
Freescale Semiconductor
Application Note

Document Number: AN3810
Rev. 0, 04/2009

Contents

Introduction . 1
1.1 SCI Communication Protocol 1
Emulated SCI Module Principles 2

2.1 Tx Timing Accuracy and Rx Timing Tolerance 2
2.2 Reception Algorithm . 3
2.3 Transmission Algorithm. 5
Emulated SCI (EMSCI) Configuration 7

3.1 Pre-Compile Definitions. 7
3.2 EMSCI Channel Configuration 9
EMSCI Runtime Interface . 10

4.1 Initialization . 10
4.2 Run-Time Structure . 10
4.3 Polling . 11
Required Resources . 12
Sample Application . 12

6.1 Introduction . 12
6.2 Initialization . 12
6.3 Scheduler Initialization. 13
6.4 Sample Application . 13

7 References ..15

Emulation of a SCI Module Using
the IO Processor (IOP) in the
MPC5510 Family
by: Oscar Luna

PMMC Software Engineer
GDL
1 Introduction
This application note describes generating an emulated
serial communication interface (SCI) by using the
EMIOS peripheral and IOP in the MPC5510 family. The
main objective of this application note is to enable users
that require more SCI than is supported in the hardware
and the ability to easily emulate in software using the
IOP.

1.1 SCI Communication Protocol
The SCI peripheral uses an asynchronous serial
transmission protocol. A unique start signal is sent prior
each byte and a unique stop signal is sent after each byte.

The start bit indicates the receiving mechanism of the
next frame sent. The stop bit sets a waiting time for
receiving the next character.

After the stop bit is sent, the line may remain in an idle
state for an indeterminate amount of time. Figure 1
shows a complete SCI frame transfer.

1

2

3

4

5
6

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Emulated SCI Module Principles
Figure 1. SCI byte Frame

Typically the number of bits transferred is 8, other lengths are also possible. The most significant bit can
be optionally used as a parity bit to improve reliability and noise immunity in the communication path.

A baud rate is used to configure the transfer speed and each transmitted bit has the same amount of time.

2 Emulated SCI Module Principles
Several implementations are possible to implement an emulated SCI module. This application note makes
use of independent EMIOS channels in transmit and receive algorithms.

The transmit algorithm uses the EMIOS channels output compare mode to generate bits at a certain baud
rate with an accurate response. The transmit algorithm also changes the line to the appropriate logic level.

The reception algorithm uses the EMIOS module input capture mode to detect any input change in the line.
The reception algorithm can identify if a glitch is present on the line and remove it to avoid incorrect data
reception.

The split in functionality is not as independent as described. The first section of the transmission algorithm
resolves a particular situation that occurs during reception. This particular process in the transmission
algorithm is explained in Section 2.2, “Reception Algorithm”.

2.1 Tx Timing Accuracy and Rx Timing Tolerance
To ensure compliance with the LIN standard, the LIN master must transmit at a symbol rate that deviates
no more than ±0.5 % from the nominal rate.

The LIN master must also receive data correctly from the slave devices connected to the bus, even if the
symbol rate of the slave device deviates up to ±1.5 % from the nominal rate.

The SCI peripheral transmission path is implemented in such a way; that the only source of inaccuracy is
the clock source used to time the duration of the individual bits. Assuming the SCI peripheral clock source
deviates from the nominal frequency by the maximum allowed amount (0.5 %), the receiver that uses the
same clock source must then be able to accommodate at least ±2 % deviation from the nominal rate.

The simplest possible implementation of an SCI receiver synchronizes only the receiver clock with falling
edge at the beginning of the start bit. It then samples the Rx line to receive the individual data bits. This
imposes certain limits on the maximum symbol rate deviation the receiver tolerates. Figure 2 shows
symbol rate deviation of ±4.5 % while transferring 8 data bits.

1 2 3 4 5 6 7

Start bit

Idle

Stop bit

Data bits
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor2

Emulated SCI Module Principles
The sampling window for the stop bit reduces to 10 % of the nominal bit time. Tolerance of ±5 % and
higher symbol rate deviation is impossible. There is no time left for sampling the stop bit. The situation
gets complicated for higher number of data bits than 8.

