
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2011. All rights reserved.

Three-dimensional (3D) graphics for embedded devices is
common in PDAs to tablets. The i.MX53 multimedia
processor offers a complete solution for the developers
developing 3D graphics applications.

This application note may be used as a startup guide to
understand the principles of 3D graphics and the new
OpenGL ES 2.0 Application Programming Interface (API).

1 Introduction
3D graphics is a broad topic. This application note presents
an overview of the 3D graphics and OpenGL ES 2.0 with its
programmable pipeline.

It also covers the 3D concepts needed for application
development along with a basic example, which a developer
can use as a template for further development.

1.1 What is OpenGL
OpenGL is a widely adopted standard for real-time computer
graphics, covering the most operating systems, and has
thousands of applications.

Document Number: AN4274
Rev. 0, 2/2011

Contents
1. Introduction .1
2. 3D Graphics Primer .3
3. EGL .7
4. What is OpenGL ES .13
5. OpenGL ES 2.0 Code Walkthrough 19
6. Developing OpenGL ES 2.0 Applications With

Microsoft Visual Studio and WinCE 6.0 23
7. Conclusion .26
8. References .26
9. Revision History .27

High-End 3D Graphics with OpenGL
ES 2.0

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

2 Freescale Semiconductor

Introduction

OpenGL allows speed and innovation by incorporating a broad set of rendering, texture mapping, special
effects, and other powerful visualization functions. Developers can leverage the power of OpenGL across
all popular desktop and workstation platforms, ensuring wide application deployment. OpenGL is very
stable, because it has been available for more than seven years on a wide variety of platforms, with a very
high standard for additions, including backward compatibility, so the existing applications do not become
obsolete.

Also OpenGL is totally portable, allowing the developers to be sure that their applications will have the
same visual result on any OpenGL API-compliant hardware, not worrying about the underlying operating
system. Additionally, it allows the new hardware innovations to be implemented by the extensions
mechanism, enabling the vendors to incorporate new features in their new products.

OpenGL is well structured with an intuitive design and logical commands. Efficient OpenGL routines
typically result in applications with fewer lines of code than those that make up programs generated using
other graphics libraries or packages. In addition, OpenGL drivers encapsulate information about the
underlying hardware, freeing the application developer from having to design for specific hardware
features.

Figure 1. The OpenGL Visualization Programming Pipeline

OpenGL routines simplify the development of graphics software, from rendering a simple geometric point,
line, or filled polygon to the creation of the most complex lighted and texture-mapped surfaces. OpenGL
gives software developers access to geometric and image primitives, display lists, modeling
transformations, lighting and texturing, anti-aliasing, blending, and many other features.

All elements of the OpenGL state, even the contents of the texture memory and the frame buffer, can be
obtained by an OpenGL application. OpenGL also supports visualization applications with 2D images
treated as types of primitives that can be manipulated just like 3D geometric objects.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 3

3D Graphics Primer

2 3D Graphics Primer
Before going into further detail with OpenGL ES 2.0 example code, the concepts and terminology related
to general 3D graphics need to be discussed. Some examples related to OpenGL ES will also be given,
wherever possible.

2.1 Triangles and Lines
Vertex is the most basic concept in OpenGL. It defines a “point” in a 3D space and has 3 coordinates, x, y,
and z, usually defined as float values. Given this, a triangle is constructed by the union of three vertices
(v1, v2, and v3). A line is constructed by the union of only two vertices.

Figure 2. OpenGL and OpenGL ES 2.0

OpenGL can draw lines, triangles and quads, while OpenGL ES 2.0 can only draw and lines.

2.2 3D Meshes
A 3D model or “Mesh” is a collection of triangles, which can be represented with an array. This is called
as the vertex array, usually in the form of a triangle strip.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

4 Freescale Semiconductor

3D Graphics Primer

Figure 3. 3D Mesh Model

The 3D mesh in Figure 3 can be created with a 3D modeling tool, such as Blender, 3D Studio Max, Maya,
and Lightwave 3D. A 3D mesh file can be exported in many formats, optimized or non-optimized. Below
is an example of how an OBJ file looks (a universal 3D mesh format).

