4.1.3 ASN

Arc sine

@ASN(expression)

Description

Returns the arc sine of expression as a floating-point value in the range -pi/2 to pi/2. The
result of expression must be between -1 and 1.

Example

ARCSINE SET @ASN(-1.0) ; ARCSINE = -1.570796

2.4.1.4 AT2

Arc tangent

@AT2(expression1, expression2)

Description

Returns the arc tangent of expression1/ expression2 as a floating-point value in the range
-pi to pi. expression1 and expression2 must be separated by a comma.

Example

ATAN EQU @AT2(-1.0,1.0) ; ATAN = -0.7853982

2.4.1.5 ATN

Arc tangent

@ATN(expression)

Description

Returns the arc tangent of expression as a floating-point value in the range -pi/2 to pi/2.

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 19

Example

MOVE #@ATN(1.0),b0

2.4.1.6 CEL

Ceiling

@CEL(expression)

Description

Returns a floating-point value which represents the smallest integer greater than or equal
to expression.

Example

CEIL SET @CEL(-1.05) ; CEIL = -1.0

2.4.1.7 COH

Hyperbolic cosine

@COH(expression)

Description

Returns the hyperbolic cosine of expression as a floating-point value.

Example

HYCOS EQU @COH(0.5)

2.4.1.8 COS

Cosine

@COS(expression)

Description

Returns the cosine of expression as a floating-point value.

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

20 Freescale Semiconductor, Inc.

Example

DC -@COS(@CVF(0.5)*0.5)

2.4.1.9 FLR

Floor

@FLR(expression)

Description

Returns a floating-point value which represents the largest integer less than or equal to
expression.

Example

FLOOR SET @FLR(2.5) ; FLOOR = 2.0

2.4.1.10 L10

Log base 10

@L10(expression)

Description

Returns the base 10 logarithm of expression as a floating-point value. The expression
must be greater than zero.

Example

LOG EQU @L10(100.0) ; LOG = 2

2.4.1.11 LOG

Natural logarithm

@LOG(expression)

Description

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 21

Returns the natural logarithm of expression as a floating-point value. The expression
must be greater than zero.

Example

LOG EQU @LOG(100.0) ; LOG = 4.605170

2.4.1.12 MAX

Maximum value

@MAX(expression1[,...,expressionN])

Description

Returns the greatest of expression1,...,expressionN as a floating-point value.

Example

MAX DC @MAX(1.0,5.5,-3.25) ; MAX = 5.5

2.4.1.13 MIN

Minimum value

@MIN(expression1[,...,expressionN])

Description

Returns the least of expression1,...,expressionN as a floating-point value.

Example

MIN DC @MIN(1.0,5.5,-3.25) ; MIN = -3.25

2.4.1.14 POW

Raise to a power

@POW(expression1, expression2)

Description

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

22 Freescale Semiconductor, Inc.

Returns expression1 raised to the power expression2 as a floating-point value. The two
expressions must be separated by a comma.

Example

BUF EQU @CVI(@POW(2.0,3.0)) ; BUF = 8

2.4.1.15 RND

Random value

@RND()

Description

Returns a random value in the range 0.0 to 1.0.

Example

SEED DC @RND()

2.4.1.16 SGN

Return sign

@SGN(expression)

Description

Returns the sign of expression as an integer: -1 if the argument is negative, 0 if zero, 1 if
positive.

Example

IF @SGN(0.5) ; is input positive?

2.4.1.17 SIN

Sine

@SIN(expression)

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 23

Description

Returns the sine of expression as a floating-point value.

Example

DC @SIN(@CVF(0.5)*0.5)

2.4.1.18 SNH

Hyperbolic sine

@SNH(expression)

Description

Returns the hyperbolic sine of expression as a floating-point value.

Example

HSINE EQU @SNH(0.5)

2.4.1.19 SQT

Square root

@SQT(expression)

Description

Returns the square root of expression as a floating-point value. The expression must be
positive.

Example

SQRT EQU @SQT(3.5) ; SQRT = 1.870829

2.4.1.20 TAN

Tangent

@TAN(expression)

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

24 Freescale Semiconductor, Inc.

Description

Returns the tangent of expression as a floating-point value.

Example

MOVE #@TAN(1.0),b0

2.4.1.21 TNH

Hyperbolic tangent

@TNH(expression)

Description

Returns the hyperbolic tangent of expression as a floating-point value.

Example

HTAN = @TNH(VAL)

2.4.1.22 XPN

Exponential

@XPN(expression)

Description

Returns the exponential function (base e raised to the power of expression) as a floating
point value.

Example

EXP EQU @XPN(1.0) ; EXP = 2.718282

2.4.2 Conversion Functions

This section describ es the DSP56800 Assembler conversion functions:

• CVF

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 25

• CVI
• CVS
• FLD
• FRC
• LFR
• LNG
• RVB
• UNF

2.4.2.1 CVF

Convert integer to floating point

@CVF(expression)

Description

Converts the result of expression to a floating-point value.

Example

FLOAT SET @CVF(5) ; FLOAT = 5.0

2.4.2.2 CVI

Convert floating point to integer

@CVI(expression)

Description

Converts the result of expression to an integer value. This function should be used with
caution, since the conversions can be inexact (e.g., floating-point values are truncated).

Example

INT SET @CVI(-1.05) ; INT = -1

2.4.2.3 CVS

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

26 Freescale Semiconductor, Inc.

Convert memory space

@CVS({X|P},expression)

Description

Converts the memory space attribute of expression to that specified by the first argument;
returns expression.

Example

LOADDR EQU @CVS(X,TARGET)

2.4.2.4 FLD

Shift and mask operation

@FLD(base,value,width[,start])

Description

Shift and mask value into base for width bits beginning at bit start. If start is omitted,
zero (least significant bit) is assumed. All arguments must be positive integers and none
may be greater than the target word size.

Example

SWITCH EQU @FLD(TOG,1,1,7) ; turn eighth bit on

2.4.2.5 FRC

Convert floating point to fractional

@FRC(expression)

Description

Performs scaling and convergent rounding to obtain the fractional representation of the
floating-point expression as an integer.

Example

FRAC EQU @FRC(1.0)+1

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 27

2.4.2.6 LFR

Convert floating point to long fractional

@LFR(expression)

Description

Performs scaling and convergent rounding to obtain the fractional representation of the
floating-point expression as a long integer.

Example

LFRAC EQU @LFR(1.0)

2.4.2.7 LNG

Concatenate to double word

@LNG(expression1, expression2)

Description

Concatenates the single-word expression1 and expression2 into a double-word value such
that expression1 is the high word and expression2 is the low word.

Example

LWORD DC @LNG(5.0,2.0)

2.4.2.8 RVB

Reverse bits in field

@RVB(expression1[,expression2])

Description

Reverse the bits in expression1 delimited by the number of bits in expression2. If
expression2 is omitted, the field is bounded by the target word size. Both expressions
must be single-word integer values.

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

28 Freescale Semiconductor, Inc.

Example

REV EQU @RVB(0.5) ; reverse all bits in value

2.4.2.9 UNF

Convert fractional to floating point

@UNF(expression)

Description

Converts expression to a floating-point value. The expression should represent a binary
fraction.

Example

FRC EQU @UNF($400000) ; FRC = 0.5

2.4.3 String Functions

This section describes the Freescale DSP Assembler string functions:

• LEN
• POS
• SCP

2.4.3.1 LEN

Length of string

@LEN(string)

Description

Returns the length of string as an integer.

Example

SLEN SET @LEN('string') ; SLEN = 6

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 29

2.4.3.2 POS

Position of substring in string

@POS(string1,string2[,start])

Description

Returns the position of string2 in string1 as an integer, starting at position start. If start is
not given, the search begins at the beginning of string1. If the start argument is specified,
it must be a positive integer and cannot exceed the length of the source string.

Example

ID EQU @POS('DSP96000','96') ; ID = 3

2.4.3.3 SCP

String compare

@SCP(string1, string2)

Description

Returns an integer 1 if the two strings compare, 0 otherwise. The two strings must be
separated by a comma.

Example

IF @SCP('main','MAIN') ; does main equal MAIN?

2.4.4 Macro Functions

This section describes the Freescale DSP Assembler macro functions:

• ARG
• CNT
• MAC
• MXP

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

30 Freescale Semiconductor, Inc.

2.4.4.1 ARG

Macro argument function

@ARG(symbol | expression)

Description

Returns integer 1 if the macro argument represented by symbol or expression is present, 0
otherwise. If the argument is a symbol, it must be single-quoted and refer to a dummy
argument name. If the argument is an expression, it refers to the ordinal position of the
argument in the macro dummy argument list. A warning is issued if this function is used
when no macro expansion is active.

Example

IF @ARG(TWIDDLE) ; twiddle factor provided?

2.4.4.2 CNT

Macro argument count

@CNT()

Description

Returns the count of the current macro expansion arguments as an integer. A warning is
issued if this function is used when no macro expansion is active.

Example

ARGCNT SET @CNT()

2.4.4.3 MAC

Macro definition

@MAC(symbol)

Description

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 31

Returns an integer 1 if symbol has been defined as a macro name, 0 otherwise.

Example

IF @MAC(DOMUL) ; expand macro

2.4.4.4 MXP

Macro expansion

@MXP()

Description

Returns an integer 1 if the Assembler is expanding a macro, 0 otherwise.

Example

IF @MXP()

2.4.5 Assembler Mode Functions

This section describes the Freescale DSP Assembler mode functions:

• CCC
• CHK
• CTR
• DEF
• EXP
• INT
• LCV
• LST
• MSP
• REL

2.4.5.1 CCC

Cumulative cycle count

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

32 Freescale Semiconductor, Inc.

@CCC()

Description

Returns the cumulative cycle count as an integer. Useful in conjunction with the CC,
NOCC, and CONTCC Assembler options (see the OPT directive).

Example

IF @CCC() > 200

2.4.5.2 CHK

Current instruction/data checksum

@CHK()

Description

Returns the current instruction/data checksum value as an integer. Useful in conjunction
with the CK, NOCK, and CONTCK Assembler options (see the OPT directive).

Note that assignment of the checksum value with directives other than SET could cause
phasing errors due to different generated instruction values between passes.

Example

CHKSUM SET @CHK()

2.4.5.3 CTR

Location counter type

@CTR({L|R})

Description

If L is specified as the argument, returns the counter number of the load location counter.
If R is specified, returns the counter number of the runtime location counter. The counter
number is returned as an integer value.

Example

CNUM = @CTR(R) ; runtime counter number

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 33

2.4.5.4 DEF

Symbol definition

@DEF(symbol)

Description

Returns an integer 1 if symbol has been defined, 0 otherwise. The symbol may be any
label not associated with a MACRO or SECTION directive. If symbol is quoted, it is looked up as
a DEFINE symbol; if it is not quoted, it is looked up as an ordinary label.

Example

IF @DEF(ANGLE) ; assemble if ANGLE defined

2.4.5.5 EXP

Expression check

@EXP(expression)

Description

Returns an integer 1 (memory space attribute N) if the evaluation of expression would not
result in errors. Returns 0 if the evaluation of expression would cause an error. No error is
the output by the Assembler if expression contains an error. No test is made by the
Assembler for warnings. The expression may be relative or absolute.

Example

IF @EXP(1|0) ; skip on divide by zero error

2.4.5.6 INT

Integer check

@INT(expression)

Description

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

34 Freescale Semiconductor, Inc.

Returns an integer 1 if expression has an integer result, 0 otherwise. The expression may
be relative or absolute.

Example

IF @INT(TERM)

2.4.5.7 LCV

Location counter value

@LCV({L|R}[,{L|H|expression}])

Description

If L is specified as the first argument, returns the memory space attribute and value of the
load location counter. If R is specified, returns the memory space attribute and value of
the runtime location counter. The optional second argument indicates the Low, High, or
numbered counter and must be separated from the first argument by a comma. If no
second argument is present, the default counter (counter 0) is assumed.

