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1 Introduction
Three-axis accelerometers supplied for the consumer 
market are typically calibrated by the sensor 
manufacturer using a six-element linear model 
comprising a gain and offset in each of the three axes. 
This factory calibration will change slightly as a result of 
the thermal stresses during soldering of the 
accelerometer to the circuit board. Additional small 
errors, external to the accelerometer, including rotation 
of the accelerometer package relative to the circuit board 
and misalignment of the circuit board to the final 
product, will also be introduced during the soldering and 
final assembly process.

The original factory accelerometer calibration will still 
be adequate for the vast majority of consumer 
applications. Manufacturers of premium products 
looking to obtain improved accuracy from a consumer 
accelerometer may, however, wish to perform their own 
calibration either by repeating the calibration performed 
by the accelerometer manufacturer or by using a more 
sophisticated calibration model.
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This application note describes, with worked examples, the mathematics and measurements required for 
final accelerometer recalibration using models of increasing sophistication and accuracy.

For convenience, it is assumed that the accelerometer provides a digital, rather than analog, output but the 
same techniques are applicable to the recalibration of analog accelerometers after signal digitization using 
an analog to digital converter.

Related Freescale application notes are: i) AN3461 “Tilt Sensing Using Linear Accelerometers” and ii) 
AN4249 “Accuracy of Angle Estimation in eCompass and 3D Pointer Applications”.

1.1 Key words
Accelerometer, Calibration, Linear, Nonlinear, Least Squares.

1.2 Summary
• The apparent gravitational acceleration on the earth's surface varies by 0.7% from minimum to 

maximum. The apparent gravitational acceleration at the recalibration site is irrelevant if the 
product is to be used to provide orientation angle estimates from ratios of accelerometer channel 
readings but should be known if the product is required to provide high-accuracy acceleration or 
gravitational measurements.

• The original six parameter (gain and offset in each channel) factory calibration can be recomputed 
to correct for thermal stresses introduced in the soldering process.

• A 12 parameter linear calibration model can correct for accelerometer package rotation on the 
circuit board and for cross-axis interference between the accelerometer’s x, y and z channels.

• The orientation angles used for the recalibration must be carefully selected to provide the best 
calibration accuracy from the limited number of measurement orientations available. Optimum 
orientation angles for a given number of measurements are listed.

• Linear least squares optimization is an efficient mathematical technique to compute the 
recalibration parameters from the available measurements using simple matrix algebra. Worked 
examples are provided throughout the text.

• These techniques can be extended to include temperature dependence by performing the 
recalibration at two or more temperatures and interpolating the fitted calibration parameters to the 
actual temperature.
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2 Absolute or Relative Calibration
Accelerometers are used in applications requiring either absolute or relative acceleration measurements. 
Examples of absolute acceleration measurements are determining the earth's gravitational field or the 
acceleration forces experienced in an automobile in units of ms-2. An example of using relative 
accelerations is the calculation of orientation angles using ratios of the readings from the x, y and z 
accelerometer channels.

Although what follows may seem an obscure point, it does need to be briefly discussed since the objective 
of this application note is high-precision calibration. Although the earth's gravitational field is often stated 
to be 9.81 ms-2, in practice the apparent gravitational field measured by an accelerometer varies by 0.7% 
from minimum to maximum over the earth's surface as a consequence of the earth's rotation, the earth's 
equatorial bulge and the effects of altitude. The apparent gravitational field at sea level at the north pole is 
9.832 ms-2 but is only 9.763 ms-2 at the 5895 m summit of Mount Kilimanjaro located almost on the 
equator.

This document assumes that the accelerometer recalibration is being undertaken for high-precision 
calculation of roll and pitch orientation angles from the ratios of accelerometer channel readings. In this 
case the precise apparent gravitational field at the recalibration site cancels in the mathematics and is 
simply assumed to be '1 g'.

If, however, the recalibration is being performed to produce an absolute estimate of gravity or linear 
acceleration in units of ms-2 then the apparent gravitational field at the recalibration site must be known 
and stored on the product for a simple final multiplication from '1 g' to the required gravity or acceleration 
estimate measured in ms-2.
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3 Original Factory Six Parameter Calibration
The standard model used for the original factory calibration of a consumer grade digital accelerometer 
relates the calibrated accelerometer output NGf (in units of bit counts) to the outputs of the internal analog 
to digital converter using a simple linear model with a total of six calibration parameters comprising the 
three channel gains pxx, pyy and pzz and the three zero-g offsets qx, qy, and qz:

Eqn. 1

Division of the accelerometer's output bit count NGf by N gives an output Gf in units of 'g'. For the 
particular case of the Freescale MMA8451 family operating in 2  mode, the constant N has the value 4096.

Expanding Equation 1 into its x, y and z components gives:

Eqn. 2

Eqn. 3

Eqn. 4

A minimum of two measurement orientations giving a total of six measured data points (two in each of the 

x, y, and z channels) are required to solve Equations 2, 3 and 4 for the six calibration parameters. 

Conventionally, the two measurement orientations are selected to give an equal positive gravitational field 

of  in each axis followed by  in each axis.

If ADCx[0] is defined as the internal x channel ADC output during the first measurement orientation using 

the stimulus of  and ADCx[1] is defined as the x channel ADC output during the second orientation 

using the stimulus of , then Equation 2 gives:

 

Eqn. 5

Equation 5 can be readily solved to give the x-channel gain and offset as:

Eqn. 6

NGf N

Gfx

Gfy

Gfz 
 
 
 
  pxx 0 0

0 pyy 0

0 0 pzz 
 
 
 
  ADCx

ADCy

ADCz 
 
 
 
  qx

qy

qz 
 
 
 
 

+==

NGfx pxxADCx qx+=

NGfy pyyADCy qy+=

NGfz pzzADCz qz+=

g
3

------- g–
3

-------

g
3

-------
g–
3

-------

pxxADCx 0[ ] qx
N

3
-------=+ pxxADCx 1[ ] qx

N–

3
-------=+

pxx
2N

3 ADCx 0[ ] ADCx 1[ ]–( )
----------------------------------------------------------------= qx

N ADCx 0[ ] ADCx 1[ ]+( )–

3 ADCx 0[ ] ADCx 1[ ]–( )
-----------------------------------------------------------------=
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The y and z channel factory calibration parameters are given similarly as:

Eqn. 7

Eqn. 8

Once the six calibration parameters defined by Equations 6 to 8 are calculated, they are written to 
nonvolatile memory within the accelerometer and used by the accelerometer's internal arithmetic logic to 
automatically compute the calibrated accelerometer output in bit counts using equations 2 to 4.

