

© 2016 NXP B.V.

Using Kinetis FlexIO to Drive a Graphical

LCD

1. Introduction

The FlexIO peripheral is a flexible hardware peripheral

provided by NXP that allows the emulation of many

different serial and parallel data interfaces, state

machines, and logic tables. FlexIO can manage pins,

clocks, PWMs, data interfaces and more in hardware,

without needing assistance from the CPU core. This

flexibility can unload the CPU while it executes the

application code, or enable the CPU core to be disabled

in a low-power mode, and reduce current consumption.

This example introduces the flexio_lcd driver and an

application which uses the FlexIO to drive a graphical

LCD. Specifically, it is configured to drive the TWR-

LCD-RGB development module, which includes a TFT

graphical LCD. The LCD resolution is 480 x 272, and

this example uses a parallel 16-bit interface for the pixel

data. This LCD also requires 4 timing control signals.

The FlexIO generates all the timing, and drives all of

these signals. The enhanced DMA (eDMA) in the

Kinetis MCU is also used to move the pixel data from

the frame buffer to the FlexIO. The example does this

all in hardware, and continuously drives the LCD

without needing the CPU core.

NXP Semiconductors Document Number: AN5280

Application Note Rev. 1 , 06/2016

Contents

1. Introduction .. 1
2. FlexIO Overview ... 3
3. LCD Signals and Timing Overview 6
4. FlexIO LCD Signal Generation ... 8

4.1. Horizontal Timing ... 9
4.2. Vertical Timing ... 11
4.3. Output Enable and Pixel Data 12

5. FlexIO_LCD Bus Bandwidth Performance...................... 15
6. FlexIO_LCD Driver ... 16
7. Using flexio_TWR-LCD-RGB Example Application...... 18

7.1. Configure the Hardware .. 18
7.2. Build the Example Project 23
7.3. Program the Flash ... 24
7.4. Run the Example ... 25

8. Conclusion ... 26
9. Revision History .. 26
Appendix A. flash_QuadSPI.bat Results 27
Appendix B. Output Enable Pin Shifter Logic Table 30
Appendix C. IAR Debug Log when programming flash 31
Appendix D. Troubleshooting Tips 33

D.1. No image is displayed, only the driver patterns 33
D.2. Display is all white ... 33
D.3. Display shows colors, but patterns and images are

not correct ... 34

Introduction

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

2 NXP Semiconductors

Figure 1. TWR-LCD-RGB driven by FlexIO

This example was developed for the TWR-K80F150M development board which features a K80 MCU.

The K8x family is a great option for this use-case because it includes the FlexIO, with the latest FlexIO

features that enable the implementation of an LCD interface. The K8x family also includes an external

SDRAM interface, which is a good memory option to store the frame buffer for the LCD, and a high-

speed QuadSPI flash interface, which is well-suited for storing the images and other resources for the

GUI. Figure 2 shows a block diagram of the system with the K80 and interfaces to the LCD, SDRAM,

and QuadSPI.

FlexIO Overview

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 3

Figure 2. Example system block diagram

This example uses the flexio_lcd driver, which simplifies the hardware configuration for the application.

The application only needs to setup the driver configuration with some parameters about the LCD

requirements and FlexIO pins. Then the driver will configure the FlexIO and eDMA hardware to drive

the LCD. This example uses the following MCU peripheral resources:

• 8 FlexIO Timers

• 7 FlexIO Shifters

— 1 shifter used in Logic Mode, others use Transmit Mode

— 1 shifter uses Parallel mode, for 16-bit interface

• 20 FlexIO pins

• 1 eDMA channel

• SDRAM controller

• QuadSPI controller (optional)

2. FlexIO Overview

The FlexIO peripheral is a group of timers and shift registers. It is highly configurable allowing for

many different options for these timers and shifters to be interconnected, triggered, enabled, disabled,

reset, and clocked. These options and features provide great flexibility in generating signals and

transferring data.

Figure 3 shows a diagram of a FlexIO timer. When a FlexIO shifter is used, it is controlled by one of

these timers. The timer controls when the shifting occurs, and when the shifters are loaded with new

data. The timer modes provide options in controlling these shifters, including a baud rate control. The

baud rate control gives the timer more flexibility in the timing of the shifts relative to the clock source.

The flexio_lcd driver uses these timer features and shifter control to generate the LCD timing signals.

FlexIO Overview

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

4 NXP Semiconductors

Figure 3. FlexIO Timer Diagram

Figure 4 is the diagram of a FlexIO shifter. Shifters also support multiple modes. The flexio_lcd mainly

uses Transmit mode, which latches data in from the shift buffer, and shifts it out a pin. Input to a shifter

can also be chained to another shifter. For the pixel data clocked out to the LCD, the driver chains

multiple shifters together to maximize the data throughput from the frame buffer to the shift buffers.

The driver also uses shifters to drive the HSYNC and VSYNC timing signals. The shifters allow the

precise timing of these signals.

FlexIO Overview

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 5

Figure 4. FlexIO Shifter Diagram

These timers and shifters are ideal for serial communication, which is one of the main use cases for the

FlexIO. But the FlexIO peripheral was also improved with more features, giving greater flexibility and

enabling more use cases. FlexIO version 1.1 includes new features like parallel mode, logic and state

modes for the shifters. The Kinetis K8x family was one of the first MCUs with these features. For other

MCUs, the reference manual documents if these features are included. Also, the register

FLEXIOx_VERID can be read to check the version of the FlexIO peripheral in that MCU.

The parallel mode enables the ability to drive a graphical LCD. With this mode, the shifter shifts out

multiple bits at a time. FlexIO supports parallel output for 4, 8, 16, and 32 bits at a time. This feature is

ideal for clocking out pixel data on a parallel bus to an LCD. This example uses 16-bit parallel mode for

the LCD. When designing the system with parallel mode, it is important to understand that the parallel

pins must be sequential FlexIO pins. The shifter configuration determines which pins are used in parallel

mode by two register bit fields. FLEXIOx_SHIFTCTLn[PINSEL] specifies the lowest pin number used

with the sequential parallel pins, and FLEXIOx_SHIFTCFGn[PWIDTH] sets the number of parallel

pins.

The shifter Logic Mode is another new feature used in the flexio_lcd driver. This mode turns a shifter

into a logic look-up table. It has up to 5 inputs to the logic function: 4 FlexIO pins and 1 shifter. The

output drives a pin, or can be routed back to other shifters and timers. The shift buffer holds the logic

look-up table. This Logic Mode can help reduce external components, and provides more flexibility with

the FlexIO options. This example uses Logic Mode to drive the LCD Output Enable pin, logically

ANDing together other signals generated by FlexIO timers.

Another advantage FlexIO provides is operation in low-power modes. For applications that are battery

powered, and current consumption is critical, FlexIO allows all this functionality while maximizing

battery life. On the Kinetis K8x MCUs, the FlexIO can continue operating down to Very Low-Power

Stop (VLPS) mode. This is a low-power mode where the CPU core and the peripheral clocks are

stopped, and the on-chip voltage regulator is in a low-power mode. The eDMA can also operate in

VLPS mode when asynchronous mode is enabled. For smaller LCDs where the frame buffer is small

enough to fit in the internal SRAM of the MCU, the LCD can still be driven in VLPS mode. The FlexIO

will continue to run and trigger the eDMA, which can then fetch the pixel data from the internal SRAM.

For larger LCDs where the frame buffer is in external SDRAM, like this example, the WAIT power

mode can be used. WAIT mode stops the CPU core clock, but continues to clock the peripherals and

SDRAM.

LCD Signals and Timing Overview

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

6 NXP Semiconductors

With these features and the tremendous flexibility, the FlexIO peripheral is a great option for controlling

graphical LCDs.

