
1 Introduction
The MC9S08LG32 is a member of the Freescale HCS08
family MCUs. It uses the S08 core and integrates many
peripherals, such as LCD, SPI, I2C, SCI, ADC, and Real Time
Counters. This application note describes how to initialize and
maintain the Real Time Clock (RTC) in the MC9S08LG32
microcontroller family.

MC9S08LG32 Demo Board used for RTC setup is shown in
Figure 1. The system communicates with the MC9S08LG32
target via a USB Background Debug Mode (BDM) interface.
With BDM protocol, system can update the MC9S08LG32
firmware. RTC is implemented using the Real Time Counter
IP (S08RTCV1) on MC9S08LG32. RTC can be displayed on
the LCD connected on the board.

In this application note, the MC9S08LG32 RTC driver
interfaces are explained. Various applications for
MC9S08LG32 can make use of this driver. The following
sections will describe the details and the steps for creating an
application using it.

This application note does not cover how to configure the
LCD. For details, please see AN3823 on http://
www.freescale.com.

Freescale Semiconductor Document Number: AN4478
Rev. 0, 03/2012

Software Real Time Clock
Implementation on MC9S08LG32
by: Nitin Gupta

Automotive and Industrial Solutions Group

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Real Time Clock (RTC)..2

3 RTC driver framework..2

3.1 RTC.c...3

3.2 RTC.h...5

3.3 RTC_main.c...6

4 Integration of RTC driver..7

5 Test results...7

6 Conclusion...8

7 References...8

http://www.freescale.com
http://www.freescale.com

Figure 1. MC9S08LG32 demo board setup

2 Real Time Clock (RTC)
The RTC, or, sometimes referred to as time of the day, can be implemented using either a hardware or a software module.
The primary function of an RTC implementation is to provide the information of time, day, week, month, and year.

A hardware RTC implementation refers to one that uses an external RTC hardware module that may be connected through
I2C or SPI bus. On the other hand, some hardware RTC implementations are provided by an on-chip peripheral in the MCU.
The advantage of hardware RTC is accuracy of time. Although not sought after for their accuracy, software RTCs can be a
viable solution for some applications.

Software RTC can be implemented with a timer or a counter that generates an interrupt based on a specified time interval.
The number of time intervals are counted and then converted to time. A one second time interval is a convenient
configuration for the software RTC.

Since the software RTC function is not a part of the hardware, legacy systems can implement software RTC functionality
with a firmware update. If the RTC is implemented in software, it will have lower system cost, requires fewer external
components, and requires less power.

For MC9S08LG32, software RTC is implemented using Real Time Counter (S08RTCV1), configured to use the external
oscillator of 32.768 kHz. S08RTCV1 accurately keeps the track of time in low-power mode, which is a critical parameter in
automotive applications to prevent high battery discharge rates and conserve the battery charge between vehicle starts
(recharge cycles).

Vehicle manufacturers expect that a vehicle should start even if the battery is not charged for long period (say 6-8 weeks),
and still keep a very good accuracy on the daily digital clock. The MC9S08LG32 family of microcontrollers provides a range
of features to enable users to achieve this goal.

3 RTC driver framework
The RTC driver is provided as “C” code files.

Real Time Clock (RTC)

Software Real Time Clock Implementation on MC9S08LG32, Rev. 0, 03/2012

2 Freescale Semiconductor, Inc.

The driver consists of three files, namely:

• RTC.c
• RTC.h
• RTC_main.c

MC9S08LG32 RTC driver project is illustrated in Figure 2

Figure 2. MC9S08LG32 RTC driver

The details of each of the files are given in the following subsections.

3.1 RTC.c
RTC.c consists of application programming interfaces (APIs) which enable the software RTC on the MC9S08LG32 series.
The description of each API is as follows:

3.1.1 RTC_Init
This API initializes the RTC and the system clock. It uses a 32.768 kHz external crystal oscillator, having 30 ppm tolerance.
During the initialization of the clock, the operating modes have been taken into consideration. As per the application, the
operating mode can be either of the following:

• Normal mode: In this mode, the RTC interrupt will occur every 1 second.
• Stop3 mode: In this mode, the RTC interrupt will occur after every 8 seconds.

RTC driver framework

Software Real Time Clock Implementation on MC9S08LG32, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 3

Syntax

void RTC_Init(void)

Parameters

None

Return Value

None

3.1.2 IRQ_Init
This API initializes the IRQ pin, which is connected to the ignition. It is assumed that a proper signal conditioning is present
on the pin.

Syntax

void IRQ_Init(void)

Parameters

None

Return Value:

None

3.1.3 RTC_ISR
This interrupt service routine (ISR) is called each time the RTC interrupt occurs. In this, clock-time is updated as per the
mode and interrupt flag is cleared. There can be two possibilities:

• Normal mode: In this mode, the time interval of the interrupt is 1 second (frequency ~ 1 Hz).
• Stop3 mode: In this low-power Stop3 mode, the RTC interrupt acts as a wakeup source for the MCU and the time

interval of the interrupt is increased to 8 seconds (frequency ~ 0.125 Hz). This, in-turn will reduce the overall current
consumption, as the execution of the ISR will take 2-10 µs, depending on the number of instructions which need to be
executed in this ISR.

NOTE
The time interval given above is as per the present RTC driver.

Syntax

void interrupt VectorNumber_Vrtc RTC_ISR(void)

Parameters

None

Return Value

None

3.1.4 IRQ_ISR
This ISR is called each time a falling edge is detected at the IRQ/Ignition pin. It is assumed that the falling edge will be
generated, each time ignition is ON/OFF, which is done through a signal conditioning on the Ignition pin.