Division by N gives the factory calibrated output Gfx, Gfy and Gfz in units of g. For simplicity, and since 
the scaling factor N varies between accelerometers and for different configurations of a single 
accelerometer, the remainder of this document assumes that the conversion from bit counts to g has taken 
place and refers only to the outputs Gfx, Gfy and Gfz with units of g.

pyy
2N

3 ADCy 0[ ] ADCy 1[ ]–( )
----------------------------------------------------------------= qy

N ADCy 0[ ] ADCy 1[ ]+( )–

3 ADCy 0[ ] ADCy 1[ ]–( )
-----------------------------------------------------------------=

pzz
2N

3 ADCz 0[ ] ADCz 1[ ]–( )
----------------------------------------------------------------= qz

N ADCz 0[ ] ADCz 1[ ]+( )–

3 ADCz 0[ ] ADCz 1[ ]–( )
----------------------------------------------------------------=
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4 Final Product Six Parameter Calibration
The original factory accelerometer calibration becomes less accurate once the accelerometer is soldered 
onto its circuit board as a result of thermal stresses during the soldering process. The manufacturer of the 
final product may therefore wish to apply a recalibration to compute the same six calibration parameters 
as the original factory calibration (a gain and offset in each of three channels) but which are then applied 
on top of the factory calibrated output Gf.

The recalibrated accelerometer output G6 is then:

Eqn. 9

The six calibration parameters in Equation 9 are now dimensionless since the factory calibrated 
accelerometer output Gf is normalized to units of g.

If the final product is placed in a jig permitting measurements to be taken at the same two orientations used 

in the original factory calibration giving  and then  in each channel then, by analogy with 

Equations 6 to 8, the six calibration parameters are:

Eqn. 10

G6
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G6y

G6z 
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Worked Example 1

The MMA8451 on a production circuit board was configured to 2 g mode giving N = 4096 bits per g and 

oriented to apply x, y, and z gravitational fields equal to  and then  in each axis. The factory calibrated 

output Gf was recorded and averaged over multiple readings to give for the two positions [0] and [1]:

Eqn. 11

The six calibration parameters are then:

Eqn. 12

g
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-------
g–
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-------
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 
  2470.928

2261.981

2300.661 
 
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Eqn. 13

The recalibration parameters computed on the final production line would typically be stored in 
nonvolatile memory accessible by the system processor and applied to the accelerometer output (in units 
of g) using Equation 9. If the x channel accelerometer was 3950 bit counts in 2 g mode (4096 bits per 
1000 mg) then the factory calibrated output Gfx is 3950/4096 bits = 964.355 mg. The recalibrated and 
improved x channel accelerometer reading is then 1.0031 x 964.355 mg - 27.78 mg = 939.565 mg.

The approach just described has the advantage of requiring measurements at two orientations only but has 

the drawback of requiring a jig or other mechanism to orient the circuit board at exactly  in each channel 

and then  in each channel. An alternative approach, which may be simpler if the final product has faces 

at right angles to each other, is to make six measurements with the circuit board aligned on its top, bottom, 

front, back, left and then right faces. This leads to 1 g or -1 g in each channel and zero in the other channels 

and provides a total of 18 measurements of which only 6 will be used.

If Gfx[0] is the first measurement when aligned for +1 g in the x axis and Gfx[1] is the second measurement 
when aligned for -1 g in the x axis, Equation 9 gives:

Eqn. 14

The solution for the x-channel calibration using measurements at +1 g and -1 g is given below alongside 
the solutions for the y-channel calibration using measurements at +1 g and -1 g in the y axis (taken in the 
third and fourth measurements) and the z-channel calibration using measurements at +1 g and -1 g in the 
z axis (taken in the fifth and sixth measurements).

Eqn. 15
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-----------------------------------------------= Vz
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Worked Example 2

A production circuit board was placed in six different directions to apply gravitational fields equal to g and 
then -g in the x, y and then z directions. The factory calibrated output Gf in g was recorded and averaged 
over multiple readings to give for the six positions:

Eqn. 16

The six calibration parameters are then:

Eqn. 17

Gfx 0[ ]

Gfy 0[ ]

Gfz 0[ ] 
 
 
 
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 
 
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 
 
 
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 
 
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 
 
 
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 
 
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 
 
 
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 
 
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This document has, up to this point, provided simple strategies for repeating the factory six parameter 
calculation on the final manufactured product. The remainder of this document provides more formal 
answers to the questions below:

• What are the optimal orientation angles that should be used for calibration measurements?

• What is the optimal mathematical solution which best uses additional measurements to optimize 
the calibration?

• How can the original factory calibration be extended and what errors can the extended models 
correct?
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5 Optimal Measurement Orientations
In the previous section, Worked Example 1 used measurements from two orientations (giving  in all the 

three x, y, and z channels followed by  in the three channels) to recalculate a six parameter calibration. 

Worked Example 2, in contrast, used six measurement orientations, giving +1 g and then -1 g sequentially 

in each of the three accelerometer channels.

The first orientation sequence is obviously superior to the second since it uses only two orientations to 
obtain the six measurements required to solve for the calibration whereas the second sequence uses six 
orientations to obtain eighteen measurements of which only six are actually used.

This section calculates the optimum orientation angles for various numbers of measurements using the two 
criteria that:

• The gravitational field vectors at each orientation should be maximally separated from each other 

• The minimum separation between any pair of measurements in the x, y or z accelerometer channels 
should be maximized.

These criteria will become clearer when the specific examples of 2, 3, 4, 6 and 8 orientations are 

considered and it will be shown that the previously used orientations giving  in all the three x, y, and z 

channels followed by  are optimal for two measurements. But first, the mathematics defining the 

apparent gravitational field experienced by the accelerometer at arbitrary orientation must be developed.

