
Freescale Semiconductor
Application Note

Document Number: AN4027
Rev. 0, 07/2010

Contents

Introduction . 1
1.1 Objective . 1
Initialization and optimization. 2

2.1 Program execution modes. 2
2.2 Reset configuration half word and jump address . . 2
2.3 Core and system watchdog timers 4
2.4 Memory management unit (MMU). 5
2.5 Branch target buffer (BTB) 5
2.6 Signal processing extension (SPE) 6
2.7 Flash wait states and flash page buffers 6
2.8 Setting frequency of operation. 7
2.9 Internal static random access memory initialization 8
2.10 Crossbar initialization . 9
Initialization optimization dependency 9
Summary . 11

ppendix A Initialization programs . 11

Initialization and Optimization
Program for MPC563xM
by: Mong Sim

Applications Engineer
Microcontroller Solutions Group
1 Introduction
This initialization and optimization application note is
written specifically for MPC563xM devices. The code
for this application is executed in the internal flash
memory. In the following sections, I will provide some
details to activate those features and modules described
in this application note. Please refer to the current
version of Freescale document MPC563XMRM,
MPC563XM Microcontroller Reference Manual, for a
comprehensive explanation of the individual modules.

1.1 Objective
The objective of this application note is to show the
reader how to initialize the MPC563xM and what impact
different settings would have on system performance.
For example, why might the user choose not to initialize
the MMU? How does one initialize the flash controller,
and how can the flash page buffers improve system
performance with a program executing in flash? How

1

2

3
4
A

© Freescale Semiconductor, Inc., 2010. All rights reserved.

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc56xx-mcus/ultra-reliable-mpc563xm-for-automotive-industrial-engine-management:MPC563xM?utm_medium=AN-2021

Initialization and optimization
can the user initialize the internal static random access memory (SRAM) in different program execution
modes? At the end of this application note, the reader will have gained the knowledge listed here:

• What the reset configuration half word and the different bit fields represent, and the purpose of
having a jump address immediately after the configuration half word

• How the user can enable a branch target buffer, and what the system can gain from it

• How the user can enable the signal processing engine (SPE) feature in the e200z335

• Why the MMU may or may not need to be initialized

• How the user can initialize the flash controller, and how to configure the flash page buffers to
improve system performance

• How the user can initialize the internal static random access memory in different modes of
execution

• How the user can initialize the frequency-modulated phase-locked loop

• How the user can initialize the different feature sets to improve overall system performance

2 Initialization and optimization
This application note will provide its readers several systematic initialization procedures and the
advantages and disadvantages of each; how different options would improve system performance and why
this application note chooses a low-performance option to initialize certain modules in the system; and
what role compiler optimization and software profiling plays in improving system performance. Finally,
we will combine what we have learned into a complete initialization program for the MPC563xM with
optimization based on the Dhrystone 2.0 benchmark program.

2.1 Program execution modes
Because the MPC563xM has limited SRAM and no external bus to support external SRAM, the user can
only execute an application from flash memory (this is also referred to as ROMRUN mode). Therefore,
this application note will focus on initialization and optimization programs that execute in flash memory.

2.2 Reset configuration half word and jump address
For those who are not familiar with the Automobile Power Architecture System on Chip (SoC), the
MPC563xM has a built-in boot assist module (BAM). The BAM configures the MMU (please refer to the
MPC563XM Microcontroller Reference Manual for full details) and searches the flash for the reset
configuration half word (RCHW). After the BAM locates the RCHW, it will load the four-byte RCHW
(bits 16 to 31 are clear) and apply the setting to the system. The RCHW is shown in Figure 1 and its
attributes are described below.
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor2

Initialization and optimization
Figure 1. Reset configuration half word (RCHW)

The SWT and WTE are the watchdog timer and the core watchdog timer respectively. PS0 is the port size
and is set to zero (0 = 32-bit CS0 port size and 1 = 16-bit CS0 port size). Asserting the VLE bit will enable
support for variable-length encoding.

