V¥ ¢
i

Freescale Semiconductor Document Number: EB696
Engineering Bulletin Rev. 0, 07/2008

& SAFE
¢’ ASSURE
by Freescale
New VLE Instructions for
Improving Interrupt Handler
Efficienc
by: Robert Moran
Applications Engineer
Microcontroller Solutions Group
1 Introduction Contents
1 Introduction 1
The VLE instruction set provides a mixture of 16 and 2 Devices Affected by New Instructions. 2
e . . . 3 Instruction OperationCodes 2
32-bit instructions that are used in the Qorivva B 4 Instruction Descriptions. . oo on 3
MPC55xx, MPC551x and MPC56xx, product families. 5 instruction Listings.oovvenneeeennnn... 5
This engineering bulletin details new VLE instructions 5.1 Load Multiple Volatile GPR Word 5
. . . 5.2 Store Multiple Volatle GPRWord 5
that have been implemented to improve the efficiency of 53 Load Multiple Volatile SPRWord 6
handling interrupts. 5.4 Store Multiple Volatile SPRWord 7
5.5 Load Multiple Volatile SRRWord 7
These new instructions allow groups of volatile registers 5.6 f‘ordel\'\/ful“iﬁ'e\\//ﬂ'aﬂlle SSSRWVsta ------------- 2
. . 5.7 oad Multiple Volatile od.............
"[0 be sayed to or re.stored from the stack usimg a smgle 5.8 Store Multiple Volatile CSRRWord. 9
instruction. These instructions allow for simpler coding 5.9 Load Multiple Volatile DSRRWord 9
within the interrupt handler, in some cases, quicker . 5;:“5?5‘:]';2’1';‘:3"'9 Volatile DSRR Word. ... 18
context save, and restore times.
© Freescale Semiconductor, Inc., 2008. All rights reserved. freescale

semiconductor

Devices Affected by New Instructions

2 Devices Affected by New Instructions

All devices that implement the €200z1 and e200z0 cores support these new instructions in the VLE
instruction set.

These instructions are currently implemented on the following devices. See Table 1.

Table 1. Devices Supporting New Instructions

. New VLE
Device Core .
Instruction Support
MPC51xx €200z1 and e200z0 Yes
MPC563xM e200z335 Yes
MPC560xB €200z0 Yes
MPC560xP €200z0 Yes
MPC560xS €200z0 Yes

3 Instruction Operation Codes

The operation codes of the additional instructions are listed in Table 2.

Table 2. Operation Codes of New Instructions

'“Stg:::iig; Bit 0....5 6....10 11....15 16....23 24....31
e_ldmvgprw | 6 (0b0001_10) 0b00000 RA 0b0001_0000 D8
e_stmvgprw | 6 (0b0001_10) 0b00000 RA 0b0001_0001 D8
e_ldmvsprw | 6 (0b0001_10) 0b00001 RA 0b0001_0000 D8
e_stmvsprw | 6 (0b0001_10) 0b00001 RA 0b0001_0001 D8
e_Ildmvsrw | 6 (0b0001T_10) 0b00100 RA 0b0001_0000 D8
e_stmvsrrw | 6 (0b0001_10) 0b00100 RA 0b0001_0001 D8
e_ldmvesrw | 6 (Ob0001_10) 0000101 RA 0b0001_0000 D8
e_stmvesrw | 6 (Ob0001_10) 0000101 RA 0b0001_0001 D8
e_ldmvdsrw | 6 (0b0001_10) 0b00110 RA 0b0001_0000 D8
e_stmvdsrw | 6 (0b0001_10) 0b00110 RA 0b0001_0001 D8

NOTE

The 8-bit D8 field is sign-extended and added to the contents of the GPR
designated by RA to produce the effective load or store address.

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

2 Freescale Semiconductor

Instruction Descriptions

4 Instruction Descriptions

The embedded application binary interface (EABI) defines specific registers to be classified as volatile and
non-volatile registers. These registers are shown in Table 3.

