
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2008. All rights reserved.

One traditional approach to increasing the performance of an
embedded device or application has been to run at faster
clock speeds. However, continuing in this direction has
become unfeasible because technology is reaching the
practical limits of manufacturing processes and acceptable
power consumption for such systems. Attention has turned
to other techniques, including multi-core and
multi-processing techniques, to bolster performance. Porting
an application to a multi-core environment, however, entails
the consideration of complex programming and process
scheduling in addition to performing the required process
algorithms.

This application note discusses two basic multi-core
programming methods: multiple-single-cores and
true-multiple-cores. The true-multiple-cores model is used
to port a motion JPEG application to the MSC8144 four-core
DSP device and serves to illustrate the concepts presented.
The material addresses some of the concerns that arise when
porting applications to a multi-core environment along with
proposed solutions to address these issues.

Document Number: AN3620
Rev. 0, 6/2008

Contents
1 Introduction .2
2 Multi-Core Programming Models3
2.1 Multiple-Single-Cores .4
2.2 True-Multiple-Cores .6

3 Porting Guidelines .7
3.1 Design Considerations .8
3.2 Motion JPEG Case Study .8
3.3 Implementation Details .12

4 Conclusions .17

Porting Applications to Multi-Core
Platforms—MSC8144 Case Study

http://searchVoIP.techtarget.com/sDefinition/0,,sid66_gci214148,00.html
http://searchVoIP.techtarget.com/sDefinition/0,,sid66_gci214148,00.html

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

2 Freescale Semiconductor

Introduction

1 Introduction
Symmetrical Multi-Processing (SMP) is generally used to refer to a hardware system in which identical
processors have equal access to the same memory subsystem. In this context, Asymmetrical
Multi-Processing (AMP) refers to a system in which different processors, such as a DSP and RISC
processor, have access to non-equal memory systems. However, the SMP and AMP concepts can also be
applied to application software. When referring to application level software in a multicore environment,
an application with a symmetrical software model can have functionally identical software processes
executed by each of the cores in a multi-core environment. Conversely, an asymmetrical application would
have functionally different tasks executing in each processor.

This application note addresses symmetrical multi-processing devices, such as the Freescale MSC8144
DSP. This device consists of four identical StarCore SC3400 cores and a memory subsystem equally
accessible to each core as shown in Figure 1.

Each SC3400 core is a high-performance, general-purpose, fixed-point processor capable of 4 million
multiply-accumulate operations per second (MMACS) for each MHz of clock frequency. Four ALUs, each
consisting of a (16 × 16) + 40 into 40 bits MAC unit and a 40-bit parallel barrel shifter. Each core also has
sixteen 40-bit data registers for fractional and integer data operand storage, sixteen 32-bit address registers,
eight of which can be used as 32-bit base address registers support for fractional and integer data types In
addition, the SC3400 cores have two Addressing Units with integer arithmetic capabilities and a bit-mask
unit (BMU) for bit and bit-field logic operations, offer a rich set of memory addressing modes into a 32-bit
data and program address space. A VLES model executes up to six instructions in a single clock cycle. A
rich set of real-time debug capabilities through an off-core, on-chip emulator, and low-power Wait and
Stop instructions complement the awesome capabilities of this core architecture.

Figure 1. MSC8144 Block Diagram

JTAG

RMU SRIO

Note: The arrow direction indicates master or slave.

128-bit at

DDR Interface 16/32-bit at 400 MHz data rate

8 T
D

M
s

D
M

A

I/O-Interrupt
Concentrator

UART

Clocks

Timers

Reset

Semaphores

Other

DDR
10 Mbytes

M3
Memory

512 Kbytes
M2

Memory

CLASS

128 Kbyte
L2

ICache

P
C

I

PCI 32-bit

Serial RapidIO
Subsystem

Modules

QUICC Engine™

Ethernet

Dual RISC

ATM

16-bit/8-bit

10/100/1000 Mbps
10/100/1000 Mbps

Subsystem

400 MHz

Processors

Eight TDMs
33/66 MHz

1x/4x

256-Channels each

Four DSP
Subsystems

Ethernet
Boot ROM

I2C

Virtual
Interrupts

Controller

UTOPIA

SPI

SPI

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 3

Multi-Core Programming Models

In addition to the SC3400 DSP cores, the MSC8144 includes the following memory system components:

• 16 Kbytes of Level 1 (L1) instruction cache and 32 Kbytes of Level 1 data cache per core offering
zero-wait state access by each core.