3. LCD Signals and Timing Overview

This example uses the NXP development board TWR-LCD-RGB, which features the LCD module

NL4827HC19-05B from NEC. This LCD will be used as a reference when reviewing LCD signals and

timing. Graphical LCDs typically have a parallel data bus which latches in the color value for a pixel. A

pixel clock signal is an input to the LCD, and latches in the pixel data with each clock period. The LCD

will scan through all the pixels in the display, starting with the pixel in the first column and first row of

the display. With each pixel clock period, the LCD will cycle to the next pixel in the horizontal row (see

Figure 5). After a row is complete, it will cycle to the first pixel in the next row. When all rows in the

frame are completed, it will cycle back to the first row. This pixel data is constantly refreshed with each

frame, as these displays typically are not able to store the pixel data.

Figure 5. LCD pixel scanning direction

LCDs also use other timing control signals, such as Horizontal Sync (HSYNC), Vertical Sync

(VSYNC), and Output Enable (OE). The HSYNC is a pulse that signals the start of a new horizontal row

of pixels. This HSYNC pulse will repeat for each row through the display frame. The VSYNC pulse

signals the start of a new frame, when the display completes the last row and cycles back to the first row.

The Output Enable signal controls when the LCD latches in the pixel data, and this signal is typically

disabled during the HSYNC and VSYNC pulses.

LCDs typically have strict timing requirements for the HSYNC and VSYNC pulses, and the related

Output Enable. The HSYNC timing is based on a number of pixel clock periods, as this signal controls

the timing for the pixels within each row. The VSYNC timing is based on a number of HSYNC periods,

as this signal controls the timing for the number of rows in the frame. With the NL4827HC19-05B, the

HSYNC and VSYNC pulses are active low. Output Enable is active high, and is disabled before these

sync pulses. Also, Output Enable is held in the low disabled state for some time after the sync pulses.

The timing of Output Enable related to the HSYNC and VSYNC pulses is important when interfacing to

an LCD, and how the FlexIO is used to generate these timing signals will be covered in detail. Some

common terms used to describe this timing are front and back porch. With this LCD, the front porch is

the duration from when OE is disabled to when the sync pulse starts (see Figure 6). The back porch is

the duration from when the sync pulse ends to when OE is enabled. OE is enabled while pixel data is

transferred, and is disabled around each HSYNC and VSYNC pulse. With this LCD, the Output Enable

signal has both a horizontal and vertical component. Figure 6 shows a generic sync pulse with the front

LCD Signals and Timing Overview

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 7

and back porch. The timing shown here is just for illustration, and not specific to the LCD in this

example.

Figure 6. Sync pulse timing with Front and Back Porch

The HSYNC pulse width, front and back porches are specified in pixel clock periods. To give some

specifics used in this example, the HSYNC pulse width is 2 clock periods. The front porch is 2 periods

and the back porch is 28. That means for each horizontal row, OE is disabled for 32 pixel clock periods,

and during each row, OE is enabled for 480 periods to latch all the pixels in that row. Therefore, the

horizontal period between HSYNC pulses is 512 pixel clock periods.

The VSYNC pulse width, front, and back porches are specified in HSYNC pulses. For this example, the

VSYNC pulse width is 2 HSYNC periods. The front porch is 2 periods, and the back porch is 10. That

requires OE to be disabled during each start of frame for 14 periods. During each frame, OE is enabled

for 272 rows. Therefore, the vertical period between VSYNC pulses is 286 HSYNC periods.

Figure 7 shows a generic timing diagram of these 4 control signals. This diagram is just to illustrate the

relationship of these signals, and the timing shown is not specific to the LCD in this example. The

Output Enable is low around each HSYNC pulse, with a front and back porches related to the pixel

clock period. But Output Enable is also low around the VSYNC pulse, with those front and back

porches related to the HSYNC period. This illustrates why the Output Enable has both a horizontal and

vertical component, and the FlexIO is configured to generate all these timing signals.

Figure 7. Simplified timing diagram of LCD control signals

FlexIO LCD Signal Generation

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

8 NXP Semiconductors

4. FlexIO LCD Signal Generation

FlexIO drives all the LCD signals continuously in hardware, without any code execution required once

the peripheral is started. The FlexIO generates these signals by configuring the timers and shifters to

meet the LCD timing requirements. This section will give an overview of how the flexio_lcd driver

configures the FlexIO for this example. Further details on the FlexIO timer and shifter configuration

options and features are documented in the Kinetis MCU Reference Manual.

This example uses 8 FlexIO timers for the following purposes:

0. Pixel Clock Pin Timer

1. Horizontal Period Timer

2. Horizontal Output Enable Timer

3. Horizontal Output Enable Pin Timer

4. Vertical Period Timer

5. Vertical Output Enable Timer

6. Vertical Output Enable Pin Timer

7. Data Timer

Also, this example uses 7 FlexIO shifters, 4 of which are chained together for shifting the pixel data:

8. Data Shifter 0

9. Data Shifter 1

10. Data Shifter 2

11. Data Shifter 3

12. HSYNC Pin Shifter

13. VSYNC Pin Shifter

14. unused

15. Output Enable Pin Shifter (used in logic mode).

The first signal generated is the pixel clock. A FlexIO timer is used here to generate a simple PWM

waveform, and will drive that output to the LCD. The same signal is also used as an input back into the

FlexIO for the timing of the other timers and shifters. The clock source for this timer is the FlexIO clock

source, and the timer counter will decrement with each rising edge of that clock. This timer uses the 8bit

PWM mode to generate a PWM with a 50 % duty cycle. This PWM mode uses the lower 8bits of the

timer compare register (FLEXIOx_TIMCMPn) for the high period of the clock signal, and the upper

8bits define the low period. The flexio_lcd driver calculates this compare value based on the FlexIO

clock source frequency and the pixel clock frequency parameter passed to the driver. The result is a

clock output pin which drives the LCD and controls all the remaining FlexIO timing.

FlexIO LCD Signal Generation

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 9

4.1. Horizontal Timing

The horizontal timing controls the HSYNC pulse and period, and the horizontal component of the

Output Enable signal. This timing is based on the pixel clock period, and uses the clock output pin from

the Pixel Clock timer. The FlexIO generates this timing using a combination of timers and shifters.

Figure 8 shows these horizontal timing signals. Each horizontal period starts on the rising edge of the

Horizontal Period signal. The Horizontal OE Timer controls the timing for the HSYNC pulse width,

front and back porch. The figure shows when this timer is disabled in the gray shaded areas, which is

also when the Horizontal OE Pin is enabled/high. While this timer is enabled, the HSYNC Pin Shifter

drives the HSYNC pin, creating the HSYNC pulse width, and front and back porch.

Figure 8. Horizontal Timing Signals

The base for the horizontal timing is controlled by the Horizontal Period timer. This timer generates a

horizontal period event based on the HSYNC period. This period event is used by other horizontal

timers and shifters. The period event is generated using the 16bit counter mode of the timer, where the

rising edge of the timer output triggers a new horizontal period. Horizontal timing is based on a number

FlexIO LCD Signal Generation

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

10 NXP Semiconductors

of pixel clock periods, so this timer uses the pixel clock pin as an input and is decremented by edges on

that pin. The value for the timer compare register is calculated by the flexio_lcd driver, adding the

following parameters from the driver configuration:

• Number of pixels per row

• HSYNC Front Porch duration

• HSYNC Back Porch duration

• HSYNC pulse width

The Horizontal Period timer is always enabled, and the timer output rising edge will be used as a trigger

for the remaining horizontal timing components.