Figure 2. SCI Reception Byte at Both Slower and Faster Symbol Rates

2.2 Reception Algorithm
The reception algorithm uses the the EMIOS module input capture mode. This function enables the
application to capture the time of an edge on any EMIOS input capture pin and has the ability to accept or
reject data frames that are not within the allowable length range.
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 3

Emulated SCI Module Principles
Figure 3. Simplified Receive Algorithm

Timer input capture
interrupt event

Was there just a
glitch on the Rx

line?

Is the edge a
beginning of a
new character

Is the start bit a 0?
Ignore the edge

detection and clear the
interrupt flag

Calculate the time
between the current

and the last edge

Calculate the end time
of the stop bit and

intialize the shift register

Is the time
difference > 1/2 of

the bit time?

Clear the interrupt
flag

Section 1: Prepare and Filter Glitches

Section 2: Receive Bits

Is the captured
edge a falling

edge?

Shift the shift register
down by one bit

Shift theregister down by
one bit and or a 1 into its

MSB

Has a complete
character been

received?

Transfer the
character into the

Rx buffer

Subtract 1 bit time from
the time difference

between edges

Is the time
difference > 1/2
of the bit time?

Is the time
difference > 1/2 of

the bit time?

Clear the
interrupt flag

N

Y

N

Y

Y
Y

N

Y

Y

Y

N

N

N

N

N

Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor4

Emulated SCI Module Principles
Every time an edge in the Rx line is detected, the reception algorithm is executed. First, the algorithm
checks whether the incoming signals is a fast transient on the line. If so, it does not validate the incoming
data and the interrupt flag is cleared. The received algorithm calculates if a transient signal is detected by
comparing the last known state of the Rx line with its current state. If the two states are the same this means
that a transient occurred as the line quickly changed its state and returned back to its current state.

When the detected edge is validated, the algorithm verifies if a reception is already in progress. If a
reception is not in progress, the detected edge then corresponds to a new character.

Every time a new character is validated, the algorithm checks whether the start bit is a 0 or 1. The reception
flow continues only if the start bit has been correctly received, and if so the routine records the edge time
of the start bit for future references for any incoming data.

If a reception is already in progress, the routine calculates the time difference between the last and
currently recorded edge. This recorded information is used during the complete reception process,
validating how many bit times have elapsed between two edges, and accordingly updating the shift
register.

The algorithm follows different flows depending on the current state of the Rx line. When a rising edge is
captured by the EMIOS channel, the routine knows that the previous state of the Rx line was low and the
routine shift the corresponding number of 0’s into the shift register. On the other hand, when the EMIOS
channel detects a falling edge, the routine knows that the previous state on the Rx line was high. The
routine takes a different action whether to shift the 1’s into shift register. The routine validates if the
received character is within the allowed tolerance range.

The reception algorithm can receive each sequence of 1 or 0 bits to be upto half a bit time longer or shorter
than nominal. This allows maximum possible flexibility of symbol rate inaccuracy.

The reception algorithm detects a complete character reception only . However, the last character reception
is dealt within the transmission interrupt. Section 2.3, “Transmission Algorithm” details how the transmit
algorithm manages the completion of the last character during reception.

The transmit interrupt service routine checks whether the current time has past the end of the stop bit.
When the transmission routine detects a reception is still in progress after the time stop bit ends, it
terminates the reception and transfers the received character into the Rx buffer. The reception algorithm
ensures the periodic transmit interrupt is enabled during an active reception.

2.3 Transmission Algorithm
The transmission algorithm uses the EMIOS module output compare mode to generate the output signals
accurately. This enables the transmitter to operate correctly even in situations where all of the allowed
symbol rate inaccuracy is consumed by the microcontroller clock source.

Figure 4 is a flow chart of a transmit algorithm.
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 5

Emulated SCI Module Principles
Figure 4. Simplified Flowchart of Transmission Algorithm

Is reception in
progress

Has the receiver
overrun the stop

bit?

Finish the
reception and

move the
characterinto the

Rx buffer

N

Y Y

Section 2: Update the Output Compare Time

Section 3: Handle Start of Transmission

Section 4: Transmit bits

Section 5: Reload the Shift Register and Handle Interrupt Settings

Add 1 bit time to
the output

compare register

Has the
transmitter been
previously idle?