• 128 Kbytes of Level 2 (L2) instruction cache shared among the SC3400 cores.

• 512 KBytes of SRAM M2 memory with four interleaved banks for up to four simultaneous 128-bit
wide accesses at 400 MHz

• 10 MBytes of M3 memory is implemented on a second die in a multi-chip-module (MCM) using
embedded DRAM.

The chip-level arbitration and switching system (CLASS) is an interconnect fabric that provides the
system master devices with efficient access to slave resources, such as memory and device peripherals.
The DMA controller on the MSC8144 enables data movement and rearrangement in parallel with the
SC3400 core processing. The DMA controller transfers blocks of data between the M2, M3, and the
external DDR memories.

The MSC8144 is a true SMP device because all four SC3400 cores are identical processors and all four
have access to the full memory subsystem in the device. This document uses the terms processor and core
interchangeably.

2 Multi-Core Programming Models
Two general multi-core processing models applicable to an SMP device such as the MSC144 are
introduced in this section:

• Multiple-single-cores in which the cores in an SMP environment execute an application
independent of each other.

• True-multiple-cores in which the cores in an SMP environment cooperate in some fashion to
perform the application.

This document will focus on the three areas listed in Table 1. These topics are important when designing
an application using either of the multi-core models presented here.

In addition to the items listed in Table 1, there are other important areas of consideration when porting
applications to a multi-core environment that are not addressed by this application note.

Table 1. Multi-Core Considerations

Areas to Consider Description

Scheduling The scheduling methodology for an application allocates the resources in the multi-core system,
primarily by managing the processing of the cores to meet the timing and functional requirements of the
application most effectively.

Inter-core
communications

The interaction between cores in a multi-core environment is largely used for passing messages
between cores and for sharing common system resources such as peripherals, buffers and queues. In
general, the OS includes services for message passing and resource sharing.

Input and output The management of input and output data. Defines the partitioning and allocation of input data among
the cores for processing and the gathering of output data after processing for transfer out of the device.

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

4 Freescale Semiconductor

Multi-Core Programming Models

The following sections describe two programming models for a multi-core device along with a discussion
of some of the points that typically create challenges when implementing applications using these
concepts.

2.1 Multiple-Single-Cores
In a multiple-single-cores software model, all cores in the system execute their application independently
of each other. The applications running on each core can be identical or different. This model is the
simplest way to port an application to a multi-core environment, because the individual processors are not
required to interact. Thus, porting basically involves replicating the single-core application on each of the
corresponding cores on the multi-core system. Thus, the developer basically replicates the single-core
application on each of the cores in the multi-core system such that their processing does not interfere with
each other.

Figure 2 shows an multiple single core system. This example uses a Media Gateway for a voice over IP
(VoIP) system on the MSC8144 DSP. Each core executes independently from the other cores in the DSP
using data streams corresponding to distinct user channels.

Figure 2. Multiple Single Core System Example

RTP

DATA
RTP

DATA

MSC8144

Core 3 Cache

TDM

Core 2 Cache

Core 1 Cache

Core 0 Cache

M3 Memory

Rx Queue

Rx Queue

Rx Q
ueue

Rx Q
ueue

QUICC Engine™
Subsystem

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 5

Multi-Core Programming Models

2.1.1 Multiple-Single-Cores Advantage
One broad benefit of the multiple-single-cores model is that scaling the system by the addition of cores to
the system, or by increasing the functional complexity of the application executing on each core can be as
straightforward as making the same change on a single-core system, assuming other system constraints
such as bus throughput, memory, and I/O can support the increased demand. There are other worthwhile
advantages of using this model for an application, as indicated in Table 2:

2.1.2 Multiple-Single-Cores Disadvantages
The multiple single core model has inherent drawbacks, as listed in Table 3.

Table 2. Multiple-Single-Core Advantages

Areas to Consider Advantage

Scheduling The lack of intentional interaction between cores precludes the need for task scheduling and load
balancing between cores. Consequently, the associated complexity and overhead is eliminated which
results in a more predictable system that is easier to maintain and debug.

