
Freescale Semiconductor
Application Note

Document Number: AN3817
Rev. 1, 2/2009

Contents

Introduction . 1
Stepper Motor Management . 2
Operation and Functionality of Stepper Motor. 4
Hardware Interface Description . 6

4.1 Pin Connections . 6
4.2 Hardware Abstraction Layer 7

4.2.1 GPIO Registers. 7
4.2.2 TPM Registers . 8

4.3 Modes of Operation. 10
4.3.1 4 GPIO Mode . 11
4.3.2 2 TPM + 2 GPIO Mode 11
4.3.3 3 GPIO Mode . 11
4.3.4 2 TPM + 1 GPIO Mode 12

Software Interface Description 12
Software Operation Modes . 12
How to Interface Stepper Motor with MC9S08LG32 . . . 13

7.1 Description of Motor (VID29 Series) 13
7.1.1 Features of the Motor 14

7.2 Hardware Connections . 14
7.3 Register Configurations . 14

7.3.1 Initialization Procedure 15
References . 16

Interfacing Stepper Motor with
MC9S08LG32
by: Sunaina Srivastava

Reference Design and Applications Engineering
Microcontroller Solutions Group
1 Introduction
The MC9S08LG32 is a low cost microcontroller and can
be applied to several applications using different input
signals. This application note:

• Describes how to control a low current stepper
motor using the MC9S08LG32.

• Explains how to drive a stepper motor when there
is no stepper motor driver within the MCU.

• Provides an example that illustrates the hardware
connections and software driver for a stepper
motor driven through PWM.

• Describes how to configure MC9S08LG32 to
drive a stepper motor.

• Describes how the input signal is managed,
implemented, and used.

Figure 1 shows the block diagram for the MC9S08LG32
and stepper motor interface. The MC9S08LG32 contains
69 GPIOs (80-pin package) and eight channels of TPM

1
2
3
4

5
6
7

8

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Stepper Motor Management
that can be used to drive a stepper motor. You can operate the stepper motor in the following modes when
interfaced with the MC9S08LG32:

• GPIOs — All four stepper motor pins are connected to the GPIOs of the MC9S08LG32. The
waveform required to move the motor in a clockwise or anti-clockwise direction is provided
through the GPIOs.

• TPM + GPIOs — Various channels of TPM can be used in combination with GPIOs to drive the
motor. TPM channels are configured to provide the required waveform in synchronization with the
GPIOs.

Figure 1. MC9S08LG32 and Stepper Motor Interface Block Diagram

2 Stepper Motor Management
A stepper motor is a small brushless synchronous electric motor that can divide a full rotation into a large
number of steps. If it is electronically connected to the MCU, the motor's position can be controlled with
precision without any feedback mechanism.

Steppers exhibit more vibration than other motor types. The discrete step tends to snap the rotor from one
position to another. This vibration can cause the motor to lose torque at some speeds. The effect can be
mitigated by accelerating quickly through the problem speed range, physically dampening the system, or
using a micro-stepping driver. Motors with a greater number of phases have a smoother operation than
those with fewer phases.

There are two basic arrangements for the electromagnetic coils: unipolar and bipolar. This application note
focuses on a bipolar motor.

A bipolar motor is built with two different coils, which in this document are named coil A and coil B. Since
each coil has two wires, a bipolar stepper motor has four different wires.

Bipolar stepper motors operate differently from traditional DC motors. Stepper motors have multiple
toothed electromagnets arranged around a central metal gear. The electromagnets are energized by an
external control circuit, such as a microcontroller. To make the motor turn, the following steps are required:

1. Coil A is connected to the power that causes the gear's teeth to be magnetically attracted to the
electromagnet's teeth.

MC9S08LG32

PIN1 PIN2 PIN3 PIN4

Stepper Motor
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor2

Stepper Motor Management
2. The gear's teeth are aligned to the first electromagnet. Next, they are aligned to the second
electromagnet.

3. Coil B is then turned on and coil A is turned off.
4. The gear then rotates to be aligned with the next gear.
5. Repeat the process described in steps 1 to 4.

Figure 2. Stepper Motor Coil A

Each of these rotations is called a step. This is how the motor can be rotated through a precise angle.

Figure 3. Stepper Motor Coil B

The main characteristic of the stepper motor used to implement this application is that it has a maximum
current consumption of 20 mA. The torque provided by the motor is small. The maximum static torque
= 4 mNm, with maximum dynamic torque = 1.4 mNm, which is strong enough to move standard gauges.
The S08 microcontroller MC9S08LG32 can drive up to 10 mA. The motor is connected to the
microcontroller through a current driver IC. The system requires VCC, GND, and input signals.

Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor 3

Operation and Functionality of Stepper Motor
3 Operation and Functionality of Stepper Motor
To set the basis, the steps of the motor are managed by the duty cycle of a PWM input signal. The
percentage of the duty cycle allows the microcontroller to communicate the specific position.

Figure 4. Complete Implemented System

Figure 5 is an example of the implemented system.

Figure 5. Complete Block Diagram of Motion Control

In the automotive industry, there are several sensors or applications that have a PWM signal as an output
that is the result of a particular action or event. For example, there are complex temperature sensors that
generate a PWM signal as output. Another example is an electronic central unit (ECU) that measures the
speed of a vehicle and has an output pin where you can read a PWM signal. The variations of this PWM
signal can be translated into positions to indicate temperature or speed, such as the application described
in this document.

9

S

0

8

L

G

3

2

Current

Driver
IC
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor4

Operation and Functionality of Stepper Motor
Figure 6. Stepper Motor with Gauge

To define how many steps make up one complete cycle, you must first establish how many positions are
available. In this example there are 100 different positions. In case of a temperature sensor, this could be
from 0 °C to 100 °C. In case of speed, this could be 0 kph to 100 kph. This means that 1% of the duty cycle
is associated with one step of the stepper motor, or one degree centigrade, or one kph. See Figure 7 and
Figure 8.

Figure 7. Stepper Motor Gauges at Different Duty Cycles

The position of the gauge depends on the duty cycle of the PWM signal. There are different ways to
translate duty cycles to steps. For example, the average voltage can be measured during one period of time
using the ADC of the microcontroller. This document explains how to use the timer/pulse width modulator
(TPM) module.

Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor 5

Hardware Interface Description
Figure 8. Input Signal Data Measurements

The measured time between point 1 and point 2 is called the frequency. The measured time between point 2
and point 3 is called Duty_Cycle_H. To find the duty cycle of the signal, calculate:

Duty Cycle = ((Duty_Cycle_H × 100) ÷ Frequency) Eqn. 1

After the duty cycle is calculated, the coils of the motor are controlled through port A, channels 0 to 3. As
established previously, there are one hundred positions available. This means that the required position is
equal to the duty cycle.

Required Position = Duty Cycle Eqn. 2

If the microcontroller detects a change in the value of the duty cycle, it moves the stepper to the required
position. Each time the duty cycle varies, channels are strictly toggled in a specific sequence.

4 Hardware Interface Description

4.1 Pin Connections
The stepper motor has four pins that needs to be connected to the SoC to operate the motor in both
clockwise and anti-clockwise directions. These pins are numbered 1, 2, 3, and 4, and decide the amount

Table 1. Table1.TPM Channel / PIN Descriptions

Pins Direction Description

TPM1CH0/PTH5 I/O TPM1 Channel 0/Port F GPIO

TPM1CH1/PTH4 I/O TPM1 Channel 1/Port F GPIO

TPM2CH0/PTI5 I/O TPM2 Channel 0/Port A GPIO

TPM2CH1/PTI4 I/O TPM2 Channel 1/Port A GPIO

TPM2CH2/PTF0 I/O TPM2 Channel 2/Port A GPIO

TPM2CH3/PTF5 I/O TPM2 Channel 3/Port F GPIO

TPM2CH4/PTF4 I/O TPM2 Channel 4/Port F GPIO

TPM2CH5/PTF3 I/O TPM2 Channel 5/Port F GPIO

Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor6

Hardware Interface Description
and direction of the rotation of the motor. Figure 24 shows the sample connection of stepper motor pins
with the MC9S08LG32 SoC.

4.2 Hardware Abstraction Layer
This section describes the registers that you need to operate a stepper motor in all possible driving modes
with the MC9S08LG32.

4.2.1 GPIO Registers

4.2.1.1 Port x Data Direction Register (PTxDD)

4.2.1.2 Port x Data Register (PTxD)

 7 6 5 4 3 2 1 0

R
PTxDD7 PTxDD6 PTxDD5 PTxDD4 PTxDD3 PTxDD2 PTxDD1 PTxDD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 9. Port x Data Direction Register (PTxDD)

Table 2. PTxDD Register Field Descriptions

Field Description

7:0
PT[x]DD[y]

Data direction bit for Port x Pin y
0 Input pin
1 Output pin

 7 6 5 4 3 2 1 0

R
PTxD7 PTxD6 PTxD5 PTxD4 PTxD3 PTxD2 PTxD1 PTxD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 10. Port x Data Register (PTxD)

