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1. Introduction 

1.1 Summary 
This application note documents the mathematics for precision accelerometer calibration 
used by the NXP Sensor Fusion Library. The functions are listed in Table 1 and located 
in the sensor fusion file precisionAccelerometer.c. These functions perform the optional 
high precision calibration of an accelerometer sensor for gain, offset, cross-axis and 
rotation errors introduced during the mounting of the accelerometer on the circuit board. 

The techniques described here achieve high precision without the need for expensive 
test equipment. The mathematics is closely related to that developed for the calibration of 
the magnetometer sensor in AN5019 “Magnetic Calibration Algorithms” and proofs are 
reused from that document where possible. 

Sections 3 to 4 contain the mathematics for fitting three accelerometer calibration models 
of increasing complexity. Section 6 contains example error surface plots showing the 
results of applying the algorithms to the NXP FXOS8700 accelerometer. Section 7 
documents the calculation of a rotation matrix to ensure zero tilt angle at the 
measurement taken when the product is level. 

 

1.2 Terminology 
 
Symbol Definition 
Left superscript 𝐺𝐺  Denotes that the measurement is in the global frame: 𝑮𝑮𝑘𝑘 

𝐺𝐺  

Left superscript 𝑆𝑆  Denotes that the measurement is in the sensor frame: 𝑮𝑮𝑘𝑘 
𝑆𝑆  

𝑨𝑨 Ellipsoid matrix: 𝑨𝑨 = (𝑾𝑾−1)𝑇𝑇𝑾𝑾−1 

𝑔𝑔 Magnitude of the gravity vector 𝒈𝒈0 
𝐺𝐺  with magnitude 1 g by definition. 

𝒈𝒈0 
𝐺𝐺 , 𝒈𝒈0 

𝑆𝑆  Gravity vector in the global and sensor frames. 

𝑮𝑮𝑘𝑘 
𝐺𝐺 , 𝑮𝑮𝑘𝑘 

𝑆𝑆  Uncalibrated accelerometer measurement 𝑘𝑘 in the global and sensor 
frames. 

𝑮𝑮𝑐𝑐,𝑘𝑘 
𝐺𝐺 , 𝑮𝑮𝑐𝑐,𝑘𝑘 

𝑆𝑆  Calibrated accelerometer measurement 𝑘𝑘 in the global and sensor frames. 

𝑀𝑀 Number of measurements used in calibration fit 

𝑟𝑟𝑘𝑘 Error residual in measurement 𝑘𝑘 

𝑹𝑹 Rotation matrix defining the product orientation. 

∆𝑹𝑹 Rotation matrix defining the orientation of the accelerometer relative to the 
end product. 

𝑽𝑽 Accelerometer calibration offset vector 

𝑾𝑾 Accelerometer calibration gain matrix 

𝑿𝑿 Matrix of accelerometer measurements 

𝜷𝜷 Solution vector 
 

http://www.nxp.com/products/sensors/nxp-sensor-fusion


 

 

NXP Semiconductors AN5286 
 Precision Accelerometer Calibration 

AN5286 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved. 

Application note Rev. 1.0 — 21 June 2016 4 of 20 

1.3 Software Functions 

Table 1. Sensor Fusion software functions 
Functions Description Reference 

void fComputeAccelCalibration4(struct 
AccelBuffer *pthisAccelBuffer, struct 
AccelCalibration *pthisAccelCal, 
struct AccelSensor* pthisAccel) 

Determines the 
coefficients of the 4 
parameter accelerometer 
calibration model. 

4 

void fComputeAccelCalibration7(struct 
AccelBuffer *pthisAccelBuffer, struct 
AccelCalibration *pthisAccelCal, 
struct AccelSensor* pthisAccel) 

Determines the 
coefficients of the 7 
parameter accelerometer 
calibration model. 

5 

void fComputeAccelCalibration10(struct 
AccelBuffer *pthisAccelBuffer, struct 
AccelCalibration *pthisAccelCal, 
struct AccelSensor* pthisAccel) 

Determines the 
coefficients of the 10 
parameter accelerometer 
calibration model. 

6 

 

2. Differences From Magnetic Calibration 
 
The four-, seven- and ten-element accelerometer calibration models described in this 
document have two minor differences from the equivalent four-, seven- and ten-element 
magnetic calibration models described in AN5019 “Magnetic Calibration Algorithms”. 

The first difference is that the geomagnetic field strength 𝐵𝐵 varies between 27 µT and 
65 µT (more than 240 %) over the earth's surface whereas the gravitational field strength 
𝑔𝑔 varies by just 0.7 %. The magnetic calibration algorithms therefore solve for 𝐵𝐵 on the 
assumption that the soft iron gain matrix has unit determinant implying no shielding or 
amplification of the geomagnetic field. The accelerometer calibration models, in contrast, 
fit the local gravitational field to have magnitude exactly 1 gravity by scaling the gain 
matrix determinant appropriately. 

The second difference is that the geomagnetic inclination angle 𝛿𝛿 varies from –90o at the 
south geomagnetic pole to +90o at the north geomagnetic pole and is unknown without 
knowledge of one's location. The gravity vector in the global frame 𝒈𝒈0𝐺𝐺  always points 
exactly downwards at all locations and defines the local zero tilt plane. It is therefore 
straightforward in the accelerometer calibrations algorithms to define one measurement 
as representing flat and computing the rotation correction matrix that will force zero tilt 
angle irrespective of the mounting angle of the accelerometer in the final product. This is 
documented in Section 7. 