####

#

OBJ File Generated by LightWave3D

LightWave3D OBJ Export v2.2

#

####

Object: 1

#

Vertices: 5

Points: 1

Lines: 0

Faces: 6

Materials: 1

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 5

3D Graphics Primer

#

####

o 1

Vertex list

v -0.5 -0.5 0.5

v -0.5 -0.5 -0.5

v 0.5 -0.5 0.5

v 0.5 -0.5 -0.5

v 0 0.5 0

Point/Line/Face list

f 5 2 1

f 2 3 1

f 2 4 3

f 5 4 2

f 3 5 1

f 4 5 3

End of file

This file represents a pyramid. A pyramid has 5 vertices and 6 faces (triangles). The first part is the general
information of the 3D mesh, which states the number of vertices and faces (triangles).

The next part, vertex list, is as follows:

Vertex list

v -0.5 -0.5 0.5

The “v” character stands for vertex. This line means that a vertex is constructed by the three x, y, and z
coordinates (-0.5, -0.5, 0.5).

The last part is about creating the actual triangles.

Point/Line/Face list

f 5 2 1

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

6 Freescale Semiconductor

3D Graphics Primer

The “f” character stands for “face” which actually means a triangle and the following three numbers are
the vertex indexes. This means that a “face” is constructed by three vertices (the 5th, the 2nd, and the 1st).

With all this information, any 3D model can be recreated from a “.OBJ” file. Though this file is not
optimized at all, there are several options like using the Power VR (from Imagination Technologies)
“.POD” file plug-in to export and load 3D meshes. This plug-in sorts the geometry (as triangle strips) to
optimize them and avoid vertex redundancies.

2.3 Textures
A texture is a 2D still image (such as bmp, jpeg, png, gif, and tga files). This image can be applied to a 3D
surface (a triangle), by adding a pair of coordinates (U,V) to each vertex of the 3D mesh. After this, pixels
are sampled from the image and interpolated (with the GPU) to achieve a “decal” effect on the 3D mesh.

Figure 4. Textures

In Figure 5, a jpg image (a human face) is being mapped into a 3D mesh.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 7

EGL

Figure 5. 3D Mesh Example

Texture coordinates are specified at each vertex of a given triangle. These coordinates are interpolated
using an extended Bresenham’s line algorithm. If these texture coordinates are linearly interpolated across
the screen, the result will be an affine texture mapping. This is a fast calculation, but there can be a
noticeable discontinuity between adjacent triangles when these triangles are at an angle to the plane of the
screen.

The perspective correct texturing accounts for the vertices’ positions in 3D space, rather than simply
interpolating a 2D triangle. This achieves the correct visual effect, but it is slower to calculate. Instead of
interpolating the texture coordinates directly, the coordinates are divided by their depth (relative to the
viewer), and the reciprocal of the depth value is also interpolated and used to recover the
perspective-correct coordinate. This correction makes it such that in parts of the polygon that are closer to
the viewer, the difference from pixel to pixel between texture coordinates is smaller (stretching the texture
wider). In the parts that are farther, this difference is larger (compressing the texture).

The GPU hardware implements perspective correct texturing, so, none of this has to be done by the CPU.

3 EGL
EGL handles graphics context management, surface/buffer binding, and rendering synchronization. It
enables high-performance, and accelerated mixed-mode 2D and 3D rendering, using other Khronos APIs,
such as OpenVG and OpenGL.

EGL can be implemented on multiple operating systems (embedded Linux, WinCE, and Windows) and
native window systems (such as X and Microsoft Windows). Implementations may also choose to allow
rendering into specific types of EGL surfaces via other supported native rendering APIs, such as Xlib or
GDI.

EGL provides:

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

8 Freescale Semiconductor

EGL

• Mechanisms for creating rendering surfaces (windows, pbuffers, pixmaps) onto which client APIs
can draw and share

• Methods to create and manage graphics contexts for client APIs

• Ways to synchronize drawing by client APIs as well as native platform rendering APIs

To the extent possible, EGL itself is independent of definitions and concepts specific to any native window
system or rendering API. However, there are a few places where native concepts must be mapped into
EGL-specific concepts, including the definition of the display on which graphics are drawn, and the
definition of native windows.

