

© Freescale Semiconductor, Inc., 2009-2010. All rights reserved.

Freescale Semiconductor Document Number: AN3967

Application Note

How to Write Flash Programming Applets

1. Introduction

1.1. Purpose
The purpose of this document is to help understand and
create Flash configuration files for the Flash
Programming interface.

1.2. Scope
The flash operations are coded in microcontroller
specific files called the Flash Configuration files
(extension XML). The *.XML files contain
microcontroller- dependent parameters and applets to
handle internal flash modules.
Applets are small programs which are loaded into the
on-chip RAM. They will run at well-defined speed
(depending on the microcontroller clock speed) and can
collect data about the state of the memory modules, can
control the memory modules (including erasing and
programming).
There are three applets for each flash module:

• INFO applet ─ Collects information about the
module.

Contents
1. Introduction .. 1
2. Flash Configuration Files General Description 2
3. Applet Creation .. 4

 Flash Configuration Files General Description

How to Write Flash Programming Applets Application Note
2 Freescale Semiconductor

• CONTROL applet ─ Controls and erases the module.

• PROGRAM applet ─ Programs the module.

Parameters are passed to these applets at fixed memory addresses, which are relative to the workspace.
*.XML files are written by Freescale and are delivered within the installation.

2. Flash Configuration Files General Description

2.1. Basic Concept
A Flash Configuration file is an XML format file. Its file extension is always “XML”. It is possible to
open and edit this file with any text editor. This file is a “handmade” file and is not created automatically
with any tool.

Some microcontrollers can address the flash in multiple ways ─ banked and paged. Therefore, multiple
overlapping devices can be defined for one microcontroller. Each of them is defined in its own Flash
Configuration XML file.

2.2. Structure Overview
Each Flash Configuration file has a main section named content where the global parameters are
defined. It also contains two sections:

• Sectors ─ Describes sector organization.

• Organization ─ Defines the applets used and their parameters.

2.3. Structure Step-by-Step
Listing 1 shows the main structure of a Flash Configuration file. The microcontroller used in this
application note is MC9SO8QE128.

Listing 1. Main Flash Configuration File Structure

<?xml version="1.0" encoding="UTF-8"?>

<device-file>

<device>

<content>

 <name>MC9S08QE128_FLASH_C000</name>

 <manufacturerid>103e</manufacturerid>

 <hardware_mmu>1</hardware_mmu>

 <sectors>

 <sectorcount>1</sectorcount>

 <sectorsize>4000</sectorsize>

 </sectors>

 <buffer_start>80</buffer_start>

 Flash Configuration Files General Description

How to Write Flash Programming Applets Application Note
Freescale Semiconductor 3

 <buffer_size>1780</buffer_size>

 <organizationcount>1</organizationcount>

 <organization>

 ……

 </organization>

</content>

</device>
</device-file>

The tags and their description are:

• content ─ Base tag for the device description.

• name ─ Flash device name that will be displayed in Code Warrior Flash Programmer user
interface. It starts with the name of the device that uses it – MC9S08QE128 and is followed by the
module name – FLASH_C000. The Flash Configuration filename must match this name.

• manufactureid ─ Microcontroller’s identification (MCUID) defined in the hexadecimal
format.

• hardware_mmu ─ If Memory Management Unit is present, the value is 1 else 0.

• sectors ─ Describes the module’s sector organization. It uses 2 tags: sectorcount and
sectorsize. The first defines how many sectors of sectorsize size follow. If we have
sectors of multiple sizes, the tag pair will be repeated.

• buffer_start ─ Address in hexadecimal for RAM memory buffer where the applets and their
parameters are loaded.

• buffer_size ─ Size of the memory buffer in hexadecimal. Usually, this matches the full
microcontroller RAM. A larger memory buffer can improve the speed of programming the
microcontroller.

• organization_count ─ Specifies the number of organizations. An organization is a way to
access the flash module. HCS08 and RS08 microcontroller’s have only one so this field will
always be one.

• organization ─ Details the applets used and their parameters.

• vpp – Placed in the <content> tag. Used to activate programming voltage on derivatives that
need it, usually RS08 Microcontrollers. If not required, should be skipped or set to false. See
MC9RS08KA2 xml files from the microcontroller layout.