Inter-core
communications

Independent core operation eliminates the need for inter-core communication and its resulting
overhead. This also minimizes data coherency issues between cores.

Input and output The cores are not involved in partitioning or distributing the input or output data. Although the input data
for a device may arrive through a single peripheral device or DMA controller, the data is partitioned into
independent “streams” for each core by the hardware peripheral. Thus no software intervention by the
core is required to determine which portion of the incoming data belongs to it. The same applies to
output data. It can be reassembled into a single output stream by the peripheral hardware from the
independent data streams coming from each core, and then be transmitted over the appropriate output
port(s).

Table 3. Multiple-Single-Cores Disadvantages

Areas to Consider Disadvantage

Scheduling Applications using the model may have cases in which some cores are overloaded while others are
minimally loaded or even idle. This occurs simply because the system does not have a way of
scheduling the processing tasks among the cores; each core must process the data assigned to it.

Inter-core
communications

Inability to communicate or dynamically assign tasks between cores.

Input and output The I/O peripherals must be capable of partitioning the data into independent streams for each core. In
the example shown in Figure 2, the MSC8144 QUICC Engine subsystem supports the multiple I/O ports
necessary to interface to the IP network. In addition, the operating system or framework used to
execute the application must provide adequate services to manage the I/O devices.

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

6 Freescale Semiconductor

Multi-Core Programming Models

2.1.3 Characteristics for Multiple-Single-Cores Applications
The following list describes the general characteristics of an application suitable for the
multiple-single-cores model:

• A single core in the multi-core system is capable of meeting the requirements of the application
using the corresponding portion of the system resources associated with that core (memory, bus
bandwidth, IO, and so forth).

• The I/O for the application must be assignable to each core with no runtime intervention. The
assignment of data to a core occurs at compile time, at system-startup, or by an entity outside the
multi-core device.

• The multiple single core model supports more predicable execution because the application
executes on a single core without any dependence or interaction with other cores. Thus,
applications that have a complicated control path or very strict real-time constraints are better
suited to a multiple-single-cores implementation.

• The application has a data processing path consisting of tasks or functional modules that efficiently
use the caches on the device. An application that has processing modules that do not use cache
efficiently may require partitioning among multiple cores so the caches do not thrash.

2.2 True-Multiple-Cores
In the true-multiple-cores model, the cores in a multi-core environment cooperate with each other and thus
better utilize the system resources available for the application. For some applications, the true multiple
cores is the only option because the application is too complex or large to process using the multiple single
core model. In a true-multiple-core system the cores do not generally perform identical tasks because the
processing is partitioned among the cores, either at the application level, the scheduling, the I/O or in some
other manner. The example in Figure 3 shows an application in which Core 0 and Core 1 each perform
different portions of the application processing. The input stream is used by Core 0 and the output data is
generated by Core 1. Intermediate results are passed between Core 0 and Core 1.

Figure 3. True Multiple-Cores Model Example

DATA

DATA

MSC8144

PCI Bus Core 1 Cache

Core 0 Cache

M3 Memory

Rx Queue

Rx Q
ueue

QUICC Engine
SubsystemM2 Memory

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 7

Porting Guidelines

2.2.1 True-Multiple-Cores Advantages
Table 4 lists the advantages of using the true-multiple-cores model in achieving the design goals.

2.2.2 True-Multiple-Cores Disadvantages
Use of the true multiple cores model is limited by a point of diminishing returns beyond which the
application complexity simply requires too much overhead or renders the system less than deterministic.
The complexity is largely due to the required scheduling, inter-core communication, and I/O activities, all
of which impose overhead onto the basic application processing. Table 5 summarizes the details associated
with each of these areas

3 Porting Guidelines
This section provides guidelines to port a single core application to a true multiple core model with a
master-slave approach. The motion JPEG example presented illustrates the principles presented.