Figure 6. EGL

3.1 How to Initialize EGL and Create a Rendering Context

3.1.1 Displays
Most EGL calls include an EGLDisplay parameter. This represents the abstract display on which
graphics are drawn. In most environments, a display corresponds to a single physical screen.

Following are the steps required to initialize and configure EGL, and render contexts.

Step 1

The EGLConfig describes the depth of the color buffer components and the types, quantities and sizes
of the ancillary buffers for an EGLSurface. If the EGLSurface is a window, then the EGLConfig
describing it may have an associated native visual type.

Names of EGLConfig attributes are shown below. These names may be passed to eglChooseConfig
to specify required attribute properties.

static const EGLint s_configAttribs[] =

{

EGL_RED_SIZE, 5,

EGL_GREEN_SIZE, 6,

EGL_BLUE_SIZE, 5,

EGL_ALPHA_SIZE, 0,

EGL_LUMINANCE_SIZE, EGL_DONT_CARE,

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 9

EGL

EGL_SURFACE_TYPE,EGL_VG_COLORSPACE_LINEAR_BIT,

EGL_SAMPLES, 0,

EGL_NONE

 };

Attributes EGL_RED_SIZE, EGL_GREEN_SIZE, EGL_BLUE_SIZE, EGL_BLUE_SIZE, and
EGL_ALPHA_SIZE give the depth of the color in bits. EGL_SURFACE_TYPE is a mask indicating the
surface types that can be created with the corresponding EGLConfig. EGL_SAMPLES is the number of
samples per pixel.

Step 2: Initialization

Initialization must be performed once for each display, prior to calling most other EGL functions. A
display can be obtained by calling:

EGLDisplay eglGetDisplay(NativeDisplayTypedisplay_id);

The type and format of display id are implementation-specific. It describes a specific display provided by
the system EGL is running on. For example, an EGL implementation under X windows would require
display id to be an X display, while an implementation under Microsoft Windows would require display
id to be a Windows Device Context. If display id is EGL_DEFAULT_DISPLAY, a default display is
returned.

EGL may be initialized on a display by calling:

EGLBoolean eglInitialize(EGLDisplay dpy, EGLint *major, EGLint *minor);

EGL_TRUE is returned on success. Major and minor are updated with the major and minor version
numbers of the EGL implementation. Major and minor are not updated if they are specified as NULL.

EGL_FALSE is returned on failure and major and minor are not updated. An EGL_BAD_DISPLAY error
is generated if the dpy argument does not refer to a valid EGLDisplay. An EGL_NOT_INITIALIZED
error is generated if EGL cannot be initialized for a valid dpy.

For example:

egldisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);

eglInitialize(egldisplay, NULL, NULL);

assert(eglGetError() == EGL_SUCCESS);

eglBindAPI(EGL_OPENGL_API);

The function eglBindAPI() sets a given state to the “Current Rendering API,” which in this case is
OpenGL.

Step 3: Configuration

As mentioned before EGLConfig describes the format, type and size of the color buffers and ancillary
buffers for an EGLSurface. If the EGLSurface is a window then the EGLConfig describing it may
have an associated native visual type.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

10 Freescale Semiconductor

EGL

Names of EGLConfig attributes may be passed to eglChooseConfig() to specify required attribute
properties.

EGLBoolean eglChooseConfig(EGLDisplay dpy, const EGLint *attrib list,

 EGLConfig *configs, EGLint config_size,

 EGLint *num config);

eglChooseConfig(egldisplay, s_configAttribs, &eglconfig, 1, &numconfigs);

assert(eglGetError() == EGL_SUCCESS);

assert(numconfigs == 1);

Step 4: Rendering Contexts and Drawing Surfaces

EGLSurfaces

One of the purposes of EGL is to provide a way to create an OpenGL context and associate it with a
surface. EGL defines several types of drawing surfaces, collectively referred to as EGLSurfaces.