The application of the algorithms also differs between the magnetic and accelerometer 
calibration cases. The magnetometer measurements are unaffected by acceleration and 
can therefore be taken while the product is moving and rotating. Typically several 
hundred magnetometer measurements are used to compute the magnetic calibration. 
The accelerometer, in contrast, is sensitive to acceleration as well as the applied 
gravitational field and so its calibration measurements must be taken when the 
accelerometer is stationary, isolated from vibration and the measurements then averaged 
to minimize measurement noise. Typically, 12 high-quality measurements are used to 
compute the precision accelerometer offset, gain and cross-axis calibration corrections. 
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Both the magnetic and accelerometer calibration algorithms have the tremendous 
advantage that they use sensor measurements taken at random, but different, 
orientations and do not require mechanical jigs or other techniques to force specific 
measurement orientations. A very high-quality accelerometer calibration can therefore be 
performed easily with no specialist equipment. 

3. Four Parameter Accelerometer Calibration Model 

3.1 Derivation of the Least Squares Solution 
This section documents the accelerometer calibration algorithm implemented in function 
fComputeAccelCalibration4 which calculates the four parameters comprising i) 
the accelerometer offset vector 𝑽𝑽 and ii) a single gain correction factor 𝑊𝑊 applied to all 
three accelerometer axes. 

The actual accelerometer measurement 𝑮𝑮𝑘𝑘𝑆𝑆  is modeled in terms of the true calibrated 
measurement 𝑮𝑮𝑐𝑐,𝑘𝑘

𝑆𝑆  as: 
 

𝑮𝑮𝑘𝑘𝑆𝑆 = 𝑾𝑾∆𝑹𝑹 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 + 𝑽𝑽 = 𝑊𝑊∆𝑹𝑹 𝑮𝑮𝑐𝑐,𝑘𝑘

𝑆𝑆 + 𝑽𝑽 (1) 

 
The term 𝑊𝑊 models a single gain correction term common to all three axes and 𝑽𝑽 models 
the accelerometer offsets in the three axes. For this model, the gain matrix 𝑾𝑾 = 𝑊𝑊𝑰𝑰: 
 

𝑾𝑾 = 𝑊𝑊𝑰𝑰 = �
𝑊𝑊 0 0
0 𝑊𝑊 0
0 0 𝑊𝑊

� (2) 

 
The left superscript 𝑆𝑆 denotes that the measurements are defined in the sensor frame of 
reference. 

The rotation matrix ∆𝑹𝑹 models the tilt rotation error of the accelerometer inside the final 
product. The ∆𝑹𝑹 notation implies that the tilt rotation error is small but this need not be 
the case and the tilt error could be 90o or 180o if the accelerometer circuit board is 
mounted at right angles or inverted in the final product. 

If the calibration coefficients are known then the calibrated measurement 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆  is 

obtained by inverting equation (1): 
 

𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 = (∆𝑹𝑹)𝑇𝑇𝑊𝑊−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽� (3) 

 
In the absence of acceleration, equation (1) for the three coordinate systems can be 
written as: 
 

𝑮𝑮𝑘𝑘𝑆𝑆 = 𝑊𝑊∆𝑹𝑹 𝒈𝒈0𝑆𝑆 + 𝑽𝑽 = 𝑊𝑊∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 + 𝑽𝑽 (𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑊𝑊𝐴𝐴 8) (4) 

𝑮𝑮𝑘𝑘𝑆𝑆 = −𝑊𝑊∆𝑹𝑹 𝒈𝒈0𝑆𝑆 + 𝑽𝑽 = −𝑊𝑊∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 + 𝑽𝑽 (𝐴𝐴𝑊𝑊𝑊𝑊𝑟𝑟𝐴𝐴𝑊𝑊𝑊𝑊) (5) 

 
The term 𝒈𝒈0𝑆𝑆 = 𝑹𝑹 𝒈𝒈0𝐺𝐺  is the downwards pointing gravity vector in the global frame 𝒈𝒈0𝐺𝐺  
rotated into the sensor frame by the product's orientation matrix 𝑹𝑹. This term therefore 
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represents the true applied gravitational stimulus on the accelerometer in the sensor 
frame assuming no physical acceleration. 

The reason for the differing signs in equations (4) and (5) is that: 
• the NED / Aerospace coordinate system is NED with the z axis pointing downwards 

whereas the Android and Windows 8 coordinate systems are ENU with the z axis 
pointing upwards 

• the NED / Aerospace and the Windows 8 coordinate systems are gravity positive 
whereas the Android coordinate system is acceleration positive. 

Both rotation matrices and the different sign conventions can be eliminated from 
equations (4) and (5) to give the accelerometer measurement locus for all three 
coordinate systems as: 
 

𝑊𝑊−2� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽�
𝑇𝑇
� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽� = �∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 �

𝑇𝑇
�∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 � = � 𝒈𝒈0𝐺𝐺 �

𝑇𝑇
𝑹𝑹𝑇𝑇(∆𝑹𝑹)𝑇𝑇∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 = 𝑔𝑔2 (6) 

 
where the gravitational field strength 𝑔𝑔 is defined as: 
 

𝑔𝑔 = � 𝒈𝒈0𝐺𝐺 � (7) 

 
If the accelerometer measurements are in units of gravity then 𝑔𝑔 = 1. 