Immediately after the RCHW is the jump address. The BAM will load this four-byte jump address after
processing the RCHW. The BAM will execute a jump command and relinquish control to the application
program.

To program the RCHW and jump address, the user must allocate eight bytes of flash space from address
0x000 to 0x007. Please see Table 1 for different boot addresses. Four bytes for the RCHW and four bytes
for the jump address in the linker file are set like this:

Example 1. Linker file

MEMORY
{

 // Internal Flash
 flash_rsvd1 : ORIGIN = 0x00000000, LENGTH = 8
 …
}

SECTIONS
{
 …

 // ROM SECTIONS
 .resetvector NOCHECKSUM :> flash_rsvd1
 …
}

Next, program this code in the initialization program file:

Example 2. RCHW and jump address

.section ".resetvector","ax"

// Reset Configuration Halfword (RCHW) :BOOTID = 0x5a
.long 0x005a0000
.long rombootcodestart

The RCHW is required only if the system is booted from flash. If the system is booted from a RAM image
via the BAM, a start address is sufficient for a BAM application (please see Freescale documents AN3953,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

5’b0 SWT WTE PS0 VLE BOOTID
W

RESET1:

1 The RCHW is in user programmed non-volatile memory. Therefore, it has no reset value.

= Unimplemented or Reserved
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor 3

Initialization and optimization
“Serial Loader Application for BAM,” AN2831, “MPC5500 Boot Assist Module,” and AN3519,
“Optimizing Performance for the MPC5500 Family,” for more details).

Table 1 shows the different flash blocks available in the different MPC563xM devices. It also shows the
flash blocks that the system can boot if a validate RCHW is detected in the first word of the allocated flash
block.

2.3 Core and system watchdog timers
The MPC563xM has two watchdog timers. The core watchdog timer is a sub-module of the e200z335
core, and the system watchdog timer is one of the modules embedded in the device. The user can disable
these two watchdogs via the RCHW register in ROMRUN and ROMRAM modes. However, if running a
RAM image via the BAM, these two watchdogs can be disabled, as shown in this code:

Table 1. Boot addresses

Address Use Block Size
MPC5632M

(768K)
MPC5633M

(1M)
MPC5634M

(1.5M)
Bank

0x0000_0000 Low
Address
Space
256 KB

01

1 System can be booted from this block.

16K Available Available Available Bank 0
Array 0

0x0000_4000 1a1 16K Available Available Available

0x0000_8000 1b 32K Available Available Available

0x0001_0000 2a1 32K Available Available Available

0x0001_8000 2b 16K Available Available Available

0x0001_C000 31 16K Available Available Available

0x0002_0000 41 64K Available Available Available

0x0003_0000 51 64K Available Available Available

0x0004_0000 Mid
Address
Space
256 KB

6 128K Not available Available Available

0x0006_0000 7 128K Not available Available Available

0x0008_0000 High
Address
Space
1.0 MB

8 128K Available Available Available Bank 1
Array 1

0x000A_0000 9 128K Available Available Available

0x000C_0000 10 128K Available Available Available

0x000E_0000 11 128K Available Available Available

0x0010_0000 12 128K Not available Not available Available Bank 1
Array 2

0x0012_0000 13 128K Not available Not available Available

0x0014_0000 14 128K Not available Not available Available

0x0016_0000 15 128K Not available Not available Available

0x00FF_C000 Shadow
Block
16 KB

S0 16K Available Available Available Bank 0
Array 0
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor4

Initialization and optimization
Example 3. Watchdog timer

//Disable Core Watchdog
li r12, 0x00
mtspr 340,r12

//Disable System Watchdog
lis r12, 0xFFF3
ori r12,r12,0x8000
lwz r11,0(r12)
clrrwi r11,r11,1
stw r11,0(r12)