To create an on-screen rendering surface, first a native platform window should be created with attributes
corresponding to the desired EGLConfig.

Using a platform-specific type (called as NativeWindowType) referring to a handle to the native window,
the following function should be called:

EGLSurface eglCreateWindowSurface(EGLDisplay dpy,

 EGLConfig config, NativeWindowType win,

 const EGLint *attrib_list);

The function eglCreateWindowSurface creates an onscreen EGLSurface and returns a handle
to it. Any EGL rendering context created with a compatible EGLConfig can be used to render into this
surface.

Rendering Contexts

To create a Rendering Context, the following need to be called:

EGLContext eglCreateContext(EGLDisplay dpy, EGLConfig config,

 EGLContext share context,

 const EGLint *attrib_list);

If eglCreateContext succeeds, it initializes the rendering context to the initial OpenGL state and
returns a handle to it. The handle can be used to render to any compatible EGLSurface.

Currently no attributes are recognized, so attrib_list will normally be NULL or empty (first attribute
is EGL_NONE).

Step 5: Bind Context and Surfaces

To make a context current, the following should be called:

EGLBoolean eglMakeCurrent(EGLDisplay dpy,EGLSurface draw,

 EGLSurface read, EGLContext ctx);

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 11

EGL

The eglMakeCurrent function binds ctx to the current rendering thread and to the draw and read
surfaces. Note that the same EGLSurface may be specified for both draw and read. The
eglMakeCurrent function returns EGL_FALSE on failure. If draw or read are not compatible with
ctx, then an EGL_BAD_MATCH error is generated.

Implementation:

eglsurface = eglCreateWindowSurface(egldisplay, eglconfig, open("/dev/fb0",

 O_RDWR), NULL);

assert(eglGetError() == EGL_SUCCESS);

eglcontext = eglCreateContext(egldisplay, eglconfig, NULL, NULL);

assert(eglGetError() == EGL_SUCCESS);

eglMakeCurrent(egldisplay, eglsurface, eglsurface, eglcontext);

assert(eglGetError() == EGL_SUCCESS);

3.2 EGL Deinitialization
Deinitializing EGL is simple.

For example:

eglMakeCurrent(egldisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);

assert(eglGetError() == EGL_SUCCESS);

eglTerminate(egldisplay);

assert(eglGetError() == EGL_SUCCESS);

eglReleaseThread();

First, eglMakeCurrent() is called with EGL_NO_SURFACE and EGL_NO_CONTEXT.

To release resources associated with use of EGL and OpenGL on a display, the following needs to be
called:

EGLBoolean eglTerminate(EGLDisplay dpy);

Termination marks all EGL-specific resources associated with the specified display for deletion.

The function eglTerminate returns EGL_TRUE on success. If the dpy argument does not refer to a
valid EGLDisplay, EGL_FALSE is returned, and an EGL_BAD_DISPLAY error is generated.

EGL maintains a small amount of per-thread state, including the error status returned by eglGetError,
the currently bound rendering API defined by eglBindAPI, and the current contexts for each supported
client API.

To return EGL to its state at thread initialization, the following function is called:

EGLBoolean eglReleaseThread(void);

EGL_TRUE is returned on success, and the following actions are taken:

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

12 Freescale Semiconductor

EGL

• For each client API supported by EGL, if there is a currently bound context, that context is released.
This is equivalent to calling eglMakeCurrent with ctx set to EGL_NO_CONTEXT and both
draw and read set to EGL_NO_SURFACE.

• The current rendering API is reset to its value at thread initialization.

• Any additional implementation-dependent per-thread state maintained by EGL is marked for
deletion as soon as possible.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 13

What is OpenGL ES

4 What is OpenGL ES
OpenGL ES is an application programming interface (API) for advanced 3D graphics targeted at handheld
and embedded devices such as the i.MX53 Freescale Multimedia Processor.

OpenGL ES is a subset of desktop OpenGL, creating a flexible and powerful low-level interface between
software and graphics acceleration. OpenGL ES includes profiles for floating-point and fixed-point
systems and the EGL™ specification for portably binding to native windowing systems.

