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Converting Projects for ColdFire V1 to 
CodeWarrior Microcontrollers 6.3

This document contains following topics:

• Terms and Abbreviations

• Libraries

• Access Include Paths D:\Projects

• Librarian

• Parameter Calling Convention

• Assembly Function Declarations and Definitions

• EWL Memory Allocation Scheme

• Additional Information

Terms and Abbreviations

The following terms and abbreviations are used in this document:

• MSL - Main Standard Libraries

• EWL - Embedded Warrior Libraries

• MCU 6.2 - Refers to CodeWarrior Development Studio for Microcontrollers, Version 6.2

• MCU 6.3 - Refers to CodeWarrior Development Studio for Microcontrollers, Version 6.3

Libraries

Embedded Warrior Libraries (EWL) introduces a new library set aiming at reducing the memory footprint 
taken by IO operations and introduces a simpler memory allocator. The IO operations are divided in three 
categories: printing, scanning and file operations.

The printing and scanning formatters for EWL are grouped in an effort to provide only the support required 
for the application:

int - integer and string processing

int_FP - integer, string and floating point

int_LL - integer (including long long) and string

int_FP_LL - all but wide chars

c9x - all including wide char

The buffered IO can be replaced by raw IO, this works solely when printf and scanf are used to perform 
IO, all buffering is bypassed and writing direct to the device is used. EWL libraries contain prebuilt 
versions for all formatters and IO modes. Selecting a model combination enables correct compiling and 
linking. The EWL layout for ColdFire is built per core architecture. It is composed of:
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libm.a - math support (c9x or not)

libc.a - non c9x std C libs

libc99.a - c9x libs

librt.a - runtime libraries

libc++.a - non-c9x matching c++ libraries

libstdc++.a - c9x/c++ compliant libs

fp_coldfire.a - FPU emulation libraries

Selecting an EWL model for the libraries frees the user from adding libraries to the project, the linker will 
determine from the settings the correct library set, these settings are: processor, pid/pic, hard/soft FPU. The 
process of selecting a model is explained in the Librarian section below. Although the library names are 
known to the toolset their location is not.

Access Include Paths D:\Projects

The "System Access Paths" point to code in MSL. These have to be changed to point to EWL. The new 
system access paths are (compiler relative & recursive).

{Compiler}\ColdFire_Support\ewl\EWL_C

{Compiler}\ColdFire_Support\ewl\EWL_C++

{Compiler}\ColdFire_Support\ewl\EWL_Runtime

{Compiler}\ColdFire_Support\ewl\lib

NOTE These access path changes are done automatically during Project 
conversion by the IDE, when opening a project that was built using MCU 
6.2.
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Figure 1.1  Converter Message

NOTE When opening a MCU 6.2 project, with target CF v1, using MCU 6.3 after 
conversion there are some messages that the obsolete library was 
removed.

Figure 1.2  Project Messages

Librarian

The Librarian panel allows the user to select a "Library model" from a pre-defined list of available models.  
The lists of available models are:

“ewl”

“ewl_c++”

“c9x”
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“c9x_c++”

The "ewl" and "ewl_c++" have a smaller memory footprint, while the "c9x" and "c9x_c++" models are 
fully C99 compliant. The "ewl' and "ewl_c++" models have relevant sub-models that allow the user to pick 
the desired print and scan formatters and the desired IO scheme. The "c9x" and "c9x_c++" models do not 
have sub-models.

Figure 1.3  Console External RAM Settings - Librarian

For the print and scan sub-models the available choices and the functionality that they cover are listed in 
the "Libraries" section above.

When choosing the "c9x" or the "c9x_c++" models, the sub-model drop-downs are disabled, as they do 
not apply to these models.

The "Control libraries" check-box, determines whether or not the EWL mechanism of library selection will 
be used by the build tools (compiler and linker). When this check-box is not selected, the user has to 
manually add the required library files to the project. 

The user can select the relevant library files by choosing the correct architecture (CF v1) and whether or 
not FPU and PIC/PID is used.
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NOTE When opening a MCU 6.2 project, with target CF v1, using MCU 6.3 the 
converter, chooses the "ewl" model with the print and scan formatter set to 
"int_FP" and "Console IO" set to "buffered".

Parameter Calling Convention

The parameter passing affects space and time performance. The best performance for both occurs when 
selecting the register passing ABI. The default parameter passing convention is Register, and it can not be 
changed from the "ColdFire Processor" panel. 

Figure 1.4  Console External RAM Settings - ColdFire Processor

NOTE When using the MCU 6.3 product the "Parameter Passing" drop down, in 
the "ColdFire Processor" panel is disabled and fixed to "Register".

Other calling conventions are available through one of the following methods:
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1. Use declspec for function prototypes, also described in the “Declaration Specifications” 
section of the ColdFire V1 Build Tools Reference Manual for Microcontrollers:

asm void __declspec(compact_abi) check_CC(unsigned long) 

{

    ....

}

2. Use pragma to specify the calling convention for function defined from:

#pragma compact_abi

asm void check_CC(unsigned long) 

{ 

   ....

}

Assembly Function Declarations and Definitions

For all functions in the application that are pure assembly functions, the function definition and 
declaration(s) should contain a "declspec" qualifier that defines the parameter passing convention. For 
example, 

asm void __declspec(register_abi) TrapHandler_printf(void)

Without this declspec, following warning appears.

WARNING! “possible abi conflict, use __declspec(register_abi):” 
generated by the compiler for all such assembly only functions.
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Figure 1.5  Asm function warning if the declaration (definition) doesn't contain "declspec" qualifier

Please note while converting CF v1 projects for MCU 6.2 to MCU 6.3 the user has to modify their code 
such that the assembly functions contain the "__declspec" qualifier. Also if the function contains code 
that assumes a different calling convention, and is called from a "C" function, for example,

asm void mcf5xxx_wr_vbr(unsigned long) { /* Set VBR */

move.14(SP),D0

  movec d0,VBR 

nop

rts

}

The code should be modified to use the "Register" parameter passing convention. In this example,  the line 
move.14(SP),D0 must be removed.

EWL Memory Allocation Scheme

EWL supports an improved memory allocation scheme. The memory allocation scheme in EWL requires 
the following symbols to be defined in the LCF file: ___mem_limit and ___stack_safety. 

__stack_safety is the size of the cushion between the stack and the heap. 
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In the example below, it is set to 16 bytes, which is typical.

___mem_limit = ___HEAP_END;

___stack_safety = 16;

These symbols can be added to the LCF file right after the definition of ___HEAP_END.

Additional Information

See the CodeWarrior Development Studio for Microcontroller Architectures 6.3 Release Notes and 
documentation for more information.

Visit http://www.freescale.com/support for additional assistance.
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