Freescale Semiconductor Document Number: AN5001
Application Note

Collecting Linux Trace without using
CodeWarrior

1.Introduction

Contents

This document guides you how to collect Linux L. INtrOdUCHON ...
trace direcﬂy from QDS or TWR board without 2. OVEIVIEW ettt
: : 3. Execution flowcccooverieiiiiieiieieieeee e

using CodeWarrior. The tool encapsulates the trace
. 4. USET SPACE traACE......eevuiiiiiiieiieiieie e
conﬁgurator and probe mt? one small and cross- 5. Kernel Space traceceovevvveveeienieniienieeieeie e
compiled component that is uploaded on the target 6. ConClUSIONoveeveeveeveeeeeeeeeeeeeeeeeeee e,

machine. Its main use is to collect the trace of a
program and also it is used for profiling the
application.

2.Overview

The Linux trace mechanism is independent of
CodeWarrior. The trace data is collected using a
QorIQ LS1021A or LS1024A Linux board.

The advantages of the ARMv7 standalone tracing
tool are:

¢ Size: Contains only what is needed

¢ Speed: All services are hosted on target machine
and there are no delays caused by
communication between multiple workstations
or languages

L
© Freescale Semiconductor, Inc., 2015. All rights reserved.

Z“ freescale

Execution flow

* Nonintrusive: No need to instrument the target application
¢ FEasy to use: Collects all required/available information for decoding
¢ Simple API: Can be easily integrated into any testing framework

¢ Data-driven: The platform and probe configuration can be easily tuned up and scaled to user needs

3. Execution flow
The execution flow is described below:

Figure 1. Flowchart for ARMv7 standalone Linux trace

Configure probe Choose launch
and configurator options for
using xml files satrace

Trace
Relocation support
Archive

Launch satrace

You can configure the Layerscape platform and probe in P1at formConfig.xml file, and then
specify the launch configuration options in 1s. Iinux. satrace executable. Run the executable with

user space commands, it will generate the relocation support file and the trace file for the application that
is being traced.

The root folder of the package will have the following file structure:

e bin folder: Binary files are needed for trace session; it will have 1s.linux.satrace
executable

* config folder: Platform configuration files; it will have PIatformConfig.xml file
e libfolder: Library files

Below are the listed options with a short description.

Collecting Linux Trace without using CodeWarrior Application Note
2 Freescale Semiconductor

Usage: ./Is.linux.satrace [Options]

Table 1. General command description - Options

User space trace

app [app_args]

Command Description

-v [--verbose] Verbose mode

-V [--version] Product version

-h [--help] Displays the help message
Table 2. User space command description - Options

Command Description

-A [--archive-file] Path of the generated archive

-b [--backtrace] Shows backtrace on SEGFAULT

-p [--pid] Attach to a process giving a PID
Table 3. Kernel space command description - Options

Command Description

-K [--kernel] Path of the generated kernel archive

-1 [--kernel-image] vmlinux image path

-m [--module-name] Name of the traced module
Table 4. System trace command description - Options

Command Description

-S [--system] arg Path of the generated archive

-1 [--kernel-image] vmlinux image path

-p [--pid] PID Attach to a process giving a PID

-b [--backtrace] Shows backtrace on SEGFAULT

4. User space trace

The relocation file contains a list of libraries linked with the traced application with their load addresses.
This list also contains libraries injected through LD _PRELOAD variable.

The trace file incorporates the raw trace collected by Embedded Trace Buffer (ETB) and Trace Memory

Controller (TMC) probes from the location specified

in the probe configuration file.

User space trace

The -A option is the most verbose. It archives the applications, all its dependencies (shared libraries),

trace file, the configuration file, and relocation support. This is the default option. Its use increases the
time and file-system space required for archiving. The main advantage is the generated *. cwzsa file. It

is an archive file that can be imported and fully decoded using ARMv7 decoder or ARMv7
CodeWarrior.

The -v option will generate a more detailed output at standard output. The SEGFAULT is a signal

triggered by the kernel to a user space application when a memory access violation is made. Usually, the
SEGFAULT signal is the main reason for the crash of C/C++ applications. Thus, a backtrace on

SEGFAULT is important where each byte of file system matters. The —b option will dump all known

stack frames without having support from a debugger. Before using this option, you must ensure that the
traced application has been compiled with debug information (-g for GCC) and extra code for exception

propagation (- funwind-tables for GCC) and all symbols are added to the dynamic symbol table (-
rdynamic for GCC).