Table 4. True-Multiple-Cores Advantages

Areas to Consider Advantage

Scheduling The scheduler for true-multiple-cores has the ability to dynamically manage the system resources as a
whole. This scheduling can be implemented in different ways. The scheduling intelligence can be
centralized in a single core which assigns tasks to the remaining cores in the system, or distributed
among multiple cores in the system with each core deciding which tasks to perform. In either situation,
the system resources are better utilized and thus the performance of the application is maximized.

Inter-core
communications

The nature of this communication is application specific and generally involves the passing of control
and status information between the cores. The messages can be to a specific core or broadcast to all
the cores. In general, the OS provides the necessary mechanisms for the inter-core communications
through an API. The communication between cores allows the cores to cooperate with each other.

Input and output In true-multiple-cores, it is possible to have a centralized entity, such as a core, manage the I/O for the
application. This has an advantage that it can reduce the overall overhead associated with managing
the I/O.

Table 5. True-Multiple-Cores Disadvantages

Areas to Consider Disadvantage

Scheduling The by the scheduler incurs overhead in the system, which can adversely affect the real-time
requirements of the application. This must be offset by the increase in performance obtained from the
cores cooperating with each other.

Inter-core
communications

The overhead due to messages going between the cores can also negatively affect the performance of
the application. Furthermore, the dependencies between tasks executing in different cores will also
affect the performance of the system as a whole.

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

8 Freescale Semiconductor

Porting Guidelines

3.1 Design Considerations
The first major activity in porting an application from a single to multi-core environment is to identify the
threads or tasks that can execute concurrently by the multiple cores. Use the following general guidelines
when determining and evaluating these tasks:

• Choose tasks with real-time characteristics. The tasks in a multi-core environment should have
clearly defined real-time characteristics just as they do in a single core application.

• Avoid tasks that are too short. The overhead associated with short tasks is proportionally more
significant than for larger tasks. Over-partitioning an application with the aim of providing
flexibility and concurrency will generally create a large number of tasks and priorities spread out
over several cores complicating the scheduler, increasing overhead, and making it harder to
implement and debug.

• Minimize the dependencies between cores. Over-designing the tasks and their interaction
complicates the application and makes the system more difficult to implement and debug.
Inter-core dependencies also incur an overhead.

• Task execution in a single core device forces tasks to execute sequentially. In a multi-core
environment, the same tasks can execute concurrently and tasks do not necessarily complete in the
same order as in a single core. A multi-core environment can expose dependencies that are hidden
in a single core environment.

NOTE

Consider a simple application with three tasks A, B and C that execute at the
same priority. Task C can execute only after task A and B have completed.
In a single core environment the application can be written such that task A
triggers B which then triggers C. In a multi-core device, task A and B can
execute simultaneously on separate cores, so task C must now wait for both
tasks A and B to begin execution, not just task B as in the single core
environment. Though this is a simple example, consider a more realistic
situation in which several cores execute many prioritized tasks whose
execution time may change at runtime due to dependencies on the data
being processed.”

3.2 Motion JPEG Case Study
This case study demonstrates how a motion JPEG application is ported to the MSC8144 DSP using the
true multiple cores model. This application was selected because it illustrates most of the major discussion
points for this application note. The input data stream consists of a real-time sequence of raw video images
(frames) that arrive over the DSP network connection. The DSP cores all cooperate in the processing of
the video stream by encoding a portion of the current frame using the JPEG compression algorithm. The
output data stream is then reassembled into the same order in which it was received and it is sent back over
the network connection in this encoded format to a personal computer (PC) where it is decoded
(uncompressed) and displayed real-time.

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 9

Porting Guidelines

3.2.1 JPEG Encoding
The JPEG encoding process consists of the five steps shown in Figure 4. The decoding process consists of
the same steps inversed and performed in the reverse order.

3.2.1.1 Input Data

The input video stream consists of continuous raw digital images partitioned into blocks of pixels called
Minimum Coded Units (MCUs). An MCU consists of a 16 × 16 array of 8-bit pixels composed of 256
bytes of luminance information (Y) and 256 bytes of chrominance (Cb and Cr) information. Luminance is
provided for every pixel in the image and chrominance is provided as a medium value for a 2 × 2 block of
pixels. The 512-byte MCU is partitioned into four 8 × 8 pixels blocks that serve as inputs to the Discrete
Cosine Transfer processing block. There is no relation between any two MCU blocks.