Equation (6) models the locus of the accelerometer measurements 𝑮𝑮𝑘𝑘𝑆𝑆  as lying on the 
surface of a sphere with radius 𝑊𝑊𝑔𝑔 equal to 𝑊𝑊 in units of g with its center offset from the 
origin by 𝑽𝑽. 

The mathematics which follows derives the offset vector 𝑽𝑽 and gain term 𝑊𝑊 using an 
approach almost identical to that used for the four element magnetic calibration. The 
calculation of the rotation correction matrix ∆𝑹𝑹 is discussed in Section 7. 

The error residual 𝑟𝑟𝑘𝑘 for the k-th accelerometer measurement is defined in terms of the 
deviation of the calibrated measurement from the 1 g sphere as: 
 

𝑟𝑟𝑘𝑘 = 𝑊𝑊2 �� 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 �2 − 𝑔𝑔2� = �(∆𝑹𝑹)𝑇𝑇� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽��𝑇𝑇�(∆𝑹𝑹)𝑇𝑇� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽�� −𝑊𝑊2𝑔𝑔2 (8) 

= 𝑮𝑮𝑘𝑘𝑆𝑆 𝑇𝑇 𝑮𝑮𝑘𝑘𝑆𝑆 − 2 𝑮𝑮𝑘𝑘𝑆𝑆 𝑇𝑇𝑽𝑽 + 𝑽𝑽𝑇𝑇𝑽𝑽 −𝑊𝑊2𝑔𝑔2 (9) 

 
Equation (9) is identical to equation (64) in AN5019 “Magnetic Calibration Algorithms” 
with the term 𝑊𝑊𝑔𝑔 replacing the geomagnetic field strength 𝐵𝐵. The least squares solution 
from AN5019 “Magnetic Calibration Algorithms” can therefore be re-used without 
additional proof. 

The solution vector 𝜷𝜷 from 𝑀𝑀 accelerometer measurements is: 
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𝜷𝜷 = �

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3

� =

⎝

⎜
⎛

2𝑉𝑉𝑥𝑥
2𝑉𝑉𝑦𝑦
2𝑉𝑉𝑧𝑧

𝑊𝑊2𝑔𝑔2 − 𝑉𝑉𝑥𝑥2 − 𝑉𝑉𝑦𝑦2 − 𝑉𝑉𝑧𝑧2⎠

⎟
⎞

= (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒀𝒀 (10) 

 
where: 
 

𝑿𝑿𝑇𝑇𝑿𝑿 = �

⎝

⎜⎜
⎛

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 1 ⎠

⎟⎟
⎞𝑀𝑀−1

𝑘𝑘=0

 (11) 

𝑿𝑿𝑇𝑇𝒀𝒀 = �

⎝

⎜
⎜
⎜
⎛

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 � 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2 + 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2 + 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2�

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 � 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2 + 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2 + 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2�

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 � 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2 + 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2 + 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2�

� 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2 + 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2 + 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2� ⎠

⎟
⎟
⎟
⎞𝑀𝑀−1

𝑘𝑘=0

 (12) 

 

3.2 Offset Vector and Gain Matrix 
The solution for the offset vector 𝑽𝑽 and gain correction term 𝑊𝑊 in terms of the solution 
vector 𝜷𝜷 comes directly from equation (10) as: 
 

𝑽𝑽 = �
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� = �

1
2
� �

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
� (13) 

𝑊𝑊𝑔𝑔 = �𝛽𝛽3 + 𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 (14) 

 
The term 𝑔𝑔 in equation (14) ensures dimensional consistency between the left and right 
hand sides since 𝑊𝑊 is dimensionless. If the native units of gravities are used for the 
accelerometer measurements then 𝑔𝑔 = 1. 

4. Seven Parameter Magnetic Calibration Model 

4.1 Derivation of the Least Squares Solution 
This section documents the accelerometer calibration algorithm implemented in function 
fComputeAccelCalibration7 which is closely related to the corresponding 
seven parameter magnetic calibration function.  

The seven parameter magnetic calibration function performs an eigen-decomposition on 
a 7x7 measurement matrix to fit i) the three elements of the hard iron offset vector 𝑽𝑽 ii) 
the three diagonal gain elements of the soft iron gain matrix 𝑾𝑾 and iii) the geomagnetic 
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field strength 𝐵𝐵. Strictly speaking, the seven parameter magnetic calibration has six 
degrees of freedom, not seven, since the gain matrix 𝑾𝑾 is constrained to have unit 
determinant. 

The seven parameter accelerometer calibration model uses essentially identical 
mathematics to fit i) the three elements of the accelerometer offset vector 𝑽𝑽 and ii) the 
three diagonal elements of the accelerometer gain matrix 𝑾𝑾 to iii) the local gravitational 
field strength 𝑔𝑔. The gain matrix 𝑾𝑾 is not normalized to unit determinant because the 
gravitational field can be assumed to have magnitude of exactly 1 g. The accelerometer 
calibration model, therefore, also has six degrees of freedom but is also termed a 
seven-parameter model to emphasize the closeness with the seven parameter magnetic 
calibration model. 