The next timer is the Horizontal Output Enable Timer. This timer generates the horizontal component of

the Output Enable signal. It is enabled when the OE signal is disabled around the HSYNC pulse. This

timer is used to control the shifting of the HSYNC pin shifter discussed below. It is enabled every

horizontal period, triggered by the Horizontal Period Timer, and disables when OE is enabled for a new

horizontal row. The output of this timer is inverted from the Output Enable pin polarity because its

output enables the HSYNC Pin Shifter.

The Pixel clock pin is an input to this timer, and the timer counter decrements on the pixel clock edges.

The timer mode is Dual 8bit counter. This mode is used for the shifter, because the timer decrements on

both edges of the pixel clock. In this mode, the lower 8bits of the timer compare register control the

number of clock edges per shift. These bits are setup to shift every 2nd clock edge, so the shifting occurs

on the rising edge of the pixel clock. The upper 8bits of the compare register control how many shifts

occur while the timer is enabled. The flexio_lcd driver calculates this value from the driver

configuration by adding the HSYNC pulse width, and the front and back porch widths. The result is a

timer that controls the duration of the OE disabled pulse for the horizontal component and HSYNC

shifting.

The HSYNC Pin Shifter is the next piece for this horizontal timing. This is a FlexIO shift register that

shifts out the state of the HSYNC pin. It is active when the Horizontal Output Enable Timer is enabled,

and the shifting is controlled by that timer. The timing of the HSYNC pulse width, front and back porch

are controlled by loading a value in the shift register and shifting it out the pin. Each bit in the shifter

value represents the state of the HSYNC pin for each pixel clock period. For this example, the first two

shifter bits are 1s for the front porch. The next two bits are 0s for the HYSNC pulse width. Then the

remaining 28 bits are 1s for the back porch. The flexio_lcd driver calculates this shift register value

based on the driver configuration.

The Horizontal OE Pin Timer is the final piece for the horizontal timing. This timer is used to drive an

output pin for the horizontal component of the OE signal. The OE signal to the LCD is a logical AND of

the horizontal and vertical OE components. The FlexIO uses a shifter in Logic mode to AND these

signals together, and therefore requires each component signal to be output on a FlexIO pin. One thing

to note here is that these component outputs are not used by the LCD; the LCD only needs the ANDed

OE signal. The example uses these FlexIO outputs only to route to another shifter internally. The signals

do not need to come out of the MCU, and the MCU pins tied to these FlexIO signals can be used for

other peripheral signals or GPIO.

The output of this Horizontal OE Pin Timer is simply the inverted value of the trigger timer: the

Horizontal Output Enable Timer. That trigger timer is unable to output to a pin directly because it uses

the pixel clock as an input pin to decrement the timer, and it is triggered by the Horizontal Period timer.

FlexIO LCD Signal Generation

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 11

So this Horizontal OE Pin Timer is used to drive the Horizontal OE pin output based on the trigger

timer. It is enabled and disabled by the trigger timer. The pin is set as an output, and the polarity is

active low to invert the output from the trigger timer. The result is an output pin for the horizontal

component of the OE signal.

4.2. Vertical Timing

The vertical timing signals are similar to the horizontal timing. The key difference is that the vertical

timing is all clocked by the HSYNC pulses, rather than the pixel clock. The vertical timing controls the

VSYNC pulse and period, and the vertical component of the Output Enable signal.

Figure 9 shows these vertical timing signals. Each vertical period starts on the rising edge of the Vertical

Period signal. The Vertical OE Timer controls the timing for the VSYNC pulse width, and front and

back porch. The figure shows when this timer is disabled in the gray shaded areas, which is also when

the Vertical OE Pin is enabled/high. While this timer is enabled, the VSYNC Pin Shifter drives the

VSYNC pin, creating the VSYNC pulse, and front and back porch.

Figure 9. Vertical Timing Signals

The Vertical Period timer generates a vertical period event based on the VSYNC period. This period

event is used by other vertical timers and shifters. The period event is generated using the 16bit counter

mode of the timer, where the rising edge of the timer output triggers a new vertical period. Vertical

timing is based on a number of HSYNC pulses, so this timer uses the HSYNC pin as an input and is

decremented by edges on that pin. This timer is always enabled, and the timer output rising edge will be

used as a trigger for the remaining vertical timing components. The value for the timer compare register

is calculated by the flexio_lcd driver, adding the following parameters from the driver configuration:

• Number of rows per frame

FlexIO LCD Signal Generation

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

12 NXP Semiconductors

• VSYNC Front Porch duration

• VSYNC Back Porch duration

• VSYNC pulse width

The next timer is the Vertical Output Enable Timer. This timer generates the vertical component of the

Output Enable signal. It is enabled when the OE signal is disabled around the VSYNC pulse. This timer

is used to control the shifting of the VSYNC pin shifter discussed below. It is enabled every vertical

period, triggered by the Vertical Period Timer, and disables when OE is enabled for a new frame. The

output of this timer is inverted from the Output Enable polarity pin because its output enables the

VSYNC Pin Shifter.

The Vertical OE Pin Timer drives an output pin for the vertical component of the OE signal. The output

of this timer is the inverted value of the trigger timer: the Vertical Output Enable Timer. This timer is

enabled and disabled by that same trigger timer. The pin is set as an output, and the polarity is active low

to invert the output from the trigger timer. The result is an output pin for the vertical component of the

OE signal.

The VSYNC Pin Shifter shifts out the state of the VSYNC pin. It is active when the Vertical Output

Enable Timer is enabled, and the shifting is controlled by that timer. The timing of the VSYNC pulse

width, and front and back porch are controlled by loading a value in the shift register and shifting it out

the pin. Each bit in the shifter value represents the state of the VSYNC pin for each HSYNC period. The

flexio_lcd driver calculates this shift register value based on the driver configuration.

4.3. Output Enable and Pixel Data

With the horizontal and vertical timing signals generated, the Output Enable signal can be generated and

control the parallel pixel data outputs. Figure 10 shows the timing for these signals. The Output Enable

signal is the logical AND of the horizontal and vertical OE pins. The timing diagram shows the different

low pulses of the OE signal, which are around the HSYNC or VSYNC pulses. The Data Timer controls

the Data Shifters, and is enabled/disabled by the OE Pin. The diagram shows when this timer is disabled

with the gray shading. The Data Shifters shift out the parallel pixel color data to the LCD. These

shifters are active when the Data Timer is enabled, shaded in black. When active, the shifters shift out

pixel data on ever pixel clock rising edge. The gray shading shows when the shifters are inactive

because the OE Pin is disabled/low. There is no activity on the pixel data pins during that time.

FlexIO LCD Signal Generation

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 13

Figure 10. Output Enable and Pixel Data timing

This example uses multiple Data Shifters chained together. Shifter0 drives the 16 parallel output pins

with the pixel data. Four shifters are used for the pixel data, with Shifter1 feeding Shifter0, and

incrementing up to Shifter 3. This means the shifters together provide 128bits of pixel data. The more

shifters chained for the data, the lower the load frequency required to write to the shift buffers. In this

case, 128bits of data can be written to the shift buffers with each DMA trigger event. Shifter0 shifts out

16bits with each shift. Therefore, the Data shifters will load a pixel group of 8 pixels with each shifter

load event.

The Output Enable Pin Shifter is used to combine the horizontal and vertical components of the OE

signal into the final OE signal for the LCD. FlexIO shifters support a Logic Mode, which is a logic table

with 5 inputs and 32 possible outputs. This example uses two of those inputs for the horizontal and

vertical OE pins. In this Logic Mode, the FlexIO shift buffer stores the logic look-up table. The value

used for the shift buffer logically ANDs the two input signals. Also in this logic mode, the shifter

SHIFTCFG SSTART and SSTOP bit fields are used to mask unused inputs to the logic table. Since this

example only uses 2 of the 5 potential inputs, these masks are used to mask the 3 unused inputs.

