

Freescale Semiconductor Document Number: AN4803
Application Note Rev. 0, 10/2013

© 2013 Freescale Semiconductor, Inc.
__

I2C Non-Blocking Communication
by: Matus Plachy

1 Introduction
This application note describes one of the
possible ways to perform the non-blocking
communication on the I2C bus. It also provides
the example c-code for the I2C master.

The blocking communication means that the
MCU stalls until the byte is transferred from the
data register. In the code, this is usually
implemented as checking of the status bit in the
“while” loop. However, this approach might not
be applicable for some time-critical
applications. Assuming an I2C speed of 100
kHz, transmission of 1 byte will stall the CPU
for 9 µs. The total time while the CPU is
waiting for data transmitting or receiving is
much higher because the I2C message consists
of at least three bytes.

The algorithm described in this application note,
enables sending whole I2C packet without
waiting of the CPU in loops. Fault detection and
evaluation leverages the value of this example
code by introducing a more robust solution. The
algorithm assumes only one master on the bus is
presented, so it does not check and evaluate the
loss of arbitration condition.

Contents
1 Introduction ... 1

2 I2C bus ... 2

2.1 I2C data transfer formats 2

3 Transmission of I2C messages with non-
blocking algorithm .. 3

3.1 Non-blocking I2C communication
driver 4

3.2 Example of using of the software
driver 8

3.3 Functions description 11

4 Conclusion .. 12

5 Code listing ... 13

6 References ... 24

7 Acronyms .. 24

8 Revision history 24

 I2C Non-blocking Communication, Rev 0, 10/2013
2 Freescale Semiconductor, Inc.

2 I2C bus
The Inter-Integrated Circuit (I2C, I2C, or IIC) is the serial bidirectional two-wire communication
interface. Serial data (SDA) and serial clock (SCL) carry information between the devices connected to
the bus. Each device is recognized by a unique address. A master is the device that initiates data transfer
on the bus and generates the SCL clock that synchronizes the data transfer. At the time of transmission,
any device addressed is considered as a slave.

2.1 I2C data transfer formats
The I2C byte format, timing diagrams of the SDA and SCL lines, and definition of Start, Stop, and other
signals can be found in the reference manual of any microcontroller that possesses the I2C module (in
the list of referenced documentation [1] or [2]). The message formats for writing and reading data to and
from the slave are described in the subsequent subsections.

2.1.1 Write data message format
The message format for data transmission to a slave consists of five parts:

1. Start signal
2. Slave address transmission followed by “write” bit
3. Transmission of the register address where the data will be written
4. Data transmission (multiple)
5. Stop signal

After each byte received by the slave, the slave generates an acknowledge bit to signal the master
successful completion of the byte transmission. Some I2C slave devices might allow writing multiple
data. The I2C slave device features then auto-increment or decrement of previously accessed memory
locations.

Figure 1. Write data transmission message

2.1.2 Read data message format
The message format for data transmission from the slave (the master is a receiver) in the case of
combined format as defined in [3] consists of nine parts:

1. Start signal

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 3

2. Slave address transmission followed by “read” bit
3. Register address transmission from which the data will be read
4. Repeated start signal
5. Slave address transmission followed by “write” bit
6. Reading first dummy data byte from the data register (valid slave data arrives after first

master ACK)
7. Data transmission from the slave to master (multiple)
8. Not acknowledge signal generation
9. Stop signal

After each byte received by the master, the master generates and acknowledge bit to signal the slave
about successful completion of the byte transmission. Similarly, some I2C slave devices allow reading
multiple data.

Figure 2. Read Data Transmission Message

The I2C bus specification enables also another message formats. The I2C slave device can support the
combine message format also for data writing to a slave. Other I2C messages format are described in the
[3] and are not supported by the example code which is provided in this document.

3 Transmission of I2C messages with non-blocking algorithm
This section describes the algorithms for the multi-byte read and write I2C messages. Because the aim is
the non-blocking communication, the CPU will not wait until each byte is transferred, but the algorithm
allows the application to continue the execution. After the byte is transferred and ACK signal is
received, the I2C module triggers the interrupt. In this interrupt the state machine of the communication
driver then initiates the transfer of next byte of the I2C message.

 I2C Non-blocking Communication, Rev 0, 10/2013
4 Freescale Semiconductor, Inc.

3.1 Non-blocking I2C communication driver

3.1.1 Data type structure, flags and faults
As mentioned in I2C bus section, the I2C write and read message consists from several parts. In order to
identify in what phase the communication currently is, the control structure contains flags identifying
current transmission stage:
typedef enum
{
 I2C_TRM_STAGE_NONE = 0,
 I2C_TRM_STAGE_WRITE_DATA,
 I2C_TRM_STAGE_WRITE_DEV_ADDRESS_W,
 I2C_TRM_STAGE_WRITE_DEV_ADDRESS_R,
 I2C_TRM_STAGE_WRITE_REG_ADDRESS,
 I2C_TRM_STAGE_READ_DUMMY_DATA,
 I2C_TRM_STAGE_READ_DATA,
 I2C_TRM_STAGE_NACK,
} tI2C_trm_stage;

The next enumeration data type is used to identify read or write message format:
typedef enum
{
 I2C_MODE_READ = 0,
 I2C_MODE_WRITE,
} tI2C_mode;

The transmission in progress is signaled by flag in the following data type:
typedef enum
{
 I2C_FLAG_NONE = 0,
 I2C_FLAG_TRANSMISSION_PROGRESS,
} tI2C_flag;

The software also checks and evaluates fault states:
typedef enum
{
 I2C_NO_FAULT = 0,
 I2C_BUS_BUSY,
 I2C_TIMEOUT,
 I2C_PERMANENT_BUS_FAULT,
} tI2C_fault;

The I2C_BUS_BUSY fault flag is set when attempting to send new message over the I2C bus, but the bus is
in the busy state. It means that the transfer of previous message has not been completed. The I2C module
sets the BUSY flag when the Start signal is detected and clears the flag when the stop signal is detected.

