
Freescale Semiconductor
Application Note

Document Number: AN3906
Rev. 0, 06/2009

Contents

Overview . 1
Introduction to Serial-to-Ethernet Bridge Hardware. 2
Introduction to the Serial-to-Ethernet Bridge Software . 11
Serial-to-Ethernet Software . 20
Hardware Abstraction Layer (HAL) Implementation . . . 25
Serial Bridge API . 31
Customization . 32
Conclusion. 33

Serial-to-Ethernet Bridge Using
MCF51CN Family and FreeRTOS
by: Paolo Alcantara

RTAC Americas
Mexico 2009
1 Overview

1.1 Purpose
This document describes a serial-to-Ethernet bridge
using the MCF51CN128, the open-source RTOS
FreeRTOS™ v5.3.0 and the TCP/IP stack LwIP v1.3.0.
Serial interfaces used are UART and SPI. Ethernet
connects using a well-known socket implementation.

1.2 Scope
This document was written to help you enable older
serial interface-related designs for Ethernet connectivity.
Microcontrollers usually connect through interfaces like
SCI (or UART) and SPI. For this particular application,
the microcontroller used is the MCF51CN128, which
supports Ethernet-based connectivity.

To take advantage of this document, it is not mandatory
to have in-depth Ethernet protocol knowledge. For
custom modification, enough information is provided
in this application note.

1
2
3
4
5
6
7
8

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Introduction to Serial-to-Ethernet Bridge Hardware
1.3 Audience Description
This document can be used by software development engineers, test engineers, and anyone else who needs
to use a serial-to-Ethernet bridge.

1.4 Problem Reporting Instructions
Issues and suggestions about this document (and associated software) should be reported through the
support web page at www.freescale.com/support.

2 Introduction to Serial-to-Ethernet Bridge Hardware
You can easily add Ethernet (ETH) capabilities to your design using the serial-to-Ethernet bridge. This
implementation includes a small memory footprint web server and TCP/IP socket-to-serial
communication for a low-end Ethernet-based microcontroller solution. It does not require
in-depth knowledge of Ethernet / TCP/IP.

The following block diagrams are examples of how to use it:

Figure 1. Basic Configuration: A Serial Device Connected to Ethernet Using Serial Bridge

Figure 2. A Serial Device Connected to Another Serial Device Using Client and Server Implementation Using
Two Serial Bridges

Figure 3. A Serial Device Connected to a Serial Bridge, which is Connected to the Internet, and a Non-Serial
Bridge Receives and Transmits the Information
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor2

http://www.freescale.com/support
http://www.freescale.com/support

Introduction to Serial-to-Ethernet Bridge Hardware
2.1 Hardware Implementation
The MCF51CN128 reference design board has the smallest size specially designed for customers looking
for an end application solution. It’s a low-cost board that comes with a schematic, layout files in CAD
Allegro Editor, and Gerber files, provided for free. Figure 4 shows a block diagram of the hardware used
for this serial bridge.

The MCF51CN128 reference design hardware is divided into three parts:
a) Minimal System — contains all the hardware needed for a minimal implementation with
Ethernet functionality. Layout files can be copy-pasted to a new design for a customization in the
use of it by just providing an unregulated power source from 3.7 V to 5.5 V to finish the design.
This is the smallest system on the board and is delimited at 1.15” × 1.55”.
It has the following main components:
— MCF51CN128 48-pin QFN MCU
— RJ45 connector
— Use of two undefined twisted pairs of cable from RJ45 to power the board
— Ethernet PHY
— Reset button
— Power LED
— Non-standard 1 × 4 BDM
— Low dropout (LDO): the DC linear voltage regulator support from 3.7 V to 5.5 V
— 25 MHz crystal

Figure 4. Hardware Block Diagram of MCF51CN128 Reference Design Board

51CN128
48-pin QFN

PHY

RJ45

25MHz
crystal

Non-standard
BDM

RST

RS232

DB9 -
Female

RS485 uSD card
reader

Temp
Sensor

(i2c)

POT BDM

Accelerometer
(SPI)

Button
2

Button
1

+5.5V

Power
Jack

+3.3V

LDO

Minimal
System

RS485 -
Connector

Cut

Traces
for

Power
Selector

DEMO
System
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 3

Introduction to Serial-to-Ethernet Bridge Hardware
b) Demo System — includes all hardware necessary to test the minimal system. For this bridge
application, it has an RS232 and RS485 to test the UART interface. An accelerometer is used to
test the SPI bridge. For debugging purposes, a 2 × 6 header is provided, so you can easily use serial
signals outside the board.
It has the following main components:
— Power jack
— +5.5 V connector
— 2 × 6 serial header with the main serial signals
— Standard 2 × 3 BDM connector
— POT
— μSD card connector
— Two buttons
— RS232 and RS485 transceivers
— Accelerometer thru SPI interface
— Temperature sensor thru IIC interface
— General-purpose LED
— Cut traces to select among all the power options
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor4

Introduction to Serial-to-Ethernet Bridge Hardware
Hardware limitations are as follows:
— Use of UART with hardware flow control or μSD card
— Use of potentiometer (POT) or accelerometer (SPI)

NOTE
When using MCF51CN128, the μSD card must not be connected to the μSD
card connector, or the SPI-to-Ethernet bridge will not work.

c) Connection between minimal system and demo system — a set of zero-Ω resistors that isolate
both parts are present and visible at the top and bottom layers. Disconnecting them isolates the
minimal system from the demo system.