2.4 Memory management unit (MMU)
Initialization of the MMU via user software is optional — the BAM initializes the MMU after each power
on reset (POR). Please see the MPC563XM Microcontroller Reference Manual, section 20.5.2, “BAM
Program Operation.” Here is some example code showing how to set up the MMU for the 256 KB space,
starting at the address 0x4000_0000 for the internal SRAM:

Example 4. Memory management unit

// Set up MMU for Internal SRAM
lis r10, 0x1003
mtspr mas0, r10

lis r10, 0xc000
ori r10, r10, 0x0400
mtspr mas1, r10

lis r10, 0x4000
ori r10, r10, 0x0008
mtspr mas2, r10

lis r10, 0x4000
ori r10, r10, 0x003f
mtspr mas3 ,r10

tlbwe

2.5 Branch target buffer (BTB)
The e200 core provides the BTB feature to perform branching prediction. The BTB must be flushed before
use. Enabling the BTB will boost the system performance about 4 percent for an 80 MHz system clock.
This assembly code shows how to flush and enable the BTB.

Example 5. Branch target buffer

//Flushes the BTB and Enable the BTB
li r10 ,0x201
mtspr 1013,r10
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor 5

Initialization and optimization
2.6 Signal processing extension (SPE)
The SPE feature is computation orientated — please refer to the MPC563XM Microcontroller Reference
Manual for more comprehensive details. The assembly code shown here will enable the SPE. Please refer
to your compiler reference manual for how to turn on the SPE feature to generate SPE code.

Example 6. Signal processing extension

mfmsr r10
oris r10, r10, 0x0200 //Enable SPE
mtmsr r10

2.7 Flash wait states and flash page buffers
Freescale recommends that users adhere to the values in Table 2 for internal flash wait state setting
operations at different frequencies.

This assembly code sets the number of wait states for the system when operating at 80 MHz.

Example 7. Flash wait state

lis r10,0x0001
ori r10,r10, 0x6B15 // 82 MHz
lis r11,0xC3F8 // PFlash Configuration Register 1
ori r11,r11, 0x801C //(PFCR1) address
stw r10,0(r11)

The flash controller also offers four page buffers. Each buffer is 128 bits long and can hold one flash page.
These four buffers are also associated with the prefetch controller that prefetches flash pages to the buffers.
These page buffers support zero wait state fetches for page hits. At maximum operating frequency, three
wait states are required for a fetch with a page miss. Please see the MPC563XM Microcontroller Reference
Manual for comprehensive details on the flash page buffer.

This code shows how to configure the page buffers. All four buffers are available for any flash access —
that is, there is no partitioning based on the access type. The flash buffers can be allocated for any flash
access, or the buffers can be split between instruction fetches and data accesses. To set these buffers to a
different configuration, please see the MPC563XM Microcontroller Reference Manual.

Table 2. Wait states setting vs. frequency of operation

Target max frequency (MHz) APC WWSC RWSC

40 001 01 001

62 010 01 010

82 011 01 011

All 111 11 111
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor6

Initialization and optimization
Example 8. Flash page buffers

lis r10,0x0000 //PFCR2 globally defines the logical
stw r10,8(r11) //partitioning of the four page buffers

2.8 Setting frequency of operation
The MPC563xM provides a frequency modulation phase-locked loop (FMPLL) to allow users to change
the system frequency via a set of synthesizer registers. It is highly recommended to use the enhance
synthesizer register to set the desired frequency of operation. The MPC563xM also supports a system
frequency up to 80 MHz. In Example 9 the PLL is set to 80 MHz. If a different frequency of operation is
preferred, use Equation 1 to set the FMPLL registers appropriately. Please refer to the MPC563XM
Microcontroller Reference Manual for the device speed grade that you are using.