3.2.1.2 Discrete Cosine Transfer (DCT)

The purpose of the DCT is to convert the information in the original raw pixels blocks into a spatial
frequency representation of the block. These spatial frequencies represent the level of detail in the image.
Thus, a block with a lot of detail in it has many high spatial frequency components while blocks with low
detail are represented by a majority of low frequency components. Typically, most of the information is
concentrated in a few low-frequency components. The DCT is applied to an 8 × 8 block of pixels from left
to right and from top to bottom of an image frame. The result is a new 8 × 8 block of integers (called DCT
coefficients) that are then reordered using a zig-zag pattern.

Figure 4. JPEG Encoding Process

8 pixels

8 pixels

DCT Zig-Zag

Z
ig-Z

ag

RLC-Huffman Quantization17,2,6,–2 ... 174,19,52,–18 ...

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

10 Freescale Semiconductor

Porting Guidelines

3.2.1.3 Zig-Zag Reordering

The 8 × 8 block of DCT coefficients is traversed using a zig-zag pattern as shown in Figure 5.

The result of this reordering is a vector of 64 elements (0 to 63) arranged from lowest to highest frequency
components. The first value in the vector (0) is the called the DC component and represents the lowest
frequency component. The other coefficients in the vector (1 to 63) are called the AC coefficients. The
64-item vector is then passed to the quantization block for processing.

3.2.1.4 Quantization

In this step, each value in the 64-coefficient vector resulting from the zig-zag reordering step is divided by
a predefined value and rounded to the nearest integer. The quantization step removes the high frequency
components (greater detail) of the input vector because the human eye is more sensitive to lower frequency
components than higher frequency components. This is done by dividing the higher frequency coefficients
in the vector by larger values than those used to divide the lower frequencies. This action forces the higher
frequency components to have more zeroes.

3.2.1.5 Run-Length Coding (RLC)

This RLC exploits the fact that we have consecutive zeroes for the higher frequency components of the
input vector by providing a pair of integers indicating the number of consecutive zeroes in a run followed
by the value of the non-zero number following the zeroes. For example, consider the run of coefficients:
45, 33, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 5. The zero run-length code becomes (0,45), (0,33), (3,12), (7,5).
There are special situations that are not addressed here.

3.2.1.6 Huffman Coding

This process uses a variable-length code table to map the right integer in each numbered pair generated in
the previous coding step with another bit string that uses minimal space to represent the original
information. This is advantageous because the variable-length code table is carefully designed to represent
the most common input data patterns with shorter bit strings than for the less common input values. The
result is a string of bits that is smaller in size than the original input data.

Figure 5. Zig-Zag Pattern Used to Traverse DCT Coefficients

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 11

Porting Guidelines

3.2.2 Design Considerations
The overall requirements for processing the JPEG algorithm requires only a small portion of the MSC8144
processing capabilities. Therefore, several JPEG encoder tasks can execute on each core on multiple input
video data streams. This section discusses several characteristics of the motion JPEG (MJPEG) application
and how these influenced the decisions made in the process of porting to the multi-core MSC8144 DSP.

3.2.2.1 Input

The input data stream for a motion JPEG (MJPEG) encoder consists of a contiguous flow of raw digital
images (frames). The frames are sent to the DSP at a particular frame rate determined on the PC. When a
frame is sent to the DSP, the frame is partitioned into blocks of MCUs and then transmitted to an IP address
defined on the network interface of the DSP. The rate at which the MCU blocks are transmitted to the DSP
is predetermined and does not change regardless of the video frame rate. For this application, it is sufficient
(and simpler) for a single core to manage the QUICC Engine™ subsystem and service the resulting
interrupts and then partition the input data block for processing by the other cores.

3.2.2.2 Scheduling

This is a soft real-time application because there are no hard real-time constraints. There are no imposed
output frame rates at which the application must transmit the output video stream; the PC simply stalls the
display of the video stream received from the DSP if the output frame rate slows below the expected rate
(or stops all together).