2.4. Advanced Information
The applets are loaded in the Microcontroller’s RAM/SRAM. Therefore, the buffer start address (here
0x80) set in the buffer_size tag is the default RAM start address of the Microcontroller. However,
it is also possible to set a different buffer starting address.

If the applet code is relocatable, you can modify the buffer address parameter. Otherwise, the execution
of the applet code is hazardous.

 Applet Creation

How to Write Flash Programming Applets Application Note
4 Freescale Semiconductor

The buffer size (here 0x1780) matches the full Microcontroller RAM size. The programmed
application is first loaded in the RAM into a buffer placed after the applet code. The applet will copy it
to the desired location in flash. The buffer should be as big as possible for a faster programming. The
Flash Programmer will download the data to the buffer andthenstarts the applet. The Microcontroller is
stopped after programming the buffer. The Flash Programmer will place new data in the buffer and the
process continues with starting the applet until no more data to be programmed is left. If the buffer is
larger, we have less buffers therefore the total time is shorter due to less interrupts.

3. Applet Creation

3.1. Overview
Applets are small programs which are loaded into the on-chip RAM. They run at well-defined speed
(depending on the microcontroller clock speed) and can:

• collect data about the state of memory modules and

• control the memory modules (including erasing and programming).

There are three applets for each module to:

• collect information about the module,

• control (includes erasing) the module, and

• program the module.

Parameters are passed to these applets at fixed memory addresses, relative to the buffer start address.

The applet consists of three areas: the parameter block, the code, and eventually a buffer which may
hold the data to be programmed.

The first two areas, parameter block with initial values and the code are loaded into the buffer area on
the target Microcontroller‘s RAM/SRAM. The parameters contain instructions for the applet and are set
before starting the applet. The buffer with data to be programmed is written after the code section.
Finally, the applet code is started. It will read the parameters, interpret them and execute the desired
function. The applet may now terminate or run continuously until it is stopped.

These are the requirements for applets:

• Consists of the parameters, code, temporary storage (stack, registers), and a buffer for the data to
be programmed (for program applet only).

• Shall fit into the on-chip RAM/SRAM (which is available on all Microcontrollers today).

• Acts as one function (one entry point) which is started to execute commands. It will stop after
execution of each command (except for the clock speed sensing and fast download mode).

• Flash programmer sets the required parameters of the command into the parameter area prior to the
start of the applet. The results will be in the parameter block.

• Code of the applets is loaded from a *.abs or *.s19 file.

 Applet Creation

How to Write Flash Programming Applets Application Note
Freescale Semiconductor 5

• Target interface independent.

3.2. Applet Parameter Structure
The applet parameters are defined in the organization tag. For MC9S08QE128, it is included in
Listing 2.

Listing 2. organization Tag for MC9S08QE128

<organization>

 <name>FLASH_C000</name>

 <id>103e</id>

 <begin_address>c000</begin_address>

 <end_address>ffff</end_address>

 <applet>

 <program>PROGRAM_GENERIC_NEW_COP.abs</program>

 <control>CONTROL_GENERIC_SECTOR.abs</control>

 <info>INFO_FLASH_GENERIC_TO_REMAP_NEW_COP.abs</info>

 </applet>

 <params>

 <global>

 <name>S_SIZE</name>

 <value>1</value>

 </global>

 <global>

 <name>F_SIZE</name>

 <value>1</value>

 </global>

 <global>

 <name>C_SIZE</name>

 <value>1</value>

 </global>

 <global>

 <name>ADR_SIZE</name>

 <value>3</value>

 </global>

 <global>

 <name>DCNT_SIZE</name>

 <value>2</value>

 </global>

 <global>

 <name>CNT_SIZE</name>

 <value>4</value>

 </global>

 <global>

 <name>NVMIF_VERSION</name>

 <value>2</value>

 </global>

 <global>

 <name>NVMIF2_BUFADR_SIZE</name>

 Applet Creation

How to Write Flash Programming Applets Application Note
6 Freescale Semiconductor

 <value>2</value>

 </global>

 <program>

 <name>LoopCycles</name>

 <value>1</value>

 </program>

 <program>

 <name>DelayTime</name>

 <value>1000</value>

 </program>

 <program>

 <name>BaseCycles</name>

 <value>0</value>

 </program>

 <control>

 <name>LoopCycles</name>

 <value>1</value>

 </control>

 <control>

 <name>DelayTime</name>

 <value>1000</value>

 </control>

 <control>

 <name>BaseCycles</name>

 <value>0</value>

 </control>

 <info>

 <name>RefTime</name>

 <value>12</value>

 </info>

 </params>
 </organization>

Following tags are available in the organization section:

• name ─ Name of the module; displayed near the full name from content section.

