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One traditional approach to increasing the performance of an 
embedded device or application has been to run at faster 
clock speeds. However, continuing in this direction has 
become unfeasible because technology is reaching the 
practical limits of manufacturing processes and acceptable 
power consumption for such systems. Attention has turned 
to other techniques, including multi-core and 
multi-processing techniques, to bolster performance. Porting 
an application to a multi-core environment, however, entails 
the consideration of complex programming and process 
scheduling in addition to performing the required process 
algorithms.

This application note discusses two basic multi-core 
programming methods: multiple-single-cores and 
true-multiple-cores. The true-multiple-cores model is used 
to port a motion JPEG application to the MSC8144 four-core 
DSP device and serves to illustrate the concepts presented. 
The material addresses some of the concerns that arise when 
porting applications to a multi-core environment along with 
proposed solutions to address these issues. 
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Introduction

1 Introduction
Symmetrical Multi-Processing (SMP) is generally used to refer to a hardware system in which identical 
processors have equal access to the same memory subsystem. In this context, Asymmetrical 
Multi-Processing (AMP) refers to a system in which different processors, such as a DSP and RISC 
processor, have access to non-equal memory systems. However, the SMP and AMP concepts can also be 
applied to application software. When referring to application level software in a multicore environment, 
an application with a symmetrical software model can have functionally identical software processes 
executed by each of the cores in a multi-core environment. Conversely, an asymmetrical application would 
have functionally different tasks executing in each processor. 

This application note addresses symmetrical multi-processing devices, such as the Freescale MSC8144 
DSP. This device consists of four identical StarCore SC3400 cores and a memory subsystem equally 
accessible to each core as shown in Figure 1.

Each SC3400 core is a high-performance, general-purpose, fixed-point processor capable of 4 million 
multiply-accumulate operations per second (MMACS) for each MHz of clock frequency. Four ALUs, each 
consisting of a (16 × 16) + 40 into 40 bits MAC unit and a 40-bit parallel barrel shifter. Each core also has 
sixteen 40-bit data registers for fractional and integer data operand storage, sixteen 32-bit address registers, 
eight of which can be used as 32-bit base address registers support for fractional and integer data types In 
addition, the SC3400 cores have two Addressing Units with integer arithmetic capabilities and a bit-mask 
unit (BMU) for bit and bit-field logic operations, offer a rich set of memory addressing modes into a 32-bit 
data and program address space. A VLES model executes up to six instructions in a single clock cycle. A 
rich set of real-time debug capabilities through an off-core, on-chip emulator, and low-power Wait and 
Stop instructions complement the awesome capabilities of this core architecture.

Figure 1. MSC8144 Block Diagram
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In addition to the SC3400 DSP cores, the MSC8144 includes the following memory system components:

• 16 Kbytes of Level 1 (L1) instruction cache and 32 Kbytes of Level 1 data cache per core offering 
zero-wait state access by each core.

• 128 Kbytes of Level 2 (L2) instruction cache shared among the SC3400 cores.

• 512 KBytes of SRAM M2 memory with four interleaved banks for up to four simultaneous 128-bit 
wide accesses at 400 MHz

• 10 MBytes of M3 memory is implemented on a second die in a multi-chip-module (MCM) using 
embedded DRAM.

The chip-level arbitration and switching system (CLASS) is an interconnect fabric that provides the 
system master devices with efficient access to slave resources, such as memory and device peripherals. 
The DMA controller on the MSC8144 enables data movement and rearrangement in parallel with the 
SC3400 core processing. The DMA controller transfers blocks of data between the M2, M3, and the 
external DDR memories.

The MSC8144 is a true SMP device because all four SC3400 cores are identical processors and all four 
have access to the full memory subsystem in the device. This document uses the terms processor and core 
interchangeably.

2 Multi-Core Programming Models
Two general multi-core processing models applicable to an SMP device such as the MSC144 are 
introduced in this section:

• Multiple-single-cores in which the cores in an SMP environment execute an application 
independent of each other.

• True-multiple-cores in which the cores in an SMP environment cooperate in some fashion to 
perform the application.