One note when using the flexio_lcd driver is that with Logic Mode, the input and output pins for the

logic table are fixed based on the shifter number used. In this example, the output OE pin is on

FXIO_D15. That output pin requires using Shifter 7 for this logic table, and then the input pins to the

logic table are limited to FXIO_D[11-14]. This example has the Horizontal OE Pin on FXIO_D12, and

the Vertical OE Pin is on FXIO_D14. These two pins are only used internally, and not routed outside the

MCU. The logic table for this configuration is included in Appendix B, Output Enable Pin Shifter Logic

Table. For more details on using Logic Mode, refer to the MCU Reference Manual.

The Data Timer controls the Data Shifters, and is enabled by the Output Enable pin. It will only shift

when Output Enable is high. Also, the timer counter is reset by the OE rising edge to start a new

horizontal row. It is clocked from the Pixel Clock pin, and uses Dual 8bit Counter mode to control the

shift timing. Because the timer decrements on both edges of the pixel clock, the lower 8bits of the

compare register are set to 1 to shift on every rising edge of the pixel clock. The upper 8bits control how

many pixels are shifted per loading of the shift buffers, which is 8 in this example. This value for the

FlexIO LCD Signal Generation

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

14 NXP Semiconductors

Timer compare register is calculated by the flexio_lcd driver using the number of data shifters and the

parallel data bus width provided in the driver configuration.

The Data Shifters drive the parallel data bus to the LCD, and are chained together. They are controlled

by the Data Timer. The shift buffers are loaded with the pixel color data values from the frame buffer by

the DMA. The Data Shifters all have identical configurations, except that Shifter0 is the only shifter that

drives the output pins. The other shifters are chained together and feed Shifter0.

The FlexIO start and stop bit features are also used with the Data Timer and Shifters to generate the

correct pixel data timing for the LCD. These start/stop bit controls are typically used when the FlexIO

emulates serial communications. But the added flexibility in the timing from these bits helps in this

example. If the start/stop bits are disabled in this example, there is an issue with the pixel data when OE

is disabled between horizontal rows. At the end of the row, when the Data Shifters output the last pixel,

they will also load a new group of pixels from the shift buffers. But the Data Timer is also disabled at

the end of the row with OE going low. When OE goes back high at the start of the next row, the Data

Timer is re-enabled, and forces another load of pixel data to the Data Shifters. This double-load means

the pixel group loaded at the end of the previous row was lost and never shifted out to the LCD. The

result is a distorted image on the LCD, because a group of pixels is skipped with each row.

To avoid this issue, the start/stop bits are used. With this change in timing, the shifters are not loaded at

the end of the row. Without the double-loading, the pixel group is no longer skipped. The flexibility with

the FlexIO start/stop bits is another useful feature of this peripheral. When using the FlexIO to shift data

with specific timing requirements, consider the different options for the start/stop bits to meet the

required timing. Here is a summary of start/stop bit settings used for the Data Timer and Data Shifters:

• Data Timer Start Bit - enabled

• Data Timer Stop Bit – enable on timer disable

• Data Shifter Start Bit – disabled, load data on first shift

• Data Shifter Stop Bit – enabled, value 0 (the stop bit value is not important in this example)

With these settings for the FlexIO timers and shifters, the FlexIO is able to generate all the signal timing

and pixel data to send the full frame to the LCD.

FlexIO_LCD Bus Bandwidth Performance

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 15

5. FlexIO_LCD Bus Bandwidth Performance

The FlexIO and DMA can be configured to drive LCDs of different resolutions, color depth, and pixel

clock frequencies. The performance required to drive larger LCDs is limited by the bus bandwidth

moving the pixel data from the frame buffer to the FlexIO peripheral. Understanding LCD Memory and

Bus Bandwidth Requirements (document AN3606) discusses in more detail how bus bandwidth of the

system limits the type of LCD that can be driven.

The FlexIO_LCD maximum bus bandwidth from SDRAM in the Kinetis K8x family is 31 MBytes/s.

This performance is achieved using SDRAM with a 16-bit data port, clocked at the maximum 60 MHz,

and a CAS Latency of 2, like the TWR-K80F150M development board. This performance assumes

using the eDMA to transfer bursts of 16Bytes from SDRAM to four FlexIO shift buffers. Based on this

maximum bandwidth of 31 MB/s, Table 1 shows the maximum FlexIO_LCD pixel clock frequencies for

different LCD color depths in bits per pixel (bpp).

Table 1. FlexIO_LCD Maximum Pixel Clock Frequency

LCD Color Depth (bpp) FlexIO_LCD Maximum Pixel Clock Frequency (MHz)

17 - 32 7.7

9 - 16 15.5

8 31.0

4 61.9

This maximum bus bandwidth can be used with LCD parameters to calculate the percentage of bus

bandwidth required for that LCD, see Equation 1. In this example using the TWR-LCD-RGB display,

the pixel clock is 9.23 MHz (120 MHz system clock / 13). The color depth is 16 bpp. Therefore, this

LCD setup requires 18.5 MB/s bus bandwidth, which is 59.6 % of the maximum bus bandwidth.

Equation 1: LCD Bus Bandwidth Percentage

LCD Bus Bandwidth Percentage (%) =
(bpp in memory/8) x pixel clock frequency (MHz)

Maximum Bus Bandwidth (MB/s)

http://fsls.co/doc/AN3606

FlexIO_LCD Driver

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

16 NXP Semiconductors

6. FlexIO_LCD Driver

This example includes a driver to help abstract the application from configuring the FlexIO and eDMA

registers directly. The driver is based on the Kinetis Software Development Kit (KSDK) v1.3.0, and is

designed to drop into the KSDK installation. There is a broad selection of LCDs available, with different

control signals and timing requirements. This driver will likely not support all LCDs as is, but it is

provided here as a reference, and can be modified as needed for other LCDs.

The driver uses a configuration structure to configure the driver. This structure is initialized by the

application and passed as an argument to the driver APIs, similar to other KSDK drivers. With this

configuration, the driver has everything needed to configure the FlexIO and eDMA peripherals. The

table below shows the parameters included in the driver configuration.

Table 2. FlexIO_LCD driver configuration parameters

Parameter Description

flexioInstance Instance of FlexIO peripheral, in case the MCU has multiple FlexIO peripherals

flexioBase FlexIO module base address for the registers, used by the FlexIO HAL

datPinStartIdx
Lowest number of FlexIO pins used for pixel data. This configures the starting pin for the

parallel data bus.

datPinWidth
Data bus width for flexio_lcd. Data bus will use FlexIO pins from datPinStartIdx to

(datPinStartIdx + datPinWidth -1)

pclkPinIdx FlexIO pin number for Pixel clock pin (PCLK)

hsyncPinIdx FlexIO pin number for Horizontal sync pin (HSYNC)

vsyncPinIdx FlexIO pin number for Vertical sync pin (VSYNC)

oePinIdx FlexIO pin number for Output Enable pin (OE)

horizOEPinIdx

FlexIO pin number for internal pin used for horizontal Output Enable

vertOEPinIdx

FlexIO pin number for internal pin used for vertical Output Enable

oeLogicTable

Shift buffer value for OE logic table

pclkFreq

Pixel Clock Frequency, in Hz

pixelsX

Pixels in X horizontal dimension

pixelsY

Pixels in Y vertical dimension

bytesPerPixel

Bytes per pixel

shifterStartIdx

First shifter index used for pixel data

numDataShifters Number of Shifters for pixel data chained together. Starts with shifterStartIdx

timerStartIdx

Lowest FlexIO Timer index used for flexio_lcd

hsyncPulseWidth

in PCLK periods

hsyncFrontPorch

in clock periods before HSYNC pulse

hsyncBackPorch

in clock periods after HYSNC pulse

vsyncPulseWidth

in HSYNC pulses

vsyncFrontPorch in HSYNC pulses before VSYNC pulse

FlexIO_LCD Driver

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 17

Table 2. FlexIO_LCD driver configuration parameters

Parameter Description

vsyncBackPorch in HSYNC pulses after VSYNC pulse

dmaChannel

DMA channel used with FlexIO

dmaIRQ

DMA IRQ number for selected channel

Once the driver configuration is initialized, the application uses two driver functions.

