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Understanding 
Memory Paging in 9S08 Devices
by: Eduardo Viramontes / Rick Li

Freescale Technical Support
1 Fundamentals of Memory 
Paging in 9S08 Devices

Memory paging provides digital systems with greater 
memory addressing capabilities without expanding basic 
architecture resources, such as bus size or address 
pointers. The memory page is a set of memory addresses 
that comprise a “view” by a digital system under specific 
conditions, such as changes to a combination of flags 
resulting from setting a variable or register.

The viewable address ranges in a memory page is the 
“paging window.” Memory paging is an accepted 
practice and a common way to access large memory 
ranges in computer systems. 

9S08 devices with a flash memory greater than 60 KB 
include the Memory Management Unit (MMU) and the 
PPAGE register to access larger memory pages with the 
same 9S08 architecture (16-bit address pointer with a 
maximum of 64 KB addresses).
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Fundamentals of Memory Paging in 9S08 Devices
1.1 Standard 9S08 Memory Map
The standard 9S08 memory is represented as follows:

Figure 1. Standard 9S08 Memory Map

Figure 1 shows the 9S08AW60 memory map that has the standard linear memory used in 9S08 devices. 

The complete memory map can be addressed with one 16-bit pointer in the 9S08 architecture. Expanding 
memory addressing to external memory for the 9S08 devices is not cost-efficient because 8-bit devices are 
commonly implemented in low cost systems.Therefore, adding a larger internal memory and a method to 
access memory beyond 64 KB addresses is required.

1.2 Paged 9S08 Memory Map
Having the 9S08 architecture limitation of a 16-bit pointer to memory, a paged memory scheme increases 
the addressing range to as many memory pages as available. 
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The Memory Management Unit
Figure 2 represents the basic memory structure that allows internal memory paging in 9S08 devices. By 
reorganizing the memory map, you can increase the number of accessible memory addresses.

Figure 2. 9S08 Memory Paging Map 

The reorganized memory map has several differences from the standard memory map:
— RAM and registers are grouped together at the beginning of the memory map
— Flash memory is divided into 16 KB sectors
— Each 16 KB sector is considered a page
— Special pages are considered “paging windows”

You can address the RAM and flash memory in this memory map with a 16-bit address pointer, but the 
remaining memory is not accessible. 

2 The Memory Management Unit
Because the 9S08 architecture has limited addressing capacity, the MMU supports core accesses to the 
remaining internal memory that is not accessible with the 16-bit address pointer. 
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The Memory Management Unit
2.1 The Program Page (PPAGE)
The memory is divided into four sections: the first section is referred to as RAM even though it includes 
the registers, and the remaining three sections are referred to as flash.The flash sections are 16 KB each 
for a total of 48 KB flash. The rest of the flash memory is only accessible using the MMU. 

The Program Page (PPAGE) register in the MMU allows you to view a 16 KB block in the paging window 
located between addresses 0x8000–0xBFFF. PPAGE is an 8-bit register containing a 3-bit field with valid 
values from 0 to 7.

The value in PPAGE is the currently addressable memory page in the paging window, which shows the 
address ranges of the accessible memory. Figure 3 shows PPAGE and its location within the memory 
pages:

Figure 3. PPAGE and Memory Pages

The 16 KB memory page is the optimal page size for the 9S08 devices:
• A bigger memory page reduces the amount of unpaged memory used for system operations, such 

as interrupts and internal logic, which are required regardless of the PPAGE value.
• A smaller memory page requires more pages for the same amount of memory, which slows 

memory access and program performance.

To read and write data, set the page value in the PPAGE register and then access the memory between 
addresses 0x8000 and 0xBFFF. Every page is offset with the PPAGE value.
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Window Paging Implementation
In code, the compiler and linker call functions according to the allocated memory location. The 
instructions used to execute the function depend on its location in the memory page:

• JSR jumps to code located in the standard 64 KB memory 
• CALL accesses paged memory

Use the directives “__near” and “__far” to force the compiler and linker to specify the local or paged 
memory for a function. Jumping to functions in local memory takes less CPU cycles than jumping to paged 
memory. Given that local memory is smaller than paged memory, allocate higher priority functions or time 
critical functions to local memory; allocate functions with less priority to paged memory. 

