
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
This application note describes how to set up a Linux
software development environment on the i.MX devices.
The application note helps the user to cross-compile, deploy,
and debug code for an i.MX device (with the GNU-ARM
toolchains that are included in the Board Support
Package—BSP) using the Eclipse Integrated Development
Environment (IDE).

Document Number: AN3870
Rev. 0, 08/2010

Contents
1. Introduction . 1
2. Prerequisites . 2
3. Installing Eclipse . 2
4. Configuring Cross Compilation and Deployment Using

Preinstalled Toolchain . 3
5. Configuring Cross Debugging with GDB 8
6. Writing or Editing, Building, and Deploying an

Application . 10
7. Debugging . 12
8. Revision History . 14

Developing an Application for the
i.MX Devices on the Linux Platform
by Multimedia Applications Division

Freescale Semiconductor, Inc.
Austin, TX

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

2 Freescale Semiconductor

Prerequisites

The application note assumes that the user can boot Linux (one of the BSPs) on the target board through
the Network File System (NFS) from a Linux host.

NOTE
The steps that are given in this application note are illustrated in the Fedora
distribution that uses the Eclipse IDE, GNU Debugger (GDB), and i.MX31
Product Development Kit (PDK) board. However, these steps should be
applicable to most of the Linux distributions (for the host) and i.MX devices
with little or no change.

2 Prerequisites
The following are the prerequisites for developing an application for the i.MX devices on Linux platform:

• Linux distribution installed in the host computer

• Required services—Trivial File Transfer Protocol (TFTP), NFS, and serial communication—that
are configured and running on the host computer

• i.MX Linux BSP running on the target board

• Familiarity with the Linux Target Image Builder (LTIB) configuration screen navigation and
knowledge of the location where the common packages are selected or deselected

If the user requires any help to set up the prerequisites, refer to the Linux BSP documents. For example,for
setting up the i.MX31 PDK, refer to the i.MX31 PDK 1.5 Linux User’s Guide (926-77208), which is
available in the BSP tarball that resides in the /doc/ directory.

For the cross development, it is recommended to work on a root file system that is deployed through NFS.
Any change to the target rootfs files in the Linux host can be detected immediately by the target, without
any flash programming. If this is not possible on the user environment, establish a network connection
between the i.MX board and host and use the TFTP or other services to transfer files between them.

3 Installing Eclipse
C/C++ developers should download and install the Linux version of the Eclipse IDE which is available at
http://www.eclipse.org/downloads/. The latest Eclipse version for Linux is Eclipse 3.4 (also known as
Ganymede and SR1). The Eclipse platform is delivered to the user as a tarball. The tarball contents can be
decompressed to a directory inside the home page. The application can be started from the command line
or by clicking the corresponding icon in the directory.

The commands to start the Eclipse application from the command line are as follows:

$ cp /<your_download_location>/eclipse-cpp-ganymede-SR1-linux-gtk.tar.gz /home/<your_user>/
$ cd /home/<your_user>/
$ tar xzvf eclipse-cpp-ganymede-SR1-linux-gtk.tar.gz
$ cd eclipse
$./eclipse

http://www.eclipse.org/downloads/

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

Freescale Semiconductor 3

Configuring Cross Compilation and Deployment Using Preinstalled Toolchain

4 Configuring Cross Compilation and Deployment Using
Preinstalled Toolchain

The steps to configure the cross compilation and deployment using the preinstalled toolchain are as
follows:

1. The toolchains are installed by LTIB in a common path, /opt/freescale/usr/local, in the host
machine. In this common path, a directory is available for every toolchain that have been
previously installed as part of a BSP. Select the toolchain for the i.MX device and BSP. For
example, to work with the i.MX31 PDK Linux Software Development Kit (SDK) 1.4, the user
should use the gcc-4.1.2-glibc-2.5-nptl-3 toolchain.

NOTE
At some point, the Linux kernel package of the BSP is required to be
extracted so that the Eclipse can point to the contents of the Eclipse include
directory. To extract the Linux kernel package, use the command, ./ltib -m
prep -p kernel, in the LTIB installation directory.

