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This application note describes how to write efficient C code 
for the i.MX platform. Because the i.MX platform is based 
on the ARM® cores, this application note is applicable for 
all i.MX devices. This document uses standard C for the 
examples; however, the techniques described apply equally 
to C++. The examples in this document are simple and 
concise in order to highlight specific issues.

Currently, the ARM family accounts for approximately 75% 
of all embedded 32-bit RISC CPUs, making it one of the 
most widely used 32-bit architectures. ARM CPUs are found 
in most areas of consumer electronics from portable devices 
(PDAs, mobile phones, media players, handheld gaming 
units, and calculators) to computer peripherals (hard drives, 
desktop, routers). This application note assumes the reader 
has some knowledge of ARM assembly programming.
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C Compiler Overview

1 C Compiler Overview
Since C language is the most common programming language for embedded systems, this document 
assumes the reader is familiar with interpreting C code. To write efficient C code, programmers should be 
aware of the following issues:

• Areas where the C compiler has to be conservative

• The limits of the processor architecture the C compiler is mapping to

• The limits of a specific C compiler vendor.

The examples in this document have been tested using armcc from the ARM developer suite using the 
following command line:

armcc --c90 --cpu=ARM926EJ-S -O0

which means that the armcc compiler for ISO standard C (1990) source language is used with no space or 
time optimizations. The processor target is the ARM926EJ-S™ with little endian byte order.

2 Basic C Data Types
The ARM processors have 32-bit registers and a 32-bit Arithmetic Logic Unit (ALU). The ARM 
architecture is a RISC load/store architecture which means that values are loaded from memory into 
registers before they are used. The armcc compiler uses the data type mappings shown in Table 1. For 
ARM microprocessors, the char type is unsigned for ARM compilers which can cause problems when 
porting code from other processor architectures.

2.1 Local Variable Types
Most ARM data processing operations are only 32-bit. Thus, it is recommended to use a 32-bit data type, 
int or long, for local variables wherever possible. To see the effect of local variable types, consider 
Example 1.

Table 1. Data Type Mapping

C Data Type Implementation

char Unsigned 8-bit char

short Signed 16-bit (halfword)

int Signed 32-bit word

long Signed 32-bit word

long long Signed 64-bit double word
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Basic C Data Types

Example 1. Char Type Local Variable 

At first, it looks as if declaring i as a char is efficient and that char uses less register space or less space on 
the ARM stack than int. Unfortunately, both of these assumptions are incorrect since all ARM registers are 
32-bit and all stack entries are at least 32-bit. In addition, to implement i++, the compiler must account for 
the case when i is equal to 0xFF. The compiler output for this function is shown in Example 2.

Example 2. Char Type Local Variable Compiler Output

The compiler increments i by 1 and inserts an and instruction to reduce i to the range 0 to 255 before the 
comparison with 0xFF. Example 3 shows what happens when i is declared as short type.

Example 3. Short Type Local Variable 

The result (shown in Example 4) is a little less efficient since the compiler inserts lsl and asr instructions 
to reduce i to the range 0 to 65535 before the comparison with 0xFF.
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Basic C Data Types

Example 4. Short Type Local Variable Compiler Output
 

Example 5 shows i declared as int type. 

Example 5. Int Type Local Variable 
 

The routine with i declared as int type, shown in Example 6, is more space efficient because it requires 
only six assembly instructions instead of seven for char type or eight for short type.

Example 6. Int Type Local Variable Compiler Output
 

By using i as long type, the output (in Example 7) is similar to the int type version, since int and long are 
both signed 32-bit word for the armcc compiler.

Example 7. Long Type Local Variable Compiler Output
 

2.2 Function Argument Type
The previous section shows that using int or long types as local variables increases performance and 
reduces code size. The same is true for function arguments. Example 8 shows a function using char type.
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Example 8. Char Type Function Argument 

The input values a and b are passed in 32-bit ARM registers. The return value is also passed in a 32-bit 
register. For the armcc compiler, function arguments are passed narrow and values are returned narrow. 
That means the caller casts argument values and the callee casts return values. The armcc output for 
FunctionArgumentV1, shown in Example 9, demonstrates that the compiler casts the return value to char 
type with an and assembly instruction. 

Example 9. Char Type Function Argument Compiler Output
 

Example 10 and Example 11 show the caller for FunctionArgumentV1.

Example 10. Function Argument Caller
 

The caller uses short parameters when the arguments are char type. The callee casts the input values since 
the caller has implicitly ensured that the arguments are in the range of char type.

Example 11. Function Argument Caller Compiler Output
 

Example 12 shows the function arguments modified to short type.