Table 3. PTxD Register Field Descriptions

Field Description

7:0
PT[x]D[y]

Data bit for Port x Pin y (when configured as output pin)
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor 7

Hardware Interface Description
4.2.2 TPM Registers

4.2.2.1 TPM Status and Control Register (TPMxSC)

4.2.2.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL)

7 6 5 4 3 2 1 0

R TOF
TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0

W 0

Reset 0 0 0 0 0 0 0 0

Figure 11. TPM Status and Control Register (TPMxSC)

Table 4. TPMxSC Field Descriptions

Field Description

7
TOF

Timer overflow flag
0 TPM counter has not reached modulo value or overflow
1 TPM counter has overflowed

6
TOIE

Timer overflow interrupt enable
0 TOF interrupts inhibited (use for software polling)
1 TOF interrupts enabled

5
CPWMS

Center-aligned PWM select
0 All channels operate as input capture, output compare, or edge-aligned PWM mode
1 All channels operate in center-aligned PWM mode

4–3
CLKS[B:A]

Selects the clock to TPM block
00 TPM counter disable
01 Bus clock
10 Fixed system clock
11 External source

2–0
PS[2:0]

Prescale factor select
000 1
001 2
010 4
011 8
100 16
101 32
110 64
111 128

7 6 5 4 3 2 1 0

R Bit 15 14 13 12 11 10 9 Bit 8

W Any write to TPMxCNTH clears the 16-bit counter

Reset 0 0 0 0 0 0 0 0

Figure 12. TPM Counter Register High (TPMxCNTH)
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor8

Hardware Interface Description
4.2.2.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)

4.2.2.4 TPM Channel n Status and Control Register (TPMxCnSC)

7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W Any write to TPMxCNTL clears the 16-bit counter

Reset 0 0 0 0 0 0 0 0

Figure 13. TPM Counter Register Low (TPMxCNTL)

7 6 5 4 3 2 1 0

R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure 14. TPM Counter Modulo Register High (TPMxMODH)

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure 15. TPM Counter Modulo Register Low (TPMxMODL)

7 6 5 4 3 2 1 0

R CHnF
CHnIE MSnB MSnA ELSnB ELSnA

0 0

W 0

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16. TPM Channel n Status and Control Register (TPMxCnSC)

Table 5. TPMxCnSC Field Descriptions

Field Description

7
CHnF

Channel n interrupt flag
0 No input capture or output compare event occurred on channel n
1 Input capture or output compare event on channel n

6
CHnIE

Channel n interrupt enable
0 Channel n interrupt requests disabled
1 Channel n interrupt requests enabled
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor 9

Hardware Interface Description
4.2.2.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)

4.3 Modes of Operation
A stepper motor can be driven in any of the following modes when interfaced with the MC9S08LG32:

5–4
MSn[B:A]

Mode select for TPM channel n. Refer to the summary of channel mode and setup controls in Table 6.

3–2
ELSn[B:A]

Edge/level select bits. Refer to Table 6 for the summary of these bits.

Table 6. Mode, Edge, and Level Selection

CPWMS MSn[B:A] ELSn[B:A] Mode Configuration

X XX 00 Pin not used for TPM, but used as general purpose I/O
or other peripheral control

0 00 01 Input capture Capture on rising edge only

10 Capture on falling edge only

11 Capture on rising or falling edge

01 01 Output compare Toggle output on compare

10 Clear output on compare

11 Set output on compare

1X 10 Edge-aligned
PWM

High-true pulses

X1 Low-true pulses

1 XX 10 Center-aligned
PWM

High-true pulses

X1 Low-true pulses

7 6 5 4 3 2 1 0

R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure 17. TPM Channel Value Register High (TPMxCnVH)

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure 18. TPM Channel Value Register Low (TPMxCnVL)

Table 5. TPMxCnSC Field Descriptions (continued)

Field Description
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor10

Hardware Interface Description
4.3.1 4 GPIO Mode

This mode is used when no TPM channels are available for stepper mode operation. In this mode all
stepper motor signals are driven through GPIOs.

When a GPIO is used for this purpose, it cannot also be used for any other functionality that is muxed with
it. These pins need to be programmed as output pins, using the configuration registers.

Figure 19. 4 GPIO Mode

4.3.2 2 TPM + 2 GPIO Mode

Using TPM channels and GPIOs, this mode is used when fewer TPM channels are available for stepper
motor operation. In this mode, the stepper motor's two input signals are connected with two TPM channels
and the remaining two inputs are connected to GPIO pins. This mode is capable of driving the motor in
micro, partial, and full steps.