2. When IDE is run for the first time, select a directory for its workspace so that the projects can be
stored. The default directory can be used for this purpose. The Use this as the default... box is not
required to be checked. After selecting the workspace directory, the IDE finishes loading and
displays a welcome tab. Close the welcome tab to view the default Eclipse perspective (work area
layout).

3. Create a new C project of type executable as shown in Figure 1.

Figure 1. Creating a New C Project

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

4 Freescale Semiconductor

Configuring Cross Compilation and Deployment Using Preinstalled Toolchain

4. Select the Hello World ANSI C template, and name the project uart_appnote as shown in
Figure 2.

Figure 2. New Project Settings

5. For the toolchain settings, select Linux GCC as shown in Figure 2 (later, this is modified
manually). Click Next and enter the user name and copyright notice. Click Next again and ensure
that the two default configurations (Debug and Release) are checked. Once these options are set,
click Finish.

6. Open the project properties by pressing Alt + Enter or by right clicking the project name that is
located on the left side of the pane (the Project Explorer) and selecting the Properties option.

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

Freescale Semiconductor 5

Configuring Cross Compilation and Deployment Using Preinstalled Toolchain

7. On the Properties window, click the C/C++ Build option that is located in the left side of pane.
Click Manage Configurations and create a new build configuration as shown in Figure 3 with the
following properties:

— Name—MX31-Debug

— Description—Cross-compile for i.MX31

— Select Existing configuration option from the Copy settings from option list and select Debug

Figure 3. New Build Configuration

Click OK to close the Create New Configuration window.

8. Activate the new configuration on the Manage Configurations window by clicking the new
configuration entry and then clicking Set Active. Click OK to close the Manage Configurations
window.

9. Select the new configuration from the Configuration drop-down list in the C/C++ Build tab and
click Apply.

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

6 Freescale Semiconductor

Configuring Cross Compilation and Deployment Using Preinstalled Toolchain

10. Expand the C/C++ Build options and click Settings. On the Tool Settings tab, which is located on
the right side of the pane, change the GCC C Compiler command from gcc to
/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-non

e-linux-gnueabi-gcc as shown in Figure 4.

Figure 4. Replacing the gcc Command

11. Perform the following steps to add the
/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-non

e-linux-gnueabi-gcc path to the include directory of the kernel:

a) Click Directories which is located below the GCC C Compiler Tool Settings

b) Click Add directory path

c) On the Add directory path window, click File system and navigate to the path,
/<LTIB_PATH>/rpm/BUILD/linux/include

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

Freescale Semiconductor 7

Configuring Cross Compilation and Deployment Using Preinstalled Toolchain

d) Select the include directory and click OK as shown in Figure 5

NOTE
/<LTIB_PATH>/ is the directory where the LTIB for the BSP is installed.

Figure 5. Adding the Include Directory

To add more paths to the include directory, repeat the process mentioned in this step.

12. Select GCC C Compiler > Optimization > Optimization Level and select None from the
Optimization Level drop-down list (generally, this option is already set to the desired value).

13. Select GCC C Compiler > Debugging > Debug Level and select the Maximum option from the
Debug Level drop-down list (generally, this option is already set to the desired value).

14. Follow the procedure in Step 10 and provide the appropriate values for GCC C Linker to modify
the GCC C Linker command from gcc to
/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-non

e-linux-gnueabi-gcc.

15. The linker should know the location of the linking libraries for the target root file system. To do
this, add the /<LTIB_PATH>/rootfs/lib path to the libraries option in the GCC C Linker >
Libraries > Library search path box.

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

8 Freescale Semiconductor

Configuring Cross Debugging with GDB

16. Repeat the procedure mentioned in Step 15 to add the /<LTIB_PATH>/rootfs/usr/lib path to
libraries.

17. Repeat the procedure described in Step 10 and Step 14 to modify the command for the GCC
Assembler (located near the bottom of the Tool Settings tab). Here, the GCC Assembler command
is changed from as to
/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-non

e-linux-gnueabi-as.

18. Click the Build Steps tab and configure a simple deployment operation. Copy the built binary to
the root file system that is exported to the target using NFS and configure Post-Build Steps with
the following command:
cp /<workspace/project>/<output binary> /<LTIB_PATH>/rootfs/home/

NOTE
If Eclipse is not run as the root, change the permissions of the home
directory of the target rootfs file in advance. In this case, Eclipse can write
to the home directory during deployment.