This document will focus on the three areas listed in Table 1. These topics are important when designing 
an application using either of the multi-core models presented here. 

In addition to the items listed in Table 1, there are other important areas of consideration when porting 
applications to a multi-core environment that are not addressed by this application note.

Table 1. Multi-Core Considerations

Areas to Consider Description

Scheduling The scheduling methodology for an application allocates the resources in the multi-core system, 
primarily by managing the processing of the cores to meet the timing and functional requirements of the 
application most effectively.

Inter-core 
communications

The interaction between cores in a multi-core environment is largely used for passing messages 
between cores and for sharing common system resources such as peripherals, buffers and queues. In 
general, the OS includes services for message passing and resource sharing. 

Input and output The management of input and output data. Defines the partitioning and allocation of input data among 
the cores for processing and the gathering of output data after processing for transfer out of the device. 
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The following sections describe two programming models for a multi-core device along with a discussion 
of some of the points that typically create challenges when implementing applications using these 
concepts.

2.1 Multiple-Single-Cores
In a multiple-single-cores software model, all cores in the system execute their application independently 
of each other. The applications running on each core can be identical or different. This model is the 
simplest way to port an application to a multi-core environment, because the individual processors are not 
required to interact. Thus, porting basically involves replicating the single-core application on each of the 
corresponding cores on the multi-core system. Thus, the developer basically replicates the single-core 
application on each of the cores in the multi-core system such that their processing does not interfere with 
each other.

Figure 2 shows an multiple single core system. This example uses a Media Gateway for a voice over IP 
(VoIP) system on the MSC8144 DSP. Each core executes independently from the other cores in the DSP 
using data streams corresponding to distinct user channels.

Figure 2. Multiple Single Core System Example
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2.1.1 Multiple-Single-Cores Advantage
One broad benefit of the multiple-single-cores model is that scaling the system by the addition of cores to 
the system, or by increasing the functional complexity of the application executing on each core can be as 
straightforward as making the same change on a single-core system, assuming other system constraints 
such as bus throughput, memory, and I/O can support the increased demand. There are other worthwhile 
advantages of using this model for an application, as indicated in Table 2: 

2.1.2 Multiple-Single-Cores Disadvantages
The multiple single core model has inherent drawbacks, as listed in Table 3. 

Table 2. Multiple-Single-Core Advantages

Areas to Consider Advantage

Scheduling The lack of intentional interaction between cores precludes the need for task scheduling and load 
balancing between cores. Consequently, the associated complexity and overhead is eliminated which 
results in a more predictable system that is easier to maintain and debug.

Inter-core 
communications

Independent core operation eliminates the need for inter-core communication and its resulting 
overhead. This also minimizes data coherency issues between cores.

Input and output The cores are not involved in partitioning or distributing the input or output data. Although the input data 
for a device may arrive through a single peripheral device or DMA controller, the data is partitioned into 
independent “streams” for each core by the hardware peripheral. Thus no software intervention by the 
core is required to determine which portion of the incoming data belongs to it. The same applies to 
output data. It can be reassembled into a single output stream by the peripheral hardware from the 
independent data streams coming from each core, and then be transmitted over the appropriate output 
port(s).

Table 3. Multiple-Single-Cores Disadvantages

Areas to Consider Disadvantage

Scheduling Applications using the model may have cases in which some cores are overloaded while others are 
minimally loaded or even idle. This occurs simply because the system does not have a way of 
scheduling the processing tasks among the cores; each core must process the data assigned to it.

Inter-core 
communications

Inability to communicate or dynamically assign tasks between cores.

Input and output The I/O peripherals must be capable of partitioning the data into independent streams for each core. In 
the example shown in Figure 2, the MSC8144 QUICC Engine subsystem supports the multiple I/O ports 
necessary to interface to the IP network. In addition, the operating system or framework used to 
execute the application must provide adequate services to manage the I/O devices.



Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

6 Freescale Semiconductor
 

Multi-Core Programming Models

2.1.3 Characteristics for Multiple-Single-Cores Applications
The following list describes the general characteristics of an application suitable for the 
multiple-single-cores model:

• A single core in the multi-core system is capable of meeting the requirements of the application 
using the corresponding portion of the system resources associated with that core (memory, bus 
bandwidth, IO, and so forth).