FLEXIO_LCD_Init() initializes the FlexIO and eDMA peripherals, and calls the pin mux function for

the FlexIO pins. FLEXIO_LCD_Start() starts the eDMA and FlexIO peripherals. After calling this

function, the frame buffer will be displayed on the LCD. The arguments for both of these functions are a

pointer to the driver configuration structure, and a pointer to the frame buffer. These functions are

included in flexio_lcd.c.

The function FLEXIO_LCD_Init() calls the Hardware Abstract Layer (HAL) function

FLEXIO_LCD_HAL_Configure(), which configures the FlexIO peripheral, including all the timers and

shifters. This function is in flexio_lcd_hal.c. Also, the eDMA is configured in

FLEXIO_LCD_DRV_eDma_Init(), located in flexio_lcd_edma_driver.c.

In addition to configuring the hardware, the flexio_lcd driver includes some test patterns to help test the

system and help troubleshoot. The example application is written to display these patterns, and cycle

through them using a push button. The pattern functions are located in flexio_lcd.c. These functions

draw the patterns in the frame buffer using software, and are much smaller than storing images for the

display. In this example, they are stored in internal flash, and do not require the QuadSPI flash.

The pattern function FLEXIO_LCD_FrameColorBars() draws a color bar test pattern, using 8 colors.

This pattern helps to confirm the LCD colors look correct. The function

FLEXIO_LCD_FrameBlackWhiteColumns() alternates pixel columns with black and white pixels. This

pattern stresses the memory bus from the SDRAM, as the data bits toggle from all 1s to all 0s at a high

frequency. This will help identify board issues, like a noisy bus or ground bounce. The last pattern

function is FLEXIO_LCD_FrameVerticalStripes(), which alternates vertical blue and yellow stripes.

The stripes are 8 pixels wide. This pattern is used because of the how data is written from the frame

buffer to the FlexIO shift buffers. In this example, four 32-bit shifters are used for the pixel data, which

is data for 8 pixels. Since these vertical stripes change color on FlexIO write boundaries, the pattern

helps show if there are issues related to the FlexIO timing, like underruns when data writes from the

frame buffer take too long.

Using flexio_TWR-LCD-RGB Example Application

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

18 NXP Semiconductors

7. Using flexio_TWR-LCD-RGB Example Application

This example application uses NXP development hardware and enablement software driving a graphical

LCD using the flexio_lcd driver. The application stores the frame buffer in external SDRAM. A

QuadSPI flash is also used to store the images displayed on the LCD. The QuadSPI provides plenty of

storage space for all the images and graphics needed for a GUI.

To replicate the demo, the hardware and software listed below are utilized. The hardware requires some

modifications to route the FlexIO signals to the LCD. The rest of this section will provide details for

configuring the hardware, building the example project, programming the flash, and running the

example.

Hardware for example:

• TWR-LCD-RGB – LCD Module for Tower System

• TWR-K80F150M – K80 Tower Board, Schematic RevB1 or later

• TWR-PROTO – prototyping board used to route signals between K80 and LCD

• TWR-ELEV – Tower elevator boards

Software for example:

• Kinetis Software Development Kit (KSDK) v1.3.0 mainline release

• IAR Embedded Workbench for ARM®– tested with v7.50.2

• Segger OpenSDA V2.1 app – on-board debugger app for the TWR-K80F150M board

• Included example project

7.1. Configure the Hardware

The TWR-K80F150M and TWR-PROTO boards require some modifications to route the K80 FlexIO

signals to the LCD on the TWR-LCD-RGB board. Then the Tower can be assembled for the example.

The TWR-LCD-RGB and TWR-ELEV boards require no changes for this example.

7.1.1. TWR-K80F150M Board Setup

The example project is setup to use the Segger JLink OpenSDA V2.1 debugger application for the on-

board debugger. This is not the default OpenSDA debugger programmed on the board. To update the

OpenSDA app, hold down the Reset button on the TWR-K80F150M board when connecting the USB

cable to the OpenSDA USB connector J24. This forces the OpenSDA into bootloader mode, and

enumerates in the PC as a new BOOTLOADER drive. Then, in the PC, drag-and-drop the Segger

OpenSDA application file to the BOOTLOADER drive. After copying the file, unplug the board and

plug it back in. Now the OpenSDA will enumerate as the Segger JLink debugger.

To connect the FlexIO signals from the K80 to the LCD, short the following pads for these non-

populated resistors:

http://www.nxp.com/products/software-and-tools/hardware-development-tools/tower-development-boards/peripheral-modules/graphical-lcd-tower-system-module-with-rgb-interface:TWR-LCD-RGB?lang_cd=en
http://www.nxp.com/products/software-and-tools/hardware-development-tools/tower-development-boards/mcu-and-processor-modules/kinetis-modules/kinetis-k80-mcu-tower-system-module:TWR-K80F150M?lang_cd=en
http://www.nxp.com/products/software-and-tools/hardware-development-tools/tower-development-boards/peripheral-modules/prototyping-with-perfboard-area-tower-system-module:TWR-PROTO?lang_cd=en
http://www.nxp.com/products/software-and-tools/hardware-development-tools/tower-development-boards/peripheral-modules/tower-system-elevator-module:TWR-ELEV?lang_cd=en
http://www.nxp.com/KSDK
http://www.iar.com/
http://www.segger.com/opensda.html
https://www.segger.com/opensda.html

Using flexio_TWR-LCD-RGB Example Application

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 19

Table 3. TWR-K80F150M Resistor Pads to short

Resistor

Elevator

Signal

Demo

Signal

R106 D8 FXIO0_D31

R111 D38 FXIO0_D30

R112 D39 FXIO0_D29

R113 D40 FXIO0_D28

R295 C38 FXIO0_D26

R299 C37 FXIO0_D27

R31 B40 FXIO0_D16

R32 B39 FXIO0_D17

R34 B37 FXIO0_D11

Some components need to be removed from the TWR-K80F150M board to prevent contention with

other signals.

Table 4. TWR-K80F150M Remove Components

Component

Elevator

Signal Demo Signal Reason

R298 C7 FXIO0_D17 Conflicts with TWR-LCD-RGB I2C

R288 C8 FXIO0_D16 Conflicts with TWR-LCD-RGB I2C

NOTE

 If the board schematic revision is RevB or older, there is an additional

component to remove. The capacitor C11 needs to be removed, as it

conflicts with the SDRAM. Production versions of this board RevB1 and

later already have this capacitor removed.

The following jumper settings need to be changed from their default configuration.

Table 5. TWR-K80F150M Jumper Changes

Jumper Setting Reason

J6 Remove UART signal conflicts with SDRAM clock signal

J8 Remove UART signal conflicts with SDRAM address signal

Using flexio_TWR-LCD-RGB Example Application

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

20 NXP Semiconductors

Figure 11. TWR-K80F150M prepared for example

7.1.2. TWR-PROTO Board Setup

In the Tower system, signals are routed between boards through the TWR-ELEV boards. These Tower

pins provide access to connect or re-route these signals as needed. One method to connect signals is

using the TWR-PROTO board, and shorting different Tower pins together. For this example, the TWR-

PROTO board is used to make the connections between the K80 FlexIO signals and the TWR-LCD-

RGB signals. Table 6 shows all of the connections required on the TWR-PROTO board in the two right

columns. For example, on the TWR-PROTO board, add a wire to short pin B37 to D32. The example

uses a 16-bit interface to the LCD, using the RGB565 format. The LCD supports a 24-bit interface, so

the LSB pins of each color of the LCD are tied to ground since they are unused.

