

© Freescale Semiconductor, Inc., 2009-2010. All rights reserved.

Freescale Semiconductor Document Number: AN4188

Application Note

RS08 Upper Memory Access

1. Introduction
The purpose of this document is to provide the RS08
programmer with the information necessary for
performing correct access to data placed in upper
memory, that is, beyond the first, directly addressable,
256 bytes.

2. RS08 Memory Map
Figure 1 displays the memory map for MC9RS08KA8,
a typical device of the RS08 family.

The memory map of the MCU is divided into the
following groups:

• Fast access RAM using tiny and short
instructions ($0000 – $000D)

• Indirect data access D[X] ($000E)

• Index register X for D[X] ($000F)

• Frequently used peripheral registers ($0010 –
$001E, $0020 – $002F)

• PAGESEL register ($001F)

• RAM ($0030 – $00BF, $0100 – $015F)

• Paging window ($00C0 – $00FF)

Contents
1. Introduction .. 1
2. RS08 Memory Map ... 1
3. RS08 Paging Scheme .. 2
4. Paged Access to Data ... 3
5. Far Access to Data .. 4
6. Cross-Page Data .. 6

RS08 Paging Scheme

RS08 Upper Memory Access Application Note
2 Freescale Semiconductor

• Other peripheral registers ($0200 – $023F)

• Non-volatile memory ($2000 – $3FFF)

Figure 1. MC9RS08KA8 Memory Map

3. RS08 Paging Scheme
The RS08 core does not inherently support memory access for data access beyond the first 256 bytes.
Therefore, a paging scheme has been implemented, that segments the full 16-Kbyte address map of the
RS08 core into 256 pages of 64 bytes each. The $0000–$00FF address range is mapped into the first four
64-byte pages.

In order to access data in a certain page, the paging window, which is located at $00C0–$00FF, must be
positioned at the desired address range within the 16-Kbyte address space. This can be achieved by
writing the page number into the page selection register (PAGESEL), which is located at $001F. As soon
as the PAGESEL register has been updated to the appropriate value, subsequent accesses to the paging
window will address the area determined by the register content.

Table 1 provides the range of pages that can be accessed through the paging window ($00C0 – $00FF) on

 Paged Access to Data

RS08 Upper Memory Access Application Note
Freescale Semiconductor 3

MC9RS08KA8.
Table 1. MC9RS08KA8 Paging Window

Page Memory Address

$00 $0000–$003F

$01 $0040–$007F

$02 $0080–$00BF

$03 $00C0–$00FF

$04 $0100–$013F

.

.

.

.

.

.

$FE $3F80–$3FBF

$FF $3FC0–$3FFF

4. Paged Access to Data
In order to exploit the RS08 paging scheme, the compiler supports paged addressing: data is accessed via
16-bits addresses, with the page number in the high byte, and the paging window offset in the low byte.

4.1. Direct Access

If a variable is being accessed directly, rather than through a pointer, the compiler will generate a paged
access if either one of the following conditions is fulfilled:

• Object has been explicitly placed in a paged segment (using a DATA_SEG / CONST_SEG pragma
with the __PAGED_SEG modifier)

• Compiler has been set up for the BANKED memory model (all data accessed as paged by default).

Listing 1 provides an example.

Listing 1: Paged access to variable my_data, of type int (BANKED memory model)

Source code:

#pragma push
#pragma DATA_SEG __PAGED_SEG MY_RAM
int my_data;
#pragma pop
void Test() {
 my_data = 0x1234;
}
Generated code:
 10: my_data = 0x1234;
0000 3e001f MOV #%HIGH_6_13(my_data),PAGESEL
0003 3e1200 MOV #18,%MAP_ADDR_6(my_data)
0006 3e3401 MOV #52,%MAP_ADDR_6(my_data:1)

Far Access to Data

RS08 Upper Memory Access Application Note
4 Freescale Semiconductor

4.2. Pointer Access

If access to the variable is performed via pointers, the compiler will generate a paged access if either one
of the following conditions applies:

• the pointer has been explicitly qualified as paged (using the __paged pointer qualifier)

• the compiler has been set up for the BANKED memory model (all data accessed as paged by
default).

Listing 2 provides an example.