The @LCV function does not work correctly if used to specify the runtime counter value of
a relocatable overlay. This is because the resulting value is an overlay expression, and
overlay expressions may not be used to set the runtime counter for a subsequent overlay.
See the ORG directive for more information.

Also, @LCV(L,...) does not work inside a relocatable overlay. In order to obtain the load
counter value for an overlay block, origin to the load space and counter immediately
before the overlay and use @LCV(L) to get the beginning load counter value for the
overlay.

Example

ADDR = @LCV(R) ; save runtime address

2.4.5.8 LST

LIST directive flag value

@LST()

Description

Chapter 2 Assembler Statement Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 35

Returns the value of the LIST directive flag as an integer. Whenever a LIST directive is
encountered in the Assembler source, the flag is incremented; when a NOLIST directive is
encountered, the flag is decremented.

Example

DUP @CVI(@ABS(@LST())) ; list unconditionally

2.4.5.9 MSP

Memory space

@MSP(expression)

Description

Returns the memory space attribute of expression as an integer value:

None 0

Y space 2

P space 4

The expression may be relative or absolute.

Example

MEM SET @MSP(ORIGIN)

2.4.5.10 REL

Relative mode

@REL()

Description

Returns an integer 1 if the Assembler is operating in relative mode, 0 otherwise.

Example

IF @REL()

Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

36 Freescale Semiconductor, Inc.

Chapter 3
Software Project Management

The CodeWarrior Freescale DSP Assembler provides several directives designed to assist
in the development of large software projects. Complex software projects often are
divided into smaller program units. These subprograms may be written by a team of
programmers in parallel, or they may be modified portions of programs that were written
for a previous development effort. The Assembler provides directives to encapsulate
program units and permit the free use of symbol names within subprograms without
regard to symbol names used in other programs. These encapsulated program units are
called sections. Sections are also the basis for relocating blocks of code and data, so that
concerns about memory placement are postponed until after the assembly process.

This chapter contains these topics:

• Using Sections
• Data Hiding
• Relocation

3.1 Using Sections

A section is bounded by a SECTION directive and an ENDSEC directive. For example:

 SECTION
 sectionname [GLOBAL | STATIC | LOCAL]
 .
 ;Section source statements
 .
 ENDSEC

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 37

All symbols that are defined within a section have the sectionname associated with them.
This serves to protect them from like-named symbols elsewhere in the program. By
default, a symbol defined inside any given section is private to that section unless the
GLOBAL or LOCAL qualifiers accompany the SECTION directive. More information on the GLOBAL
and LOCAL qualifiers can be found in Data Hiding.

Any code or data inside a section is considered an indivisible block with respect to
relocation. Code or data associated with a section is independently relocatable within the
memory space to which it is bound, unless the STATIC qualifier follows the SECTION
directive on the instruction line. More information on the STATIC qualifier is available in
Relocation.

3.2 Data Hiding

You may use sections to "hide" data and symbols from other parts of your project. This is
useful for preserving name space and improving the readability of your code.

Symbols within a section are generally distinct from other symbols used elsewhere in the
source program, even if the symbol name is the same. This is true as long as the section
name associated with each symbol is unique, the symbol is not declared public (XDEF or
GLOBAL), and the GLOBAL or LOCAL qualifiers are not used in the section declaration. Symbols
that are defined outside of a section are considered global symbols and have no explicit
section name associated with them. Global symbols may be referenced freely from inside
or outside of any section, as long as the global symbol name does not conflict with
another symbol by the same name in a given section. Consider the following listing.:

Listing: Data Hiding Example

SYM1 EQU 1
SYM2 EQU 2

 SECTION EXAMPLE

SYM1 EQU 3

 MOVE #SYM1,R0

 MOVE #SYM2,R1

 ENDSEC

 MOVE #SYM1,R2

Data Hiding

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

38 Freescale Semiconductor, Inc.

SYM1 and SYM2 are global symbols, initially defined outside of any section. Then in section
EXAMPLE another instance of SYM1 is defined with a different value. Because SYM1 was
redefined inside the section, the value moved to R0 is 3. Since SYM2 is a global symbol the
value moved to R1 is 2. The last move to R2 is outside of any section and thus the global
instance of SYM1 is used; the value moved to R2 is 1.

Issues surrounding data hiding include:

• Symbols
• Macros
• Nesting and Fragmentation

3.2.1 Symbols

Symbols may be shared among sections through use of the XDEF and XREF directives. The
XDEF directive instructs the Assembler that certain symbol definitions that occur within the
current section are to be accessible by other sections:

XDEF symbol,symbol,...,symbol

The XREF directive instructs the Assembler that all references to symbol within the current
section are references to a symbol that was declared public within another section with
the XDEF directive:

XREF symbol,symbol,...,symbol

XDEFed symbols by default are recognized only in other sections which XREF them. They
can be made fully global (recognizable by sections which do not XREF them) by use of the
XR option. Alternatively, the GLOBAL directive may be used within a section to make the
named symbols visible outside of the section. Both the XDEF and XREF directives must be
used before the symbols to which they refer are defined or used in the section. See the
listing below for another example.

Listing: XDEF, XREF and Sections Example

SYM1 EQU 1
 SECTION SECT1

 XDEF SYM2

SYM1 EQU 2

SYM2 EQU 3

 ENDSEC

 SECTION SECT2

Chapter 3 Software Project Management

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 39

 XREF SYM2

 MOVE #SYM1,R0

 MOVE #SYM2,R1

 ENDSEC

 MOVE #SYM2,R2

SYM1 is first defined outside of any section. Then in section SECT1SYM2 is declared public
with an XDEF directive. SYM1 is also defined locally to section SECT1. In section SECT2, SYM2 is
declared external via the XREF directive, followed by a move of SYM1 to R0. Since SYM1
was defined locally to section SECT1, the Assembler uses the global value and moves a 1 to
R0. Because SYM2 was declared external in section SECT1 the value moved to R1 is 3. If SYM2
had not been XREFed in section SECT2 the value moved to R1 would have been unknown at
this point. In the last instruction, it is not known what value will be moved to R2, since
SYM2 was not defined outside of any section or was not declared GLOBAL within a section.

If the GLOBAL qualifier follows the sectionname in the SECTION directive, then all symbols
defined in the section until the next ENDSEC directive are considered global. The effect is as
if every symbol in the section were declared with the GLOBAL directive. This is useful when
a section needs to be independently relocatable, but data hiding is not required.

If the LOCAL qualifier follows the sectionname in the SECTION directive, then all symbols
defined in the section until the next ENDSEC directive are visible to the immediately
enclosing section. The effect is as if every symbol in the section were defined within the
parent section. This is useful when a section needs to be independently relocatable, but
data hiding within an enclosing section is not required.

Symbols that are defined with the SET directive can be made visible with XDEF only in
absolute mode, and the section name associated with the symbol is the section name of
the section where the symbol was first defined. This is true even if the symbol value is
changed in another section.

3.2.2 Macros

The division of a program into sections controls not only labels and symbols, but also
macros and DEFINE directive symbols. Macros defined within a section are private to that
section and are distinct from macros defined in other sections even if they have the same
macro name. Macros defined outside of sections are considered global and may be used
within any section. Similarly, DEFINE directive symbols defined within a section are
private to that section and DEFINE directive symbols defined outside of any section are
globally applied. There are no directives that correspond to XDEF for macros or DEFINE

Data Hiding

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

40 Freescale Semiconductor, Inc.

symbols, therefore macros and DEFINE symbols defined in a section can never be accessed
globally. If you need global accessibility, define the macros and DEFINE symbols outside of
any section. See the listing below for an example.

Listing: Define and Section Example

 DEFINE DEFVAL '1'
 SECTION SECT1

 DEFINE DEFVAL '2'

 MOVE #DEFVAL,R0

 ENDSEC

 MOVE #DEFVAL,R1

The second definition of DEFVAL is visible only inside SECT1, so the value moved to R0 is 2.
However, the second move instruction is outside the scope of SECT1 and is therefore the
initial definition of DEFVAL. This means that the value 1 is moved to R1.

3.2.3 Nesting and Fragmentation

Sections can be n ested to any level. When the Assembler encounters a nested section, the
current section is stacked and the new section is used. When the ENDSEC directive of the
nested section is encountered, the Assembler restores the old section and uses it. The
ENDSEC directive always applies to the most recent SECTION directive. Nesting sections
provides a measure of scoping for symbol names, in that symbols defined within a given
section are visible to other sections nested within it. For example, if section B is nested
inside section A, then a symbol defined in section A can be used in section B without
XDEFing in section A or XREFing in section B. This scoping behavior can be turned off and
on with the NONS and NS options, respectively.

Sections may also be split into separate parts. That is, sectionname can be used multiple
times with SECTION and ENDSEC directive pairs. If this occurs, then these separate (but
identically named) sections can access each other's symbols freely without the use of the
XREF and XDEF directives. If the XDEF and XREF directives are used within one section, they
apply to all sections with the same section name. The reuse of the section name is
allowed to permit the program source to be arranged in an arbitrary manner (for example,
all statements that reserve X space storage locations grouped together), but retain the
privacy of the symbols for each section.

Chapter 3 Software Project Management

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 41

3.3 Relocation

When the Assembler operates in relative mode, sections act as the basic grouping for
relocation of code and data blocks. For every section defined in the source, a set of
location counters is allocated for each DSP memory space. These counters are used to
maintain offsets of data and instructions relative to the beginning of the section. At link
time, sections can be relocated to an absolute address, loaded in a particular order, or
linked contiguously as specified by the programmer. Sections which are split into parts or
among files are logically recombined so that each section can be relocated as a unit.

If the STATIC qualifier follows the sectionname in the SECTION directive, then all code and
data defined in the section until the next ENDSEC directive are relocated in terms of the
immediately enclosing section. The effect with respect to relocation is as if all code and
data in the section were defined within the parent section. This is useful when a section
needs data hiding, but independent relocation is not required.

Relocation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

42 Freescale Semiconductor, Inc.

Chapter 4
Macros

Macros make programming less repetitive. The Freescale DSP Assembler provides
directives to define and use macros extensively. The topics in this chapter include:

• Macro Operations
• Macro Definition
• Macro Calls
• Dummy Argument Operators

4.1 Macro Operations

Programming applications frequently involve the coding of a repeated pattern or group of
instructions. Some patterns contain variable entries which change for each repetition of
the pattern. Others are subject to conditional assembly for a given occurrence of the
instruction group. In either case, macros provide a shorthand notation for handling these
instruction patterns. Having determined the iterated pattern, the programmer can, within
the macro, designate selected fields of any statement as variable. Thereafter, by invoking
a macro, the programmer can use the entire pattern as many times as needed, substituting
different parameters for the designated variable portions of the statements.

When the pattern is defined, it is given a name. This name becomes the mnemonic by
which the macro is subsequently invoked (called). If the name of the macro is the same as
an existing Assembler directive or mnemonic opcode, the macro replaces the directive or
mnemonic opcode, and a warning is issued. The warning can be avoided by the use of the
RDIRECT d irective, which is used to remove entries from the Assembler's directive and
mnemonic tables. If directives or mnemonics are removed from the Assembler's tables,
then no warning is issued when the Assembler processes macros whose names are the
same as the removed directive or mnemonic entries.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 43

The macro call causes source statements to be generated. The generated statements may
contain substitutable arguments. The statements produced by a macro call are relatively
unrestricted as to type. They can be any processor instruction, almost any Assembler
directive, or any previously-defined macro. Source statements resulting from a macro call
are subject to the same conditions and restrictions that are applied to statements written
by the programmer.