The I2C_TIMEOUT fault flag is set, when the I2C_BUS_BUSY fault persists more than 150 µs (number
determined as double of longest I2C message). The message transfer is not completed and the bus is still
in busy state because the data transmission on the I2C bus is affected by the noise. Timeout feature

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 5

prevents processor to stick for ever when this condition occurs on the I2C bus. After the timeout fault
occurs, the software disables the I2C module and sends nine clock pulses followed by NACK and the
stop signal. The slave should release the SDA line and the I2C module is reinitialized. Then the software
tries to send the message once again. If the transfer of the message fails again, then
I2C_PERMANENT_BUS_FAULT fault flag is set and the communication would be reenabled only by power-on
reset of the slave, if another hardware fault is not preventing proper I2C communication. This procedure
is not part of the example code. When the I2C_TIMEOUT fault flag is set, it means, the previous message
also might not be transferred completely. This must be considered during initialization sequence of the
slave, some registers might not be initialized correctly. So it is advisable to also send the previous
message (not part of the example code).

The I2C control structure contains following variable except above listed enumeration types:
• Device address followed by write bit.
• Device address followed by read bit.
• Address of the slave register where the first byte of data will be written or read from.
• Size of the data in bytes.
• Data index which points to the current position in the iic_data[]read or write data array.

typedef struct
{
 tI2C_trm_stage eI2C_trm_stage;
 tI2C_flag eI2C_flag;
 tI2C_mode eI2C_mode;
 tI2C_fault eI2C_fault;
 unsigned char device_address_w;
 unsigned char device_address_r;
 unsigned char register_address;
 unsigned char data_size;
 unsigned char data_index;
} tI2C_com_ctr;

3.1.2 Algorithm description
Before the I2C transmission starts, the control structure has to be initialized (device address for read and
write, address of the target register, size of the data to be sent or received). The message transmission is
initiated by calling I2C_write or I2C_read functions. These functions send the first byte of data (the
slave address) to the I2C bus. The name of the variables and the flags are abbreviated in the flowcharts.

 I2C Non-blocking Communication, Rev 0, 10/2013
6 Freescale Semiconductor, Inc.

 I2C_write(*psI2C_tr_ctrl, data[]) I2C_read(*psI2C_tr_ctrl, data[])

Figure 3. Flowcharts of I2C_write and I2C_read functions

The control flag I2C_FLAG_TRANSMISSION_PROGRESS is set at the end of I2C_write and I2C_read functions.
The main application must not initiate the next message transfer until this flag is changed back to
I2C_FLAG_NONE.

When the first byte of the message is successfully sent, the main application can continue with execution
of other tasks. While attempting to send the first byte, and the I2C bus is in busy state, the return value
of the I2C_write or I2C_read functions is fault flag. This not necessarily means that the I2C bus is in
fault condition, the transfer of the previous message might be still in the progress. The timeout counter is
incrementing and the attempt of the data transfer is repeated. The initial value of the timeout time-down
counter should be selected with respect to the size of the largest message that is transferred, but consider
the value appropriately so the MCU will not wait uselessly.

If the transfer of the byte is completed and the slave confirmed the data transfer by sending the
acknowledge signal to the master, the I2C module on the MCU generates an interrupt request. In some
cases in the I2C bus, the slave do not confirm the receiving of the data by sending the acknowledge
signal. The following points describe the possible conditions when no acknowledge (NACK) is
generated [3]:

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 7

1. No receiver is present on the bus with the transmitted address so there is no device to respond
with an acknowledge.

2. The receiver is unable to receive or transmit because it is performing some real-time function
and is not ready to start communication with the master.

3. During the transfer, the receiver gets data or commands that it does not understand.
4. During the transfer, the receiver cannot receive any more data bytes.
5. A master-receiver must signal the end of the transfer to the slave transmitter.

Note
The last point does not represent a fault condition and is used at the end of
the read data message. The generation of the NACK signal by the slave on
the I2C bus (points 1-4) is not detected by the example code. However,
this state on the I2C bus causes triggering the timeout fault, so the
application can indirectly handle also this condition on the I2C bus.

In the interrupt service routine I2C_isr_Callback then algorithm continues sending the bytes of the I2C
message. The algorithm is different for transmitting (write) and receiving (read) data. For the receiving
data it is more complicated that results from the structure of read I2C message.

Flowchart of the I2C ISR Callback when the master is in transmitting mode (write data message):

Figure 4. Flowchart of the ISR - Write Data Message

 I2C Non-blocking Communication, Rev 0, 10/2013
8 Freescale Semiconductor, Inc.