2.2 Linear Address Pointer and Linear Address Space
The Linear Address Pointer (LAP) is a 17-bit register that can directly access the full memory map. The 
LAP register contains three 8-bit registers; two complete 8-bit registers and one 8-bit register for the 17th 
bit. Use the LAP register and MMU module for direct access to the entire memory map.

The Linear Address Space (LAS) is the memory that the MMU can address linearly using the LAP register.

Figure 4. Linear Address Pointers 

3 Window Paging Implementation
The LAP register addresses the full memory map. Since the MMU is a separate module and not part of the 
processor core, access to MMU registers is required to access the data to which the LAP points:

• Linear Byte register (LB)
— 1 byte register
— Read from or write to this byte to return the data to which the LAP register points

• Linear Byte Post Increment register (LBP)
— 1 byte register
— Read from or write to this byte to return the data to which the LAP register points; and 

increments the LAP register by one.
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Window Paging Implementation
• Linear Word Post Increment register (LWP)
— 2 byte register (data is overlapped by reading to the 16-bit HX).
— Read from or write to this byte to return the data to which the LAP register points; and 

increments the LAP register by two.

The ability of LBP and LWP to increment the LAP register allows these registers to access large lists of 
data, as shown in the following examples:

Figure 5. Using LWP to Access Data Tables

Working with data tables can require offsets to access the data. Write a two’s complement byte value to 
the Linear Address Pointer Add Byte register (LAPAB) to increment or decrement the LAP by this value. 
This makes it easy to access from +127 to -128 addresses within the data range to which LAP points.

Figure 6. LAP Pointer Location in the LAPAB Address Range

Figure 7. Using LAPAB to Access Data Tables

1. Write LAP = 0x10000
2. LDHX LWP (Load HX with LWP)
3. LAPR increments
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The Full Memory Map
4 The Full Memory Map
Figure 8 represents the entire memory map for the 9S08 devices:

Figure 8. Complete 9S08 Memory Map

The extended address space, which is the actual physical address from 0x00000 to 0x1FFFF, is the 
complete 128 KB. 9S08 devices with smaller memories that implement paged memory are available, such 
as the 96 and 64 KB derivatives of the 9S08QE family and the 96 KB derivative of the 9S08AC family. 
Page 0 is the physical address 0x00000 and the CPU logical address 0x8000. The same principal applies 
to the remaining pages, according to the page number.

The following aspects are important to remember when developing code to access the full memory map:
• The RAM and flash memory (page 0) share CPU addresses 0x0000–0x3FFF. The CPU gives RAM 

priority access to this address range because it is accessible only by using the paging window or 
the linear addressing registers.

• Addresses 0x2080–0x3FFF is the final address range in page 0.
• The PPAGE default value is 2 at startup, which results in a contiguous memory block from page 1 

to 3.
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Using Paged Memory and Linear Memory in CodeWarrior
5 Using Paged Memory and Linear Memory in 
CodeWarrior

5.1 Selecting the 9S08 Device Memory Mode
When using the wizard in CodeWarrior to create a project, select from the following memory models: 

• Tiny — By default, all variables reside in page 0 and require direct memory access. Use pragmas 
or the far keyword to access variables not in page 0.

• Small — By default, no variables reside in page 0 and require extended memory access. Use 
pragmas or the near keyword to access variables that reside in page 0.

• Banked — By default, functions require a special CALL instruction. No variables reside in page 0 
and require extended memory access unless explicitly placed otherwise. Banked memory is only 
supported on devices with a MMU.

Banked memory is an option available on the HCS08 devices that uses the CALL and RTC instructions to 
the HCS08 core, in addition to the PPAGE memory mapping method.

