

ICDPPCNEXUS
MPC55xx / MPC56xx In-Circuit Debugger

Quick Start Guide

Copyright 2009, P&E Microcomputer Systems, Inc. All rights reserved.
Visit us on the web at http://www.pemicro.com

Document Version History

Version Date Notes

1.0 21 Sep 2009 Initial version

 2

CONTENTS

1 Introduction .. 4

1.1 P&E Compatible Hardware .. 4
2 Getting Started .. 5

2.1 Connecting to your Target .. 5
2.2 Reset Script .. 6
2.3 Loading Data and Debug Information .. 7
2.4 CPU and Memory Windows ... 8

3 Debugging .. 10
3.1 GOTIL command ... 10
3.1 Stepping through C instructions .. 11
3.3 Setting and Reaching Breakpoints ... 12
3.4 Using Code Window Popup Debug Evaluation Hints 13
3.5 Using the Variables Window .. 15
3.6 Modifying a Variable .. 16
3.7 Using the Register Interpreter ... 17
3.8 Adding Register Field Descriptions to the Variables Window 20

 3

1 Introduction

This document is a step-by-step guide to using the P&E ICDPPCNEXUS in-
circuit debugger software, which is compatible with Freescale MPC55xx /
MPC56xx processors. This guide covers the most commonly used features of the
debugger: loading binary & debug information, accessing CPU registers &
memory, stepping code, setting breakpoints, and monitoring variables.

1.1 P&E Compatible Hardware

The following lists the P&E hardware compatible with the ICDPPCNEXUS
debugger software.

P&E Part Number Interface to host PC
CABPPCNEXUS Parallel (LPT) port
USB-ML-PPCNEXUS USB 2.0 (Backwards compatible with USB 1.1 ports)
Cyclone MAX Serial (RS232) port

USB 1.1 (Upwards compatible with USB 2.0 ports)
Ethernet

 4

2 Getting Started

2.1 Connecting to your Target

Upon starting the debugger, the connection assistant dialog appears:

• Use the “Interface” and “Port” drop-down menus to choose the P&E
hardware interface connected between the PC and your target board.

• The “Target CPU” setting can safely be left at the “Autodetect” setting for

most users. If you experience problems connecting, you can try specifying
the exact Freescale device that you are connecting to.

• A BDM_SPEED parameter between 2 to 4 can typically be used.
Processors running at slower clock speeds will require higher values.

 5

Click the Connect button, and ICDPPCNEXUS will attempt to contact the

processor. Using the default debugger settings, ICDPPCNEXUS will establish
communications and reset the processor.

After establishing communications, the main debugger screen will appear,
and a debugger reset script macro should automatically execute and complete.

2.2 Reset Script

This section explains the initialization that the debugger, using a reset
script macro file, performs on the processor. The user can view and modify all of
the macro file's initialization tasks.

The processor Boot Assist Module (BAM) would normally initialize the
memory of the processor. However, when running the target application from the
debugger, the BAM functionality is disabled. To account for this, the debugger
must run a script file on reset. The script initializes the memory of the processor
similar to the way in which the BAM would initialize the processor.

If ICDPPCNEXUS is launched from the Freescale CodeWarrior IDE, the
correct reset script file is automatically selected.

 6

If ICDPPCNEXUS is launched stand-alone, the reset script file may need
to be configured. Several reset script macros are included with the
ICDPPCNEXUS debugger and have a .mac extension. For detailed information,
you can view each macro file using a simple text editor such as Notepad. The
macro contents will contain useful comments, such as which devices are
supported by that particular macro.

To configure the debugger reset script macro, select the debugger Configuration
menu, Automated Script Options dialog, shown here:

2.3 Loading Data and Debug Information

If ICDPPCNEXUS is launched from the Freescale CodeWarrior IDE, your
code will automatically be downloaded to the processor.

• RAM projects are loaded into the processor’s internal SRAM.
• FLASH projects will invoke the CPROGPPCNEXUS Flash programming

software to burn the code into the processor’s internal FLASH.

The debug information is also automatically loaded from CodeWarrior,
which will allow you to debug using your high level source code and variables.

 7

If ICDPPCNEXUS is launched stand-alone, you will need to manually
download the code and debug information. Launch the Load Dialog by clicking
on the High Level Load button on the debugger tool bar:

This dialog allows you to specify the binary/debug file and whether to load into
RAM or FLASH. Once you are satisfied with your settings, press the “Process
Load Command” button to begin the download process. This step will also load
the debug information.

2.4 CPU and Memory Windows

The CPU Window displays all CPU core registers, including the Program
Counter (PC) and all general purpose registers.

• To modify CPU register contents, double-click the register value. You will
be prompted for a new value.

The Memory Window displays data at any given memory address. It can

be used to view RAM contents, FLASH contents, and values of peripheral
registers.

 8

• To change the memory address, right-click inside the Memory Window
and select “Set Base Address”. You will be prompted for a new address to
begin displaying data.

• To change the contents in memory, double-click the value in memory that
you would like to change. You will be prompted for a new value.

 9

3 Debugging

 This section outlines the different debugging capabilities available in the
ICDPPCNEXUS debugger once the debug information has been loaded.

3.1 GOTIL command

 At this point, your source window will show the assembly language startup
code generated by the compiler:

If you do not need to debug this section and would like to run the processor until
the beginning of your “main” function, you can use the “GOTIL” command.

• Type “GOTIL main” in the Status window to tell the debugger to run code
until it reaches the “main” function of your code.

The “GOTIL” command works with any function in your code.