Table 3. EABI Register Definitions

ro function linkage volatile r31 local variables / env pointer |non-volatile
1 stack frame pointer dedicated cr0-cr1 |condition reg. fields volatile
r2 small data area 2 pointer |dedicated cr2-cr4 |condition reg. fields non-volatile
r3-r4 |parameters/return values |volatile crb-cr7 |condition reg. fields volatile
r5-riQ0 |parameters volatile Ir link register volatile
r11-r12 |function linkage volatile ctr count register volatile
ri3 |small data area pointer dedicated xer integer exception reg. volatile
r14-r30 |local variables non-volatile

Using a typical VLE interrupt handler, the volatile registers are saved and restored from the stack using
store and load instructions for each individual register. This is shown in Figure 1.

mfSRR1 r0 # Store SRR1 (must be done before enabling EE)

e stw r0, 0x10 (rl)

mfSRRO r0 # Store SRRO (must be done before enabling EE)

e stw r0, 0x0C (rl)

mfLR r0 # Store LR (Store now since LR will be
used for ISR Vector)

wrteei 1 # Set MSRI[EE]=1

e stw rl2, 0x4C (rl) # Store GPRs

e stw rll, 0x48 (rl)

e stw rl0, 0x44 (rl)

e stw r9, 0x40 (rl)

e stw r8, 0x3C (rl)

e stw r7, 0x38 (rl)

e stw ro, 0x34 (rl)

e stw r5, 0x30 (rl)

e stw r4d, 0x2c (rl)

e stw r3, 0x28 (rl)

e stw rQ0, 0x24 (rl)

mfCR r0 # Store CR

e stw rQ0, 0x20 (rl)

mfXER r0 # Store XER

e stw r0, O0x1C (rl)

mfCTR r0 # Store CTR

e stw r0, 0x18 (rl)

Figure 1. Interrupt Handler Prolog

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

Freescale Semiconductor 3

Instruction Descriptions

The new VLE instructions allow groups of volatile registers to be saved and restored to the stack using a
single instruction. This reduces the number of instructions required and the time taken to save or restore
all the volatile registers. Table 4 describes how the new VLE instructions relate to the groups of volatile

registers.

Table 4. Instruction Overview

Instruction Description Registers Written / Read

e_ldmvgprw Load multiple volatile general purpose ro, r3:r12
registers (GPR)

e_stmvgprw Store multiple volatile general purpose ro, r3:r12
registers (GPR)

e_ldmvsprw Load multiple volatile special purpose CR, LR, CTR, and XER
registers (SPR)

e_stmvsprw Store multiple volatile special purpose CR, LR, CTR, and XER
registers (SPR)

e_ldmvsrrw Load multiple volatile save and restore SRRO, SRR1
registers (SSR)

e_stmvsrrw Store multiple volatile save and restore |SRRO, SRR1
registers (SSR)

e_ldmvcsrrw Load multiple volatile critical save and CSRRO0, CSRR1
restore registers (CSSR)

e_stmvesrrw Store multiple volatile critical save and CSRRO0, CSRR1
restore registers (CSSR)

e_ldmvdsrrw Load multiple volatile debug save and DSRRO0, DSRR1
restore registers (DRRR)

e_stmvdsrrw Store multiple volatile debug save and DSRRO0, DSRR1
restore registers (DSSR)

Figure 2 illustrates how these new instructions are implemented in an interrupt handler prolog.

e stmvsrrw 0x04 (rl)
e stmvsprw 0x38 (rl)
wrteei

e stmvgprw 0x0C (rl)

Store SRRs (SRRO,

=

enabling EE)
Store SRRs

Set MSRI[EE]=1

Store volatile GPRs

(CR, LR, CTR, XER)

SRR1) (must be done before

(RO, R3-R12)

Figure 2. Interrupt Handler Prolog Using New Instructions

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

Freescale Semiconductor

5

5.1

Instruction Listings

Load Multiple Volatile GPR Word

Instruction Listings

e_lmvgprw |D8(RA)ot (D8-mode)
000110 ooooo‘ RA ‘ 00010000‘ D8
0 6 11 16 24 31

if RA=0 then
else

GPR(r0) 32:63
EA €< (EA+4)

r <« 3
do while r <

EA ¢ EXTS(D8)
EA < (GPR(RA)+EXTS(D8))

« MEM(EA, 4)

12

GPR(r) 35,63 € MEM(EA, 4)

EA ¢« (EA,4)
r € r + 1

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the DS instruction field.