The model for the actual sensor frame accelerometer measurement 𝑮𝑮𝑘𝑘𝑆𝑆  in terms of the 
true calibrated measurement 𝑮𝑮𝑐𝑐,𝑘𝑘

𝑆𝑆  is: 
 

𝑮𝑮𝑘𝑘𝑆𝑆 = 𝑾𝑾∆𝑹𝑹 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 + 𝑽𝑽 (15) 

 
The gain matrix 𝑾𝑾 is diagonal and can correct each of the three channel gains 
independently: 
 

𝑾𝑾 = �
𝑊𝑊𝑥𝑥𝑥𝑥 0 0

0 𝑊𝑊𝑦𝑦𝑦𝑦 0
0 0 𝑊𝑊𝑧𝑧𝑧𝑧

� (16) 

 
The calibrated measurement 𝑮𝑮𝑐𝑐,𝑘𝑘

𝑆𝑆  is obtained by inverting equation (15): 
 

𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 = (∆𝑹𝑹)𝑇𝑇𝑾𝑾−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽� (17) 

 
In the absence of acceleration, the applied stimulus is the gravity vector rotated into the 
sensor frame: 
 

𝑮𝑮𝑘𝑘𝑆𝑆 = 𝑾𝑾∆𝑹𝑹 𝒈𝒈0𝑆𝑆 + 𝑽𝑽 = 𝑾𝑾∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 + 𝑽𝑽 (𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑊𝑊𝐴𝐴 8) (18) 

𝑮𝑮𝑘𝑘𝑆𝑆 = −𝑾𝑾∆𝑹𝑹 𝒈𝒈0𝑆𝑆 + 𝑽𝑽 = −𝑾𝑾∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 + 𝑽𝑽 (𝐴𝐴𝑊𝑊𝑊𝑊𝑟𝑟𝐴𝐴𝑊𝑊𝑊𝑊) (19) 

 
The measurement locus for all three coordinate systems is: 
 
 

� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽�𝑇𝑇(𝑾𝑾−1)𝑇𝑇𝑾𝑾−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽� = � 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽�𝑇𝑇𝑨𝑨� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽� = 𝑔𝑔2 (20) 

 
Equation (20) defines an ellipsoid aligned along the Cartesian axes with axes determined 
by the ellipsoid matrix 𝑨𝑨 which is defined in the same manner as for magnetic calibration 
as: 
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𝑨𝑨 = (𝑾𝑾−1)𝑇𝑇𝑾𝑾−1 (21) 

 
The error residual 𝑟𝑟𝑘𝑘 for the 𝑘𝑘𝑡𝑡ℎ accelerometer measurement is defined in terms of the 
deviation of the calibrated measurement from the 1 g sphere as: 
 

𝑟𝑟𝑘𝑘 = � 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 �2 − 𝑔𝑔2 = �𝑾𝑾−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽��𝑇𝑇�𝑾𝑾−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽�� − 𝑔𝑔2 (22) 

= � 𝑮𝑮𝑘𝑘𝑆𝑆 �𝑇𝑇𝑨𝑨 𝑮𝑮𝑘𝑘𝑆𝑆 − 2� 𝑮𝑮𝑘𝑘𝑆𝑆 �𝑇𝑇𝑨𝑨𝑽𝑽 + 𝑽𝑽𝑇𝑇𝑨𝑨𝑽𝑽 − 𝑔𝑔2 (23) 

 
Equation (23) has identical form to equation (91) in AN5019 “Magnetic Calibration 
Algorithms” with 𝑔𝑔 replacing 𝐵𝐵 allowing the least squares solution vector 𝜷𝜷 to be defined 
as: 
 

𝜷𝜷 =

⎝

⎜
⎜
⎜
⎛

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3
𝛽𝛽4
𝛽𝛽5
𝛽𝛽6⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑧𝑧𝑧𝑧

−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥
−2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦
−2𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝑔𝑔2⎠

⎟
⎟
⎟
⎟
⎞

 (24) 

 

and determined as the eigenvector with smallest eigenvalue of the measurement 
matrix 𝑿𝑿𝑇𝑇𝑿𝑿 defined for 𝑀𝑀 measurements as: 
 

𝑿𝑿𝑇𝑇𝑿𝑿 = �

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 4

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 4

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 3
𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 4

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 3
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 3

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 3

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑀𝑀−1

𝑘𝑘=0

 (25) 

 

4.2 Offset Vector and Gain Matrix 
The ellipsoid fit matrix 𝑨𝑨 is obtained directly from the first three rows of the solution vector 
𝜷𝜷 in equation (24): 
 
 

𝑨𝑨 = �
𝐴𝐴𝑥𝑥𝑥𝑥 0 0

0 𝐴𝐴𝑦𝑦𝑦𝑦 0
0 0 𝐴𝐴𝑧𝑧𝑧𝑧

� = �
𝛽𝛽0 0 0
0 𝛽𝛽1 0
0 0 𝛽𝛽2

� (26) 

 
The eigenvector returned by the mathematical software is normalized but undetermined 
in sign and can be negated without invalidating the solution. If 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are negative 
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then the entire solution vector 𝜷𝜷 is first negated giving the equally valid eigenvector with 
the same minimum eigenvalue but pointing in the opposite direction. 