Using flexio_TWR-LCD-RGB Example Application

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 21

Table 6. Required TWR-PROTO Connections

Connect these two signals together

on TWR-PROTO board

TWR-LCD-RGB

Signal
FlexIO Signal K80 Port Pin K80 Tower Pin

TWR-LCD-RGB

Tower Pin

RGB_CLK FXIO0_D11 PTA1 B37 D32

RGB_HSYNC FXIO0_D7 PTB19 B72 D27

RGB_VSYNC FXIO0_D6 PTB18 B66 D28

RGB_OE FXIO0_D15 PTA5 A22 D44

RGB_R7 FXIO0_D31 PTD15 D8 C80

RGB_R6 FXIO0_D30 PTD14 D38 D80

RGB_R5 FXIO0_D29 PTD13 D39 D79

RGB_R4 FXIO0_D28 PTD12 D40 D78

RGB_R3 FXIO0_D27 PTD11 C37 D64

RGB_R2 VSS VSS GND D63

RGB_R1 VSS VSS GND C64

RGB_R0 VSS VSS GND C63

RGB_G7 FXIO0_D26 PTD10 C38 C62

RGB_G6 FXIO0_D25 PTD9 A8 D54

RGB_G5 FXIO0_D24 PTD8 A7 D53

RGB_G4 FXIO0_D23 PTA17 A21 D52

RGB_G3 FXIO0_D22 PTA16 A59 C57

RGB_G2 FXIO0_D21 PTA15 A24 C56

RGB_G1 VSS VSS GND C55

RGB_G0 VSS VSS GND C54

RGB_B7 FXIO0_D20 PTA14 A42 C53

RGB_B6 FXIO0_D19 PTA13 B61 C52

RGB_B5 FXIO0_D18 PTA12 B62 C51

RGB_B4 FXIO0_D17 PTA11 B39 C50

RGB_B3 FXIO0_D16 PTA10 B40 D48

RGB_B2 VSS VSS GND D47

RGB_B1 VSS VSS GND D46

RGB_B0 VSS VSS GND D45

Using flexio_TWR-LCD-RGB Example Application

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

22 NXP Semiconductors

Figure 12. TWR-PROTO board with Tower connections

7.1.3. Assemble the Tower System

After the hardware modifications are complete, the Tower system can be assembled. Ensure the TWR-

LCD-RGB module is plugged into the secondary elevator board, which has the black edge connectors.

The TWR-LCD-RGB is already connected to this elevator board when shipped, so there is likely no

change required for this step. Next, plug the TWR-K80F150M and TWR-PROTO boards into the

primary elevator card. Make sure the edge of these boards with the white stripe on the silk screen is

plugged into the white edge connectors of the primary elevator board. Then plug the secondary elevator

board on the other side of the Tower. Figure 13 shows an image of the assembled Tower system.

Using flexio_TWR-LCD-RGB Example Application

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 23

Figure 13. Assembled Tower system

7.2. Build the Example Project

The example is built on KSDK v1.3.0 mainline release. Download and install the KSDK first. Then the

compressed example file should be extracted to the root KSDK directory. By default, this would be the

path C:\Freescale\KSDK_1.3.0. This will add the flexio_TWR-LCD-RGB example directory to the

demo_apps directory.

Then, open the IAR workspace file. If using the default install location, the workspace file is located at

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar\flexio_TWR-LCD-RGB.eww

In IAR, do a batch build to build both the KSDK platform library and the example project. Use the

menu Project->Batch Build. Select the Debug batch, and click the Make button.

When done, the application will be ready to load in the flash.

http://www.nxp.com/KSDK

Using flexio_TWR-LCD-RGB Example Application

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

24 NXP Semiconductors

7.3. Program the Flash

The example uses the QuadSPI flash to store the images displayed on the LCD. The ROM bootloader in

the K80 is used to program the QuadSPI. This example includes a batch file that will connect with the

ROM bootloader through USB, and program both the QuadSPI and internal flash.

Programming the QuadSPI can take some time depending on the amount of memory to program. But if

the images are the only memory stored in QuadSPI, then the QuadSPI only needs to be updated when

adding new images or modifying existing images. If the images are already in the QuadSPI, and the

application code is changed, then the IAR debugger can be used to program the internal flash and debug

the application. This will save time compared to running the batch file again. And this example will also

work without programming the QuadSPI flash. Instead of displaying images from QuadSPI, the example

can also draw patterns in the frame buffer to display.

The following sections describe how to program the flash using both methods. To see the images

included in the example, be sure to run the batch file at least once.

7.3.1. Batch file for ROM Bootloader to program QuadSPI and Internal

Flash

First, the ROM bootloader on the K81 needs to be started. The USB interface to the bootloader is used

with the batch file. The best option is to use two micro-USB cables, both connected to the TWR-

K80F150M board. To force bootloader mode, hold down the blue button SW2. While holding SW2,

press and release the black reset button SW1. Then release SW2. Now the ROM bootloader should be

started.

Next, run the batch file to program both the QuadSPI and the internal flash with the example application

image. The batch file is located at C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps

\flexio_TWR-LCD-RGB\iar\flash_QuadSPI.bat. Programming the QuadSPI with these example images

will take a few minutes.

When the batch file is done, press the reset button on the TWR-K80F150M. The ROM Bootloader will

run for 5 seconds, and then it will start the application. At this point, an image should appear on the

LCD. If that is not the case, see Appendix D Troubleshooting Tips.

7.3.2. Programming Internal Flash with IAR Debugger

If the QuadSPI does not need to be programmed then the IAR debugger can be used to program the

internal flash and debug the application. Ensure that a USB cable is connected to the OpenSDA USB

connector J24. Then in IAR, click the Download and Debug button on the toolbar. With this project,

the IAR flash loader will give a warning with a pop-up, and will also show an error in the Debug Log.

These warnings are caused because the IAR flash loader sees the memory intended for the QuadSPI, but

does not know what to do with that data. The flash loader will still be able to download successfully to

the internal flash. When the warning pops-up, click the OK button, and the debugger will continue and

flash the K80. Appendix C, IAR Debug Log when programming flash shows the log after successfully

programming the internal flash and connecting with the debug, including these warnings and errors.

Conclusion

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 25

7.4. Run the Example

After the flash is programmed, the example application can run, and will show an image on the LCD. If

the QuadSPI is programmed with the images, one of these images will be the default image on the

display. Otherwise, the application will draw one of the driver patterns on the display. With multiple

images in the QuadSPI, the example will do a slide show, cycling through each image periodically. The blue

button SW2 on the TWR-K80F150M board manually cycles through the images in the QuadSPI. The blue

SW3 button manually cycles through the driver patterns. If these buttons are pressed, the slide show will stop

changing images automatically. The example uses a 16-bit interface to the LCD, using the RGB565

format.

One note about this application and the debug console. KSDK applications typically include the debug

console utility for printf() and other stdio functions. With the TWR-K80F150M, the UART signals

connected to the OpenSDA circuit conflict with the SDRAM signals. Since this application uses the

SDRAM for the frame buffer, the UART signals are disconnected by removing jumpers J6 and J8.

Therefore, a terminal cannot be connected to the debug console. Different UART pins with some

additional hardware could be connected for that feature if needed.