Flowchart of the I2C ISR Callback when the master is in receiving mode (read data message):

Figure 5. Flowchart of the ISR - read data message

The ISR starts with evaluation of current stage of the message transfer (TRM_STAGE) using “switch”
statement. Then follows the execution of that branch, which corresponds to the actual transmission
stage. At the end of each branch the TRM_STAGE variable is updated with the next stage, so the next
time the ISR is executed, the algorithm passes the next branch of the “switch” statement. At the end of
the last branch, the transmission control flag is changed to I2C_FLAG_NONE. This flag can be used for
signaling to the main application that the transfer of whole I2C message was finished and the I2C bus is
ready to start the transfer of the next message. In the example code the end of message transfer is
evaluated by checking the BUSY status bit in the I2C module.

3.2 Example of using of the software driver
Except the algorithm that performs the non-blocking I2C communication, this document contains also
example showing the way how to use it in the application. The example shows initialization and
communication with some fictitious temperature sensor, so the values of addresses and registers are
randomly selected. The reader should also consider the comments provided within the code example.

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 9

The example code below represents the initialization of the I2C control structure, sensor initialization,
and timer interrupt routine that serves for periodical sense of the temperature from the sensor that is
connected to the master MCU via I2C interface.

At first device address for read and write is defined and the control structure that is used for evaluation
of the readiness of actual temperature value is defined:
#define SENSOR_I2C_ADDRESS 0x5A // as defined in sensor datasheet
#define IICWRITE(iicaddress) ((iicaddress<<1) & 0xFE)
#define IICREAD(iicaddress) ((iicaddress<<1) | 0x01)
#define SENSOR_I2C_ADDRESS_W IICWRITE(SENSOR_I2C_ADDRESS) //0xB4
#define SENSOR_I2C_ADDRESS_R IICREAD(SENSOR_I2C_ADDRESS) //0xB5

typedef enum
{
 SENSOR_NO_FAULT = 0,
 SENSOR_INIT_FAILED,
 SENSOR_READ_FAILED,

} tSensor_fault;

typedef enum
{
 SENSOR_NO_TRANSFER = 0,
 SENSOR_TRANSFER_PROGRESS,
 SENSOR_TRANSFER_FINISHED,
} tSensor_data_transfer;

typedef struct
{
 tSensor_fault eSensor_fault;
 tSensor_data_transfer eSensor_data_transfer;
 unsigned char measured_data;
} tSensor_com_ctr;

// variable of “tSensor_com_ctr” type declaration:
 tSensor_com_ctr sTMPR_com_ctr;

// array of data that are sent (received) during I2C message transfer. The size depends on
//the maximum size of the message that is sent over I2C bus (e.g. during initialization of
//the sensor
unsigned char iic_data[10];

The following function serves for initialization of the I2C control structure:
void TemperatureSensingInit (void)
{
 // init I2C_com_ctr structure members that are the same for all application
 sI2C_com_ctr.device_address_w = SENSOR_I2C_ADDRESS_W;
 sI2C_com_ctr.device_address_r = SENSOR_I2C_ADDRESS_R;
 // init flags before first use
 sI2C_com_ctr.eI2C_flag = I2C_FLAG_NONE;
 sI2C_com_ctr.eI2C_fault = I2C_NO_FAULT;

 if (Sensor_Init() == SENSOR_INIT_FAILED)
 {

 I2C Non-blocking Communication, Rev 0, 10/2013
10 Freescale Semiconductor, Inc.

// if the I2C bus error caused fail of the sensor init process, the error flag //is set. The
main application then should evaluate this condition
sTMPR_com_ctr.eSensor_fault = SENSOR_INIT_FAILED;
 return;
 }
 ENABLE_TIMER_INTERRUPT;
}

The following function provides an example of the sensor initialization at the application start-up:
tSensor_fault Sensor_Init (void)
{
 static unsigned int time_out_cnt = 1000;
 // clear the data array first
 for (i=0; i<10; i++)
 iic_data[i] = 0;
 //clear all registers
 sI2C_com_ctr.data_size = 10; // assuming the sensor has 10 registers
 sI2C_com_ctr.eI2C_trm_stage = I2C_TRM_STAGE_WRITE_DEV_ADDRESS_W;
 sI2C_com_ctr.register_address = 0x00;
 if (I2C_write_data(&sI2C_com_ctr, iic_data) != I2C_NO_FAULT)
 return SENSOR_INIT_FAILED;
 // Move to next command after previous message is sent
 // Here the blocking communication is used. The application has to wait anyway until
// the sensor is initialized.
 while (((sI2C_com_ctr.eI2C_flag == I2C_FLAG_NONE) && (time_out_cnt != 0)))

{
 time_out_cnt--
}

 if (time_out_cnt == 0) // if the counter counts to zero
 return SENSOR_INIT_FAILED;
 // prepare data for next message transfer
 sI2C_com_ctr.data_size = 2;
 sI2C_com_ctr.eI2C_trm_stage = I2C_TRM_STAGE_WRITE_DEV_ADDRESS_W;
 sI2C_com_ctr.register_address = 0x00;
 iic_data[0] = 0x63; // some setting
 iic_data[1] = 0x10; // some setting
 if (I2C_write_data(&sI2C_com_ctr, iic_data) != I2C_NO_FAULT)
 return SENSOR_INIT_FAILED;
 // move to next command after previous "packet" sent
 time_out_cnt = 1000;
 while (!((sI2C_com_ctr.eI2C_flag == I2C_FLAG_NONE) && (time_out_cnt != 0)))

