

Freescale Semiconductor Document Number: AN4688
Application Note Rev. A, 01/2013

© Freescale Semiconductor, Inc., 2013. All rights reserved.

Freescale Preliminary—Subject to Change Without Notice

Sampling Audio with ADC on Kinetis
KwikStik
ADC, DMA and LCD demo using Processor Expert and
Peripheral Initialization Components.

.

Periodical sampling of analog signal is a
common task required in many microcontroller
(MCU) applications. The Kinetis MCUs provide
analog to digital converters (ADCs) with
hardware sample triggering that can be easily
leveraged for this task. This application note
describes the design of an application that uses
Processor Expert to configure the ADC and
other peripherals to perform periodic sampling
of an analog signal obtained from a microphone
on a KwikStik device. Its on-board matrix LCD
presents the sampled data as a waveform. The
source code of the example is available in the
archive file AN4688SW.zip.

This note assumes the use of CodeWarrior for
MCUs v10.3 or later.

Contents
1 Introduction .. 2
2 Hardware ... 2
3 Description of Operation .. 2
4 Development tools ... 3
5 Components configuration ... 4
6 Source Code .. 12
7 Conclusion ... 13
8 Revision History ... 14

 Sampling Audio with ADC on Kinetis KwikStik
2 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

1 Introduction
Processor Expert is a rapid application development tool that provides a quick way to setup initialization
and runtime control of a Freescale MCU and its on-chip peripheral devices. Peripheral Initialization
components go a step further by providing pre-configured drivers for these peripheral devices. The Code
Warrior for MCUs v10.x tools and Microcontrollers Driver Suite provide support for the Kinetis MCUs.

2 Hardware
The example project uses a Kinetis KwikStik. It is a development board used to evaluate, develop, and
debug software written for Kinetis MCUs.

The KwikStik board features:

 32-bit K40X256 MCU that contains 256KB flash memory and 256KB FlexMemory

 LCD screen with 306 segments

 3.5 mm audio output jack and two micro USB connectors

 Omni-directional microphone and a buzzer

 On-board J-Link USB programmer

 Infrared communications

 Micro SD card slot

 Capacitive touch sensing interface

 General purpose Tower plug-in (TWRPI) socket

 Manganese lithium rechargeable battery

Detailed information on the KwikStik board and Kinetis K40 MCU are available at:
http://www.freescale.com/kwikstik.

3 Description of Operation
The demo application repeatedly samples a single ADC channel at a given frequency and stores the data
to a memory buffer via an enhanced Direct Memory Access (eDMA) module.

ADC conversions are triggered with pulses provided continuously by the Programmable Delay Block
(PDB) peripheral. After each conversion, the ADC raises a DMA request and the eDMA transfers the
data from the sample register to the memory buffer. The benefit of this approach is that the CPU core is
not involved with the sequence of operations: it is free to perform other tasks rather than handling an
ADC sample stream.

The example code uses a double buffering technique, which means that as one half of the buffer fills
with ADC values, the application code processes the accumulated data in other half. When one half the
buffer fills with new samples, an interrupt informs the MCU that the buffer end has been reached.
Incoming data samples are then transferred to the other half of the buffer, while the application code

http://www.freescale.com/kwikstik�

 Sampling Audio with ADC on Kinetis KwikStik
Freescale Semiconductor 3

Freescale Preliminary—Subject to Change Without Notice

starts processing the newly-filled half of the buffer. The application code reads the sampled values and
displays them as a waveform.

Figure 1 shows the basic signal and data flow in the demo application.

Figure 1. Block Diagram of Signal and Data Flow

4 Development tools
The demo application is created using Processor Expert, a rapid application design tool. Processor
Expert enables the quick design and implementation of a microcontroller application. The application is
built using Processor Expert’s Embedded Components. These components are building blocks that
generate source code files that contain the initialization and driver code for the selected MCU and its on-
chip peripherals.

For the Kinetis K40 platform, there are the following types of Embedded Components available:

 Peripheral Initialization Components – These components generate the initialization code for
a peripheral. The interface of these components gives a user access to all possible features that
can be initialized. By pointing and clicking, you can active specific peripheral features and
configure them.

 Logical Device Drivers (LDD) – These components provide basic initialization code and drivers
for runtime use of the peripherals.

To achieve maximum throughput of the ADC data flow, the application’s Peripheral Initialization
Components are used to configure ADC, eDMA and PDB. Peripheral Initialization components are used
because the required access to certain low-level hardware specific features is not available in LDD
components.

ADC0
DMA
Ch.0

On-chip RAM

PDB

ADC0
result

register A Buffer 1

Buffer 2
MCU Core

running user code

Trigger A DMA req.

Ch 10 analog

 Sampling Audio with ADC on Kinetis KwikStik
4 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

Processor Expert is available as a plug-in for CodeWarrior for MCUs or within the standalone
Microcontroller Driver Suite. For the compilation and debugging of the demo, CodeWarrior for MCUs
v10.2 was used.