Example 12. Short Type Function Argument 
 

The compiler output (in Example 13) shows that the compiler inserts lsl and asr instructions to cast i to 
the range of short type before returning the value through the r0 register.
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C Loops

Example 13. Short Type Function Argument Compiler Output
 

Finally, Example 14 uses int type as the function arguments.

Example 14. Int Type Function Argument
 

The compiler output (in Example 15) shows that the arguments are passed to the function through the r0 
and r1 registers. There is no casting for the return value since the resulting sum matches the return type. 
FunctionArgumentV3 only requires three instructions.

Example 15. Int Type Function Argument Compiler Output
 

Undoubtedly, char or short type function arguments and return values introduce extra casts. These extra 
casts increase code size and reduce performance. It is more efficient to use int or long types for function 
arguments and return values, even if only an 8-bit value is being passed.

3 C Loops
This section describes the most efficient ways to code for and while loops on the ARM architecture and 
the specific implementations for the armcc compiler.

3.1 For Loop
Example 16 shows a for loop implemented on the ARM platform. This example uses the ForLoopV1 
function which has a fixed number of iterations.

Example 16. For Loop
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The compiler output is shown in Example 17. The first line sets i to 0. Then, the output jumps to address 
0x110 where two subs/subcs instructions compare if i is less than 0x1FFFF. If the condition is true, the 
code jumps to address 0x10C where i is incremented by 1. If the condition is not true, the code returns 
from the function.

Example 17. For Loop Compiler Output
 

This code can be improved using a loop that counts down to zero and uses the continuation condition i != 0 
as shown in Example 18. 

Example 18. Improved For Loop

The new compiler output (in Example 19) does not allocate memory or use a register to store the 
termination value. In addition, the comparison with zero only requires one instruction.

Example 19. Improved For Loop Compiler Output

The LoopV2 function loads the iteration variable from memory address 0x1FFFF into the r0 register. 
Then, it jumps to address 0x12C where compares the iteration variable with zero. If the iteration variable 
is equal to zero, the code returns from the function. If the iteration variable is not zero, jumps to address 
0x128 and decrements the iteration variable by 1. Using unsigned int iteration variables is more efficient 
because it does not require additional casting.

3.2 Do-While Loop
The optimizations used in for loops can also be used for do-while loops. Example 20 shows a simple 
do-while loop function called DoWhileLoopV1.
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Example 20. Do-While Loop

For the do-while loop that uses an iteration variable that is incremented by 1, the compiler output requires 
seven instructions as shown in Example 21.

Example 21. Do-While Loop Compiler Output

Example 22 decrements the iteration variable by 1 and uses the continuation condition n != 0.

Example 22. Improved Do-While Loop

The first instruction in Example 23 moves the immediate value 0xFF to the r0 register. Then, the code 
subtracts 1 from the r0 register and stores the result in the r1 register. The code moves r1 to r0 and sets the 
condition flags. If r0 is not equal to zero, the code jumps to address 0x184. If r0 is equal to zero, the code 
returns from the function. The improved do-while loop requires one less instruction than the original 
version since it does not store the compared value in memory.
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Example 23. Improved Do-While Loop Compiler Output

4 Arrays
Fundamentally an array is simply an extension of the basic model of computer memory: an array of bytes 
accessible through indexes. Thus an array of a data type D is a data structure where each array item is a 
data container of the same data type D and can be accessed through its index. Access to multi-dimensional 
array items is performed according to the row-major access formula. This formula transforms, for 
example, a reference x[i][j] to an indirection expression *(x + (i × n) + j), where n is the row size of x.

Example 24 shows an example of a two-dimensional array implementation.

Example 24. Two-Dimensional Array

Because the array is two-dimensional, according to row-major access formula, two add and one mul 
assembly instructions are required to calculate the index address to be accessed as shown in Example 25.

Example 25. Two-Dimensional Array Compiler Output 
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The overload becomes more significant when using three-dimensional arrays as in Example 26.

Example 26. Three-Dimensional Array

Example 27 shows that the compiler calculates the index address according to *(x + i × 100 + i × 50 + i), 
which requires three add and two mul instructions.

Example 27. Three-Dimensional Array Compiler Output

Example 28 shows a simplified one-dimensional array implementation of the same size as the arrays in 
Example 24 and Example 26.

Example 28. Simplified One-Dimensional Array
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In this case, the compiler calculates the index address according to *(x + i), which requires only one add 
instruction as shown in Example 29.

Example 29. Simplified One-Dimensional Array Compiler Output

Example 30 shows two different examples of array indexing. The armcc compiler translates the array 
indexing expression x[i] into the indirection expression *(x + i). 