{
 time_out_cnt--
}

 if (time_out_cnt == 0) // if the counter counts to zero
 return SENSOR_INIT_FAILED;
 //… configuration continues by writing data to other registers. The initialization process
 // is divided to several messages, some registers might remained untouched, some might
 // require other registers to be written first.
return SENSOR_NO_FAULT;
}

Timer interrupt service routine, where the initiation of transfer of the sensed values is performed:
void Timer1_Isr(void)

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 11

{
 // initialization of I2C control structure
sI2C_com_ctr.register_address = 0x04; // address of the register with actual measured
 // temperature
 sI2C_com_ctr.data_size = 1;
 sI2C_com_ctr.eI2C_flag = I2C_FLAG_NONE;
 sI2C_com_ctr.eI2C_trm_stage = I2C_TRM_STAGE_WRITE_DEV_ADDRESS_W;
 if (I2C_read_data(&sI2C_com_ctr, iic_data) != I2C_NO_FAULT)
 sTMPR_com_ctr.eSensor_fault SENSOR_READ_FAILED;
 else
{
 sTMPR_com_ctr.eSensor_data_transfer = SENSOR_TRANSFER_PROGRESS;
// IMPORTANT: The SENSOR_TRANSFER_FINISHED flag has to be set in the I2C_isr_Callback
// function, when all bytes of the I2C message are transferred. The main application should
// evaluate eSensor_data_transfer flags in order to check the availability of actual
// temperature data. Then the flag should be changed to SENSOR_NO_TRANSFER.
// The value of actual temperature will be stored in first element of iic_data array
sTMPR_com_ctr.eSensor_fault = SENSOR_NO_FAULT;
}
 CLEAR_TIMER_INTERRUPT_FLAG;
}

3.3 Functions description

void I2C_Init()

 Function performs initialization of the I2C module on the MCU.

void I2C_DeInit()

 Deinitialization of the I2C module on the MCU, function is called from the I2C_Restore().

void I2C_Restore()

 Reinitialization of the I2C module in case time-out condition occurs on the bus.

tI2C_fault I2C_write(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])

The function initiates the transmission of the first byte of the I2C write message.

tI2C_fault I2C_read(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])

The function initiates the transmission of the first byte of the I2C read message, it checks the
state of the bus.

tI2C_ fault I2C_write_data(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])

The function is used for initiation of the I2C write message transmission from the main
application. The function evaluates the I2C_BUS_BUSY fault flag (the return value of I2C_write
function). In case the flag is set, then the function repeatedly calls the I2C_write function until

 I2C Non-blocking Communication, Rev 0, 10/2013
12 Freescale Semiconductor, Inc.

the time-out condition occurs. Then the I2C bus is reinitialized and the function attempts to write
the data on the I2C bus again. If the time-out condition occurs again, the
I2C_PERMANENT_BUS_FAULT fault flag is set. The main application should then evaluate this flag.

tI2C_fault I2C_read_data(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])

The function is used for initiation of the I2C write message transmission from the main
application, it performs the same procedure as I2C_write_data function.

tI2C_fault I2C_isr_Callback (tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])

The function executes the non-blocking algorithm of the I2C read and write messages
transmission. The function algorithm description and the flowchart can be found in Algorithm
description section. After the transmission of the I2C message is completed, the flag
SENSOR_TRANSFER_FINISHED has to be set to sTMPR_com_ctr.eSensor_data_transfer.

void I2C_Isr(void)

This function is the interrupt service routine of I2C module. The interrupt is generated when all
bits from the data registers are sent and the acknowledge signal is received. In this ISR the
I2C_isr_Callback function is called and the interrupt flag is cleared.

4 Conclusion
This application note describes one of the possible methods of designing master side I2C non-blocking
communication software driver. Algorithm described in this application note, enables to send data to a
slave as well as request and receive the data from the slave. The algorithm can be used for
communication between the MCU and a sensor. The write-data part of the software might be used for
sensor configuration at the application startup, while the read-data part of the software driver can be
used for requesting and receiving the measured data.

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 13

5 Code listing

i2c.h file

/**
*
* Freescale Semiconductor Inc.
* (c) Copyright 2013 Freescale Semiconductor
* ALL RIGHTS RESERVED.
*
***/
/*
 * @file i2c.h
 * @author B02785, plcm001
 * @version 1.0.2.0
 * @date July-22-2013
 * @brief I2C driver header file.
 **/
#ifndef __I2C_H
#define __I2C_H

/**
 * definition of transmission control structure *
 **/
typedef enum
{
 I2C_TRM_STAGE_NONE = 0,
 I2C_TRM_STAGE_WRITE_DATA,
 I2C_TRM_STAGE_WRITE_DEV_ADDRESS_W,
 I2C_TRM_STAGE_WRITE_DEV_ADDRESS_R,
 I2C_TRM_STAGE_WRITE_REG_ADDRESS,
 I2C_TRM_STAGE_READ_DUMMY_DATA,
 I2C_TRM_STAGE_READ_DATA,
 I2C_TRM_STAGE_NAK,
} tI2C_trm_stage; // transmission stages

typedef enum
{
 I2C_MODE_READ = 0,
 I2C_MODE_WRITE,
}tI2C_mode;

typedef enum
{
 I2C_FLAG_NONE = 0,
 I2C_FLAG_TRANSMISSION_PROGRESS,
} tI2C_flag;

typedef enum
{
 I2C_NO_FAULT = 0,
 I2C_BUS_BUSY,
 I2C_TIMEOUT,
 I2C_PERMANENT_BUS_FAULT,
}tI2C_fault;