For more details on the development tools, see the website http://www.freescale.com.

5 Components configuration
Table 1show the components used in the example application project.

Table 1. Summary of components used in the example application

Embedded Component Task
CPU (MK40DX256ZVLQ10) Configures basic settings of K40 MCU on the KwikStik board
GPIO_LDD Provides driver for a digital pin for testing purposes
SegLCD_LDD Provides a simple LCD driver for the display on the KwikStik
Init_ADC Provides ADC (Analog to Digital Converter) initialization code
Init_PDB Provides PDB (Programmable Delay Block) initialization code
Init_eDMA Provides eDMA (Direct Memory Access) initialization code

Figure 2 presents the CodeWarrior Projects view of the example program in CodeWarrior for MCUs
v10.2. It shows the source files and the various Processor Expert components used to implement the
functions of the example program.

Figure 2. CodeWarrior Project Structure of Application Using Processor Expert

http://www.freescale.com/�

 Sampling Audio with ADC on Kinetis KwikStik
Freescale Semiconductor 5

Freescale Preliminary—Subject to Change Without Notice

Figure 3. Processor Expert components used if the project

The following subsections describe important settings of the individual components. You can view
complete settings of in the Processor Expert Component Inspector after opening the project and
selecting the component.

Note: To access component settings in the CodeWarrior Project view, click on the
ProcessorExpert.pe object in the CodeWarrior Projects view in the project. Then select the
component in the Components view and see the settings in Inspector view. For more information on
how to change these settings, refer to the Processor Expert User Guide.

5.1 CPU
The CPU component configures the MCU to use the external 50MHz crystal on the KwikStik board.
The core clock is initialized to run at 100MHz.

5.2 GPIO_LDD
The GPIO_LDD component provides a driver code for the PTA9 pin. This pin is accessible on the
KwikStik Tower connector and is used for debugging and test purposes (for example, measuring the
sampling frequency).

 Sampling Audio with ADC on Kinetis KwikStik
6 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

Figure 4. GPIO_LDD settings in Component Inspector

5.3 Init_PDB
The Init_PDB component initializes and configures the PDB. The PDB provides controllable delays
from either an internal or external trigger, or a programmable interval tick. These can be used as
hardware trigger inputs for the ADCs and/or generate the interval triggers to DACs.

In this example application, the PDB channel 0 is configured by Init_PDB component with the
following settings:

 Prescaler and Divider are set to 1 so the counter input frequency is 50MHz.

 The counter modulus is set to 6250, which makes the period in 125 μS. This value is equal to
sampling frequency 8 kHz.

 Enabled Continuous mode means that the counter will continue running in a loop once it’s
started.

 Input trigger select is set to PDB_SWTRIG which means that PDB is triggered (started) by
software only. The PDB starts to provide trigger pulses to ADC after the PDB1_Init() function is
called in main().

 Only trigger A of the ADC0 is enabled and no delay is configured for it (delay with value 0).

Figure 5 shows the Component Inspector interface for the PDB, and how the settings are described
appear in it.

 Sampling Audio with ADC on Kinetis KwikStik
Freescale Semiconductor 7

Freescale Preliminary—Subject to Change Without Notice

Figure 5. Init_PDB settings in Component Inspector

 Sampling Audio with ADC on Kinetis KwikStik
8 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

5.4 Init_ADC
The MCU features a 16-bit analog-to-digital converter (ADC). It uses a successive approximation
conversion algorithm and supports up to four pairs of differential and 24 single-ended inputs. It offers a
hardware average function, selectable hardware conversion trigger, selectable voltage reference and
many other advanced features.

In the example application the Init_ADC component is configured to initializethe ADC converter
(ADC0) the following way:

 Result data format is 16-bit unsigned.

 Conversion mode is Single. (That is, every single measurement is started by a trigger pulse).

 ADC clock is set to use the Bus clock with Prescaler of 8. The resulting conversion time is
16.9 μs.

 Conversion trigger is hardware (HW).

 HW average is Enabled with HW average length 4 samples.

 Channel 10 single input is enabled. This channel input is connected to on-board microphone.

 Trigger A is enabled. Trigger A source is set to PDB0_CH0_TriggerA.

 Interrupt request is Disabled.

 DMA request is Enabled.

 Initial channel select for trigger A is Channel 10. This channel is connected to the on-board
microphone.

 Sampling Audio with ADC on Kinetis KwikStik
Freescale Semiconductor 9

Freescale Preliminary—Subject to Change Without Notice

Figure 6. Init_ADC settings in Component Inspector

 Sampling Audio with ADC on Kinetis KwikStik
10 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

5.5 Init_eDMA
The enhanced direct memory access (eDMA) controller can perform complex data transfers with
minimal intervention from a host.

In this application the eDMA is used to transfer the results of the ADC conversion to a location in the
memory buffer. Individual transfers are triggered by a DMA request signal from the ADC.

