
1 Introduction
The Kinetis E (KE) family is the first Kinetis MCU that
employs robust technology, new 5 V I/O pad, and ARM®

Cortex® M0+ core. This KE family also introduces many new
features for different peripheral modules. With these new
features, KE family has low power consumption, better EFT/
ESD protection, and higher performance.

This application note outlines the key differences between S08
(specifically S08P) and KE product families, and provides
code conversion recommendations to help shorten the learn
curve.

2 Device overview
The Kinetis E family devices targeting the home appliance
market segment has the following features.

• Based on ARM Cortex-M0+ core running up to 40 MHz
(for KE02)/48 MHz (for other KEs) with Bit
Manipulation Engine (BME)

• Up to 128 KB flash memory
• Up to 16 KB SRAM
• ROM (only for some KE parts)
• Clock generator with internal reference clock (IRC)
• Crystal oscillator and FLL
• Up to 3 x SCI with LIN slave capability
• Up to 2 x SPI

Freescale Semiconductor Document Number:AN4757

Application Note Rev 1, 11/2013

Migration Guide From S08 to
Kinetis E Family
by: William Jiang

© 2013 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Device overview...1

3 Programmers model...3

4 Nested Vectored Interrupt Controller
(NVIC)...9

5 Bit Manipulation Engine (BME)..........................11

6 Clock modules...14

7 System Integration Module (SIM)........................16

8 Power Management Controller.............................17

9 Flash Memory, EEPROM, and Flash
Memory Controller modules.................................17

10 Pinout changes..17

11 Safety feature enhancement18

12 Port Control and GPIO..19

13 Timer modules...20

14 Debug...23

15 ADC module...23

16 References...24

17 Glossary...24

18 Revision history..25

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/ke-series-cortex-m4-m0-plus:KINETIS_E_SERIES?utm_medium=AN-2021

• 2 x I2C
• 1 x CAN (only for some KE parts)
• 3 x 16-bit FlexTimer
• 1 x PWT
• One 32-bit 2-channel PIT
• RTC
• IEC60730 compliant watchdog
• CRC
• Up to 16-ch 12-bit ADC with 8-level FIFO
• 2 x ACMP
• 16-channel TSI for touch input (only for some KE parts)
• 4-channel DMA (only for some KE parts)
• Up to 82 GPIO pins with 8 high-drive pins supporting 20 mA
• Embedded voltage regulator supporting 2.7–5.5 V operating voltage, power-on reset, and programmable low voltage

detector
• Two low-power modes
• Unique chip ID with upto 10 bytes
• Single Wire Debug (SWD) interface
• Supports wide temperature range from –40 °C to +105 °C

Compared with S08 devices (S08AC, S08P), the KE family has ARM Cortex-M0+ core, BME, and 32-bit devices while most
of peripherals are similar to S08P. The following table summarizes the comparison of main features among these families:

Table 1. Feature comparison among S08AC, S08P, and KE product families

Features S08AC S08P KE family

Core platform 8-bit S08 core with maximum
frequency of 40 MHz

Low-power 8-bit S08 core with
maximum frequency of
20 MHz

High energy efficient 32-bit
Cortex-M0+ core supporting
up to 48 MHz with most of
instructions in a single cycle

Bus clock Half of core frequency, up to
20 MHz

Same as core frequency, up
to 20 MHz

Can be same as core
frequency, up to 48 MHz

Single cycle 32-bit x 32-bit
multiply

Supports only 8-bit x 8-bit Supports only 8-bit x 8-bit Yes

Debug 1-pin debug module (BDM) 1-pin debug module (BDM) 2-pin serial wire debug (SWD)

Nested Vectored Interrupt
Controller (NVIC)

• No NVIC
• No IPC
• Does not support

hardware nested
interrupt

• Does not support
interrupt vector
relocation

• No NVIC
• Has Interrupt Priority

Controller (IPC) which
requires software code
to support nested
interrupt.

• Does not support
interrupt vector
relocation

• Supports interrupt
vector relocation, which
can relocate in flash or
RAM.

• True hardware interrupt
nesting without any
software code

Data Access Endianess Big-endian Big-endian Little-endian

Direct Memory Access (DMA) No No Added for some KE06 parts

Power mode • RUN
• WAIT
• STOP2 (partial power

down, lowest power
consumption)

• STOP3

• RUN
• WAIT
• STOP3 (typical 1.3 µA)

• Similar to S08P

Table continues on the next page...

Device overview

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

2 Freescale Semiconductor, Inc.

Table 1. Feature comparison among S08AC, S08P, and KE product families (continued)

Features S08AC S08P KE family

EEPROM No Yes Yes for most parts

Flash Memory Controller
(FMC)

No No Yes

FlexTimer No, but only has legacy TPM • Extended TPM function
to support motor control
and power applications

• backward compatible
with TPM function

• Not functional in Stop
mode

Enhanced Flextimer with
intermediate load, global time
base, periodic TOF, fault
polarity control, channel swap/
invert control, debug mode
function option

System Tick (Systick) No No 24-bit timer (Core clock/16)

RTC No Yes Yes

ADC module • Up to 10-bit resolution
• Register access is 8-bit

only

• Supports up to 12-bit
resolution

• register access is 8-bit
only

Similar to S08P, but the
register access is 32-bit

TSI module No End of scan interrupt (only
available for some S08P

parts)

Only available for some KE
parts

• End of scan interrupt
• Out of range interrupt
• Noise detection

Identification registers (ID) 2-byte 8-byte 8-byte Universal Unique
Identifier (UUID) plus 2-byte
Kinetis IDs

The ARM Cortex M0+ is the smallest, lowest-power ARM processor in the market, compatible with all other Cortex-M
cores. Following are its advantages over 8-bit microcontrollers.

• It is the most energy-efficient 32-bit processor ever designed, has significant energy efficiency advantages over 8/16-bit
processor with reduced power consumption while still achieving higher performance results of 2.15 CoreMark/MHz
(ARM Compiler version 5.0.3), which is 2 to 40 times more than 8/16-bit, and 9% more than Cortex-M0.

• It also has higher code efficiency than 8-bit and 16-bit CPU.
• Because of its C-friendly architecture, relocatable vector table for dynamic exception handlers by moving the vector

table into RAM, and simple instruction set together with richest development ecosystem, the software development is
simple, fast, and much easier than 8-bit microcontroller products.

For more information on this processor, visit: arm.com.

3 Programmers model

3.1 Register set
This section defines the registers available for S08 family and ARM Cortex-M0+ processor used by the Kinetis E family.

Following is the register set for the S08 family.
• One accumulator A which is a general-purpose 8-bit register, used as destination and source of arithmetic and logic

operations as well as memory load/store instructions.

Programmers model

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 3

http://www.arm.com

• One 16-bit index register H:X which is used as index reference pointer, and X can be used as 8-bit general-purpose
register.

• A 16-bit stack pointer SP which points at the next available location on the automatic last-in-first-out (LIFO) stack.
• In addition to a 16-bit program counter PC, there is an 8-bit Condition Code Register (CCR) that contains the interrupt

mask (I) and five flags that indicate the results of the instruction recently executed.

Following is the description of registers of the Cortex M0+ core used by the KE family.
• 16 32-bit registers, R0-R15

• R0-R12 are generally available for essentially all instructions.
• R13 is used as the Stack Pointer
• R14 is used as the Link Register (for subroutine and exception return)
• R15 as the Program Counter.

None of the Cortex-M0+ core registers are directly addressable. Since all the registers of Cortex-M0+ core are 32-bit, it
supports 32-bit arithmetic and logic operations efficiently.