Update the output
compare register to

trigger 1 bit time
from now

Is the shift
register empty?

Set-up the timer to
create a rising or

falling edge based
on LSB of the shift
register, shift the

shift register down
by 1 bit and clear the

interrupt flag

Is transmission in
progress? No action required

Is the Tx buffer full?

Load the new
character into the
shift register and

mark the Tx buffer as
empty

Is reception in
progress?

Disable the output
compare interruot

Clear the
interrupt flag

Y

N

N

N

Y

Y

Y

N

N

N

Y

Timer output compare
interrupt event Section1: Check if the Receiver has Gone Past the Stop Bit Time
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor6

Emulated SCI (EMSCI) Configuration
The transmission operation is enabled every time a particular emulated SCI channel is invoked. Every time
an emulated SCI channel is used, an eMIOS channel is triggered to operate in output compare mode and
starts to count until an output compare interrupt occurs.

When an output compare interrupt occurs, the transmit algorithm is executed and starts sending bits. The
interrupt service routine first verifies the state of the receiver and finishes character reception if there are
no further edges on the Rx line. The transmit algorithm has a section of code from the reception algorithm
that validates a stop bit has been received, therefore the transmit algorithm checks the receiver routine
finishes. After the algorithm validates the end of the receive routine, the service routine adds one bit time
to the output compare time. If a transmission is already in progress this ensures the next bit time is
transmitted after the previous character.

If the transmitter has previously been idle, the output compare time for the previous bit may be outdated.
In this case, the service routine updates the output compare register to trigger after another bit time (from
the current timer value). If the transmitter is idle and the user fills the transmit buffer the actual
transmission starts after one bit time.

If the shift register is not empty, the service routine sets the timer to force the transmit line to a 0 or 1 state
(based on the shift register LSB) on the next output compare trigger. It then shifts the shift register right
by one bit. The bit value just transferred to the output compare timer logic is discarded. The service routine
also clears the interrupt flag because the transmission is in progress the timer sets the flag again as soon as
the output compare logic triggers.

If the transmit shift register is not empty, there is no additional tasks to perform and the service routine
ends. However, if the output shift register is empty, the service routine tries to reload the shift register from
the transmit buffer.

If there is no data in the transmit buffer no more data is to be transmitted. In this case, the routine considers
whether a reception is currently in progress. If a reception is in progress, the periodic output compare
interrupt is then kept running and the interrupt flag is cleared. If no reception is in progress, the whole
emulated peripheral is then idle and the output compare interrupt is disabled completely. It is no longer
needed.

3 Emulated SCI (EMSCI) Configuration
This section describes how to configure the EMSCI driver to operate during run-time and describes
pre-compile statements.

3.1 Pre-Compile Definitions
The EMSCI driver has many pre-compile definitions to enable or disable certain functionalities in the
driver. All pre-compile definitions are located in file Emsci_Cfg.h with the exception of the macro named
SYS_FREQ located in Mcu.h file.

SYS_FREQ — This definition holds the operating system frequency. This field must be captured
at Hz units:

#define SYS_FREQ (uint32_t) 64000000U /* Hz units */
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 7

Emulated SCI (EMSCI) Configuration
EMSCI_BUS_FREQUENCY — This definition is required to allow the EMSCI driver to calculate
the correct baud rate. This field depends directly on the value captured in the SYS_FREQ macro.

EMSCI_BAUD_RATE — The timer output compare counter uses this value to generate the
specific baud rate indicated by this macro definition. The baud rate value must be captured as
shown below:

#define EMSCI_BAUD_RATE 19200

EMSCI_BIT_COUNT — The number of data bits to transmit or receive. The transmit algorithm
uses this variable to send the amount of data bits through the Tx line. The receive algorithm makes
use of this value to determine the number of data bits on the Rx line.

Values range goes from 0 to 14 bits. The typical value is 8, however there are other ranges such as
7 bits (basic ASCII communications) and 9 bits (byte transfers with parity).