 I2C Non-blocking Communication, Rev 0, 10/2013
14 Freescale Semiconductor, Inc.

typedef struct
{
 tI2C_trm_stage eI2C_trm_stage;
 tI2C_flag eI2C_flag;
 tI2C_mode eI2C_mode;
 tI2C_fault eI2C_fault;
 unsigned char device_address_w;
 unsigned char device_address_r;
 unsigned char register_address;
 unsigned char data_size;
 unsigned char data_index;
} tI2C_com_ctr;

/**
 * command definitions *
 **/
/* I2C macro definitions */

#if defined (TOWER)

#define I2C_MASTER_SDA_PIN_1 GPIOF_DR |= GPIOF_DR_D_3
#define I2C_MASTER_SDA_PIN_0 GPIOF_DR &= ~GPIOF_DR_D_3
#define I2C_MASTER_SCL_PIN_1 GPIOF_DR |= GPIOF_DR_D_2
#define I2C_MASTER_SCL_PIN_0 GPIOF_DR &= ~GPIOF_DR_D_2

#define I2C_MASTER_SDA_PIN_AS_IN GPIOF_DDR &= ~GPIOF_DDR_DD_3
#define I2C_MASTER_SDA_PIN_AS_OUT GPIOF_DDR |= GPIOF_DDR_DD_3

#define I2C_MASTER_SCL_PIN_AS_IN GPIOF_DDR &= ~GPIOF_DDR_DD_2
#define I2C_MASTER_SCL_PIN_AS_OUT GPIOF_DDR |= GPIOF_DDR_DD_2

#define I2C_MASTER_SDA_PIN_AS_GPIO GPIOF_PER &= ~GPIOF_PER_PE_2
#define I2C_MASTER_SCL_PIN_AS_GPIO GPIOF_PER &= ~GPIOF_PER_PE_3

#define I2C_MASTER_SDA_PIN_AS_I2C GPIOF_PER |= GPIOF_PER_PE_2
#define I2C_MASTER_SCL_PIN_AS_I2C GPIOF_PER |= GPIOF_PER_PE_3
#endif

/***//*!
 * @brief Macro generate Start I2C signal
 * @param module - I2C0|I2C1
 * @note Implemented as inlined macro.
 **/
#define I2C_START_SIGNAL (I2C_C1 |= I2C_C1_MST)

/***//*!
 * @brief Macro generate Stop I2C signal
 * @param module - I2C0|I2C1
 * @note Implemented as inlined macro.
 **/
#define I2C_STOP_SIGNAL (I2C_C1 &= ~I2C_C1_MST)

/***//*!

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 15

 * @brief Macro generate Repeat Start I2C signal
 * @param module - I2C0|I2C1
 * @note Implemented as inlined macro.
 **/
#define I2C_REPEAT_START_SIGNAL (I2C_C1 |= I2C_C1_RSTA)

/***//*!
 * @brief Macro Write data for transfer
 * @param module - I2C0|I2C1
 * @param data - Data for send
 * @note Implemented as inlined macro.
 **/
#define I2C_WRITE_BYTE(data) (I2C_D = data)

/***//*!
 * @brief Macro Return data from last transfer
 * @param module - I2C0|I2C1
 * @return data - Data from last transfer
 * @note Implemented as inlined macro.
 **/
#define I2C_READ_BYTE (unsigned char)I2C_D

/***//*!
 * @brief Macro Return Irq. flag
 * @param module - I2C0|I2C1
 * @return TRUE - Interrupt. pending (action finished)
 * @return FALSE - No Interrupt. pending (action in proggress)
 * @note Implemented as inlined macro.
 **/
#define I2C_GET_IRQ_FLAG (I2C_S & I2C_S_IICIF)

/***//*!
 * @brief Macro clear Irq. flag
 * @param module - I2C0|I2C1
 * @return NONE
 * @note Implemented as inlined macro.
 **/
#define I2C_CLEAR_IRQ_FLAG (I2C_S |= I2C_S_IICIF)

/***//*!
 * @brief Macro change I2C mode RX
 * @param module - I2C0|I2C1
 * @return NONE
 * @note Implemented as inlined macro.
 **/
#define I2C_SET_RX_MODE (I2C_C1 &= ~I2C_C1_TX)

/***//*!
 * @brief Macro change I2C mode TX
 * @param module - I2C0|I2C1
 * @return NONE
 * @note Implemented as inlined macro.

 I2C Non-blocking Communication, Rev 0, 10/2013
16 Freescale Semiconductor, Inc.

 **/
#define I2C_SET_TX_MODE (I2C_C1 |= I2C_C1_TX)

/***//*!
 * @brief Macro change I2C mode NACK
 * @param module - I2C0|I2C1
 * @return NONE
 * @note Implemented as inlined macro.
 **/
#define I2C_SET_NACK_MODE (I2C_C1 |= I2C_C1_TXAK)

/***//*!
 * @brief Macro change I2C mode back to ACK
 * @param module - I2C0|I2C1
 * @return NONE
 * @note Implemented as inlined macro.
 **/

#define I2C_CLEAR_NACK_MODE (I2C_C1 &= ~I2C_C1_TXAK)

/**
 * public function prototypes *
 **/
extern void I2C_Isr(void);
extern tI2C_fault I2C_write_data(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char *data);
extern tI2C_fault I2C_read_data(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char *data);

/**
 * local function prototypes *
 **/

void I2C_Init();
void I2C_DeInit();
tI2C_fault I2C_Restore();
void I2C_delay(void);
tI2C_fault I2C_isr_Callback (tI2C_com_ctr *psI2C_tr_ctrl,unsigned char *data);

#endif /* __I2C_H */

/**
 * End of module *
 **/

i2c.c file

/***
 * (c) Copyright 2013, Freescale Semiconductor Inc.
 * ALL RIGHTS RESERVED.
 ***//*!
 * @file i2c.c
 * @author B02785, plcm001
 * @version 1.0.4.2
 * @date July-24-2012
 * @brief IIC driver implementation.