Apart from R0-R15 general-purpose registers, Cortex M0+ has some special registers such as Program Status Register,
Exception Mask Register, Interrupt Mask Register, and Control Register.

• Program Status Register (xPSR): It is a single 32-bit register with several aliases, each providing a view of a different
subset of the contents. PSR combines the following registers.

• Application Program Status Register (APSR): From the user point of view, the APSR contains the ALU status
flags.

• Interrupt Program Status Register (IPSR): This register contains the number of the currently executing interrupt
(or zero if none is currently active) for operating system and exception handling use.

• Execution Program Status Register (EPSR): It contains bits which reflect execution status and is not directly
accessible.

For a detailed information on Cortex M0+ registers and their functions, see Cortex-M0 Devices Generic User Guide,
available on arm.com.

3.2 Addressing mode
Addressing modes define the way the CPU accesses operands and data. The S08 supports a lot of addressing modes. These
are listed as follows.

• Inherent Address Mode (INH)
• Relative Addressing Mode (REL),
• Direct Addressing Mode (DIR)
• Index Addressing Mode with

• no offset (IX)
• no offset with Post Increment (IX+)
• 8-bit offset (IX1)
• 8-bit offset with Post Increment (IX1+)
• 16-bit offset (IX2)
• SP-Relative 8-bit offset (SP1)
• SP-Relative
• 16-bit offset (SP2)

• Memory-to-memory address mode with
• direct-to-direct
• immediate to direct
• indexed-to-direct with post increment
• direct-to-indexed with post increment

The Cortex-M0+ addressing mode is very simple for memory access, and has an offset addressing mode as expressed in
assembly language: [<Rn>,<offset>].

Programmers model

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

4 Freescale Semiconductor, Inc.

http://www.arm.com

3.3 Instruction set
The S08 supports an 8-bit instruction set. Instructions are of variable length and can extend to include operands in the
instruction stream, varying from 1–4 bytes.

The Cortex-M0+ supports a subset of the Thumb-2 instruction set. Though most of the instructions are of 16 bits, there are
few 32-bit thumb instructions such as BL, DMB, DSB, ISB, MRS, and MSR. One key difference is that instructions cannot
extend to include operand data. Any information for the instruction must be encoded within the instruction itself. One
consequence of this is that it is not possible to specify arbitrary 32-bit constants or addresses in instructions, so other methods
must be used for this purpose. All the C compilers supporting Cortex-M0+ support this function transparently to the
programmer.

3.4 Operating modes
The S08 can operate in the following modes.

• Run, Wait, and Stop modes: Both Wait and Stop modes are low-power modes and entered by executing WAIT and
STOP instruction respectively. For more information on these modes, see Power Management Controller.

• Background Debug mode: The background mode functions are managed through the background debug controller
(BDC) in the S08 core. The BDC, together with the on-chip debug module (DBG), provide the means for analyzing
MCU operation during software development. For more information on background debug, see Debug.

• Secure mode: When in Secure mode, external access to internal memory is restricted, so that only instructions fetched
from secure memory can access secure memory. When the code is running from internal memory, it can access all
resources without any restriction.

The Cortex-M0+ supports two modes.
• Thread mode (used for user processes): This mode is used to execute application software.
• Handler mode: This mode is used to handle exceptions and is automatically entered when an exception occurs.

It also defines the concept of “privilege.” Unprivileged execution limits or excludes access to some resources (for instance,
unprivileged code is unable to mask or unmask interrupts). Handler mode execution is always privileged. By default, Thread
mode will also execute with privilege but the programmer may configure thread mode to execute without privilege. This
configuration can be used to provide a degree of system protection from errant or malicious programs.

3.5 Stack
The S08 stack grows toward the low RAM addresses, that is, in descending order. The stack can be located anywhere in the
64-KB address space that has RAM and can be any size up to the amount of available RAM. Typically, for best performance,
it will be located in internal SRAM. The stack is accessed in bytes.

The stack pointer (SP) points at the next available location on the stack, and is initialized to 0x00FF at reset; this address is in
the Direct Page Register section or RAM. However, it is recommended that the application code reinitialize the SP to point to
the last location of RAM as shown in the following example:

LDHX #RamLast+1 ; Point at next addr past RAM
TXS ; SP <-(H:X)-1

This requires at least five CPU cycles to reinitialize the stack.

The stack pointer is decremented after the store or push operation and incremented before load or pop operation.

The Cortex-M0+ supports a full descending stack addressed by the current stack pointer, similar to S08 stack. However, stack
pointer indicates the last stacked item on the stack memory. The stack size is limited only by the available RAM space. The
Cortex-M0+ stack pointer is typically initialized to the word (32-bit) above the top of the allocated stack area. The

Programmers model

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 5

initialization of the stack pointer at reset does not require any CPU instructions, that is, CPU cycles. Since the stack model is
full descending, the stack pointer is decremented before the first store, thus placing the first word on the stack at the top of
the allocated region. All stack accesses on Cortex-M0+ are word-sized.

3.6 Exceptions and interrupts
The S08P has one nonmaskable interrupt source (SWI) and 39 maskable interrupt sources including one external maskable
interrupt IRQ. The interrupt priority is fixed with lowest vector number corresponding to the highest priority. With Interrupt
Priority Controller enabled, it can support four priority levels. It requires additional software overhead to implement nested
interrupt scheme.

The Cortex-M0+ has an integrated Nested Vectored Interrupt Controller which supports up to 32 separate interrupt sources.
There are four interrupt priority levels, which support true hardware nested interrupt scheme. The Cortex-M0+ also supports
an external Non-Maskable Interrupt (NMI) and several internal interrupts such as HardFault, SVC, and others.

3.7 Vector table
The S08P vector table is located at a fixed address on the high-end of the internal flash memory. It does not support
relocation of vector table. Each vector contains the address of the corresponding interrupt handler/service routine. The vector
low address stores the high bytes of the interrupt handler address, whereas the vector high address stores the low bytes of the
interrupt handler address. The POR and other reset vector are located at the high-end of the flash memory 0xFFFE–0xFFFF.

The KE family vector table is located, by default, at address 0x00000000. It can be relocated during initialization to a
location in either flash or RAM regions. Locating the vector table in internal SRAM can provide higher performance. Within
the vector table, each entry contains the starting address of the corresponding handler routine. The first vector at vector table
offset 0 contains the initial/start SP (supervisor SP), and the second vector at vector table offset 4 contains the start PC. The
following code snippet shows the first two vector entries:

#define VECTOR_000 (pointer*)__BOOT_STACK_ADDRESS // ARM core Initial Supervisor SP
#define VECTOR_001 __startup// 0x0000_0004 ARM core Initial Program Counter

To relocate the vector table to the offset vtor, use the following code snippet:

SCB_VTOR = vtor

3.8 Reset and interrupt handlers
For S08, the interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR, A, X, and
PC registers to their pre-interrupt values by reading the previously saved information off the stack.

In C code, to define an interrupt handler for S08 devices, a compiler directive must be used to let the compiler know it is an
interrupt service routine, instead of standard C routine/function. The following example shows how to define an interrupt
service routine with CodeWarrior:

interrupt VectorNumber_Vrtc void Rtc_ISR(void)
{
 …
}

The Cortex-M0+ supports all exception entry and exit sequences in hardware and thus allows interrupt routines to be standard
C functions, compliant with the ARM Architecture Procedure Call Standard (AAPCS). Any compliant function can be
installed in the vector table as a handler, simply by referencing its address. With this scheme, the code developers do not need
to remember such compiler directives. The following code snippet shows how to define the Rtc_ISR in C language which is
same as standard function:

Programmers model

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

6 Freescale Semiconductor, Inc.

void Rtc_ISR(void)
{
 …
}

3.9 Memory
The S08 core can address 64 KB of memory space and divides the memory into five major segments as shown in this table.