Listing 2: Paged pointer access to variable my_data, of type int (BANKED memory model)

Source code:

#pragma push
#pragma DATA_SEG __PAGED_SEG MY_RAM
int my_data = 0x1234;
#pragma pop
int * __paged p = &my_data;
void Test() {
 volatile int v = *p;
}
Generated code:
 11: volatile int v = *p;
0000 3e011f MOV #%HIGH_6_13(p:1),PAGESEL
0003 4e010f LDX %MAP_ADDR_6(p:1)
0006 4e001f MOV %MAP_ADDR_6(p),PAGESEL
0009 4e0e00 MOV D[X],__OVL_Test_v
000c 2f INCX
000d 4e0e01 MOV D[X],__OVL_Test_v:1

5. Far Access to Data
If a data object is large enough to cross page boundaries, paged addressing no longer works, because with
paged access, the page selection register is only written once, for the first byte of the object. This is why
the RS08 compiler also supports far addressing: the format of the address is the same as for paged
addressing, but the page register is updated before each byte access.

Far addressing is more expensive than paged addressing, and you should refrain from using it unless
absolutely required.

5.1. Direct Access

If a variable is being accessed directly, rather than using a pointer, the compiler will generate a far access
if the object has been explicitly placed in a far segment (using a DATA_SEG / CONST_SEG pragma with
the __FAR_SEG modifier). The page selection register will be updated before each byte access.

Listing 3 provides an example.

 Far Access to Data

RS08 Upper Memory Access Application Note
Freescale Semiconductor 5

Listing 3: Far access to variable my_data, of type int (BANKED memory model)

Source code:

#pragma push
#pragma DATA_SEG _FAR_SEG MY_RAM
int my_data;
#pragma pop
void Test() {
 my_data = 0x1234;
}
Generated code:
10: my_data = 0x1234;
0000 3e001f MOV #%HIGH_6_13(my_data),PAGESEL
0003 3e1200 MOV #18,%MAP_ADDR_6(my_data)
0006 3e011f MOV #%HIGH_6_13(my_data:1),PAGESEL
0009 3e3401 MOV #52,%MAP_ADDR_6(my_data:1)

5.2. Pointer Access

If a variable is being accessed via pointers, the compiler will generate a far access if the pointer has been
explicitly qualified as far (using the __far pointer qualifier). The page selection register will be updated for
each byte to be accessed at the pointed-to memory location.

Listing 4 provides an example.

Listing 4: Far pointer access to variable my_data, of type int (BANKED memory model)

Source code:

#pragma push
#pragma DATA_SEG __FAR_SEG MY_RAM
int my_data = 0x1234;
#pragma pop
int * __far p = &my_data;
void Test() {
 volatile int v = *p;
}
Generated code:
11: volatile int v = *p;
0000 3e011f MOV #%HIGH_6_13(p:1),PAGESEL
0003 4e010f LDX %MAP_ADDR_6(p:1)
0006 4e001f MOV %MAP_ADDR_6(p),PAGESEL
0009 a602 LDA #2
000b 3e0000 MOV #__OVL_Test_v,_Y
000e bc0000 JMP %FIX16(_FAR_COPY)

5.3. Startup Code and __far Pointers

The startup code makes use of pointers when performing the zero-out and copy-down operations. If the
application has data above the 0xFF boundary, then the startup code has to use __far pointers. To enforce
this, the user has to provide option -D__STARTUP_USE_FAR_POINTERS in the command line when
compiling the startup code.

Cross-Page Data

RS08 Upper Memory Access Application Note
6 Freescale Semiconductor

6. Cross-Page Data
Paged addressing does not work if the object crosses page boundaries, because the page selection register
would have to be updated before each byte access, which is not the case with paged addressing (the
register is written only once, for the first byte of the object).

If the object spans multiple pages, you must enforce far addressing for that object, which means:

• Place the object in a __far segment (using a DATA_SEG / CONST_SEG pragma with the
__FAR_SEG modifier)

• Ensure all pointer accesses are performed with __far pointers (pointers declared with the __far
pointer qualifier).

You can tell which object, if any, crosses page boundaries, because the linker will report warning L1023
(“Object <object> spans multiple pages”) for each such occurrence.

How to Reach Us :

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Loca tions Not Lis ted :
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe , Midd le Eas t, and Africa :
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

J apan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

As ia /P acific :
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

Document Number: AN4188

21 September 2011

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. ColdFire+, Kinetis, Processor Expert, and Qorivva are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of their respective
owners. ARM is the registered trademark of ARM Limited. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© Freescale Semiconductor, Inc. 2009-2010. All rights reserved.

	1. Introduction
	2. RS08 Memory Map
	3. RS08 Paging Scheme
	4. Paged Access to Data
	5. Far Access to Data
	6. Cross-Page Data