2.2 MCF51CN128 Reference Design Board Power Options
The following figure shows the power options for the MCF51CN128 reference design board.

The options are listed below:
• Ethernet: Brown and blue pairs take power. The brown pair is positive and the blue pair is negative.

Power consumption drop due to Ethernet cable length must be considered when carrying power
through the RJ45 cable. Note this is not power over Ethernet (PoE) but a way to power the
MCF51CN128 reference design board.

• UART: pin six, +5.5 V unregulated power
• Power jack connector (default power source)
• Regulated 3.3 V jack connector

·
Figure 5. MCF51CN128 Reference Design Board Power Options Schematic
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 5

Introduction to Serial-to-Ethernet Bridge Hardware
2.3 Hardware Pictures
The following picture shows the MCF51CN128 reference design hardware.

Figure 6. MCF51CN128 Reference Design Board Rev. A

Figure 7. MCF51CN128 Reference Design Board Rev. A

The serial bridge is targeted at the MCF51CN128 reference design board but also works with the tower
board, shown below. For more details about the tower visit www.freescale.com/tower.
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor6

http://www.freescale.com/tower
http://www.freescale.com/tower

Introduction to Serial-to-Ethernet Bridge Hardware
Figure 8. Tower System with MCF51CN128 Card Rev. C

For the MCF51CN128 reference design hardware, there is no need to move jumpers because it doesn’t
have any. The board is ready to use as it is. Board schematics, layout, and gerber file are provided in case
a customization in hardware is required for specific use of the serial-to-Ethernet bridge.

For the tower rev. C, use the TWR-MCFSICN user manual default jumper configuration.

2.4 Board Operation
The serial bridge can work in two modes:

• Configuration mode — a serial interface (UART or SPI) is used to configure serial bridge. This is
the default mode.

• Bridge mode — characters received at serial interface, are sent to Ethernet and vice versa.

The web server interface works all the time but the serial configuration (UART or SPI) works only in
configuration mode.
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 7

Introduction to Serial-to-Ethernet Bridge Hardware
The serial bridge starts with the following configuration:

MAC Parameters

MAC address 00:CF:52:35:00:07

IP address 192.168.1.3 for static implementation

Mask address 255.255.255.0

Gateway address 192.168.1.1

Server address to connect to an address 192.168.1.3

Static or dynamic address Dynamic

TCP Parameters

TCP port to connect to 1234

Client or server implementation 192.168.1.3

Configuration or bridge Implementation Bridge

UART Parameters

Port First port

Baud rate 19200

Parity None

Number of bits 8

Number of stop bits 1

Flow control Software flow control

SPI Parameters

Port Second port

Baud rate 1 Mbps

Polarity Low

Phase Middle

Master or slave Master

Polling or interrupt handling Polling
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor8

Introduction to Serial-to-Ethernet Bridge Hardware
The following is the list of commands that can be sent through UART or SPI to configure the bridge only
in configuration mode. For example, if board_get_uart_port command is requested, the serial interface
must send packets as shown in the following table and Figure 9.

NOTE
GET functions will return the same number of characters as “Number of
Parameters.”

Table 1. GET Commands to Get Bridge Parameters

GET Commands

Command Name
1st Character:
Command ID

2nd Character:
Number of
Parameters

3rd Character:
SubCommand ID

board_get_eth_dhcp_auto 0x50 1 0

board_get_bridge_configuration 0x50 1 1

board_get_bridge_tcp_mode 0x50 1 2

board_get_bridge_tcp_server 0x50 1 3

board_get_uart_port 0x50 1 4

board_get_uart_parity 0x50 1 5

board_get_uart_number_of_bits 0x50 1 6

board_get_uart_stop_bits 0x50 1 7

board_get_uart_flow_control 0x50 1 8

board_get_spi_port 0x50 1 9

board_get_spi_polarity 0x50 1 10

board_get_spi_phase 0x50 1 11

board_get_spi_master 0x50 1 12

board_get_spi_interrupt 0x50 1 13

board_get_email_authentication_required 0x50 1 14

board_get_bridge_tcp_port 0x50 2 0

board_get_spi_baud 0x50 2 1

board_get_eth_ip_add 0x50 4 0

board_get_eth_netmask 0x50 4 1

board_get_eth_gateway 0x50 4 2

board_get_eth_server_add 0x50 4 3

board_get_uart_baud 0x50 4 4

board_get_eth_ethaddr 0x50 6 0

board_get_email_username 0x50 6 1

board_get_email_password 0x50 6 2

board_get_email_smtp_server 0x50 6 3
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 9

Introduction to Serial-to-Ethernet Bridge Hardware
NOTE
SET functions will return zero if the command was correctly executed.
Another number means the command failed.