Example 30. Array Indexing

Thus, both functions in Example 30 generate the same compiler output shown in Example 31.
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Example 31. Array Indexing Compiler Output

Multi-dimensional arrays are represented the same way as one-dimensional arrays: by a pointer holding 
the base address of a contiguous statically allocated segment where array items are stored. The array 
dimension is a logical concept, not a physical one, and the compiler translates multi-dimensional access to 
the underlying one-dimensional array by using the row-major formula. Therefore, the fewer dimensions 
in an array, the more efficient the code that is generated by the compiler.

5 Register Allocation
The compiler attempts to allocate a processor register to each local variable used in a C function. When 
there are more local variables than available registers, the compiler stores the excess variables on the 
processor stack. These variables are called spilled or swapped-out variables since they are written out to 
memory. To ensure good register assignment, limit the internal loop of functions to at most 12 local 
variables. Example 32 shows a function that has 16 local variables.

Example 32. Register Allocation with 16 Local Variables

The armcc compiler (see Example 33) inserts four str instructions for storing the local variables a, b, c and 
d on the processor stack and four ldr instructions for subsequently loading them into registers to be 
multiplied. The result of the multiplications is returned through the r0 register.
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Example 33. Register Allocation with 16 Local Variables Compiler Output

Example 34 shows a function that declares 12 local variables.

Example 34. Register Allocation with 12 Local Variables
 

There are no str or ldr instructions in the assembly code shown in Example 35. The compiler allocates the 
12 local variables into registers and the stack is not used. The result of the multiplications is also returned 
through the r0 register.
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Example 35. Register Allocation with 12 Local Variables Compiler Output

6 Function Calls
The ARM-Thumb Procedure Call Standard defines how to pass function arguments and return values in 
ARM registers. Functions with four or fewer arguments are far more efficient to call than functions with 
five or more arguments. For functions following the four-register rule, the compiler passes all the 
arguments in registers. For functions with more than four arguments, the caller and callee must access the 
stack for the extra arguments. Example 36 illustrates how six int arguments are allocated by the compiler.

Example 36. Function Call with Six Arguments

The generated output in Example 37 shows that the first two parameters are passed through the stack using 
two ldr instructions. The remaining arguments are passed in the r0, r1, r2 and r3 registers.

Example 37. Function Call with Six Arguments Compiler Output
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Example 38 illustrates the benefits of using no more than four arguments.

Example 38. Function Call with Four Arguments

Example 39 shows that the a, b, c and d arguments are passed through the r0, r1, r2 and r3 registers and 
the stack is not used. The result of the sum is returned in the r0 register to the caller.

Example 39. Function Call with Four Arguments Compiler Output
 

If a C function requires more than four arguments, it is almost always more efficient to use structures. 
Group related arguments into structures and pass a structure pointer rather than multiple arguments.

7 Pointer Aliasing
If two or more pointers point to the same address, then they are said to be aliased. Most of the time the 
compiler does not know which pointers are aliases and are not. Example 40 shows a function that 
increments the red, green and blue components of the same pixel by the value of offset1. The compiler 
must load from ColorCorrection –> offset1 three times.

Example 40. Pointer Aliasing

Usually the compiler optimizes the code to evaluate ColorCorrection –> offset1 once and the value is 
reused for the subsequent occurrences. However, in this case the compiler cannot be sure that the write to 
PixelValue does not affect the read from ColorCorrection. Therefore, the compiler can not use any 
optimizations for this case. 

The assembly code in Example 41 shows two memory accesses through ldr instructions for the PixelValue 
and ColorCorrection pointers, one add instruction and one str instruction for storing the result into 
memory. The same assembly code pattern is repeated for the two subsequent C lines.
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Example 41. Pointer Aliasing Compiler Output

Example 42 shows an example where a new local variable, localoffset, is created to hold the value of 
ColorCorrection –> offset1 so that the compiler performs only a single load.

Example 42. Improved Pointer Aliasing

The assembly code in Example 43 shows how ColorCorrection –> offset1 is loaded from memory through 
a ldr instruction and held in the localoffset variable. For the subsequent localoffset references 
ColorCorrection –> offset1 is not loaded from memory since it is already held in the r2 register.

Example 43. Improved Pointer Aliasing Compiler Output

8 Structure Layout
Modern embedded C/C++ compilers give fine-grained control and a wealth of options for determining 
how C structures are laid out. The result is that any arbitrary layout can be obtained. To understand 
structure layout fully, first the concept of data bus width and natural boundaries are discussed.
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ARM processors have a 32-bit data bus width, meaning that each memory cycle can access a maximum of 
32 bits. Multi-byte quantities can be properly accessed at any address. However, if they are not properly 
aligned, performance is degraded because the hardware adds extra memory cycles.

Example 44 shows a structure layout.