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 17

 * @par Driver example
 * @include i2c.h
 **/

#include "i2c.h"
#include "derivative.h" // header file that implements peripheral memory map
 // here is used MC56F82748.h

/**
 * global variables *
 **/
unsigned char iic_data[0x80];
tI2C_com_ctr sI2C_com_ctr; // I2C communication control structure

/**
 * local variables *
 **/

static volatile unsigned int timeout_cnt;

/**
 * macro definitions *
 **/

/**
 * Public functions definitions *
 **/

/**
* I2C peripheral module initialization function definition *
**/

void I2C_Init(void)
{

 I2C_F = 0x27; // clock divider 56, I2C frequency: 80 kHz
 I2C_C1 = I2C_C1_IICIE | I2C_C1_IICEN;
// enable interrupt in INTC module
 INTC_IPR6 |= INTC_IPR6_IIC0_0 | INTC_IPR6_IIC0_1;
}

/**
* I2C peripheral module de-initialization function definition *
**/
void I2C_DeInit(void)
{
 I2C_C1 = 0;

}
/**
* I2C dealy function definition *
**/

void I2C_delay(void) // delay of 200 us @50MHz CPU clock (creates period of 5 kHz)
{
 unsigned int cnt;

 I2C Non-blocking Communication, Rev 0, 10/2013
18 Freescale Semiconductor, Inc.

 for (cnt = 0;cnt < 10000; cnt++)
 { asm(nop); };
}

/**
* I2C restore function definition *
**/

tI2C_fault I2C_Restore(void)
{
 unsigned char tmp = 0;

 I2C_STOP_SIGNAL;
 I2C_DeInit();
 I2C_MASTER_SDA_PIN_AS_GPIO;
 I2C_MASTER_SDA_PIN_GPIO_HIGH_DRIVE;
 I2C_MASTER_SCL_PIN_AS_GPIO;
 I2C_MASTER_SDA_PIN_AS_OUT;
 I2C_MASTER_SDA_PIN_0;
 I2C_MASTER_SCL_PIN_AS_OUT;

 for(tmp = 0; tmp <9; tmp ++) // nine clock for data
 {
 I2C_MASTER_SCL_PIN_0;
 I2C_delay();
 I2C_MASTER_SCL_PIN_1;
 I2C_delay();
 }

 I2C_MASTER_SCL_PIN_0;
 I2C_MASTER_SDA_PIN_AS_OUT; //SDA pin set to output
 I2C_MASTER_SDA_PIN_1; //negative acknowledge
 I2C_delay();
 I2C_MASTER_SCL_PIN_1;
 I2C_delay();
 I2C_MASTER_SCL_PIN_0;
 I2C_delay();
 I2C_MASTER_SDA_PIN_0; //stop
 I2C_delay();
 I2C_MASTER_SCL_PIN_1;
 I2C_delay();

 I2C_MASTER_SDA_PIN_AS_IN;
 tmp = 0;
 if (!((GPIOC_DR>>14) & 1)) // if still SDA is zero, try once again with
// more SCL clocks
 {
 while (!((GPIOC_DR>>14) & 1) && (tmp < 30))
 {
 I2C_MASTER_SCL_PIN_0;
 I2C_delay();
 I2C_MASTER_SCL_PIN_1;
 I2C_delay();
 tmp++;
 };
 if (tmp == 30)
 return I2C_PERMANENT_BUS_FAULT; // giving up, permanent

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 19

 // error, reset required
 I2C_MASTER_SCL_PIN_0;
 I2C_MASTER_SDA_PIN_AS_OUT; //SDA pin set to output
 I2C_MASTER_SDA_PIN_1; //negative acknowledge
 I2C_delay();
 I2C_MASTER_SCL_PIN_1;
 I2C_delay();
 I2C_MASTER_SCL_PIN_0;
 I2C_delay();
 I2C_MASTER_SDA_PIN_0; //stop
 I2C_delay();
 I2C_MASTER_SCL_PIN_1;
 I2C_delay();
 }

 I2C_MASTER_SDA_PIN_AS_I2C;
 I2C_MASTER_SCL_PIN_AS_I2C;

 I2C_Init();
 return I2C_NO_FAULT;

}

/**
* I2C data write function definition *
**/
tI2C_fault I2C_write(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])
{
// check if the bus is not busy while there is attempt to write device address
//on the bus
 if ((I2C_S >> 5) & 1)
 return I2C_BUS_BUSY;