For convenience, it will be assumed that the three axis accelerometer is mounted in a consumer smartphone 
whose orientation is modeled as resulting from successive rotations in yaw, then pitch and finally in roll 
angle from an initial flat starting point. The coordinate system used is right handed with the z axis pointed 
downwards (see Figure 1). The yaw rotation is about the positive z axis, the pitch rotation is about the 
positive y axis and the roll rotation is about the positive x axis. The convention will be used that the 
accelerometer output is positive when aligned in the direction of the earth's gravitational field.

Figure 1. Coordinate System for the End Product Embedding the Accelerometer
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-------
g–
3

-------

x

y

z

Roll ¬

Yaw ¬

Pitch ¬

g=9.81ms-2

θ

ψ

φ



High-Precision Calibration of a Three-Axis Accelerometer, Rev. 2.0

12 Freescale Semiconductor, Inc.
 

The rotation matrices for a yaw rotation ψ about the z axis, a pitch rotation θ about the y axis and a roll 
rotation φ about the x axis are:

Eqn. 18

The gravitational field vector Gp measured by the smartphone accelerometer is then determined by 
applying roll, pitch and yaw rotation matrices to the downwards pointing gravity vector of magnitude 1 g:

 Eqn. 19

The initial rotation in yaw angle ψ is a rotation about the earth's gravity vector and therefore has no effect 
on the gravitational field experienced by the smartphone. The initial yaw rotation can therefore be ignored 
and the smartphone orientation is defined in this document in terms of pitch and roll angles only.

Equation 19 is defined in units of g which is appropriate for consumer accelerometer sensors which 
provide an output in bit counts which directly translates to units of g. As Section 2 explains, the definition 
of '1 g' is the apparent gravitational field at the calibration test site.

5.1 Two measurement orientations
Maximizing the separation of two gravitational field vectors subject to the constraint that their modulus is 
1 g results in their lying at opposite ends of a line with radius 1 g. This is the first optimization criterion 
discussed above.

However, simply orienting this line along the x, y or z acceleration axes would result in 0 g acceleration 

applied to the two other axes resulting in no useful information for the calculation of gain or offset in those 

two axes. The second optimization criterion requires that the minimum distance between the two 

measurements in the x, y, and z channels be maximized which is obviously achieved when the line is 

oriented to provide g in all of the three x, y, and z channels followed by g in all the three channels. 

Using a brute force optimization algorithm or, most simply, by inspection, the separation between the two 

measurements in the x, y, and z channels is maximized at g = 1.155 g which permits the most accurate 

estimate of the gain and offset.
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 
 
 
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 
 
 
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 
 
 
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 
 
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 
 
 
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 
 
 
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Figure 2. Optimum orientations for two measurements

Table 1 shows the optimum roll φ and pitch angles θ rounded to the nearest degree and the apparent 
gravitational field Gp experienced by the accelerometer in this example of two measurement orientations.

The vectors Yx, Yy and Yz simply contain the x, y, and z components of the apparent gravitational field Gp 
for the two orientations. The importance of these vectors will become clearer when the mathematics of 
least squares optimization is presented.

Table 1. Optimum orientations for two measurements

Orientation 0 Orientation 1

Minimum separation: 1.155 g 

θ 0[ ] 35deg–≈

φ 0[ ] 45deg≈

Gp 0[ ]
35– °( )sin–

35– °( ) 45°( )sincos

35– °( ) 45°( )coscos 
 
 
 
 

=

θ 1[ ] 35deg≈

φ 1[ ] 135deg–≈

Gp 1[ ]
35°( )sin–

35°( ) 135°–( )sincos

35°( ) 135°–( )coscos 
 
 
 
 

=

Yx
35– °( )sin–

35°( )sin– 
 
 

= Yy
35– °( ) 45°( )sincos

35°( ) 135°–( )sincos 
 
 

= Yz
35– °( ) 45°( )coscos

35°( ) 135°–( )coscos 
 
 

=
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5.2 Three measurement orientations
The geometry which maximizes the separation of the gravitational field vectors for three measurement 
orientations places them at the vertices of an equilateral triangle.

The optimum orientation of this triangle, determined by a brute force optimization algorithm to maximize 
the minimum separation of measurements in any channel, is shown in Figure 3 and Table 2. Angles are 
again approximated to the nearest integer degree. The minimum separation between any two 
measurements in the x, y or z channels is 0.707 g.

Figure 3. Optimum orientations for three measurements

Table 2. Optimum orientations for three measurements

Orientation 0 Orientation 1
Orientation 2

θ 0[ ] 0deg≈

φ 0[ ] 45deg≈

G 0[ ]
0°( )sin–

0°( ) 45°( )sincos

0°( ) 45°( )coscos 
 
 
 
 

=

θ 1[ ] 45deg–≈

φ 1[ ] 180deg≈

Gp 1[ ]
45– °( )sin–

45– °( ) 180°( )sincos

45– °( ) 180°( )coscos 
 
 
 
 

=

θ 2[ ] 45deg≈

φ 2[ ] 90deg≈

Gp 2[ ]
45°( )sin–

45°( ) 90– °( )sincos

45°( ) 90– °( )coscos 
 
 
 
 

=
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5.3 Four measurement orientations
The geometry which maximizes the separation of the gravitational field vectors for four measurement 
orientations places them at the vertices of a regular tetrahedron.

The output of the brute force optimization algorithm, which orients the tetrahedron to maximize the 
minimum separation of measurements in any channel, is shown in Figure 4 and Table 3. The minimum 
separation between any two measurements is 0.330 g.