The OpenGL API is very large and complex and for OpenGL ES, the goal was to create an API suitable
for constrained devices. To achieve this goal, redundancy was removed from the OpenGL API. In any case
where there was more than one way of performing the same operation, the most useful method was taken
and the redundant techniques were removed.

Removing redundancy was an important goal, but maintaining compatibility with OpenGL was also
important. As much as possible, OpenGL ES was designed such that applications that were written to the
embedded subset of functionality in OpenGL would also run on OpenGL ES. The reason this was an
important goal as it allows developers to leverage both APIs and develop applications and tools that use
the common subset of functionality.

New features were introduced to address specific constraints of handheld and embedded devices. For
example, to reduce the power consumption and increase the performance of shaders, precision qualifiers
were introduced to the shading language.

Figure 7. OpenGL ES

The OpenGL ES specifications include the definition of several profiles. Each profile is a subset of a
version of the desktop OpenGL specification plus some additional OpenGL ES-specific extensions. The
OpenGL ES profiles are part of a wider family of OpenGL-derived application programming interfaces.
As such, the profiles share a similar processing pipeline, command structure, and the same OpenGL name
space.

There are three OpenGL ES specifications that have been released by Khronos so far, OpenGL ES 1.0,
OpenGL ES 1.1, and OpenGL ES 2.0. The OpenGL ES 1.0 and 1.1 specifications implement a fixed
function pipeline and are derived from the OpenGL 1.3 and 1.5 specifications, respectively.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

14 Freescale Semiconductor

What is OpenGL ES

Figure 8. ES 2.0 Programmable Pipeline

OpenGL ES 2.0 combines a version of the OpenGL Shading Language for programming vertex and
fragment shaders that have been adapted for embedded platforms. The streamlined API from OpenGL ES
1.1 has removed any fixed functionality that can be easily replaced by shader programs, to minimize the
cost and power consumption of advanced programmable graphics subsystems. Figure 9 shows how the
programmable graphics pipeline works.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 15

What is OpenGL ES

Figure 9. Programmable Graphics Pipeline

4.1 The Vertex Shader
It is a general-purpose programmable method for operating on vertices. Vertex shaders can be used for
traditional vertex-based operations, such as, transforming the position by a matrix, computing the lighting
equation to generate a per-vertex color, and generating or transforming texture coordinates.

A vertex shader has the following inputs:

• Attributes: Consist in per-vertex data using vertex arrays.

• Uniforms: Constant data used by the vertex shader.

• Samplers: Represents textures used by the vertex shader, these are optional.

• Shader program: The actual source code of the shader, contains the instructions and operations that
will be performed on the vertex.

4.1.1 Assemble Geometry
A primitive is a geometric object that can be drawn using appropriate drawing commands in OpenGL ES
2.0, as mentioned in the previous section. These drawing commands specify a set of vertex attributes that
describes the primitive's geometry and a primitive type (triangles and lines). Each vertex is described with

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

16 Freescale Semiconductor

What is OpenGL ES

a set of vertex attributes. These vertex attributes contain information that the vertex shader uses to calculate
a position and other information that can be passed to the fragment shader such that its color and texture
coordinates.

The outputs of the vertex shader are called varying variables. In the primitive rasterization stage, the
varying values are calculated for each generated fragment and are passed in as inputs to the fragment
shader. The mechanism used to generate a varying value for each fragment from the varying values
assigned to each vertex of the primitive is called interpolation (see Figure 9).

4.1.2 Rasterizer
Rasterization is the process that converts primitives, which can be points, lines, or triangles into a set of
two-dimensional fragments, which are processed by the fragment shader. These two-dimensional
fragments represent pixels that can be drawn on the screen, as shown in Figure 10.

Figure 10. Rasterization

4.2 The Fragment Shader
The fragment shader is a general-purpose method for interacting with fragments. The fragment shader
program is executed for each fragment in the rasterization stage. It has the following inputs:

• Varying variables: Outputs of the vertex shader that are generated by the rasterization unit for each
fragment using interpolation.