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

26 NXP Semiconductors

8. Conclusion

FlexIO is a powerful and flexible peripheral that can be useful in many applications, including driving a

graphical LCD. The flexibility with the timers, shifters, and pins allows the FlexIO to interface with

many different types of displays, and other peripherals. There is a broad offering of Kinetis MCUs with

FlexIO, and the list continues to grow. The flexio_lcd driver simplifies configuring the hardware for the

application. These Kinetis features and software resources enable a wide range of applications, with

quick time-to-market. Visit www.nxp.com to learn more.

9. Revision History
Table 7. Revision history

Revision number Date Substantive changes

1 06/2016 In Section 7.4:

 – Added text to first paragraph “With multiple images in the QuadSPI, the

example will do a slide show, cycling through each image periodically. The blue

button SW2 on the TWR-K80F150M board manually cycles through the images

in the QuadSPI. The blue SW3 button manually cycles through the driver

patterns. If these buttons are pressed, the slide show will stop changing images

automatically”.

 In Appendix A:

 – Results updated for latest batch file.

0 04/2016 Initial release

http://www.nxp.com/

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 27

Appendix A. flash_QuadSPI.bat Results

This appendix is a listing of the command line output from running the flash_QuadSPI.bat batch file. It

shows the results of a successful programming of the flash using the ROM bootloader, and may be

helpful troubleshooting any issues. To see these results, run the batch file from the command line in

Windows. That way, the results can be viewed after the batch file completes.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\elftosb.exe -V -c flexio_TWR-LCD-RGB.bd -o flexio_TWR-LCD-

RGB.sb

Boot Section 0x00000000:

 LOAD | adr=0x68000000 | len=0x00000200 | crc=0xf7185382 | flg=0x0000

 LOAD | adr=0x00000000 | len=0x000003c0 | crc=0x0c4c6b8f | flg=0x0000

 LOAD | adr=0x00000400 | len=0x00006190 | crc=0xdb549d5f | flg=0x0000

 LOAD | adr=0x68001000 | len=0x0007f808 | crc=0xdca5212b | flg=0x0000

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost -u -- flash-erase-all-unsecure

Inject command 'flash-erase-all-unsecure'

Successful generic response to command 'flash-erase-all-unsecure'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost -u -- write-memory 0x20000000

.\..\qspi_config_block.bin

Inject command 'write-memory'

Preparing to send 512 (0x200) bytes to the target.

Successful generic response to command 'write-memory'

(1/1)100% Completed!

Successful generic response to command 'write-memory'

Response status = 0 (0x0) Success.

Wrote 512 of 512 bytes.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost -u -- configure-quadspi 1 0x20000000

Inject command 'configure-quadspi'

Successful generic response to command 'configure-quadspi'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- flash-erase-region 0x68000000 0x80000

Inject command 'flash-erase-region'

Successful generic response to command 'flash-erase-region'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- flash-erase-region 0x68080000 0x80000

Inject command 'flash-erase-region'

Successful generic response to command 'flash-erase-region'

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

28 NXP Semiconductors

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- flash-erase-region 0x68100000 0x80000

Inject command 'flash-erase-region'

Successful generic response to command 'flash-erase-region'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- flash-erase-region 0x68180000 0x80000

Inject command 'flash-erase-region'

Successful generic response to command 'flash-erase-region'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- flash-erase-region 0x68200000 0x80000

Inject command 'flash-erase-region'

Successful generic response to command 'flash-erase-region'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- flash-erase-region 0x68280000 0x80000

Inject command 'flash-erase-region'

Successful generic response to command 'flash-erase-region'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- flash-erase-region 0x68300000 0x80000

Inject command 'flash-erase-region'

Successful generic response to command 'flash-erase-region'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- flash-erase-region 0x68380000 0x80000

Inject command 'flash-erase-region'

Successful generic response to command 'flash-erase-region'

Response status = 0 (0x0) Success.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>echo 10:49:56.88

10:49:56.88

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>.\..\bin\blhost.exe -u -- receive-sb-file flexio_TWR-LCD-RGB.sb

Inject command 'receive-sb-file'

Preparing to send 548928 (0x86040) bytes to the target.

Successful generic response to command 'receive-sb-file'

(1/1)100% Completed!

Successful generic response to command 'receive-sb-file'

Response status = 0 (0x0) Success.

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 29

Wrote 548928 of 548928 bytes.

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar>echo 10:54:31.44

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

30 NXP Semiconductors

Appendix B. Output Enable Pin Shifter Logic Table

Below is the logic table used for the Output Enable Pin shifter. Based on this table, the shift buffer

SHIFTBUF7 is set to 0xCC00CC00.

Table 8. Output Enable Pin Shifter Logic Look-up Table

SHIFTERi[0] FXIO_D[x+3] FXIO_D[x+2] FXIO_D[x+1] FXIO_D[x] Logic Output to FXIO_D[x+4]

unused
vertOEPinIdx
FXIO_D[14] unused

horizOEPinIdx
FXIO_D[12] unused

oePinIdx
FXIO_D[15]

0 0 0 0 0 SHIFTBUFi[0] 0

0 0 0 0 1 SHIFTBUFi[1] 0

0 0 0 1 0 SHIFTBUFi[2] 0

0 0 0 1 1 SHIFTBUFi[3] 0

0 0 1 0 0 SHIFTBUFi[4] 0

0 0 1 0 1 SHIFTBUFi[5] 0

0 0 1 1 0 SHIFTBUFi[6] 0

0 0 1 1 1 SHIFTBUFi[7] 0

0 1 0 0 0 SHIFTBUFi[8] 0

0 1 0 0 1 SHIFTBUFi[9] 0

0 1 0 1 0 SHIFTBUFi[10] 1

0 1 0 1 1 SHIFTBUFi[11] 1

0 1 1 0 0 SHIFTBUFi[12] 0

0 1 1 0 1 SHIFTBUFi[13] 0

0 1 1 1 0 SHIFTBUFi[14] 1

0 1 1 1 1 SHIFTBUFi[15] 1

1 0 0 0 0 SHIFTBUFi[16] 0

1 0 0 0 1 SHIFTBUFi[17] 0

1 0 0 1 0 SHIFTBUFi[18] 0

1 0 0 1 1 SHIFTBUFi[19] 0

1 0 1 0 0 SHIFTBUFi[20] 0

1 0 1 0 1 SHIFTBUFi[21] 0

1 0 1 1 0 SHIFTBUFi[22] 0

1 0 1 1 1 SHIFTBUFi[23] 0

1 1 0 0 0 SHIFTBUFi[24] 0

1 1 0 0 1 SHIFTBUFi[25] 0

1 1 0 1 0 SHIFTBUFi[26] 1

1 1 0 1 1 SHIFTBUFi[27] 1

1 1 1 0 0 SHIFTBUFi[28] 0

1 1 1 0 1 SHIFTBUFi[29] 0

1 1 1 1 0 SHIFTBUFi[30] 1

1 1 1 1 1 SHIFTBUFi[31] 1

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 31

Appendix C. IAR Debug Log when programming flash
Thu Jan 28, 2016 14:15:38: Loaded macro file: C:\Program Files (x86)\IAR

Systems\Embedded Workbench 7.50.2\arm\config\debugger\Freescale\Kxx.dmac

Thu Jan 28, 2016 14:15:38: Flash download warning: 522248 out of 522248

bytes from data record CODE:[0x68001000,0x68080807] will not be flashed

Thu Jan 28, 2016 14:15:38: There were warnings while generating flash loader

input.

See the Debug Log window for details.

Thu Jan 28, 2016 14:17:13: Loaded macro file: C:\Program Files (x86)\IAR

Systems\Embedded Workbench

7.50.2\arm\config\flashloader\Freescale\FlashK80Xxxx256K.mac

Thu Jan 28, 2016 14:17:15: JLINK command: ProjectFile =

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar\settings\flexio_TWR-LCD-RGB_Debug.jlink, return = 0

Thu Jan 28, 2016 14:17:15: Device "MK80FN256XXX15" selected.