Figure 4. Optimum orientations for four measurements

Minimum separation: 0.707 g 

Table 2. Optimum orientations for three measurements (Continued)

Yx

0°( )sin–

45– °( )sin–

45°( )sin– 
 
 
 
 

= Yy

0°( )cos 45°( )sin

45– °( ) 180°( )sincos

45°( ) 90°–( )sincos 
 
 
 
 

= Yz

0°( )cos 45°( )cos

45– °( ) 180°( )coscos

45°( ) 90°–( )coscos 
 
 
 
 

=
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Table 3. Optimum orientations for four measurements

Orientation 0 Orientation 1 Orientation 2

Orientation 3

Minimum separation: 0.330 g 

θ 0[ ] 39deg≈

φ 0[ ] 158– deg≈

G 0[ ]
39°( )sin–

39°( ) 158– °( )sincos

39°( ) 158– °( )coscos 
 
 
 
 

=

θ 1[ ] 66deg–≈

φ 1[ ] 164deg≈

Gp 1[ ]
66– °( )sin–

66– °( ) 164°( )sincos

66– °( ) 164°( )coscos 
 
 
 
 

=

θ 2[ ] 18deg≈

φ 2[ ] 66deg≈

Gp 2[ ]
18°( )sin–

18°( ) 66°( )sincos

18°( ) 66°( )coscos 
 
 
 
 

=

θ 3[ ] 1– deg≈

φ 3[ ] 44– deg≈

G 3[ ]
1– °( )sin–

1– °( ) 44– °( )sincos

1– °( ) 44– °( )coscos 
 
 
 
 

=

Yx

θ 39°( )sin–

66– °( )sin–

18°( )sin–

θ 1– °( )sin– 
 
 
 
 
 
 

= Yy

39°( )cos 158– °( )sin

66– °( ) 164°( )sincos

18°( ) 66°( )sincos

1– °( ) 44– °( )sincos 
 
 
 
 
 

= Yz

39°( )cos 158– °( )cos

66– °( ) 164°( )coscos

18°( ) 66°( )coscos

1– °( ) 44– °( )coscos 
 
 
 
 
 

=
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5.4 Six measurement orientations
The geometry which maximizes the separation of the gravitational field vectors for six measurement 
orientations places them at the vertices of a regular octahedron.

The output of the brute force optimization algorithm, which orients the octahedron to maximize the 
minimum separation of measurements in any channel, is shown in Figure 5 and Table 4. The minimum 
separation between any two measurements is 0.225 g.

Figure 5. Optimum orientations for six measurements
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Table 4. Optimum orientations for six measurements

Orientation 0 Orientation 1 Orientation 2

Orientation 3 Orientation 4 Orientation 5

Minimum separation: 0.225 g 

θ 0[ ] 6deg≈

φ 0[ ] 55– deg≈

G 0[ ]
6°( )sin–

6°( ) 55– °( )sincos

6°( ) 55– °( )coscos 
 
 
 
 

=

θ 1[ ] 6deg–≈

φ 1[ ] 125deg≈

Gp 1[ ]
6– °( )sin–

6– °( ) 125°( )sincos

6– °( ) 125°( )coscos 
 
 
 
 

=

θ 2[ ] 20deg≈

φ 2[ ] 147– deg≈

Gp 2[ ]
20°( )sin–

20°( ) 147– °( )sincos

20°( ) 147– °( )coscos 
 
 
 
 

=

θ 3[ ] 20– deg≈

φ 3[ ] 33deg≈

G 3[ ]
20– °( )sin–

20– °( ) 33°( )sincos

20– °( ) 33°( )coscos 
 
 
 
 

=

θ 4[ ] 69deg–≈

φ 4[ ] 128– deg≈

Gp 4[ ]
69– °( )sin–

69– °( ) 128– °( )sincos

69– °( ) 128– °( )coscos 
 
 
 
 

=

θ 5[ ] 69deg≈

φ 5[ ] 52deg≈

Gp 5[ ]
69°( )sin–

69°( ) 52°( )sincos

69°( ) 52°( )coscos 
 
 
 
 

=

Yx

6°( )sin–

6– °( )sin–

20°( )sin–

20– °( )sin–

69– °( )sin–

69°( )sin– 
 
 
 
 
 
 
 
 

= Yy

6°( )cos 55– °( )sin

6– °( ) 125°( )sincos

20°( ) 147– °( )sincos

20– °( ) 33°( )sincos

69– °( ) 128– °( )sincos

69°( ) 52°( )sincos 
 
 
 
 
 
 
 
 
 

= Yz

6°( )cos 55– °( )cos

6– °( ) 125°( )coscos

20°( ) 147– °( )coscos

20– °( ) 33°( )coscos

69– °( ) 128– °( )coscos

69°( ) 52°( )coscos 
 
 
 
 
 
 
 
 
 

=
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5.5 Eight measurement orientations
The geometry which maximizes the separation of the gravitational field vectors for eight measurement 
orientations places them at the vertices of a cube.

The output of the brute force optimization algorithm, which orients the cube to maximize the minimum 
separation of measurements in any channel, is shown in Figure 6 and Table 5. The minimum separation 
between any two measurements is 0.188 g.

Figure 6. Optimum orientations for eight measurements
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Table 5. Optimum orientations for eight measurements

Orientation 0 Orientation 1 Orientation 2

Orientation 3 Orientation 4 Orientation 5

Orientation 6 Orientation 7

Minimum separation: 0.188 g 

θ 0[ ] 35– deg≈

φ 0[ ] 45– deg≈

G 0[ ]
35– °( )sin–

35– °( ) 45– °( )sincos

35– °( ) 45– °( )coscos 
 
 
 
 

=

θ 1[ ] 73deg–≈

φ 1[ ] 161deg≈

Gp 1[ ]
73– °( )sin–

73– °( ) 161°( )sincos

73– °( ) 161°( )coscos 
 
 
 
 

=

θ 2[ ] 5deg≈

φ 2[ ] 17deg≈

Gp 2[ ]
5°( )sin–

5°( ) 17°( )sincos

5°( ) 17°( )coscos 
 
 
 
 

=

θ 3[ ] 16– deg≈

φ 3[ ] 84deg≈

G 3[ ]
16– °( )sin–

16– °( ) 84°( )sincos

16– °( ) 84°( )coscos 
 
 
 
 

=

θ 4[ ] 16deg≈

φ 4[ ] 96– deg≈

Gp 4[ ]
16°( )sin–

16°( ) 96– °( )sincos

16°( ) 96– °( )coscos 
 
 
 
 

=

θ 5[ ] 5– deg≈

φ 5[ ] 16– 3deg≈

Gp 5[ ]
5– °( )sin–

5– °( ) 16– 3°( )sincos

5– °( ) 16– 3°( )coscos 
 
 
 
 