Table 2. SET Commands to Change Bridge Parameters

SET Commands

Command Name
1st Character:
Command ID

2nd Character:
Number of
Parameters

3rd Character:
SubCommand ID

board_set_eth_dhcp_auto 0xA0 1 0

board_set_bridge_configuration 0xA0 1 1

board_set_bridge_tcp_mode 0xA0 1 2

board_set_bridge_tcp_server 0xA0 1 3

board_set_uart_port 0xA0 1 4

board_set_uart_parity 0xA0 1 5

board_set_uart_number_of_bits 0xA0 1 6

board_set_uart_stop_bits 0xA0 1 7

board_set_uart_flow_control 0xA0 1 8

board_set_spi_port 0xA0 1 9

board_set_spi_polarity 0xA0 1 10

board_set_spi_phase 0xA0 1 11

board_set_spi_master 0xA0 1 12

board_set_spi_interrupt 0xA0 1 13

board_set_email_authentication_required 0xA0 1 14

board_set_bridge_tcp_port 0xA0 2 0

board_set_spi_baud 0xA0 2 1

board_set_eth_ip_add 0xA0 4 0

board_set_eth_netmask 0xA0 4 1

board_set_eth_gateway 0xA0 4 2

board_set_eth_server_add 0xA0 4 3

board_set_uart_baud 0xA0 4 4

board_set_eth_ethaddr 0xA0 6 0

board_set_email_username 0xA0 6 1

board_set_email_password 0xA0 6 2

board_set_email_smtp_server 0xA0 6 3
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor10

Introduction to the Serial-to-Ethernet Bridge Software
NOTE
The RST function returns zero if it was correctly received.

For example, to ask for the serial port configuration, send the following sequence:

Figure 9. Packet Visual Explanation

The answer from the bridge means it correctly received the command and UART port configuration is
located at port number one.

3 Introduction to the Serial-to-Ethernet Bridge Software
A serial-to-Ethernet bridge works between two interfaces. The purpose of serial-to-Ethernet bridge
software is to get all the information at one interface and send it to the other as quickly as possible. Because
of this, several features must be considered during development.

3.1 Flow Control
When a high-speed interface like Ethernet tries to connect to low-speed interfaces like UART or SPI, a
flow-control protocol must be implemented as a speed adapter.

Ethernet does not feature a flow-control implementation. Transport control protocol (TCP) from the
TCP/IP suite is used in this case. TCP provides a reliable connection by ensuring all the packets arrive at
their destination using an acknowledge (ACK) scheme. TCP also negotiates packet lengths from one
Ethernet device to the other, automatically.

For UART, two flow-control schemes and null-flow control were implemented. Using hardware flow
control, two extra pins (clear-to-send (CTS) and request-to-send (RTS)) in addition to TxD and RxD are
used to stop or start communication at both UART sides. Four communication pins (CTS, RTS, TXD, and
RXD) are needed.

For software flow control, start (XON) and stop (XOFF) commands are sent as characters, as part of data
communication. Only two pins are used (RxD and TxD). However, an extra software layer must be added
to UART software drivers to have this feature. Additionally a non-flow control is presented.

RST Command

Command name 1st Character

Reset the board 0x88
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 11

Introduction to the Serial-to-Ethernet Bridge Software
However, at continuous transfers, either baud rate, transfers can quickly fill the UART software buffer if
they are not taken by the serial bridge application at the same rate. Then the “extra” received at this point
will be dropped. Baud rate and amount of data needed to calculate buffer’s high watermark are highly
dependent on the tasks being run and tasks’ priorities when using an RTOS. This will be explained in the
next section.

For SPI, no flow control is implemented to avoid altering an SPI message with an extra header. Flow
control must be implemented at the application layer by using acknowledges or another customized
flow-control protocol.

Figure 10. How Flow Control Must be Implemented for the SPI Interface at Upper Software Layers

Figure 11. A Hypothetical SPI Packet Using Flow Control

3.2 Buffer Information Between Interfaces
Even if we can stop communication very easily with a flow-control protocol, if we do it very often,
communication performance will go down, especially for serial protocols like UART and SPI.