Example 9. FM phase-locked loop

//Program the FM Enhance PLL<<<no difference?>>>

// MHz : 80 70 60 50 40 30 20 10
//ESYNCR1: 40 35 60 50 40 60 40 1,40
//ESYNCR2: 1 1 2 2 2 3 3 3

//ESYNCR1

lis r10,0xC3F8
lis r11,0xF000 # EPREDIV -> 0-1 to 1110-15
ori r11,r11,40 # EMFD -> 32 to 96

//ESYNCR2

li r12,0x0001 # ERFD -> 0-2,4,8 and 11-16

//save registers with the shortest possible time

stw r11,8(r10) # ESYNCR1
stw r12,12(r10) # ESYNCR2

wait_for_lock:

lwz r13,4(r10) # load SYNSR
andi. r13,r13,0x8
beq wait_for_lock

Fsys is the desired system frequency and Fref is the crystal frequency used in the system.

Eqn. 1

Fsys Fref
EMFD

EPREDIV 1+ 2 ERFD 1+
--=
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor 7

Initialization and optimization
2.9 Internal static random access memory initialization
The MPC5634 device includes 94 KB of general-purpose SRAM. Please see the MPC563XM
Microcontroller Reference Manual for comprehensive details and Table 3 for the MPC563xM internal
SRAM map. The SRAM block also provides 7-bit error checking and correction (ECC) with single-bit
correction and 2-bit error detection for every 32-bit word. It is mandatory to initialize the SRAM after
power on reset (POR). The user should be aware that the SRAM does not have to be initialized after all
resets, only after POR resets. However, this application note does not discuss determining whether or not
a reset was a POR reset. Attempting to read an uninitialized SRAM would generate a system exception.

The SRAM is initialized via writing one or more 32-bit words to it. A less than 32-bit write to the SRAM
will generate a read/modify/write operation that will check the ECC value upon read. The SRAM
initialization method is:

Example 10. Initialize SRAM ECC

//initialize 94k SRAM

li r5,752
mtctr r5
lis r5,0x4000

sram_ecc:

stmw r0,0(r5)
addi r5,r5,128
bdnz sram_ecc

Initializing the SRAM ECC is straightforward. However, initializing SRAM in serial boot mode is also not
difficult. When initializing the SRAM ECC in RAM mode, users must know where the last 32-bit word is
stored on the SRAM and start initialization from there.

To find out where the last word is stored, please refer to your linker file. Typically, a RAM mode linker
file will have a section that consists of symbols dot bss followed by dot heap and dot stack. Using an
ENDADDR command supplied by your linker macro, one can safely initialize the SRAM. (Please see
AN3953, “Serial Loader Application for BAM,” for more details.)

Table 3. MPC563xM SRAM maps

Start Address End Address Description MPC5632M MPC5633M MPC5634M

 Standby Size 24K 24K 32K

Total SRAM
Size

48K 64K 94K

0x4000_0000 0x4000_5FFF 24K SRAM Standby
SRAM

Standby
SRAM

Standby
SRAM
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor8

Initialization optimization dependency
2.10 Crossbar initialization
The crossbar (XBAR) can support up to eight master ports and eight slave ports. It will allow for
concurrent transactions from any master port to any slave port. It is possible for all master ports and slave
ports to be in use at the same time because of independent master requests. If a slave port is simultaneously
requested by more than one master port, arbitration logic will select the higher priority master and grant it
ownership of the slave port. All other masters requesting that slave port will stall until the higher priority
master completes its transactions.

The code below sets access priority for the eDMA over the core, to prevent an eDMA memory access
timeout.

Example 11. Initialize crossbar

//initialize Crossbar

lis r12,0xFFF0
ori r12,r12,0x4000
lis r11,0x0001
ori r11,r11,0x0302
stw r11,0(r12)

3 Initialization optimization dependency
Initialization is not a one-time action, but a progressive effort to fine-tune the system. The most important
factor to consider when determining which features to initialize and how they should be initialized is the
user’s final application program. Nothing is more important than this. However, there are certain features
that can be identified due to the application specification and the way the system is designed.

