

Freescale Semiconductor Engineering Bulletin

SLKS12MIGEB Rev.0, 9/2008

SLK Migration from the C32 to the C128

For use with the following part numbers:

Freescale Part Number: APS12C32SLK APS12C128SLK (w/ integrated USB-BDM)

CONTENTS

WHY THE CHANGE?			3				
HOW THIS CHANGE WILL IMPLEMENTATIONS/EXIS		S CURRENT TH THE HCS12C32	3				
TABLE 1 - SLK PIN CHANGES - HCS12C32 (48PIN) VS. HCS12C128 (80PIN)4							
SUPPORT5							
Revision History							
Date	Rev	Comments					
Sentember / 2008	0 Initial F	Palassa					

Freescale Semiconductor

Engineering Bulletin

SLKS12MIGEB Rev.0, 9/2008

Why the Change?

As of March 2008 the APS12C32SLK is no longer manufactured and users are encouraged to migrate to the APS12C128SLK. Why the change? Primarily, due to feedback received from our customers. Second, we really wanted our users of the HCS12 family of application modules to take advantage of some of the newer features available today.

Advantages to the new APS12C128SLK vs. APS12C32SLK

- Increased Memory Size
- Increased Pin Availability
- Ability to use the Serial (SCI) port during debug
- Integrated USB-BDM provides power, programming, and debug via one USB cable.

How this change will effect the user's current implementations/existing code used with the HCS12C32

- Both devices are in the HCS12 "C" family. Therefore, the CPU cores are identical. Op-Codes, Registers, and Register Addresses will remain unchanged.
- The MCU "device" package has changed from a 48-pin QFP to an 80-pin QFP. This means a few things to users:
 - o The physical position of some pins might have changed. Table 1 below is a side-by-side comparison of the C32 to C128 pin-mapping as it appears to the MCU_PORT header.
 - o The user now has access to more I/O pins
- The default clock has changed from 8 MHz (C32) to 4 MHz (C128).
 - o For timers, PWM or clock settings will need to be double checked.
- The overall board size has increased.
 - To accommodate the USB-BDM circuitry and the larger HCS12 package, the physical dimensions of the board have increased. The board can still be plugged into the 60 pin MCU Port header if using the Freescale Project Board.
 - APS12C32SLK Dimensions: 2.2" x 1.6"
 - APS12C128SLK Dimensions: 3.8" x 2.0"
- Removal of the serial monitor
 - Industry is migrating away from serial monitor programming and debug to USB-BDM (Background Debug Mode). The USB-BDM has several key advantages:
 - No resident on-chip serial monitor code. (More memory for applications code)
 - Ability to use the serial port (SCI) for communications during debug.
 - Legacy serial monitor and third-party serial monitor programs can still be found, however they are no longer supported.

Please refer to the APS12C32SLK Users Guide and the APS12C128SLK Users Guide for any additional topics not covered in this document.

Table 1 - SLK Pin Changes - HCS12C32 (48pin) vs. HCS12C128 (80pin)

PBS12C32SLK	PBS12C128SLK	MCU	PORT	PBS12C32SLK	PBS12C128SLK
CSM12C32	CSM12C128			CSM12C32	CSM12C128
48 QFP	80 QFP	Pin-Out		48 QFP	80 QFP
VX	VX	1	2	PE1/IRQ*	PE1/IRQ*
GND	GND	3	4	RESET*	RESET*
PS1/TXD	PS1/TXD	5	6	MODC/BKGD	MODC/BKGD
PS0/RXD	PS0/RXD	7	8		PP7/KWP7
PP5/KWP5	PP0/KWP0/PWM0	9	10		PAD07/AN07
PE0/XIRQ*	PP1/KWP1/PWM1	11	12		PAD06/AN06
PT0/IOC0/PW0	PT0/IOC0/PWM0	13	14		PAD05/AN05
PT1/IOC1/PW1	PT1/IOC1/PWM1	15	16		PAD04/AN04
PM4/MOSI	PM4/MOSI	17	18	PAD00/AN00	PAD00/AN00
PM2/MISO	PM2/MISO	19	20	PAD01/AN01	PAD01/AN01
PM5/SCK	PM5/SCK	21	22	PB4	PAD02/AN02
PM3/SS*	PM3/SS*	23	24	PA0	PAD03/AN03
PE4/ECLK	PA7\ADDR15\DATA15	25	26	PM1/TXCAN	PJ7/KWJ7
PE7/XCLKS*	PA6\ADDR14\DATA14	27	28	PM0/RXCAN	PJ6/KWJ6
PAD02/AN02	PA5\ADDR13\DATA13	29	30	PT2/IOC2/PW2	PP2/KWP2/PWM2
PAD03/AN03	PA4\ADDR12\DATA12	31	32	PT3/IOC3/PW3	PP3/KWP3/PWM3
PAD04/AN04	PA3\ADDR11\DATA11	33	34	PT4/IOC4/PW4	PP4/KWP4/PWM4
PAD05/AN05	PA2\ADDR10\DATA10	35	36	PT5/IOC5	PP5/KWP5/PWM5
PAD06/AN06	PA1\ADDR9\DATA9	37	38	PT6/IOC6	PS2/RXD1
PAD07/AN07	PA0\ADDR8\DATA8	39	40	PT7/IOC7	PS3/TXD1
	PB7\ADDR7\DATA7	41	42		PE0\XIRQ*
	PB6\ADDR6\DATA6	43	44		PE2\RW
	PB5\ADDR5\DATA5	45	46		PE3\TAGLO*\LSTRB*
	PB4\ADDR4\DATA4	47	48		PE4\ECLK
	PB3\ADDR3\DATA3	49	50		PT2\IOC2
	PB2\ADDR2\DATA2	51	52		PT3\IOC3
	PB1\ADDR1\DATA1	53	54		PT4\IOC4
	PB0\ADDR0\DATA0	55	56		PT5\IOC5
	PM1\TXCAN	57	58		PT6\IOC6
	PM0\RXCAN	59	60		PT7\IOC7

Freescale Semiconductor

Engineering Bulletin

SLKS12MIGEB Rev.0, 9/2008

Support

For migration questions relating directly from the APS12C32SLK to the APS12C128SLK please contact your regional university programs representative. A list of those contacts can be found at www.freescale.com/universityprograms

For all other technical support questions to get the most out of your support experience, the Freescale University Programs recommends that users follow recommendations 1-3 below:

1. For frequently asked questions (FAQs), latest updates, and listing of known bugs and solutions.	www.freescale.com\universityprograms OR www.axman.com\support	
2. Ask your questions to our online developer community	www.freescale.com\forums	
3. Ask your questions directly to Freescale representative	www.freescale.com\support	

How to Reach Us:

Home Page:

www.freescale.com\support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150

LDCForFreescaleSeminconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application. Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale $^{\text{TM}}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

All other product or service names are the property of their respective owners.