#define EMSCI_BIT_COUNT 8

EMSCI_TIMER_PRESCALER — To ensure correct driver operation, the number of timer ticks
per emulated SCI symbol must not be higher than 32767/(EMSCI_BIT_COUNT+1.5). If zero data
is received, the time of all the data bits plus the start bit transmitted at the lowest possible symbol
rate must fit into a signed integer variable.

This condition does not hold true for high bus speeds and low symbol rates. In such case, it is
possible to pre-divide the timer clock by making use of the EMSCI_TIMER_PRESCALER
parameter.

 Eqn. 1

If Equation 1 is not satisfied, then the value of the EMSCI_TIMER_PRESCALER parameter must
be increased.

The allowed range for this parameter is 0–7.

EMSCI_CHANNELS — This parameter defines the number of EMSCI enabled by the
initialization routine in the driver. Range allowed is from 1 to 4 channels. This parameter is located
at Emsci_Cfg.h file.

#define EMSCI_CHANNELS 4
EMSCI_USE_INTERRUPTS — This parameter defines whether the EMSCI driver invokes a
predefined software interrupt (not implemented in the hardware) after a transmission is finished or
when a complete frame has been received.

#define EMSCI_USE_INTERRUPTS 1 /* Interrupts are enabled */

Each EMSCI channel has its own transmit and receive interrupts. Each interrupt is configured as
below:

#define EMSCI_TX_FNC_0 TxInterrupt_0
#define EMSCI_RX_FNC_0 RxInterrupt_0

EMSCI_TX_FNC_0 — This definition is used by the driver to jump into the predefined function
(TxInterrupt_0, as in the above code) after the transmit algorithm finishes the in-progress
transmission.

EMSCIBusFrecuency

2
EMSCITimePrescaler  EMSCIBaudRate 

--- 32767
EMSCIBusCount 1.5+
--
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor8

Emulated SCI (EMSCI) Configuration
EMSCI_RX_FNC_0 — This definition is managed exactly the same way as the transmit
algorithm. EMSCI_TX_FNC_0 and EMSCI_RX_FNC_0 are strictly used by EMSCI channel 0.
EMSCI channels 1–3 use their own software based interrupts. EMSCI channel 1 uses
EMSCI_TX_FNC_1 and EMSCI_RX_FNC_1, definitions.

If interrupts are enabled, it is necessary to create the functions where the interrupt definitions
(EMSCI_TX_FNC_xx / EMSCI_RX_FNC_xx)jump after a transmit or receive service has been executed.

3.2 EMSCI Channel Configuration
Each of the four available emulated SCI channels need to be configured independently for proper
operation. The EMSCI channel configuration structure is located at Emsci_Cfg.c and Emsci_Cfg.h files.

The EMSCI configuration structure is composed of two different sections. Both sections have the same
variables but are designated to configure transmit and receive channels of an EMSCI unit.

Each of the transmit and receive channels have an individual resource assigned. These resources are
detailed within this section. Figure 5 shows the configuration structure used by the driver to initialize each
emulated SCI channel.

Figure 5. Emulated SCI Configuration Data Structure

The u32Emsci_Unit variable indicates what emulated SCI unit is used. This variable is used mainly by
the driver initialization routine to know which emulated SCI unit needs to be configured.

The u32Tx_EmiosChannel and u32Rx_EmiosChannel variables indicate the number of the EMIOS
channel used to emulate as a transmit or receive channel.

The u32Tx_InterruptNum and u32Rx_InterruptNum variables contain the physical interrupt vector
number of the assigned EMIOS channel.

The u32Tx_OutputPin and u32Rx_OutputPin variables indicate the pin to be configured as an EMIOS
channel. These pins are configured as output compare and or input capture modes. The chosen pins are
required to support input capture or output compare modes.