This performance issue can be easily predicted by using UART or SPI hardware buffers, which are
one-to-four bytes buffers long most of the time. In this hypothetical case, the Ethernet data length can go
from 64 to 1518 bytes (this can be limited by TCP maximum length packet). Data will be sent as soon as
possible to the UART controller, but its hardware buffer will be filled very quickly. Delays can be solved
by using an interrupt-to-signal application bridge that a character can be sent. However, the delay until an
interrupt requesting free space on UART hardware buffer happens must be considered. This delay can be
decreased by using a software buffer between the bridge application and the UART controller. In this way,
the application bridge can fill the software buffer and the UART ISR will take it character by character
until it is emptied in this transmission case. In this way, the number of times communication is stopped by
using flow control is reduced. See Figure 12 and Figure 13 for more details.
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor12

Introduction to the Serial-to-Ethernet Bridge Software
Figure 12. Bridge without Software Buffer Implementation

Figure 13. Bridge with Software Buffer Implementation

For the UART Rx case, software buffer is important to store all characters that can be received in one
RTOS tick starting to count from the first character and send a more efficient Ethernet packet by using all
the available max bytes for a packet instead of a few bytes. Ethernet is more efficient by using as much
data as possible to avoid an Ethernet header bigger than the data (protocol overhead). This is useful when
a lot of data is to be sent.

The serial bridge solves this problem by using software memory spaces known as buffers in a FIFO
fashion-way to queue and de-queue data. We use independent buffers for Rx and Tx as a way to store all
the information that can’t be processed at the time by the bridge. For the UART software, Tx buffer length
is 512 bytes, which matches with the half of TCP max packet and the half for Rx buffer length. 16 bytes
is used for each SPI software buffer: Tx and Rx.

3.3 Communication Processing
Media access controllers (MACs) or Ethernet controllers have a default buffer implementation, which
means the received data is stored as complete buffers that are managed by a higher Ethernet software
implementation like a TCP/IP stack. In this way, hardware receives the packet as a complete array of bytes
instead of byte per byte, getting a higher communication performance. These buffers’ lengths are usually
fixed to maximal Ethernet packet, which is 1536 bytes. In this implementation, interrupt processing for
each packet seems better than a polling implementation that wastes time waiting for a reception flag to be
set. However, protocols like UART and SPI receive character per character.
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 13

Introduction to the Serial-to-Ethernet Bridge Software
At low baud rates, like 300 kbps for UART and SPI, an interrupt approach seems prudent to avoid
consuming extra CPU time waiting for a character transmission or reception in a while loop
implementation until it’s done. A problem arises when baud rate becomes higher (for example 12.5 Mbps
for SPI), near CPU operational frequency like the MCF51CN128 (50 MHz CPU clock). In this case, a
polling approach that will wait a few CPU cycles seems more adequate to avoid losing communication
performance by each interrupt service routine (ISR) call that will occur very often as the baud rate is closer
to the CPU frequency. For a UART implementation, which can get up to 115.2 kbps, an interrupt approach
is correct for all the possible baud rates. For SPI, a 300 kbps is a valid baud rate to use with interrupts.
Additionally, the MAC controller (Ethernet controller) doesn’t show this problem because it receives as a
complete packet and not byte per byte.

However, for SPI, which can get up to 12.5 Mbps, a polling approach is better. For UART implementation,
interrupt approach is fixed as the default way to transmit and receive and cannot be changed at run time
by the user. However, SPI has the option to choose between polling or interrupt character handling. At
lower speeds like 300 kbps, interrupt handling makes sense, but at higher baud rates, polling must be
chosen to avoid losing performance. For slave processing, interrupt approach must be used to receive/send
characters. You must choose which is the better implementation for your SPI bridge depending on the baud
rate and amount of data being sent. Table 3 shows a summary of this section.

3.4 Interoperability Among Several Serial Devices
The following serial bridge has specific default setting for Ethernet, SPI, and UART interfaces. This could
be customized to fit specific needs, however, a default configuration is given for each interface. See
Table 3 for details. These settings can be changed at run time by using a web page interface (Figure 26),
which is embedded in HTML code with the firmware. Then, the serial bridge can be configured from any
Ethernet node inside the network, like the Internet as shown in Table 3.

Figure 14. Serial Bridge in Bridge Mode

Table 3. Baud Rates and Data Handling

Communication Process

Baud rate UART and SPI

Greater than 300 kbps Pollings

Less than 300 kbps Interrupts
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor14

Introduction to the Serial-to-Ethernet Bridge Software
Figure 15. Serial Bridge in Configuration Mode

This webpage is present at any time and changes made through it take effect under the next reset, by either
using the hardware (RST button) or by the web page as well. However, the serial bridge works in two
modes: configuration mode or bridge mode. In configuration mode, serial interfaces like UART or SPI can
be configured directly by a set of commands sent directly through the serial interface. As soon as these
commands are according to customer user case, a switch to bridge command is requested and then a reset
command. To change again to configuration mode, this must be requested by the web page. A switch from
bridge mode to configuration mode from serial interface (UART or SPI) cannot be made to avoid altering
bridge operability.
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 15