• The I/O for the application must be assignable to each core with no runtime intervention. The 
assignment of data to a core occurs at compile time, at system-startup, or by an entity outside the 
multi-core device.

• The multiple single core model supports more predicable execution because the application 
executes on a single core without any dependence or interaction with other cores. Thus, 
applications that have a complicated control path or very strict real-time constraints are better 
suited to a multiple-single-cores implementation. 

• The application has a data processing path consisting of tasks or functional modules that efficiently 
use the caches on the device. An application that has processing modules that do not use cache 
efficiently may require partitioning among multiple cores so the caches do not thrash.

2.2 True-Multiple-Cores
In the true-multiple-cores model, the cores in a multi-core environment cooperate with each other and thus 
better utilize the system resources available for the application. For some applications, the true multiple 
cores is the only option because the application is too complex or large to process using the multiple single 
core model. In a true-multiple-core system the cores do not generally perform identical tasks because the 
processing is partitioned among the cores, either at the application level, the scheduling, the I/O or in some 
other manner. The example in Figure 3 shows an application in which Core 0 and Core 1 each perform 
different portions of the application processing. The input stream is used by Core 0 and the output data is 
generated by Core 1. Intermediate results are passed between Core 0 and Core 1.

Figure 3. True Multiple-Cores Model Example
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2.2.1 True-Multiple-Cores Advantages
Table 4 lists the advantages of using the true-multiple-cores model in achieving the design goals. 

2.2.2 True-Multiple-Cores Disadvantages
Use of the true multiple cores model is limited by a point of diminishing returns beyond which the 
application complexity simply requires too much overhead or renders the system less than deterministic. 
The complexity is largely due to the required scheduling, inter-core communication, and I/O activities, all 
of which impose overhead onto the basic application processing. Table 5 summarizes the details associated 
with each of these areas 

3 Porting Guidelines
This section provides guidelines to port a single core application to a true multiple core model with a 
master-slave approach. The motion JPEG example presented illustrates the principles presented.

Table 4. True-Multiple-Cores Advantages 

Areas to Consider Advantage

Scheduling The scheduler for true-multiple-cores has the ability to dynamically manage the system resources as a 
whole. This scheduling can be implemented in different ways. The scheduling intelligence can be 
centralized in a single core which assigns tasks to the remaining cores in the system, or distributed 
among multiple cores in the system with each core deciding which tasks to perform. In either situation, 
the system resources are better utilized and thus the performance of the application is maximized. 

Inter-core 
communications

The nature of this communication is application specific and generally involves the passing of control 
and status information between the cores. The messages can be to a specific core or broadcast to all 
the cores. In general, the OS provides the necessary mechanisms for the inter-core communications 
through an API. The communication between cores allows the cores to cooperate with each other.

Input and output In true-multiple-cores, it is possible to have a centralized entity, such as a core, manage the I/O for the 
application. This has an advantage that it can reduce the overall overhead associated with managing 
the I/O.

Table 5. True-Multiple-Cores Disadvantages

Areas to Consider Disadvantage

Scheduling The by the scheduler incurs overhead in the system, which can adversely affect the real-time 
requirements of the application. This must be offset by the increase in performance obtained from the 
cores cooperating with each other.

Inter-core 
communications

The overhead due to messages going between the cores can also negatively affect the performance of 
the application. Furthermore, the dependencies between tasks executing in different cores will also 
affect the performance of the system as a whole.
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3.1 Design Considerations
The first major activity in porting an application from a single to multi-core environment is to identify the 
threads or tasks that can execute concurrently by the multiple cores. Use the following general guidelines 
when determining and evaluating these tasks:

• Choose tasks with real-time characteristics. The tasks in a multi-core environment should have 
clearly defined real-time characteristics just as they do in a single core application.

• Avoid tasks that are too short. The overhead associated with short tasks is proportionally more 
significant than for larger tasks. Over-partitioning an application with the aim of providing 
flexibility and concurrency will generally create a large number of tasks and priorities spread out 
over several cores complicating the scheduler, increasing overhead, and making it harder to 
implement and debug.