In the example application the Init_eDMA component is configured to initialized eDMA the following
way:

 Clock gate for DMA and DMA multiplexor are Enabled.

 Channel 0 is initialized with the following values:

o DMA source muxing is Enabled and channel source is ADC0.

o Data source is set to address of ADC0 Result register A: (uint32_t)&ADC0_RA. Address
offset is 0, the values is still read from the same register.

o Data destination is initially set to the beginning of the array &MasuredValues and
Address offset is 2 (to increment address with 2 byte after transfer.

o Block length is set to 2, as 16-bits (2 bytes) are transferred.

o Major iteration count is set to 40. This is the length of one half of the buffer.

o Transfer complete interrupt is Enabled.

o Error interrupt is Enabled.

 The interrupts have assigned ISR names: Transfer Done 0 ISR Name :
DMA_ADC_DoneInterrupt

 Error ISR Name : DMA_error

 Sampling Audio with ADC on Kinetis KwikStik
Freescale Semiconductor 11

Freescale Preliminary—Subject to Change Without Notice

Figure 7. Init_ADC settings in Component Inspector

 Sampling Audio with ADC on Kinetis KwikStik
12 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

6 Source Code
The archive AN4688SW.zip includes the full commented source code of the demo application.

The code generated by Processor Expert for individual components can be found in the folder Generated
code. This folder is visible in Figure 2. The hand-written modules and modules intended for manual
modification are placed in the Sources folder. What follows is a brief summary of the source files in the
Sources folder:

 ProcessorExpert.c – This is the main Processor Expert module that contains the
application code. The module supplies all of the component header files and header files required
to define the information required by Processor Expert and any variables definitions. It also
defines the ShowData() helper functions that display the data, and the main() function.
The main() function first calls all of the individual initialization functions of the various
components. After that, it spins in an endless loop where the data are displayed. For better
visibility on the LCD screen, a delay is provided by displaying the contents of every tenth buffer.

 for(;;) {
 // check if DMA cycle is finished
 if (Measured) {
 cntr++;
 // display only time after time
 if (cntr > 10) {
 // display data
 ShowData();
 cntr = 0;
 }
 // reset flag
 Measured = FALSE;
 }

 }

 Events.c – This file contains the interrupt handler for the DMA interrupt that is invoked when
the DMA buffer fulfills up:

PE_ISR(DMA_ADC_DoneInterrupt)
{
 // Clear all DMA interrupt flags
 DMA_CINT = 0x40;
 // switch bufstart to other part of buffer
 BufStart = ADC_BUFFER_SIZE - BufStart;
 // reset destination address
 DMA_TCD0_DADDR = (uint32_t)&(MeasuredValues[BufStart]);
 // toggle pin
 GPIO1_ToggleFieldBits(GPIOPtr, TST,1);
 // toggle flag
 Measured = TRUE;
}

 Sampling Audio with ADC on Kinetis KwikStik
Freescale Semiconductor 13

Freescale Preliminary—Subject to Change Without Notice

There is also very simple handler for the DMA error interrupt that doesn’t do any specific action
except clearing the DMA interrupt flags.

PE_ISR(DMA_error)
{
 // Clear all DMA interrupt flags
 DMA_CINT = 0x40;
}

 My.h – contains basic definitions and external references to objects shared with event code in
Events.c module.
// current buffer with valid values
extern volatile uint16_t BufStart;
// double buffer for values
extern uint16_t MeasuredValues[];
// flag for end of measurement
extern bool Measured;
// GPIO component reference (for testpin
extern LDD_TDeviceData *GPIOPtr;

)

// size of the buffer
// must correspond to Init_EDMA property channels / channel 0 / Settings /
Major iteration count
#define ADC_BUFFER_SIZE 40

7 Conclusion
The ADC, PDB and eDMA peripherals of the Kinetis MCU provide the user the powerful means to
implement various analog measurement tasks without need of any intervention from the MCU core.
Processor Expert provides a valuable means to speed the development of initialization and peripheral
driver code within its visual user interface.

 Sampling Audio with ADC on Kinetis KwikStik
14 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

8 Revision History
Table 2. Revision History

Rev. Number Date Substantive Change

A 1/31/2013 Initial creation

Document Number: AN4688
Rev. A
01/2013

Freescale Preliminary—Subject to Change Without Notice

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution
Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, are trademarks of Freescale Semiconductor, Inc., Reg.
U.S. Pat. & Tm. Off are trademarks of Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARMnnn is
the trademark of ARM Limited.

 © Freescale Semiconductor, Inc. 2013. All rights reserved.

	1 Introduction
	2 Hardware
	3 Description of Operation
	4 Development tools
	5 Components configuration
	5.1 CPU
	5.2 GPIO_LDD
	5.3 Init_PDB
	5.4 Init_ADC
	5.5 Init_eDMA

	6 Source Code
	7 Conclusion
	8 Revision History