Table 2. S08 memory map

Name Address Comment

Direct-page registers 0x0000–0x00xx Upto 128 bytes

RAM 0x00xx–1 Includes some direct page locations

High-page registers 0x1800–0x18yy System configuration

FLASH Memory 2–0xFFFF Upto 60 KB

Vectors 0xFFCO–0xFFFF Upto 32 x 2 bytes

1. The upper limit depends on the given device
2. The lower limit depends on the given device

The S08 core can access the direct-page registers/RAM in most efficient addressing mode and allows bit manipulation
instructions to be used to set, clear, or test any bit in these registers with the BSET, BCLR, BRSET, and BRCLR instructions.
This “bit-banding” is simple, but will require 2–5 CPU cycles.

The Cortex-M0+ processor can access 4 GB memory space, and divides the memory into several spaces. But it does not
support such “bit-banding” operation. However, KE family added Bit Manipulation Engine (BME) to implement this “bit-
banding” operation. For more detail on BME, see Bit Manipulation Engine (BME). The following table briefs KE02 system
memory map.

Table 3. KE02 memory map

System 32-bit address range Usage

0x0000_0000–0x07FF_FFFF Program flash and read-only data (Includes exception vectors
in first 196 bytes)

0x1000_0000–0x1000_00FF2 EEPROM

0x1FFF_FC00–0x1FFF_FFFF SRAM_L: Lower SRAM

0x2000_0000–0x2000_0BFF SRAM_U: Upper SRAM

0x4000_0000–0x4007_FFFF AIPS peripherals

0x400F_F000–0x400F_FFFF GPIO

0x400F_F000–0x400F_FFFF Decorated AIPS peripherals space accessed via BME

0xE000_0000–0xE00F_FFFF Private Peripherals

0xF000_2000–0xF000_2FFF ROM table

0xF000_3000–0xF000_3FFF Miscellaneous Control Module (MCM)

0xF800_0000–0xFFFF_FFFF Single (core clock) cycle IOPORT

Others Reserved

Programmers model

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 7

3.10 Access type
The S08 processor supports byte and bit accesses to memory. Bit accesses are supported via the bit-addressable region (direct
page as aforementioned). Since the largest item which can be loaded from memory is of 8 bits and the destination is also of 8
bits, the sign of the loaded value is not important. To improve compiler efficiency, it implements LDHX, STHX, and CPHX
instructions for 16-bit load/store and compare operations.

The Cortex-M0+ is a 32-bit processor and all internal registers are 32-bit. Memory transfers of 8-bit bytes, 16-bit halfwords,
and 32-bit words are supported. In the case of bytes and halfwords, the programmer needs to specify whether the loaded
value is to be treated as signed or unsigned. In the case of signed loads, the loaded value is sign-extended to create a 32-bit
signed value in the destination register; in the case of unsigned loads, the upper part of the register is cleared to zero.

The Cortex-M0+ also has Load and Store Multiple instructions which transfer multiple words in a single instruction to and
from a contiguous block of memory.

3.11 Bit-banding
The S08 bit-addressable region supports atomic bit accesses to the direct page locations with bit manipulation instructions.
The bit set/clear instructions take 5 bus clock cycles. So for a bit toggle, it takes 10 bus clock cycles.

The KE04 and the newer sub families support bit-banding. The upper SRAM area (SRAM_U) is the bit-band region. The bit
banding maps a complete word of memory in an alias region of memory onto a single bit in the bit-band region. For example,
writing to an alias word will set or clear the corresponding bit in the bitband region. This allows every individual bit in the
bit-banding region to be directly accessible from a word-aligned address using a single LDR instruction, and individual bits
to be toggled from C/C++ without performing a read-modify-write sequence of instructions. With bit-banding, only two core
clock cycles are needed to toggle a bit, while it takes at least three cycles with a read-modify-write sequence. As a result, a
significant performance improvement is seen with bit-banding in KE family.

In addition, all KE families employ BME techniques to support bit banding. For more information on BME, see Bit
Manipulation Engine (BME).

3.12 Debug
This table presents a comparison of some of the features of the Debug module in S08 and KE families.

Table 4. Debug module comparison between S08P and KE family

S08 KE family

Uses single Wire BDM interface Uses Serial Wire Debug (SWD) interface which includes two
wires: one for clock and one for data I/O.

Supports three hardware breakpoints or two hardware
breakpoint with one watchpoint

Supports two breakpoints and two watchpoints

Supports Loop1 capture mode to track most recent COF
event captured into FIFO with 8-word width which is used for
code trace, and nine trigger modes

No trace capability

For more information on debug, see Debug.

Programmers model

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

8 Freescale Semiconductor, Inc.

3.13 Power Management
The S08P supports two low-power modes: Wait and Stop.

The Cortex-M0+ supports Sleep and Deep Sleep modes.
• In Sleep mode, external logic is usually configured to stop the processor clock, minimizing power consumption. The

power and clock to the NVIC is maintained, so that an exception can exit sleep mode.
• In Deep Sleep mode, the processor can be powered down completely, usually leaving only the external Wakeup

Interrupt Controller (WIC) active. The WIC will wake the processor if any unmasked external interrupt is detected.

Sleep mode can be entered in the following ways.
• Sleep-now: The Wait-For-Interrupt (WFI) or Wait-For-Event (WFE) instructions cause the processor to enter Sleep

mode immediately. Exit is on detection of an interrupt or debug event.
• Sleep-on-exit: Setting the SLEEPONEXIT field within the System Control Register (SCR[SLEEPONEXIT]) causes

the processor to enter Sleep mode when the last pending ISR has exited. In this case, the exception context is left on the
stack so that the exception which wakes the processor can be processed immediately.

In addition, Deep Sleep mode can be entered by setting SCR[SLEEPDEEP]. On entry to Sleep mode, if this field is set, the
processor indicates to the external system that deeper sleep is possible.

Actually the KE family implements Sleep mode as Wait mode and Deep Sleep mode as Stop mode.

The following code snippets show how to enter Wait and Stop mode:

void wait (void)
{
 /* Clear the SLEEPDEEP bit to make sure we go into WAIT (sleep) mode instead
 * of deep sleep.
 */
 SCB_SCR &= ~SCB_SCR_SLEEPDEEP_MASK;

 /* WFI instruction will start entry into WAIT mode */
#ifndef KEIL
asm("WFI");
#else
 __wfi();
#endif
}
void stop (void)
{
 /* Set the SLEEPDEEP bit to enable deep sleep mode (STOP) */
 SCB_SCR |= SCB_SCR_SLEEPDEEP_MASK;

 /* WFI instruction will start entry into STOP mode */
#ifndef KEIL
 asm("WFI");
#else
 __wfi();
#endif
}

4 Nested Vectored Interrupt Controller (NVIC)
The NVIC is a standard module on the ARM Cortex M series. This module is closely integrated with the core and provides
very low latency entering and exiting an interrupt service routine (ISR). It takes 15 cycles to enter and exit an ISR, unless the
exit from the interrupt is into another pending ISR. In this case, the MCU tail-chains and the exit and re-entry takes 11 cycles.