To invoke a macro, the macro name must appear in the operation code field of a source
statement. Any arguments are placed in the operand field. By suitably selecting the
arguments in relation to their use as indicated by the macro definition, the programmer
causes the Assembler to produce inline coding variations of the macro definition.

The effect of a macro call is to produce inline code to perform a predefined function. The
code is inserted in the normal flow of the program so that the generated instructions are
executed with the rest of the program each time the macro is called.

An important feature in defining a macro is the use of macro calls within the macro
definition. The Assembler processes such nested macro calls at expansion time only. The
nesting of a macro definition within another definition is permitted. However, the nested
macro definition is not be processed until the primary macro is expanded. The macro
must be defined before its appearance in a source statement operation field.

4.2 Macro Definition

The definition of a macro consists of three parts: the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or
skeleton source statements; and the terminator. The header is the MACRO directive, its label,
and the dummy argument list. The body contains the pattern of standard source
statements. The terminator is the ENDM directive.

The header of a macro definition has the form:

label MACRO [dummy argument list][comment]

The required label is the symbol by which the macro is called. The dummy argument list
has the form:

[dumarg[,dumarg,...,dumarg]]

Macro Definition

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

44 Freescale Semiconductor, Inc.

The dummy arguments are symbolic names that the macro processor replaces with
arguments when the macro is expanded (called). Each dummy argument must obey the
same rules as global symbol names. Dummy argument names that are preceded by an
underscore are not allowed. Dummy arguments are separated by commas. For example,
consider the macro definition in the following listing.

Listing: NMUL Macro Definition

N_R_MUL MACRO NMUL,AVEC,BVEC,RESULT header
;RESULT(I) = AVEC(I) * BVEC(I) I=1..NMUL

;where

; NMUL = number of multiplications

; AVEC = base address of array AVEC(I)

; BVEC = base address of array BVEC(I)

; RESULT = base address of array RESULT(I)

;

 MOVE #AVEC,R0 body

 MOVE #BVEC,R4

 MOVE #RESULT,R1

 MOVE X:(R0)+,D4.S Y:(R4)+,D7.S

 DO #NMUL,_ENDLOOP

 FMPY.S D4,D7,D0 X:(R0)+,D4.SY:(R4)+,D7.S

 MOVE D0.S,X:(R1)+

 _ENDLOOP

 ENDM

;terminator

When a macro call is executed, the dummy arguments within the macro definition (NMUL,
AVEC, BVEC, RESULT in the above listing) are replaced with the corresponding argument as
defined by the macro call.

All local labels within a macro are considered distinct for the currently active level of
macro expansion (unless the macro local label override is used, see below). These local
labels are valid for the entire macro expansion and are not considered bounded by non-
local labels. Therefore, all local labels within a macro must be unique. This mechanism
allows the programmer to freely use local labels within a macro definition without regard
to the number of times that the macro is expanded. Non-local labels within a macro
expansion are considered to be normal labels and thus cannot occur more than once
unless used with the SET directive.

Chapter 4 Macros

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 45

When specifying a local label within the body of a macro, the programmer must be aware
that the label symbol is valid for the entire body of the current level of macro expansion.
It is not valid for any nested macros within the current level of expansion. The example
above shows why the local label feature is useful. If the macro N_R_MUL were called several
times, there would be several _ENDLOOP labels resulting from the macro expansions. This is
acceptable because each _ENDLOOP label is considered private to a particular instance of
macro expansion.

It is sometimes desirable to pass local labels as macro arguments to be used within the
macro as address references (e.g. MOVE #_LABEL,R0). The Assembler effectively disallows
this, however, since underscore label references within a macro invocation are regarded
as labels local to that expansion of the macro. A macro local label override is provided
which causes local symbol lookup to have normal scope rather than macro call scope. If a
circumflex (^) precedes an expression containing an underscore label, then at expansion
the associated term is evaluated using the normal local label list rather than the macro
local label list. The operator has no effect on normal labels or outside a macro expansion.

4.3 Macro Calls

When a macro is invoked, the statement causing the action is termed a macro call. The
syntax of a macro call consists of the following fields:

[label] macro name [arguments][comment]

The argument field can have the form:

[arg[,arg,...,arg]]

The macro call statement is made up of three fields besides the comment field: the label,
if any, corresponds to the value of the location counter at the start of the macro
expansion; the operation field which contains the macro name; and the operand field
which contains substitutable arguments. Within the operand field, each calling argument
of a macro call corresponds one-to-one with a dummy argument of the macro definition.
For example, the N_R_MUL macro defined earlier could be invoked for expansion (called) by
the statement

N_R_MUL CNT+1,VEC1,VEC2,OUT

where the operand field arguments, separated by commas and taken left to right,
correspond to the dummy arguments NMUL through RESULT, respectively. These arguments
are then substituted in their corresponding positions of the definition to produce a
sequence of instructions.

Macro Calls

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

46 Freescale Semiconductor, Inc.

Macro arguments consist of sequences of characters separated by commas. Although
these can be specified as quoted strings, to simplify coding the Assembler does not
require single quotes around macro argument strings. However, if an argument has an
embedded comma or space, that argument must be surrounded by single quotes ('). An
argument can be declared null when calling a macro. However, it must be declared
explicitly null. Null arguments can be specified in four ways: by writing the delimiting
commas in succession with no intervening spaces, by terminating the argument list with a
comma and omitting the rest of the argument list, by declaring the argument as a null
string, or by simply omitting some or all of the arguments. A null argument causes no
character to be substituted in the generated statements that reference the argument. If
more arguments are supplied in the macro call than appear in the macro definition, the
Assembler outputs a warning.

4.4 Dummy Argument Operators

The Assembler macro processor provides for text substitution of arguments during macro
expansion. In order to make the argument substitution facility more flexible, the
Assembler also recognizes certain text operators within macro definitions which allow
for transformations of the argument text. These operators can be used for text
concatenation, numeric conversion, and string handling.

The dummy argument operators are:

• Concatenation \
• Return Value ?
• Return Hex Value %
• String Operator "

4.4.1 Concatenation \

Dummy arguments that are intended to be concatenated with other characters must be
preceded by the backslash concatenation operator (\) to separate them from the rest of
the characters. The argument may precede or follow the adjoining text, but there must be
no intervening blanks between the concatenation operator and the rest of the characters.
To position an argument between two alphanumeric characters, place a backslash both
before and after the argument name. For example, consider the macro definition in the
following listing.

Chapter 4 Macros

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 47

Listing: SWAP_REG Macro, Concatenation Dummy Argument

SWAP_REG MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
 MOVE R\REG1,X0

 MOVE R\REG2,R\REG1

 MOVE X0,R\REG2

 ENDM

If the macro in the above listing is called with the statement

 SWAP_REG 0,1

then for the macro expansion, t he macro processor would substitute the character 0 for
the dummy argument REG1 and the character 1 for the dummy argument REG2. The
concatenation operator (\) indicates to the macro processor that the substitution
characters for the dummy arguments are to be concatenated in both cases with the
character R. The resulting expansion of this macro call would be:

 MOVE R0,X0 MOVE R1,R0 MOVE X0,R1

4.4.2 Return Value ?

Another macro definition operator is the question mark (?) that returns the value of a
symbol. When the macro processor encounters this operator, the ?symbol sequence is
converted to a character string representing the decimal value of symbol. For example,
consider the following modification of the SWAP_REG macro in the following listing.

Listing: SWAP_REG Macro, Return Value Dummy Argument

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
 MOVE R\?REG1,X0

 MOVE R\?REG2,R\?REG1

 MOVE X0,R\?REG2

 ENDM

If the source file contained the following SET statements and macro call,

 AREG SET 0 BREG SET 1 SWAP_SYM AREG,BREG

Dummy Argument Operators

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

48 Freescale Semiconductor, Inc.

then the sequence of events would be as follows: the macro processor would first
substitute the characters AREG for each occurrence of REG1 and BREG for each occurrence of
REG2. For discussion purposes (this would never appear on the source listing), the
intermediate macro expansion would be:

 MOVE R\?AREG,X0 MOVE R\?BREG,R\?AREG MOVE X0,R\?BREG

The macro processor would then replace ?AREG with the character 0 and ?BREG with the
character 1, since 0 is the value of the symbol AREG and 1 is the value of BREG. The resulting
intermediate expansion would be:

 MOVE R\0,X0 MOVE R\1,R\0 MOVE X0,R\1

Next, the macro processor would apply the concatenation operator (\), and the resulting
expansion as it would appear on the source listing would be:

 MOVE R0,X0 MOVE R1,R0 MOVE X0,R1

4.4.3 Return Hex Value %

The percent sign (%) is similar to the standard return value operator except that it returns
the hexadecimal value of a symbol. When the macro processor encounters this operator,
the % symbol sequence is converted to a character string representing the hexadecimal
value of the symbol. Consider the macro definition shown in the following listing.

Listing: GEN_LAB Macro, Return Hex Value Dummy Argument

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL STMT
ENDM

This macro generates a label consisting of the concatenation of the label prefix argument
and a value that is interpreted as hexadecimal. If this macro were called as follows,

 NUM SET 10 GEN_LAB HEX,NUM,'NOP'

the macro processor would first substitute the characters HEX for LAB, then it would replace
%VAL with the character A, since A is the hexadecimal representation for the decimal integer
10. Next, the macro processor would apply the concatenation operator (\). Finally, the
string ' NOP' would be substituted for the STMT argument. The resulting expansion as it
would appear in the listing file would be:

 HEXA NOP

Chapter 4 Macros

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 49

The percent sign is also the character used to indicate a binary constant. If a binary
constant is required inside a macro, it may be necessary to enclose the constant in
parentheses or escape the constant by following the percent sign with a backslash (\).

4.4.4 String Operator "

Another dummy argument operator is the double quote ("). This character is replaced
with a single quote by the macro processor, but the characters following the operator are
still examined for dummy argument names. The effect in the macro call is to transform
any enclosed dummy arguments into literal strings. For example, consider the macro
definition in the following listing.

Listing: STR_MAC Macro, String Operator Dummy Argument

STR_MAC MACRO STRING
 DC "STRING"

 ENDM

If this macro were called with the following macro expansion line,

 STR_MAC ABCD

then the resulting macro expansion would be:

 DC 'ABCD'

Dummy Argument Operators

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

50 Freescale Semiconductor, Inc.

Chapter 5
Directives

The CodeWarrior™ for Freescale® DSP Assembler provides directives that control the
assembly of the source code and its layout.

General directives fit into the following categories:

• Assembly Control
• Symbol Definition
• Data Definition and Allocation
• Macros and Conditional Assembly
• Structured Programming

5.1 Assembly Control

This section describes the assembly-control directives:

• COMMENT
• DEFINE
• END
• FAIL
• FORCE
• INCLUDE
• ORG
• RDIRECT
• SCSJMP
• SCSREG
• UNDEF
• WARN

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 51

5.1.1 COMMENT

Start comment lines.

COMMENTdelimiter

.

.

delimiter

Remarks

The COMMENT directive is used to define one or more lines as comments. The first non-blank
character after the COMMENT directive is the comment delimiter. The two delimiters are used
to define the comment text. The line containing the second comment delimiter is
considered the last line of the comment. The comment text can include any printable
characters and the comment text is reproduced in the source listing as it appears in the
source file.

A label is not allowed with this directive.

Example

COMMENT + This is a one line comment +

COMMENT * This is a multiple line

comment. Any number of lines

can be placed between the

two delimiters.

*

5.1.2 DEFINE

Define substitution string.

DEFINE symbol string

Remarks

Assembly Control

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

52 Freescale Semiconductor, Inc.

The DEFINE directive is used to define substitution strings that are used on all following
source lines. All succeeding lines are searched for an occurrence of symbol, which are
replaced by string. This directive is useful for providing better documentation in the
source program.