The initialization routine in Appendix A, “Initialization programs,” is optimized using the Dhrystone 2.0
benchmark application to calibrate the different sets of features that will allow optimal performance of the
MPC563xM EVB. Please see the performance bar chart in Figure 2. Readers will notice that the same
application operating at the same frequency can have severe performance degradation if initialization
parameters are not optimized.

0x4000_6000 0x40007FFF 8K SRAM SRAM SRAM Standby
SRAM

0x4000_8000 0x4000_BFFF 16K SRAM SRAM SRAM SRAM

0x4000_C000 0x4000_FFFF 16K SRAM Not available SRAM SRAM

0x4001_0000 0x4001_77FF 30K SRAM Not available Not available SRAM

Table 3. MPC563xM SRAM maps (continued)

Start Address End Address Description MPC5632M MPC5633M MPC5634M
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor 9

Initialization optimization dependency
Figure 2. Dhrystone 2.0 benchmark performance chart

Legend for Figure 2:

• C Optimize off: BTB and SPE enable, flash page = 00 and no C optimization

• BTB_11: BTB and SPE enable, flash page = 11 with loop optimization

• BTB_10: BTB and SPE enable, flash page = 10 with loop optimization

• BTB_00: BTB and SPE enable, flash page = 00 with loop optimization

• NoBTB_11: BTB disable, SPE enable, flash page = 11 with loop optimization

• NoBTB_10: BTB disable, SPE enable, flash page = 10 with loop optimization

• noBTB_00: BTB disable, SPE enable, flash page = 00 with loop optimization

Flash page setting

• 00: No accesses may be performed by the processor core

• 01: Only read accesses may be performed by the processor core

• 10: Only write accesses may be performed by the processor core

• 11: Both read and write accesses may be performed by the processor core

Let us look at the bar chart at 80 MHz. Compare the bar labeled “C Optimize off” and the bar labeled
“BTB_00” (C optimization is on): the performance disparity is huge. From this chart, one can see that
software optimization plays a very large role in improving system performance. With C optimization,
performance can improve as much as 43 percent — hardware optimization can improve approximately 12
percent.

Dhrystone per Second/Frequency

0

20000

40000

60000

80000

100000

120000

10 20 30 40 50 60 70 80

MHz

D
h

ry
st

o
n

es
 p

er
 S

ec
o

n
d

C Optimize off

BTB_11

BTB_10

BTB_00

NoBTB_11

NoBTB_10

noBTB_00
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor10

Summary
4 Summary
The MPC563xM has very limited internal SRAM and no external bus to support external memory.
Therefore all user application code is expected to run from the internal flash. For that reason, the
initialization code and optimization code are targeted to programs that will be run from the system flash
memory.

Please see Appendix A, “Initialization programs,” for the MPC563xM initialization programs. Users are
reminded that the initialization program is optimized using the Dhrystone 2.0 benchmark and may not
reflect user application runtime behavior. Users are advised to consult the reference manual and change
the initialization parameters appropriately. However, the order of initialization in this initialization
program is recommended.

Appendix A Initialization programs
Example A-1. Initialization program ROMRUN, ROMRAM, and mixed mode

/*
 * Mong Sim
 * Freescale
 * BoardInit for MPC563xM for MULTI
 * 9/30/2009
 */

 .weak __ghs_rambootcodestart
 .weak __ghs_rambootcodeend
 .weak __ghs_rombootcodestart
 .weak __ghs_rombootcodeend
 .globl __ghs_board_memory_init

__ghsautoimport_ghs_board_memory_init::
__ghs_board_memory_init:

 ; This routine must not use r3 through r6

 ; Set the MSR[SPE] bit to enable ev* instructions
 ; Disable floating point, external interrupts, and machine
 ; check interrupts.