Nested Vectored Interrupt Controller (NVIC)

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 9

The NVIC provides four different interrupt priorities which can be used to control the order in which interrupts must be
serviced. Priorities are 0-3, with 0 receiving the highest priority. For example, in a motor-control application, if a timer
interrupt and UART occur simultaneously, the timer interrupt that moves the motor is more critical than the UART interrupt
receiving a character. The timer priority must be set higher than the UART. This supports true hardware interrupt nesting
without any additional software code.

The S08 devices with Interrupt Priority Controller (IPC) can support different levels of interrupt priorities and requires prolog
and epilog software code to be added in the interrupt service routine.

The following code snippet shows how to enable or disable an interrupt with the given IRQ number in the KE family:

void enable_irq (int irq)
{
 /* Make sure that the IRQ is an allowable number. Up to 32 is
 * used.
 *
 * NOTE: If you are using the interrupt definitions from the header
 * file, you MUST SUBTRACT 16!!!
 */
 if (irq > 32)
 printf("\nERR! Invalid IRQ value passed to enable irq function!\n");
 else
 {
 /* Set the ICPR and ISER registers accordingly */
 NVIC_ICPR = 1 << (irq%32);
 NVIC_ISER = 1 << (irq%32);
 }
}

void disable_irq (int irq)
{

 /* Make sure that the IRQ is an allowable number. Right now up to 32 is
 * used.
 *
 * NOTE: If you are using the interrupt definitions from the header
 * file, you MUST SUBTRACT 16!!!
 */
 if (irq > 32)
 printf("\nERR! Invalid IRQ value passed to disable irq function!\n");
 else
 /* Set the ICER register accordingly */
 NVIC_ICER = 1 << (irq%32);
}

void set_irq_priority (int irq, int prio)
{
 /*irq priority pointer*/
 uint32 *prio_reg;
 uint8 err = 0;
 uint8 div = 0;

 /* Make sure that the IRQ is an allowable number. Right now up to 32 is
 * used.
 *
 * NOTE: If you are using the interrupt definitions from the header
 * file, you MUST SUBTRACT 16!!!
 */
 if (irq > 32)
 {
 printf("\nERR! Invalid IRQ value passed to priority irq function!\n");
 err = 1;
 }

 if (prio > 3)
 {

Nested Vectored Interrupt Controller (NVIC)

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

10 Freescale Semiconductor, Inc.

 printf("\nERR! Invalid priority value passed to priority irq function!\n");
 err = 1;
 }

 if (err != 1)
 {
 /* Determine which of the NVICIPx corresponds to the irq */
 div = irq / 4;
 prio_reg = ((uint32*)&NVIC_IP(div));
 *prio_reg |= (((prio&0x3) << (8 - ARM_INTERRUPT_LEVEL_BITS))) << (((irq-
(div<<2)))<<3);

}
}

For more information on NVIC and code examples, see Kinetis L Peripheral Module Quick Reference Guide, KLQRUG,
available on freescale.com.

5 Bit Manipulation Engine (BME)
The Bit Manipulation Engine (BME) provides hardware support for atomic read-modify-write memory operations to the
peripheral address space. This architectural capability is also known as "decorated storage" as it defines a mechanism for
providing additional semantics for load and store operations to memory-mapped peripherals beyond just the reading and
writing of data values to the addressed memory locations. BME-decorated references are only available on system bus
transactions generated by the processor core and targeted at the standard 512 KB peripheral address space based at
0x4000_0000 to 0x4007_FFFF (AIPS peripherals) and part of GPIO space starting from 0x400F_F000. BME can not be used
to access other memory area including RAM, and flash.

The decoration semantic is embedded into address bits 28–19, creating a 448 MB space at addresses 0x4400_0000–
0x5FFF_FFFF. These bits are stripped out of the actual address sent to the peripheral bus controller and used by the BME to
define and control its operation. For most BME commands, a single core read or write bus cycle is converted into an atomic
read-modify-write, that is, an indivisible "read followed by a write" bus sequence.

BME supports decorated stores (logical AND, logical OR, Bit Field Insert), and decorated loads (Load-and-clear 1 bit, Load-
and-set 1 bit, Unsigned bit field extract).

The peripheral address bits 31–29 are always 010, which means the peripheral memory space used for BME starts from
0x40000000.

The data size is specified by the read or write operation and can be byte (8-bit), halfword (16-bit), or word (32-bit).

For logical AND, OR and XOR Store operations, the peripheral address bits 28–26 specify the operation code (opcode) as
given in this table.

Table 5. Feature comparison between S08P and KE

Operation Opcode Comment

AND 001 During peripheral write, the
corresponding peripheral data will be
combined with the write data using logic
AND operation.

OR 010 During peripheral write, the
corresponding peripheral data will be
combined with the write data using logic
OR operation.

Table continues on the next page...

Bit Manipulation Engine (BME)

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 11

http://www.freescale.com

Table 5. Feature comparison between S08P and KE (continued)

Operation Opcode Comment

XOR 011 During peripheral write, the
corresponding peripheral data will be
combined with the write data using logic
XOR operation.

The address bits 25–20 are “don’t care” bits. The address bits 19–0 are actual memory address bits for the peripheral space.

For storing Bit Field Insert (BFI), Load-and-Clear/Set 1 Bit, and Unsigned bit field extract (UBFX) operations, the peripheral
address bits 28–26 specify the operation code (opcode) as given in this table.

Table 6. Feature comparison between S08P and KE

Operation Opcode Comment

Load-and-clear 010 During peripheral read, only the
corresponding bit will be loaded to a
variable and the target bit cleared.

Load-and-set 011 During peripheral read, only the
corresponding bit will be loaded to a
variable, and the target bit will be set.

Bit field insert/extract 1xx Bit 28 is always 1, bits 27–26 will be
filled with bit # bits accordingly.

During peripheral read, the
corresponding bit field from giving bit#
will be extracted to the read variable.

During peripheral write, only the
corresponding bit field starting from the
giving bit# of the location will be written
with the corresponding bit field from the
giving bit # of the write data.

NOTE: Bit field insert/extract operation
can not be applied to GPIO
addresses starting from
0x400F_F000 as address bit 19
is occupied for bit width. So,
GPIOx_PDOR/PSOR/PCOR/
PTOR/PDIR/ PDDR can not be
accessed with this bit field
operation. A special technique
in C is used as demonstrated in
the code snippet below.

For unsigned bit field extract operation, the address bits 18–0 are actual memory address bits for the peripheral space.

The following figures show the address bits representation for different operations.

Bit Manipulation Engine (BME)

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

12 Freescale Semiconductor, Inc.

Figure 1. Address bits for AND, OR/XOR Store

Figure 2. Address bits for Load-and-clear/set 1 bit operation

Figure 3. Address bits for bit field insert/extract operation

The following code snippet shows how to use BME operations:

// BME operation code
#define BME_OPCODE_AND1
#define BME_OPCODE_OR2
#define BME_OPCODE_XOR3
#define BME_OPCODE_BITFIELD4

//macro used to generate hardcoded AND address
#define BME_AND(ADDR) (*(volatile uint32_t *)(((uint32_t)ADDR) |
(BME_OPCODE_AND<<26)))

BME_AND(&FTM2_OUTMASK) = 0x02;

//macro used to generate hardcoded OR address
#define BME_OR(ADDR) (*(volatile uint32_t *)(((uint32_t)ADDR) |
(BME_OPCODE_OR<<26)))

BME_OR(&FTM2_OUTMASK) = 0x02;

//macro used to generate hardcoded XOR address
#define BME_XOR(ADDR) (*(volatile uint32_t *)(((uint32_t)ADDR) |
(BME_OPCODE_XOR<<26)))