The symbol must adhere to the restrictions for non-local labels. That is, it cannot exceed
512 characters, the first of which must be alphabetic, and the remainder of which must be
either alphanumeric or the underscore(_). A warning results if a new definition of a
previously-defined symbol is attempted. The Assembler output listing shows lines after
the DEFINE directive has been applied, and therefore redefined symbols are replaced by
their substitution strings (unless the NODXL option in effect; see the OPT directive).

Macros represent a special case. DEFINE directive translations are applied to the macro
definition as it is encountered. When the macro is expanded any active DEFINE directive
translations are again applied. DEFINE directive symbols that are defined within a section
are only applied to that section.

A label is not allowed with this directive.

Example

DEFINE ARRAYSIZ '10*5'

DS ARRAYSIZ

The above two lines would be transformed by the Assembler to the following:

DS 10*5

See also

UNDEF

SECTION

5.1.3 END

End of source program.

END expression

Remarks

The optional END directive indicates that the logical end of the source program has been
encountered. Any statements following the END directive are ignored. The optional
expression in the operand field can be used to specify the starting execution address of

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 53

the program. The expression may be absolute or relocatable, but it must have a memory
space attribute of Program or None. The END directive cannot be used in a macro
expansion.

A label is not allowed with this directive.

Example

END EGIN ; BEGIN is the starting

; execution address

5.1.4 FAIL

Programmer-generated error message.

FAIL [{ string | expression}[,...]]

Remarks

The FAIL directive causes the Assembler to output an error message. The total error count
is incremented as with any other error. The FAIL directive is normally used in conjunction
with conditional assembly directives for exceptional condition checking. The assembly
proceeds normally after the error has been printed. An arbitrary number of strings and
expressions, in any order but separated by commas with no intervening white space, can
be optionally specified to describe the nature of the generated error.

A label is not allowed with this directive.

Example

FAIL 'Parameter out of range'

See also

WARN

5.1.5 FORCE

Set operand forcing mode.

FORCE{SHORT | LONG | NONE}

Remarks

Assembly Control

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

54 Freescale Semiconductor, Inc.

The FORCE directive causes the Assembler to force all immediate, memory, and address
operands to the specified mode as if an explicit forcing operator were used. Note that if a
relocatable operand value forced short is determined to be too large for the instruction
word, an error occurs at link time, not during assembly. Explicit forcing operators
override the effect of this directive.

A label is not allowed with this directive.

Example

FORCE SHORT ; force operands short

5.1.6 INCLUDE

Include secondary file.

INCLUDE string

Remarks

This directive is inserted into the source program at any point where a secondary file is to
be included in the source input stream. The string specifies the filename of the secondary
file. The filename must be compatible with the operating system and can include a
directory specification. If no extension is given for the filename, a default extension
of .asm is supplied.

The file is searched in all the search paths as shown in the Access Paths panel.

A label is not allowed with this directive.

Example

INCLUDE 'storage\mem.asm'

5.1.7 ORG

Initialize memory space and location counters.

ORG rms[rlc][rmp][,lms[llc][lmp]]

Remarks

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 55

The ORG directive is used to specify addresses and to indicate memory space and mapping
changes. It also can designate an implicit counter mode switch in the Assembler and
serve as a mechanism for initiating overlays.

A label is not allowed with this directive.

The following table describes the ORG directive elements.

Table 5-1. ORG Directive Elements

Element Description

rms The memory space (Y or P) that is used as the runtime
memory space.

rlc The runtime counter, H, L, or default (if neither H or L is
specified), associated with the rms and used as the runtime
location counter.

rmp Indicates the runtime physical mapping to DSP memory:

I - internal, E - external, R - ROM, A - port A, B - port B. If not
present, no explicit mapping is done.

lms The memory space (X or P) that is to be used as the load
memory space.

llc The load counter, H, L, or default (if neither H or L is
specified), that is associated with the lms and is used as the
load location counter.

lmp Indicates the load physical mapping to DSP memory:

I - internal, E - external, R - ROM, A - port A, B - port B. If not
present, no explicit mapping is done.

If the last half of the operand field in an ORG directive dealing with the load memory space
and counter is not specified, then the Assembler assumes that the load memory space and
load location counter are the same as the runtime memory space and runtime location
counter. In this case, object code is being assembled to be loaded into the address and
memory space where it is when the program is run, and is not an overlay.

5.1.8 RDIRECT

Remove directive or mnemonic from table.

RDIRECTsymbol1, symbol2

Remarks

The RDIRECT directive is used to remove directives from the Assembler directive and
mnemonic tables. If the directive or mnemonic that has been removed is later
encountered in the source file, it is assumed to be a macro. Macro definitions that have

Assembly Control

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

56 Freescale Semiconductor, Inc.

the same name as Assembler directives or mnemonics cause a warning message to be
output unless the RDIRECT directive has been used to remove the directive or mnemonic
name from the Assembler's tables.

Since the effect of this directive is global, it cannot be used in an explicitly-defined
section (see SECTION directive). An error results if the RDIRECT directive is encountered in a
section.

A label is not allowed with this directive.

Example

RDIRECT PAGE,MOVE

This would cause the Assembler to remove the PAGE directive from the directive table and
the MOVE mnemonic from the mnemonic table.

5.1.9 SCSJMP

Set structured control statement branching mode.

SCSJMP{SHORT | LONG | NONE}

Remarks

The SCSJMP directive is analogous to the FORCE directive, but it only applies to branches
generated automatically by structured control statements. There is no explicit way, as
with a forcing operator, to force a branch short or long when it is produced by a
structured control statement. This directive causes all branches resulting from subsequent
structured control statements to be forced to the specified mode.

Just like the FORCE pseudo-op, errors can result if a value is too large to be forced short.
For relocatable code, the error may not occur until the linking phase.

Example

SCSJMP SHORT

5.1.10 SCSREG

Reassign structured control statement registers.

SCSREG [srcreg[dstreg,[tmpreg,[extreg,]]]]

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 57

Remarks

The SCSREG directive reassigns the registers used by structured control statement (SCS)
directives. It is convenient for reclaiming default SCS registers when they are needed as
application operands within a structured control construct. The srcreg is ordinarily the
source register for SCS data moves. The dstreg is the destination register. The tmpreg is a
temporary register for swapping SCS operands. The extreg is an extra register for
complex SCS operations. With no arguments SCSREG resets the SCS registers to their
default assignments.

Example

SCSREG Y0,B

Reassign SCS source and destination registers.

See also

OPT (MEX)

SCSJMP

5.1.11 UNDEF

Undefine DEFINE symbol.

UNDEF [symbol]

Remarks

The UNDEF directive causes the substitution string associated with symbol to be released,
and symbol no longer represents a valid DEFINE substitution.

A label is not allowed with this directive.

Example

DEFINE DEBUG

.

.

UNDEF DEBUG

See also

DEFINE

Assembly Control

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

58 Freescale Semiconductor, Inc.

5.1.12 WARN

Programmer-generated warning.

WARN[{string | expression}[,{string | expression}]...]

Remarks

The WARN directive causes a warning message to be output by the Assembler. The total
warning count is incremented as with any other warning. The WARN directive is normally
used in conjunction with conditional assembly directives for exceptional condition
checking. The assembly proceeds normally after the warning has been printed. An
arbitrary number of strings and expressions, in any order but separated by commas with
no intervening white space, can be optionally specified to describe the nature of the
generated warning.

A label is not allowed with this directive.

Example

WARN 'invalid parameter'

See also

FAIL

5.2 Symbol Definition

This section describes the directives used to assign a value to a symbol:

• ENDSEC
• EQU
• GLOBAL
• LOCAL
• SECTION
• SET
• SUBROUTINE
• XREF

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 59

5.2.1 ENDSEC

End section.

ENDSEC expression

Remarks

Every SECTION directive must be terminated by an ENDSEC directive.

A label is not allowed with this directive.

Example

SECTION COEFF

ORG Y:

VALUES BSC $100 ; Initialize to zero

ENDSEC

See also

SECTION

5.2.2 EQU

Equate symbol to a value.

labelEQU [{X: | P:}] expression

Remarks

The EQU directive assigns the value and memory space attribute of expression to the
symbol label. If expression has a memory space attribute of None, then it can be
optionally preceded by any of the indicated memory space qualifiers to force a memory
space attribute. An error occurs if the expression has a memory space attribute other than
None and is different than the forcing memory space attribute. The optional forcing
memory space attribute is useful to assign a memory space attribute to an expression that
consists only of constants but is intended to refer to a fixed address in a memory space.

Symbol Definition

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

60 Freescale Semiconductor, Inc.

The EQU directive is one of the directives that assigns a value other than the program
counter to the label. The label cannot be redefined anywhere else in the program (or
section, if SECTION directives are being used). The expression may be relative or absolute,
but cannot include a symbol that is not yet defined (no forward references are allowed).

Example

A_D_PORT EQU X:$4000

See also

SET

5.2.3 GLOBAL

Global section symbol declaration.

GLOBAL symbol[,symbol,...,symbol]

Remarks

The GLOBAL directive is used to specify that the list of symbols is defined within the current
section, and that those definitions should be accessible by all sections. This directive is
only valid if used within a program block bounded by the SECTION and ENDSEC directives. If
the symbols that appear in the operand field are not defined in the section, an error is
generated.

A label is not allowed with this directive.

Example

SECTION IO

GLOBAL LOOPA ; LOOPA will be globally

; accessible by other sections

.

.

ENDSEC

See also

SECTION

XREF

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 61

5.2.4 LOCAL

Local section symbol declaration.

LOCALsymbol[,symbol,...,symbol]

Remarks

The LOCAL directive is used to specify that the list of symbols is defined within the current
section, and that those definitions are explicitly local to that section. It is useful in cases
where a symbol is used as a forward reference in a nested section where the enclosing
section contains a like-named symbol. This directive is only valid if used within a
program block bounded by the SECTION and ENDSEC directives. The LOCAL directive must
appear before symbol is defined in the section. If the symbols that appear in the operand
field are not defined in the section, an error is generated.

A label is not allowed with this directive.

Example

SECTION IO

LOCAL LOOPA ; local to this section

.

.

ENDSEC

See also

SECTION

XREF

5.2.5 SECTION

Start section.

SECTIONsectionname[GLOBAL | STATIC | LOCAL]

.

Symbol Definition

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

62 Freescale Semiconductor, Inc.

.

section source statements

.

.

ENDSEC

Remarks

The SECTION directive defines the start of a section. All symbols that are defined within a
section have the symbol associated with them as their section name. This serves to protect
them from like-named symbols elsewhere in the program. By default, a symbol defined
inside any given section is private to that section unless the GLOBAL or LOCAL qualifier
accompanies the SECTION directive.

Any code or data inside a section is considered an indivisible block with respect to
relocation. Code or data associated with a section is independently relocatable within the
memory space to which it is bound, unless the STATIC qualifier follows the SECTION
directive on the instruction line.

Symbols within a section are generally distinct from other symbols used elsewhere in the
source program, even if the symbol name is the same. This is true as long as the section
name associated with each symbol is unique, the symbol is not declared public (XDEF/
GLOBAL), and the GLOBAL or LOCAL qualifier is not used in the section declaration. Symbols
that are defined outside of a section are considered global symbols and have no explicit
section name associated with them. Global symbols may be referenced freely from inside
or outside of any section, as long as the global symbol name does not conflict with
another symbol by the same name in a given section.

If the GLOBAL qualifier follows the sectionname in the SECTION directive, then all symbols
defined in the section until the next ENDSEC directive are considered global. The effect is as
if every symbol in the section were declared with GLOBAL. This is useful when a section
needs to be independently relocatable, but data hiding is not desired.