Before running any examples, make sure that your kernel is already compiled with enabled
PID IN_CONTEXTIDR configuration option. All the steps mentioned below are done on the target

machine.

Create a small program that computes the sum of elements from 0 to num and crashes due to a
segmentation fault.

#include <iostream>
class SegFaultTest
{

public:

SegFaultTest ()

{
sum(5) ;
functionl();
}
private:

void functionl() { function2(); }
void function2() { function3(); }

void function3() { functiond(); }

Collecting Linux Trace without using CodeWarrior Application Note
4 Freescale Semiconductor

4
User space trace

void function4() { crash(); }

void crash()

char * p = NULL;

int sum(int n)

{
if (n <= 0)
{
return n;
}
return n + sum(n - 1);
}

};

int main(int argc, char ** argv)

SegFaultTest * f = new SegFaultTest();

return 0;

After saving the above program in a file, segfault. cpp, you should compile it with debugging symbols
as shown below:

g++ -g3 -funwind-tables -rdynamic segfault.cpp -o segfault

Now, try to figure out which line caused the crash. Launch the segfault executable using

ls.linux.satrace.

root@lsl02laqgds:~# ./linux.armv7.satrace/bin/ls.linux.satrace -b -v ./segfault

Collecting Linux Trace without using CodeWarrior Application Note
Freescale Semiconductor 5

User space trace

User space trace

Application:

Arguments

Relocation file:

Trace fil

Starting

Signal 11 (Segmentation fault),

(1)

(2)

(3)

(4)

(5)

(6)

(7)

e

‘. /segfault’

‘/home/root/segfault.rlog’

‘/home/root/segfault.dat’

‘./segfault’

./segfault:

./segfault:

./segfault:

./segfault:

./segfault:

./segfault:

./segfault:

address 1s 0

SegFaultTest: :crash()+0xf [0x8bc4]

SegFaultTest: :functiond ()+0xd [0x8bae]
SegFaultTest: :function3()+0xd [0x8b9a]
SegFaultTest: :function2()+0xd [0x8b86]
SegFaultTest: :functionl()+0xd [0x8b72]

SegFaultTest::SegFaultTest ()+0x15 [0x8bba]

main+0x19 [0x8ad2]

(8) /lib/libc.so.6: _ _libc_start_main+0x110 [0x76c912b8]

User application terminated because it didn't catch signal number:

fault)

Master pr

ocess

Collecting trace

Archive f
Creating
Archiving
Archiving
Archiving
Archiving
Archiving

Archiving

ile:

archive. ...

‘/home/root/segfault.cwzsa’

/home/root/segfault.rlog

/home/root/segfault

/1ib/1librt-2.18-2013.10.s0

/1ib/1ibd1-2.18-2013.10.s0

/1ib/libpthread-2.18-2013.10.so0

/1ib/1ibc-2.18-2013.10.s0

Collecting Linux Trace without using CodeWarrior Application Note

11 (Segmentation

Freescale Semiconductor

Archiving /lib/libm-2.18-2013.10.s0
Archiving /1lib/1d-2.18-2013.10.s0o
Archiving ./linux.armv7.satrace/config/PlatformConfig.xml

Archiving /home/root/segfault.dat

The executable collects trace and archives all dependencies into /home/root/segfault.cwzsa archive.

You can view the generated archive in CW ARMv7 with a drag-and-drop action. As a result, the Import
wizard starts, as shown in the figure below.

Figure 2. Import wizard — user space

1 Import ENER

Import Trace

Import a trace data file.

Import From

Trace datafile: | [C\Users\b34823\workspaceT\RemateSystemnsTempFiles\10.171.73.105\home\root\Demo-Linudsegfault.cwzsa Browse...

View Trace
[¥] View the trace data on finish
0S Support

@ < Back Net> || Finish || Cancel

Click Finish to end the Import wizard. The file is imported and it is displayed in the Analysis Results
view.

Click the Trace link under the Trace column in the Analysis Results view to view the trace data, as
shown in the figure below.