• Minimize the dependencies between cores. Over-designing the tasks and their interaction 
complicates the application and makes the system more difficult to implement and debug. 
Inter-core dependencies also incur an overhead.

• Task execution in a single core device forces tasks to execute sequentially. In a multi-core 
environment, the same tasks can execute concurrently and tasks do not necessarily complete in the 
same order as in a single core. A multi-core environment can expose dependencies that are hidden 
in a single core environment.

NOTE

Consider a simple application with three tasks A, B and C that execute at the 
same priority. Task C can execute only after task A and B have completed. 
In a single core environment the application can be written such that task A 
triggers B which then triggers C. In a multi-core device, task A and B can 
execute simultaneously on separate cores, so task C must now wait for both 
tasks A and B to begin execution, not just task B as in the single core 
environment. Though this is a simple example, consider a more realistic 
situation in which several cores execute many prioritized tasks whose 
execution time may change at runtime due to dependencies on the data 
being processed.”

3.2 Motion JPEG Case Study
This case study demonstrates how a motion JPEG application is ported to the MSC8144 DSP using the 
true multiple cores model. This application was selected because it illustrates most of the major discussion 
points for this application note. The input data stream consists of a real-time sequence of raw video images 
(frames) that arrive over the DSP network connection. The DSP cores all cooperate in the processing of 
the video stream by encoding a portion of the current frame using the JPEG compression algorithm. The 
output data stream is then reassembled into the same order in which it was received and it is sent back over 
the network connection in this encoded format to a personal computer (PC) where it is decoded 
(uncompressed) and displayed real-time.
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3.2.1 JPEG Encoding
The JPEG encoding process consists of the five steps shown in Figure 4. The decoding process consists of 
the same steps inversed and performed in the reverse order.

3.2.1.1 Input Data

The input video stream consists of continuous raw digital images partitioned into blocks of pixels called 
Minimum Coded Units (MCUs). An MCU consists of a 16 × 16 array of 8-bit pixels composed of 256 
bytes of luminance information (Y) and 256 bytes of chrominance (Cb and Cr) information. Luminance is 
provided for every pixel in the image and chrominance is provided as a medium value for a 2 × 2 block of 
pixels. The 512-byte MCU is partitioned into four 8 × 8 pixels blocks that serve as inputs to the Discrete 
Cosine Transfer processing block. There is no relation between any two MCU blocks.

3.2.1.2 Discrete Cosine Transfer (DCT)

The purpose of the DCT is to convert the information in the original raw pixels blocks into a spatial 
frequency representation of the block. These spatial frequencies represent the level of detail in the image. 
Thus, a block with a lot of detail in it has many high spatial frequency components while blocks with low 
detail are represented by a majority of low frequency components. Typically, most of the information is 
concentrated in a few low-frequency components. The DCT is applied to an 8 × 8 block of pixels from left 
to right and from top to bottom of an image frame. The result is a new 8 × 8 block of integers (called DCT 
coefficients) that are then reordered using a zig-zag pattern.

Figure 4. JPEG Encoding Process
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3.2.1.3 Zig-Zag Reordering

The 8 × 8 block of DCT coefficients is traversed using a zig-zag pattern as shown in Figure 5.

The result of this reordering is a vector of 64 elements (0 to 63) arranged from lowest to highest frequency 
components. The first value in the vector (0) is the called the DC component and represents the lowest 
frequency component. The other coefficients in the vector (1 to 63) are called the AC coefficients. The 
64-item vector is then passed to the quantization block for processing.

3.2.1.4 Quantization

In this step, each value in the 64-coefficient vector resulting from the zig-zag reordering step is divided by 
a predefined value and rounded to the nearest integer. The quantization step removes the high frequency 
components (greater detail) of the input vector because the human eye is more sensitive to lower frequency 
components than higher frequency components. This is done by dividing the higher frequency coefficients 
in the vector by larger values than those used to divide the lower frequencies. This action forces the higher 
frequency components to have more zeroes.