=

θ 6[ ] 73deg≈

φ 6[ ] 18– deg≈

G 6[ ]
73°( )sin–

73°( ) 18– °( )sincos

73°( ) 18– °( )coscos 
 
 
 
 

=

θ 7[ ] 35deg≈

φ 7[ ] 135deg≈

Gp 7[ ]
35°( )sin–

35°( ) 135°( )sincos

35°( ) 135°( )coscos 
 
 
 
 

=

Yx

35– °( )sin–

73– °( )sin–

5°( )sin–

16– °( )sin–

16°( )sin–

5– °( )sin–

73°( )sin–

35°( )sin– 
 
 
 
 
 
 
 
 
 
 
 
 

= Yy

35– °( )cos 45– °( )sin

73– °( ) 161°( )sincos

5°( ) 17°( )sincos

16– °( ) 84°( )sincos

16°( ) 96– °( )sincos

5°–( ) 163– °( )sincos

73°( ) 18– °( )sincos

35°( )cos 135°( )sin 
 
 
 
 
 
 
 
 
 
 
 
 

= Yz

35– °( )cos 45– °( )cos

73– °( ) 161°( )coscos

5°( ) 17°( )coscos

16– °( ) 84°( )coscos

16°( ) 96– °( )coscos

5°–( ) 163– °( )coscos

73°( ) 18– °( )coscos

35°( )cos 135°( )cos 
 
 
 
 
 
 
 
 
 
 
 
 

=
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5.6 Distribution of measurements 
Figure 7 to Figure 9 shows the distribution of measurements in the x, y, and z channels respectively for 2, 
3, 4, 6 and 8 orientations. The measurements are maximally spread within the constraint that the magnitude 
of the measurement acceleration must equal g.

Figure 7. Distribution of x axis measurements for 2, 3, 4, 6 and 8 orientations

Figure 8. Distribution of y axis measurements for 2, 3, 4, 6 and 8 orientations
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Figure 9. Distribution of z axis measurements for 2, 3, 4, 6 and 8 orientations

The next section develops the mathematics of optimum least squares estimation which is then combined 
with the optimum orientations defined in this section to fit increasingly sophisticated calibration models.
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6 Linear Least Squares Optimization
The general linear model relating the dependent variable y to the N inputs x0 to xN-1 through N coefficients 
β0 to βN-1 is:

Eqn. 20

The N model parameters β0 to βN-1 are determined from M measurements labeled by i = 0 to i = M - 1 
where M must be equal to or greater than N. Equation 20 can then be written in vector form for all M 
measurements as:

Eqn. 21

The vector Y of the dependent variables is defined as:

Eqn. 22

The matrix X of measurements of the independent variables is defined as:

Eqn. 23

The solution vector of the N model parameters β is defined as:

Eqn. 24

Equation 21 can then be written as:

Eqn. 25

y β0x0 β1x1 β2x2 ... βN 1– xN 1–+ + + +=

y 0[ ]
y 1[ ]

...

y M 1–[ ] 
 
 
 
 
  x0 0[ ] x1 0[ ] ... xN 1– 0[ ]

x0 1[ ] x1 1[ ] ... xN 1– 1[ ]

... ... ... ...

x0 M 1–[ ] x1 M 1–[ ] ... xN 1– M 1–[ ] 
 
 
 
 
 
  β0

β1

...

βN 1– 
 
 
 
 
 
 

=

Y

y 0[ ]
y 1[ ]

...

y M 1–[ ] 
 
 
 
 
 

=

X

x0 0[ ] x1 0[ ] ... xN 1– 0[ ]

x0 1[ ] x1 1[ ] ... xN 1– 1[ ]

... ... ... ...

x0 M 1–[ ] x1 M 1–[ ] ... xN 1– M 1–[ ] 
 
 
 
 
 
 

=

β

β0

β1

...

βN 1– 
 
 
 
 
 
 

=

Y Xβ=
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Equation 25 will not, in general, permit an exact fit to all M measurements for M > N. If a vector r of 
residuals to the fit is defined as:

Eqn. 26

then the optimal least squares fit for the solution vector β is that which minimizes the performance function 
P defined as the modulus squared of the residuals vector:

Eqn. 27

The optimal solution vector β occurs at the global minimum of the performance function P where, to first 
order, P is stationary for arbitrary small perturbations δβ about the optimum solution vector β:

Eqn. 28

Substituting Equation 27 into Equation 28 and ignoring second order terms gives:

Eqn. 29

Eqn. 30

Eqn. 31

Since δβTXTY and δβTXTXβ are scalars, their values are unchanged by the transpose operation and 
Equation 31 can be rewritten as:

 Eqn. 32

Eqn. 33

Eqn. 34

Equation 34 is commonly referred to as the Normal Equations for least squares optimization.

The next two sections extend the calibration model to a general linear model and then to include a cubic 
nonlinearity component. These are then solved in worked examples using the framework developed in the 
previous two sections.

r Y Xβ–

r 0[ ]
r 1[ ]

...

r M 1–[ ] 
 
 
 
 
  y 0[ ]

y 1[ ]
...

y M 1–[ ] 
 
 
 
 
  x0 0[ ] x1 0[ ] ... xN 1– 0[ ]

x0 1[ ] x1 1[ ] ... xN 1– 1[ ]

... ... ... ...

x0 M 1–[ ] x1 M 1–[ ] ... xN 1– M 1–[ ] 
 
 
 
 
 
 
 

–= = =

β0

β1

...

βN 1– 
 
 
 
 
 
 
 

P r 2 Y Xβ–
2 rTr Y Xβ–( )T Y Xβ–( )== = =

δβ( )T∇P P β δβ+( ) P β( ) 0=–=

Y X β δβ+( )–( )T Y X β δβ+( )–( ) Y Xβ–( )T Y Xβ–( )– 0=

 Y–
TXδβ Xβ( )+

T
Xδβ Xδβ( )T Y Xβ–( ) 0=–

 Y–
TXδβ Xβ( )+

T
Xδβ δβTXTY δβTXTXβ 0=+–

 Y–
TX βT

+ XTX( )δβ 0 for all δβ=

   βTXTX YTX XTXβ XTY= =

   β XTX( )
1–
XTY=
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7 Final Product 12 Parameter Calibration
The most general linear calibration of the accelerometer fits a total of 12 parameters. The recalibrated 
accelerometer output G12 is defined in terms of the factory calibration Gf by:

Eqn. 35

The gain matrix W now has nine independent elements and therefore extends the factory calibration model 
by including all possible cross-axis interactions and any rotation of the sensor package on the circuit board. 
The 12 calibration parameters are calculated in order to best approximate the applied gravitational field 
resulting from the circuit board orientation.