• Uniforms: Constant data used by the fragment shader.

• Samplers: A specific type of uniforms that represent textures used by the fragment shader.

• Shader program: Fragment shader program source code or executable that describes the operations
that will be performed on the fragment.

The fragment shader can either discard the fragment or generate a color value referred to as
gl_FragColor. The color, depth, stencil, and screen coordinate location (x, y) of screen coordinates
generated by the rasterization stage become inputs to the per-fragment operations stage of the pipeline.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 17

What is OpenGL ES

After the fragment shader, the next stage is per-fragment operations. A fragment produced by rasterization
with screen coordinates (x,y) can only modify the pixel at location (x,y) in the framebuffer, as shown in
Figure 11.

Figure 11. Fragment Shader

At the end of the per-fragment stage, either the fragment is rejected or a fragment color, depth, or stencil
value is written to the framebuffer at location (x,y) of the screen. The fragment color, depth, and stencil
values are written depending on whether the appropriate write masks were enabled.

4.2.1 Compiling and Using the Shader
Compiling is done after understanding the basic elements of a shader and defining a source code for each
shader (vertex and fragment). A series of steps are required in order to first create the objects, compile and
use the shaders (see Figure 12).

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

18 Freescale Semiconductor

What is OpenGL ES

Figure 12. Shader Compiling Process

The shader object is created by using glCreateShader, which creates a new shader object of the type
specified.

GLuint vertexShaderObject= glCreateShaderObject(GL_VERTEX_SHADER);

GLuint fragmentShaderObject = glCreateShaderObject(GL_FRAGMENT_SHADER);

After this, the shader code is loaded into the object by calling glShaderSource. Then the shader is
compiled by using glCompileShader.

glShaderSource(vertexShaderObject, 1, &shaderSrc, NULL);

glShaderSource(fragmentShaderObject, 1, &shaderSrc, NULL);

glCompileShader(vertexShaderobject);

glCompileShader(vertexShaderobject);

After the shader is compiled successfully, a new shader object is returned. This object has to be attached
to the program object. The program object is the final linked program. When each shader is compiled into
a shader object, they have to be attached to a program object and linked together before drawing.

GLuint programObject;

glAttachObject(programObject, vertexShaderObject);

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 19

OpenGL ES 2.0 Code Walkthrough

glAttachObject(programObject, fragmentShaderObject);

glLinkProgram(progamObject);

glUseProgramObject(programObject);

After successful linking of the program object, the program object can be finally used for the actual
rendering. To use the program object for rendering, it is bound using glUseProgram.

5 OpenGL ES 2.0 Code Walkthrough
This section covers, step by step, a simple openGL ES 2.0 example, excluding the EGL part, which was
previously covered.

Step 1

Include the necessary header files:

#include <EGL/egl.h>

#include <GLES2/GL2.h>

#include <GLES2/gl2ext.h>

Step 2

Define the vertex shader and fragment shader:

const CHAR* g_strVSProgram =

 "attribute vec4 g_vVertex; \n"

 "attribute vec4 g_vColor; \n"

 "varying vec4 g_vVSColor; \n"

 " \n"

 "void main() \n"

 "{ \n"

 " gl_Position = vec4(g_vVertex.x, g_vVertex.y, \n"

 " g_vVertex.z, g_vVertex.w); \n"

 " g_vVSColor = g_vColor; \n"

 "} \n";

const CHAR* g_strFSProgram =

 "#ifdef GL_FRAGMENT_PRECISION_HIGH \n"

 " precision highp float; \n"

 "#else \n"

 " precision mediump float; \n"

 "#endif \n"

 " \n"

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

20 Freescale Semiconductor

OpenGL ES 2.0 Code Walkthrough

 "varying vec4 g_vVSColor; \n"

 " \n"

 "void main() \n"

 "{ \n"

 " gl_FragColor = g_vVSColor; \n"

 "} \n";

Step 3

After the shader source code, the program has to be created, the shader source has to be set, and the shader
has to be compiled.