Example 44. Structure Layout

For a little-endian memory system, the compiler adds padding between the structure objects to ensure that 
the next object is aligned to the size of that object. For Example 44, 

StructV1 = {<3>x|yyyy|ww<1>z},

where <n> means the number of added padding bytes and | is used to separate data words. 

The memory usage for StructV1 is three words or 12 bytes. The assembly code in Example 45 confirms 
the use of three data words for the StructV1 structure.

Example 45. Structure Layout Compiler Output

To improve the memory usage, the elements in the structure can be reordered such as in Example 46.
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Example 46. Improved Structure Layout

The armcc compiler aligns the size of the four objects into two data words:

StructV2{zzyx|wwww}

Example 47 shows the generated assembly code. The compiler stores 0xAA into the address [r13 + 0]. 
Then, the compiler stores 0xBB into address [r3 + 1]. Finally, the compiler stores 0xCCCC into address 
[r13+2] and 0xDDDDDDDD into address [r13 + 4].

Example 47. Improved Structure Layout Compiler Output

The memory is now completely aligned. It is more efficient to lay structures out in order of increasing 
element size. As a rule, start the structure with the smallest elements and finish with the largest.

9 Endianness
The ARM core can be configured to work in little-endian or big-endian modes. Little-endian mode is 
usually the default. The endianness of an ARM is usually set at power-up and remains fixed thereafter. The 
GetEndianness function can be used to find out the endianness at runtime as shown in Example 48.
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Example 48. Endianness
 

This function can be used to make code more portable and flexible. The function assigns 0xFF to a long 
variable. The code casts the variable to char and assigns it to a char variable. If the core is little-endian, the 
function returns 0xFF. If the core is big-endian, the function returns 0. 

10 Bit-Fields
Bit-fields are structure elements and are usually accessed using structure pointers. Therefore, they suffer 
from pointer aliasing problems. Every bit-field access is actually a memory access and how bits are 
allocated within the bit-field container is compiler-dependent. Thus, bit-fields are frequently prone to 
portability issues. Example 49 illustrates this problem. The compiler is not able to optimize this code.

Example 49. Bit-Field

As shown in Example 50, the compiler accesses the memory containing the bit-field four times. Because 
the bit-field is stored in memory, the change_state function could change the value. The compiler uses two 
instructions to test the first if statement. For the remaining if statements the compiler uses three 
instructions to test the bit-fields.
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Example 50. Bit-Field Compiler Output

Example 51 implements the function using logical operations rather than bit-fields. All of the bit-fields are 
contained in an int type. For efficiency, a copy of their value is held in the local variable local_thread_state. 

Example 51. Improved Bit-Field

Example 52 shows that tst and beq instructions are now used to test the if statements.
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Example 52. Improved Bit-Field Compiler Output

Logical and, or and xor operations with mask values reduce the overhead associated with bit-field 
structures. These operations compile efficiently for ARM architecture. Use #define or enum to define 
mask values.

11 Floating Point Versus Fixed Point
Most ARM processor implementations do not provide hardware floating point support. Because of this, 
the C compiler must provide support for floating-point in software. This means that the C compiler 
converts every floating point operation into a subroutine call.

Example 53 shows a function that combines two colors allowing for transparency effects in computer 
graphics. The value of alpha in the color code ranges from 0.0 to 1.0, where 0.0 represents a fully 
transparent color, and 1.0 represents a fully opaque color.

Example 53. Floating Point

This function requires four floating point operations (two additions and two multiplications) which must 
be computed in software. The assembly output in Example 54 shows the compiler calls seven subroutines 
and the corresponding function calling overhead.

These functions are unsigned int to float conversion (__aeabi_uif2f), float multiplication (__aeabi_fmul), 
float subtraction (__aeabi_fsub), float add (__aeabi_fadd) and float to unsigned int conversion 
(__aeabi_f2uiz). 
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Example 54. Floating Point Compiler Output

Example 55 shows the AlphaBlendingV2 function with fixed point arithmetic. The value of alpha in the 
color code ranges from 0 to 255, where 0 represents a fully transparent color, and 255 represents a fully 
opaque color.

Example 55. Improved Floating Point

The return value of AlphaBlendingV2 is similar to AlphaBlendingV1 but far more efficient since the 
compiler is calling only one subroutine that performs integer division (__aeabi_idivmod) as shown in 
Example 56.

Example 56. Improved Floating Point Compiler Output



Efficient Low-Level Software Development for the i.MX Platform, Rev. 0

Freescale Semiconductor 23
 

Conclusions

12 Conclusions
The C compiler can be facilitated to generate faster or smaller ARM code. Performance-critical 
applications often contain a few routines that dominate the performance profile. Code-tuning using the 
guidelines of this application note can improve the application performance particularly for real-time 
applications.
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