The i-th measurement at orientation angles θ [i] and φ[i] can be written as:

Eqn. 36

Equation 36 conveniently decomposes into three independent equations for the four calibration parameters 
in each of the three accelerometer channels.

Eqn. 37

The residuals for the i-th measurement are then:

Eqn. 38

G12

G12x

G12y

G12z 
 
 
 
 

WGf V
Wxx Wxy Wxz

Wyx Wyy Wyz

Wzx Wzy Wzz 
 
 
 
  Gfx

Gfy

Gfz 
 
 
 
  Vx

Vy

Vz 
 
 
 
 

+=+= =

G12x i[ ]

G12y i[ ]

G12z i[ ] 
 
 
 
  Wxx Wxy Wxz

Wyx Wyy Wyz

Wzx Wzy Wzz 
 
 
 
  Gfx i[ ]

Gfy i[ ]

Gfz i[ ] 
 
 
 
  Vx

Vy

Vz 
 
 
 
  θ i[ ]sin–

θ i[ ] φ i[ ]sincos

θ i[ ] φ i[ ]coscos 
 
 
 
 

≈+=

WxxGfx i[ ] WxyGfy i[ ] WxzGfz i[ ] Vx θ i[ ]sin–=+ + +

WyxGfx i[ ] WyyGfy i[ ] WyzGfz i[ ] Vy θ i[ ] φ i[ ]sincos=+ + +

WzxGfx i[ ] WzyGfy i[ ] WzzGfz i[ ] Vz θ i[ ] φ i[ ]coscos=+ + +

rx i[ ] θsin–= i[ ] W– xxGfx i[ ] WxyGfy i[ ] WxzGfz i[ ] Vx–––

ry i[ ] θ i[ ] φ i[ ]sincos= W– yxGfx i[ ] WyyGfy i[ ] WyzGfz i[ ] Vy–––

rz i[ ] θ i[ ] φ i[ ]coscos= W– zxGfx i[ ] WzyGfy i[ ] WzzGfz i[ ] Vz–––
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The x component of Equation 38 can be written as:

Eqn. 39

If M measurements are used for the 12-element calibration then Equation 39 can be written in the form:

Eqn. 40

Equation 40 can be written as:

Eqn. 41

with the following matrix definitions.

X is the matrix of M accelerometer measurements defined as:

Eqn. 42

The vector rx is the array of M residuals for the x-channel calibration fit:

Eqn. 43

rx i[ ] θsin–= i[ ] Gfx i[ ]  Gfy i[ ]  Gfz i[ ]  1( )

Wxx

Wxy

Wxz

Vx 
 
 
 
 
 
 
 

–

rx 0[ ]

rx 1[ ]

...

rx M 1–[ ] 
 
 
 
 
 
 
 

θsin– 0[ ]
θsin– 1[ ]

...

θsin– M 1–[ ] 
 
 
 
 
  Gfx 0[ ] Gfy 0[ ] Gfz 0[ ] 1

Gfx 1[ ] Gfy 1[ ] Gfz 1[ ] 1

... ... ... ...

Gfx M 1–[ ] Gfy M 1–[ ] Gfz M 1–[ ] 1 
 
 
 
 
 
 
 

–=

Wxx

Wxy

Wxz

Vx 
 
 
 
 
 
 
 

rx Yx Xβx–=

X

Gfx 0[ ] Gfy 0[ ] Gfz 0[ ] 1

Gfx 1[ ] Gfy 1[ ] Gfz 1[ ] 1

... ... ... ...

Gfx M 1–[ ] Gfy M 1–[ ] Gfz M 1–[ ] 1 
 
 
 
 
 
 
 

=

rx

rx 0[ ]

rx 1[ ]

...

rx M 1–[ ] 
 
 
 
 
 
 
 

=
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Yx is the vector of the true x components of the gravitational field for the M measurement orientations:

Eqn. 44

βx is the solution vector for four of the calibration parameters:

Eqn. 45

Using Equation 34, the optimum least squares solution for βx is:

Eqn. 46

Similarly, the optimum least squares solution for the remaining calibration parameters is:

Eqn. 47

Eqn. 48

For this particular calibration model, the measurement matrix X is common to all three of Equations 46 to 
48. 

To apply Equations 46 to 48, it is simply necessary to decide how many measurement orientations to use 
which in turn determines the vectors Yx, Yy and Yz. The minimum number of measurement orientations M 

Yx

θsin– 0[ ]
θsin– 1[ ]

...

θsin– M 1–[ ] 
 
 
 
 
 

=

βx

Wxx

Wxy

Wxz

Vx 
 
 
 
 
 
 
 

=

βx

Wxx

Wxy

Wxz

Vx 
 
 
 
 
 
 
 

XTX( )
1–
XTYx XTX( )

1–
XT

θsin– 0[ ]
θsin– 1[ ]

...

θsin– M 1–[ ] 
 
 
 
 
 

== =

βy

Wyx

Wyy

Wyz

Vy 
 
 
 
 
 
 
 

XTX( )
1–
XTYy XTX( )

1–
XT

θ 0[ ] φ 0[ ]sincos

θ 1[ ] φsincos 1[ ]
...

θ M 1–[ ] φ M 1–[ ]sincos 
 
 
 
 
 
 

== =

βz

Wzx

Wzy

Wzz

Vz 
 
 
 
 
 
 
 

XTX( )
1–
XTYz XTX( )

1–
XT

θ 0[ ] φ 0[ ]coscos

θ 1[ ] φ 1[ ]coscos

...

θ M 1–[ ] φ M 1–[ ]coscos 
 
 
 
 
 
 

== =
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to solve for the 12 parameters of this model is 4 although more measurements may give a more robust 
calibration.

Worked Example 3

An MMA8451 production circuit board was successively placed in the four orientations defined by the 
tetrahedron of Figure 4 and Table 3 and the factory calibrated output Gf in bits and g was recorded for each 
channel and each orientation.