GLuint g_hShaderProgram = 0;

GLuint g_VertexLoc = 0;

GLuint g_ColorLoc = 1;

GLuint hVertexShader = glCreateShader(GL_VERTEX_SHADER);

glShaderSource(hVertexShader, 1, &g_strVSProgram, NULL);

glCompileShader(hVertexShader);

GLuint hFragmentShader = glCreateShader(GL_FRAGMENT_SHADER);

glShaderSource(hFragmentShader, 1, &g_strFSProgram, NULL);

glCompileShader(hFragmentShader);

Step 4

The errors during the compiling process should be checked.

GLint nCompileResult = 0;

glGetShaderiv(hFragmentShader, GL_COMPILE_STATUS,

 &nCompileResult);

if (!nCompileResult)

{

 CHAR Log[1024];

 GLint nLength;

 glGetShaderInfoLog(hFragmentShader, 1024, &nLength,

 Log);

 return FALSE;

 }

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 21

OpenGL ES 2.0 Code Walkthrough

Step 5

The individual shaders must be attached to the shader program.

g_hShaderProgram = glCreateProgram();

glAttachShader(g_hShaderProgram, hVertexShader);

glAttachShader(g_hShaderProgram, hFragmentShader);

Step 6

The attributes must be initialized before the linking.

glBindAttribLocation(g_hShaderProgram, g_VertexLoc,

 "g_vVertex");

glBindAttribLocation(g_hShaderProgram, g_ColorLoc,

 "g_vColor");

glLinkProgram(g_hShaderProgram);

Step 7

Then it must be checked that if the linking was a success. After that individual shaders should be deleted.

GLint nLinkResult = 0;

 glGetProgramiv(g_hShaderProgram, GL_LINK_STATUS, &nLinkResult);

 if (!nLinkResult)

 {

 CHAR Log[1024];

 GLint nLength;

 glGetProgramInfoLog(g_hShaderProgram, 1024, &nLength, Log);

 return FALSE;

 }

 glDeleteShader(hVertexShader);

 glDeleteShader(hFragmentShader);

 }

Step 8

Rendering loop, this should be an endless loop or a fixed number of frames depending on the application.
The first part consists of the vertex data of the triangles. Then the regular openGL functions are used for
clearing the screen (glClear). After the screen has been cleared, the shader program must be used with
glUseProgram.

VOID Render()

{

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

22 Freescale Semiconductor

OpenGL ES 2.0 Code Walkthrough

 FLOAT fSize = 0.5f;

 FLOAT VertexPositions[] =

 {

 0.0f, +fSize*g_fAspectRatio, 0.0f, 1.0f,

 -fSize, -fSize*g_fAspectRatio, 0.0f, 1.0f,

 +fSize, -fSize*g_fAspectRatio, 0.0f, 1.0f,

 };

FLOAT VertexColors[] = {1.0f, 0.0f, 0.0f, 1.0f,

 0.0f, 1.0f, 0.0f, 1.0f,

 0.0f, 0.0f, 1.0f, 1.0f

 };

 // Clear the backbuffer and depth-buffer

 glClearColor(0.0f, 0.0f, 0.5f, 1.0f);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Set the shader program and the texture

 glUseProgram(g_hShaderProgram);

 // Draw the colored triangle

 glVertexAttribPointer(g_VertexLoc, 4, GL_FLOAT, 0, 0, VertexPositions);

 glEnableVertexAttribArray(g_VertexLoc);

glVertexAttribPointer(g_ColorLoc, 4, GL_FLOAT, 0, 0, VertexColors);

glEnableVertexAttribArray(g_ColorLoc);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 3);

 glDisableVertexAttribArray(g_VertexLoc);

 glDisableVertexAttribArray(g_ColorLoc);

}

After everything is done, a triangle should appear (Figure 13), having three colored vertices (red, green,
blue).