Bits 32:63 of registers GPR(RO0), and GPR(R3) through GPR(12) are loaded from n consecutive words in
storage starting at address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special registers altered: None

5.2

Store Multiple Volatile GPR Word

e_stmvgprw D8(RA)o (D8-mode)
000110 ‘ooooo‘ RA |ooo1ooo1| D8
0 6 11 16 24 31

if RA=0 then
else

MEM (EA, 4) <
EA <« (EA+4)

R « 3

do while r <
MEM (EA, 4) €
r € r+l

EA <« (EA+4)

EA <« EXTS (D8)
EA < (GPR(RA)+EXTS (D8))

GPR(r0)32:63

12
GPR(r) 32:63

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

Freescale Semiconductor

Instruction Listings

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the DS instruction field.

Bits 32:63 of registers GPR(RO0), and GPR(R3) through GPR(12) are stored in n consecutive words in
storage starting at address EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly
undefined.

Special registers altered: None

5.3 Load Multiple Volatile SPR Word

e_Imvsprw D8(RA) (D8-mode)
000110 ‘00001‘ RA |ooo1oooo‘ D8
0 6 1 16 24 31

if RA=0 then EA <« EXTS (D8)
else EA & (GPR(RA)+EXTS (D8))

CR35.¢3 € MEM(ER, 4)
EA & (EA+4)

LR3p.63 € MEM(EA, 4)
EA & (EA+4)

CTR3,.¢3 € MEM(EA,4)
EA & (EA+4)

XER3,.63 €< MEM(EA, 4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers CR, LR, CTR, and XER are loaded from n consecutive words in storage starting at
address EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly
undefined.

Special registers altered: CR, LR, CTR, XER

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

6 Freescale Semiconductor

Instruction Listings

5.4 Store Multiple Volatile SPR Word

e_stmvsprw D8(RA)o (D8-mode)
000110 ‘00001‘ RA ‘00010001‘ D8
0 6 11 16 24 31

if RA=0 then EA ¢« EXTS(D8)
else EA < (GPR(RA)+EXTS(D8))

MEM (EA, 4) € CRs3j.¢3
EA < (EA+4)

MEM (EA, 4) € LRs3,.¢3
EA & (EA+4)

MEM (EA, 4) € CTR35.43
EA & (EA+4)

MEM (EA, 4) € XER5,.q5

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the DS instruction field.

Bits 32:63 of registers CR, LR, CTR, and XER are stored in n consecutive words in storage starting at
address EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly
undefined.

Special registers altered: None

5.5 Load Multiple Volatile SRR Word

e_Imvsrrw DB(RA)o (D8-mode)
000110 ‘00100‘ RA ‘00010000‘ D8
0 6 1 16 24 31

if RA=0 then EA <« EXTS(D8)
else EA ¢ (GPR(RA)+EXTS (D8))

SRR032:63 < MEM(EA,4)
EA ¢« (EA+4)
SRR13,.¢3 € MEM(EA,4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the DS instruction field.

Bits 32:63 of registers SRR0O and SRR1 are loaded from consecutive words in storage starting at address
EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly
undefined.

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

Freescale Semiconductor 7

V¥ ¢
i

Instruction Listings

Special registers altered: SRR0O, SRR1

5.6 Store Multiple Volatile SRR Word

e_stmvsrrw DB(RA)o (D8-mode)
000110 ‘00100‘ RA poo1ooo1‘ D8
0 6 11 16 24 31

if RA=0 then EA ¢« EXTS(D8)
else EA < (GPR(RA)+EXTS(D8))

MEM (EA, 4) < SRRO35.43

EA < (EA+4)
MEM (EA,4) € SRR1s3j.e3

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers SRR0O and SRR1 are stored in consecutive words in storage starting at address EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly
undefined.

