

Freescale Semiconductor

Application Note

Document Number: AN4053 Rev. 4, 10/2010

i.MX51 Power-Up Sequence

by Multimedia Applications Division Freescale Semiconductor, Inc. Austin, TX

This application note describes the power-up sequence that should be met for the i.MX51 processor. It also explains the timing diagrams when the Atlas AP Lite (MC13892) is used as Power Management Integrated Circuit (PMIC).

Contents

1. Power-Up Sequence	2
2. Timing Diagrams	4
3. Dependencies between Supplies	5
4. Guidelines and Limitations for Power Supplies	5
5. Revision History	6

© 2010 Freescale Semiconductor, Inc. All rights reserved.

Power-Up Sequence

1 Power-Up Sequence

Figure 1 and Figure 2 show the timing diagrams for the power-up sequence of the i.MX51.

Figure 1. Timing Diagram for the Power-Up Sequence when NVCC_NANDF_X, NVCC_PER15, and NVCC_PER17 are greater than or equal to 3.1 V

Figure 2. Timing Diagram for the Power-Up Sequence when NVCC_PER15, NVCC_PER17, and NVCC_NANDF_x are less than 3.1 V

Refer to the section, Power-Up Sequence, in the *i.MX51 Applications Processors for Consumer and Industrial Products* (IMX51CEC), for more information on the i.MX51 power-up sequence.

Timing Diagrams

2 Timing Diagrams

Figure 3 shows the timing diagram and the sequence of the power rails implemented on the i.MX51 EVK board. The timing is given by MC13982.

Figure 3. Timing Diagram for the Power-Up Sequence of the i.MX51 Using MC13982.

Table 1 and Table 2 show the power rails connected to the switching regulator and LDO (Low-Dropout Regulator) from the Atlas.

VSRTC	SW1	SW2	SW3	SW4	SWBST	VUSB
NVCC_SRTC_POW	VDDGP	VCC	VDDA	NVCC_EMI_DRAM	For LEDS	VDDA33
—	—	—	VDD_DIG_PLL_A	NVCC_NANDF_A1	—	—
—	—	—	VDD_DIG_PLL_B	NVCC_NANDF_A2	—	—
—	—	—	VREG	NVCC_NANDF_B	—	—
—	—	—	—	NVCC_NANDF_C	—	—
—	—	—	—	NVCC_EMI_DRAM	—	—
—	—	—	—	NVCC_PER3	—	—
—	—	—	—	NVCC_PER11	—	—
—	—	—	—	NVCC_PER14	—	—
—	—	—	—	NVCC_I2C	—	—
_	—	_	—	NVCC_HS4_1	—	—

Table 1. Power Rails Connected to the i.MX51

Table 2. Power Rails Connected to the i.MX51

VUSB2	VPLL	VDIG	VIOHI	VGEN2
NVCC_USBPHY	VDD_ANA_PLL_B	For Audio	NVCC_HS10	VDD_FUSE
NVCC_OSC	VDD_ANA_PLL_A	—	NVCC_HS6	NVCC_PER15

VUSB2	VPLL	VDIG	VIOHI	VGEN2
—	_	_	NVCC_HS4_2	—
—	—	—	NVCC_IPU	—
—	—	—	NVCC_PER5	—
—	—	_	NVCC_PER8	—
—	_	_	NVCC_PER9	—
—	—	—	NVCC_PER10	—
_	_	_	NVCC_PER12	_
_	_	_	NVCC_PER13	_

Table 2. Power Rail	S Connected to the	i.MX51 (continued)
---------------------	--------------------	--------------------

The VDDGP is powered at the fifth step of the PMIC sequence. The RTC module turns ON the NVCC_SRTC_POW from MC13892. The 2 ms step is given by the MC13892. The USB supply, VUSB is enabled only if a 5 V supply is available on UVBUS. The SWBST is enabled through the SPI control bit.

3 Dependencies between Supplies

Due to the nature of the design, dependencies between the supplies exist in the following cases:

- If the power supply of any of the NVCC_HSx (grouping NVCC_HS6, NVCC_HS10, NVCC_HS4_1, and NVCC_HS4_2 supplies) supplies or VREG supply is pulled down, it results in high leakage current from VCC through the supply that is pulled down.
- If the power supply of NVCC_NANDFx, NVCC_PER15 or NVCC_PER17 is pulled down when NVCC_EMI_DRAM is ON, it results in some leakage from NVCC_EMI_DRAM through the supply that is pulled down. Though this is part of the recommended power-up sequence, it is not desirable if NVCC_NANDFx is to be powered OFF for long time when NVCC_EMI_DRAM is ON.
- If the power supply of VDD_ANA_PLLx is pulled down, when VDD_DIG_PLLx is ON, it results in small leakage (couple of mA) from VDD_DIG_PLLx through VDD_ANA_PLLx. Though this occurs during the power-up sequence, it is not desirable if VDD_ANA_PLLx is to be powered OFF for long time, when VDD_DIG_PLLx is ON.
- If these supplies are not pulled down and left unconnected with high resistive path to ground or at high impedance state, the leakage is not observed. Consider the potential leakage paths when designing the board or when the power supplies are turned OFF (for example, when the device is in the suspended mode), to avoid power wastage.

4 Guidelines and Limitations for Power Supplies

If any supply (NVCC_NANDFx, NVCC_PER15, or NVCC_PER17) for UHVIO cells is greater than or equal to 3.1 V (at maximum, not nominal), then it must be powered up after NVCC_EMI_DRAM. For example, a supply of 2.9 V +/- 0.1 V is acceptable and has no restriction with respect to

Revision History

NVCC_EMI_DRAM. Violating this requirement causes reliability issues to the design circuitry as NVCC_EMI_DRAM is used as bias voltage for the UHVIO cells.

VREG supply pin is not used and it should remain floated. FASTR_ANA and FASTR_DIG supply pins are reserved for Freescale manufacturing use and should be connected to ground.

If TVE module is not used, it is recommended to tie the supplies: TVDAC_DHVDD,

NVCC_TV_BACK, and AHVDDRGB to ground. The x_back signals are feedback signals and it is recommended to connect them to ground. Comp pin should be left unconnected. Also, the TVE supplies and signals could remain floating for additional flexibility.

Consider the following points:

- Check if the sequence and voltage levels for the i.MX51 are correct, when PMICs other than the MC13892 are used to supply the i.MX51.
- Follow the recommended parameters and values for the passive components for the MC13892.
- The PMIC layout can influence the behavior of the voltage measurements.

5 Revision History

Table 3 provides a revision history for this application note.

Table 3. Document Revision History

Rev. Number	Date	Substantive Change(s)
4	10/2010	 The following changes have been made: Updated Figure 1 Updated Figure 2 Updated Section 4, "Guidelines and Limitations for Power Supplies"
3	06/2010	The following changes have been made: • Updated Section 1, "Power-Up Sequence" • Updated Figure 1
2	06/2010	Updated Figure 3 and added Figure 2.
1	05/2010	Updated voltages in Note in Section 1, "Power-Up Sequence" Removed comments in Section 3, "Dependencies between Supplies"
0	04/2010	Initial release.

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited.

© 2010 Freescale Semiconductor, Inc.

Document Number: AN4053 Rev. 4 10/2010