If the STATIC qualifier follows the sectionname in the SECTION directive, then all code and
data defined in the section until the next ENDSEC directive are relocated in terms of the
immediately enclosing section. The effect with respect to relocation is as if all code and
data in the section were defined within the parent section. This is useful when a section
needs data hiding, but independent relocation is not required.

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 63

If the LOCAL qualifier follows the sectionname in the SECTION directive, then all symbols
defined in the section until the next ENDSEC directive are visible to the immediately
enclosing section. The effect is as if every symbol in the section were defined within the
parent section. This is useful when a section needs to be independently relocatable, but
data hiding within an enclosing section is not required.

The division of a program into sections controls not only labels and symbols, but also
macros and DEFINE directive symbols. Macros defined within a section are private to that
section and are distinct from macros defined in other sections even if they have the same
macro name. Macros defined outside of sections are considered global and may be used
within any section. Similarly, DEFINE directive symbols defined within a section are
private to that section and DEFINE directive symbols defined outside of any section are
globally applied. There are no directives that correspond to XDEF for macros or DEFINE
symbols, and therefore, macros and DEFINE symbols defined in a section can never be
accessed globally. If global accessibility is desired, the macros and DEFINE symbols should
be defined outside of any section.

Sections can be nested to any level. When the Assembler encounters a nested section, the
current section is stacked and the new section is used. When the ENDSEC directive of the
nested section is encountered, the Assembler restores the old section and uses it. The
ENDSEC directive always applies to the most previous SECTION directive. Nesting sections
provides a measure of scoping for symbol names, in that symbols defined within a given
section are visible to other sections nested within it. For example, if section B is nested
inside section A, then a symbol defined in section A can be used in section B without
XDEFing in section A or XREFing in section B. This scoping behavior can be turned off and
on with the NONS and NS options, respectively.

Sections may also be split into separate parts. That is, sectionname can be used multiple
times with SECTION and ENDSEC directive pairs. If this occurs, then these separate (but
identically named) sections can access each other's symbols freely without the use of the
XREF and XDEF directives. If the XDEF and XREF directives are used within one section, they
apply to all sections with the same section name. The reuse of the section name is
allowed to permit the program source to be arranged in an arbitrary manner (for example,
all statements that reserve X space storage locations grouped together), but retain the
privacy of the symbols for each section.

When the Assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the source, a
set of location counters is allocated for each DSP memory space. These counters are used
to maintain offsets of data and instructions relative to the beginning of the section. At link
time, sections can be relocated to an absolute address, loaded in a particular order, or
linked contiguously as specified by the programmer. Sections which are split into parts or
among files are logically recombined so that each section can be relocated as a unit.

Symbol Definition

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

64 Freescale Semiconductor, Inc.

In relative mode, all sections are initially relocatable. However, a section or a part of a
section may be made absolute either implicitly by using the ORG directive or explicitly
through use of the MODE directive.

A label is not allowed with this directive.

Example

SECTION AUDIOFILTER

See also

ORG

GLOBAL

LOCAL

XREF

OPT

5.2.6 SET

Set symbol to a value.

label SET expression

SET label expression

Remarks

The SET directive is used to assign the value of the expression in the operand field to the
label. The SET directive functions somewhat like the EQU directive. However, labels
defined via the SET directive can have their values redefined in another part of the
program (but only through the use of another SET directive). The SET directive is useful in
establishing temporary or reusable counters within macros. The expression in the operand
field of a SET directive must be absolute and cannot include a symbol that is not yet
defined (no forward references are allowed).

Example

COUNT SET 0

See also

EQU

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 65

5.2.7 SUBROUTINE

Generate debugging information for a subroutine.

SUBROUTINE "function", label, size

Remarks

The SUBROUTINE directive causes the assembler to generate debugging information for
a subroutine. The subroutine uses the specified function. The label identifies the
subroutine by name. The size value specifies the subroutine size. This directive applies to
the DSP56800 and DSP56800E processors.

Example

SUBROUTINE "FSTART_", FSTART_, FSTARTEND-FSTART_

_FSTART:

jsr

_FSTARTEND:

5.2.8 XREF

External section symbol reference.

XREF s ymbol[,symbol,...,symbol]

Remarks

The XREF directive is used to specify that the list of symbols is referenced in the current
section, but is not defined within the current section. These symbols must either have
been defined outside of any section or declared as globally accessible within another
section using the XDEF directive. If the XREF directive is not used to specify that a symbol is
defined globally and the symbol is not defined within the current section, an error is
generated, and all references within the current section to such a symbol are flagged as
undefined. The XREF directive must appear before any reference to symbol in the section.

A label is not allowed with this directive.

Example

Symbol Definition

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

66 Freescale Semiconductor, Inc.

SECTION FILTER

XREF AA,CC,DD

.

.

ENDSEC

See also

SECTION

5.3 Data Definition and Allocation

This section describes the data-definition and allocation directives:

• ALIGN
• BSB
• BSC
• BSM
• BUFFER
• DC
• DCB
• DCBR
• DS
• DSB
• DSM
• DSR
• ENDBUF
• @HB()
• @LB()

5.3.1 ALIGN

Align expression.

ALIGNexpression

Remarks

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 67

The ALIGN directive sets the runtime location counter to the word amount in the
expression. This directive applies to the DSP56800 and DSP56800E processors.

Example

ALIGN 8 ; Align to word amount in expression

BUFFER dc 8

5.3.2 BSB

Block storage bit-reverse.

[label] BSBexpression[,expression]

Remarks

The BSB directive causes the Assembler to allocate and initialize a block of words for a
reverse-carry buffer. The number of words in the block is given by the first expression,
which must evaluate to an absolute integer. Each word is assigned the initial value of the
second expression. If there is no second expression, an initial value of zero is assumed. If
the runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2k, where 2k is greater than or equal to the
value of the first expression. An error occurs if the first expression contains symbols that
are not yet defined (forward references) or if the expression has a value less than or equal
to zero. Also, if the first expression is not a power of two, a warning is generated. Both
expressions can have any memory space attribute.

If label is present, it is assigned the value of the runtime location counter after a valid
base address has been established.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

Example

BUFFER BSB 0.5

See also

BSC

BSM

DC

Data Definition and Allocation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

68 Freescale Semiconductor, Inc.

DWARF Symbolics

5.3.3 BSC

Block storage of constant.

[label] BSCexpression[,expression]

Remarks

The BSC directive causes the Assembler to allocate and initialize a block of words. The
number of words in the block is given by the first expression, which must evaluate to an
absolute integer. Each word is assigned the initial value of the second expression. If there
is no second expression, an initial value of zero is assumed. If the first expression
contains symbols that are not yet defined (forward references) or if the expression has a
value less than or equal to zero, an error is generated. Both expressions can have any
memory space attribute.

If label is present, it is assigned the value of the runtime location counter at the start of
the directive processing.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

Example

UNUSED BSC $2FFF-$2EEE,$FFFFFFFF

See also

BSM

BSB

DC

DWARF Symbolics

5.3.4 BSM

Block storage modulo.

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 69

[label] BSM expression[,expression]

Remarks

The BSM directive causes the Assembler to allocate and initialize a block of words for a
modulo buffer. The number of words in the block is given by the first expression, which
must evaluate to an absolute integer. Each word is assigned the initial value of the second
expression. If there is no second expression, an initial value of zero is assumed. If the
runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2k, where 2k is greater than or equal to the
value of the first expression. An error occurs if the first expression contains symbols that
are not yet defined (forward references), has a value less than or equal to zero, or falls
outside the range 2 <= expression <= m, where m is the maximum address of the target
DSP. Both expressions can have any memory space attribute.

If label is present, it is assigned the value of the runtime location counter after a valid
base address has been established.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

Example

BUFFER BSM $2EEE,$FFFFFFFF

See also

BSC

BSB

DC

DWARF Symbolics

5.3.5 BUFFER

Start buffer.

BUFFER {M | R},expression

Remarks

Data Definition and Allocation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

70 Freescale Semiconductor, Inc.

The BUFFER directive indicates the start of a buffer of the given type. Data is allocated for
the buffer until an ENDBUF directive is encountered. Instructions and most data definition
directives may appear between the BUFFER and ENDBUF pair, although BUFFER directives may
not be nested and certain types of directives such as MODE, ORG, SECTION, and other buffer
allocation directives may not be used. The expression represents the size of the buffer. If
less data is allocated than the size of the buffer, the remaining buffer locations are
uninitialized. If more data is allocated than the specified size of the buffer, an error is
issued.

The BUFFER directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of expression. The buffer
type may be either Modulo or Reverse-carry. If the runtime location counter is not zero,
this directive first advances the runtime location counter to a base address that is a
multiple of 2k, where 2k >= expression. An error is issued if there is insufficient memory
remaining to establish a valid base address. Unlike other buffer allocation directives, the
runtime location counter is not advanced by the value of the integer expression in the
operand field; the location counter remains at the buffer base address.

The result of expression may have any memory space attribute but must be an absolute
integer greater than zero and cannot contain any forward references (symbols that have
not yet been defined). If a Modulo buffer is specified, the expression must fall within the
range 2 <= expression <= m, where m is the maximum address of the target DSP. If a
Reverse-carry buffer is designated and expression is not a power of two, a warning is
issued.

A label is not allowed with this directive.

Example

BUFFER M,24 ; CIRCULAR BUFFER MOD 24

M_BUF DC 0.5,0.5,0.5,0.5

DS 20 ; REMAINDER UNINITIALIZED

ENDBUF

See also

BSM

BSB

DSM

DSR

ENDBUF

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 71

5.3.6 DC

Define constant.

[label] DCarg[,arg,...,arg]

Remarks

The DC directive allocates and initializes a word of memory for each arg argument. The
arg may be a numeric constant, a single- or multiple-character string constant, a symbol,
or an expression. The DC directive may have one or more arguments separated by
commas. Multiple arguments are stored in successive address locations. If multiple
arguments are present, one or more of them can be null (two adjacent commas), in which
case the corresponding address location is filled with zeros.

If label is present, it assigns the value of the runtime location counter at the start of the
directive processing.

Integer arguments are stored as is; floating-point numbers are converted to binary values.
Single- and multiple-character strings are handled in the following manner:

• Single-character strings are stored in a word whose lower seven bits represent the
ASCII value of the character.

• Multiple-character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of characters
is not an even multiple of the number of bytes per DSP word, then the last word has
the remaining characters left-aligned and the rest of the word is zero-filled. If the NOPS
option is given, each character in the string is stored in a word whose lower seven
bits represent the ASCII value of the character.

Example

TABLE DC 1426,253,$2662,'ABCD'

CHARS DC 'A','B','C','D'

See also

BSC

DCB

DWARF Symbolics

Data Definition and Allocation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

72 Freescale Semiconductor, Inc.

5.3.7 DCB

Define constant byte.

[label] DCBarg[,arg,...,arg]

Remarks

The DCB directive allocates and initializes a byte of memory for each arg argument. The
arg may be a byte integer constant, a single- or multiple-character string constant, a
symbol, or a byte expression. The DCB directive may have one or more arguments
separated by commas. Multiple arguments are stored in successive byte locations. If
multiple arguments are present, one or more of them can be null (two adjacent commas),
in which case the corresponding byte location is filled with zeros.

If label is present, it is assigned the value of the runtime location counter at the start of
the directive processing.

Integer arguments are stored as is, but must be byte values (e.g. within the range 0-255);
floating-point numbers are not allowed. Single- and multiple-character strings are
handled in the following manner:

• Single-character strings are stored in a word whose lower seven bits represent the
ASCII value of the character.

• Multiple-character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of characters
is not an even multiple of the number of bytes per DSP word, then the last word has
the remaining characters left-aligned and the rest of the word is zero-filled. If the NOPS
option is given, each character in the string is stored in a word whose lower seven
bits represent the ASCII value of the character.