RTC driver framework

Software Real Time Clock Implementation on MC9S08LG32, Rev. 0, 03/2012

4 Freescale Semiconductor, Inc.

Syntax

void interrupt VectorNumber_Vrtc IRQ_ISR(void)

Parameters

None

Return Value

None

3.1.5 UpdateAndDisplayTime
This API should be called each time there is an interrupt from the RTC or from the IRQ to update the clock structures to the
latest values.

Syntax

void UpdateAndDisplayTime(void)

Parameters

None

Return Value

None

3.1.6 ClockCorrection
This API should be called, each time there is a correction required. This API should be changed as per the crystal
characteristics. For example, when the crystal characteristics are such that the clock is gaining 1 second every 8 hours under
the ambient temperature conditions, this API should be called when the hours are equal to 8, 16, and 24, but only once and
consequently, 1 should be subtracted from the seconds variable in order to provide a correct and accurate clock.

Syntax

void ClockCorrection(void)

Parameters

None

Return Value

None

3.2 RTC.h
This header file contains the clock structure and the function prototypes. This file also contains the macros, which are used to
initialize the clock structures, which are described in detail below:

RTC driver framework

Software Real Time Clock Implementation on MC9S08LG32, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 5

3.2.1 RTC_HOURS
This macro is used to initialize the hours value in the clock structure and can be changed as per the requirement of the
application.

3.2.2 RTC_MINUTES
This macro is used to initialize the minutes value in the clock structure and can be changed as per the requirement of the
application.

3.2.3 RTC_SECONDS
This macro is used to initialize the seconds value in the clock structure and can be changed as per the requirement of the
application.

3.2.4 RTCMOD_NORMAL_VALUE
This macro is used in Normal mode to load the RTCMOD register.

3.2.5 RTCMOD_LP_VALUE
This macro is used in Stop3 mode to load the RTCMOD register.

3.3 RTC_main.c
This file contains the main function, which acts as an application for the present RTC driver. This can be removed, when the
driver is integrated into the application.

3.3.1 System_Init
This API initializes the overall system. It disables the watchdog and enables the Stop3 mode only when the ignition is
stopped and is captured through the IRQ, and Low Voltage Detect (LVD) reset is disabled.

Syntax

void System_Init(void)

Parameters

None

Return Value

None

RTC driver framework

Software Real Time Clock Implementation on MC9S08LG32, Rev. 0, 03/2012

6 Freescale Semiconductor, Inc.

3.3.2 Main
This API is the entry point.

Syntax

void main(void)

Parameters

None

Return Value

None

4 Integration of RTC driver
In order to integrate the RTC driver in the existing code, add the following files:

• RTC.c
• RTC.h

From the main of the existing application, call RTC_Init() and IRQ_Init(). The present RTC driver presumes the external
crystal oscillator used is 32.768 kHz and configures the prescaler value to 210 (1024), thus, making the RTC clock to 32 Hz
(32.768 kHz/ 1024). If an application uses a crystal with a different frequency, then the prescaler needs to be reconfigured
and the RTC driver needs to be recalibrated. See ClockCorrection for more details.

The application should always wait for the oscillator clock to stabilize and then initialize other drivers.

In the main loop, the application should always check the MCU operating mode, so that when the MCU wakes up due to
ignition, the application should correct the clock, by loading the correct value in milliseconds.

5 Test results
RTC soaking results under various temperature conditions, with and without corrections are displayed in Table 1. All the
readings are noted, after the temperature was stabilized. The results may show lot of variation in time due to PCB
characteristics, crystal characteristics and the components used on the board.

Table 1. RTC driver test results under various temperature
conditions

S. No. Parameters Results without
correction

Results with 1
second correction / 8

hours

1

Temperature Ambient Ambient

Number of hours 185 h 185 h

Time gain 24 s 1 s

2

Temperature 40.1°C 40.1°C

Number of hours 65 h 65 h

Time gain 10 s 2 s

Table continues on the next page...

Integration of RTC driver

Software Real Time Clock Implementation on MC9S08LG32, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 7

Table 1. RTC driver test results under various temperature conditions (continued)

S. No. Parameters Results without
correction

Results with 1
second correction / 8

hours

3

Temperature 60.9°C 60.9°C

Number of hours 70 h 70 h

Time gain 12 s 3 s

4

Temperature 80.5°C 80.5°C

Number of hours 24 h 24 h

Time gain 8 s 5 s

6 Conclusion
The RTC driver can be added into the application, by easily adding 2 files (described in Integration of RTC driver), but care
must be taken to calibrate the driver as per the crystal characteristics in order to get accurate clock in the vehicle. The
application can also add compensation algorithm based on the temperature characteristics of the crystal for better accuracy of
the clock with temperature.

The accuracy of the software RTC is affected by the frequency tolerance of the microcontroller clock source. If the clock
source is an external crystal (for instance), a high ppm frequency tolerance would be preferred.

7 References
1. MC9S08LG32RM available at http://www.freescale.com
2. DEMO9S08LG32 Schematic available at http://www.freescale.com

Conclusion

Software Real Time Clock Implementation on MC9S08LG32, Rev. 0, 03/2012

8 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4478
Rev. 0, 03/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	Real Time Clock (RTC)
	RTC driver framework
	RTC.c
	RTC_Init
	IRQ_Init
	RTC_ISR
	IRQ_ISR
	UpdateAndDisplayTime
	ClockCorrection

	RTC.h
	RTC_HOURS
	RTC_MINUTES
	RTC_SECONDS
	RTCMOD_NORMAL_VALUE
	RTCMOD_LP_VALUE

	RTC_main.c
	System_Init
	Main

	Integration of RTC driver
	Test results
	Conclusion
	References