 10

3.1 Stepping through C instructions

 Step through the initialization code, or any source code, using the high-
level language source step command. Use this feature by typing “HSTEP” in the
Status window or by clicking the high-level step button on the debugger tool bar:

Each time the HSTEP command executes, the debugger will rapidly single
step assembly instructions until it encounters the next source instruction, at
which point target execution will cease. When the debugger reaches the next
source instruction, all visible windows will be updated with data from the board.
After reaching the main function, step through several C language instructions.
Notice that some instructions will take longer to step through than others
because each C instruction may consist of a greater or fewer number of
underlying assembly instructions.

 11

3.3 Setting and Reaching Breakpoints

 In the source code window, there will be a small red dot and a small blue
arrow next to each source instruction that has underlying object code. If a large
blue arrow appears on a source line, this indicates that the program counter (PC)
currently points to this instruction. If a large red stop sign appears on the source
line, this indicates that a breakpoint exists on this line.

• Set a breakpoint at an instruction by double-clicking the tiny red dot.
• To remove a breakpoint, double-click the large red stop sign.

Execution will begin in real-time when you issue the HGO command or click the
high-level language GO button on the debugger tool bar:

If the debugger encounters a breakpoint, execution will stop on this source
line. If it does not encounter a breakpoint, target execution will continue until you
press a key or use the stop button on the debugger tool bar:

• By double clicking the small blue arrow, you will be issuing a GOTIL
command to the address of this source line.

A GOTIL command will set a single breakpoint at the desired address, and the
processor will begin executing code in real-time from the current program counter
(PC). When the debugger encounters the GOTIL address, execution stops. If the
debugger does not encounter this location, execution continues until you press a

 12

key or use the stop button on the debugger tool bar. Note that all user
breakpoints are ignored when the GOTIL command is used.

You may also double-click the red and blue symbols in the disassembly window.
The disassembly window may display an additional symbol, a small, blue "S"
enclosed in a box. This indicates that that a source code instruction begins on
this disassembly instruction.

3.4 Using Code Window Popup Debug Evaluation Hints

 When debugging source code, it is convenient to view the contents of a
variable while viewing your source code. The in-circuit debugger has a feature,
debug hints, which displays the value of a variable while the mouse cursor is held
over the variable name. The hint may be displayed in any of three locations, as
shown below.

 13

The three locations for the debug hints are the code window title bar, the status
window caption bar, and a popup hint that appears over the variable in source
code. You can configure the hints to display in any combination.

• Set the locations of debug hints in the configuration menu of the debugger

The information in the popup hint box is similar to the information
displayed in the variables window.

 14

The information includes the variable name (i), value ($1), and type (signed
long).

3.5 Using the Variables Window

 The variables window displays the current value of application variables.
The following window shows a display of variables from the example application.

Variables that are pointer or reference types are displayed in red. Normal
variables are displayed in black.

• Add a variable by typing the VAR command, by right clicking the variables
window and choosing “Add a variable”, or by hitting the "Add Variable"
button in the variables window.

 15

When adding a variable using the pop-up menu, the debugger displays the
following screen.

In the variable field, type the address or name of the variable. Typically,
set the type of the variable to “Default”, which means that the variable will be
displayed as it is defined in the debugging information. When adding a variable,
you may specify the numeric display base of the variable.

3.6 Modifying a Variable

• To modify the current value of a variable, right-click the variable name in
the variables window and select “Modify Variable” to display a dialog.

Check the “Modify value” checkbox, and type the variable’s new value.

After you click the OK button, the debugger updates the variable value on the
target, and the debugger refreshes the variable window to display the new value.
Note that the debugger will not edit certain user-defined types, such as
enumerated types.

 16

• You may also modify a variable’s display properties, such as the type or
numeric display base using this dialog.

3.7 Using the Register Interpreter

The register interpreter provides a descriptive display of bit fields within
the processor’s peripheral registers. The register interpreter allows you easily to
change the value of these registers. You may quickly check the current state of a
peripheral and examine the configuration of the target device.

When you use the register interpreter within the debugger, it reads the

current value of the peripheral register, decodes it, and displays it.

 17

To launch the register interpreter in the debugger, either use the “R” command or
click the view/edit register button on the tool bar:

A window will appear that allows you to select a peripheral block to examine.

Double clicking the module of choice will launch the register selection window.

Double clicking a specific register will launch the edit/display window for that
register.

 18

The window lists the keystrokes and mouse actions, allowing you to modify the
values of each of the fields. After right clicking on a specific field, the register
interpreter will display all options for that field.

When you quit the register view/edit window by hitting the ESC key, you will be
given the opportunity to write the new value into the register, as shown in the
following window.

 19

3.8 Adding Register Field Descriptions to the Variables Window

Add register bit fields to the variables window by using the “_TR”
command in the debugger or by clicking the "Add Register" button in the
variables window. After selecting the register field, the field appears in the
debugger variables window, and the debugger will continually update its value.

 20

	1 Introduction
	1.1 P&E Compatible Hardware

	2 Getting Started
	2.1 Connecting to your Target
	2.2 Reset Script
	2.3 Loading Data and Debug Information
	2.4 CPU and Memory Windows

	3 Debugging
	3.1 GOTIL command
	3.1 Stepping through C instructions
	3.3 Setting and Reaching Breakpoints
	3.4 Using Code Window Popup Debug Evaluation Hints
	3.5 Using the Variables Window
	3.6 Modifying a Variable
	3.7 Using the Register Interpreter
	3.8 Adding Register Field Descriptions to the Variables Window