Figure 3. Analysis Results view — user space

@& Analysis Results 52 =0

Analysis Results o O &

MName Trace Timeline Code Coverage Performance Call Tree Last Modified MNotes

a 1= Linux Test_Linux
> B ETF
4 [Linux segfault
4 B ETF
| =] segfault ,f Trace r-.'- Timeline Code Cover... @ Performance ECE” Tree 2015.06.12 00:57:45 PM

4 L 2

Kernel space trace

The trace data file opens in the Trace viewer showing the trace results, as shown in the figure below.

Figure 4. Trace viewer — user space

A segfault.csv 53 =0
Index | Source | Type | Description | Address Destination Timestamp &

+97 Core(Linear Function SegFaultTest:sum(int) 087l 1]

+/98 Corel Branch Branch from SegFaultTest:sum(int) to SegFaultTest:sum(int) (BT ec (B7el 0

+199 Core(Linear Function SegFaultTest:sum(int) 087l 1]

+1100 Corel Branch Branch from SegFaultTest:sum(int) to SegFaultTest:sum(int) 0BT ec 0BTl 0

+101 Core(Linear Function SegFaultTest:sum(int) (E7el 0

+1102 Corel Branch Branch from SegFaultTest:sum(int) to SegFaultTest:sum(int) 0BT ec 0BTl 0

+103 Core(Linear Function SegFaultTest:sum(int) 087l 1]

+104 Core0 Eranch Branch from SegFaultTest:sum(int) to SegFaultTest:SegFaultTest() 0x8Tec 0xB744 0

+105 Corel Linear Function SegFaultTest:SegFaultTest() 0x8744 0

+106 Core(Branch Branch from SegFaultTest:SegFaultTest() to SegFaultTest:functionl() 0x8746 (%8754 0

+107 Corel Linear Function SegFaultTest:functionl() 0x8754 0

+108 Core0 Branch Branch from SegFaultTest:functionl () to SegFaultTest:function2() 0x875e 08768 0

+109 Core(Linear Function SegFaultTest:function() 0x8768 0

+110 Core0 Branch Branch from SegFaultTest:function2() to SegFaultTest:function3() 08772 0x877c 0

+111 Corel Linear Function SegFaultTest:function3() 0x877c 0

+112 Core0 Branch Branch from SegFaultTest:function3() to SegFaultTest:functiond () 08786 0x8790 0

+113 Corel Linear Function SegFaultTest:functiond () 0x8790 0

+114 Core(Branch Branch from SegFaultTest:functiond() to SegFaultTest:crash() 0x879a (x87a4 0 =

+115 Corel Linear Function SegFaultTest:crash() 0x87a4 0

+116 Core0 Info Exception packet - ETM - last instruction traced was canceled 0 -

5.Kernel space trace

The same executable can be used for kernel space tracing without using a dedicated hardware probe. For
this type of trace, the following three kernel space options are used:

e g Starts a kernel space trace session and also specifies the name of the generated archive

e —i:[tis optional. It points to the vmlinux image of the system. This option is useful only when the
kernel image contains debug information; otherwise, -x option is more convenient to use.

e —m: Traces the code generated from a kernel module

Run the satrace with -k and -1 options. After few seconds, send a sEGINT signal by pressing CTRL+C
on your keyboard.

root@lslO02laqgds:~# ./linux.armv7.satrace/bin/ls.linux.satrace -v -K kernelTest -

i ~/vmlinux

Kernel space trace

Archive: ‘kernelTest.kcwzsa'
Hit CTRL+C to stop trace.
Collecting trace

Kernel image: ' /home/root/vmlinux’

Collecting Linux Trace without using CodeWarrior Application Note
8 Freescale Semiconductor

Archive file: ‘kernelTest.kcwzsa'

Creating archive

Archiving /home/root/vmlinux

Archiving ./linux.armv7.satrace/config/PlatformConfig.xml

Archiving kernelTest.dat

The generated archive can be opened in CW ARMv7 with a drag-and-drop action. As a result, the
Import wizard starts, as shown in the figure below.

Figure 5. Import wizard — kernel space

¥4 Import Lo (O]

Import Trace

Import a trace data file,

Import From

Trace data file: C:\Users\b34823\workspacel\RemoteSystemsTempFiles\10.171.73 105\ home\root' Demo-Linux\ kernelTest. kewzsa Browse...

View Trace
[¥] View the trace data on finish
05 Support

@ <Back || Nea> |[Fnsh || cancel |

Click Finish to end the Import wizard. The file is imported and it is displayed in the Analysis Results
view.