The solution for the inverse gain matrix 𝑾𝑾−1 in terms of the ellipsoid matrix 𝑨𝑨 is given by 
equation (21): 
 

𝑾𝑾−1 = √𝑨𝑨 = ��
𝐴𝐴𝑥𝑥𝑥𝑥 0 0

0 𝐴𝐴𝑦𝑦𝑦𝑦 0
0 0 𝐴𝐴𝑧𝑧𝑧𝑧

� = �
�𝛽𝛽0 0 0

0 �𝛽𝛽1 0
0 0 �𝛽𝛽2

� (27) 

 
The offset vector 𝑽𝑽 is given by equation (24) as: 
 

�
−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥
−2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦
−2𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

� = �
𝛽𝛽3
𝛽𝛽4
𝛽𝛽5
� ⇒ �

𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� =

⎝

⎜
⎜
⎜
⎛
�
−𝛽𝛽3
2𝐴𝐴𝑥𝑥𝑥𝑥

�

�
−𝛽𝛽4
2𝐴𝐴𝑦𝑦𝑦𝑦

�

�
−𝛽𝛽5
2𝐴𝐴𝑧𝑧𝑧𝑧

�⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛
�
−𝛽𝛽3
2𝛽𝛽0

�

�
−𝛽𝛽4
2𝛽𝛽1

�

�
−𝛽𝛽5
2𝛽𝛽2

�
⎠

⎟
⎟
⎟
⎞

 (28) 

 
The offset vector 𝑽𝑽 is unaffected by the negation of the solution vector 𝜷𝜷 since both 
numerator and denominator terms in equation (28) are negated with cancelling effect. 

The last row of equation (24) gives the gravitational field strength consistent 𝑔𝑔 with the 
computed gain matrix 𝑾𝑾: 
 

𝑔𝑔 = �𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝛽𝛽6 (29) 

 
At this point the solution is self-consistent between the gain matrix 𝑾𝑾 and the 
gravitational field strength 𝑔𝑔 in the sense that the solution could state that the 
approximately 1 g accelerometer measurements result from being on the moon with one 
sixth of a gravity accompanied by an accelerometer gain error in 𝑾𝑾 of 6x. 

The final step in the seven-parameter accelerometer calibration algorithm therefore 
scales the gain matrix 𝑾𝑾 to give 𝑔𝑔 = 1 exactly (assuming the measurements are in units 
of gravities) as: 
 

𝑾𝑾−1 ⟵ �
1
𝑔𝑔
�𝑾𝑾−1 =

⎝

⎛ 1

�𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝛽𝛽6⎠

⎞𝑾𝑾−1 (30) 

 
This is slightly different from the final step in the magnetic calibration algorithms which 
set the ellipsoid matrix 𝑨𝑨 to have unit determinant and scales the fitted geomagnetic field 
strength 𝐵𝐵 by the equivalent amount. 
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5. Ten Parameter Accelerometer Calibration Model 

5.1 Derivation of the Least Squares Solution 
This section documents the accelerometer calibration algorithm implemented in function 
fComputeAccelCalibration10 which is closely related to the corresponding 
ten-parameter magnetic calibration function. 

The ten-parameter magnetic calibration function performs an eigen-decomposition on a 
10x10 measurement matrix to fit i) the three elements of the hard iron offset vector 𝑽𝑽 ii) 
the three diagonal gain elements of the soft iron gain matrix 𝑾𝑾 iii) the three symmetric 
off-diagonal cross-axis elements of 𝑾𝑾 and iv) the geomagnetic field strength 𝐵𝐵. Strictly 
speaking, the ten-parameter magnetic calibration has nine degrees of freedom, not ten, 
since the gain matrix 𝑾𝑾 is constrained to have unit determinant. 

The ten-parameter accelerometer calibration model fits i) the three elements of the 
accelerometer offset vector 𝑽𝑽 ii) the three diagonal gain elements of the gain matrix 𝑾𝑾 iii) 
the three off-diagonal cross-axis terms in 𝑾𝑾 and iv) the local gravitational field strength 𝑔𝑔. 
The gain matrix 𝑾𝑾 is not normalized to unit determinant because the gravitational field if 
fitted to have magnitude of exactly 1 g. The accelerometer calibration model therefore 
also has nine degrees of freedom but is also termed a ten-parameter model to 
emphasize the closeness with the ten-parameter magnetic calibration model. 

The model for the actual sensor frame accelerometer measurement 𝑮𝑮𝑘𝑘𝑆𝑆  in terms of the 
true sensor frame calibrated measurement 𝑮𝑮𝑐𝑐,𝑘𝑘

𝑆𝑆  is: 
 

𝑮𝑮𝑘𝑘𝑆𝑆 = 𝑾𝑾∆𝑹𝑹 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 + 𝑽𝑽 (31) 

 
The gain matrix 𝑾𝑾 is symmetric in the 10 parameter model with six independent 
coefficients: 
 

𝑾𝑾 = �
𝑊𝑊𝑥𝑥𝑥𝑥 𝑊𝑊𝑥𝑥𝑦𝑦 𝑊𝑊𝑥𝑥𝑧𝑧
𝑊𝑊𝑥𝑥𝑦𝑦 𝑊𝑊𝑦𝑦𝑦𝑦 𝑊𝑊𝑦𝑦𝑧𝑧
𝑊𝑊𝑥𝑥𝑧𝑧 𝑊𝑊𝑦𝑦𝑧𝑧 𝑊𝑊𝑧𝑧𝑧𝑧

� (32) 

 
The calibrated measurement 𝑮𝑮𝑐𝑐,𝑘𝑘

𝑆𝑆  is obtained by inverting equation (31): 
 

𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 = (∆𝑹𝑹)𝑇𝑇𝑾𝑾−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽� (33) 