The u32Tx_OutputPinFnc and u32Rx_OutputPinFnc variables contain the value to enable the EMIOS
functionality of a particular pin.

typedef struct
{
 uint32_t u32Emsci_Unit;
 uint32_t u32Tx_EmiosChannel;
 uint32_t u32Tx_InterruptNum;
 uint32_t u32Tx_OutputPin;
 uint32_t u32Tx_OutputPinFnc;
 void (*TxEndNotification)(void);
 uint32_t u32Rx_EmiosChannel;
 uint32_t u32Rx_InterruptNum;
 uint32_t u32Rx_InputPin;
 uint32_t u32Rx_InputPinFnc;
 void (*RxEndNotification)(void);
} Emsci_ConfigType;
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 9

EMSCI Runtime Interface
The TxEndNotification and RxEndNotification fields are function pointer variables that serve to jump
into a specific predefined function after a transmission or reception routine finishes. These functions must
be previously declare in the application code.

4 EMSCI Runtime Interface

4.1 Initialization
The EMSCI driver needs to be properly configured before running. EMIOS timers have to be initialized
before hand because the EMSCI driver is entirely based on the use of the EMIOS module for correct
emulation of the SCI.

The driver is initialized by invoking function vfnemsci_init. This initialization routine makes use of the
configuration data structure from the Emsci_Cfg.c file. The routine uses the configuration parameters to
setup EMIOS channels to emulate the EMSCI channels.

Configuration structure setup is detailed in Section 3.2, “EMSCI Channel Configuration”.

The EMSCI initialization routine takes control of the configuration GPIO pins configuration that operate
as EMIOS and handling the proper configuration of EMIOS channels. This routine also resets the run-time
structure used by each emulated SCI channel.

4.2 Run-Time Structure
The EMSCI driver makes use of data structure during run-time operation for handling the four emulated
SCI channels. Each of the emulated SCI channels uses their own run-time structure to handle the EMSCI
channel timings and signals. The emulated SCI data structure used during run-time is shown in Figure 6.

Figure 6. Emulated SCI Data Structure Used During Runtime

The Tx and Rx buffers(tx_buffer , rx_buffer), are used to save receive or transmit information. The
Tx buffer contains the complete byte to send, meanwhile all received bits from the Rx line are stored in
the Rx buffer.

typedef struct
{
 uint16_t rx_buffer;
 uint16_t tx_buffer;
 uint16_t rx_shift;
 uint16_t tx_shift;
 uint16_t rx_last_edge_time;
 uint16_t rx_last_edge:1;
 uint16_t tx_in_progress:1;
 uint16_t rx_in_progress:1;
 uint16_t rx_bit_counter:5;
 uint16_t unused:8;
} temsci_data;
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor10

EMSCI Runtime Interface
The Tx and Rx shift variables are used by the driver to compose and decompose the data from the Tx and
Rx buffers. During the transmit process, start and stop bits are inserted in the shift process and contrary to
this process the receiving routine removes the start and stop bits to store only the data bits into the Rx
buffer.

The Rx last edge time and last edge indicators are used by the reception algorithm to keep track of the time
elapsed from the last edge detected and the edge polarity.

The Tx and Rx in-progress indicators are used by the driver to decide whether transmission and reception
algorithms are needed to handle the beginning of a data transfer.

The Rx bit counter is used by the transmission algorithm to detect whether the time frame for receiving
the data has already elapsed and if the data is not received, it is because of lack of edges on the Rx line.

4.3 Polling
The emsci.h file contains polling macros that retrieve status of a particular transmit or receive emulated
SCI channel. This file also contains two macros to write and read data into and from a particular emulated
SCI channel.

4.3.1 EMSCI_TX_BUFFER_EMPTY (emsci_no)

This macro enables the user to test if a particular Tx buffer is empty. The parameter of this macro is the
number of the emulated SCI to test. The allowed values are 0 to EMSCI_CHANNELS-1. The value of this
macro is zero if the particular Tx buffer is full and non-zero if the buffer is empty.

4.3.2 EMSCI_TX (emsci_no, data)

This macro fills the selected Tx buffer with new data. The data is subsequently transmitted by the
corresponding emulated SCI peripheral. After new data is written into a Tx buffer tests as full. The buffer
tests again as empty once the data is transferred to the shift variable and the transmission is initiated.

4.3.3 EMSCI_RX_BUFFER_FULL (emsci_no)

This macro enables the user to test whether a particular Rx buffer is full. The value of this macro is zero
if the particular Rx buffer is empty and non-zero if the buffer is full. Rx buffers become automatically full
after data is received through the corresponding emulated SCI channels.