Similarly, latency is of no consequence for this application because the DSPs do not have a fixed amount
of time to complete the processing. However, we will require the DSP to process the incoming data blocks
as they arrive over the network interface.

Because the MCU blocks in a frame are independent, there are no restrictions on which core processes a
given block. Furthermore, it is best not to assign the incoming blocks to a specific core statically, because
the performance of some of the tasks in the JPEG algorithm depend on the data being processed. Thus, the
cores on the DSP are better utilized by dynamically allocating the data blocks to the cores based on the
processing load of the core.

These characteristics, in conjunction with the input considerations discussed in Section 3.2.2.1, make the
application a good candidate for the true multiple cores model using the master-and-slave approach to
scheduling. The master core manages the incoming data stream and assign tasks to the available cores,
including itself, based on the available processing cycles.

3.2.2.3 Inter-Core Communication

The master core copies a pointer to the memory location of the next MCU data block to process into a
global queue that is accessible by all the cores and then notifies the slave cores that there is data available
for processing. All non-idle cores, including the master core, then compete to process the input block. If a
core is already processing a block, it ignores the message from the master core.

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

12 Freescale Semiconductor

Porting Guidelines

3.2.2.4 Output

The output video stream is sent over the network to a PC for decoding and display in real-time. Due to the
data-dependent nature of the application JPEG algorithm, the encoded data blocks resulting from the core
processing can potentially not be available in the same order as the input data blocks. This is an example
of a hidden dependency on the flow order that would not exist if the application was executing on a single
processor. Thus, the output data blocks must be placed in order before transmitting back to the PC. This
process is called “output serialization” and is assigned to the master core. The master core must pause the
output data stream from the device until the next data block in the sequence is available.

3.3 Implementation Details
One implementation of a true-multiple-cores model is referred as master-slave. In a master-and-slaves
implementation, the control intelligence for the application resides in a master core. The other cores in the
system become slave cores. The master core is responsible for scheduling the application processing and
possibly managing the I/O. Figure 6 shows a system in which Core 0 is assigned the role of master core.
Core 0 manages the IO for the application and assigns tasks to the slave cores 1, 2 and 3 via a task queue
in memory. The remainder of the application note focuses on a master-slave approach to a
true-multiple-cores application.

The development tools for the MSC8144 used in the development process included the following:

• CodeWarrior® Development Studio. The development studio is a complete integrated development
environment (IDE) that contains all of the tools needed to complete a major embedded
development project, from hardware bring-up through programming and debugging embedded
applications. Two useful features used from the CodeWarrior IDE were the Kernel Awareness
plug-in module for visualization and debugging of the SmartDSP Operating System (SDOS) and
a Profiler that allowed evaluation of the performance of various modules and interactions in the
system.

Figure 6. Master and Slaves Systems

MSC8144

Core 0 Cache

Core 3 CacheCore 2 CacheCore 1 Cache

M3 Memory
QUICC Engine™

Subsystem
DATA

Task Q
ueue

Task Q
ueue

Task Q
ueue

M2 Memory

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 13

Porting Guidelines

• SmartDSP Operating System (SDOS). SDOS is a preemptable, real-time, priority-based operating
system, specially designed for high-performance DSPs operating with tight memory requirements
in an embedded environment. It includes support for multi-core operations such as synchronization
modules and inter-core messages to manage inter-core dependencies. A convenient and unified
application program interface (API) supports various types of peripheral I/O devices and DMA
controllers.

The steps we used to port the MJPEG application followed a straightforward approach as follows. First we
ran a single instance of the MJPEG application on a single core of the MSC8144. Once this functionality
was properly validated, we ran two or more instances of the MJPEG processing on the same core. This
was helpful because the debugging process is simpler on one core than on multiple cores. During this
process, we were also able to use the MSC8144 functional simulator available with the CodeWarrior IDE,
eliminating the need for the actual hardware for this portion of the development. After these initial steps,
the MJPEG application was executed on more than one core without any inter-core communication.
Lastly, we added the inter-core functionality.