 
In the absence of acceleration, the applied stimulus is again the gravity vector rotated 
into the sensor frame: 
 

𝑮𝑮𝑘𝑘𝑆𝑆 = 𝑾𝑾∆𝑹𝑹 𝒈𝒈0𝑆𝑆 + 𝑽𝑽 = 𝑾𝑾∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 + 𝑽𝑽 (𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑊𝑊𝐴𝐴 8) (34) 

𝑮𝑮𝑘𝑘𝑆𝑆 = −𝑾𝑾∆𝑹𝑹 𝒈𝒈0𝑆𝑆 + 𝑽𝑽 = −𝑾𝑾∆𝑹𝑹𝑹𝑹 𝒈𝒈0𝐺𝐺 + 𝑽𝑽 (𝐴𝐴𝑊𝑊𝑊𝑊𝑟𝑟𝐴𝐴𝑊𝑊𝑊𝑊) (35) 
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The measurement locus for all three coordinate systems is again: 
 

� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽�𝑇𝑇(𝑾𝑾−1)𝑇𝑇𝑾𝑾−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽� = � 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽�𝑇𝑇𝑨𝑨� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽� = 𝑔𝑔2 (36) 

 
where: 
 

𝑨𝑨 = (𝑾𝑾−1)𝑇𝑇𝑾𝑾−1 (37) 

 
Since 𝑾𝑾 has off-diagonal elements, equation (36)  defines the surface of an ellipsoid with 
arbitrary orientation relative to the Cartesian axes. 

The error residual 𝑟𝑟𝑘𝑘 for the 𝑘𝑘𝑡𝑡ℎ accelerometer measurement is again defined in terms of 
the deviation of the calibrated measurement from the 1g sphere as: 
 

𝑟𝑟𝑘𝑘 = � 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 �2 − 𝑔𝑔2 = �𝑾𝑾−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽��𝑇𝑇�𝑾𝑾−1� 𝑮𝑮𝑘𝑘𝑆𝑆 − 𝑽𝑽�� − 𝑔𝑔2 (38) 

= � 𝑮𝑮𝑘𝑘𝑆𝑆 �𝑇𝑇𝑨𝑨 𝑮𝑮𝑘𝑘𝑆𝑆 − 2� 𝑮𝑮𝑘𝑘𝑆𝑆 �𝑇𝑇𝑨𝑨𝑽𝑽 + 𝑽𝑽𝑇𝑇𝑨𝑨𝑽𝑽 − 𝑔𝑔2 (39) 

 
Equation (39) has identical form to equation (111) in AN5019 “Magnetic Calibration 
Algorithms” with 𝑔𝑔 replacing 𝐵𝐵 allowing the least squares solution vector 𝜷𝜷 to be defined 
as: 
 

𝜷𝜷 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3
𝛽𝛽4
𝛽𝛽5
𝛽𝛽6
𝛽𝛽7
𝛽𝛽8
𝛽𝛽9⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑦𝑦
𝐴𝐴𝑥𝑥𝑧𝑧
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑦𝑦𝑧𝑧
𝐴𝐴𝑧𝑧𝑧𝑧

−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑥𝑥𝑦𝑦𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑥𝑥𝑧𝑧𝑉𝑉𝑧𝑧
−2𝐴𝐴𝑥𝑥𝑦𝑦𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑦𝑦𝑧𝑧𝑉𝑉𝑧𝑧
−2𝐴𝐴𝑥𝑥𝑧𝑧𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑦𝑦𝑧𝑧𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 2𝐴𝐴𝑥𝑥𝑦𝑦𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑧𝑧𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 2𝐴𝐴𝑦𝑦𝑧𝑧𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝑔𝑔2⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (40) 

 

and determined as the eigenvector with smallest eigenvalue of the measurement 
matrix 𝑿𝑿𝑇𝑇𝑿𝑿 defined for 𝑀𝑀 measurements as: 
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𝑿𝑿𝑇𝑇𝑿𝑿 = �

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 4

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 3
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 … 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 4 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

4 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 … 2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 4 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 4 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

… 2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2
2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 3
2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 … 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 4 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 4 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2
… 2 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

2 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 3
… 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 3
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 3

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 … 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 2

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 … 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 2 𝐺𝐺𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 2
… 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 3
𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆

𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 2

2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑦𝑦,𝑘𝑘

𝑆𝑆 2 𝐺𝐺𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐺𝐺𝑧𝑧,𝑘𝑘

𝑆𝑆 … 𝐺𝐺𝑧𝑧,𝑘𝑘
𝑆𝑆 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑀𝑀−1

𝑘𝑘=0

 (41) 

 

5.2 Offset Vector and Gain Matrix 
The ellipsoid fit matrix 𝑨𝑨 is computed from the first six rows of the solution vector 𝜷𝜷 in 
equation (40): 
 

𝑨𝑨 = �
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑦𝑦 𝐴𝐴𝑥𝑥𝑧𝑧
𝐴𝐴𝑥𝑥𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑧𝑧
𝐴𝐴𝑥𝑥𝑧𝑧 𝐴𝐴𝑦𝑦𝑧𝑧 𝐴𝐴𝑧𝑧𝑧𝑧

� = �
𝛽𝛽0 𝛽𝛽1 𝛽𝛽2
𝛽𝛽1 𝛽𝛽3 𝛽𝛽4
𝛽𝛽2 𝛽𝛽4 𝛽𝛽5

� (42) 

 
The solution eigenvector 𝜷𝜷 is undefined within a multiplicative factor of ±1 (assuming it is 
normalized to unit magnitude). Since physically sensible solutions for 𝑨𝑨 require that it 
have a positive determinant, the entire solution vector 𝜷𝜷 is negated if |𝑨𝑨| < 0. 