Introduction to the Serial-to-Ethernet Bridge Software
Figure 16. Webpage Configuring Serial Settings and Showing the Actual Configuration

3.5 Extra Features
The serial-to-Ethernet bridge works with TCP as its main feature. TCP is implemented in a server and
client concept. A client connects only to a server. The server is always listening for new connections. The
serial bridge can work in both directions by configuring a setting at run time through the serial interface at
configuration mode or through the configuration web page at any time. As another feature, TCP/IP suite
includes the Internet protocol (IP), which uses a unique address inside a network, like Internet, that allows
us to communicate with any device inside this network of any architecture that runs TCP/IP suite. Both
features together allow this serial-to-Ethernet bridge to connect a serial device (UART or SPI) virtually to
any part of the world that is connected to the Internet. Figure 1, Figure 2, and Figure 3 show these cases.

3.6 Limitations
Ethernet is the key of the serial bridge. All the serial configurations must have Ethernet at one side and
only one serial interface at a time (SPI or UART) at the other side. This means the bridge cannot be an
SPI-to-UART bridge, because this goes out of the scope of this document. For more information about SPI
and UART see the MCF51CN128 Reference Manual. For software go to Processor ExpertTM for
CodewarriorTM v6.2.1.
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor16

Introduction to the Serial-to-Ethernet Bridge Software
Security schemes like secure sockets layer (SSL) are not implemented in this phase of project. SSL works
between the TCP/IP suite (TCP, UDP) and the applications layer (HTTP, FTP, SMTP). See Figure 17 for
more details. Because of this, SSL software must point to receive and transmit functions from TCP/IP suite
and applications must now point to this new SSL layer as the interface for Rx and Tx. However, security
can be implemented externally by letting a firewall do this job.

Figure 17. Figure H: SSL Layer in the TCP/IP Suite

3.7 Bridge Functionality
The following is the list of all features implemented by the serial bridge.

3.7.1 MAC Side
• DHCP service
• For MCF51CN128 reference design hardware, power can be applied to both unused pairs from

RJ45 cable, so there’s no need for a power-through jack. See Figure 5 for more details.
• For MCF51CN128 reference design hardware, we are using 48-pin QFN, using the smaller

package for this software.
• For tower hardware, it uses 80-LQFP, allowing the Mini-FlexBus Interface to not be present in

a smaller package.
• The following settings can be changed or shown at run time through the configuration web page or

at compile time in the file constants.c:
— MAC address
— IP address
— Mask address
— Gateway address
— Server address to connect as a client
— Static or dynamic address
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 17

Introduction to the Serial-to-Ethernet Bridge Software
3.7.2 TCP Side
• Supports client or server implementation that allows connecting two serial bridges using the

internet or a cross-over cable.
• A web page, always enabled, can configure all interfaces and bridge settings. A reset command can

be sent through the web page to make settings take effect.
• The following settings can be changed or shown at run time through the configuration web page or

at compile time in the file constants.c:
— TCP port to connect or bind to
— Client or server implementation
— Configuration or bridge implementation.

3.7.3 UART Side
• Using hardware and software flow control for RS232 interface.
• Bridge can be configured through UART interface using a set of commands explained in

Section 2.4, “Board Operation.”
• For MCF51CN128 reference design hardware, RS485 hardware is present as well.
• For MCF51CN128 reference design hardware, power can be applied to pin six of UART connector,

so there’s no need for a power-through jack. See Figure 5 for more details.
• The following settings can be changed or shown at run time through the configuration web or at

compile time in the file constants.c:
— Port
— Baud rate
— Parity
— Number of bits
— Number of stop bits
— Flow control
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor18

Introduction to the Serial-to-Ethernet Bridge Software
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

3.7.4 SPI Side
• Master or slave bridge support
• The bridge can be configured through SPI interface using a set of commands explained in

Section 2.4, “Board Operation.”
• For MCF51CN128 reference design hardware, an accelerometer by SPI is on-board to test the SPI

bridge.
• The following settings can be changed or shown at run time through the configuration web page or

at compile time in the file constants.c:
— Port
— Baud rate
— Polarity
— Phase
— Master or slave
— Polling or interrupt handling.

NOTE
The software was developed for the MCF51CN128 reference design
hardware to demonstrate low cost and small board size. It can also be used
in the tower board.

Selection between either M51CN128RD or V1TOWER C-macros inside m51cn128evb.h file.

Figure 18. Code Snippet for Hardware Change
Freescale Semiconductor 19

Serial-to-Ethernet Software
4 Serial-to-Ethernet Software

4.1 Software Architecture
The following figure shows how the serial bridge is divided and what software blocks are used for this
implementation.