3.2.1.5 Run-Length Coding (RLC)

This RLC exploits the fact that we have consecutive zeroes for the higher frequency components of the 
input vector by providing a pair of integers indicating the number of consecutive zeroes in a run followed 
by the value of the non-zero number following the zeroes. For example, consider the run of coefficients: 
45, 33, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 5. The zero run-length code becomes (0,45), (0,33), (3,12), (7,5). 
There are special situations that are not addressed here.

3.2.1.6 Huffman Coding

This process uses a variable-length code table to map the right integer in each numbered pair generated in 
the previous coding step with another bit string that uses minimal space to represent the original 
information. This is advantageous because the variable-length code table is carefully designed to represent 
the most common input data patterns with shorter bit strings than for the less common input values. The 
result is a string of bits that is smaller in size than the original input data.

Figure 5. Zig-Zag Pattern Used to Traverse DCT Coefficients
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3.2.2 Design Considerations
The overall requirements for processing the JPEG algorithm requires only a small portion of the MSC8144 
processing capabilities. Therefore, several JPEG encoder tasks can execute on each core on multiple input 
video data streams. This section discusses several characteristics of the motion JPEG (MJPEG) application 
and how these influenced the decisions made in the process of porting to the multi-core MSC8144 DSP. 

3.2.2.1 Input

The input data stream for a motion JPEG (MJPEG) encoder consists of a contiguous flow of raw digital 
images (frames). The frames are sent to the DSP at a particular frame rate determined on the PC. When a 
frame is sent to the DSP, the frame is partitioned into blocks of MCUs and then transmitted to an IP address 
defined on the network interface of the DSP. The rate at which the MCU blocks are transmitted to the DSP 
is predetermined and does not change regardless of the video frame rate. For this application, it is sufficient 
(and simpler) for a single core to manage the QUICC Engine™ subsystem and service the resulting 
interrupts and then partition the input data block for processing by the other cores.

3.2.2.2 Scheduling

This is a soft real-time application because there are no hard real-time constraints. There are no imposed 
output frame rates at which the application must transmit the output video stream; the PC simply stalls the 
display of the video stream received from the DSP if the output frame rate slows below the expected rate 
(or stops all together).

Similarly, latency is of no consequence for this application because the DSPs do not have a fixed amount 
of time to complete the processing. However, we will require the DSP to process the incoming data blocks 
as they arrive over the network interface.

Because the MCU blocks in a frame are independent, there are no restrictions on which core processes a 
given block. Furthermore, it is best not to assign the incoming blocks to a specific core statically, because 
the performance of some of the tasks in the JPEG algorithm depend on the data being processed. Thus, the 
cores on the DSP are better utilized by dynamically allocating the data blocks to the cores based on the 
processing load of the core.

These characteristics, in conjunction with the input considerations discussed in Section 3.2.2.1, make the 
application a good candidate for the true multiple cores model using the master-and-slave approach to 
scheduling. The master core manages the incoming data stream and assign tasks to the available cores, 
including itself, based on the available processing cycles.

3.2.2.3 Inter-Core Communication

The master core copies a pointer to the memory location of the next MCU data block to process into a 
global queue that is accessible by all the cores and then notifies the slave cores that there is data available 
for processing. All non-idle cores, including the master core, then compete to process the input block. If a 
core is already processing a block, it ignores the message from the master core.
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3.2.2.4 Output

The output video stream is sent over the network to a PC for decoding and display in real-time. Due to the 
data-dependent nature of the application JPEG algorithm, the encoded data blocks resulting from the core 
processing can potentially not be available in the same order as the input data blocks. This is an example 
of a hidden dependency on the flow order that would not exist if the application was executing on a single 
processor. Thus, the output data blocks must be placed in order before transmitting back to the PC. This 
process is called “output serialization” and is assigned to the master core. The master core must pause the 
output data stream from the device until the next data block in the sequence is available.

3.3 Implementation Details
One implementation of a true-multiple-cores model is referred as master-slave. In a master-and-slaves 
implementation, the control intelligence for the application resides in a master core. The other cores in the 
system become slave cores. The master core is responsible for scheduling the application processing and 
possibly managing the I/O. Figure 6 shows a system in which Core 0 is assigned the role of master core. 
Core 0 manages the IO for the application and assigns tasks to the slave cores 1, 2 and 3 via a task queue 
in memory. The remainder of the application note focuses on a master-slave approach to a 
true-multiple-cores application.