BME_XOR(&FTM2_OUTMASK) = 0x02;

//macro used to generate hardcoded bit field insert address
#define BME_BITFIELD_INSERT(ADDR,bit,width) (*(volatile uint32_t *)
(((uint32_t)ADDR) \

Bit Manipulation Engine (BME)

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 13

 | (BME_OPCODE_BITFIELD <<26) \
 | ((bit & 0x1F)<<23) | ((width-1) & 0xF)<<19))

BME_BITFIELD_INSERT(&PORT_IOFLT,16,2) = (0x03 << 16); // write 3 to PORT_IOFLT [10:8]

#define GPIO_ALIAS_OFFSET 0x000F0000L
#define GPIOB_PDOR_ALIAS (((uint32_t)&GPIOB_PDOR)-GPIO_ALIAS_OFFSET)
BME_BITFIELD_INSERT(GPIOB_PDOR_ALIAS,19, 2) = (3<<19); // write 3 to GPIOB_PDOR[20:19]

//macro used to generate hardcoded bit field extract address
#define BME_BITFIELD_EXTRACT(ADDR,bit,width) (*(volatile uint32_t *)
(((uint32_t)ADDR) \
 | (BME_OPCODE_BITFIELD <<26) \
 | ((bit & 0x1F)<<23) | ((width-1) & 0xF)<<19))

 Data = BME_BITFIELD_EXTRACT(&ADC_R,0, 12); // extract 12 bits: ADC_R[11:0]

//macro used to generate hardcoded load 1 bit clear address
#define BME_BIT_CLEAR(ADDR,bit) (*(volatile uint32_t *)(((uint32_t)ADDR) \
 | (BME_OPCODE_BIT_CLEAR <<26) \
 | ((bit & 0x1F)<<21)))

//macro used to generate hardcoded load 1 bit set address
#define BME_BIT_SET(ADDR,bit) (*(volatile uint32_t *)(((uint32_t)ADDR) \
 | (BME_OPCODE_BIT_SET <<26) \
 | ((bit & 0x1F)<<21)))
bit = BME_BIT_SET(&I2C0_S,1); // read I2C0_S[IICIF] and then clear it by writing
 // 1 to it
bit = BME_BIT_CLEAR(&ACMP0_CS,5); // read ACMP0_CS[ACF] and then clear it

6 Clock modules
The Internal Clock Source (ICS) provides clock source options for the MCU. The module contains a frequency-locked loop
(FLL) as a clock source that is controllable by either an internal or an external reference clock. The module can provide this
FLL clock or either of the internal or external reference clocks as a source for the MCU system clock. There are also signals
provided to control a low-power oscillator (OSC) module. These signals configure and enable the OSC module to generate its
external crystal/resonator clock (OSCOUT) used by peripheral modules and as the ICS external reference clock source. The
ICS external reference clock can be the external crystal/resonator (OSCOUT) supplied by an OSC, or it can be another
external clock source.

The ICS and OSC structures on the KE family are very similar to S08P. The main difference between the KE02 subfamily
and S08P is that the FLL multiplication factor in KE02 is fixed to 1024, which is double to that of S08P family. Therefore,
the FLL output frequency is the reference clock frequency x 1024. The FLL output clock after the divider (BDIV) can be
further divided down by half via SIM_BUSDIV[BUSDIV] to provide both the bus clock and the flash clock.

All the peripheral clocks can be gated via clock gating. By default after reset, all peripheral clocks except flash and SWD are
gated off to conserve power. This is different from S08P which enables all peripheral clocks after reset.

The following figure shows the system clock diagram.

Clock modules

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

14 Freescale Semiconductor, Inc.

Figure 4. System clock diagram

The following code snippet shows how to initialize ICS and OSC modules to FEE mode from FEI mode with external crystal
of 8 MHz:

/* assume external crystal is 8Mhz *
 */
/* enable OSC with high gain, high range and select oscillator output as OSCOUT
 *
 */
OSC_CR = OSC_CR_OSCEN_MASK
 | OSC_CR_OSCSTEN_MASK /* enable stop */
/* wait for OSC to be initialized
 *
 */
while(!(OSC_CR & OSC_CR_OSCINIT_MASK));

/* divide down external clock frequency to be within 31.25K to 39.0625K
 *
 */
 /* 8MHz */
 ICS_C1 = ICS_C1 & ~(ICS_C1_RDIV_MASK) | ICS_C1_RDIV(3); /* now the divided
 frequency is 8000/256 = 31.25K */

/* change FLL reference clock to external clock */
ICS_C1 = ICS_C1 & ~ICS_C1_IREFS_MASK;

while(ICS_S & ICS_S_IREFST_MASK);

/* wait for FLL to lock */
while(!(ICS_S & ICS_S_LOCK_MASK));

/* now FLL output clock is 31.25K*1024 = 32MHz
 *
 */

Clock modules

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 15

if(((ICS_C2 & ICS_C2_BDIV_MASK)>>5) != 1)
{
ICS_C2 = (ICS_C2 & ~(ICS_C2_BDIV_MASK)) | ICS_C2_BDIV(1);
}
/* now system/bus clock is the target frequency 16MHz
 *
 */
/* clear Loss of lock sticky bit */
ICS_S |= ICS_S_LOLS_MASK;

As mentioned in Figure 4 , it requires ICSOUTCLK be 40 MHz to achieve 40 MHz core/platform/system clock, so if using
internal 32 KHz IRC as reference clock, it shall be trimmed to 39.0625 KHz , ICS_C2[BDIV] bit must be 0 and
SIM_BUSDIV[BUSDIV] must be 1 (bus clock configured to 20 MHz which is max per data sheet). Typical trim value for
39.0625 KHz IRC is 0x4C, which can be written to ICS_C3 at startup.

The following code snippet shows how to gate on/off the KBI0 clock:

SIM_SCGC |= SIM_SCGC_KBI0_MASK; // enable KBI0 clock
SIM_SCGC &= ~SIM_SCGC_KBI0_MASK; // gate off KBI0 clock

7 System Integration Module (SIM)
This table lists the differences in the SIM modules of S08P, S08AC, and KE families.

Table 7. Comparison of SIM modules between S08 and KE product families

KE02 S08

Includes fields for Kinetis Family ID, Sub-Family ID, Revision
Number, and Device Pin ID.

Includes Universal Unique Identifier (UUID)

The system reset status flags are reflected in low half word of
SRSID register. There are three new status flags: MDM-AP
System Reset Request (SIM_SRSID[MDMAP]) coming from
SWD, Core Lockup (SIM_SRSID[LOCKUP]), and Stop Mode
Acknowledge Error Reset (SIM_SRSID[SACKERR]) which is
caused by the failure of entering Stop mode typically due to
no acknowledge of entering Stop from IIC. In addition, the
Cortex-M0+ core can generate software reset via the
Application Interrupt and Reset Control Register.

The SYS_SRS register includes read-only status flags to
indicate the source of the most recent reset. No direct
software reset mechanism exists.

Clock gating is controlled by the SIM_SCGC register. Clock gating is controlled by the SCG_C1 to SCG_C4
registers in S08P.

Pin remapping is controlled by the SIM_PINSEL register. Pin remapping is controlled by the SYS_SOPT1 register in
S08P.

Each Flextimer pin remapping can be individually controlled. in S08P, each Flextimer module pins can only be rerouted in
group.

The bus clock can be further divided by 2 for both bus and
flash clock via the SIM_BUSDIV register.

There is no SIM_BUSDIV register. It can not further divide
bus clock and flash clock down.