Figure 19. Software Segmentation

The main points to highlight are the use of open source software for the bridge.

4.1.1 FreeRTOS v5.0.3

FreeRTOS is the core of the serial bridge. It manages all the interrupts and tasks. The RTOS is highly
coupled with the MCF51CN128 MCU by using RTC and CPU registers.

This RTOS was chosen because it has the following features:
• Open source
• Great features
• Can be used in commercial applications
• Forum support
• Smallest footprint (See Table 4)
• Available in 19 architectures
• Can be upgraded to SafeRTOS used for safety-critical applications

To change bridge source code, knowledge of RTOS is needed to change the following:
• Semaphores
• Mutexes
• Interrupt handling
• RAM memory handling
• Preemptive tasks
• Tasks’ priorities and stack space

HIL &
Services

FTP
Server

Email
Client

UIF
(UART)

uSD
Card

Serial
Bridges

HTTP
Server 2.0

FreeRTOS (RTOS)

UART SPI IIC

FAT16 SD

DCHP
Client

lwIP 1.3.1 TCP/IP Stack

MAC

SCI SPI IIC GPIO ADC RTC FEC KBI

Hardware

HAL

Apps
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor20

Serial-to-Ethernet Software
The serial bridge uses a debugging service that uses two FreeRTOS services called
configUSE_TRACE_FACILITY and INCLUDE_vTaskDelete. The first one is used to show tasks’ usage
at run time. The second is used to delete a task at run time. Both can be disabled if a final release doesn’t
need them, then decrease the memory footprint.

NOTE
Memory footprint doesn’t consider RAM space taken by the kernel or the
tasks at run time, only at compile time.

4.1.2 LwIP v1.3.0

This active open-source software handles all the Ethernet transactions and enables the TCP/IP suite.
This TCP/IP stack is also highly coupled for this serial bridge and limited RAM memory on this MCU
(24 KB). LwIP takes 12.15 KB from RAM memory at compile time to start all the TCP/IP services needed
by the serial bridge. At run time, it takes necessary RAM memory available from the HEAP. It allocates
and releases some buffers at run time. It uses a very limited set of network buffers to send and receive
information from application higher layers.

Some of LwIP features are:
• IP
• ICMP
• UDP
• TCP
• Specialized raw API (used for this serial bridge)
• Optional socket API
• DHCP
• PPP
• ARP

The implementation of a layered software architecture allows to easily migrate this application software
to other Freescale MCUs like MCF5225x, MCF5223x, or even higher processors if more resources are
needed like FlexCAN, Encryption, or USB. The following sections give more detail.

Table 4. FreeRTOS Memory Footprint for the Serial Bridge

FreeRTOS Files ROM RAM

list.c 212 0

queue.c 1728 0

tasks.c 3134 340

heap_3.c 68 0

port.c 300 4

portasm.s 248 0

Total 5690 B 344 B
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 21

Serial-to-Ethernet Software
The following table shows how modules are fit in the memory for the MCF51CN128 MCU with the
debugging option enabled/disabled. The code snippet to enable/disable this feature is also shown.

Figure 20. Code Snippet: Debugging Options OFF (cc.h)

Table 5. LwIP Memory Footprint for MCF51CN128 MCU (Debugging Options ON)

MODULE ROM RAM

TCP/IP API 7003 24

DHCP 6298 4

DNS 1887 569

ETHERNET 3201 47

FEC 1140 4678

ICMP 1188 0

IP 3556 12

LwIP+FREERTOS 1483 4

OTHERS 6087 8604

STDLIB 3056 20

TCP 15143 77

UDP 1594 4

TOTAL 51636 14043

Table 6. LwIP Memory Footprint for MCF51CN128 MCU (Debugging Options OFF)

MODULE ROM RAM

TCP/IP API 5887 24

DHCP 5213 4

DNS 1639 569

ETHERNET 2536 47

FEC 1140 4678

ICMP 772 0

IP 5072 12

LwIP+FREERTOS 824 4

OTHERS 4017 8604
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor22

Serial-to-Ethernet Software
NOTE
Memory footprint doesn’t consider RAM space taken by the TCP/IP suite
at run time, only at compile time.

STDLIB 3056 20

TCP 12896 77

UDP 1396 4

TOTAL 44448 14043

Table 6. LwIP Memory Footprint for MCF51CN128 MCU (Debugging Options OFF) (continued)
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 23

Serial-to-Ethernet Software
4.2 3.2 Software Hierarchy
The following figure shows files’ hierarchy:

Figure 21. File Implementation
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor24

Hardware Abstraction Layer (HAL) Implementation
For this hierarchical files’ distribution, an explanation of each one is provided as follows:

5 Hardware Abstraction Layer (HAL) Implementation
The hardware abstraction layer (HAL) is defined as a collection of software components that make direct
access to the hardware resources such as peripherals, configuration registers, optimized assembler routines
(with their appropriate prototypes), pre-compiled object code libraries, or any other hardware-dependent
resource, through the HAL-HW interface.