Select banked memory option since the other two options are standard options for HCS08 devices with 
less than 64 K memory space.

5.2 Modifying the PRM file
The PRM file determines how the linker allocates the RAM and ROM memory. The standard procedure 
uses the default PRM file in the project window for the CPU derivative. However, you can modify the 
PRM file to change the memory allocation.

The following code shows the SEGMENTS section of a PRM file in a standard project for QE128.
Z_RAM     =  READ_WRITE   0x0080 TO 0x00FF;
RAM       =  READ_WRITE   0x0100 TO 0x17FF;
RAM1      =  READ_WRITE   0x1880 TO 0x207F;
/* unbanked FLASH ROM */
ROM       =  READ_ONLY    0x2080 TO 0x7FFF;
ROM1      =  READ_ONLY    0xC000 TO 0xFFAD; 
/* INTVECTS  =  READ_ONLY    0xFFC0 TO 0xFFFF; */
/* Reserved for Interrupt Vectors */
/* banked FLASH ROM */
PPAGE_0   =  READ_ONLY    0x008000 TO 0x00A07F;
/* PAGE partially contained in ROM segment */
PPAGE_2   =  READ_ONLY    0x028000 TO 0x02BFFF;
PPAGE_4   =  READ_ONLY    0x048000 TO 0x04BFFF;
PPAGE_5   =  READ_ONLY    0x058000 TO 0x05BFFF;
PPAGE_6   =  READ_ONLY    0x068000 TO 0x06BFFF;
PPAGE_7   =  READ_ONLY    0x078000 TO 0x07BFFF;
/* PPAGE_1   =  READ_ONLY    0x018000 TO 0x01BFFF; */
/* PAGE already contained in segment at 0x4000-0x7FFF */
/* PPAGE_3   =  READ_ONLY    0x038000 TO 0x03BFFF; */
/* PAGE already contained in segment at 0xC000-0xFFFF */
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Using Paged Memory and Linear Memory in CodeWarrior
The SEGMENTS section describes the memory blocks available to the MCU so the linker can allocate 
memory for different types of code. Each segment shows a contiguous block of memory locations with a 
qualifier and a range.

The ROM and ROM1 segments are not banked flash. The ROM segment includes addresses 
0x2080–0x4000 of page 0 and all of page 1. Page 0 is also shown in the banked segment definition. This 
page is only defined at the lower addresses where the registers and RAM overlap. To access the overlapped 
part of Page 9 you must use the paging window (LAPR).

5.3 Lab 1: Placing Code in a Specific Memory Section
Project: MEM_banked.mcp

This lab shows you how to use the CALL and JSR call instructions and which RTC or RTS return 
instruction to use with the compiler, as well as how to point the linker to location for the code. The JSR 
and RTS instructions use a 16-bit address to access functions in memory less than 64 KB. 

This lab creates a project with two simple functions:
• NearFunction() is located in non-banked ROM
• FarFunction() is located in the paged ROM

Use a CALL instruction to place the function in extended memory and the RTC instruction to return from 
the call. The CALL and RTC instructions use a 24-bit address. To place a function in banked memory, the 
keyword “__far” is required to qualify the function.

1. Launch CodeWarrior and use the wizard to create a project for MC9S08QE128 
2. Select ‘Banked’ memory model
3. Create two functions, NearFunction() and FarFunction(), in the main.c file.
4. Add the “__near” keyword before function NearFunction() and its prototype
5. Add the “__far” keyword before function FarFunction() and its prototype
6. Call these two functions in the main function

The following code shows the results of these steps:
Void __near NearFunction(void);
Void __far    FarFunction(void);
…
Void main(){
…
NearFunction();
FarFunction();
…
}
…
Void __near NearFunction(void){
}
Void __far FarFunction(void){

}
7. Disassemble the source file and study results of the compiler. NearFunction() is called by 

instruction CALL, and uses the return instruction is RTC. The function FarFunction() is called by 
instruction JSR, and uses the return instruction is RTS.
Understanding Memory Paging in 9S08 Devices, Rev. 0
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Using Paged Memory and Linear Memory in CodeWarrior
NOTE
Because functions in banked memory inherently require the ‘__far’ 
keyword, you can remove it for the FarFunction().