There is no illegal address register in KE family. S08P has an illegal address register.

System Integration Module (SIM)

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

16 Freescale Semiconductor, Inc.

8 Power Management Controller
The Power Management Controller (PMC) module in KE family is similar to that in S08P. It supports Wait and Stop mode
and has the power-on reset (POR) function. The low-voltage detect (LVD) and low-voltage warning interrupt can be enabled
or disabled. If LVD is enabled in Stop (PMC_SPMSC1[LVDE] and PMC_SPMSC1[LVDSE] are both set) at the time the
CPU executes a stop instruction, then the voltage regulator remains active during Stop mode. To get the lowest power
consumption mode (Stop3), disable LVD in Stop mode by clearing these two fields.

The following code snippet shows how to enter Stop3 mode.

PMC_SPMSC1 = 0x00;//disable LVD;
stop();

9 Flash Memory, EEPROM, and Flash Memory Controller
modules

The Flash Memory and EEPROM modules on the KE family are similar to S08P. On the KE family, the flash memory has
cache, EEPROM has no cache. This will greatly improve the performance of flash access. However, all S08 devices have no
flash cache. On the KE family, the flash memory can be accessed in word (32-bit), halfword (16-bit) or byte; however
EEPROM can only be accessed in byte.

In addition, the KE family has another new flash operation feature: read-while-write. It allows read from flash while
programming/erasing the flash. This is very useful for applications that do not need run code from RAM, especially for those
devices with low memory footprint. This is enabled by setting Enable Stalling Flash Controller field in MCM_PLACR as
given in this code.

MCM_PLACR |= MCM_PLACR_ESFC_MASK;

The flash memory controller is a memory acceleration unit that provides:
• an interface between bus masters and the 32-bit flash memory.
• a buffer and a cache that can accelerate flash memory data transfers

The flash memory controller provides two separate mechanisms for accelerating the interface between bus masters and flash
memory. A 32-bit speculation buffer can prefetch the next 32-bit flash memory location and a 4-way, 4-set program flash
memory cache can store previously accessed flash memory data for quick access times.

It not only allows instruction speculation and caching, but also data speculation and caching.

These different features can be enabled or disabled in the MCM_PLACR register.

There is a method to check whether the most recently programmed data is correct: invalidate the caches before reading the
flash:

MCM_PLACR |= MCM_PLACR_CFCC_MASK;

This is to ensure that the cache contains the update value at the target location.

10 Pinout changes
The pinout of KE family is compatible with S08P. Both have 8 high-drive pins supporting 20 mA drive capability.

The KE family employs new I/O structure which is optimized for better transient protection and EMC performance. There
are some changes to the pinout (from S08P) as given in this list.

Power Management Controller

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 17

• The debug port is replaced with two SWD pins: SWD_DIO pin, SWD_CLK pin. There is no BKGD function on the
KE family.

• The KE family has a robust and reliable solution for use in harsh environments found in home appliances. The EFT can
support 4.4 kV or higher and the Power ESD direct contact discharge is 20 kV or higher. Hardened IO-pad design to
withstand system EMC and ESD interference includes

• Filtering on GPIO/RST/IRQ for noise rejection
• Drive strength control for EMI/EMC compliance
• Default high impedance for all GPIOs (including unbonded pins)

11 Safety feature enhancement

11.1 Watchdog
The Watchdog (WDOG) Timer module is an independent timer that is available for system use. If it is not updated/refreshed
with a certain data write sequence within a specified period of time, it will reset the MCU. It is used as a safety element to
ascertain that the software is executing as planned and that the CPU is not stuck in an infinite loop or executing unintended
code. It is designed as per IEC60730 safety standards.

This module is similar to the one in S08P family. Below are some guidelines when using this module:
• The WDOG register map is organized in big-endian mode similar to S08P, however the Cortex-M0+ core uses little-

endian access mode. So when using 16-bit address mode to access WDOG registers such as WDOG_CNT,
WDOG_TOVAL ,and WDOG_WIN, always take care that the high byte of value is in high byte address and low byte
of value is in low byte address.
For example, the following code snippet writes 0xA6 to WDOG_CNTL (high byte address), and 0x02 to
WDOG_CNTH (low byte address).

WDOG_CNT = 0xA602;
• The counter refreshing sequence (that is, feeding WDOG) must be completed within 16 bus clocks, or it will generate

reset.
• The unlock sequence write must be performed within 16 bus clocks for allowing updates to write-once configuration

bits, otherwise it will generate reset.
• Software must make updates within 128 bus clocks after unlocking and before WDOG closing unlock window, or it

will generate reset.

11.2 CRC
The Cyclic Redundancy Check (CRC) module generates 16/32-bit CRC code for error detection. It provides a programmable
polynomial, WAS, and other parameters required to implement a 16-bit or 32-bit CRC standard. The 16/32-bit code is
calculated for 32 bits of data at a time. This module is similar to that in S08P family, except for the following differences.

• Supports bitwise/bytewise transposition of input data or output data (the CRC result). S08P supports only bitwise
transposition.

• Supports 32-bit access to the registers. S08P supports only 8-bit access to the registers.

For example, CRC_DATA register on the KE family is a 32-bit register, which is same as concatenation of four 8-bit
registers from CRC_D0 to CRC_D3 on S08P.

Safety feature enhancement

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

18 Freescale Semiconductor, Inc.

12 Port Control and GPIO
The Port Control module controls glitch filter, pullup, and high drive. In KE family, there are four 32-bit registers,
PORT_IOFLT, PORT_PUEL/H, and PORT_HDRVE. The functionality of these registers are similar to S08P with the only
difference that these registers can be accessed in 32-bit on the KE family. This will greatly improve the control speed on
multiple I/Os.

NOTE
• The PORT_PUEL/H are port pullup enable registers corresponding to combined

PORT_PTxPEs registers in S08P. So, the code that access any PORT_PTxPE in
S08P shall be changed accordingly. There are no port input and output enable
registers (PORT_PTxIE, PORT_PTxOE) in the KE family. Instead, the KE family
uses GPIOx_PDDR to control data direction and GPIOx_PIDR to enable or disable
GPIO inputs.

• All GPIO pins are peripheral inputs by default after reset and in this case, the
corresponding bits in Pin Data Input Registers will read 0. In order to correctly read
a pin state, the corresponding bit in Port Input Disable Register (PIDR) must be
cleared.

The GPIO module in KE family controls the direction, and the input and output data of I/O pins, also similar to the S08P
family. However, the GPIO registers in KE family can be accessed in 32-bit. In addition, its GPIO can also be accessed from
single (core clock) cycle IOPORT interface. So, this is called fast GPIO or FGPIO. The memory map of this FGPIO is
starting from 0xF800_0000.

Accesses via the IOPORT interface (FGPIO memory space) occur in parallel with any instruction fetches and will therefore
complete in a single cycle of core clock. See the following figure.

Figure 5. Cortex-M0+ core platform block diagram

Following is the list of main features of GPIO:

• Pin input data register visible in all digital pin-multiplexing modes
• Pin output data register with corresponding set/clear/toggle registers

Port Control and GPIO

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 19

• Pin data direction register
• Zero wait state access to GPIO registers through IOPORT

NOTE
All GPIO pins are peripheral inputs by default after reset and in this case, the
corresponding bits in Pin Data Input Registers will read 0. In order to correctly read a pin
state, the corresponding bit in Port Input Disable Register (PIDR) must be cleared.