• id ─ Microcontroller’s mcuid defined in hexadecimal format.

• begin_address ─ Start address for the flash module in hexadecimal format.

• end_address ─ End address for the flash module in hexadecimal format.

• applet ─ Defines the applets used for accessing the flash module. All applets must be placed in
{CodeWarriorInstallDir}\MCU\bin\plugins\support\Flash_Programmer\HC08
 or
{CodeWarriorInstallDir}\MCU\bin\plugins\support\Flash_Programmer\RS08

It uses the tags:

— program ─ Applet used to program the module.

— info ─ Applet used to get information regarding the flash status and Microcontroller’s speed.

— control ─ Applet used to erase the module.

 Applet Creation

How to Write Flash Programming Applets Application Note
Freescale Semiconductor 7

• params – Defines the applet parameters. They can be specific to one applet or apply to all of
them. Besides its scope, each parameter has two tags: name and value.

3.3. Global Parameters Defined in Flash Configuration File
The params section defines applet-specific or global parameters.

The global parameters defined within the global tag are:

• S_SIZE ─ Size of state in bytes. The state contains the current device state. Example: erased,
programed.

• F_SIZE ─ Size of flags in bytes. Used to control applet execution. It selects operations that will
be performed.

• C_SIZE ─ Size of command in bytes. Used by control and program applets to know what
operation must be done.

• ADR_SIZE ─ Address size in bytes. Keeps address size access to target.

• DCNT_SIZE ─ Size of delay counter in bytes.

• CNT_SIZE ─ Size of loop counter in bytes.

• NVMIF_VERSION ─ Must be set to 2 for the HCS08 Microcontroller and 3 for the RS08
Microcontroller. It is used to compute various parameters in a specific way for each of the
architecture.

• NVMIF2_BUFADR_SIZE ─ Size of buffer address.

3.4. INFO Applet
The INFO applet collects the module-specific data (Microcontroller speed, flags, and state). It is
possible to run an infinite loop where a 32-bit counter is incremented to evaluate the clock speed of the
Microcontroller.

3.4.1. Insertion in Configuration File

In the params tag all INFO-specific parameters are defined within the info tag. The info tag defines
the name and the value of the parameter.

The RefTime parameter matches the number of CPU cycles of the infinite loop in the applet. For
information on how to evaluate this constant, refer to Listing 3.

Listing 3. Evaluating Constant
<info>

 <name>RefTime</name>

 <value>12</value>
</info>

Here, the parameter name is RefTime and the value 12.

 Applet Creation

How to Write Flash Programming Applets Application Note
8 Freescale Semiconductor

If the RefTime value is set to null, the CPU speed is not evaluated (peculiar Microcontroller cases) by
the Flash Programmer.

If the RefTime is a positive integer, the speed loop must be implemented in the INFO applet and
triggered on the speed test flag.

3.4.2. INFO Source File

The info applet is used to obtain information about Microcontroller. One possible implementation for the
MC9S08QE128 derivative is shown here.

where, base is the first SRAM address, similar to the one specified in the Flash Configuration with
buffer_start.

• cnthi and cntlo fields are usually used to evaluate the Microcontroller’s speed. In case not
used, the fields still must be present in order to keep the applet structure aligned with the interface.

• baseAdr – start address for the flash device. The size of baseAdr is 2-, 3-, or 4-bytes long as
defined by the ADR_SIZE global parameter.

• size – the flash size.

• flags – command to be executed.

• state – the returning state.

All values are populated by the Flash Programmer before starting the applet. If any of them is constant,
it can be declared from the code.

Flags must be set as below:

• bit 2: 0 ─ No enable/disable possible on module, 1 ─ Enable/disable allowed on module.

• bit 1: 0 ─ Module not protectable, 1 ─ Module protectable.

• bit 0: 0 ─ No fast load on module, 1 ─ Fast load on module (when interactive R/W is possible
(BDM)).

 Applet Creation

How to Write Flash Programming Applets Application Note
Freescale Semiconductor 9

Other bits are initially set to 0.