Thu Jan 28, 2016 14:17:15: DLL version: V5.10d, compiled Dec 9 2015

12:49:14

Thu Jan 28, 2016 14:17:15: Firmware: J-Link OpenSDA 2 compiled Oct 13 2015

12:10:56

Thu Jan 28, 2016 14:17:15: Selecting SWD as current target interface.

Thu Jan 28, 2016 14:17:15: JTAG speed is initially set to: 32 kHz

Thu Jan 28, 2016 14:17:15: Found SWD-DP with ID 0x2BA01477

Thu Jan 28, 2016 14:17:15: Found SWD-DP with ID 0x2BA01477

Thu Jan 28, 2016 14:17:16: Found Cortex-M4 r0p1, Little endian.

Thu Jan 28, 2016 14:17:16: FPUnit: 6 code (BP) slots and 2 literal slots

Thu Jan 28, 2016 14:17:16: CoreSight components:

Thu Jan 28, 2016 14:17:16: ROMTbl 0 @ E00FF000

Thu Jan 28, 2016 14:17:16: ROMTbl 0 [0]: FFF0F000, CID: B105E00D, PID:

000BB00C SCS

Thu Jan 28, 2016 14:17:16: ROMTbl 0 [1]: FFF02000, CID: B105E00D, PID:

003BB002 DWT

Thu Jan 28, 2016 14:17:16: ROMTbl 0 [2]: FFF03000, CID: B105E00D, PID:

002BB003 FPB

Thu Jan 28, 2016 14:17:16: ROMTbl 0 [3]: FFF01000, CID: B105E00D, PID:

003BB001 ITM

Thu Jan 28, 2016 14:17:16: ROMTbl 0 [4]: FFF41000, CID: B105900D, PID:

000BB9A1 TPIU

Thu Jan 28, 2016 14:17:16: ROMTbl 0 [5]: FFF42000, CID: B105900D, PID:

000BB925 ETM

Thu Jan 28, 2016 14:17:16: Hardware reset with strategy 0 was performed

Thu Jan 28, 2016 14:17:16: Initial reset was performed

Thu Jan 28, 2016 14:17:17: ----- Prepare hardware for Flashloader -----

Thu Jan 28, 2016 14:17:17: 2304 bytes downloaded (18.00 Kbytes/sec)

Thu Jan 28, 2016 14:17:17: Loaded debugee: C:\Program Files (x86)\IAR

Systems\Embedded Workbench

7.50.2\arm\config\flashloader\Freescale\FlashK80Fxxx256K.out

Thu Jan 28, 2016 14:17:17: Target reset

Thu Jan 28, 2016 14:17:18: Unloaded macro file: C:\Program Files (x86)\IAR

Systems\Embedded Workbench

7.50.2\arm\config\flashloader\Freescale\FlashK80Xxxx256K.mac

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

32 NXP Semiconductors

Thu Jan 28, 2016 14:17:18: Downloaded

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar\debug\flexio_TWR-LCD-RGB.out to flash memory.

Thu Jan 28, 2016 14:17:18: Hardware reset with strategy 0 was performed

Thu Jan 28, 2016 14:17:18: 546674 bytes downloaded into FLASH (308.23

Kbytes/sec)

Thu Jan 28, 2016 14:17:18: Loaded debugee:

C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\flexio_TWR-LCD-

RGB\iar\debug\flexio_TWR-LCD-RGB.out

Thu Jan 28, 2016 14:17:18: Hardware reset with strategy 0 was performed

Thu Jan 28, 2016 14:17:18: Target reset

Thu Jan 28, 2016 14:17:19: There were 1 error and 1 warning during the

initialization of the debugging session.

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

NXP Semiconductors 33

Appendix D. Troubleshooting Tips

D.1. No image is displayed, only the driver patterns

This likely means the QuadSPI has not been programmed successfully. The firmware reads the image

table stored in QuadSPI. If the first entry in that table is not programmed, the application will not

attempt to show images, and will only draw the driver patterns. To resolve this, run the batch file to

program the QuadSPI, and ensure the operations in the batch file complete successfully without any

errors. See Section 7.3.1, Batch file for ROM Bootloader to program QuadSPI and Internal Flash.

D.2. Display is all white

When the LCD pixels are all white, this means the LCD is not receiving some of the control signals:

pixel clock, HSYNC, VSYNC or Output Enable. There are many potential reasons for this, and here is a

list of things to check:

• Verify the Tower cards are connected to the correct elevator board. Each edge of the Tower

cards can plug into either elevator board, and it is easy to get them reversed. See Section 7.1.3,

Assemble the Tower System.

• Verify the TWR-K80F150M jumpers J6 and J8 are removed. If these jumpers are installed, they

interfere with the SDRAM.

• On the TWR-K80F150M board, ensure capacitor C11 is removed. This capacitor will interfere

with the SDRAM. On schematic RevB1 and later, this capacitor should not be populated,

however on older boards it is.

• Try pushing the SW3 button to change the pattern. If the driver patterns display, but no images,

then the QuadSPI flash is likely not programmed correctly. See Appendix D.1, No image is

displayed, only the driver patterns.

• Use an oscilloscope to check if the four signals pixel clock, HSYNC, VSYNC, and OE are

getting toggled as described in Section 3, LCD Signals and Timing Overview. Probe the Tower

signals connected to the TWR-LCD-RGB board on the secondary elevator board. This may

show which signal(s) has the issue. If some signals look good but not all, then it is likely a

connection issue. Review the hardware setup steps and verify those connections. See Section

7.1.1, TWR-K80F150M Board Setup and Section 7.1.2, TWR-PROTO Board Setup.

• If none of the four control signals look correct, then it is likely an issue with the application.

Connect the debugger and start the application to see if the application appears to run correctly.

See Section 7.3.2, Programming Internal Flash with IAR Debugger.

• With the debugger, press button SW3 to draw a pattern in the frame buffer. Then halt the

Revision History

Using Kinetis FlexIO to Drive a Graphical LCD, Application Note, Rev. 1, 06/2016

34 NXP Semiconductors

debugger and look at the memory in the frame buffer. If the memory doesn’t appear to match

the pattern, then it is likely a hardware issue with the SDRAM. Review these steps for the

TWR-K80F150M board setup.

D.3. Display shows colors, but patterns and images are not correct

This likely means there is an issue with the timing of the LCD control signals, and it is likely a hardware

setup issue. See Section D.2, Display is all white for troubleshooting tips.

Document Number: AN5280
Rev. 1

06/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other

product or service names are the property of their respective owners.

ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or

its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2016 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/
http://www.nxp.com/support/sales-and-support:SUPPORTHOME
http://www.nxp.com/SalesTermsandConditions

	Using Kinetis FlexIO to Drive a Graphical LCD
	1. Introduction
	2. FlexIO Overview
	3. LCD Signals and Timing Overview
	4. FlexIO LCD Signal Generation
	4.1. Horizontal Timing
	4.2. Vertical Timing
	4.3. Output Enable and Pixel Data

	5. FlexIO_LCD Bus Bandwidth Performance
	6. FlexIO_LCD Driver
	7. Using flexio_TWR-LCD-RGB Example Application
	7.1. Configure the Hardware
	7.1.1. TWR-K80F150M Board Setup
	7.1.2. TWR-PROTO Board Setup
	7.1.3. Assemble the Tower System

	7.2. Build the Example Project
	7.3. Program the Flash
	7.3.1. Batch file for ROM Bootloader to program QuadSPI and Internal Flash
	7.3.2. Programming Internal Flash with IAR Debugger

	7.4. Run the Example

	8. Conclusion
	9. Revision History