//---
// SPE Enable
//---

 mfmsr r10
 oris r10, r10, 0x0200 #SPE Enable
 mtmsr r10

//---
// System Watchdog
//---

 lis r12, OxFFF3
 ori r12, r12, 0x8000
 lwz r11, 0(r12)
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor 11

Initialization programs
 clrrwi r11, r11, 1
 stw r11, 0(r12)

//---
// Core Watchdog
//---
 li r12,0x00
 mtspr 340,r12

//---
// Branch Target Buffer
//---

 //BTB Enable
 li r10, 0x201 #Disable 0x200
 mtspr 1013, r10

//---
// Check operation
//---

 ; If running from RAM, return.
 mflr r12
 lis r11, %hiadj(__ghs_rombootcodeend)
 addi r11, r11, %lo(__ghs_rombootcodeend)
 cmplw r12, r11
 bgelr
 lis r11, %hiadj(__ghs_rombootcodestart)
 addi r11, r11, %lo(__ghs_rombootcodestart)
 cmplw r12, r11
 bltlr

//---
// MMU
// user can choose not the initial the MMU explicitly
//---

// Setup MMU for for Periph B Modules
 lis r10, 0x1000
 mtspr mas0, r10
 lis r10, 0xc000
 ori r10, r10, 0x0500
 mtspr mas1, r10
 lis r10, 0xfff0
 ori r10, r10, 0x000a
 mtspr mas2, r10
 lis r10, 0xfff0
 ori r10, r10, 0x003f
 mtspr mas3 ,r10
 tlbwe

// Set up MMU for Internal SRAM
 lis r10, 0x1003
 mtspr mas0, r10
 lis r10, 0xc000
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor12

Initialization programs
 ori r10, r10, 0x0400
 mtspr mas1, r10
 lis r10, 0x4000
 ori r10, r10, 0x0008
 mtspr mas2, r10
 lis r10, 0x4000
 ori r10, r10, 0x003f
 mtspr mas3 ,r10
 tlbwe

// Setup MMU for Periph A Modules
 lis r10, 0x1004
 mtspr mas0, r10
 lis r10, 0xc000
 ori r10, r10, 0x0500
 mtspr mas1, r10
 lis r10, 0xC3F0
 ori r10, r10, 0x000A
 mtspr mas2, r10
 lis r10, 0xC3F0
 ori r10, r10, 0x003f
 mtspr mas3 ,r10
 tlbwe

// Setup MMU for External Memory
 lis r10, 0x1002
 mtspr mas0, r10
 lis r10, 0xc000
 ori r10, r10, 0x0700
 mtspr mas1, r10
 lis r10, 0x2000
 ori r10, r10, 0x0000
 mtspr mas2, r10
 lis r10, 0x2000
 ori r10, r10, 0x003f
 mtspr mas3 ,r10
 tlbwe

// Setup MMU for Internal Flash
 lis r10, 0x1001
 mtspr mas0, r10
 lis r10, 0xc000
 ori r10, r10, 0x0700
 mtspr mas1, r10
 lis r10, 0x0000
 ori r10, r10, 0x0000
 mtspr mas2, r10
 lis r10, 0x0000
 ori r10, r10, 0x003f
 mtspr mas3 ,r10
 tlbwe

//---
// Program the FM Enhance PLL
//---
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor 13

Initialization programs
 ; MHz : 80 70 60 50 40 30 20 10
 ; ESYNCR1: 40 35 60 50 40 60 40 1,40
 ; ESYNCR2: 1 1 2 2 2 3 3 3

;ESYNCR1
 lis r10, 0xC3F8
 lis r11, 0xF000 # EPREDIV -> 0-1 to 1110-15
 ori r11, r11,40 # EMFD -> 32 to 96
;ESYNCR2
 li r12, 0x0001 # ERFD -> 0-2,4,8 and 11-16