Special registers altered: None

5.7 Load Multiple Volatile CSRR Word

e_Imvesrrw D8(RA) oo (D8-mode)
000110 ‘00101‘ RA poo1oooo‘ D8
0 6 1 16 24 31

if RA=0 then EA <« EXTS(D8)
else EA & (GPR(RA)+EXTS (D8))

CSRRO3,.¢3 ¢ MEM(ER,4)
EA < (EA+4)
CSRR1s3,,¢3 ¢ MEM(ER, 4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the DS instruction field.

Bits 32:63 of registers CSRR0 and CSRR1 are loaded from consecutive words in storage starting at
address EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly
undefined.

Special registers altered: CSRR0, CSRR

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

8 Freescale Semiconductor

Instruction Listings

5.8 Store Multiple Volatile CSRR Word

e_stmvesrrw DB(RA)o (D8-mode)
000110 ‘00101‘ RA poo1ooo1‘ D8
0 6 11 16 24 31

if RA=0 then EA ¢« EXTS(D8)
else EA < (GPR(RA)+EXTS(D8))

MEM (EA, 4) €< CSRR032:63
EA & (EA+4)
MEM (EA,4) ¢ CSRR132:63

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers CSRR0O and CSRR1 are stored in consecutive words in storage starting at address
EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly
undefined.

Special registers altered: None

5.9 Load Multiple Volatile DSRR Word

e_Imvdsrrw D8(RA) . . . oot (D8-mode)
000110 ‘00110‘ RA poo1oooo‘ D8
0' 6 11 16 24 31

if RA=0 then EA ¢« EXTS(D8)
else EA < (GPR(RA)+EXTS(D8))

DSRRO5,.45 < MEM(EA, 4)
EA ¢« (EA+4)
DSRR13,.¢45 ¢« MEM(EA, 4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the DS instruction field.

Bits 32:63 of registers DSRR0O and DSRR1 are loaded from consecutive words in storage starting at
address EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly
undefined.

Special registers altered: DSRR0, DSRR1

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

Freescale Semiconductor 9

|
y

'
A

Revision history

5.10 Store Multiple Volatile DSRR Word

e_stmvdsrrw DB(RA) oo (D8-mode)
000110 ‘00110‘ RA ‘00010001‘ D8
0 6 11 16 24 31
if RA=0 then EA < EXTS (D8)
else EA ¢« (GPR(RA)+EXTS (D8))
MEM (EA, 4) < DSRRO3,.¢3
EA <« (EA+4)
MEM (EA, 4) € DSRR1s,.¢3

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended

value of the D8 instruction field.

Bits 32:63 of registers DSRRO and DSRR1 are stored in consecutive words in storage starting at address

EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results are boundedly

undefined.

Special registers altered: None

6 Revision history

Table 5. Changes made April 2012

Section Description
Front page Add SafeAssure branding.
1 Add Qorivva branding.
Back page Apply new back page format.

1 No substantive changes were made to the content of this document; therefore the revision number was not

incremented.

New VLE Instructions for Improving Interrupt Handler Efficiency, Rev. 0

10

Freescale Semiconductor

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Document Number: EB696
Rev. 0
07/2008

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,
Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,
QorlQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,
CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorlQ Qonverge, QUICC
Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are
trademarks of Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. The Power Architecture and Power.org
word marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org.

© 2008 Freescale Semiconductor, Inc.

BUILT ON

L /A

> freescale"

	1 Introduction
	2 Devices Affected by New Instructions
	3 Instruction Operation Codes
	4 Instruction Descriptions
	5 Instruction Listings
	5.1 Load Multiple Volatile GPR Word
	5.2 Store Multiple Volatile GPR Word
	5.3 Load Multiple Volatile SPR Word
	5.4 Store Multiple Volatile SPR Word
	5.5 Load Multiple Volatile SRR Word
	5.6 Store Multiple Volatile SRR Word
	5.7 Load Multiple Volatile CSRR Word
	5.8 Store Multiple Volatile CSRR Word
	5.9 Load Multiple Volatile DSRR Word
	5.10 Store Multiple Volatile DSRR Word

	6 Revision history