Substituting the vectors Yx, Yy and Yz from Table 4 into Equations 46 to 48 gives:

Eqn. 49

Eqn. 50

Eqn. 51

The factory calibrated measurements output from the accelerometer in bit counts and g at the four 
orientations were measured to be:

Eqn. 52

Wxx

Wxy

Wxz

Vx 
 
 
 
 
 
 
 

XTX( )
1–

XT
39°( )sin–

66– °( )sin–

18°( )sin–

1°–( )sin– 
 
 
 
 
 

=

Wyx

Wyy

Wyz

Vy 
 
 
 
 
 
 
 

XTX( )
1–

XT
39°( ) 158°–( )sincos

66°–( ) 164°( )sincos

18°( ) 66°( )sincos

1°–( ) 44°–( )sincos 
 
 
 
 
 

=

Wzx

Wzy

Wzz

Vz 
 
 
 
 
 
 
 

XTX( )
1–
XT

39°( ) 158°–( )coscos

66°–( ) 164°( )coscos

18°( ) 66°( )coscos

1°–( ) 44°–( )coscos 
 
 
 
 
 

=

Gf 0[ ]
2434.354–

977.106–

2937.402– 
 
 
 
 

bits= Gf 1[ ]
3783.543

397.825

1485.275– 
 
 
 
 

bits= Gf 2[ ]
1009.383–

3574.526

1527.156 
 
 
 
 

bits= Gf 3[ ]
126.391

2745.795–

2844.153 
 
 
 
 

bits=

Gf 0[ ]
0.5943247–

0.2385511–

0.7171391– 
 
 
 
 

g= Gf 1[ ]
0.923716

0.0971252

0.362616– 
 
 
 
 

g= Gf 2[ ]
0.2464314–

0.8726869

0.3728409 
 
 
 
 

g= Gf 3[ ]
0.0308571

0.6703601–

0.6943732 
 
 
 
 

g=
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The measurement matrix X in units of g is then:

Eqn. 53

Using Equations 46 to 48, the solution vectors are:

Eqn. 54

Eqn. 55

Eqn. 56

The accelerometer output G12 recalibrated with a 12-element model is then given by:

Eqn. 57

In this example, the number of measurements (12 results from 3 channels in 4 circuit board orientations) 
equals the number of model parameters to be fitted and the performance function of squared residuals will 
be zero. 

Eqn. 58

X

0.5943247– 0.2385511– 0.7171391– 1

0.923716 0.0971252 0.362616– 1

0.2464314– 0.8726869 0.3728409 1

0.0308571 0.6703601– 0.6943732 1 
 
 
 
 
 

=

Wxx

Wxy

Wxz

Vx 
 
 
 
 
 
 
 

1.02354
0.02844–
0.00383–
0.03054– 

 
 
 
 
 
 

=

Wyx

Wyy

Wyz

Vy 
 
 
 
 
 
 
 

0.03721
1.02203
0.01036
0.01777– 

 
 
 
 
 
 

=

Wzx

Wzy

Wzz

Vz 
 
 
 
 
 
 
 

0.02188–
0.00511–

1.02816
0.00255 

 
 
 
 
 
 

=

G12x

G12y

G12z 
 
 
 
  1.02354 0.02844– 0.00383–

0.03721 1.02203 0.01036

0.02188– 0.00511– 1.02816 
 
 
 
  Gfx

Gfy

Gfz 
 
 
 
  0.03054–

0.01777–

0.00255 
 
 
 
 

+=

Px Yx Xβx–( )T Yx Xβx–( ) 0== Py Yy Xβy–( )T Yy Xβy–( ) 0== Pz Yz Xβz–( )T Yz Xβz–( ) 0==
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Worked Example 4

An MMA8451 production circuit board was successively placed in the six orientations defined by the 
octahedron of Figure 5 and Table 4 and the factory calibrated output Gf was recorded for each channel and 
each orientation.

Substituting the vectors Yx, Yy and Yz from Table 4 into Equations 46 to 48 gives:

Eqn. 59

Eqn. 60

Eqn. 61

Wxx

Wxy

Wxz

Vx 
 
 
 
 
 
 

XTX( )
1–
XT

6°( )sin–

6°–( )sin–

20°( )sin–

20°–( )sin–

69°–( )sin–

69°( )sin– 
 
 
 
 
 
 
 
 

=

Wyx

Wyy

Wyz

Vy 
 
 
 
 
 
 
 

XTX( )
1–

XT

6°( ) 55°–( )sincos

6°–( ) 125°( )sincos

20°( ) 147°–( )sincos

20°–( ) 33°( )sincos

69°–( ) 128°–( )sincos

69°( ) 52°( )sincos 
 
 
 
 
 
 
 
 

=

Wzx

Wzy

Wzz

Vz 
 
 
 
 
 
 
 

XTX( )
1–

XT

6°( ) 55°–( )coscos

6°–( ) 125°( )coscos

20°( ) 147°–( )coscos

20°–( ) 33°( )coscos

69°–( ) 128°–( )coscos

69°( ) 52°( )coscos 
 
 
 
 
 
 
 
 

=
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The factory calibrated measurements output from the accelerometer in bit counts and g at the four 
orientations were measured to be:

The measurement matrix in units of g is then:

Eqn. 62

Computations of Equations 59 to 61 gives the calibration parameters to be:

Eqn. 63

Gf 0[ ]
378.804–

3204.493–

2235.182 
 
 
 
 

bits= Gf 1[ ]
648.067

3341.771

2264.316– 
 
 
 
 

bits= Gf 2[ ]
1298.636–

1889.573–

3191.104– 
 
 
 
 

bits=

Gf 3[ ]
1523.352

2012.605

3133.065 
 
 
 
 

bits= Gf 4[ ]
3815.935

1148.782–

817.115– 
 
 
 
 

bits= Gf 5[ ]
3624.643–

1324.928

811.351 
 
 
 
 

bits=

Gf 0[ ]
0.092481–

0.782347–

0.545699 
 
 
 
 

g= Gf 1[ ]
0.158219

0.815862

0.552812– 
 
 
 