The following code snippet demonstrates how to use Port control and GPIO:

PORT_IOFLT = 0x0; // Filter clock source is BUSCLK
PORT_PUEH = 0x0;
PORT_PUEL = 0x1; // Enable pullup for PTA0
PORT_HDRVE = 0x0; // No high drive pin

/* normal GPIO manipulation */
GPIOA_PDDR = 1<<0; // PTA0 is set as output pin
GPIOA_PTOR = 1<<0; // Toggle PTA0

GPIOA_PIDR &= ~2; // configure PTA2 pin as GPIO input, must clear PIDR bit
GPIOA_PDDR &= ~2; // direction is INPUT

/* GPIO manipulation via IOPORT interface */
FGPIOA_PDDR = 1<<0; // PTA0 is set as output pin
FGPIOA_PTOR = 1<<0; // Toggle PTA0

13 Timer modules

13.1 RTC
The real-time counter (RTC) consists of one 16-bit counter, one 16-bit comparator, several binary-based and decimal-based
prescaler dividers, three clock sources, one programmable periodic interrupt, and one programmable external toggle pulse
output. The difference between S08P and KE family lies in the register access width.

Two 8-bit status and control registers (RTC_SC1 and RTC_SC2) in S08P are cascaded into single 32-bit register RTC_SC in
KE family. Two 8-bit RTC modulo registers (RTC_MODH, RTC_MODL) in S08P are cascaded into single 32-bit
RTC_MOD register.

Similar is the case for RTC counter registers. So the code to access RTC_SC1 and RTC_SC2, RTC_MODH, RTC_MODL,
RTC_CNTH, RTC_CNTL in S08P shall be changed to access RTC_SC, RTC_MOD, RTC_CNT accordingly.

13.2 FlexTimer
The FlexTimer (FTM) is built upon a simple timer—TPM module used on S08 devices, and extends the functionality to meet
the demands of motor control, digital lighting solutions, and power conversion. Several key enhancements are made to the
Timer module as follows.

• Signed up counter
• Deadtime insertion hardware
• Fault control inputs
• Enhanced triggering functionality
• Initialization and polarity control

Key features of the FlexTimer module in S08 devices are given in the following list.

Timer modules

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

20 Freescale Semiconductor, Inc.

• FTM source clock is selectable.
• Source clock can be the system clock, the fixed frequency clock, or an external clock.
• Fixed frequency clock is an additional clock input to allow the selection of an on-chip clock source other than the

system clock.
• Selecting external clock connects FTM clock to a chip level input pin therefore allowing to synchronize the FTM

counter with an off chip clock source
• Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128
• 16-bit counter

• It can be a free-running counter or a counter with initial and final value.
• The counting can be up or up-down.

• Each channel can be configured for input capture, output compare, or edge-aligned PWM mode.
• In Input Capture mode:

• The capture can occur on rising edges, falling edges or both edges
• An input filter can be selected for some channels

• In Output Compare mode, the output signal can be set, cleared, or toggled on match.
• All channels can be configured for center-aligned PWM mode.
• Each pair of channels can be combined to generate a PWM signal with independent control of both edges of the PWM

signal.
• The FTM channels can operate as pairs with equal outputs, pairs with complementary outputs, or independent channels

with independent outputs.
• The deadtime insertion is available for each complementary pair.
• Generation of match triggers
• Software control of PWM outputs
• Up to four fault inputs for global fault control with programmable polarity
• The polarity of each channel is configurable.
• Generation of an interrupt per channel
• Generation of an interrupt when the counter overflows
• Generation of an interrupt when the fault condition is detected
• Synchronized loading of write buffered FTM registers
• Write protection for critical registers
• Backward-compatible with TPM
• Testing of input captures for a stuck at 0 and 1 conditions
• Dual edge capture for pulse and period width measurement
• Global time base to sync different FlexTimer modules

Compared with S08P, the FlexTimer module in KE family has new enhanced features as listed below.
• Invert control/channel swap
• Fault input polarity control
• Intermediate load
• Software output control
• Debug mode function
• TOF frequency/ periodic TOF

Fault input polarity can be configured as active HIGH or LOW by clearing or setting FTMx_FLTPOL[FLTnPOL]. The FTM
can be set to still function when the debug mode is entered. This is done by setting FTMx_CONF[BDMMODE].

The invert functionality swaps the signals between channel (n) and channel (n+1) outputs. The inverting operation is selected
when (FTMEN = 1), (QUADEN = 0), (DECAPEN = 0), (COMBINE = 1), (COMP = 1), (CPWMS = 0), and (INVm = 1),
where m represents a channel pair.

With intermediate load feature, the PWMLOAD register allows to update the MOD, CNTIN, and C(n)V registers with the
content of the register buffer at a defined load point. In this case, it is not required to use the PWM synchronization.
Following loading points/conditions are possible.

• When the FTM counter wraps from MOD value to CNTIN
• At the channel (j) match (FTM counter = C(j)V) when When CHjSEL = 1.

Timer modules

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 21

After the loading points are configured, they must be enabled by setting FTMx_PWMLOAD[LDOK]. This field must be set
for the load to occur at the next loading points.

The following code snippet shows how to enable intermediate load feature with channel 2 match:

FTM2_MOD = 1200;
 FTM2_CNTIN = 200;
 FTM2_MODE = 0x05; /* FTM features are enabled ans write protection is disabled */
 FTM2_COMBINE = 0x23; /* Combine is enabled, Output CH0 and CH1 are complementary */
 FTM2_SYNCONF = 0x4; // CNTIN register is updated with its buffer value by the
 // PWM synchronization.
 FTM2_C0SC = 0x28; /* No Interrupts; High True pulses on Edge Aligned PWM */
 FTM2_C1SC = 0x28;
 FTM2_C0V = 300; /* 25% pulse width */
 FTM2_C1V = 1100; /* 91% pulse width */
 FTM2_SC = 0x08; /* CLK source is System clock / 1 */
 FTM2_SYNC = 0x80; /* OUTMASK register is updated with the value of its buffer only by
the PWM synchronization. */
 FTM2_C0V = 150; /* 25% pulse width */
 FTM2_C1V = 550;
 FTM2_MOD = 600;
 FTM2_PWMLOAD = 0x203 ; /* enable load on both load points */

The software output control forces the channel output according to software-defined values at a specific time in the PWM
generation. The software output control is selected when (FTMEN = 1), (QUADEN = 0), (DECAPEN = 0), (COMBINE =
1), (CPWMS = 0), and (CHnOC = 1). The CHnOC field enables the software output control for a specific channel output and
the CHnOCV selects the value that is forced to this channel output.

The TOF frequency can be set by FTMx_CONF[NUMTOF]. The TOF flag will be set for the first counter overflow, and not
set for the next N overflows where N = NUMTOF and not 0. This is useful when the PWM event needs to be changed only
after several PWM cycles. This greatly reduces CPU overload.

In addition, the user must be aware of the following two other differences.
• Nearly all of the FTM channels on the KE family can be remapped individually to different pins, but on S08P, only

FTM2 channels can have alternate pin reassignment in group. This is done by using Pin Selection Register
(SIM_PINSEL).

• The registers can be accessed in 32-bit for better performance.

13.3 PIT
The KE family Periodic Interrupt Timer (PIT) is an array of timers/channels that can be used to raise interrupts and triggers.
It is a 32-bit module and each timer is a count down timer with the initial value in PIT_LDVALn register. Each time a timer
reaches 0, it will generate a trigger pulse and set the interrupt flag. A new interrupt may be generated if enabled by setting
PIT_TCTRLn[TIE] and only after the previous one is cleared. The counter period can be restarted by first disabling and then
enabling the timer with PIT_TCTRLn[TEN]. The current counter value of the timer can be read via the PIT_CVALn register.