 // set the i2C communication mode, this flag will be evaluated in i2c isr
 psI2C_tr_ctrl -> eI2C_mode = I2C_MODE_WRITE;
 psI2C_tr_ctrl -> data_index = 0; // initialize data index
 psI2C_tr_ctrl -> eI2C_flag = I2C_FLAG_TRANSMISSION_PROGRESS;
// move to next byte
 psI2C_tr_ctrl -> eI2C_trm_stage = I2C_TRM_STAGE_WRITE_REG_ADDRESS;
 I2C_SET_TX_MODE;
 I2C_START_SIGNAL;
 //initiate write message with device address
 I2C_WRITE_BYTE(psI2C_tr_ctrl -> device_address_w);

 return I2C_NO_FAULT;
}
/**
* I2C data read function definition *
**/
tI2C_fault I2C_read(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])
{
// check if the bus is not busy while there is attempt to write device address
// on the bus
 if ((I2C_S >> 5) & 1)
 return I2C_BUS_BUSY;
// set the i2C communication mode, this flag will be evaluated in i2c isr
 psI2C_tr_ctrl -> eI2C_mode = I2C_MODE_READ;

 I2C Non-blocking Communication, Rev 0, 10/2013
20 Freescale Semiconductor, Inc.

 psI2C_tr_ctrl -> data_index = 0; // initialise data index
 I2C_SET_TX_MODE;
 I2C_START_SIGNAL;
//initiate read message with device address
 I2C_WRITE_BYTE(psI2C_tr_ctrl -> device_address_w);
 psI2C_tr_ctrl -> eI2C_flag = I2C_FLAG_TRANSMISSION_PROGRESS;
// move to next byte
 psI2C_tr_ctrl -> eI2C_trm_stage = I2C_TRM_STAGE_WRITE_REG_ADDRESS;

 return I2C_NO_FAULT;
}
/**
 * write data function definition *
 **/
tI2C_fault I2C_write_data(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])
{
 unsigned int cnt;
 timeout_cnt = 100000;
 while (((I2C_write(psI2C_tr_ctrl, data) == I2C_BUS_BUSY) && \
(timeout_cnt != 0)))
{timeout_cnt--;}
 if (timeout_cnt == 0)
 {
 psI2C_tr_ctrl-> eI2C_fault = I2C_TIMEOUT;
// the bus signals still busy and the timeout occurs, restore the I2C
 I2C_Restore();
 timeout_cnt = 100000;
 //second attempt to write the data to I2C bus
 while (((I2C_write(psI2C_tr_ctrl, data) == I2C_BUS_BUSY) && \
 (timeout_cnt != 0)))
{timeout_cnt--;};
 if (timeout_cnt == 0)
 {
// try to send the data anyway
 I2C_write(psI2C_tr_ctrl, data);
// wait till the packet is sent
 for (cnt =0; cnt <100; cnt++)
 I2C_delay();
// the bus signals still busy and the timeout occurs,
// restore the I2C
 I2C_Restore();
 timeout_cnt = 100000;
 //third attempt to write the data to I2C bus
 while (((I2C_write(psI2C_tr_ctrl, data) ==
I2C_BUS_BUSY)\
 && (timeout_cnt != 0))) {timeout_cnt--;};
 if (timeout_cnt == 0)
 return I2C_PERMANENT_BUS_FAULT;
 }
 }
 return I2C_NO_FAULT;
}

/**
 * read data function definition *
 **/
tI2C_fault I2C_read_data(tI2C_com_ctr *psI2C_tr_ctrl, unsigned char data[])

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 21

{
 timeout_cnt = 100000;
 while (((I2C_read(psI2C_tr_ctrl, data) == I2C_BUS_BUSY) && \
(timeout_cnt != 0))) {timeout_cnt--;}
 if (timeout_cnt == 0)
 {
// the bus is still busy and the timeout occurs, restore the I2C
 I2C_Restore();
 timeout_cnt = 100000;
 //second attempt to write the data to I2C bus
 while (((I2C_read(psI2C_tr_ctrl, data) == I2C_BUS_BUSY) && \
 (timeout_cnt != 0))) {timeout_cnt--;};
 if (timeout_cnt == 0)
 return I2C_PERMANENT_BUS_FAULT;
 }
 return I2C_NO_FAULT;
}

/**
 * interrupt callback function definition *
 **/
tI2C_fault I2C_isr_Callback (tI2C_com_ctr *psI2C_tr_ctrl, unsigned char* data)
{
 bool dummy;
 register unsigned char dummy_data;
 switch (psI2C_tr_ctrl -> eI2C_mode)
 {
 case I2C_MODE_WRITE:
 {
 switch (psI2C_tr_ctrl -> eI2C_trm_stage)
 {
 case I2C_TRM_STAGE_WRITE_REG_ADDRESS:
 {
 psI2C_tr_ctrl -> eI2C_trm_stage = I2C_TRM_STAGE_WRITE_DATA;
 I2C_WRITE_BYTE(psI2C_tr_ctrl -> register_address);
 break;
 };
 case I2C_TRM_STAGE_WRITE_DATA:
 {
 // if this is acknowledge after last byte in the message
 if ((psI2C_tr_ctrl -> data_size) == psI2C_tr_ctrl -> data_index)
 {
// acknowledge after last data byte received,
// so generate stop signal now
 I2C_STOP_SIGNAL;
 psI2C_tr_ctrl -> eI2C_flag = I2C_FLAG_NONE; // write data sequence end
// end of message transfer flag
psI2C_tr_ctrl -> eI2C_trm_stage = I2C_TRM_STAGE_NONE;
 return I2C_NO_FAULT;
 }
 else
 {
 I2C_WRITE_BYTE(data[psI2C_tr_ctrl -> data_index]);
// increase index to the next address of the data array
 psI2C_tr_ctrl -> data_index++;
 }
 break;

 I2C Non-blocking Communication, Rev 0, 10/2013
22 Freescale Semiconductor, Inc.

