
Page 1 of 9

Technical Note TN270

Converting Projects for ColdFire V1 to
CodeWarrior Microcontrollers 6.3

This document contains following topics:

• Terms and Abbreviations

• Libraries

• Access Include Paths D:\Projects

• Librarian

• Parameter Calling Convention

• Assembly Function Declarations and Definitions

• EWL Memory Allocation Scheme

• Additional Information

Terms and Abbreviations

The following terms and abbreviations are used in this document:

• MSL - Main Standard Libraries

• EWL - Embedded Warrior Libraries

• MCU 6.2 - Refers to CodeWarrior Development Studio for Microcontrollers, Version 6.2

• MCU 6.3 - Refers to CodeWarrior Development Studio for Microcontrollers, Version 6.3

Libraries

Embedded Warrior Libraries (EWL) introduces a new library set aiming at reducing the memory footprint
taken by IO operations and introduces a simpler memory allocator. The IO operations are divided in three
categories: printing, scanning and file operations.

The printing and scanning formatters for EWL are grouped in an effort to provide only the support required
for the application:

int - integer and string processing

int_FP - integer, string and floating point

int_LL - integer (including long long) and string

int_FP_LL - all but wide chars

c9x - all including wide char

The buffered IO can be replaced by raw IO, this works solely when printf and scanf are used to perform
IO, all buffering is bypassed and writing direct to the device is used. EWL libraries contain prebuilt
versions for all formatters and IO modes. Selecting a model combination enables correct compiling and
linking. The EWL layout for ColdFire is built per core architecture. It is composed of:

Page 2 of 9

Technical Note TN270

libm.a - math support (c9x or not)

libc.a - non c9x std C libs

libc99.a - c9x libs

librt.a - runtime libraries

libc++.a - non-c9x matching c++ libraries

libstdc++.a - c9x/c++ compliant libs

fp_coldfire.a - FPU emulation libraries

Selecting an EWL model for the libraries frees the user from adding libraries to the project, the linker will
determine from the settings the correct library set, these settings are: processor, pid/pic, hard/soft FPU. The
process of selecting a model is explained in the Librarian section below. Although the library names are
known to the toolset their location is not.

Access Include Paths D:\Projects

The "System Access Paths" point to code in MSL. These have to be changed to point to EWL. The new
system access paths are (compiler relative & recursive).

{Compiler}\ColdFire_Support\ewl\EWL_C

{Compiler}\ColdFire_Support\ewl\EWL_C++

{Compiler}\ColdFire_Support\ewl\EWL_Runtime

{Compiler}\ColdFire_Support\ewl\lib

NOTE These access path changes are done automatically during Project
conversion by the IDE, when opening a project that was built using MCU
6.2.

Page 3 of 9

Technical Note TN270

Figure 1.1 Converter Message

NOTE When opening a MCU 6.2 project, with target CF v1, using MCU 6.3 after
conversion there are some messages that the obsolete library was
removed.

Figure 1.2 Project Messages

Librarian

The Librarian panel allows the user to select a "Library model" from a pre-defined list of available models.
The lists of available models are:

“ewl”

“ewl_c++”

“c9x”

Page 4 of 9

Technical Note TN270

“c9x_c++”

The "ewl" and "ewl_c++" have a smaller memory footprint, while the "c9x" and "c9x_c++" models are
fully C99 compliant. The "ewl' and "ewl_c++" models have relevant sub-models that allow the user to pick
the desired print and scan formatters and the desired IO scheme. The "c9x" and "c9x_c++" models do not
have sub-models.

Figure 1.3 Console External RAM Settings - Librarian

For the print and scan sub-models the available choices and the functionality that they cover are listed in
the "Libraries" section above.

When choosing the "c9x" or the "c9x_c++" models, the sub-model drop-downs are disabled, as they do
not apply to these models.

The "Control libraries" check-box, determines whether or not the EWL mechanism of library selection will
be used by the build tools (compiler and linker). When this check-box is not selected, the user has to
manually add the required library files to the project.

The user can select the relevant library files by choosing the correct architecture (CF v1) and whether or
not FPU and PIC/PID is used.

Page 5 of 9

Technical Note TN270

NOTE When opening a MCU 6.2 project, with target CF v1, using MCU 6.3 the
converter, chooses the "ewl" model with the print and scan formatter set to
"int_FP" and "Console IO" set to "buffered".

Parameter Calling Convention

The parameter passing affects space and time performance. The best performance for both occurs when
selecting the register passing ABI. The default parameter passing convention is Register, and it can not be
changed from the "ColdFire Processor" panel.

Figure 1.4 Console External RAM Settings - ColdFire Processor

NOTE When using the MCU 6.3 product the "Parameter Passing" drop down, in
the "ColdFire Processor" panel is disabled and fixed to "Register".

Other calling conventions are available through one of the following methods:

Page 6 of 9

Technical Note TN270

1. Use declspec for function prototypes, also described in the “Declaration Specifications”
section of the ColdFire V1 Build Tools Reference Manual for Microcontrollers:

asm void __declspec(compact_abi) check_CC(unsigned long)

{

}

2. Use pragma to specify the calling convention for function defined from:

#pragma compact_abi

asm void check_CC(unsigned long)

{

}

Assembly Function Declarations and Definitions

For all functions in the application that are pure assembly functions, the function definition and
declaration(s) should contain a "declspec" qualifier that defines the parameter passing convention. For
example,

asm void __declspec(register_abi) TrapHandler_printf(void)

Without this declspec, following warning appears.

WARNING! “possible abi conflict, use __declspec(register_abi):”
generated by the compiler for all such assembly only functions.

Page 7 of 9

Technical Note TN270

Figure 1.5 Asm function warning if the declaration (definition) doesn't contain "declspec" qualifier

Please note while converting CF v1 projects for MCU 6.2 to MCU 6.3 the user has to modify their code
such that the assembly functions contain the "__declspec" qualifier. Also if the function contains code
that assumes a different calling convention, and is called from a "C" function, for example,

asm void mcf5xxx_wr_vbr(unsigned long) { /* Set VBR */

move.14(SP),D0

 movec d0,VBR

nop

rts

}

The code should be modified to use the "Register" parameter passing convention. In this example, the line
move.14(SP),D0 must be removed.

EWL Memory Allocation Scheme

EWL supports an improved memory allocation scheme. The memory allocation scheme in EWL requires
the following symbols to be defined in the LCF file: ___mem_limit and ___stack_safety.

__stack_safety is the size of the cushion between the stack and the heap.

Page 8 of 9

Technical Note TN270

In the example below, it is set to 16 bytes, which is typical.

___mem_limit = ___HEAP_END;

___stack_safety = 16;

These symbols can be added to the LCF file right after the definition of ___HEAP_END.

Additional Information

See the CodeWarrior Development Studio for Microcontroller Architectures 6.3 Release Notes and
documentation for more information.

Visit http://www.freescale.com/support for additional assistance.

Document Number: TN270 Rev. B

14 May 2010

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Flexis and Processor Expert are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of their respective
owners.

© 2010 Freescale Semiconductor, Inc. All rights reserved.

	Terms and Abbreviations
	Libraries
	Access Include Paths D:\Projects
	Librarian
	Parameter Calling Convention
	Assembly Function Declarations and Definitions
	EWL Memory Allocation Scheme
	Additional Information