4.3.4 EMSCI_RX (emsci_no, result_var)

This macro receives data from the selected Rx buffer into a user supplied variable. The Rx buffer tests as
empty once the data has been received. Receiving data from the buffer destroys its contents. For example,
a particular data received through the emulated SCI peripheral can only be read once.
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 11

Required Resources
5 Required Resources
The emulation of the SCI driver requires the usage of several EMIOS channels the user needs to be aware
of. These EMIOS channels cannot be assigned to handle other tasks within the users application because
the performance of the emulated SCI driver is considerably affected.

Table 1 shows the assigned EMIOS channels that emulate SCI channels.

EMSCI events are not necessarily conneceted to specific EMIOS channels. The user can re-map the four
EMSCI channels to any available EMIOS channel on the microcontroller. The EMIOS channel remapping
can be done by modifying the second, third, and fourth parameters located on each element array of the
configuration structure. These parameters are located in Emsci_Cfg.c file.

6 Sample Application

6.1 Introduction
The sample application proposed in this application note demonstrates operation of the EMSCI driver with
a scheduler running on the second core of the MPC5510 microcontroller.

6.2 Initialization
The sample application first initializes the EMSCI driver before running scheduler tasks. The first step is
to invoke the initialization function, emsci_init.

The emsci_init function configures all four emulated SCI channels by assigning EMIOS channels 0–7 to
each emulated SCI channel. EMIOS channel assignation is described in Table 1. Microcontroller pins from
PortC (0–7) are configured to operate in output compare and input capture modes.

A baud rate operation of 9600 bps is configured for all transmitters and receivers. EMSCI run time
structures are initialized to avoid any type of malfunctions in the driver.
/* Initialize Pwm module */
vfnemsci_init(Emsci_ChannelConfig);

Table 1. Emios Channel Association with Emulated SCI Channels

Emulated SCI Event Associated Interrupt Channel Vector Interrupt

EMSCI0 Rx EMIOS Ch0 58

EMSCI0 Tx EMIOS Ch1 59

EMSCI1 Rx EMIOS Ch2 60

EMSCI1 Tx EMIOS Ch3 61

EMSCI2 Rx EMIOS Ch4 62

EMSCI2 Tx EMIOS Ch5 63

EMSCI3 Rx EMIOS Ch6 64

EMSCI3 Tx EMIOS Ch7 65
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor12

Sample Application
6.3 Scheduler Initialization
After initialization execution, the scheduler initialization function vfnScheduler_Init runs and
configures EMIOS channel number 8 as a time base reference.

A macro definition LOOP_TIME_50ms located in the Emios.h file calculates the value of the EMIOS
channel 8 counter to generate an interrupt service every 50 ms. This macro makes use of the actual system
clock used by the sample application of 64 MHz.

After EMIOS channel 8 is configured, the scheduler remains in a hold state until the function
vfnStart_Scheduler is invoked. This function enables the EMIOS 8 timer to start counting and enables
the complete operation of the scheduler.

Figure 7 shows the correct initialization and execution of the scheduler.

Figure 7. Schedule Initialization Procedure

6.4 Sample Application
The sample application consists of sending different bytes through all four EMSCI channels.
Simultaneously all receivers validate the bytes sent by the transmitters. This sample application is to show
the basic operation of the EMSCI driver.

The scheduler is assigned to transmit and receive all bytes at different intervals. These intervals are
programmed at intervals of 100 ms, 200 ms, 400 ms, and 800 ms. The first task interval of 100 ms uses
EMSCI TX channel 0 to send data. The data sent by TX channel 0 is 0x10.

After 200 m, the scheduler issues the second task to invoke the EMSCI Rx channel 0 to validate the data
sent by TX channel 0. On the same scheduler thread, TX channel 1 is called to send data. The data sent by
the TX channel 1 is 0x20.

When 400 ms elapse in the scheduler, the third task is executed by using the RX channel 1 to validate the
data sent by TX channel 1. If RX channel validates a received value of 0x20, a flag is set to indicate the
correct validation of the byte. In this same thread the TX channel 2 sends data. The data sent by
TX channel 2 is 0x52.