The inverse gain matrix 𝑾𝑾−1 is computed from the square root of the symmetric matrix 𝑨𝑨 
as described in equations (132) to (134) in AN5019 “Magnetic Calibration Algorithms”. 
 

𝑾𝑾−1 = √𝑨𝑨 = �
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑦𝑦 𝐴𝐴𝑥𝑥𝑧𝑧
𝐴𝐴𝑥𝑥𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑧𝑧
𝐴𝐴𝑥𝑥𝑧𝑧 𝐴𝐴𝑦𝑦𝑧𝑧 𝐴𝐴𝑧𝑧𝑧𝑧

�

1
2

= �
𝛽𝛽0 𝛽𝛽1 𝛽𝛽2
𝛽𝛽1 𝛽𝛽3 𝛽𝛽4
𝛽𝛽2 𝛽𝛽4 𝛽𝛽5

�

1
2

 (43) 

 
The offset vector 𝑽𝑽 is given by: 
 

𝑽𝑽 = �
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� = −�

1
2
� �

𝛽𝛽0 𝛽𝛽1 𝛽𝛽2
𝛽𝛽1 𝛽𝛽3 𝛽𝛽4
𝛽𝛽2 𝛽𝛽4 𝛽𝛽5

�

−1

�
𝛽𝛽6
𝛽𝛽7
𝛽𝛽8
� = −�

1
2
� 𝑨𝑨−1 �

𝛽𝛽6
𝛽𝛽7
𝛽𝛽8
� (44) 

 
The last row of equation (40) gives the gravitational field strength consistent 𝑔𝑔 with the 
computed gain matrix 𝑾𝑾: 
 

𝑔𝑔 = �𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 2𝐴𝐴𝑥𝑥𝑦𝑦𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑧𝑧𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 2𝐴𝐴𝑦𝑦𝑧𝑧𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝛽𝛽9 (45) 
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The final step in the ten-parameter accelerometer calibration algorithm therefore 
scales the gain matrix 𝑾𝑾 to give 𝑔𝑔 = 1 exactly: 
 

𝑾𝑾−1 ⟵ �
1
𝑔𝑔
�𝑾𝑾−1 =

⎝

⎛ 1

�𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 2𝐴𝐴𝑥𝑥𝑦𝑦𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑧𝑧𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 2𝐴𝐴𝑦𝑦𝑧𝑧𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝛽𝛽9⎠

⎞𝑾𝑾−1 (46) 

 

6. Example Calibration Surfaces 
This section contains example plots showing the radial error from the 1 g sphere 
� 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 � − 𝑔𝑔 measured using the accelerometer on an NXP FXOS8700 before and after 

re-calibration. The accelerometer was mounted on an industrial robot and measurements 
taken at 3o intervals in roll angle between –180o and 180o and pitch angles between –90o 
and 90o. This angle range covers the entire 1 g sphere. The error surface is defined on 
the 1 g sphere but is plotted on a flat cylindrical map projection for simplicity. 

Fig 1 measured on an FXOS8700 shows an error surface typical for a consumer 
accelerometer. The error surface is dominated by offset and gain errors and has range 
–50 mg to +50 mg. Fine structure from the signal processing chain is just visible in the 
measurements. 

 
Fig 1. FXOS8700 error surface before re-calibration 

 
Fig 2 shows the same FXOS8700 measurements after re-calibration using the 
four-parameter model. The offset errors are eliminated but the assumption of a common 
gain correction term 𝑊𝑊 for all three axes is not terribly accurate. The error residual has, 
however, reduced from 50 mg to 10 mg. 
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Fig 2. FXOS8700 error surface after four-parameter re-calibration 

 
Fig 3 shows the same FXOS8700 measurements after re-calibration using the 
seven-parameter model. The gain errors in the three accelerometer channels are now 
independently corrected reducing the radial error to just 5 mg. The remaining red hot 
spots result from cross-axis errors which are not corrected in the seven-parameter 
model. 

 
Fig 3. FXOS8700 error surface after seven-parameter re-calibration 

 
Fig 4 shows the same FXOS8700 measurements after re-calibration using the 
ten-parameter model. The cross-axis errors present after calibration with the 
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seven-parameter model are eliminated and the error residual is reduced to 2.5 mg. The 
remaining structure results from non-linearities in the MEMS structure response and the 
accelerometer ADC signal processing chain. 

There are three points on the 1 g sphere where the three x, y and z channels have value 
+1 g and three points where the three channels have value –1 g. The error surface 
therefore approximates six-fold symmetry which appears as four symmetrical points 
along the zero pitch "equator" and two additional symmetrical points at the 90o pitch 
"north pole" and –90o pitch "south pole". The north and south pole structure is, however, 
"opened out" and distorted by the cylindrical projection. 