These variables let you interface with different operations that can be performed on the module.
Therefore, these operations must be implemented in the CONTROL applet. For example, if bit 1 is set in
flags, it means that the assembler code to unprotect the module is available in the CONTROL applet
source file.
The bit 7 of flags is tested to decide if the program must enter (before all tests) an infinite loop for speed
Microcontroller evaluation. If the bit is not set, the different module test can be performed.

The different module states returned in the state variable are:

• bit 2: 0 ─ Module unprotected, 1─ Module protected.

• bit 1: 0 ─ Module programmed, 1 ─ Module blank.

• bit 0: 0 ─ Module disabled, 1 ─ Module enabled.

b0, b1, and b3 bits will be returned to the interface.

Other bits are not used.

NOTE It is important that state and flags are properly adapted. If you set b1 in flags to
protect/unprotect availability, the returned value b2 in state should be correctly set.
Otherwise, the status interpreted by the interface is not relevant.

The applet program ends when it encounters a background instruction encapsulated in an endless loop.

The loop below is the Microcontroller speed evaluation loop. cntlo and cnthi are incremented
permanently. The loop is halted by the interface itself.

The RefTime parameter is defined from here.
Speed loop for CPU speed detection runs an endless loop that increments the cnthi/cntlo variable.
The loop is not compulsory, but must be present if the RefTime parameter is not null.

 Applet Creation

How to Write Flash Programming Applets Application Note
10 Freescale Semiconductor

Stack workspace at the end of the applet code:

The INFO applet collects the module-specific data (start address, end address, flags, state) of the
module.

To evaluate the clock speed of the Microcontroller, it is possible to run an infinite loop where a 32-bit
counter is incremented.

3.5. CONTROL Applet
The CONTROL applet implements some commands to control the state of the memory block. At best, it
is possible to erase, disable, enable, protect, and unprotect a module.

3.5.1. Insertion in Flash Configuration File

The CONTROL applet must define three parameters in the params section: DelayTime,
LoopCycles, and BaseCycles.

They are used to parameterize the timing of the applet code (delay loops) according to the real
Microcontroller clock-frequency.

The value of the parameters is:

• DelayTime ─ Time in microseconds by which you want to delay the applet when the delay
function is called. For example, if you want to add a millisecond delay in your applet,
DelayTime must be 1000.

• LoopCycles ─ Number of cycles the delay loop takes to execute one loop.

• BaseCycles ─ Number of cycles required to call and exit the delay loop (cycles to execute the
delay function with a count of one). These values are used to calculate the value of the counter of
the delay loop to generate a delay of DelayTime in the applet.

The following expression is used:

counter = clock-frequency (Hz) * DelayTime (µs) / LoopCycles / 1000000 - BaseCycles;

 Applet Creation

How to Write Flash Programming Applets Application Note
Freescale Semiconductor 11

The formula is evaluated by the interface, according to the real value estimated or the given value of the
Microcontroller clock-frequency. The counter value parameter is then passed to the applet by the
interface.

NOTE All the parameters (variables) of the CONTROL applets except state and command
are overwritten as soon as the CONTROL applet is called. Therefore, initialization of
these parameters is only indicative. However, all parameters evaluated by the INFO
applet overwrites the parameters of the CONTROL applet.

The command parameter is passed by the interface, when the APPLET call is performed.

3.5.2. CONTROL Source File

The Control applet erases the flash contents. A possible implementation for HCS08QE128 is shown
below.

base equ $0080 ; SRAM start

org base ;

where, base is the first SRAM address and is similar to the one specified in the Flash Configuration file.

As explained above, these parameters are overwritten. The state parameter must be set to null. The
size of baseAdr is 2-, 3-, or 4-bytes.

All operation routines must be implemented according to the Microcontroller availabilities, the
dispatcher, and the INFO flags parameter settings. The following code erases one module.

 Applet Creation

How to Write Flash Programming Applets Application Note
12 Freescale Semiconductor

The applet quits when the operation status returns to the interface. The state encoding is given below:

• 0 ─ Operation failed (jumping to Wait).

• 1 ─ Operation passed (jumping to Done).

• 2 ─ Module is bad (module damaged/weird).

• 3 ─ No vpp (no programming voltage detected).

• 4 ─ Not possible in this Microcontroller configuration (protected mode, etc).

• 0xFF/-1 ─ Command not implemented (returned by the dispatcher when the command is not
implemented).

The applet program ends when it encounters a background instruction encapsulated in an endless loop.