Figure 20. TPM and 2 GPIO Mode

4.3.3 3 GPIO Mode

This mode uses the 3-pin mode of the stepper motor. In this case three GPIOs are used to connect to the
four pins of the motor, as the negative pins (2 and 3) of both motor coils are clubbed into one pin.

Figure 21. 3 GPIO Mode

Stepper Motor

GPIO1
GPIO2
GPIO3
GPIO4

1 2

34

Stepper Motor

TPMCH1
GPIO1
GPIO2

TPMCH2

1 2

34

Stepper Motor

GPIO1

GPIO2

1 2

34GPIO3
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor 11

Software Interface Description
4.3.4 2 TPM + 1 GPIO Mode

This uses the 3-pin mode (negative pins (2 and 3) of both the coils connected together) of the stepper
motor. In this mode, two TPM pins are connected to positive pins (1 and 4) of both the coils and one GPIO
pin is connected to the third pin of the motor.

Figure 22. TPM and 1 GPIO Mode

NOTE
The most preferred mode of operation is two TPM channels and two GPIOs
(see Section 4.3.2, “2 TPM + 2 GPIO Mode” for details). If you don't have
enough GPIOs, then use the 2 TPM + 1 GPIO mode.

5 Software Interface Description
Following are the external APIs available, utilizing all the stepper motor functionalities, in the released
software driver.

• InitStepper — Initializes the working mode of the stepper as PIN1–TPM1CH0, PIN2–PTI0,
PIN3–PTI1, PIN4–TPM1CH1. It initializes all the required TPM and GPIO registers, but does not
enable the TPM clock.

• MotorCurrentDriverCE_Toggle — Toggles the ChipSelect signal (active low) for the current
driver IC that is required to operate the stepper motor.

• DriveStepper_to_zero — Follows a specified process to get the stepper to initial zero position.
This function might be different for different stepper motors. It basically follows a predefined
movement to avoid jittery and noisy motion.

• Count_pulses — Captures and counts the number of pulses coming from a digital sensor on a TPM
channel that is operating in input capture mode. This measures the sensor's output-pulses value.

• Move_motor_microstep — Function providing movement of the stepper motor in micro-steps,
which are 1/12 degree each.

• Move_motor_partialstep — Function providing movement of the stepper motor in partial steps,
which are 1/3 degree each.

• Move_motor_fullstep — Function providing movement of the stepper motor in full steps, which
are 1 degree each.

6 Software Operation Modes
The stepper motor can be driven in any of the following modes when interfaced with MC9S08LG32:

Stepper Motor

TPMCH1
GPIO1

1 2

34TPMCH2
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor12

How to Interface Stepper Motor with MC9S08LG32
• Full step mode
• Partial step mode
• Micro-stepping mode
• Acceleration process at power-on or power-on reset

In most of the VID29-XX applications, the angular range of the instrument dial is less than 300°.
This allows you to use mechanical stop to define the zero position. Generally the pointer will be
reset to the zero position at each power-up process. In the power-up process, we recommend a
frequency acceleration process to speed up the VID29 step motor until a high speed is reached. This
will quickly drive the pointer to its initial stop position without creating visible and audible jitter
of the pointer.

The position of the gauge depends on the duty cycle of the PWM signal.

Figure 23 shows the waveform on the four pins of the stepper motor for its rotation in the possible modes:

Figure 23. Driving Pulse in Full, Partial, and Micro Step

NOTE
In order to make the motor run with more stability and to decrease the noise,
micro-stepping technology is recommended. The micro-pulse sequence is
more precise and nearer to a sine wave than the others.

7 How to Interface Stepper Motor with MC9S08LG32
This section describes an example of interfacing the VID29-05 stepper motor with the MC9S08LG32. It
shows how to configure the TPM block of the SoC to control motion of the stepper motor in 4-pin mode
(2 TPM + 2 GPIO).

7.1 Description of Motor (VID29 Series)
The VID29-XX and VID29-XXP series are precise stepping motors of patent design, with a gear reduction
ratio of 180/1, mainly used in dashboard instrumentation or other digital indicator equipment, and are also
used to transfer digital signals directly and accurately to an analog display output. Driven by two sequential
logic pulse signals in the 5 V to 10 V range, the output shaft can reach a stepping angle resolution of 1/12°.
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor 13

http://www.vid.wellgain.com/en/Photo_Class.asp?ClassID=1

How to Interface Stepper Motor with MC9S08LG32
The angular speed can reach more than 500 Hz. The new and modern design makes for high efficiency,
high position accuracy, and an extremely robust gear system. The special gear shape helps to decrease
friction and noise. Special materials have been chosen for each component to increase the reliability and
safety of the motor.