It is possible to change the counter period without restarting the timer by writing PIT_LDVALn register with the new load
value and this value will take effect after the next trigger event.

The timers in PIT can be chained as if those timers were only one timer.

NOTE
The module must be enabled by clearing PIT_MCR[MDIS] before any other setup is
done.

The following code snippet shows how to set timer chain (timer 1 and 0) to count 10000 cycles before generating PIT
channel1 interrupt:

enable_irq(23);// enable PIT channel 1/timer1 interrupt
PIT_MCR = 0; // enable PIT
PIT_LDVAL0 = 1000-1;
PIT_LDVAL1 = 10-1;

Timer modules

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

22 Freescale Semiconductor, Inc.

PIT_TCTRL0 = PIT_TCTRL_TEN_MASK;
PIT_TCTRL1 = PIT_TCTRL_TIE_MASK|PIT_TCTRL_TEN_MASK
 | PIT_TCTRL_CHN_MASK; // Enable PIT Chain Mode for timer1:0

#define VECTOR_039 pit_ch1_isr
void pit_ch1_isr(void)
 {
 // clear PIT ch1/timer1 interrupt flag
 PIT_TFLG1 = PIT_TFLG_TIF_MASK;
 printf("\tEntered PIT CH1 ISR *\n");
 }

14 Debug
The KE family implements a 2-pin Serial Wire Debug (SWD) port: SWD_CLK, and SWD_DIO. The SWD is based on the
ARM CoreSight architecture. The basic debug functionality includes processor halt, single-step, processor core register
access, Reset and HardFault Vector Catch, software breakpoints, and full system memory access. For more information on
this architecture, visit arm.com.

Through the ARM Debug Access Port (DAP), the debugger has access to the status and control elements, implemented as
registers on the DAP bus. These registers provide additional control and status for low power mode recovery and typical run-
control scenarios. The status register bits also provide a means for the debugger to get updated status of the core without
having to initiate a bus transaction across the crossbar switch, thus remaining less intrusive during a debug session. It is
important to note that these DAP control and status registers are not memory mapped within the system memory map and are
only accessible via the Debug Access Port using SWD.

The KE family Debug module supports two breakpoints and two watchpoints. But there is no Micro Trace Buffer (MTB), so
the user can’t get the trace function using SWD module.

NOTE
During reset, do not try to read bit 2 (security state) of the MDM-AP Status Register.
This bit is valid only when the device is not in reset state.

15 ADC module
The 12-bit analog-to-digital converter (ADC) is a successive approximation ADC which is faster than sigma delta while still
having similar good accuracy.

Following is a list of features of the ADC module.
• Linear Successive Approximation algorithm with 8-, 10-, or 12-bit resolution
• Up to 16 external analog inputs, external pin inputs, and 5 internal analog inputs including internal bandgap,

temperature sensor, and references
• Output formatted in 8-, 10-, or 12-bit right-justified unsigned format
• Single or Continuous Conversion (automatic return to idle after single conversion)
• Support up to eight result FIFO with selectable FIFO depth
• Configurable sample time and conversion speed/power
• Conversion complete flag and interrupt
• Input clock selectable from up to four sources
• Operation in wait or stop3 modes for lower noise operation
• Asynchronous clock source for lower noise operation
• Selectable asynchronous hardware conversion trigger
• Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value

The ADC module in KE family is similar to that in S08P, with the only difference that the registers can be accessed in 32-bit.
The ADC 12-bit result can be read in one cycle. So, it is much faster than S08P.

Debug

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 23

http://www.arm.com

The following code snippet shows how to initialize the ADC and read ADC result register in the ADC handler :

void ADC_init(void)
{
/* The following code segment demonstrates how to initialize ADC by low-power mode, long
sample time, bus frequency, hardware triggered from AD1, AD3, AD5, and AD7 external pins
with 4-level FIFO enabled */
ADC_APCTL1 = ADC_APCTL1_ADPC6_MASK | ADC_APCTL1_ADPC5_MASK | ADC_APCTL1_ADPC3_MASK |
ADC_APCTL1_ADPC1_MASK;
ADC_SC3 = ADC_SC3_ADLPC_MASK | ADC_SC3_ADLSMP_MASK | ADC_SC3_MODE1_MASK;
// setting hardware trigger
ADC_SC2 = ADC_SC2_ADTRG_MASK ;
//4-Level FIFO
ADC_SC4 = ADC_SC4_AFDEP1_MASK | ADC_SC4_AFDEP0_MASK;
// dummy the 1st channel
ADC_SC1 = ADC_SC1_ADCH0_MASK;
// dummy the 2nd channel
ADC_SC1 = ADC_SC1_ADCH1_MASK | ADC_SC1_ADCH0_MASK;
// dummy the 3rd channel
ADCSC1 = ADCSC1_ADCH2_MASK | ADC_SC1_ADCH0_MASK;
// dummy the 4th channel and ADC starts conversion
ADC_SC1 = ADC_SC1_AIEN_MASK | ADC_SC1_ADCH2_MASK | ADC_SC1_ADCH1_MASK | ADC_SC1_ADCH0_MASK;
}

/* FIFO ADC interrupt service routine */
unsigned short buffer[4];
void ADC_isr(void)
{
 /* The following code segment demonstrates read AD result FIFO */
 // read conversion result of channel 1 and COCO bit is cleared
 buffer[0] = ADCR;
 // read conversion result of channel 3
 buffer[1] = ADCR;
 // read conversion result of channel 5
 buffer[2] = ADCR;
 // read conversion result of channel 7
 buffer[3] = ADCR;
}

16 References
• KLQRUG, Kinetis L Peripheral Module Quick Reference, available on freescale.com
• AN4347, Transitioning Applications from S08AC and S08FL Family to S08PT Family, available on freescale.com
• AN4560: PWM synchronization using Kinetis FlexTimers, available on freescale.com
• Cortex -M0 Devices Generic User Guide, available on arm.com

17 Glossary
ACMP Analog Comparator

BME Bit Manipulate Engine

CRC Cyclic Redundant Check

DMA Direct Memory Access

FMC Flash Memory Controller

IRC Internal Reference Clock

PWT Pulse Width Timer

RTC Real Time Counter

Table continues on the next page...

References

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

24 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.arm.com

SWD Serial Wire Debug

18 Revision history
Revision number Date Substantive changes

0 07/2013 Initial release

1 11/2013 Added 40 MHz support

Revision history

Migration Guide From S08 to Kinetis E Family, Rev 1, 11/2013

Freescale Semiconductor, Inc. 25

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, and the Freescale logo, and Kinetis are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other
product or service names are the property of their respective owners.
ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

©2013 Freescale Semiconductor, Inc.

Document Number AN4757
Revision 1, 11/2013

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Device overview
	Programmers model
	Register set
	Addressing mode
	Instruction set
	Operating modes
	Stack
	Exceptions and interrupts
	Vector table
	Reset and interrupt handlers
	Memory
	Access type
	Bit-banding
	Debug
	Power Management

	Nested Vectored Interrupt Controller (NVIC)
	Bit Manipulation Engine (BME)
	Clock modules
	System Integration Module (SIM)
	Power Management Controller
	Flash Memory, EEPROM, and Flash Memory Controller modules
	Pinout changes
	Safety feature enhancement
	Watchdog
	CRC

	Port Control and GPIO
	Timer modules
	RTC
	FlexTimer
	PIT

	Debug
	ADC module
	References
	Glossary
	Revision history