Now, the i.MX31 application is built and copied to rootfs. The application can be executed from
the target and debugged using Eclipse.

19. Click the Binary Parsers tab. Perform the following steps to configure the binary parsers for
Eclipse:

a) Uncheck the Elf Parser and check the GNU Elf Parser checkbox

b) On the Binary Parsers options of the GNU Elf Parser, change the addr2line Command from

addr2line to
/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-

none-linux-gnueabi-addr2line

c) Change the c++filt Command from c++filt to
/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-

none-linux-gnueabi-c++filt

d) Click OK to close the Properties window

Now, the user should be able to build code and execute output applications on the target platform.

NOTE
By default, Eclipse is configured to build code for the x86 platforms.
However, with this new configuration, user can generate ARM binaries that
can run on the i.MX platform.

5 Configuring Cross Debugging with GDB
This section describes how to configure the cross debugging with the GDB debugger package. Before
executing the configuration steps, ensure that the following GDB packages are selected on the LTIB
configuration screen:

• GDB to run natively on the target

• Cross GDB (runs on the build machine)

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

Freescale Semiconductor 9

Configuring Cross Debugging with GDB

• Extensible Markup Language (XML) support

• GDB server to run natively on the target

After the GDB packages are selected, exit from LTIB configuration screen and allow the build to complete.
Ensure that the host computer has access to the internet so that the packages can be downloaded from the
Global Package Pool (GPP).

The steps to create a debug configuration are as follows:

1. Click the downward arrow on the right of the bug icon to open the Debug Configurations window.
Double click the C/C++ Local Application option to show a debug configuration for the project.
Right click on this configuration and select Duplicate as shown in Figure 6.

Figure 6. Creating a Debug Configuration

2. Select the following on the Main tab to configure the new debug configuration:

— Name—i.MX Application Debugging-GDBServer

— Project—<the created project>
— C/C++ Application—<the ARM binary built with the toolchain> (browse to locate the ARM

binary that resides in the Eclipse workspace)

3. Click the Debugger tab and perform the following:

— Select the GDBServer debugger from the Debugger drop-down list

— In Debugger Options, use the ARM capable debugger that is built by LTIB:

– GDB debugger—/<LTIB_PATH>/bin/gdb

– GDB command set—Standard

– Protocol—mi

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

10 Freescale Semiconductor

Writing or Editing, Building, and Deploying an Application

— On the Shared Libraries tab (under the Debugger options), add the following shared library
paths:

– /<LTIB_PATH>/rootfs/lib

– /<LTIB_PATH>/rootfs/usr/lib

4. Configure the connection on the Connection tab with the following attributes:

— Type—TCP

— Host name or IP address—192.168.0.2 (use the IP address of the target i.MX board)

— Port number—10000

5. Ensure that the project folder is listed on the Source tab

6. Close the Debug Configurations window

Now, the user can start a cross-debugging session with the Eclipse and i.MX device.

6 Writing or Editing, Building, and Deploying an
Application

The steps to build code and copy the output binary to the target rootfs home directory are as follows:

1. The Universal Asynchronous Receiver/Transmitter (UART) unit test is used as the example
application. Therefore, the UART unit test source files must be decompressed. This can be done
by issuing the following commands on the host:

$ cd /<LTIB_PATH>/
$./ltib -m prep -p imx-test

These commands extract the source files into the rpm/BUILD/ folder.

2. Replace the contents of the Eclipse project source file with the contents of the UART unit test .c
source file or overwrite the file with the following command:

$ cp /<LTIB_PATH>/rpm/BUILD/imx-test2.3.2/test/mxc_uart_test/mxc_uart_test.c
/<ECLIPSE_WORKSPACE>/uart_appnote/src/uart_appnote.c

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

Freescale Semiconductor 11

Writing or Editing, Building, and Deploying an Application

3. On Eclipse Project Explorer, expand the src folder and double click the uart_appnote.c file to
open the source file on the editor window. Now, replace line 33, printf("Test: MXC UART!\n");,
with printf("Test: MXC UART with Eclipse!\n");. Save and build the project by clicking the
floppy disk and hammer icons, respectively as shown in Figure 7.