After 800 ms elapse, the last task is executed by reading data from TX channel 2. The validation is
performed by RX channel 2 and a flag is set whenever the received data is correct. TX channel 3 now
enters into execution and sends data. The data sent by TX channel 3 is 0x74.

When the last thread is finally executed, the scheduler remains constantly sending and validating receiving
bytes.

The EMSCI sample application running in a multi-thread scheduler shows the complete sample
application mounted on the scheduler:

vfnScheduler_Init(); /* Initialize Scheduler timebase
*/
vfnStart_Scheduler(); /* Start Tasks execution
*/
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 13

Sample Application
void main(void)
{
/* Initialise Scheduler handling variables */
 gu8SleepModeEnabled = 0;
 gu8Scheduler_Ctrl = 0;
 gu8Scheduler_Flag = 0;

 vfnInit_PLL();
 initIrqVectors(); /* Initialize exceptions: only need to load IVPR */
 initINTC(); /* Initialize INTC for hardware vector mode */
 vfnEmiosConfig_General_Clocks(); /* Initialize general Emios clocks */

/* Initialize Pwm module */
vfnemsci_init(Emsci_ChannelConfig);

vfnScheduler_Init(); /* Initialize Scheduler timebase */ vfnStart_Scheduler(); /* Start
Tasks execution */
enableIrq(); /* Ensure INTC current prority=0 & enable IRQ */

while (gu8SleepModeEnabled == 0)
 {
 if ((gu8Scheduler_Flag & (uint8_t)0x01) == (uint8_t)0x01)
 {
 /*-- Allow 100 ms periodic tasks to be executed --*/
 EXECUTE_100MS_TASKS();

 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
 else
 {
 if ((gu8Scheduler_Flag & (uint8_t)0x02) == (uint8_t)0x02)
 {
 /*-- Allow 200 ms periodic tasks to be executed --*/
 EXECUTE_200MS_TASKS();

 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
 else
 {
 if ((gu8Scheduler_Flag & (uint8_t)0x04) == (uint8_t)0x04)
 {
 /*-- Allow 400 ms periodic tasks to be executed --*/
 EXECUTE_400MS_TASKS();
 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
 else
 {
 if ((gu8Scheduler_Flag & (uint8_t)0x08) == (uint8_t)0x08)
 {
 /*-- Allow 800 ms group A periodic tasks to be executed --*/
 EXECUTE_800MS_A_TASKS();

 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
 else
 {
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor14

References
 if((gu8Scheduler_Flag & (uint8_t)0x10) == (uint8_t)0x10)
 {
 /*-- Allow 800 ms group B periodic tasks to be executed --*/

 /* Scheduled tasks finished, clear control flag */
 gu8Scheduler_Flag = (uint8_t)0x00;
 }
 }
 }
 }
 }
 }
}
} /* End of main */

7 References

AN3292 Appnote (XGATE Library: SCI Emulation), Freescale Semiconductor.

MPC5510 Microcontroller Family Reference Manual.
Emulation of a SCI Module Using the IO Processor (IOP) in the MPC5510 Family, Rev. 0

Freescale Semiconductor 15

Freescale™ and the Freescale logo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

AN3810
Rev. 0
01/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

	1 Introduction
	1.1 SCI Communication Protocol

	2 Emulated SCI Module Principles
	2.1 Tx Timing Accuracy and Rx Timing Tolerance
	2.2 Reception Algorithm
	2.3 Transmission Algorithm

	3 Emulated SCI (EMSCI) Configuration
	3.1 Pre-Compile Definitions
	3.2 EMSCI Channel Configuration

	4 EMSCI Runtime Interface
	4.1 Initialization
	4.2 Run-Time Structure
	4.3 Polling
	4.3.1 EMSCI_TX_BUFFER_EMPTY (emsci_no)
	4.3.2 EMSCI_TX (emsci_no, data)
	4.3.3 EMSCI_RX_BUFFER_FULL (emsci_no)
	4.3.4 EMSCI_RX (emsci_no, result_var)

	5 Required Resources
	6 Sample Application
	6.1 Introduction
	6.2 Initialization
	6.3 Scheduler Initialization
	6.4 Sample Application

	7 References