The development tools for the MSC8144 used in the development process included the following:

• CodeWarrior® Development Studio. The development studio is a complete integrated development 
environment (IDE) that contains all of the tools needed to complete a major embedded 
development project, from hardware bring-up through programming and debugging embedded 
applications. Two useful features used from the CodeWarrior IDE were the Kernel Awareness 
plug-in module for visualization and debugging of the SmartDSP Operating System (SDOS) and 
a Profiler that allowed evaluation of the performance of various modules and interactions in the 
system.

Figure 6. Master and Slaves Systems
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• SmartDSP Operating System (SDOS). SDOS is a preemptable, real-time, priority-based operating 
system, specially designed for high-performance DSPs operating with tight memory requirements 
in an embedded environment. It includes support for multi-core operations such as synchronization 
modules and inter-core messages to manage inter-core dependencies. A convenient and unified 
application program interface (API) supports various types of peripheral I/O devices and DMA 
controllers.

The steps we used to port the MJPEG application followed a straightforward approach as follows. First we 
ran a single instance of the MJPEG application on a single core of the MSC8144. Once this functionality 
was properly validated, we ran two or more instances of the MJPEG processing on the same core. This 
was helpful because the debugging process is simpler on one core than on multiple cores. During this 
process, we were also able to use the MSC8144 functional simulator available with the CodeWarrior IDE, 
eliminating the need for the actual hardware for this portion of the development. After these initial steps, 
the MJPEG application was executed on more than one core without any inter-core communication. 
Lastly, we added the inter-core functionality.

3.3.1 Scheduling
In the master-and-slaves scheduling implemented on the MSC8144 for this application, the main scheduler 
functionality resides in core 0, the master core. Cores 1, 2 and 3 in the system become slave cores. The 
master core manages the I/O and processing for the application and the slave cores wait for tasks to be 
processed as shown in Figure 7.

Figure 7 shows that the incoming raw video images are received in blocks by the MSC8144 QUICC 
Engine network interface. The master core services the QUICC Engine interrupt and then sends a message 
to the slave cores with the information pertinent to the received block. The slave cores are notified by 
messages placed in this queue which then vie to access the message and be assigned the task of JPEG 
encoding the video data block. If a slave core is already processing a block, it does dequeue a task until it 
completes the encoding of the current data block.

Figure 7. Task Scheduling
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NOTE

Core 0, even though it is the master core, is also notified when messages are 
posted to the task queue and can perform the JPEG encoding of an block if 
it has available processing bandwidth.

Once a slave core finishes the JPEG encoding process, it notifies the master core via another message 
queue as shown in Figure 8. The master core dequeues the information for each encoded block and 
determines whether it is the next output block in the output stream (a process called serialization). If that 
is the case, the master core transmits the encoded block to the network using the QUICC Engine interface. 
It also transmits any additional encoded blocks that are available in the serialized sequence.

If the master core performed the encoding task, it does not use the queue process, and it simply serializes 
the output and transmits the buffer (if possible).

The SDOS operating system provides the basic building blocks for the scheduling of the application. In 
other words, the master core implements the scheduling methodology by making calls to SDOS services 
through the operating system API. Similarly, the slaves respond to the master core using SDOS services.

The background task in SDOS is a user-defined function that executes when no other tasks in the 
application is required to execute. This task has the lowest priority and executes indefinitely in a loop until 
a higher priority task is enabled. The background task for this application places the corresponding core in 
the WAIT state by executing the wait instruction. The WAIT state is an intermediate power-saving mode 
used to minimize core utilization and reduce power consumption. In this case, the cores each remain in the 
WAIT state until a message arrives indicating a block of pixels is available for JPEG encoding, or, if it is 
the master core, an encoded block is ready to transmit.

Figure 8. Task Completion
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3.3.2 Inter-Core Communication
The inter-core communication for the application consists primarily of the messages exchanged between 
the master core and the slave cores. These messages are implemented in this application using services 
provided by SDOS accessed through calls to the operating system API. The flow of inter-core 
communication for the application is shown in Figure 9.