Example

TABLE DCB 'two',0,'strings',0

CHARS DCB 'A','B','C','D'

See also

BSC

DC

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 73

5.3.8 DCBR

Define constant with byte-order flip.

DCBR expression

Remarks

The DCBR directive is useful for defining byte strings with byte-order flip. The byte-
order flip allows C code to properly address the byte strings. This directive applies to the
DSP56800E processor.

Example

Fhello DCBR "hello world"

See also

DWARF Symbolics

5.3.9 DS

Define storage.

labelDSexpression

Remarks

The DS directive reserves a block of memory, the length of which in words is equal to the
value of expression. This directive causes the runtime location counter to be advanced by
the value of the absolute integer expression in the operand field. The expression can have
any memory space attribute. The block of memory reserved is not initialized to any value.
The expression must be an integer greater than zero and cannot contain any forward
references (symbols that have not yet been defined).

Example

S_BUF DS 12 ; 12-byte buffer

See also

DSM

DSR

Data Definition and Allocation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

74 Freescale Semiconductor, Inc.

DWARF Symbolics

5.3.10 DSB

Define storage byte.

label DSB expression

Remarks

The DSB directive reserves a block of memory, the length of which in bytes is equal to the
value of expression. This directive causes the runtime location counter to be advanced by
the value of the absolute integer expression or the next even number, if it is odd, in the
operand field. The expression can have any memory space attribute. The block of
memory reserved is not initialized to any value. The expression must be an integer
greater than zero and cannot contain any forward references (symbols that have not yet
been defined).

Example

S_BUF_ODD DSB 11 ; allocates a 12-byte buffer

See also

DS

DCB

DWARF Symbolics

5.3.11 DSM

Define modulo storage.

label DSM expression

Remarks

The DSM directive reserves a block of memory, the length of which in words is equal to
the value of expression. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2k, where 2k
>= expression. An error is issued if there is insufficient memory remaining to establish a
valid base address. Next the runtime location counter is advanced by the value of the

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 75

integer expression in the operand field. expression can have any memory space attribute.
The block of memory reserved is not initialized to any given value. The result of
expression must be an absolute integer greater than zero and cannot contain any for-ward
references (symbols that have not yet been defined). The expression also must fall within
the range 2 <= expression <= m , where m is the maximum address of the target DSP.

Example

M_BUF DSM 24

See also

DS

DSR

DWARF Symbolics

5.3.12 DSR

Define reverse carry storage.

label DSR expression

Remarks

The DSR directive reserves a block of memory, the length of which in words is equal to the
value of expression. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2k, where 2k
>= expression. An error is issued if there is insufficient memory remaining to establish a
valid base address. Next, the runtime location counter is advanced by the value of the
integer expression in the operand field. The expression can have any memory space
attribute. The block of reserved memory is not initialized to any given value. The result
of expression must be an absolute integer greater than zero and cannot contain any
forward references (symbols that have not yet been defined). Since the DSR directive is
useful mainly for generating FFT buffers, if expression is not a power of two a warning is
generated.

If label is present, it is assigned the value of the runtime location counter after a valid
base address has been established.

Example

R_BUF DSR 8

Data Definition and Allocation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

76 Freescale Semiconductor, Inc.

See also

DWARF Symbolics

5.3.13 ENDBUF

End buffer.

ENDBUF

Remarks

The ENDBUF directive is used to signify the end of a buffer block. The runtime location
counter remains just beyond the end of the buffer when the ENDBUF directive is
encountered.

A label is not allowed with this directive.

Example

BUF BUFFER R,64 ; reverse-carry buffer

ENDBUF

See also

BUFFER

5.3.14 @HB()

Return high byte.

@hb(byte_string)

Remarks

The @hb(byte_string) directive returns the upper byte of a word address.

This directive applies to the DSP56800E processor, supported only for operands of this
form:

 X:xxxx/X:xxxxx/#xxxx

Example

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 77

 move.b X:@hb(byte_string), r0 ;loads first byte of
 byte_string

See also

@LB()

5.3.15 @LB()

Return low byte.

@lb(byte_string)

Remarks

The @lb(byte_string) directive returns the lower byte of a word address.

This directive applies to the DSP56800E processor, supported only for operands of this
form:

 X:xxxx/X:xxxxx/#xxxx

Example

 move.b X:@lb(byte_string), r0 ;loads first byte of
 byte_string

Additionally, when the C source specifies:

 char a;
 char b;
 //there is no gap between variables a and b

use XREF to declare variables and use @LB to access the char variables from assembly:

move.w #23,A
move.bp A1,X:@lb(Fa)
move.w #78,A
move.bp A1,X:@lb(Fb)

See also

@HB()

Data Definition and Allocation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

78 Freescale Semiconductor, Inc.

5.3.16 DWARF Symbolics

The assembler generates DWARF symbolic information for labeled data that are defined
using one of the following data definition directive types: BS, DC or DS.

The C equivalent definition for each supported data definition directive is shown in the
following table.

Table 5-2. C Definition for Supported Data Definition Directives

Assembler Definition C Definition

v: BSB n int[n] v = {0,...,0};

v: BSB n,m int[n] v = {m,...,m};

v: BSC n int[n] v = {0};

v: BSC n,m int[n] v = {m};

v: BSM n int[n] v = {0};

v: BSM n,m int[n] v = {m};

v: DC n int v = n;

v: DC n1,n2,...,nM int[M] v = {n1, n2,...,nM};

v: DCBR n char v = n;

v: DCBR n1,n2,...,nM char [M] v = {n1, n2,...,nM};

v: DS n int [n] v;

v: DSB n char [n] v;

v: DSM n int [n] v;

v: DSR n int [n] v;

NOTE
Only one BS, DC or DS directive can be tied to a label for the
symbolic information. If more than one directive is used, only
the first is used and the rest are ignored. Any directives other
than BS, DC, and DS are ignored.

The variables may be viewed in the Global Variables window when the Global Variables
list item are selected.

5.3.16.1 Example

The following data definitions appear in the Global Variables window.

var1: dc 10

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 79

var2: dcbr "hello", 0

var3: ds 3

5.4 Macros and Conditional Assembly

This section describes macros and conditional-assembly directives:

• DUP
• DUPA
• DUPC
• DUPF
• ENDIF
• ENDM
• ENTRFIRQ
• ENTRXP
• EXITM
• EXITXP
• IF
• MACRO
• PMACRO

5.4.1 DUP

Duplicate sequence of source lines.

 [
 label]
 DUP
 expression . . ENDM

Remarks

The sequence of source lines between the DUP and ENDM directives are duplicated by the
number specified by the integer expression. The expression can have any memory space
attribute. If the expression evaluates to a number less than or equal to 0, the sequence of
lines are not included in the Assembler output. The expression result must be an absolute
integer and cannot contain any forward references (symbols that have not already been
defined). The DUP directive may be nested to any level.

Macros and Conditional Assembly

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

80 Freescale Semiconductor, Inc.

If label is present, it assigns the value of the runtime location counter at the start of the
DUP directive processing.

Example

The sequence of source input statements,

COUNT SET 3

DUP COUNT ; ASR BY COUNT

NOP

ENDM

would generate the following in the source listing:

COUNT SET 3

NOP

NOP

NOP

See also

DUPA

DUPC

DUPF

ENDM

MACRO

5.4.2 DUPA

Duplicate sequence with arguments.

 [
 label]
 DUPA
 dummy,arg[,arg,...,arg] . . ENDM

Remarks

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 81

The block of source statements defined by the DUPA and ENDM directives is repeated for each
argument. For each repetition, every occurrence of the dummy parameter within the
block is replaced with each succeeding argument string. If the argument string is a null,
then the block is repeated with each occurrence of the dummy parameter removed. If an
argument includes an embedded blank or other Assembler-significant character, it must
be enclosed within single quotes.

If label is present, it is assigned the value of the runtime location counter at the start of
the DUPA directive processing.

Example

If the input source file contained the following statements,

DUPA VALUE,12,32,34

DC VALUE

ENDM

then the assembled source listing would show

DC 12

DC 32

DC 34

See also

DUP

DUPC

DUPF

ENDM

MACRO

5.4.3 DUPC

Duplicate sequence with characters.

[label] DUPC dummy,string

.

Macros and Conditional Assembly

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

82 Freescale Semiconductor, Inc.

.

ENDM

Remarks

The block of source statements defined by the DUPC and ENDM directives are repeated for
each character of string. For each repetition, every occurrence of the dummy parameter
within the block is replaced with each succeeding character in the string. If the string is
null, then the block is skipped.

If label is present, it is assigned the value of the runtime location counter at the start of
the DUPC directive processing.

Example

If the input source file contained the following statements,

DUPC VALUE,'123'

DC VALUE

ENDM

then the assembled source listing would show:

DC 1

DC 2

DC 3

See also

DUP

DUPA

DUPF

ENDM

MACRO

5.4.4 DUPF

Duplicate sequence in loop.

[label] DUPFdummy,[start],end[,increment]

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 83

.

.

ENDM

Remarks

The block of source statements defined by the DUPF and ENDM directives are repeated in
general (end - start) + 1 times when the increment is 1. The start is the starting value for
the loop index; end represents the final value. The increment is the increment for the loop
index; it defaults to 1 if omitted (as does the start value). The dummy parameter holds the
loop index value and may be used within the body of instructions.

Example

If the input source file contained the following statements,

DUPFNUM,0,3

MOVE#1,R\NUM

ENDM

then the assembled source listing would show:

MOVE#1,R0

MOVE#1,R1

MOVE#1,R2

MOVE#1,R3

See also

DUP

DUPA

DUPC

ENDM

MACRO

5.4.5 ENDIF

End of conditional assembly.

Macros and Conditional Assembly

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

84 Freescale Semiconductor, Inc.

ENDIF

Remarks

The ENDIF directive is used to signify the end of the current level of conditional assembly.
Conditional assembly directives can be nested to any level, but the ENDIF directive always
refers to the most previous IF directive.

Example

IF@REL()

SAVEPCSET*; Save program counter

ENDIF

See also

IF

5.4.6 ENDM

End of macro definition.

ENDM

Remarks

Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an ENDM directive.

A label is not allowed with this directive.

Example

 SWAP_SYM MACRO REG1,REG
 MOVE R\?REG1,D4.L
 MOVE R\?REG2,R\?REG1
 MOVE D4.L,R\?REG2
 ENDM

See also

DUP

DUPA

DUPC

DUPF

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 85

MACRO

5.4.7 ENTRFIRQ

Start checking for invalid P memory instructions.

ENTRFIRQ firq_handler:

Remarks

The ENTRFIRQ directive causes the assembler to flag the first four to five instructions in a
firq service routine, in which certain instructions are not allowed. The assembler
processes these flagged instructions before the first instruction of a faster interrupt
handler.

The core reference manual contains information on Fast Interrupt Processing.

This directive applies to the DSP56800E processor.

Example

ENTRFIRQ firq_handler:

.

.

5.4.8 ENTRXP

Start checking for invalid P memory instructions.

ENTRXP

Remarks

The ENTRXP directive causes the assembler to verify that all instructions between the ENTRXP
directive and the EXITXP directive avoid using restricted instructions not allowed for
programs running from P memory space. A restricted instruction is any instruction with a
dual parallel read, or any move instruction that accesses program memory.

This directive applies to the DSP56800E processor.

Example

Macros and Conditional Assembly

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

86 Freescale Semiconductor, Inc.

ENTRXP

; insert here program that runs in P memory

EXITXP

See also

EXITXP

5.4.9 EXITM

Exit macro.