 Applet Creation

How to Write Flash Programming Applets Application Note
Freescale Semiconductor 13

Stack workspace at the end of the applet code:

3.6. PROGRAM Applet
The PROGRAM applet is used to program the individual byte/words from the module. There might be
two different methods depending on the capabilities of the target interface or the Microcontroller. If the
target memory can be read without disturbing the timing, the applet is not required to stop when a block
is programmed. However, it may wait in a loop for the next block to be programmed. This matches the
fast load mode (b0 bit of flags parameter) in the INFO applet.

3.6.1. Insertion in Flash Configuration File

The PROGRAM applet must define the following parameters in the params section: DelayTime,
LoopCycles, and BaseCycles. They are used to parameterize the timing of the applet code (delay
loops) and to define the start address of the data buffer. They have the same meaning as for CONTROL
applet.

NOTE: All parameters of the PROGRAM applets except state are overwritten as soon as the
PROGRAM applet is called. Therefore, initialization of these parameters is only
indicative. However, all parameters evaluated by the INFO applet will overwrite the
parameters of the PROGRAM applet. The state parameter must be initially set to $01.
The interface writes $00 to state to indicate that the buffer is ready and to start
programming.

3.6.2. PROGRAM Source File

The program applet programs a buffer in flash. A possible implementation is shown next.

where, base is the first SRAM address and is similar to the one specified in the Flash Configuration
file.

bStart is the pointer to the programming buffer to be copied. The offset of + $100 from base
matches exactly the program buffer offset computed by the Flash Programmer. In the RAM/SRAM
buffer, the parameters are placed first, then the code, and finally the buffer that will be programmed.

 Applet Creation

How to Write Flash Programming Applets Application Note
14 Freescale Semiconductor

As explained above, these parameters are overwritten. The state parameter must be set to $01. The
size of fStart and bSize variables is 2-, 3-, or 4-bytes as defined by the ADR_SIZE global
parameter.

For flags, only the least semnificative bit is used. It indicates that the fast programming mechanism is
used. After a block is programmed, the applet will not stop but wait for the next block to be
programmed. All further bits are unused and should be set to zero.

NOTE: The least semnificative bit is set by the interface. It estimates according to the b0 bit in
flags in the INFO applet and to the target interface itself (not all interfaces support fast
programming) if fast programming is possible.

If fast programming is not possible on the Microcontroller (for example, no background
reading/writing), clear the b0 bit in flags in the INFO applet. The programming applet must stop on a
BGND instruction loop.
If fast programming is enabled, the programming applet waits till state != $00 to start
programming.

Starting of the program:

The stack pointer is loaded. The stack space is initialized at the end of the assembler code. For more
information, refer to the stackEnd label below.

The program waits for state to be null to start programming.

After the programming code, different exits are possible when the first buffer programming has been
performed. The applet quits on the operation status return to the interface. The state encoding is given
below:

• 1 ─ Operation passed (jumping to Done).

• 2 ─ Module is bad (module damaged/weird) (jumping to BadArray).

 Applet Creation

How to Write Flash Programming Applets Application Note
Freescale Semiconductor 15

• 3 ─ No vpp (no programming voltage detected) (jumping to NoVfp).

• 4 ─ Not possible in this Microcontroller configuration (protected mode, etc) (jumping to
BadConf).

After returning the state, if fast programming is forced by the interface, the program jumps to the entry
code of the applet to start programming again.
Otherwise, the applet program ends when it encounters a background instruction encapsulated in an
endless loop.

The program code is

The algorithm loops through the buffer and programs the data at requested address.

How to Reach Us :

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Loca tions Not Lis te d :
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe , Midd le Eas t, and Africa :
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

J apan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

As ia /P acific :
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

Document Number: AN3967

21 September 2011

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. ColdFire+, Kinetis, Processor Expert, and Qorivva are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of their respective
owners. ARM is the registered trademark of ARM Limited. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© Freescale Semiconductor, Inc. 2009-2010. All rights reserved.

	1. Introduction
	2. Flash Configuration Files General Description
	3. Applet Creation
	3.4.1. Insertion in Configuration File
	3.4.2. INFO Source File
	3.5.1. Insertion in Flash Configuration File
	3.5.2. CONTROL Source File
	3.6.1. Insertion in Flash Configuration File
	3.6.2. PROGRAM Source File