 };
 };
 break;
 }
 case I2C_MODE_READ:
 {
 switch (psI2C_tr_ctrl -> eI2C_trm_stage)
 {
 case I2C_TRM_STAGE_WRITE_REG_ADDRESS:
 {
 I2C_WRITE_BYTE(psI2C_tr_ctrl -> register_address);
 psI2C_tr_ctrl -> eI2C_trm_stage = \
 I2C_TRM_STAGE_WRITE_DEV_ADDRESS_R; // move to next byte
 break;
 };
 case I2C_TRM_STAGE_WRITE_DEV_ADDRESS_R:
 {
 I2C_REPEAT_START_SIGNAL;
 I2C_WRITE_BYTE(psI2C_tr_ctrl -> device_address_r);
 psI2C_tr_ctrl -> eI2C_trm_stage = I2C_TRM_STAGE_READ_DUMMY_DATA;
 break;
 };
 case I2C_TRM_STAGE_READ_DUMMY_DATA: // post read dummy data action
 {
 I2C_SET_RX_MODE;
// reading data register initiates
// receiving of the next byte of data
 dummy_data = I2C_READ_BYTE;
 psI2C_tr_ctrl -> eI2C_trm_stage = I2C_TRM_STAGE_READ_DATA;
 break;
 }
 case I2C_TRM_STAGE_READ_DATA:
 {
 // if this is acknowledge after last byte in the stream
 if ((psI2C_tr_ctrl -> data_size -1) == psI2C_tr_ctrl -> data_index)
 {
 I2C_SET_NACK_MODE; // last read ends with NAK
 iic_data[psI2C_tr_ctrl -> data_index] = I2C_READ_BYTE;
 psI2C_tr_ctrl -> eI2C_trm_stage = I2C_TRM_STAGE_NAK;
 }
 else
 {
 iic_data[psI2C_tr_ctrl -> data_index] = I2C_READ_BYTE;
 if(psI2C_tr_ctrl -> data_index < (psI2C_tr_ctrl -> \
 data_size-1))
// increase pointer to the next address of the data array
 psI2C_tr_ctrl -> data_index++;
 }
 break;
 };
 case I2C_TRM_STAGE_NAK:
 {
 I2C_STOP_SIGNAL;
 I2C_CLEAR_NACK_MODE;
 psI2C_tr_ctrl -> eI2C_flag = I2C_FLAG_NONE; // read data sequence end
 psI2C_tr_ctrl -> eI2C_trm_stage = I2C_TRM_STAGE_NONE;
 asm{ nop };

 I2C Non-blocking Communication, Rev 0, 10/2013
Freescale Semiconductor, Inc. 23

 asm{ nop };
 asm{ nop };
 asm{ nop };
 return I2C_NO_FAULT;
 }
 break;
 }
 }

 }
 return I2C_NO_FAULT;
}
/**
 * interrupt function definition *
 **/
void MC56F827xx_ISR_IIC0(void)
#pragma interrupt saveall
{

 if (I2C_S | I2C_S_TCF)
 if (I2C_isr_Callback(&sI2C_com_ctr, iic_data) == I2C_NO_FAULT)
 {
 if (sI2C_com_ctr.eI2C_flag == I2C_FLAG_NONE)
 {
 // the transfer of the whole message ended. If the read
 //message was completed, now the data are in the iic_data[]
 // Place a code that process received data.
 }
 }
 /* Clear Irq. request */
 I2C_CLEAR_IRQ_FLAG;
}

/**
 * End of module *
 **/

 I2C Non-blocking Communication, Rev 0, 10/2013
24 Freescale Semiconductor, Inc.

6 References
Following are the reference sources related to this application note:

1. MC56F827XXRM - MC56F82XXX Reference Manual available on freescale.com.
2. K40 Sub-Family Reference Manual available on freescale.com.
3. UM10204 - I2C-bus specification and user manual, Rev.5, NXP Semiconductors 2012.

7 Acronyms
The following table summarizes acronyms used in this document:

Table 1. Acronyms

Term Meaning

ACK Acknowledge signal – the signal is generated by the I2C device which receives the data
(byte)

ISR Interrupt Service Routine - a part of the code, that is executed when the interrupt is
generated

NACK Not Acknowledge signal – condition on the bus, a receiver signals problems with
interpretation of received data or master signals the end of data transfer from slave.

8 Revision history

Revision Number Date Substantial Changes

0 10/2013 Initial release

http://www.freescale.com/�
http://www.freescale.com/�
http://www.nxp.com/documents/user_manual/UM10204.pdf�

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg.
U.S. Pat. & Tm. Off. All other product or service names are the property of their respective
owners.
© Freescale Semiconductor, Inc. 2013. All rights reserved.

Document Number: AN4803
Revision 0
October 2013

http://www.freescale.com/�
http://www.freescale.com/support�
http://www.freescale.com/SalesTermsandConditions�

	1 Introduction
	2
I2C bus
	2.1 I2C data transfer formats

	3
Transmission of I2C messages with non-blocking algorithm
	3.1
Non-blocking I2C communication driver
	3.2
Example of using of the software driver
	3.3 Functions description

	4
Conclusion
	5
Code listing
	6
References
	7
Acronyms
	8
Revision history