EXITM

Remarks

The EXITM directive causes immediate termination of a macro expansion. It is useful when
used with the conditional assembly directive IF to terminate macro expansion when error
conditions are detected.

A label is not allowed with this directive.

Example

CALC MACRO XVAL,YVAL

IF XVAL<0

FAIL 'Macro parameter value out of range'

EXITM ; Exit macro

ENDIF

.

.

ENDM

See also

DUP

DUPA

DUPC

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 87

MACRO

5.4.10 EXITXP

Stop checking for invalid P memory instructions.

EXITXP

Remarks

The EXITXP directive indicates the end of the most recent ENTRXP directive. The ENTRXP
directive causes the assembler to verify that all instructions between the ENTRXP directive
and the EXITXP directive avoid using restricted instructions not allowed for programs
running from P memory space. A restricted instruction is any instruction with a dual
parallel read, or any move instruction that accesses program memory.

This directive applies to the DSP56800E processor.

Example

ENTRXP

; insert here program that runs in P memory

EXITXP

See also

ENTRXP

5.4.11 IF

Conditional assembler directive.

IF expression..[ELSE]..ENDIF

Remarks

Part of a program that is to be conditionally assembled must be bounded by an IF- ENDIF
directive pair. If the optional ELSE directive is not present, then the source statements
following the IF directive and up to the next ENDIF directive are included as part of the
source file being assembled only if the expression has a nonzero result. If the expression
has a value of zero, the source file is assembled as if those statements between the IF and
the ENDIF directives were never encountered. If the ELSE directive is present and expression

Macros and Conditional Assembly

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

88 Freescale Semiconductor, Inc.

has a nonzero result, then the statements between the IF and ELSE directives are assembled,
and the statements between the ELSE and ENDIF directives are skipped. Alternatively, if
expression has a value of zero, then the statements between the IF and ELSE directives are
skipped, and the statements between the ELSE and ENDIF directives are assembled.

The expression must have an absolute integer result and is considered true if it has a
nonzero result. The expression is false only if it has a result of 0. Because of the nature of
the directive, expression must be known on pass one (no forward references allowed). IF
directives can be nested to any level. The ELSE directive is always referred to the nearest
previous IF directive as is the ENDIF directive.

A label is not allowed with this directive.

Example

IF @LST()>0

DUP @LST() ; Unwind LIST directive stack

NOLIST

ENDM

ENDIF

See also

ENDIF

5.4.12 MACRO

Macro definition.

 label
 MACRO [
 argumentlist]

 .
 .
 macro definition statements
 .
 .
 ENDM

Remarks

The required label is the symbol by which the macro is called. If the macro is named the
same as an existing Assembler directive or mnemonic, a warning is issued. This warning
can be avoided with the RDIRECT directive.

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 89

The definition of a macro consists of three parts: the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or
skeleton source statements; and the terminator. The header is the MACRO directive, its label,
and the dummy argument list. The body contains the pattern of standard source
statements. The terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor replaces with
arguments when the macro is expanded (called). Each dummy argument must obey the
same rules as symbol names. Dummy argument names that are preceded by an
underscore are not allowed. Within each of the three dummy argument fields, the dummy
arguments are separated by commas. The dummy argument fields are separated by one or
more blanks.

Macro definitions may be nested, but the nested macro is not defined until the primary
macro is expanded.

Example

;swap REG1,REG2 using X0 as temp
SWAP_SYM MACRO REG1,REG2
 MOVE R\?REG1,X0
 MOVE R\?REG2,R\?REG1
 MOVE X0,R\?REG2
 ENDM

See also

DUP

DUPA

DUPC

DUPF

ENDM

5.4.13 PMACRO

Purge macro definition.

PMACRO symbol[,symbol,...,symbol]

Remarks

The specified macro definition is purged from the macro table, allowing the macro table
space to be reclaimed.

Macros and Conditional Assembly

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

90 Freescale Semiconductor, Inc.

A label is not allowed with this directive.

Example

PMACRO MAC1,MAC2

See also

MACRO

5.5 Structured Programming

Assembly language provides an instruction set for performing certain rudimentary
operations. These operations in turn may be combined into control structures such as
loops (FOR, REPEAT, WHILE) or conditional branches (IF- THEN, IF- THEN- ELSE). The Assembler,
however, accepts formal, high-level directives that specify these control structures,
generating the appropriate assembly language instructions for their efficient
implementation. This use of structured control statement directives improves the
readability of assembly language programs, without compromising the desirable aspects
of programming in an assembly language.

This section describes structured-programming directives:

• .BREAK
• .CONTINUE
• .FOR and .ENDF
• .IF, .ELSE, and .ENDI
• .REPEAT and .UNTIL
• .WHILE and .ENDW

5.5.1 .BREAK

Exit from structured loop construct.

.BREAK [expression]

Remarks

The .BREAK statement causes an immediate exit from the innermost enclosing loop
construct (.WHILE, .REPEAT, .FOR, .LOOP). If the optional expression is given, loop exit
depends on the outcome of the condition.

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 91

A .BREAK statement does not exit an .IF- THEN- .ELSE construct. If a .BREAK is encountered
with no loop statement active, a warning is issued.

The .BREAK statement should be used with care near .ENDL directives or near the end of DO
loops. It generates a jump instruction which is illegal in those contexts. The optional
expression is limited to condition code expressions only.

Example

.WHILE x:(r1)+ <GT> #0 ;loop until zero is found

...IF <cs>

.BREAK ;causes exit from WHILE loop

.ENDI

. ;any instructions here are skipped.

.ENDW

;execution resumes here after .BREAK

5.5.2 .CONTINUE

Continue next iteration of structured loop.

.CONTINUE

Remarks

The .CONTINUE statement causes the next iteration of a looping construct
(.WHILE, .REPEAT, .FOR, .LOOP) to begin. This means that the loop expression or operand
comparison is performed immediately, bypassing any subsequent instructions.

If a .CONTINUE statement is encountered with no loop statement active, a warning is issued.

The .CONTINUE statement should be used with care near .ENDL directives or near the end of
DO loops. It generates a jump instruction which is illegal in those contexts.

One or more .CONTINUE directives inside a .LOOP construct generates a NOP instruction just
before the loop address.

Example

.REPEAT

. ..IF <cs>

Structured Programming

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

92 Freescale Semiconductor, Inc.

.CONTINUE ;causes immediate jump to .UNTIL

.ENDI

. ;any instructions here are skipped .

.UNTIL x:(r1)+ <EQ> #0 ;evaluation here after .CONTINUE

5.5.3 .IF, .ELSE, and .ENDI

Begin if condition.

.IF expression [THEN]

stmtlist

[.ELSE

stmtlist]

.ENDI

Remarks

If expression is true, execute stmtlist following THEN (the keyword THEN is optional); if
expression is false, execute stmtlist following .ELSE, if present; otherwise, advance to the
instruction following .ENDI.

In the case of nested .IF- THEN- .ELSE statements, each .ELSE refers to the most recent .IF-
THEN sequence.

Example

.IF <EQ> ; zero bit set?

...ENDI

5.5.4 .FOR and .ENDF

Begin for loop.

.FORop1 = op2 { TO | DOWNTO} op3 [BYop4] [DO]

stmtlist

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 93

.ENDF

Remarks

Initialize op1 to op2 and perform stmtlist until op1 is greater (TO) or less than (DOWNTO)
op3. Makes use of a user-defined operand, op1, to serve as a loop counter. The .FOR- TO
loop allows counting upward, while .FOR- DOWNTO allows counting downward. The
programmer may specify an increment/decrement step size in op4, or elect the default
step size of #1 by omitting the BY clause. A .FOR- TO loop is not executed if op2 is greater
than op3 upon entry to the loop. Similarly, a .FOR- DOWNTO loop is not executed if op2 is less
than op3.

The op1 must be a writable register or memory location. It is initialized at the beginning
of the loop and updated with each pass through the loop. Any immediate operands must
be preceded by a pound sign (#). Memory references must be preceded by a memory
space qualifier (X: or P:).

The logic generated by the .FOR directive makes use of several DSP data registers. In fact,
two data registers are used to hold the step and target values, respectively, throughout the
loop; they are never reloaded by the generated code. It is recommended that these
registers not be used within the body of the loop, or that they be saved and restored prior
to loop evaluation.

The DO keyword is optional.

5.5.5 .REPEAT and .UNTIL

Begin repeat loop.

.REPEAT

stmtlist

.UNTILexpression

Remarks

The stmtlist is executed repeatedly until expression is true. When expression becomes
true, advance to the next instruction following .UNTIL.

The stmtlist is executed at least once, even if expression is true upon entry to the .REPEAT
loop.

Example

Structured Programming

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

94 Freescale Semiconductor, Inc.

.REPEAT

...UNTIL x:(r1)+ <EQ> #0 ; loop until zero is found

5.5.6 .WHILE and .ENDW

Begin while loop.

.WHILEexpression [DO]

stmtlist

.ENDW

Remarks

The expression is tested before execution of stmtlist. While expression remains true,
stmtlist is executed repeatedly. When expression evaluates false, advance to the
instruction following the .ENDW statement.

If expression is false upon entry to the .WHILE loop, stmtlist is not executed; execution
continues after the .ENDW directive.

The DO keyword is optional.

Example

.WHILE x:(r1)+ <GT> #0 ; loop until zero is found

. ..ENDW

NOTE
.WHILE and .ENDW directives are not supported by the DSP56800E/
X compiler.

Chapter 5 Directives

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 95

Structured Programming

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

96 Freescale Semiconductor, Inc.

Chapter 6
Options, Listings, and Errors

The Freescale DSP Assembler allows you to change its operating parameters with option
directives. In ad dition, it generates lists of warnings and errors which you can control
with even more directives.

You can change the assembler options within your code using the OPT directive. Specify
your options in the first file listed in the project, in the prefix file, or have an included file
that sets your options.

The topics in this chapter include:

• OPT
• Listing Format Control
• Reporting Options
• Message Control
• Symbol Options
• Assembler Operation

6.1 OPT

This directive turns assembler options on and off.

OPT option[,option,...]

Remarks

The OPT directive is used to designate the Assembler options. Assembler options are given
in the operand field of the source input file and are separated by commas. All options
have a default condition. Some options are reset to their default condition at the end of
pass one. Some are allowed to have the prefix NO attached to them, which then reverses
their meaning.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 97

Example

 OPT cc, NOW

6.2 Listing Format Control

The options in the table below control the format of the listing file. The parenthetical
inserts specify default if the option is the default condition, and reset if the option is reset
to its default state at the end of pass one of the Assembler. If the description contains NO,
then the option may be reversed with the NO prefix.

Table 6-1. Listing Format Options

Option Description

FC Fold trailing comments. Any trailing comments that are
included in a source line are folded underneath the source
line and aligned with the opcode field. Lines that start with the
comment character are aligned with the label field in the
source listing. The FC option is useful for displaying the
source listing on 80-column devices. (default NO)

FF Use form feeds for page ejects in the listing file. (default NO)

FM Format Assembler messages so that the message text is
aligned and broken at word boundaries. (default NO)

PP Pretty print listing file. The Assembler attempts to align fields
at a consistent column position without regard to source file
formatting. (default reset NO)

RC Space comments relatively in listing fields. By default, the
Assembler always places comments at a consistent column
position in the listing file. This option allows the comment field
to float: on a line containing only a label and opcode, the
comment would begin in the operand field. (default NO)

6.3 Reporting Options

The options shown in the table below control what is reported in the listing file.

Table 6-2. Reporting Options

Option Description

CC Enable cycle counts and clear total cycle count. Cycle counts
are shown on the output listing for each instruction. Cycle

Table continues on the next page...