The following figures are representation of the software blocks more important for the HAL, the closest
software layer to hardware, using modules and register present on the MCF51CN128 MCU.

Table 7. File Purpose

Layer File Name Description

Main main.c Enable and disable the tasks running on MCF51CN128 MCU

HAL spi.c Low-level init for SPI bridge

spi.h Macros containing SPI low-level utilities

uart.c Low-level init for UART bridge

uart.h Macros containing SPI low-level utilities

gpio.c Routines that use pins for the selected MCU directly

gpio.h Points all the modules to a specific pin for the selected MCU

fec.c Low-level init for FEC driver

fec.h Number and length of Rx/Tx buffers

cf_board.h HAL layer to use with this serial bridge

HIL uart_rtos.c UART flow control and high level initialization

uart_rtos.h UART features like port, baud rates for high-level init

spi_rtos.c SPI-interrupted or polling processing

spi_rtos.h SPI features like port, baud rates for high-level init

constants.c Structure containing all the default parameters after reset

lwipopts.h LwIP options to enable/disable services

FreeRTOSConfig.h FreeRTOS options to enable/disable services

Applications uart_bridge.c Task running the UART-to-Ethernet bridge

uart_bridge.h Contains the UART software buffer length and task priority

spi_bridge.c Task running the SPI-to-Ethernet bridge

spi_bridge.h Contains the SPI software buffer length and task priority
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 25

Hardware Abstraction Layer (HAL) Implementation
5.1 Fast Ethernet Controller (FEC) Handling
The FEC is the Freescale implementation of the media access controller (MAC). The use of it for reception
and transmission is explained in the following figures.

The FEC controller stores the Rx and Tx packets in a buffer descriptor scheme, which means eight bytes
of memory are needed for each one of these. The buffer descriptor is mainly composed of the following
elements:

• Buffer descriptor status and control flags
• Buffer length of received data or data to be transmitted
• Buffer pointer associated with reception or transmission

FEC controller has two registers (ERDSR and ETSDR) to point to start of buffer descriptor. Each one is
for Rx and Tx. Then all the buffer descriptors (Rx or Tx) are consecutive. Then the FEC controller jumps
from buffer descriptors waiting to the next available one until it finds the wrap flag in the buffer descriptor,
which means it starts looking for an available buffer descriptor at the one pointed to by the FEC controller
register (ERDSR and ETSDR). This means buffer descriptor acts in a circular buffer concept.

For this implementation, we have two Rx and Tx buffer descriptors. Each Rx buffer descriptor has an
associated buffer of 1520 bytes. For the Tx buffer we have only one buffer of 1520 bytes.

The low-level reception of the FEC controller is divided into two parts:
• The FEC RX ISR acknowledges the FEC controller and signals the FEC reception task, highest

priority task in this software project. The FEC controller automatically selects the next available
Rx buffer and copies all the received data to it.

• The FEC reception task is waiting for the signaling from the FEC RX ISR. As soon as it gets it, it
stores the buffer to the network buffers used by LwIP TCP/IP stack. Then it releases the buffer so
the buffer can be available during the next reception by the FEC RX ISR. Finally, it waits for a new
signal from the FEC RX ISR.
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor26

Hardware Abstraction Layer (HAL) Implementation
Figure 22. FEC Rx Processing

The low-level transmission of the FEC controller is as follows:
1. Wait for an available buffer descriptor
2. Fill from the network buffers (LwIP TCP/IP stack) to the Tx buffer
3. Start the Tx transfer
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 27

Hardware Abstraction Layer (HAL) Implementation
Figure 23. FEC Tx Processing

To avoid having the FEC transmit duplicate packets, follow these steps:
1. Create two Tx buffers’ descriptors
2. Allocate one Tx buffer
3. Both Tx buffers’ descriptors point to the same allocated Tx buffer
4. Send as usual; more details in Figure 24

Figure 24. Code Snippet Showing How Both Buffer Descriptors Point to the Same Buffer Area
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor28

Hardware Abstraction Layer (HAL) Implementation
5.2 Hardware-Independent Layer (HIL) Implementation
To maintain hardware independence, software components that belong to this layer can access controller’s
resources only by means of HIL components. Therefore, they refrain from directly accessing the resources
of the controller on which they are running. This feature allows for components from this and the above
layers to run on different controllers without further change.

The following figures represent the software blocks more important for the HIL, the closest software layer
to applications, using HAL software layers.

5.2.1 UART Flow Control

The following flow diagrams are part of uart_rtos.c and uart_rtos.h implementation for the Rx and Tx flow
control.