3.3.1 Scheduling
In the master-and-slaves scheduling implemented on the MSC8144 for this application, the main scheduler
functionality resides in core 0, the master core. Cores 1, 2 and 3 in the system become slave cores. The
master core manages the I/O and processing for the application and the slave cores wait for tasks to be
processed as shown in Figure 7.

Figure 7 shows that the incoming raw video images are received in blocks by the MSC8144 QUICC
Engine network interface. The master core services the QUICC Engine interrupt and then sends a message
to the slave cores with the information pertinent to the received block. The slave cores are notified by
messages placed in this queue which then vie to access the message and be assigned the task of JPEG
encoding the video data block. If a slave core is already processing a block, it does dequeue a task until it
completes the encoding of the current data block.

Figure 7. Task Scheduling

Raw

DATA

MSC8144

Core 3CacheCore 2 Cache

Core 1 Cache

Input Rx
QUICC Engine™

SubsystemBuffers
Queue

Core 0Cache

M2 Memory

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

14 Freescale Semiconductor

Porting Guidelines

NOTE

Core 0, even though it is the master core, is also notified when messages are
posted to the task queue and can perform the JPEG encoding of an block if
it has available processing bandwidth.

Once a slave core finishes the JPEG encoding process, it notifies the master core via another message
queue as shown in Figure 8. The master core dequeues the information for each encoded block and
determines whether it is the next output block in the output stream (a process called serialization). If that
is the case, the master core transmits the encoded block to the network using the QUICC Engine interface.
It also transmits any additional encoded blocks that are available in the serialized sequence.

If the master core performed the encoding task, it does not use the queue process, and it simply serializes
the output and transmits the buffer (if possible).

The SDOS operating system provides the basic building blocks for the scheduling of the application. In
other words, the master core implements the scheduling methodology by making calls to SDOS services
through the operating system API. Similarly, the slaves respond to the master core using SDOS services.

The background task in SDOS is a user-defined function that executes when no other tasks in the
application is required to execute. This task has the lowest priority and executes indefinitely in a loop until
a higher priority task is enabled. The background task for this application places the corresponding core in
the WAIT state by executing the wait instruction. The WAIT state is an intermediate power-saving mode
used to minimize core utilization and reduce power consumption. In this case, the cores each remain in the
WAIT state until a message arrives indicating a block of pixels is available for JPEG encoding, or, if it is
the master core, an encoded block is ready to transmit.

Figure 8. Task Completion

JPEG
DATA

MSC8144

Core 3CacheCore 2 Cache

Core 1 Cache

Output Tx
QUICC Engine™

SubsystemBuffers
Queue

Core 0Cache

M2 Memory

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 15

Porting Guidelines

3.3.2 Inter-Core Communication
The inter-core communication for the application consists primarily of the messages exchanged between
the master core and the slave cores. These messages are implemented in this application using services
provided by SDOS accessed through calls to the operating system API. The flow of inter-core
communication for the application is shown in Figure 9.

The QUICC Engine subsystem interrupts the master core after several blocks of the raw video image are
received. In the receive interrupt service routine (ISR), core 0 sends messages to all the slave cores and to
itself to indicate there is data ready for JPEG encoding. After the encoding process, the slave cores send a
message back to the master core indicating there are blocks of encoded data ready to transmit. Core 0 does
not need to send a message to itself.

During the initialization process, each core creates queues used to send and receive messages as indicated
in Table 6. The messages have two purposes. Messages from the master core (core 0) indicate that a block
of raw video data was received and is available to encode. Messages from the slave cores (cores 1 through
3) indicate that a block has been encoded and is ready to transmit. A block encoded by core 0 is serialized
for transmission with no message generation.

Messages are implemented using MSC8144 virtual interrupts between the cores. Priorities associated with
the user function called when a message is received by a core are indicated in Table 6.