 

g= Gf 2[ ]
0.317050–

0.461321–

0.779078– 
 
 
 
 

g=

Gf 3[ ]
0.371912

0.491359

0.764908 
 
 
 
 

g= Gf 4[ ]
0.931625

0.280464–

0.199491– 
 
 
 
 

g= Gf 5[ ]
0.884923–

0.323469

0.198084 
 
 
 
 

g=

X

0.092481– 0.782347– 0.545699 1

0.158219 0.815862 0.552812– 1

0.317050– 0.461321– 0.779078– 1

0.371912 0.491359 0.764908 1

0.931625 0.280464– 0.199491– 1

0.884923– 0.323469 0.198084 1 
 
 
 
 
 
 
 
 

=

Wxx

Wxy

Wxz

Vx 
 
 
 
 
 
 
 

1.01996

0.02633–

0.00415

0.02796– 
 
 
 
 
 

=
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Eqn. 64

Eqn. 65

In this example, there are four model parameters per channel but six orientations so the fit error will not 
therefore, in general, be zero.

Eqn. 66

= 96.95 x 10-6 = 45.89 x 10-6 = 44.07 x 10-6

Wyx

Wyy

Wyz

Vy 
 
 
 
 
 
 
 

0.03330

1.02498

0.01562

0.01907– 
 
 
 
 
 

=

Wzx

Wzy

Wzz

Vz 
 
 
 
 
 
 
 

0.01821–

0.00264–

1.03058

0.00445 
 
 
 
 
 

=

Px Yx Xβx–( )T Yx Xβx–( )= Py Yy Xβy–( )T Yy Xβy–( )= Pz Yz Xβz–( )T Yz Xβz–( )=
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8 Including Temperature Dependence
Up to this point, it has been implicitly assumed that the accelerometer will be used at the same temperature 
as the final calibration so that temperature dependence can be ignored. However, the recalibration 
approach can be very simply extended to include temperature dependence by performing the recalibration 
at two or more different temperatures.

If the 12 element recalibration model of Equation 35 is computed from measurements at the two 
temperatures T1 and T2 then the calibration parameters at any other temperature T can be approximated 
using a linear interpolation as:

Eqn. 67

Eqn. 68

The calibration parameters for both temperatures would now be stored in the final product along with the 
temperatures T1 and T2. A temperature sensor is required to provide the current temperature T.

The two calibration temperatures T1 and T2 should be well separated and close to the lower and upper 
expected operating temperatures. If the temperatures are too close together then the estimate of the 
gradient of the calibration curve will become susceptible to error as a result of measurement noise.

A three temperature calibration may be suitable if the product has a typical operating temperature (perhaps 
room temperature) but must remain in good calibration over a wide range of temperature (perhaps from 
-40°C to +85°C). In this case, T1 might be -40°C, T2 + 20°C and T3 + 85°C.

One approach for the interpolation to an arbitrary temperature T is to use a piecewise linear interpolation. 
Here, the calibration at temperature T is interpolated (using Equations 67 and 68) between the calibration 
at temperatures T1 and T2 (if T lies between T1 and T2) or between the calibration at temperatures T2 and 
T3 (if T lies between and T3).

Alternatively, a quadratic curve could be fitted through the three points. Taking the single parameter Wxx 
as an example, its temperature dependence would be modelled by the three values α, β and γ as:

Eqn. 69

Evaluating Equation 69 at the three calibration temperatures gives:

Eqn. 70

Wxx T( ) Wxy T( ) Wxz T( )

Wyx T( ) Wyy T( ) Wyz T( )

Wzx T( ) Wzy T( ) Wzz T( ) 
 
 
 
 
 

T2 T–

T2 T1–
-------------------
 
 
 

Wxx T1( ) Wxy T1( ) Wxz T1( )

Wyx T1( ) Wyy T1( ) Wyz T1( )

Wzx T1( ) Wzy T1( ) Wzz T1( ) 
 
 
 
 
 

T T1–

T2 T1–
-------------------
 
 
 

Wxx T2( ) Wxy T2( ) Wxz T2( )

Wyx T2( ) Wyy T2( ) Wyz T2( )

Wzx T2( ) Wzy T2( ) Wzz T2( ) 
 
 
 
 
 
 

+=

Vx T( )

Vy T( )

Vz T( ) 
 
 
 
 

T2 T–

T2 T1–
----------------- 
 

Vx T1( )

Vy T1( )

Vz T1( ) 
 
 
 
 

T T1–

T2 T1–
----------------- 
 

Vx T2( )

Vy T2( )

Vz T2( ) 
 
 
 
 

+=

Wxx T( ) α βT+= γT
2

+

Wxx T1( ) α βT1+= γT1
2

+
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Eqn. 71

Eqn. 72

Equation 70 through Equation 72 can be written in matrix form as:

Eqn. 73

with solution:

Eqn. 74

Worked Example 6

The calibration parameter Wxx (the x-axis accelerometer gain term) was measured to be 0.989160 at -40oC, 
0.995040 at +20oC and 1.002223 at +85oC.The three coefficients of the temperature curve for the 
parameter Wxx are then given by:

Eqn. 75

If the temperature sensor on the PCB indicates +32°C then the value of Wxx at this temperature using the 
quadratic model is:

Eqn. 76

The calculation of the quadratic temperature coefficients (Equation 75) would be performed on the 
production line for each calibration parameter and stored in nonvolatile memory in the product. Instead of 
12 coefficients being stored for the 12 parameter model, 36 coefficients would be stored representing the 
three terms α, β and γ for each of the 12 model parameters. Equation 76 would then be computed at run 
time to compute the 12 calibration parameters at the current temperature.

Wxx T2( ) α βT2+= γT2
2

+

Wxx T3( ) α βT3+= γT3
2

+

Wxx T1( )

Wxx T2( )

Wxx T3( ) 
 
 
 
 
  1 T1 T1

  2

1 T2 T2
  2

1 T3 T3
  2

 
 
 
 
 
 
 

α
β
γ 

 
 
 
 

=

α
β
γ 

 
 
 
  1 T1 T1

  2

1 T2 T2
  2

1 T3 T3
  2

 
 
 
 
 
 
  1–

Wxx T1( )

Wxx T2( )

Wxx T3( ) 
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