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 23

Developing OpenGL ES 2.0 Applications With Microsoft Visual Studio and WinCE 6.0

Figure 13. Triangle with Three Colored Vertices

6 Developing OpenGL ES 2.0 Applications With Microsoft
Visual Studio and WinCE 6.0

Following are the steps for using Microsoft Visual Studio and WinCE 6.0. to develop OpenGL ES 2.0
Applications:

1. After installing the correct BSP, open the BSP Solution.

2. In the Solution Explorer tab, left-click on “Subprojects.”

3. Select the option “Add New Subproject.”

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

24 Freescale Semiconductor

Developing OpenGL ES 2.0 Applications With Microsoft Visual Studio and WinCE 6.0

Figure 14. Windows Embedded CE Subproject Wizard

4. In the Wizard, select “A simple Windows Embedded CE application” option.

Figure 15. Solution Explorer

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 25

Developing OpenGL ES 2.0 Applications With Microsoft Visual Studio and WinCE 6.0

5. After typing a name for the project, in the Solution Explorer tab, select the newly created project

6. Right-click on it and select “Properties” menu item.

Figure 16. Selecting Sources

7. In the "C/C++" tab, select “Include Directories.”

8. Copy/paste the directory path where the OpenGL/EGL header files are located (GL2.h, gl2ext.h,
egl.h).

Figure 17. Linking the Library

9. Select the “Link” tab.

10. In the “Additional Libraries” field, copy/paste the directory path where the OpenGL/EGL libraries
are located for the linker (amdgslldd.lib, libEGL.lib, libgsl.lib, libgsluser.lib, libGLES2.lib).

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

26 Freescale Semiconductor

Conclusion

7 Conclusion
In this applicaiton note, some of the basics have been covered needed for 3D embedded graphics
development. OpenGL ES 2.0 is the state-of-the-art and powerful 3D graphics programming. Using the
Freescale i.MX53 multimedia processor, the user can achieve intense 3D user interfaces, games, media
players and many more.

This application note by no means is a know-it-all knowledge base, it is a starting point for all of those who
want to get into the rich world of 3D graphics. To know more about 3D graphics, please consider further
reading. In Section 8, “References,” various links have been provided referring to OpenGL ES 2.0
programming knowledge base.

8 References
• Official OpenGL ES site

— http://www.khronos.org/opengles/

• OpenGL Reference Pages

— http://www.khronos.org/opengles/sdk/docs/man/

• OpenGL ES 2.0 Programming Guide

— http://opengles-book.com/

• OpenGL SL ES Specification

— http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 27

Revision History

9 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 2/2011 Initial Release.

Document Number: AN4274
Rev. 0
2/2011

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited.

© Freescale Semiconductor, Inc., 2011. All rights reserved.

	High-End 3D Graphics with OpenGL ES 2.0
	1 Introduction
	1.1 What is OpenGL
	Figure 1. The OpenGL Visualization Programming Pipeline

	2 3D Graphics Primer
	2.1 Triangles and Lines
	Figure 2. OpenGL and OpenGL ES 2.0

	2.2 3D Meshes
	Figure 3. 3D Mesh Model

	2.3 Textures
	Figure 4. Textures
	Figure 5. 3D Mesh Example

	3 EGL
	Figure 6. EGL
	3.1 How to Initialize EGL and Create a Rendering Context
	3.1.1 Displays

	3.2 EGL Deinitialization

	4 What is OpenGL ES
	Figure 7. OpenGL ES
	Figure 8. ES 2.0 Programmable Pipeline
	Figure 9. Programmable Graphics Pipeline
	4.1 The Vertex Shader
	4.1.1 Assemble Geometry
	4.1.2 Rasterizer
	Figure 10. Rasterization

	4.2 The Fragment Shader
	Figure 11. Fragment Shader
	4.2.1 Compiling and Using the Shader
	Figure 12. Shader Compiling Process

	5 OpenGL ES 2.0 Code Walkthrough
	Figure 13. Triangle with Three Colored Vertices

	6 Developing OpenGL ES 2.0 Applications With Microsoft Visual Studio and WinCE 6.0
	Figure 14. Windows Embedded CE Subproject Wizard
	Figure 15. Solution Explorer
	Figure 16. Selecting Sources
	Figure 17. Linking the Library

	7 Conclusion
	8 References
	9 Revision History
	Table 1. Document Revision History