Listing Format Control

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

98 Freescale Semiconductor, Inc.

Table 6-2. Reporting Options (continued)

Option Description

counts assume a full instruction fetch pipeline and no wait
states. (default NO)

CEX Print DC expansions. (default NO)

CL Print the conditional assembly directives. (default reset NO)

CM Preserve comment lines of macros when they are defined.
Note that any comment line within a macro definition that
starts with two consecutive semicolons (;;) is never preserved
in the macro definition. (default reset NO)

CONTC Re-enable cycle counts. Does not clear total cycle counts.
The cycle count for each instruction is shown on the output
listing.

CRE Print a cross-reference table at the end of the source listing.
This option, if used, must be specified before the first symbol
in the source program is defined.

DXL Expand DEFINE directive strings in listing. (default reset NO)

HDR Generate listing header along with titles and subtitles. (default
reset NO)

IL Inhibit source listing. This option stops the Assembler from
producing a source listing.

LOC Include local labels in the symbol table and cross-reference
listing. Local labels are not normally included in these listings.
If neither the S nor CRE options are specified, then this option
has no effect. The LOC option must be specified before the
first symbol is encountered in the source file.

MC Print macro calls. (default reset NO)

MD Print macro definitions. (default reset NO)

MEX Print macro expansions. (NO)

MU Include a memory utilization report in the source listing. This
option must appear before any code or data generation.

NL Display conditional assembly (IF- ELSE- ENDIF) and section
nesting levels on listing. (default NO)

S Print a symbol table at the end of the source listing. This
option has no effect if the CRE option is used.

U Print the unassembled lines skipped due to failure to satisfy
the condition of a conditional assembly directive. (default NO)

6.4 Message Control

The options listed in the table below control the types of Assembler messages that are
generated.

Chapter 6 Options, Listings, and Errors

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 99

Table 6-3. Message Control Options

Option Description

AE Check address expressions for appropriate arithmetic
operations. For example, this checks that only valid add or
subtract operations are performed on address terms. (default
reset NO)

MSW Issue a warning on memory space incompatibilities. (default
reset NO)

UR Generate a warning at assembly time for each unresolved
external reference. This option works only in relocatable
mode. (default NO)

W Print all warning messages. (default reset NO)

6.5 Symbol Options

The options described in the table below deal with the handling of symbols by the
Assembler.

Table 6-4. Symbol Options

Option Description

CONST EQU symbols are maintained as assembly time constants and
are not be sent to the object file. (default NO)

DEX Expand DEFINE symbols within quoted strings. Can also be
done on a case-by-case basis using double-quoted strings.
(default NO)

GL Make all section symbols global. This has the same effect as
declaring every section explicitly GLOBAL. This option must be
given before any sections are defined explicitly in the source
file.

GS Make all section symbols static. All section counters and
attributes are associated with the GLOBAL section. This option
must be given before any sections are defined explicitly in the
source file. (default reset NO)

NS Allow scoping of symbols within nested sections. (default
reset NO)

SCL Structured control statements generate non-local labels that
ordinarily are not visible to the programmer. This can create
problems when local labels are interspersed among
structured control statements. This option causes the
Assembler to maintain the current local label scope when a
structured control statement label is encountered. (default
reset NO)

SCO Send structured control statement labels to object and listing
files. Normally the Assembler does not externalize these
labels. This option must appear before any symbol definition.

Table continues on the next page...

Symbol Options

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

100 Freescale Semiconductor, Inc.

Table 6-4. Symbol Options (continued)

Option Description

SMS Preserve memory space in SET symbols. (default reset NO)

SO Write symbol information to object file.

XLL Write underscore local labels to object file. This is primarily
used to aid debugging. This option, if used, must be specified
before the first symbol in the source program is defined.

XR Causes XDEFed symbols to be recognized within other
sections without being XREFed. This option, if used, must be
specified before the first symbol in the source program is
encountered.

6.6 Assembler Operation

The options shown in the table below affect how the Assembler itself behaves.

Table 6-5. Assembler Options

Option Description

AL Align load counter in overlay buffers. (default reset NO)

DBL Split dual read instructions. (default NO)

DLD Do not restrict directives in DO loops. The presence of some
directives in DO loops does not make sense, including some
OPT directive variations. This option suppresses errors on
particular directives in loops. (default NO)

EM Used when it is necessary to emulate 56100 instructions. This
option must be used in order to use the following 56100
instructions in the DSP56800 part: ASR16, IMAC, NEGW,
TFR2, SUBL, and SWAP. (default NO)

INTR Perform interrupt location checks. Certain DSP instructions
may not appear in the interrupt vector locations in program
memory. This option enables the Assembler to check for
these instructions when the program counter is within the
interrupt vector bounds. (default reset NO)

PS Pack strings in DC directive. Individual bytes in strings are
packed into consecutive target words for the length of the
string. (default reset NO)

PSB Preserve sign bit in twos-complement negative operands.
(default reset NO)

RP Generate NOP instructions to accommodate pipeline delay. If
an address register is loaded in one instruction, then the
contents of the register are not available for use as a pointer
until after the next instruction. Ordinarily, when the Assembler
detects this condition, it issues an error message. The RP
option causes the Assembler to output a NOP instruction into
the output stream instead of issuing an error. (default NO)

Table continues on the next page...

Chapter 6 Options, Listings, and Errors

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

Freescale Semiconductor, Inc. 101

Table 6-5. Assembler Options (continued)

Option Description

SVO Preserve object file on errors. Normally, any object file
produced by the Assembler is deleted if errors occur during
assembly. This option must be specified before any code or
data is generated.

Assembler Operation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual,
Rev. 10.6, 01/2014

102 Freescale Semiconductor, Inc.

Index

.BREAK 91

.CONTINUE 92

.ELSE, 93

.ENDF 93

.ENDI 93

.ENDW 95

.FOR 93

.IF, 93

.REPEAT 94

.UNTIL 94

.WHILE 95
@HB() 77
@LB() 78

A

ABS 18
Absolute 14
ACS 18
ALIGN 67
Allocation 67
ARG 31
Argument 47
ASN 19
Assembler 11, 32, 101
Assembly 51, 80
AT2 19
ATN 19
Attribute 14

B

BSB 68
BSC 69
BSM 69
BUFFER 70

C

Calls 46
CCC 32
CEL 20
CHK 33
CNT 31
COH 20
Comment 13
COMMENT 52
Concatenation 47
Conditional 80
Constants 14, 15
Control 51, 98, 99
Conversion 25

COS 20
CTR 33
CVF 26
CVI 26
CVS 26

D

Data 12, 38, 67
DCB 73
DCBR 74
DEF 34
DEFINE 52
Definition 44, 59, 67
Directives 51
DSB 75
DSM 75
DSR 76
Dummy 47
DUP 80
DUPA 81
DUPC 82
DUPF 83
DWARF 79

E

END 53
ENDBUF 77
ENDIF 84
ENDM 85
ENDSEC 60
ENTRFIRQ 86
ENTRXP 86
EQU 60
Errors 97
Example 79
EXITM 87
EXITXP 88
EXP 34
Expression 14
Expressions 13, 14

F

FAIL 54
Field 11–13
Fields 12
Fields) 12
FLD 27
FLR 21
FORCE 54
Format 11, 13, 98

Index

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual

Freescale Semiconductor, Inc. 103

Fragmentation 41
FRC 27
Functions 17, 25, 29, 30, 32

G

GLOBAL 61

H

Hex 49
Hiding 38

I

INCLUDE 55
INT 34

L

L10 21
Label 11, 13
LCV 35
LEN 29
LFR 28
Listing 98
Listings, 97
LNG 28
LOCAL 62
LOG 21
LST 35

M

MAC 31
Macro 30, 43, 44, 46
MACRO 89
Macros 40, 43, 80
Management 37
Mathematical 17
MAX 22
Memory 14
MIN 22
Mode 32
More 9
MSP 36
MXP 32

N

Name 13
Nesting 41
Numeric 14

O

Operand 12
Operation 12, 101
Operations 43
Operator 17, 50
Operators 15, 47
OPT 97
Options 98, 100
Options, 97
ORG 55

P

PMACRO 90
POS 30
POW 22
Precedence 17
Programming 91

R

RDIRECT 56
Read 9
REL 36
Relative 14
Relocation 42
Reporting 98
Return 48, 49
RND 23
RVB 28

S

SCP 30
SCSJMP 57
SCSREG 57
SECTION 62
Sections 37
SET 65
SGN 23
SIN 23
SNH 24
Software 37
Space 14
SQT 24
Statement 11
String 15, 29, 50
Structured 91
SUBROUTINE 66
Symbol 59, 100
Symbolics 79
Symbols 39
Syntax 11

Index

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual

104 Freescale Semiconductor, Inc.

T

TAN 24
TNH 25
Transfer 12

U

UNDEF 58
UNF 29

V

Value 48, 49

W

WARN 59
Where 9

X

XPN 25
XREF 66

Index

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual

Freescale Semiconductor, Inc. 105

Index

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Assembler Manual

106 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and Processor Expert are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
All other product or service names are the property of their respective
owners.

© 2011–2014 Freescale Semiconductor, Inc.

Document Number CWMCUDSCASMREF
Revision 10.6, 01/2014

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Where to Read More

	Chapter 2: Assembler Statement Syntax
	Statement Format
	Label Field
	Operation Field
	Operand Field
	Data Transfer Fields (X and Y Fields)
	Comment Field

	Name and Label Format
	Expressions
	Absolute and Relative Expressions
	Expression Memory Space Attribute
	Constants
	Numeric Constants
	String Constants

	Operators
	Operator Precedence

	Functions
	Mathematical Functions
	ABS
	ACS
	ASN
	AT2
	ATN
	CEL
	COH
	COS
	FLR
	L10
	LOG
	MAX
	MIN
	POW
	RND
	SGN
	SIN
	SNH
	SQT
	TAN
	TNH
	XPN

	Conversion Functions
	CVF
	CVI
	CVS
	FLD
	FRC
	LFR
	LNG
	RVB
	UNF

	String Functions
	LEN
	POS
	SCP

	Macro Functions
	ARG
	CNT
	MAC
	MXP

	Assembler Mode Functions
	CCC
	CHK
	CTR
	DEF
	EXP
	INT
	LCV
	LST
	MSP
	REL

	Chapter 3: Software Project Management
	Using Sections
	Data Hiding
	Symbols
	Macros
	Nesting and Fragmentation

	Relocation

	Chapter 4: Macros
	Macro Operations
	Macro Definition
	Macro Calls
	Dummy Argument Operators
	Concatenation \
	Return Value ?
	Return Hex Value %
	String Operator "

	Chapter 5: Directives
	Assembly Control
	COMMENT
	DEFINE
	END
	FAIL
	FORCE
	INCLUDE
	ORG
	RDIRECT
	SCSJMP
	SCSREG
	UNDEF
	WARN

	Symbol Definition
	ENDSEC
	EQU
	GLOBAL
	LOCAL
	SECTION
	SET
	SUBROUTINE
	XREF

	Data Definition and Allocation
	ALIGN
	BSB
	BSC
	BSM
	BUFFER
	DC
	DCB
	DCBR
	DS
	DSB
	DSM
	DSR
	ENDBUF
	@HB()
	@LB()
	DWARF Symbolics
	Example

	Macros and Conditional Assembly
	DUP
	DUPA
	DUPC
	DUPF
	ENDIF
	ENDM
	ENTRFIRQ
	ENTRXP
	EXITM
	EXITXP
	IF
	MACRO
	PMACRO

	Structured Programming
	.BREAK
	.CONTINUE
	.IF, .ELSE, and .ENDI
	.FOR and .ENDF
	.REPEAT and .UNTIL
	.WHILE and .ENDW

	Chapter 6: Options, Listings, and Errors
	OPT
	Listing Format Control
	Reporting Options
	Message Control
	Symbol Options
	Assembler Operation

	Index