Figure 25. Rx ISR Flow Control State Machine
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 29

Hardware Abstraction Layer (HAL) Implementation
Figure 26. Tx ISR Flow Control State Machine

5.2.2 Overall Functionality

The following figures show the functionality of the application bridge as software and hardware blocks
and the differences between them with a polling or interrupt implementation. Files uart_rtos.c and
spi_rtos.c with their respective header files show this functionality.

Figure 27. Polling Handling
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor30

Serial Bridge API
Figure 28. Interrupt Handling

6 Serial Bridge API
The following tables show the main functions used for the serial-to-Ethernet bridge

The bridge only has two main functions to allow the bridge to run:
Table 8. UART to Send and Receive Character

Sintaxis

void

BRIDGE_UART_Task(void
*pvParameters)

Description

/**
 * Ethernet to SPI task
 *
 * @param none
 * @return none
 */

Description

UART to Ethernet Task
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 31

Customization
7 Customization
For customization, the following files must be changed for a change in software or hardware:

Table 9. Figure W: SPI-to-Send and Receive Characters

Sintaxis

void

BRIDGE_SPI_Task(void *pvParameters)

Description

/**
 * Ethernet to SPI task
 *
 * @param none
 * @return none
 */

Usage

SPI to Ethernet Task

File Name Description

cf_board.h Used to point to a new BSP, new HAL software drivers.

lwipopts.h LwIP configuration file. Enables/disables TCP/IP options.

gpio.c/gpio.h Changes GPIO used for all modules in the MCU.

FreeRTOSConfig.h FreeRTOS user-configuration file. Enables/disables features.

constants.c Default setting for this serial bridge.

uart_birdge.h Select task priorities and buffer length for UART bridge.

spi_bridge.h Select task priorities and buffer length for SPI bridge.
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor32

Conclusion
8 Conclusion
This document described considerations and use of a serial-to-Ethernet bridge. Parameters can be changed
at both sides of the bridge. Flow control is a very important key to adapt higher-baud rate interfaces like
Ethernet (10/100 Mbps) to lower-baud rate interfaces like UART (115.2 kbps). The use of sockets and
software buffers are also main components that enabled interoperability and performance for this bridge.
Bridge parameters can be configured using a web page or by commands using a serial interface.
MCF51CN128 reference design hardware is a perfect choice to test and use as an end application board.
Regarding the software, FreeRTOS and LwIP are greatly coupled for the MCF51CN128 and are
open-source code, making a perfect choice as a firmware option. As a final note, the following table shows
FreeRTOS and LwIP memory footprints:

8.1 Considerations and References
Find the newest software updates and configuration files for the MCF51CN128 at the Freescale
Semiconductor home page: www.freescale.com

• MCF51CN128 reference design and tower system were the hardware used to test the AN3906SW.
• For more information on the FEC, SPI, or UART interface, refer to MCF51CN128 Reference

Manual at www.freescale.com.
• To learn more about the tower system please visit: www.freescale.com/tower.
• The BridgeSoftwareDemo software was developed and tested with CodeWarrior for Coldfire

v6.2.1.
• Download the source files for AN3906SW.zip from www.freescale.com.

Table 10. Table K: Final Results for FreeRTOS and LwIP

ROM RAM

FreeRTOS 5.5 KB 344 B

LwIP 43.4 KB 13.71 KB

Total 48.8 KB 12.8 KB
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 33

http://www.freescale.com
http://www.freescale.com
www.freescale.com/tower

Document Number: AN3906
Rev. 0
06/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Overview
	1.1 Purpose
	1.2 Scope
	1.3 Audience Description
	1.4 Problem Reporting Instructions

	2 Introduction to Serial-to-Ethernet Bridge Hardware
	2.1 Hardware Implementation
	2.2 MCF51CN128 Reference Design Board Power Options
	2.3 Hardware Pictures
	2.4 Board Operation

	3 Introduction to the Serial-to-Ethernet Bridge Software
	3.1 Flow Control
	3.2 Buffer Information Between Interfaces
	3.3 Communication Processing
	3.4 Interoperability Among Several Serial Devices
	3.5 Extra Features
	3.6 Limitations
	3.7 Bridge Functionality
	3.7.1 MAC Side
	3.7.2 TCP Side
	3.7.3 UART Side
	3.7.4 SPI Side

	4 Serial-to-Ethernet Software
	4.1 Software Architecture
	4.1.1 FreeRTOS v5.0.3
	4.1.2 LwIP v1.3.0

	4.2 3.2 Software Hierarchy

	5 Hardware Abstraction Layer (HAL) Implementation
	5.1 Fast Ethernet Controller (FEC) Handling
	5.2 Hardware-Independent Layer (HIL) Implementation
	5.2.1 UART Flow Control
	5.2.2 Overall Functionality

	6 Serial Bridge API
	7 Customization
	8 Conclusion
	8.1 Considerations and References