8. Place function NearFunction() in the non-banked memory and FarFunction() in banked memory 
by using #pragma CODE_SEG convention. The following code shows the complete main.c file:

main.c

#include <hidef.h> /* for EnableInterrupts macro */
#include "derivative.h" /* include peripheral declarations */
#include <mmu_lda.h>

#pragma CODE_SEG NON_BANKED
void __near NearFunction(void);
#pragma CODE_SEG DEFAULT

#pragma CODE_SEG PAGED_ROM
void __far FarFunction(void);
#pragma CODE_SEG DEFAULT

void main(void) {

EnableInterrupts; /* enable interrupts */
/* include your code here */

NearFunction();
FarFunction();

for(;;) {
__RESET_WATCHDOG(); /* feeds the dog */
} /* loop forever */
/* please make sure that you never leave main */
}
#pragma CODE_SEG NON_BANKED
void __near NearFunction(void){
  }
#pragma CODE_SEG DEFAULT

#pragma CODE_SEG PAGED_ROM
void __far FarFunction(void){
  }
#pragma CODE_SEG DEFAULT

Make the project and review the .map file. The two functions are located at the correct memory address.

TINY SMALL BANKED

 • Functions are inherently __near 
if not specified otherwise

 • Functions in extended memory 
must be marked with __far 
(or #pragma CODE_SEG 
__FAR_SEG)

 • Functions are inherently __near 
if not specified otherwise

 • Functions in extended memory 
must be marked with __far 
(or #pragma CODE_SEG 
__FAR_SEG)

 • Functions are inherently __far 
if not specified otherwise

 • Functions that do not reside in 
extended memory (functions 
that use the standard calling 
convention) must be marked 
with __near (or #pragma 
CODE_SEG __NEAR_SEG)
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Using Paged Memory and Linear Memory in CodeWarrior
5.4 Lab 2: Placing Data in Extended Memory and Using LAP
With MMU support, the linear address pointer (LAP) register (LAP2:LAP0) and the linear data registers 
LB, LBP, LWP and LAPAB allow the CPU to read from or write to the entire memory space of HCS08 
using a 17-bit linear address. Figure 9 shows the logical paged memory map and its linear address 
equivalent.

Figure 9. Paged Addresses and the Linear Address Equivalent

The equivalence formulas are:
• Linear_Address = (Logical_Address >> 16) * 0x4000 + (Logical_Address & 0xFFFF) – 0x8000
• Logical_Address = ((Linear_Address / 0x4000) << 16 ) | ((Linear_Address % 0x4000) + 0x8000)

This lab writes a constant string in the extended memory map (page 5, the equivalent linear memory range 
of 0x14000’F–0x17FFF’F), and then uses the LAP register to read the string. The following procedure 
puts a constant string and a constant character in extended memory:

1. Using CodeWarrior, create a project for MC9S08QE128 and select “banked” as the memory 
model.

2. In the .prm file, add the following text to the segments declaration:
ROM_LINEAR = READ_ONLY 0x014000'F TO 0x014FFF'F

3. Declare a placement within the ROM_LINEAR segment:
DATA_LINEAR INTO ROM_LINEAR

4. Add the following code to the main.c file to put the objects in section ROM_LINEAR
#pragma CONST_SEG __LINEAR_SEG DATA_LINEAR
const char MyString[255] = “Hello World !”;
const char MyChar = ‘A’;
#pragma CONST_SEG DEFAULT

Addressing
gaps

PPAGE 3
038000–00BFFF

PPAGE 4
048000–00BFFF

PPAGE 5
058000–00BFFF

PPAGE 2
028000–02BFFF

PPAGE 0
08000–00BFFF

PPAGE 1
018000–02BFFF
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Using Paged Memory and Linear Memory in CodeWarrior
Use linear spacing for CONST_SEG and STRING_SEG only. Because two methods are available 
to specify the address locations for constants, a code overlap can occur. Code overlaps are reported 
in the debugger’s command window but do not generate errors.