The QUICC Engine subsystem interrupts the master core after several blocks of the raw video image are 
received. In the receive interrupt service routine (ISR), core 0 sends messages to all the slave cores and to 
itself to indicate there is data ready for JPEG encoding. After the encoding process, the slave cores send a 
message back to the master core indicating there are blocks of encoded data ready to transmit. Core 0 does 
not need to send a message to itself.

During the initialization process, each core creates queues used to send and receive messages as indicated 
in Table 6. The messages have two purposes. Messages from the master core (core 0) indicate that a block 
of raw video data was received and is available to encode. Messages from the slave cores (cores 1 through 
3) indicate that a block has been encoded and is ready to transmit. A block encoded by core 0 is serialized 
for transmission with no message generation.

Messages are implemented using MSC8144 virtual interrupts between the cores. Priorities associated with 
the user function called when a message is received by a core are indicated in Table 6. 

Figure 9. Inter-Core Communication Flow Diagram

Table 6. Message Queues Defined During Initialization

Message Location
Call-back 
Priority

Purpose

Core 0 to
Cores 0–3

Core 0 6 Send/Receive messages indicating block ready to encode

Cores 1–3 5 Receive messages indicating block ready to encode

Cores 1–3 to Core 0 Cores 0 3 Receive messages indicating JPEG encoding completed

Core 1–3 N/A Send messages indicating JPEG encoding completed
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3.3.3 Input and Output
The I/O for the motion JPEG application also required special consideration. The input of the raw video 
data arrived to the MSC8144 QUICC Engine interface from a PC over an IP network connection. As 
mentioned previously, the master core (core 0) initializes and services the interrupts for the QUICC Engine 
subsystem. Incoming data blocks are not copied. Instead, control information is passed to the slave cores 
in a message with a pointer, size, and other information needed to locate the data and complete the JPEG 
encoding processing.

The data output process is more involved. The output blocks must be sent back to the PC over the IP 
network in the same order in which they were received, but since the JPEG encoding processing is data 
dependent, the cores can complete the encoding process for a block out-of-order, which means the output 
blocks become available out of order. Thus, the output blocks must be buffered and placed back in order, 
a process called output serialization.

The master core executes the serialization by collecting pointers to the output buffers as they are made 
available by the slave cores. Encoded buffers are then transmitted to the PC only when the next blocks in 
the sequential output data stream are available. This process is depicted in Figure 10. In this example, the 
serializer shows that output blocks #6, #7 and #9 are available to be sent to the PC; however, the next block 
the PC is expecting is block #5 as indicated to by the Current pointer. Slave core 1 finishes encoding output 
block #10 and notifies the master core which then adds it to the serializer accordingly. Core 0 then provides 
output block #5 which then allows blocks #5 through #7 to be sent to the PC, after which the serializer 
must wait for block #8 in the sequence.

The serializer concept is similar to the jitter buffer used in voice over IP (VoIP) applications. The 
differences are that the jitter buffer in VoIP is located at the receiving end of the voice connection.

Figure 10. Output Serialization
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4 Conclusions
Designers of multi-core applications must consider several factors including processing and task 
properties, hardware characteristics such as the cache and peripheral support, and the multi-core support 
provided by the OS and tools. For example, the Kernel Awareness module of the CodeWarrior 
Development Studio proved invaluable in the implementation and debugging of the motion JPEG 
application.

Because a multi-core system also exposes hidden dependencies and complexities, it is always a good idea 
to start with a simple scenario or subset of the application processing, and then improve form there. For 
example, it is generally impractical to try to obtain optimal task scheduling, inter-core communication, and 
I/O methodologies in the early development stages. It is better to begin with a single core using static 
scheduling and improve the design though testing and tuning.

To support effective application development in a multi-core and multi-task environment, Freescale 
multi-processing offerings not only include multi-core SMP devices such as the MSC8144 DSP, but also 
provide development environments like the CodeWarrior Development Studio, and hardware and software 
tool support that can help the designer develop application systems, measure their system performance and 
resource and processing utilization, and tune, test, and debug their functionality. 
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