Click the Trace link under the Trace column in the Analysis Results view to view the trace data, as
shown in the figure below.

Figure 6. Analysis Results view — kernel space

@ Analysis Results 52 =0

Analysis Results S ==

Mame Trace Timeline Code Coverage Performance Call Tree Last Modified Motes

4 =% Linux Test_Linux
» &= ETF
4 =% Linux segfault
- B ETF
4 =% Linux kernelTest
4 = ETF
| = kernelTest j Trace r-.'- Timeline Code Cower... @ Performance E Call Tree 2015.0612 07:14:45 PM

4 i 3 9

Conclusion

The trace data file opens in the Trace viewer showing the trace results, as shown in the figure below.

Figure 7. Trace viewer — kernel space

2 kemelTest.csv &3 =0

Index | Source | Type | Description Address Destination Timestamp -
+ 2611 Core0 Branch Branch from <no debug info> to <no debug info>» 080030908 0x800096c8 0
+ 2612 Corel Linear Function <no debug info> (08000968 0
+2613 Core0 Eranch Branch from <no debug info> to <no debug info> (08000968 08000964 0
+ 2614 Corel Custom ISYMNC PACKET - ETM - tracing restarted after overflow 0
2615 Core0 Software Context software context id = 153088 0
+ 2616 Core0 Linear Function <no debug info>» OnfFFFO008 0
+ 2617 Core0 Branch Branch from <no debug info> to <no debug info>» OufFEFO008 (028000ddB0 0
+ 2618 Corel Linear Function <no debug info» 08000ddB0 0
+ 2619 Core0 Linear Function <no debug info> (0:8000d dB0 0
+ 2620 Corel Linear Function <no debug info> (0:8000d dB0 0
+2621 Core(Branch Branch from <no debug infe> to <ne debug info> 0:8000dd80 0x800a3594 0
+ 2622 Corel Linear Function <no debug info> (080023594 0
+ 2623 Core0 Branch Branch from <no debug info> to <no debug info>» (080023594 0x800baf70 0
+2624 Corel(Linear Function <no debug info> (x800baf70 0
+ 2625 Core0 Linear Function <no debug info> 0x800baf70 0
+ 2626 Corel Linear Function <no debug info> (0x800baf7l0 0
+ 2627 Core(Linear Function <no debug info>» (x800baf70 0
+ 2628 Corel Linear Function <no debug info> (0x800baf7l0 0
+ 2629 Core0 Branch Branch from <no debug info> to <no debug info>» 0x800baf70 (0x800a35b4 0
+2630 Core(Linear Function <no debug infox» (0800a35b4 0
+ 2631 Core0 Linear Function <no debug info> (0x800a35b4 0
+ 2632 Corel Branch Branch from <no debug info> to <no debug infox» (0x800a35b4 0x800a2fb8 0
+ 2633 Core(Linear Function <no debug info> (0x800a2fbd 0

+ 2634 Corel Linear Function <no debug info> (0x800a2fba 0 -

The satrace offers the possibility to trace a kernel module using —m option. The trace will be started
after loading the module in kernel using insmod or modprobe.
For example, to start a kernel session for a module, demoModule, you should run the following

command:
./linux.armv7.satrace/bin/ls.linux.satrace -K test -m demoModule

Use a kernel space/user space application that calls functions defined into the loaded module
(demoModule), otherwise the trace will be empty. The trace session ends after hitting CTRL+C. The

collected trace will be stored into an archive placed in the current working directory. It can be decoded
and analyzed using CodeWarrior or Trace Complex 1 (TC1) command line utility.

6. Conclusion

The 1s.1inux.satrace executable can be used by Linux user who wants to know the reason for crash

or wants to follow the function calls or needs to evaluate the software without any hardware probe. After
saving the trace file into an archive that contains all required files for a full decoding, can be viewed in
CodeWarrior. The user is benefited from all advantages offered by CW ARMv7. You can have the
profiling data code coverage, call tree, performance analysis as well.

Collecting Linux Trace without using CodeWarrior Application Note

10 Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

Document Number: AN5001

27 August 2015

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which

can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorlQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is trademark of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners. ARM, Cortex, Cortex-A7,
TrustZone are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

© 2015 Freescale Semiconductor, Inc.

“freescale