Command Window message: Code loading overlap detected in range 0x00058000 .. 0x0005BFFF
5. Add an ENTRIES field to the .prm file to force the linker to include the variable in the code.

ENTRIES
MyString
END

6. Make the project and review the .map file. The constant values MyString and MyChar are located 
in the linear space ROM_LINEAR. Use the LAP registers to read the data in extended memory. 

7. Include the mmu_lda.h header file in the project. The macros are defined in this header file and are 
used to access and manage the LAP and MMU data registers.

8. Create a global pointer to a character value, and add the __linear keyword to it.
unsigned char * __linear LinearPointer;

The compiler uses the __linear keyword to declare 17-bit wide pointers. These pointers can store 
and manage the value of the LAP register, but they are permanently referenced, and the reference 
cannot be changed.

9. Create a local character variable LAP_Value.

The following code shows how to read data in extended memory:

********************************************************************
// load in LAP2:0 the linear address of string MyString
__asm  LDA  @MyString:LINEAR_HIGH //load the high address of MyString to A
__asm  STA   LAP2 //store high address of MyString to LAP2
__asm  LDA  @MyString:LINEAR_MID //load the middle address of MyString to A
__asm  STA   LAP1 //store middle address of MyString to LAP1
__asm  LDA  @MyString:LINEAR_LOW //load the low address of MyString to A
__asm  STA   LAP0 //store low address of MyString to LAP0

10. Read MyString using linear address data registers LB, LBP, LWP and LAPAB.
LAP_Value = LB;

This statement sets LAP_Value to the byte pointer in LAPR. After execution, the value of 
LAP_Value is ‘H’, the first character of string MyString. The value of LAPR does not change.

LAP_Value = LBP;

This statement sets LAP_Value to the byte pointer in LAPR. After execution, the value of 
LAP_Value is ‘H’, the first character of string MyString. the value of LAPR increases by 1.
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Conclusions
Because the header file mmu_lda.h defined a set of macros to manage the LAPR and data registers, 
the following code can be used:

__LOAD_LAP_ADDRESS(MyString); //load in LAP2:0 the linear address of MyString
__STORE_LAP(LinearPointer);
// Store the linear address in pointer LinearPointer __LOAD_LAP_ADDRESS(MyChar);
// load in LAP2:0 the linear address of MyChar __LOAD_BYTE_INC(LAP_Value);
// load a byte from the address in LAP2:0 and put it in
// LAP_Value

6 Conclusions
• The addressable memory a microcontroller can access can be expanded with a memory paging 

scheme.
• The Memory Management Unit (MMU) is a module that allows the 9S08 to access paged flash 

memory and extend the memory addressing capability of an S08 device.
• Pages are 16 KB.
• Memory can be accessed via a paging window. The page that can be accessed in the paging window 

is changed with the PPAGE register, a 3-bit register that can address up to 8 pages in the paging 
window. This is the preferred method to read and write code.

• The MMU includes registers that allow linear access to the full memory map as if it were not paged.
• The LAP (Linear Address Pointer) register is 17 bits and can address the full memory map.
• The Linear Byte (LB), Linear Byte Post Increment (LBP) and Linear Word Post Increment (LWP) 

registers can access the data to which LAP points.
• The Post Increment registers expand the capacity of the MMU by automatically increasing the 

address pointed to by LAP, making accessing data arrays easier.
• The Linear Address Pointer Add Byte Register (LAPAB) further improves the MMU addressing. 

A two’s complement value written to this register increases or decreases the LAP register value by 
+127 to -128 addresses.

7 Reference Material
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