Figure 7. Modifying the Source Code

Now, the user should be able to build the code and copy the output binary to the home directory of the
target rootfs file. The application can be tested by entering the following commands on the target serial
terminal emulator window:
$ cd /home/
$./uart_appnote /dev/ttymxc2

If the code is built properly and the output directory is copied correctly, then the output of the unit test is
as follows:

Test: MXC UART!
Usage: mxc_uart_test <UART device name, opens UART2 if no dev name is specified>
/dev/ttymxc2 opened
Attributes set
Test: IOCTL Set
Data Written= Test
Data Read back= Test

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

12 Freescale Semiconductor

Debugging

The test then opens the UART port that is specified in the command line. If the UART port is not specified
in the command line, then the test opens the UART2 port (zero-indexed is ttymxc1). After opening the
UART port, the program sets the loopback feature on the line discipline and the data is written to or read
from the UART port.

The serial test completes with no errors (returns code 0) if everything works properly. If there are errors
while opening the UART port or during the I/O operations, the program exits with a different error code
or hang. In this case, the problem can be debugged with the Eclipse debug environment by observing the
variables, structures, breakpoint additions, and so on.

7 Debugging
Steps to perform the debug operation are as follows:

1. Execute the following command on the target terminal at the path where the test application is
located:

$ gdbserver *:10000 uart_appnote

When this command is executed, the following is displayed on the screen:

Process uart_appnote created; pid = 1799
Listening on port 10000

2. As the target is ready, click the Bug icon on the Eclipse Platform window and select the
GDBServer debug configuration that is created in Section 5, “Configuring Cross Debugging with
GDB,” to attach the debugger. If the host and i.MX platforms are connected successfully, then the
user is asked to confirm the perspective switch. After the confirmation, the GDB server displays
the message, Remote debugging from host 192.168.0.1, on the target terminal and Eclipse opens
the debug perspective with the source code, disassembly, variables, registers, and console output.

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

Freescale Semiconductor 13

Debugging

3. Check the Remember my decision box and click Yes (the user can switch between the
perspectives by clicking the corresponding icons that are located on the top right corner of the
Eclipse Platform window as shown in Figure 8).

Figure 8. Eclipse Debugging Perspective

As the glibc functions (which are accessed from a shared lib binary) are used, these are required to be
navigated by stepping over them (by clicking the curved yellow arrow icon shown in Figure 8 or by
pressing F6). The user is now only able to step into the functions that are part of their application (by
clicking the straight-angle yellow arrow icon shown in Figure 8 or by pressing F5) or applications for
which the source code is available.

Important points that are helpful for performing the debugging operation are as follows:

• The program execution can be resumed by clicking the green play icon highlighted in Figure 8 or
by pressing F8.

• The debugging session can be stopped with the red stop button highlighted in Figure 8 or by
pressing Ctrl + F2 (this kills the processes associated with the debugging session on the target and
host).

• If the initial parameters are required to be passed to the application that is being debugged, then it
can be done while launching the GDB server with the following command:
$ gdbserver *:10000 uart_appnote /dev/ttymxc2

The user is now able to cross-compile, deploy, and debug code for an i.MX device using the Eclipse IDE
and GNU tools on the Linux platform.

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

14 Freescale Semiconductor

Revision History

8 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 08/2010 Initial release.

Developing an Application for the i.MX Devices on the Linux Platform, Rev. 0

Freescale Semiconductor 15

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3870
Rev. 0
08/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.
© 2010 Freescale Semiconductor, Inc.

	Developing an Application for the i.MX Devices on the Linux Platform
	1 Introduction
	2 Prerequisites
	3 Installing Eclipse
	4 Configuring Cross Compilation and Deployment Using Preinstalled Toolchain
	Figure 1. Creating a New C Project
	Figure 2. New Project Settings
	Figure 3. New Build Configuration
	Figure 4. Replacing the gcc Command
	Figure 5. Adding the Include Directory

	5 Configuring Cross Debugging with GDB
	Figure 6. Creating a Debug Configuration

	6 Writing or Editing, Building, and Deploying an Application
	Figure 7. Modifying the Source Code

	7 Debugging
	Figure 8. Eclipse Debugging Perspective

	8 Revision History
	Table 1. Document Revision History