Figure 9. Inter-Core Communication Flow Diagram

Table 6. Message Queues Defined During Initialization

Message Location
Call-back
Priority

Purpose

Core 0 to
Cores 0–3

Core 0 6 Send/Receive messages indicating block ready to encode

Cores 1–3 5 Receive messages indicating block ready to encode

Cores 1–3 to Core 0 Cores 0 3 Receive messages indicating JPEG encoding completed

Core 1–3 N/A Send messages indicating JPEG encoding completed

QUICC Engine™
Subsystem

QUICC Engine™
Subsystem Core 0

Core 0

Core 1

Core 2

Core 3

Core 0

No message required

Tx InterruptRx Interrupt

Mess
age

M
essage

Message

Message

Message

Message

Mess
age

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

16 Freescale Semiconductor

Porting Guidelines

3.3.3 Input and Output
The I/O for the motion JPEG application also required special consideration. The input of the raw video
data arrived to the MSC8144 QUICC Engine interface from a PC over an IP network connection. As
mentioned previously, the master core (core 0) initializes and services the interrupts for the QUICC Engine
subsystem. Incoming data blocks are not copied. Instead, control information is passed to the slave cores
in a message with a pointer, size, and other information needed to locate the data and complete the JPEG
encoding processing.

The data output process is more involved. The output blocks must be sent back to the PC over the IP
network in the same order in which they were received, but since the JPEG encoding processing is data
dependent, the cores can complete the encoding process for a block out-of-order, which means the output
blocks become available out of order. Thus, the output blocks must be buffered and placed back in order,
a process called output serialization.

The master core executes the serialization by collecting pointers to the output buffers as they are made
available by the slave cores. Encoded buffers are then transmitted to the PC only when the next blocks in
the sequential output data stream are available. This process is depicted in Figure 10. In this example, the
serializer shows that output blocks #6, #7 and #9 are available to be sent to the PC; however, the next block
the PC is expecting is block #5 as indicated to by the Current pointer. Slave core 1 finishes encoding output
block #10 and notifies the master core which then adds it to the serializer accordingly. Core 0 then provides
output block #5 which then allows blocks #5 through #7 to be sent to the PC, after which the serializer
must wait for block #8 in the sequence.

The serializer concept is similar to the jitter buffer used in voice over IP (VoIP) applications. The
differences are that the jitter buffer in VoIP is located at the receiving end of the voice connection.

Figure 10. Output Serialization

10

10

MSC8144

Core 0 CacheCore 3 Cache

Core 1 Cache Core 2 Cache

M2 Memory

C
urrent

10

N/A N/A N/A 9 N/A 7 6 N/AQueue

5

Serializer

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 17

Conclusions

4 Conclusions
Designers of multi-core applications must consider several factors including processing and task
properties, hardware characteristics such as the cache and peripheral support, and the multi-core support
provided by the OS and tools. For example, the Kernel Awareness module of the CodeWarrior
Development Studio proved invaluable in the implementation and debugging of the motion JPEG
application.

Because a multi-core system also exposes hidden dependencies and complexities, it is always a good idea
to start with a simple scenario or subset of the application processing, and then improve form there. For
example, it is generally impractical to try to obtain optimal task scheduling, inter-core communication, and
I/O methodologies in the early development stages. It is better to begin with a single core using static
scheduling and improve the design though testing and tuning.

To support effective application development in a multi-core and multi-task environment, Freescale
multi-processing offerings not only include multi-core SMP devices such as the MSC8144 DSP, but also
provide development environments like the CodeWarrior Development Studio, and hardware and software
tool support that can help the designer develop application systems, measure their system performance and
resource and processing utilization, and tune, test, and debug their functionality.

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

18 Freescale Semiconductor

Conclusions

Porting Applications to Multi-Core Platforms—MSC8144 Case Study, Rev. 0

Freescale Semiconductor 19

Conclusions

Document Number: AN3620
Rev. 0
6/2008

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale™, the Freescale logo, StarCore, and CodeWarrior are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of
their respective owners.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

	Porting Applications to Multi-Core Platforms-MSC8144 Case Study
	1 Introduction
	2 Multi-Core Programming Models
	2.1 Multiple-Single-Cores
	2.2 True-Multiple-Cores

	3 Porting Guidelines
	3.1 Design Considerations
	3.2 Motion JPEG Case Study
	3.3 Implementation Details

	4 Conclusions