7.1.1 Features of the Motor
• Wide working voltage: 5 V to 10 V
• Low current consumption: less than 20 mA, 5 V, 2 × 100 mW
• Wide working temperature: –40 °C to 105 °C
• Extremely robust construction: 30 mm × 7.6 mm
• High micro-step resolution: 1/12°
• Directly driven by MCU

7.2 Hardware Connections

Figure 24. Configuration Example

7.3 Register Configurations
Table 7 describes the control and data configurations for the stepper motor operation in the mode shown
above:

Table 7. TPM and GPIO Register Configurations

Register Value Configuration description

SCGC1_TPM1 1 Disable clock gating to TPM1 block

PINPS2_TPM10 0 Enable TPM1CH0 to come out at PTF1

PINPS2_TPM11 1 Enable TPM1CH1 to come out at PTH4

TPM1CNT 1 Clear the TPM1 counter

TPM1MOD Value Initialize the modulo register with a value of the period of the TPM cycle

TPM1C0SC_MS0x 2 Configure TPM1CH0 channels to operate in edge-aligned mode

Stepper Motor

1 2

34

1 1
2 2

3 3
4 4

Current
Driver

9
S
0
8
L
G
3
2

39

53

52

43

TPM1CH0

PTA4

PTA5

TPM1CH1
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor14

How to Interface Stepper Motor with MC9S08LG32
7.3.1 Initialization Procedure

You can follow these steps to configure the TPM block of the SoC to operate the motor in 4-pin mode,
operating in all of the step modes, using micro, partial, and full steps.

1. Disable the clock gating for TPM module.
SCGC1_TPM1 = 1

2. Write appropriate value to pin position register so as to take out TPM1 channels at the intended
pins.
PINPS2_TPM10 = 0
PINPS2_TPM11 = 1

3. Clear the TPM1 counter and configure the TPM1 modulo register, to suit the stepper motor
waveform period.
TPM1CNT = 0x01
TPM1MOD = 862

4. Configure the MS bits in both channels to operate in TPM edge-aligned mode.
TPM1C0SC_MS0x = 0x2
TPM1C1SC_MS1x = 0x2

5. Configure the ELS bits in both channels to follow high true pulses.
TPM1C0SC_ELS0x = 0x2
TPM1C1SC_ELS1x = 0x2

6. Enable the TPM1 block overflow interrupt.
TPM1SC_TOIE = 1

7. Configure both the GPIOs to operate as output pins.
PTADD_PTADD4 = 1
PTADD_PTADD5 = 1

After the above configuration, the stepper motor is configured properly to be operated in micro, partial,
and full step modes.

TPM1C1SC_MS1x 2 Configure TPM1CH1 channels to operate in edge-aligned mode

TPM1C0SC_ELS0x 2 Configure TPM1CH0 channels to follow high true pulses

TPM1C1SC_ELS1x 2 Configure TPM1CH1 channels to follow high true pulses

TPM1SC_TOIE 1 Enable the TPM1 overflow interrupt

PTADD_PTADD4 1 Configure PTA4 to act as output pin

PTADD_PTADD5 1 Configure PTA5 to act as output pin

Table 7. TPM and GPIO Register Configurations (continued)

Register Value Configuration description
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor 15

References
8 References
See S08LG Product Summary Page for more information and the documents released for MC9S08LG32.
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor16

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=S08LG&fsrch=1

THIS PAGE IS INTENTIONALLY BLANK
Interfacing Stepper Motor with MC9S08LG32, Rev. 1

Freescale Semiconductor 17

Document Number: AN3817
Rev. 1
2/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Stepper Motor Management
	3 Operation and Functionality of Stepper Motor
	4 Hardware Interface Description
	4.1 Pin Connections
	4.2 Hardware Abstraction Layer
	4.2.1 GPIO Registers
	4.2.2 TPM Registers

	4.3 Modes of Operation
	4.3.1 4 GPIO Mode
	4.3.2 2 TPM + 2 GPIO Mode
	4.3.3 3 GPIO Mode
	4.3.4 2 TPM + 1 GPIO Mode

	5 Software Interface Description
	6 Software Operation Modes
	7 How to Interface Stepper Motor with MC9S08LG32
	7.1 Description of Motor (VID29 Series)
	7.1.1 Features of the Motor

	7.2 Hardware Connections
	7.3 Register Configurations
	7.3.1 Initialization Procedure

	8 References