 
Fig 4. FXOS8700 error surface after ten-parameter re-calibration 

 
 

7. Calculation of the Tilt Correction Matrix 
The tilt rotation matrix ∆𝑹𝑹 is very easily determined by ensuring that one measurement is 
taken when the final product is flat and then using the mathematics in AN5021 
“Calculation of Orientation Matrices from Sensor Data” to compute the tilt matrix for that 
measurement. 
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Section 4 of AN5021 “Calculation of Orientation Matrices from Sensor Data” gives the 
NED, Android and Windows 8 tilt matrices, now computed from the calibrated 
measurement 𝑮𝑮𝑐𝑐,0

𝑆𝑆  at the flat measurement labeled zero, as: 
 

∆𝑹𝑹𝑁𝑁𝑁𝑁𝑁𝑁 =
1

� 𝑮𝑮𝑐𝑐,0
𝑆𝑆 �

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛
� 𝐺𝐺𝑐𝑐𝑦𝑦,0

𝑆𝑆 2 + 𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 2 0 𝐺𝐺𝑐𝑐𝑥𝑥,0

𝑆𝑆

− 𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆 𝐺𝐺𝑐𝑐𝑦𝑦,0

𝑆𝑆

� 𝐺𝐺𝑐𝑐𝑦𝑦,0
𝑆𝑆 2 + 𝐺𝐺𝑐𝑐𝑧𝑧,0

𝑆𝑆 2

𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 � 𝑮𝑮𝑐𝑐,0

𝑆𝑆 �

� 𝐺𝐺𝑐𝑐𝑦𝑦,0
𝑆𝑆 2 + 𝐺𝐺𝑐𝑐𝑧𝑧,0

𝑆𝑆 2
𝐺𝐺𝑐𝑐𝑦𝑦,0
𝑆𝑆

− 𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆 𝐺𝐺𝑐𝑐𝑧𝑧,0

𝑆𝑆

� 𝐺𝐺𝑐𝑐𝑦𝑦,0
𝑆𝑆 2 + 𝐺𝐺𝑐𝑐𝑧𝑧,0

𝑆𝑆 2

− 𝐺𝐺𝑐𝑐𝑦𝑦,0
𝑆𝑆 � 𝑮𝑮𝑐𝑐,0

𝑆𝑆 �

� 𝐺𝐺𝑐𝑐𝑦𝑦,0
𝑆𝑆 2 + 𝐺𝐺𝑐𝑐𝑧𝑧,0

𝑆𝑆 2
𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞
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∆𝑹𝑹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1

� 𝑮𝑮𝑐𝑐,0
𝑆𝑆 �

⎝

⎜
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⎜
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⎜
⎜
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𝑆𝑆
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⎟
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∆𝑹𝑹𝑊𝑊𝐴𝐴𝐴𝐴8 =
1

� 𝑮𝑮𝑐𝑐,0
𝑆𝑆 �

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

� 𝑮𝑮𝑐𝑐,0
𝑆𝑆 �

�1 + �
𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆

𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 �

2

𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆 𝐺𝐺𝑐𝑐𝑦𝑦,0

𝑆𝑆

𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 �1 + �

𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆

𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 �

2
− 𝐺𝐺𝑐𝑐𝑥𝑥,0

𝑆𝑆

0 − 𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 �1 + �

𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆

𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 �

2

− 𝐺𝐺𝑐𝑐𝑦𝑦,0
𝑆𝑆

− 𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆 � 𝑮𝑮𝑐𝑐,0

𝑆𝑆 �

𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 �1 + �

𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆

𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 �

2

𝐺𝐺𝑐𝑐𝑦𝑦,0
𝑆𝑆

�1 + �
𝐺𝐺𝑐𝑐𝑥𝑥,0
𝑆𝑆

𝐺𝐺𝑐𝑐𝑧𝑧,0
𝑆𝑆 �

2
− 𝐺𝐺𝑐𝑐𝑧𝑧,0

𝑆𝑆

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (49) 

 

 



 

 

 

 
  

 
  

 

 
 

 
 

 
 

 
 

  

NXP Semiconductors AN5286 
 Precision Accelerometer Calibration 

AN5286 All information provided in this document is subject to legal disclaimers. © NXP B.V. 20164. All rights reserved. 

Application note Rev. 1.0 — 21 June 2016 18 of 20 

8. Legal information

8.1 Definitions 
Draft — The document is a draft version only. The content is still under 
internal review and subject to formal approval, which may result in 
modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included herein and shall have no liability for the consequences 
of use of such information. 

8.2 Disclaimers 
Information in this document is provided solely to enable system and 
software implementers to use NXP products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any 
integrated circuits based on the information in this document. NXP reserves 
the right to make changes without further notice to any products herein. NXP 
makes no warranty, representation, or guarantee regarding the suitability of 
its products for any particular purpose, nor does NXP assume any liability 

arising out of the application or use of any product or circuit, and specifically 
disclaims any and all liability, including without limitation consequential or 
incidental damages. “Typical” parameters that may be provided in NXP data 
sheets and/ or specifications can and do vary in different applications, and 
actual performance may vary over time. All operating parameters, including 
“typicals,” must be validated for each customer application by customer's 
technical experts. NXP does not convey any license under its patent rights 
nor the rights of others. NXP sells products pursuant to standard terms and 
conditions of sale, which can be found at the following address: 
nxp.com/salestermsandconditions. 

8.3 Trademarks 
Notice: All referenced brands, product names, service names and 
trademarks are property of their respective owners. 

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of 
NXP B.V. ARM and Cortex are registered trademarks of ARM Limited (or its 
subsidiaries) in the EU and/or elsewhere.
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