 ;save registers with the shortest possible time

 stw r11, 8(r10) # ESYNCR1
 stw r12, 12(r10) # ESYNCR2

wait_for_lock:

 lwz r13, 4(r10) # load SYNSR
 andi. r13, r13, 0x8
 beq wait_for_lock

//---
// Internal SRAM ECC Initialization
//---

//li r5, 384 # 48 KB of SRAM
//li r5, 512 # 64 KB of SRAM
 li r5, 752 # 94 KB of SRAM
 mtctr r5 # 752*32*4
 lis r5,0x4000

sram_ecc:

 stmw r0,0(r5)
 addi r5,r5,128
 bdnz sram_ecc

//---
// Reduce FLASH wait-states
//---

 lis r10, 0x0001
 //ori r10, r10, 0x0015 # 8MHz
 //ori r10, r10, 0x2915 # 40MHz
 //ori r10, r10, 0x4A15 # 62MHz

 ori r10, r10, 0x6B15# 82MHz

 lis r11, 0xC3F8 # PFlash Configuration Register 1
 ori r11, r11, 0x801C # (PFCR1) address
 stw r10, 0(r11)

 lis r10, 0x0000 # PFCR2 globally defines the logical
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor14

Initialization programs
 stw r10, 8(r11) # partitioning of the four page buffers

//---
// initialize Crossbar
//---

lis r12, 0xFFF0
ori r12, r12, 0x4000
lis r11, 0x0001 # Set DMA prior higher than Core
ori r11, r11, 0x0302

//---
// End Initialization
//---

 blr

 .type __ghs_board_memory_init, @function
 .size __ghs_board_memory_init_memory, $-__ghs_board_memory_init

 .section ".resetvector","ax"

__ghs_board_devices_resetvector:

 /* Reset Configuration Halfword (RCHW) : BOOTID = 0x5a */
 .long 0x005a0000
 .long __ghs_rombootcodestart

 .type __ghs_board_devices_resetvector, @function
 .size __ghs_board_devices_resetvector,$-__ghs_board_devices_resetvector

Example A-2. Initialization program RAM image

/*
*
* Mong Sim
* Freescale
* BoardInit for MPC563xM
* 8/20/2009
* Do not reserve space at 0-7 in RAM linker file
*/

//---
// System Watchdog Disable
//---

 lis r12, SWT_CR@h
 ori r12, r12, SWT_CR@l
 lwz r11, 0(r12)
 clrrwi r11, r11, 1
 stw r11, 0(r12)

//---
// Core Watchdog Disable
//---
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor 15

Initialization programs
li r6,0x00
mtspr 340,r6

//---
// Enable SPE
//---

 mfmsr r6
 oris r6, r6, 0x0200
 mtmsr r6

//---
// Enable BTB
//---

 li r0, 0x201
 mtspr 1013, r0

//---
// Initial SRAM ECC
//---

 lis r30,0x0000
 lis r31,0x0000
 lis r11,0x4000
 ori r11,r11,%lo(__ram_image_end) #see linker file
sram_init:
 stmw r30,0(r11)
 addi r11,r11,8
 andi. r12,r11,0xFFF0
 bne sram_init
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor16

THIS PAGE IS INTENTIONALLY BLANK
Initialization and Optimization Program for MPC563xM, Rev. 0

Freescale Semiconductor 17

Document Number: AN4027
Rev. 0
07/2010

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2010. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	1.1 Objective

	2 Initialization and optimization
	2.1 Program execution modes
	2.2 Reset configuration half word and jump address
	2.3 Core and system watchdog timers
	2.4 Memory management unit (MMU)
	2.5 Branch target buffer (BTB)
	2.6 Signal processing extension (SPE)
	2.7 Flash wait states and flash page buffers
	2.8 Setting frequency of operation
	2.9 Internal static random access memory initialization
	2.10 Crossbar initialization

	3 Initialization optimization dependency
	4 Summary
	Appendix A Initialization programs

